

Industrial Cathode Ray Tubes Volume 2 Data Section Issue 3

DESTENDATA INDESTENDATA

INDUSTRIAL GATTODE RAY TUBES

Volume 2

The facilities and organisation of Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS.9000.

Thorn Radio Valves and Tubes Limited

Mollison Avenue, Brimsdown, Enfield, Middx. EN3 7NS Telephone: 01-804 1201

Telex: 23953

The third edition of the Brimar Handbook has been published in two volumes.

Volume 1 Operational recommendations

Safety recommendations Aspects of Design Reports

Volume 2 Tube Index

Tube selection tables
Design data of phosphors
Design data of accessories

Design data of tubes

Volume 1 is printed in English, French, German, Italian and Spanish.

Volume 2 data sheets are printed in "English" but the "terms" used in the volume are translated and can be found in the general section. The data sheets are filed in alpha-numerical order of tube type numbers.

Extreme care has been taken in the preparation of the data to ensure these volumes are as comprehensive, accurate and up to date as possible at the time of going to press. Before designing tubes into equipment, it is advisable to check with the sales office or authorised agents that availability and data remain unaltered.

HEALTH AND SAFETY AT WORK ACT 1974

Attention is drawn to the recommendations under this heading in the Safety Recommendations in volume one.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the operational recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

APPLICATIONS SERVICE

The Applications Laboratory provide a free advisory service to equipment manufacturers.

THORN RADIO VALVES AND TUBES LIMITED

Applications Laboratory, Mollison Avenue, Brimsdown, Enfield, Middx. EN3 7NS

The following data is additional to that shown in the previous edition.

New Tube Data

- D10-293.. 6.8cm x 5.6cm display area, Medium to high bandwidth mesh p.d.a. tube.
- D14-270.. 10cm x 8cm display area, short length, mono-accelerator tube.
- D14-280.. 10cm x 8cm display area, Medium to high bandwidth mesh p.d.a. tube.
- D14-310.. 10cm x 8cm display area, high performance mesh p.d.a. tube.
- D18-160.. 12cm x 10cm display area, Medium to high bandwidth mesh p.d.a. tube.
- M8-100.. 74mm x 24mm display area, low profile screen, ruggedised gun construction data display tube.
- M17-152.. M17-15.. with special minimum blemish screen for diagnostic photography.
- M23-111.. 23cm screen diagonal, 90° deflection angle, 20mm neck data display and monitor tube with anti-reflection face-plate.
- M23-112.. 23cm screen diagonal, 90° deflection angle, 20mm neck data display and monitor tube with Rimguard III implosion protection.
- M23-113.. 23cm screen diagonal, 90° deflection angle, 20mm neck data display and monitor tube with a tinted bonded face-plate and mounting lugs
- M24-130.. 24cm screen diagonal, 90° deflection angle, Mobile or military monitor fully ruggedised construction tube bonded face-plate integral mounting lugs.
- M28-133.. 28cm screen diagonal, 90° deflection angle, data display or monitor tube with a tinted bonded anti-reflection face-plate.
- M31-190.. 31cm screen diagonal, 90° deflection angle, Medical, data display or general purpose monitor tube. Rimguard III protection. Integral mounting lugs.
- M31-191.. Version of M31-190 with a tinted bonded anti-reflection face-plate. 15% screen glass transmission.
- M31-192.. Bonded face-plate version of M31-190.. 50% screen glass transmission.
- M31-212.. 31cm screen diagonal, 90° deflection angle tube specially designed for data display, with tinted bonded anti-reflection face-plate, integral mounting lugs.
- M31-213.. M31-212.. but with clear glass bonded face-plate.
- M38-105.. M38-100.. with a tinted bonded anti-reflection face-plate, 15% screen glass transmission.
- M38-106.. M38-100.. with a tinted bonded anti-reflection face-plate, 30% screen glass transmission.
- M38-142.. 31cm screen diagonal, 110° deflection angle, high voltage focus, high resolution data display tube with Rimguard IV protection and integral mounting lugs.
- **59-60/90/074** 38cm screen diagonal, 90° deflection angle fully ruggedised construction tube for mobile or military monitor application. Rimguard III re-enforced envelope and flying lead connections.

New Ancillary Data

Tube index

Phosphor Screens GX, GY Socket B12FPC
Graticules 58, 70, 82, 90, 98 Scan Coils TBY2, TBY3, TBY5, TBY7

GENERAL

Pro-electron Nomenclature

Translation of Terms

Tube index

Selection Tables for

Oscilloscope, Radar, Monitor

Data Display Tubes,

Magnetic Shields and Tube Coils

PHOSPHOR SCREENS

Equivalents and Data Summary Chart Comparative persistence curves

Spectral energy distribution curves and

Persistence curves for individual phosphor screens

GRATICULES **GAUGES BASES** SOCKETS CAPS

SCAN COILS

Graticules

Gauges—Neck dimensions for scanning coil design

Bases and Sockets-Dimensions Sparkguard flashover protection

Caps and Scan Coils

OSCILLOSCOPE TUBES

Current and maintenance types filed in alpha/numerical

order including

Mono-accelerator tubes Spiral p.d.a. tubes

Mesh p.d.a. tubes

Tube coils and magnetic shields

RADAR **TUBES**

Current and maintenance types filed in alpha/numerical

order including

P.P.I. display radars Sector display radars

Self-labelling radars

Compass tubes

DATA DISPLAY AND MONITOR TUBES

Current and maintenance types filed in alpha/numerical order including

Tubes for alpha-numeric and graphic displays

Medical waveforms

Picture monitors

SPECIAL TUBES

Current and maintenance types filed in alpha/numerical order including

Flying spot scanner tubes

Monoscopes

Pro Electron Nomenclature

Industrial Cathode Ray Tubes

The type nomenclature consists of one letter and number joined by a hyphen to a number and one or two letters.

FIRST LETTER CLASSIFICATION

The first letter indicates the application and/or construction of the tube.

- A TV display tube for domestic applications
- D Oscilloscope tube, single trace
- E Oscilloscope tube, multiple trace
- F Radar display tube, direct view
- L Display storage tube
- M Professional television or display tube (except radar), direct view
- P Professional television or display tube, projection
- Q Flying-spot scanner

FIRST NUMBER CLASSIFICATION

The first number indicates the overall diameter or the overall diagonal of the glass envelope (face-plate) in cm.

- 7 Represents a 7 cm (3 in) face-plate
- 13 Represents a 13 cm (5 in) face-plate
- 50 Represents a 50 cm (20 in) face-plate

Note: Since the centimetre is smaller than the inch it is possible that more than one first number corresponds to a particular inch size tube, e.g. 47 and 49 have both been allocated for 19 inch tubes.

SECOND NUMBER CLASSIFICATION

The second number is a two or three figure serial number indicating a particular design or development.

FINAL LETTER(S)

The final letter(s) indicates the screen properties.

The first letter denotes the colour of the fluorescence (or phosphorescence in the case of long or very long persistence screens) according to the regions of the Kelly Chart of colour designations for lights, where applicable:

- A Reddish-purple, purple, bluish-purple
- B Purplish-blue, blue, greenish-blue
- D Blue-green
- G Bluish-green, green, yellowish-green
- K Yellow-green
- L Orange, orange-pink
- R Reddish-orange, red, pink, purplish-pink, purplish-red, red-purple.
- W ''Standard White'' television display tube phosphor.
- X Tri-colour screen
- Y Greenish-yellow, yellow, yellowish-orange.

The second letter is a serial letter to denote other specific differences in screen properties.

SUFFIXES

Internal or external graticules are indicated by a two-figure suffix separated from the final letter by an oblique stroke. Letter suffixes may also be used for Sparkguard bases.

EXAMPLES

D13-51GH Single trace oscilloscope tube with a 13 cm (5 in) face-plate with phosphor type GH.

M59-25GM/24 Professional display tube with a 59 cm (23 in) face-plate and phosphor type GM and having an external co-ordinate graticule, type 24.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

Translation of Terms

FRANÇAIS

Tubes a Rayons Cathodiques Industriels

Traduction des Termes

Industrielle Elektronenstrahlröhren Übersetzung der Fachausdrücke

Tubi a Raggi Catodici Per Uso Industriale ITALIANO

Traduzione di Termini

Tubos de Rayos Catódicos Industriales

ESPAÑOL Traducción de Términos

Thorn Radio Valves and Tubes Limited

ENGLISH Abridged data

Aluminised screen

Anti-flicker Anti-reflection faceplate

Application

Banded p.d.a.

Beam alignment electrode Black Blue Bonded face plate

Camera viewfinder Classification Clear glass Closed circuit television Common features

Common X deflection Comparables Compass tube Co-ordinate graticule

Corners cut Current types

Data Display Tube

Demonstration tube Design data sheets Direction finder Double gun oscilloscope Dual phospho

Edge illumination Electrostatio deflection Electrostatic focus

Equipment manufacturers Equivalents External graticule

Features Flashover protection

Flexibility Fluorescent Flying-spot scanner

General purpose Graduated scale Green

High sensitivity High voltage focus

Implosion protection Industrial

applications Industrial monitor

Instrument tubes Integral mounting lugs Internal graticule Internal scale

FRANCAIS

caractéristiques résumées

anti-scintillement Face avant anti-réflexion

application

R.P.A. en bande gammée

électrode d'alignement du faisceau Noir plaque protectrice de

viseur de caméra classement Verre transparent télévision en circuit fermé caractéristiques

communes déflection X commune types comparables tube pour boussoles coordonnées

types courants Tube de visualisation de données Collier de déviation

tube de démonstration feuilles de caractéristiques oscilloscope à double canon phosphore double

Eclairage rasant déviation électrostatique électrostatique fabricants d'équipements équivalents graticule extérieure

caractéristiques Protection de contournement fluorescent balayage à spot mobile

usage général échelle graduée graticule

haute sensibilité Focalisation haute-tension

protection contre les implosions utilisations industrielles

contrôle industriel

tubes d'instrument incorporées graticule intérieure échelle intérieure

DEUTSCH

Kurzdaten

Aluminiumhinterlegter Leuchstchirm Flimmerschutz Schirmträger mit Reflexionsschutz Anwendung

Nachbeschleunigung mit Bandelektrode Zentrierelektrode

Schwarz Blau Verbundglasscheibe

Klassifizierung Durchsichtiges Glas Industrielles Fernsehen

Gemeinsame Merkmale

Normale X-Ablenkung Vergleichbare Typer Funkpeilrohre

Gerundete Ecken Laufende Typen

Datendarstellungsröhre

Demonstrationsrohre Datenblatte Funkpeile Zweistrahloszillograph

Dual-Phospho

Randbeleuchtung Elektrostatische Ablenkung Elektrostatische Fokussierung Geräteherstelle

Aquivalente

Merkmale Überschlagschutz

Flevibilität Fluoreszent Lichtpunktabtaster

Mehrzweck Kalibrierte Skala Raster Grun Grau

Hohe Empfindlichkeit Hochspannungsbundelung

Implosioneschutz Industrielle Anwendungen

Industrieller Monitor

Instrumentenröhren Eingearbeitete Befestigungsosen Innenraste Innenskala

ITALIANO

Dati abbreviati

Schermo alluminizzato 'Anti-flicker' Pannello frontale anti-riflettente

Applicazione Post accelerazione anodica

Elettrodo de allineamento del fascio Nero

Blu Pannello frontale 'bonded'

a banda

Mirino per telecamera Classificazione Vetro lucido Televisione a circuito chiuso Caratteristiche comuni

Deflessione X comune Tipi comparabile Tubo per bussola

Angoli tagliati Tipi correnti

Tubo presentazione dati

Tubi da dimostrazione Pagine dei dati Indicatore di direzione Oscilloscopio a doppio

Illuminazione dei contorni Deflessione elettrostatica

Focalizzazione elettrostatica Costruttori di apparec-Equivalenti

Reticolo esterno Caratteristiche Protezione contro scariche

Flessibilità luorescente Flying spot scanner

Impiego generale Scala graduata Reticolo Verde

Grigio Elevata sensibilità Focalizzazione ad alta tensione

l'implosione Applicazioni industriali

Monitor per impieghi industriali Tubi per istrumenti Alette di fissaggio incorporate Reticolo interno Scala interna

ESPANOL

Datos Abreviados

Pantalla Aluminizada Anti-parpadeo Placa externa antirrefleios

acelerador post-deflexión Electrodo de Alineación

de Haz negro Azul

Placa Protectora Incorporada

Visor de la Cámara Classificación idrio transparente Televisión en Circuito Cerrado
Características Comunes

Desviación X Común Tipos comparables Tubo Compás Reticula de Coordenadas

esquinas redondeadas Tipos Corrientes

Tubo para presentación de datos yugo de desviación Tubo de Demostración Hojas de Datos Goniómetro Osciloscopio de Cañón Doble Fósforo Doble

uminación de bordes Desviación Electrostática

Enfoque Electrostático Fabricantes de Equipos

Equivalentes Reticula Externa

Caracteristicas protección salto de chispa

Flexibilidad Fluorescente Exploración de Punto

De Uso General Escala Graduade Reticula

Alta Sensibilidad foco de alta tensión

Implosión Aplicaciones Industriales

Monitor Industrial

Tubos para instrumentos Oreietas de Montura Integradas Reticula Interna Escala Interna

ENGLISH

Large display area

Large screen area

Large screen oscilloscope
Large spot
Light injection
Line width
Long

Magnetic deflection Magnetic focus

Magnetic shield Maintenance Marine radar Medical application Medium Medium bandwidth

Medium short Mesh P.D.A.

Mono-accelerator Monoscopes Mounting frame

Narrow neck

Obsolescent
Obsolete
Octantal correction
Orange
Oscilloscope tube
Overall length

Persistence P.D.A. ratio

Phosphorescence Phosphors Photography Post-deflection acceleration P.P.I. display

Purple

Radar tube Rectangular face Reinforced envelope Rimband Rimguard Round face

Sales classification Scan coil Screen diameter

Secondary
parameters
Short length
Short neck
Short persistence
Side pins
Single gun
Small electrostatic
tubes
Socket
Sparkguard base

Special quality Special phosphors Spiral P.D.A.

Standard phosphors Strengthened structure Studio monitor FRANÇAIS

grande surface d'image

oscilloscope à grand écran Gros spot Injection lumineuse largeur de ligne long

déviation magnétique concentration magnétique

Ecran magnétique entrétien radar marine Application médicale moyen largeur de bande moyenne longueur moyenne post-accélération mesh

Monoaccélérateur monoscopes cadre de montage

Col étroit diamètre du col

obsolescent périmé correction octantale orange tube pour oscilloscope longueur hors tout

persistance rapport de postaccélération luminescence phosphores photographie accélération après déflection visualisation P.P.I.

pourpre

tube radar face rectangulaire enveloppe renforcée bande métallique coquille métallique écran rond

classement Bobine de balayage diamètre de l'écran

longueur réduite col court courte persistance sorties latérales canon unique tubes petits électrostatiques Douille base anti-flash

qualité spéciale phosphores spéciaux post-accélération spirale

Phosphores standards structure renforcée

contrôle de studio

DEUTSCH

Große nutzbare
Schirmfläche
Große Leuchtschirmfläche
Oszillograph mit großem
Leuchtschirm
Großer Lichtfleck
Lichteinstreuung
Zeilenbreite

Magnetische Ablenkung Magnetische Fokussierung Magnetische Abschirmung

Nachbestückung Schiffsradar Medizinische Anwendung Mittel Mittlere Bandbreite

Mittel-Kurz Maschen-Nachbeschleunigungselektrode Mono-Beschleuniger Monoskopen Befestigungsrahmen

Enger Hals Halsdurchmesser

Auslaufend Ausgelaufene Achtelkreisige Korrection Orange Oszillographegröhre Gesamtlänge

Nachleuchtdauer Nachbeschleunigungsverhältnis Nachleuchten Leuchtschirmarten Photographie Nachbeschleunigung

P.P.I.-Darstellung

Purpur

Radarbildröhre Rechteckige Frontfläche Verstärkter Kolben Metallstreifenschutz Metallrahmen Runder Schirm

Klassifizierung Ablenkspule Leuchtschirmdurch-

messer Sekundarparameter

Kurze Baulange Kurzer Kolbenhals Kurz Nachleuchtdauer Seitliche Anschlußstifte Einstrahlsystem Kleine elektrostatische Röhren Fassung Funkenschutzsockel

Sonderqualität Spezial-Phosphor Spiralförmige Nachbeschleunigungselektrode Normalleuchtschirmarter Verstärktekonstruktion

Studio-Monitor

ITALIANO

Vasta area di rappresentazione Grande schermo

Oscilloscopio a grande schermo Grande macchia luminosa Iniezione di luce Ampiezza di linea Lungo Deflessione magnetica Focalizzazione magnetica

Schermo magnetico Manutenzione Radar marino Applicazione medica Medio Media larghezza di banda

Medio breve
Post accelerazione
anodica a griglia
mono-acceleratore
Monoscopi
Telaio di fissaggio

Collo stretto Diametro del collo

In esaurimento Esaurito Correzione degli ottanti Arancio Tubo per oscilloscopio Lunghezza totale

Persistenza
Rapporto di post accelerazione anodica
Fosforescenza
Fostori
Fotografia
Post accelerazione
anodica
Indicatore di posizione
panoramico
Porpora

Tubo per radar Superficie rettangolare Involucro rinforzato Striscia metallica Guscio metallico Faccia circolare

Classificazione Bobina per scansione Diametro dello schermo

Parametri secondari

Corto
Collo corto
Breve Persistenza
Contatti laterali
Cannone singolo
Tubi piccoli elettrostatici

Presa
Base di protezione contro
le scariche
Qualità speciale
Fostori speciali
Post accelerazione
anodica a spirale

Fosfori standard Struttura rinforzata

Monitor per studio

ESPANOL

Area de Presentación Amplia Area de Pantalla Amplia

Osciloscopio de Pantalla Amplia gran punto invección de luz Anchura de Linea Largo Detlexión Magnética Enfoque Magnético

Blindaje magnético Mantenimiento Radar Marino Aplicación medica Medio Anchura de Banda Media

Medio Corto Acel. Post-Desv. Rejilla

Monoscopios Marco de Montura Cuello estrecho Diámetro de Cuello

Anticuado
Fuera de Uso
Corrección Octantal
Naranja
Tubo de Osciloscopio
Longitud Total

Persistencia
Relación de Acel. PostDesv.
Fosforescencia
Fósforos
Fotografía
Aceleración PostDeflexión
Presentación P.P.I.

Púrpura

Tubo Radar Cara Rectangular Bulbo Reforzado Banda metálica Protección del Borde Cara circular

Classificación Bobina de exploración Diámetro de Pantalla

Parámetros Secundarios

Longitud Corta
Cuello Corto
Corta Persistencia
Patillas Laterales
Cañón Sencillo
Tubos electrostáticos
pequeños
Zocalo
Zócalo a Prueba de Arcos

Calidad Especial Fósforos Especiales Espiral Acel. Post-Desv.

Fósforos standard Estructura reforzada

Monitor de Estudio

	ENGLISH TOTAL ST	FRANÇAIS DEALEATE	DEUTSCH HORTOR	ITALIANO PLANA	ESPAÑOL
	Television monitor	contrôle de télévision	Fernsehmonitor	Monitor per televisione	Monitor de Televisión
	Trace	Trace	Spur	Traccia luminosa	Trazado
	Transistorised	transistorisé mados efforces	Transistorisiert	Transistorizzato de obasto	Transistorizado
100	Transistor scan Twist coil	balayage par transistor Bobine de déviation	Transistorabtastung Koordinatenabgleichspule	Scansione a transistor Bobina di regolazione	Barrido por Transistores Bobina de alineación
	Two phosphor screen	omsadsa	Philosophiand	Schermo con due fosfori	840010111050
	Typical operation	écran à deux phosphores conditions typiques d'emploi	Dual-Leuchtschirm Typische Betriebswerte	Funzionamento tipico	Pantalla de dos Fósforos Funcionamiento Típico
	Uniformly graduated	gradué uniformément	Stetige Teilung	Graduato uniformemente	Con Graduación Uniforme
	Very long Very short	très long très court	Sehr lang Sehr kurz	Molto lungo Molto breve	Muy Largo Muy Corto
	Waveform display	visualisation de la forme d'onde	Oszillogramme	Rappresentazione di forme d'onda	Presentación de Formas de Onda
	White Wide bandwidth	blanc large bande	Weiß Große Bandbreite	Bianco Ampia larghezza di banda	Blanco Gran Anchura de Banda
-	Yellow based so students	jaune in the state of state of	Gelb standards and the	Giallo ob sid ob special	Amarillo
	X-Y plotter	plotter X-Y	Koordinatenschreiber	Tracciatore X-Y	Transfer V Voita muibeth
-	en all vantages and	Sentification and set of a set	Magazina Mag	nzen nommaleuba teog.	Trazador A-1
					Mond accelerator
	- Muroscours				
				duments cul	Name week
					nemberson letastet
					Lange Carmingone tube
				santasare santasare	
	altenpero i				
			Procedural medition		cet defiaction acceleration
	Tuno Raday o		-Fadwinittentus		
				accordate of thucas	
	Ellement on orement				
	Company States				
					Tiples oclies
					Sparitonard base
					grounds phosphore
					A.d. 9 terror

Industrial Cathode Ray Tubes

Index

Type Number	Section & Replacement
CV429	Radar
CV5119	Radar
CV5203	Radar
CV5819	(Radar F31-11LD
CV6198	Data & Monitor
CV6237	(Data & Monitor (M31-100GH
CV6238	(Special XR1000D
CV6244	(Data & Monitor (M16-100W
CV8299	(Oscilloscope SE4D/P31
CV8300	(Oscilloscope SE4D/T14
CV9315	(Oscilloscope D21-10GH
CV9337	(Oscilloscope SE5/2A/P31
CV10543	(Radar F22-10LD
CV10917	(Radar F21-12LC
D3-130	Oscilloscope
D7-200	Oscilloscope
D7-201	Oscilloscope
D9-110	Oscilloscope
D10-210	Oscilloscope
D10-230	Oscilloscope
D10-240	Oscilloscope
D10-293	Oscilloscope
D13-33	Oscilloscope
D13-47	Oscilloscope

Type Number	Section & Replacement
D13-471	Oscilloscope
D13-600	Oscilloscope
D13-601	Oscilloscope
D13-610	Oscilloscope
D13-611	Oscilloscope
D13-630	Oscilloscope
D14-150	Oscilloscope
D14-170	Oscilloscope
D14-171	(Oscilloscope D14-173
D14-172	Oscilloscope
D14-173	Oscilloscope
D14-180	(Oscilloscope D14-181
D14-181	Oscilloscope
D14-200	Oscilloscope
D14-210	(Oscilloscope D14-310
D14-270	Oscilloscope
D14-280	Oscilloscope
D14-310	Oscilloscope
D16-100	Oscilloscope
D16-110	Oscilloscope
D18-130	Oscilloscope
D18-160	Oscilloscope
D21-10	Oscilloscope
D21-102	Oscilloscope
F10-100	Radar
F15-101	Radar
F16-101	Radar
F21-10	Radar
F21-12	Radar

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

Index

Industrial Cathode Ray Tubes

Type Number	Section & Replacement
F21-130	Radar
F22-10	Radar
F22-11	Radar
F31-10	Radar
F31-11	Radar
F31-12	Radar
F31-13	Radar
F31-14	Radar
F31-111	Radar
F31-112	Radar
F41-12	Radar
F41-13	Radar
F41-14	Radar
F41-120	(Radar (F41-12
F41-121	Radar
F41-122	(Radar (F41-123
F41-123	Radar
F41-124	Radar
F41-130	(Radar F41-13
F41-140	(Radar (F41-14
F41-141	Radar
M8-100	Data & Monitor
M14-100	Data & Monitor
M16-100	Data & Monitor
M17-10	Data & Monitor
M17-12	Data & Monitor
M17-15	Data & Monitor
M17-152	Data & Monitor
M19-100	Data & Monitor
M21-13	Data & Monitor

Type Number	Section & Replacement
M23-110	Data & Monitor
M23-111	Data & Monitor
M23-112	Data & Monitor
M23-113	Data & Monitor
M24-120	Data & Monitor
M24-121	Data & Monitor
M24-130	Data & Monitor
M28-11	Data & Monitor
M28-12	Data & Monitor
M28-13	Data & Monitor
M28-131	Data & Monitor
M28-132	Data & Monitor
M28-133	Data & Monitor
M31-100	Data & Monitor
M31-101	Data & Monitor
M31-120	Data & Monitor
M31-182	Data & Monitor
M31-184	Data & Monitor
M31-185	Data & Monitor
M31-190	Data & Monitor
M31-191	Data & Monitor
M31-192	Data & Monitor
M31-212	Data & Monitor
M31-213	Data & Monitor
M36-141	Data & Monitor
M36-142	Data & Monitor
M38-100	Data & Monitor
M38-101	Data & Monitor
M38-102	Data & Monitor
M38-103	Data & Monitor
M38-104	Data & Monitor
M38-105	Data & Monitor
M38-106	Data & Monitor
M38-111	Data & Monitor
M38-112	Data & Monitor
M38-113	Data & Monitor

Industrial Cathode Ray Tubes

Index

Type Number	Section & Replacement
M38-120	Data & Monitor
M38-121	Data & Monitor
M38-122	Data & Monitor
M38-142	Data & Monitor
M44-120	Data & Monitor
M50-120	Data & Monitor
M61-120	Data & Monitor
Diames 1	(Data & Monitor
PMT58-1	Data & Monitor M36-141W
PMT61	(Data & Monitor (M36-141LA
PMT65	(Data & Monitor (M17-10W
PMT66	(Data & Monitor (M36-141W
PMT68	(Data & Monitor (M17-10LA
	g
ne d d soldinor	
Q13-202	Special
Q13-203	Special
SE4D	Oscilloscope
SE5/2A	Oscilloscope
SE5F	Oscilloscope
XR1000	Special
XR1000A	Special
XR1002	Special
XR1002A	Special

Type Number	Section & Replacement
XR1003	Special
XR1003A	Special
7ABP33A	Radar
31C13/T1	Radar CV5203
31C14/T1	(Radar CV5119
31C16	Data & Monitor M17-12
31E13/T7	(Radar (CV429
31F14	(Radar (F41-12
59-60/90/037 59-60/90/074	Data & Monitor Data & Monitor

Page 3, Issue 1.

Index

Industrial Cathode Ray Tubes

Type Number	Section & Replacement
5960-99-000-0429	(Radar (CV429
5960-99-000-5119	(Radar (CV5119
5960-99-037-2027	(Radar CV5203
5960-99-037-3477	(Oscilloscope (SE4D/P31
5960-99-037-4577	(Oscilloscope D21-10GH
5960-99-037-4597	(Oscilloscope SE5-2A/P31
5960-99-037-5397	(Radar (F22-10LD
5960-99-037-5739	(Radar (F21-12LC
5960-99-037-6038	(Data & Monitor (M31-100GH
5960-99-037-6039	(Special (XR1000-09
5960-99-037-6042	(Data & Monitor (M16-100W
5960-99-038-0170	(Data & Monitor { 59-60/90/037
5960-99-038-0723	(Data & Monitor (59-60/90/074
5960-99-118-0715	(Oscilloscope D13-51GH
5960-99-118-1105	(Oscilloscope D13-51GH/26
5960-99-118-1602	(Oscilloscope (SE5-2A/GH
5960-99-118-2158	(Radar { F31-112LD
5960-99-118-2707	(Data & Monitor (M28-13LG/S
5960-99-118-3296	(Data & Monitor (M38-101LD/R
5960-99-118-3365	(Radar F31-10LC
5960-99-118-3384	(Data & Monitor (M28-13W

Type Number	Section & Replacement
5960-99-118-4000	(Oscilloscope D21-10GM
5960-99-118-4668	(Data & Monitor (M38-112GH
5960-99-118-5158	(Special (XR1003-36

 ‡ $V_h = 11V$

Rectangular face

\$ Round face

† Cut-off

* Diameter

SINGLE GUN INSTRUMENT TUBES - CURRENT TYPES
Common features: - Electrostatic deflection and focus. 6.3V heaters

Other		Faces			TYP	ICAL	OPER	ATIO	N - VC	ltages	TYPICAL OPERATION - voltages to cathode	ode	Base
	Description	Diag. Diam.	Screen	length	Ч	Val	v_{a2}	Va3	Va4	-Vg+	D_{X}	Dy	Type
		nom.		max.			focus			AG			
		inch	cm^2	mm	A	kV	۷ ۷	kV	kV	, N	V/cm	V/cm	
Genera	General purpose indicating device	<u>(1)</u>	2.7*	103.2	0.3	1.0	96	1.0	1.0	34	80 to 120	58 to 88	B13B
ndic	Indicators, oscilloscopes, alpha-numerical readout	က	5 x 4	180	0.3	1.0	132	1.0	1.0	38	21 to 29	25 to 35	B13B
mpr	Improved D7-200GH	က	5 x 4	190	0.12	1.2	165	1.2	1	45	29 to 37	14 to 18	B13B
non	Low profile mono-accelerator	3.5	6.6 x 4	4 264	0.12	2.0	405	2.0	1	64	28 to 34.8	12.8 to B14G	B14G
Com	Compact tube, mesh p.d.a.	4	7 x 5	230	0.0754	9.0	160	0.54	0.9	42	11.2 to 13.8	8 to 10 B12F	B12F
lat	Flat-faced mono-accelerator	4	8 × 6.4	260	0.3	1.5	305	1.5	1	48	21 to 26	13 to 16	B14G
Mediu p.d.a.	Medium bandwidth, spiral p.d.a.	4	7 x 5	260	0.12	1.0	262	1.0	2.0	52	21.6 to 26.4	8.3 to 10.2	B12F
Medi	Medium to high bandwidth, mesh p.d.a.	4	6.8 x 5.6	300	0.12	1.0	260	1.0	9	39	10.5 to 12.8	3.8 to	B12F
Mediu p.d.a.	Medium bandwidth, spiral	2	10 x 6	371	0.3	1.0	287	1.0	4.0	20	14.5 to 17.5	6.7 to	B12F
ligh	High bandwidth, mesh p.d.a.	ľū	10 x 6	335	0.3	1.0	90	1.0	10	20	11 to 15	4.5 to 6.0	B12F
D13-47	D13-47GH with low wattage heater	က	10 x 6	371	0.12 1.0	1.0	287	1.0	4.0	20	14.5 to 17.5	6.7 to 8.3	B12F
eng	General purpose short length, spiral p.d.a.	(10)	10 × 8	315	0.3	1.5	400	1.5	3.0	73	21 to 27	10 to 12.7	B12F

Page 1, Issue 2.

Rectangular face.

SINGLE GUN INSTRUMENT TUBES - CURRENT TYPES (continued)
Common features:-Electrostatic deflection and focus, 6.3V heaters.

-
mm. max.
10 x 8* 315 0.12
10 x 8* 371 0.3
10 x 8* 371 0.3
10 x 8* 340 0.3
10 x 8 386 0.3
10 x 8 308 0.3
10 x 8 308 0.12
10 x 8 384 0.3
10 x 8 405 0.3
10 x 8 333 0.3
10 x 8 395 0.3
10 x 8 420 0.3
10 x 10 387 0.3

Page 2, Issue 2.

SINGLE GUN INSTRUMENT TUBES - CURRENT TYPES (continued)

Base	Type			B12F	B12F	B12F	312F	
	Dy		V/cm	8.5 to I	13 to H	4.1 to	28.5 to B12F 40.5	
TYPICAL OPERATION - voltages to cathode	D_{X}		V/cm	14.5 to 18.5	23 to 29	10.5 to	34.5 to	
voltag	Va4 -Vgt		av	40	09	09	09	8
- NO	Va4		kV	4.0	3.0	12	.9	
RATI	Va3		kV	1.0	1.5	2.0	3.0	
L OPE	a2	cus	av	287	420	540	1000	
PICA	Val		kV	1.0	1.5	2.0	3.0	
TY	$^{\mathrm{q}}$		Ą	0.3	0.3	0.3	0.3	
Overall	lengtn	max.	mm	384	310	450	420	
Useful	Screen	min.	cm^2	10 x 10	12 x 10	12 x 10	8.5 15 x 15	4
Faces	Diag. Dia.	nom.	inch	6.5	2	7	®.50	
	Description			Medium bandwidth, square face, X-Y plotter, spiral p.d.a.	General purpose, large screen area, spiral p.d.a.	Large screen mesh p.d.a.	Large diameter display p.d.a.	
Other	Current Phosphors				GM, GV			
Type	Number			D16-110GH	D18-130GH	D18-160GH	D21-102GH	

Other phosphor screens are available to special order. Both x and y-plates are designed for symmetrical operation. * Corners cut

\$ Round face

Page 3, Issue 2.

Selection Tables

Double Gun Oscilloscope Tube

Electrostatic deflection and focus, post deflection acceleration, 6.3V 9.6A heater, B12F base, CT8 side contact. CURRENT TYPE OSCILLOSCOPE TUBE DOUBLE GUN

Type Number	Description	Face Diam.	Useful	Overall Length	Neck Dia.	TYP	ICAL C	PERA	TION	- voltag	Face Useful Overall Neck TYPICAL OPERATION - voltages referred to cathode Diam. Screen Length Dia.	red to c	athode
			Area			Val	Va2 focus	Va3	Va4	-Vg cut-off	Val Va2 Va3 Va4 -Vg P.D.A. Dx	D_{X}	Dy
			min.	max.	max.		av.			av.	max.	max.	max.
		inch	cm2	mm	mm	kV	>	kV kV	kV	Λ		V/cm V,	V/cm
SE5/2A/GH CV9337	High sensitivity, common X deflection, beam alignment electrode.	2	10 x 5	380	65	65 1.0	200 1.0 4.0	1.0	4.0	09	4:1	22	7.0

Other phosphor screens are available to special order.

Common features: - High resolution, small spot size, magnetic deflection, 6.3V 0.3A heaters CURRENT TYPES TUBES SCANNER FLYING-SPOT

Base	,		4.5 B12A	4.5 B12A
erred to Base cathode Type	Max.Spot Dia. at 60%	pk.luminance mm at $I_{a3}~\mu A$	4.5	
es ref	Max.	pk.lu mm	0.07	0.05
N - voltag	Va -Vg Max. Spot Di Final cut-off at 60%	ý	30 to 70	30 to 70 0.05
ATIO	Va Final	kV	15	15
Overall Neck TYPICAL OPERATION-voltages referred to Base Length Dia.	Va Focus	kV	300 3.7to5.2 15 30 to 70 0.07	300 3.7 to 5.2
TYPI	Val	Λ	300	300
Neck Dia.		тах.	38	38
Overall Neck Length Dia.)	max.	280	580
Useful Screen	Area	min. mm ²	96.5 x 76.2 corners cut†	89 x 68.6 corners cut†
Face Diam		nom. inch	ω	2
Application and Description			Q13-202GS Electrostatic focus. Document readers or telecine. Precision mounting frame. EHT connection by rubber encapsulated flexible lead.	Q13-203GT Smaller spot size version of Q13-202
Type			Q13-202GS	Q13-203GT

Other phosphor screens are available to special order. † Diagonal 108 mm min.

Page 4, Issue 2.

Αţ	Application and Description	otion	Face Dia.	Overall Length		Neck Defl. Dia, Angle	>	TYPIC	TYPICAL OPERATION Voltages referred to cathode	ON thode	Base
			nom.			max. nom.	Val	Val Va2+a4	Va3	-Vg cut-off	
			inch	mm	mm	•	>	kV		4	
Small boat radar			4	271	38	30	400	2	0 to 400	40 to 77	B14G
Small boat radar			9	242	29.4	53	400	6	0 to 400	40 to 77	B8H
Small boat radar			9	370	29.4	37	200	14	0 to 400	27 to 44	В8Н
American type for small boat radar	r small boat	t radar	7	342	38	20	300	7	0 to 250	28 to 72	B12A
GM,LG General marine radar	adar		8.5	450	35.5	41	009	14	0 to 400	32 to 48	B8H
General marine radar	adar		8.5	326	29.4	09	400	14	0 to 400	34 to 78	B8H
General marine radar	dar		6	408	35.5	09	300	12	-300 to +300	30 to 78	B12A
Enlarged spot version of F22-10LD	ion of F22	2-10LD	6	408	35.5	09	300	12	-300 to +300	30 to 78	B12A
LC,LD General marine radar	lar		12	572	35.5	40	009	15	-300 to +300	40 to 85	ввн
Wider scan angle than F31-10LD	nan F31-1(OLD.	12	494	35.5	20	300	14	-300 to +300	30 to 70	B12A
Narrower cut-off voltage range than F31-10LC	oltage ran	nge than	12	572	35.5	40	009	16	-150 to +450	44 to 70	В8Н
Enlarged spot version of F31–11L ${\mathbb C}$	sion of F31	ו-וורב	12	494	35.5	20	300	14	-300 to +300	30 to 70	B12A
Extended neck length variant of F31–11LD	gth variant	jo 1	12	528	35.5	20	009	14	0 to 400	32 to 48	B12A
					8						
						•					

The above tubes, in certain cases, can be supplied with phosphor screens other than those listed to special order. Tubes using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Common features: - Electrostatic focus, magnetic deflection, 6.3V 0.3A heaters, aluminised screens, CT8 side contacts. CURRENT TYPES (continued) TUBES

Type	Other Cur-	Appli cation and Description	Face Dia.	Overall	Neck Dia.	Defil. Angle	12	TYPICA oltages r	TYPICAL OPERATION Voltages referred to cathode	NO thode	Base
	rent Phos-		nom.	max.	max.		Val	Va2+a4	Va3	-Vg	4
	phors		inch	mm	mm	o	Λ	kV	Λ	cut-off	
F41-12LC	LD	Major radars for ships, ports & airport traffic control.	16	610	35.5	20	300	15	-300 to+300 40 to 80	40 to 80	B12A
F41-13LC		Narrower cut-off voltage range than F41-12	16	610	35.5	20	300	15	-300 to+300 40 to 64	40 to 64	B12A
F41-14LD	rc	Enlarged spot version of F41-12	16	610	35.5	20	300	15	-300 to+300 40 to 80	40 to 80	B12A
F41-123LG	rc	Long neck version of F41-12,	16	650	35.5	20	300	15	-300 to +300 40 to 80	40 to 80	B12A
F41-124LG	LG	F41-123., except positive focus voltage range	16	650	35.5	20	300	15	0 to+400 40 to 80	40 to 80	B12A
F41-141LC		Enlarged spot version of F41-12	16	610	35.5	20	300	18	-300 to +300 40 to 80	40 to 80	B12A
		2								N.	
											H.S.

The above tubes, in certain cases, can be supplied with phosphor screens other than those listed to special order. Tubes using the BSH base may be fitted with the BSH Sparkguard Base and will then have a suffix after the type number.

Data Display and Monitor Tubes

Selection Tables

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts. CURRENT TYPES DATA DISPLAY AND MONITOR TUBES

Type	Other Cur-	Application and Description	Faces Diag.	Faces Overall Neck Defl. Screen Diag. Length Dia. Angle Glass	Neck Dia.	Defil. Angle	Screen		TY /oltag	PICA:	L OP	TYPICAL OPERATION Voltages referred to cathode	N ode	Base Type
	rent Phos-		nom.	max.	max.)	Trans. (Appr.)	Vh	Ч	Va1 fi	Va final	Va3 focus	-Vg cut-off	
	phors		inch	mm	mm	0	86	Λ	mA	Λ	kV	Λ	Λ	
M14-100W	GH, GM GV	Medical and camera, viewfinder applications	5.5	184	20.7	70	62	11	75	250	10	0 to 350	35 to 69 B7G/D	B7G/D
M16-100W		Mobile or military monitor. Fully ruggedised construction Encapsulated flexible leads to base and anode button.	9	233.7	27.45	0.2	Clear	6.3	300	400	14	0 to 400	31 to 71	Flying leads
M17-10W		Small, quality monitor or TV camera viewfinder.	2	236	29.4	02	Clear	11.5 150	150	400	14	0 to 400	0 to 400 38 to 78	B8H
M17-12W		M17-10 with different heater	[-	236	29.4	02	Clear	6.3	300	400	14	0 to 400	38 to 78	B8H
M17-15W	BE, GR	Self-protected version of	7	242	29.4	02	Clear	11.5	150	400	14	0 to 400	38 to 78	В8Н
M17-152BE		M17-15BE with improved screen	7	242	29.4	70	Clear	11.5	150	400	14	0 to 400	38 to 78	B8H
M19-100W		Medical, data display or general purpose monitor.	7.5	196	20.7	06	65	11	75	250	10	0 to 350	35 to 69 B7G/D	B7G/D
59-60/90/ 037		Mobile or military monitor. Fully ruggedised construction	8.5	292	27.45	02	Clear	6.3	300	400	14	-50 to	35 to 75 Flying leads	Flying leads
M23-110W	CH	Medical, data display or general purpose monitor.	6	222	20.7	06	20	11	75	250	10	0 to 350	35 to 69 B7G/D	B7G/D
M23-111W	HS	M23-110 with a tinted bonded anti reflection face- plate.	6	228	20.7	06	30	11	75	250	10	0 to 350	35 to 69 B7G/D	B7G/D
M23-112GH	W	M23-110 with Rimguard III protection	6	222	20.7	06	50	11	75	250	10	0 to 350	35 to 69 B7G/D	B7G/D

Other phosphor screens can be supplied to special order. § Rectangular face, Mounting frame, Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Selection Tables

Data Display and Monitor Tubes

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts. CURRENT TYPES (continued) DATA DISPLAY AND MONITOR TUBES

M23-113GV GH, W M24-120W LC, WA M24-121W M24-130GJ	M23-112 with a tinted bonded anti-reflection face-plate	.mou			Angle			Voltag	oltages referred to cath	ferre	Voltages referred to cathode	ode	Type
> 5	M23-112 with a tinted bonded anti-reflection face-plate		max.	max.		Trans. (Appr.)	Vh	Ih	Val	Va	Va3	7- g	
> 5	M23-112 with a tinted bond- ed anti-reflection face-plate	inch	mm	mm	٥	86	>	mA	>	final kV	focus	cut-off V	
2	High was lution data dian	6	228	20.7	06	30	11	75	250	10	0 to 350	35 to 69	B7G/D
M24-121W M24-130GJ	LC, WA HIGH TESOIUTION DATA DISPLAY	9.5	260	29.4	90	52	6.3	300	400	14	0 to 400	0 to 400 38 to 82	ВВН
M24-130GJ	Unprotected version of M24-120	9.5	260	29.4	06	52	6.3	300	400	14	0 to 400	38 to 82	В8Н
	Mobile or military monitor Fully ruggedised construction Bonded face-plate, integral mounting lugs.	6.6	280	29.4	06	32	6.3	300	400	14	0 to 400	0 to 400 38 to 82 Flying leads	Flying
M28-12W GM, GP	Medical, data display or general purpose monitor		253	20.7	06	218	11	75	250	11	0 to 350	0 to 350 35 to 69 B7G/D	B7G/L
M28-13W GH, GR GV, LC LG, WA	Self-protected data display tube with Rimguard III for push-through mounting.		266	29.4	06	928	11.5	150	400	14		0 to 400 40 to 76	ввн
M28-132GH	M28-13 with a tinted bonded anti-reflection face-plate		271	29.4	06	35	11.5	150	400	14	0 to 400	0 to 400 40 to 76	ВВН
M28-133GH	M28-13 with a tinted bonded anti-reflection face-plate		271	29.4	06	18	11.5	150	400	14	0 to 400 40 to	40 to 76	B8H
M31-120W	General purpose monitor tube	112	233	20.7	110	20	11	140	250	12	0 to 350	0 to 350 35 to 69	B7G/D
M31-184W GH	Data display or industrial monitor with Rimguard III protection	112	243	29.4	110	20	6.3	300	400	15	0 to 400	0 to 400 40 to 77	ввн
M31-185GH	Data display tube with tinted bonded face -plate	12	248.5 29.4	29.4	110	15	6.3	300	400	12	0 to 400	0 to 400 40 to 77	В8Н

Other phosphor screens can be supplied to special order. S Rectangular face Mounting lugs.

Types using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Data Display and Monitor Tubes

Selection Tables

Common Features:- Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts CURRENT TYPES (Continued) DATA DISPLAY AND MONITOR TUBES

Type	Other Cur-	Application and Description	Faces Diag.	Faces Overall Neck Diag. Length Dia.			Defl. Screen Angle Glass	Λ	TY F	ICAL s refe	OPE	TYPICAL OPERATION Voltages referred to cathode	de	Base Type
	rent Phos-	# E	nom.	max.	max.		Trans.	$^{\mathrm{V}_{\mathrm{h}}}$	I,	Val	Va	Va3	-Vg	
	photes		inch	mm	mm	۰	96	>	mA	>	kV	V	V V	
M31-190GH	M	Medical, data display or	112	277	20.7	06	20	11	75	250	12	0 to 350	35 to 69 B7G/D	B7G/
		Rimguard III Protection integral mounting lugs.												
M31-191GH	≱	M31-192 with a tinted bond- ed anti reflection face-plate		282	20.7	06	15	11	75	250	12	0 to 350	0 to 350 35 to 69 B7G/D	B7G/
M31-192GH	M	Bonded face-plate version of of M31-190	112	282	20.7	06	20	11	75	250	12	0 to 350	350 35 to 69 B7G/D	B7G/
M31-212GH	340	Data display tinted bonded anti-reflection face-plate integral mounting lugs		282	20.7	06	15	11	75	300	12	0.to 350	0.to 350 40 to 79 B7G/D	B7G/
M31-213GH		M31-212 but with a clear glass bonded face-plate		282	20.7	06	20	11	75	300	12	0 to 350	0 to 350 40 to 79	B7G/D
M36-141W		Studio quality monitor	14	425	38	70	09	6.3	300	300	12	-200 to +200	30 to 72 B12A	B12A
M38-100W	GH, GJ GR, LC LG, WA	Industrial monitor. Data display. Rimguard III protection.Squared-off screen		356	29.4	06	20	11.5	150	400	16	0 to 400	0 to 400 38 to 82	ввн
M38-101GH	9	M38-100, with longer neck for "position & write" coils		378	29.4	06	20	11.5	150	400	16	0 to 400	0 to 400 38 to 82 B8H	ввн
M38-102GH		Bonded face-plate version of M38-100.	15	383	29.4	06	20	11.5	150	400	16	0 to 400	0 to 400 38 to 82	ввн
M38-103WA		Version of M38-100WA with modified lugs	F	356	29.4	06	20	11.5	150	400	16	0 to 400	0 to 400 38 to 82 B8H	ввн
		NAME AND POST OF THE OWNER OWNER OF THE OWNER				1	1							

Other phosphor screens can be supplied to special order. § Rectangular face Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will then have a suffix after the type number.

Selection Tables

Data Display and Monitor Tubes

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts CURRENT TYPES (continued) DATA DISPLAY AND MONITOR TUBES

Number	Other Cur-	Application and Description	Faces Diag.	0 -	Neck Dia.	Defl. Angle	Screen	Vo	TYPI ltages	CAL refer	OPER	TYPICAL OPERATION Voltages referred to cathode	e o	Base Type
	rent Phos-		nom.	max.	man.		Trans. (Appr.)	Vh	I,	Val	Va	Va3	-Vg	
			inch	mm	mm	0	%	>	mA	>	kV	V	V	
M38-104GH		Bonded face-plate version of M38-100GH	115	361	29.4	90	50	11.5 150	150	400	16	0 to 400	0 to 400 38 to 82	В8Н
M38-105GH		M38-102 with a tinted bonded anti-reflection face- plate		383	29.4	06	15	11.5	150	400	16	0 to 400	0 to 400 38 to 82	ввн
M38-106GH		M38-102 with a tinted bonded anti-reflection face- plate	15	383	29.4	06	30	11.5	150	400	16	0 to 400	0 to 400 38 to 82	В8Н
M38-113GH		High resolution "position and write" data display	15	441	38	06	20	6.3	300	400	15	0 to 400	0 to 400 30 to 70 B12A	B12A
59-60/90/ 074		Mobile or military monitor Fully ruggedised construction Ringuard III protection integral mounting lugs	115	372	29,4	06	20	6.3	300	400	16	0 to 400	0 to 400 42 to 86 Flying leads	Flying leads
M38-120W	HS	General purpose monitor tube	15	279.5	29.4	110	20	6.3	300	400	16	0 to 400	0 to 400 40 to 85 B8H	B8H
M38-121W	GH	Protected version of M38-120	15	279.5	29.4	110	20	6.3	300	400	16	0 to 400	0 to 400 40 to 85 B8H	B8H
M38-122GH		Data display. Tinted bonded face-plate	12	284.5	29.4	110	15	6.3	300	400	16	0 to 400	0 to 400 40 to 85 B8H	В8Н
M38-142W	H5	High voltage focus high resolution data display. Rimguard IV protection integral mounting lugs	15	321	29.4	110	20	6.3	300	450	17	*000	35 to 85 B8H	В8Н

Other phosphor screens can be supplied to special order. § Rectangular face Mounting lugs. Types using the B8H base may be fitted with the B8H Sparkguard Base and will have a suffix after the type number.

Data Display and Monitor Tubes

Selection Tables

Common features: - Rectangular face-plates, electrostatic focus, magnetic deflection, aluminised screens, CT8 side contacts (continued) CURRENT TYPES DATA DISPLAY AND MONITOR TUBES

Base			B8H	В8Н	В8Н						
le	-V g cut-off	>	40 to 77	40 to 77	40 to 77						
TYPICAL OPERATION Voltages referred to cathode	Va3 focus	>	0 to 400 40 to 77 B8H	0 to 400 40 to 77 B8H	0 to 400 40 to 77 B8H		ı				
OPE	V _a final	kV	16	16	16						_
PICAL	-		400	400	400						-
TY] Voltage		mA	300	300	300						
		>	6.3	6.3	6.3						_
Screen Glass	Trans.	26	48	45	42						
Defil. Angle	O.	0	110	110	110						
Neck Dia.	max.	mm	29.4	29.4	29.4						
		mm	291	319	370						
Faces Diag.	nom.		17	[20]	24						
Application and Description			Squared-up screen. Rimguard III push-through protection	Squared-up screen. Rimguard III push-through protection	Squared-up screen. Rimguard 24	N					
Other Cur-	rent Phos-		rc	GH, GR GV, LG WA	GH, GR						
Type			M44-120W	M50-120W	M61-120W GH, GR						

Magnetic Shields Tube Coils

Oscilloscope Tubes

_		
Tube Type	Magnetic Shield Number MS	Tube Coil Number TW
D3-130	2	-
D7-200 D7-201	3 { 33 34	28 28
D9-110	65	50
D10-210 D10-230 D10-240 D10-293	6 4 1 7 83	24 - 33 56
D13-33 D13-47 D13-51 D13-471 D13-600	27 23 36 23 47	30 21 30
D13-601 D13-610 D13-611 D13-630	47 49 50 43	:
D14-150 D14-172	9 15	25 (20 (26
D14-173	15	{ 20 { 26
D14-181 D14-200 D14-270 D14-280 D14-310	20 11 70 72 1	23 29 52 29 29
D16-100 D16-110	45 63	45 45
D18-130 D18-160	61 84	48 29

Tube Type Magnetic Shield Number Shield Number Tube Coil Number TW D21-10 52 - D21-102 52 - SE4D 55 - SE5/2A 58 - SE5F 59 -			
D21-102 52 - SE4D 55 - SE5/2A 58 -		Shield Number	Coil Number
SE5/2A 58 -	D21-10 D21-102		-
SE5/2A 58 - SE5F 59 -	SE4D	55	-
	SE5/2A SE5F		-

Page 1, Issue 3.

Oscilloscope Tubes

Magnetic Shields Tube Coils

Magnetic Shield Number MS	Used on Type nu	
1 2 3	D14-310 D3-130 D7-200	
6	D10-210 D10-240	
9	D14-150	
11	D14-200	
15	D14-172	D14-173
20	D14-181	
23	D13-47	D13-471
27	D13-33	
33 34	D7-201 D7-201	
36	D13-51	
41	D10-230	
43	D13-630	
45	D16-100	
47	D13-600	D13-601
49 50	D13-610 D13-611	
52	D21-10	D21-102
55	SE4D	
58 59	SE5/2A SE5F	
61	D18-130	
63	D16-110	
65	D9-110	
70	D14-270	
72	D14-280	
83 84	D10-293 D18-160	

Tube Coil Number TW	Used on Tube Type number			
20 21	D14-172 D13-51	D14-173		
23 24 25 26	D14-181 D10-210 D14-150 D14-172	D14-173		
28 29 30	D7-200 D14-200 D14-280 D13-47	D7-201 D14-310 D18-160 D13-471		
30	D13-41	D10-411		
33	D10-240			
45	D16-100	D16-110		
48	D18-130			
50	D9-110			
52	D14-270			
56	D10-293			
		1		
	1			

Scan Coils

Data Display or Monitor Tubes

CURRENT TYPES

Tube Type	Scan Coil Number
M14-100	TBY3
M16-100	*
M17-10	TBY2
M17-12	TBY2
M17-15	TBY2
M17-152	TBY2
M19-100	TBY3
M21-13	TBY1
M23-110	TBY3
M23-111	TBY3
M23-112	TBY3
M23-113	TBY3
M24-120	TBY1
M24-121	TBY1
M24-130	*
M28-12	TBY3
M28-13	TBY1
M28-132	TBY1
M28-133	TBY1
M31-120	TBY3
M31-184	TBY1
M31-185	TBY1
M31-190	TBY3
M31-191	TBY3
M31-192	TBY3
M31-212	TBY3
M31-213	TBY3
M36-141	*

Tube Type	Scan Coil Number		
M38-100	TBY1		
M38-101	TBY1		
M38-102	TBY1		
M38-103	TBY1		
M38-104	TBY1		
M38-105	TBY1		
M38-106	TBY1		
M38-113	*		
M38-120	TBY1		
M38-121	TBY1		
M38-122	TBY1		
M38-142	*		
M44-120	TBY1		
M50-120	TBY1		
M61-120	TBY1		
59-60/90/037	*		
59-60/90/074	*		
*			

^{*} For scan coil information on these tubes contact -Brimar Equipment Sales Department or Brimar Export Division.

PHOSPHOR SCRIFFINS

WA Screen for Colour Television Control Rooms

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited

Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

Phosphor Screens

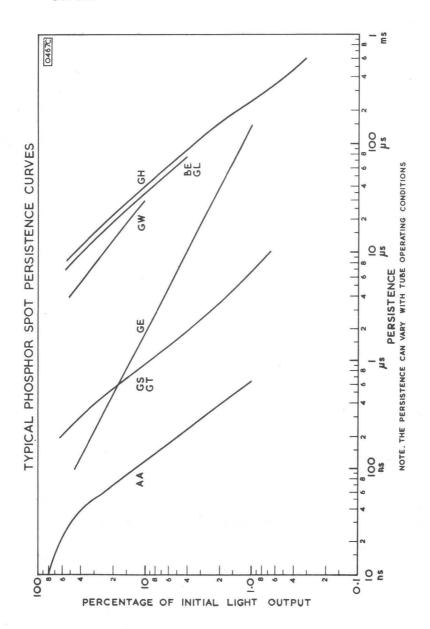
Equivalents & Data Summary

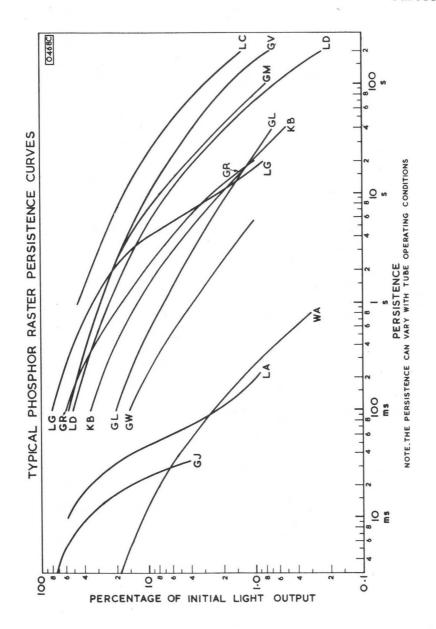
De	responsignat	ions	Persi Time	10	Kelly Chart Colour	Flicker Threshold*	Typical use
New	EIA	Old	Spot	Raster	Fluorescence	Hz	u50
AA	P16	-	0.12μs		Bluish- purple (UV)	-	Flying-spot scanning
BE	P11	T3†	40μs		Blue	-	Oscillography & photography
GE	P24	T 5	1.5 μs		Green	-	Flying-spot scanning
GH	P31	-	40 μs	0.2 s	Green	45	General oscillography & photography
GJ	P1	T1	25ms	30ms	Yellowish- green	36	General oscillography & photography
GL	P2	-	40 μs	0.5 s	Yellowish- green	40	General oscillography & photography
GM	P7	T6†	0.5 s §	7 s §	Purplish-blue ¶	38	Radar & oscillography
GP	-	-	100 μs	0.5 s	Green **	45	Data display
GR	P39	-	150ms	2 s	Yellowish-green	30	Radar & data display
GS	-	-	0.9 μs		Yellowish-green	-	Flying-spot scanning
GT	-	-	0.9 μs		Bluish-green	-	Flying-spot scanning
GV	-	-		9 s	Green ¶	38	Radar & oscillography
GW	P42	-	30 μs	0.2 s	Green	40	Data display
GX	P44	-	1.2 ms		Yellowish-green	45	Data display
GY	P43	-	1.2 ms		Yellowish-green	45	Data display
KB	-	T14		1.5 s	Bluish-green ‡	38	Radar & oscillography
LA	-	T11	25 ms	50ms	Orange	36	Data display
LC	P26†	T7		25 s	Orange	22	Radar & oscillography
LD	P33	T15		5 s	Orange	20	Radar
LG	-	T13		4 s	Orange	18	Radar & data display
W	P4	Т4	10 μs	10 ms	White	45	Monochrome television
WA	-	-	10 μs	10 ms	White	45	Television monitors

Over a range of observers and display arrangements the onset of flickers may vary by at least 5Hz from the above figure.

Approximate.

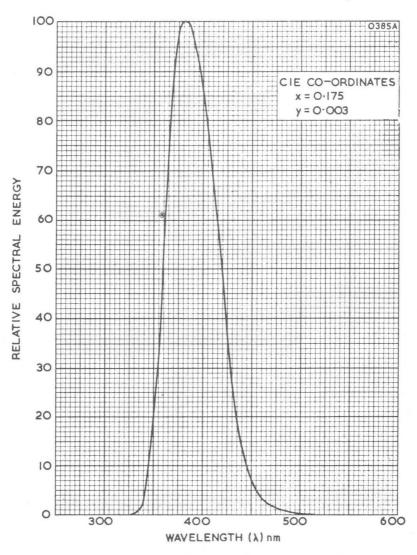
The phosphorescence is yellow-green.

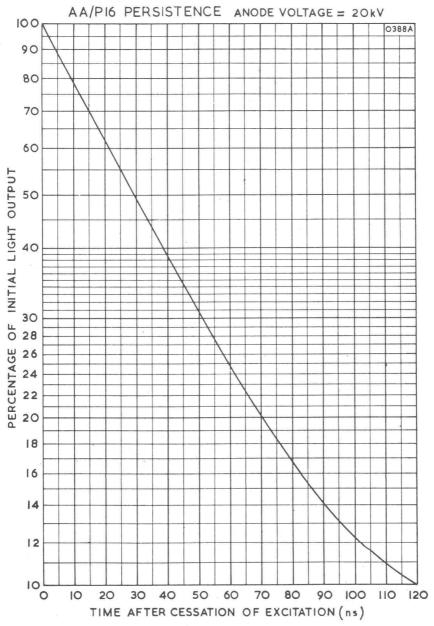

Yellowish-green component. The phosphorescence is yellowish-green.

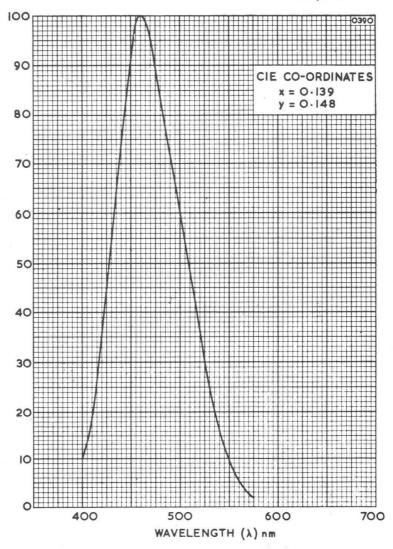

** The fluorescence at high brightness is bluish-green.

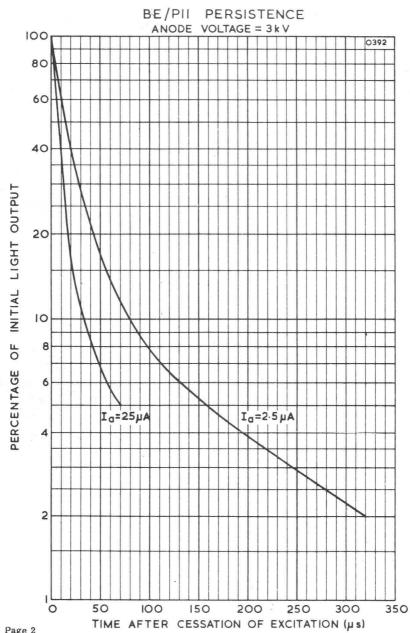
While alternative phosphors can be supplied to special order, most tube types are produced for stock with the particular phosphor most in demand by equipment manufacturers.

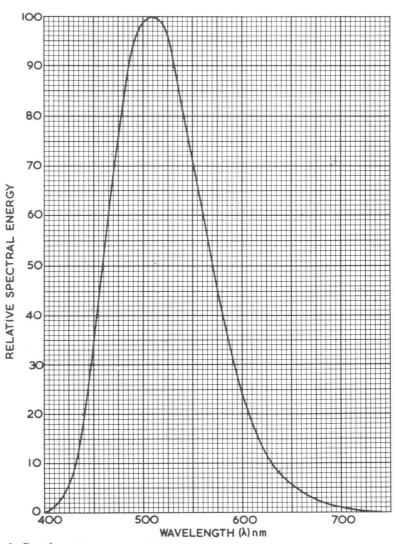
Thorn Radio Valves and Tubes Limited



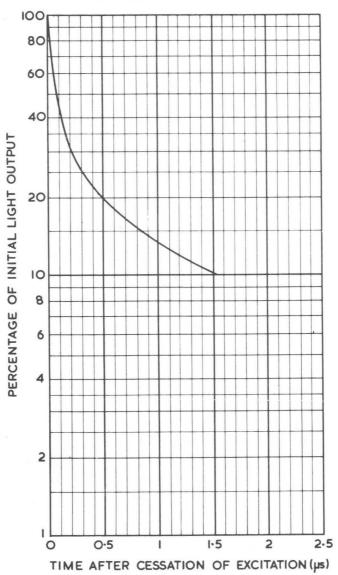


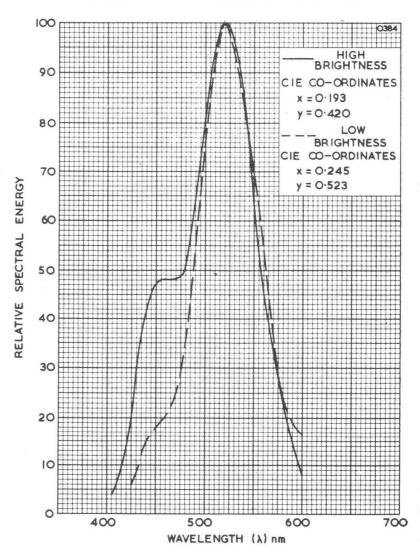

Phosphor Screen


RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE AA/PI6

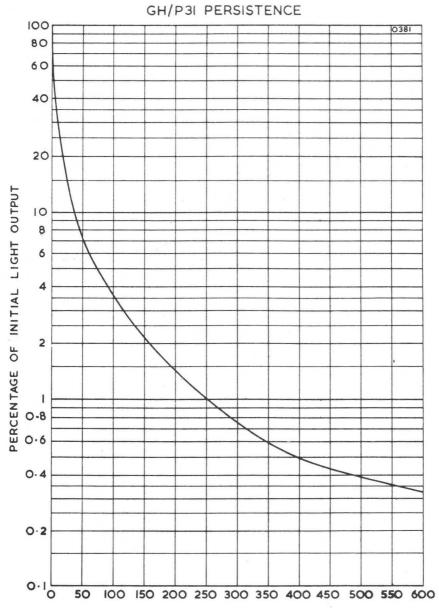

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE BE/PII

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GE/P24/T5 CIE CO-ORDINATES x=0.245

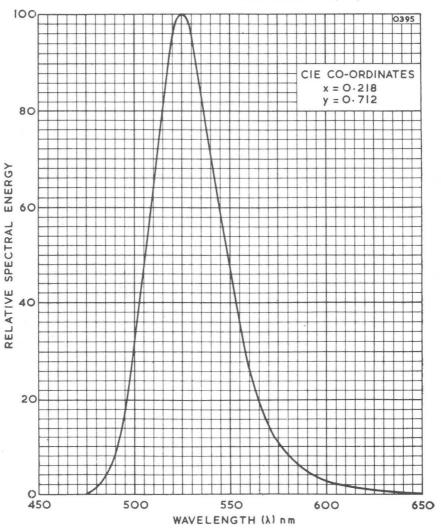

y =0.441


Issue 1, Page 1.

HOSPHOR

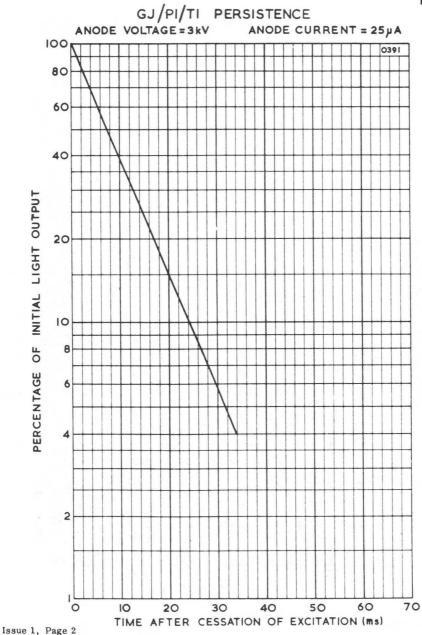


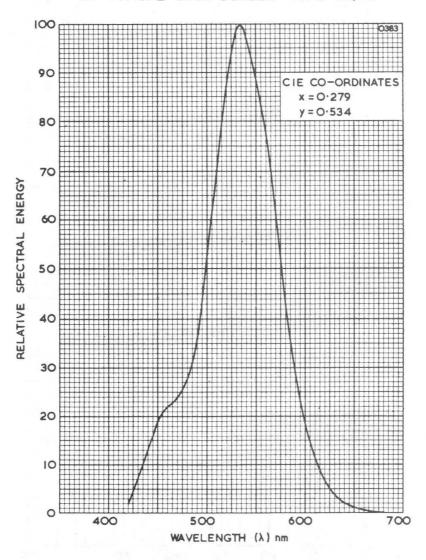
RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GH/P3I

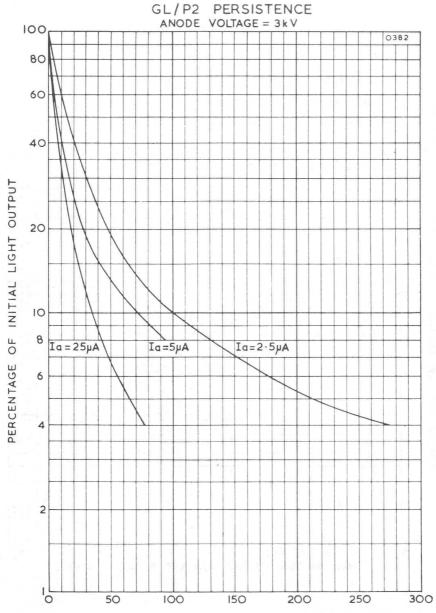


HOSPHOR

Issue 1, Page 2 TIME AFTER CESSATION OF EXCITATION (µs)

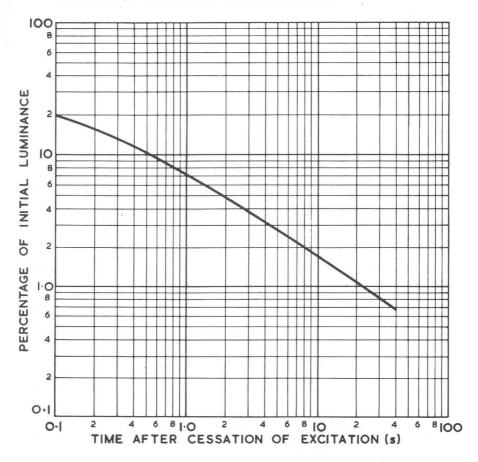

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GJ/PI/TI


Phosphor Screen


GJ P1 T1

HOSPHOR

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GL/P2

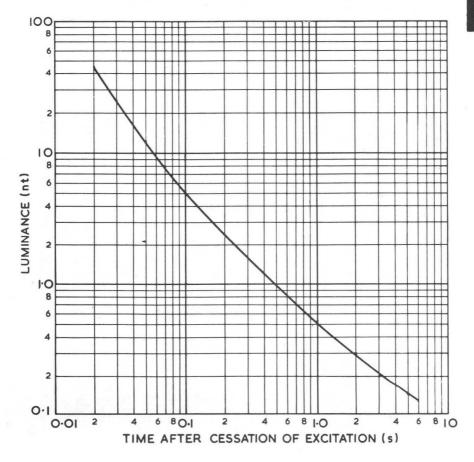

Issue 1, Page 2 TIME AFTER CESSATION OF EXCITATION (µs)

GL/P2 PERSISTENCE

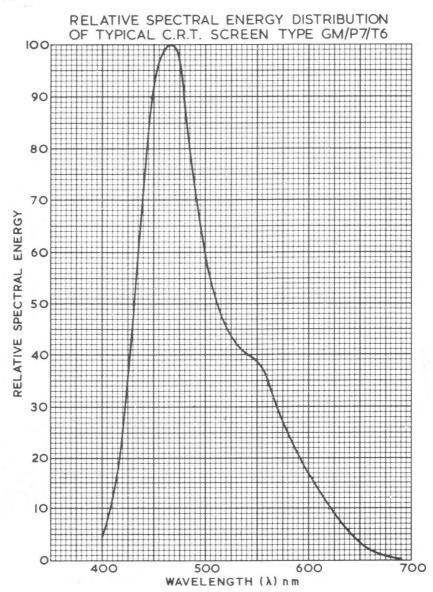
FINAL ANODE VOLTAGE = 15kV
INITIAL LUMINANCE = 1 FOOT LAMBERT (3.43nt)

Excitation: continuous focused raster

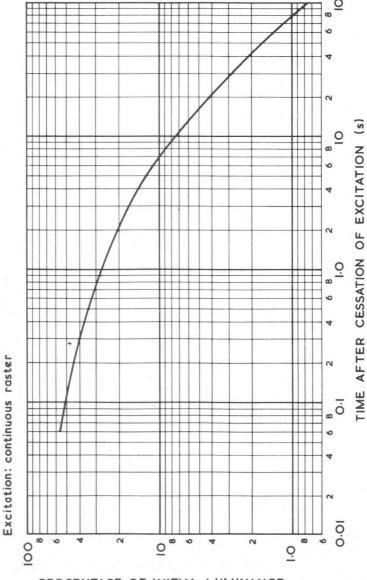
Measured on C.R.T. with aluminised screen



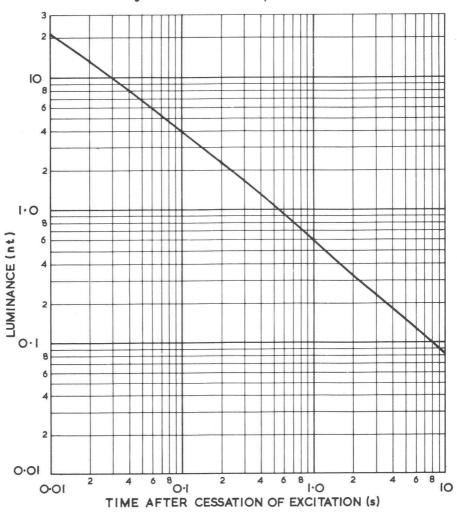
GL/P2 PERSISTENCE


FINAL ANODE VOLTAGE = 15 kV

Excitation: single 20ms raster at lyA/cm²

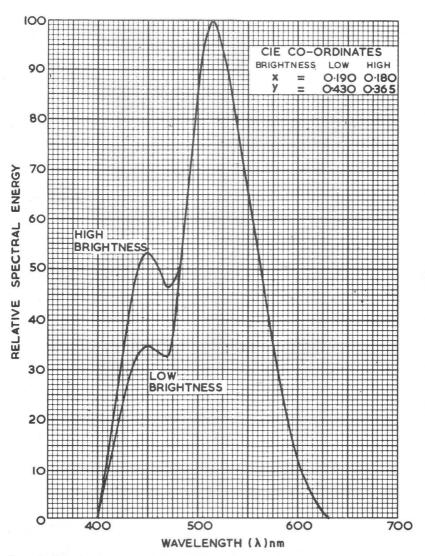

Measured as average luminance of raster on C.R.T. with aluminised screen.

Issue 1, Page 4


GM/P7/T6 PERSISTENCE

GM PERSISTENCE

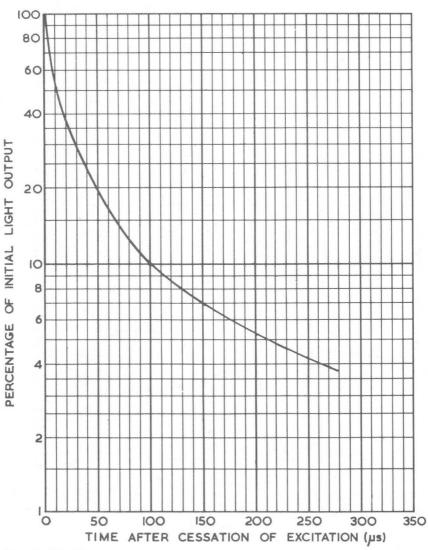
YELLOWISH-GREEN COMPONENT


FINAL ANODE VOLTAGE = 15kV

Excitation: single 20ms raster at lµA/cm²

Issue 1, Page 3

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GP



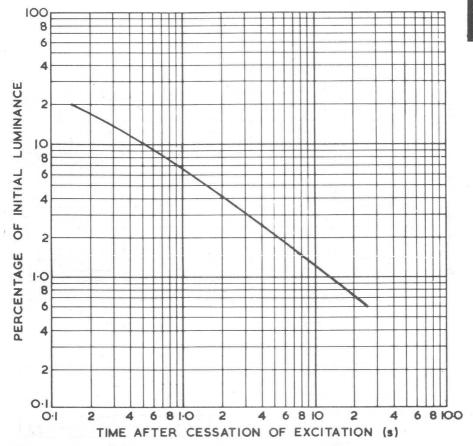
Issue 1, Page 1

GP PERSISTENCE

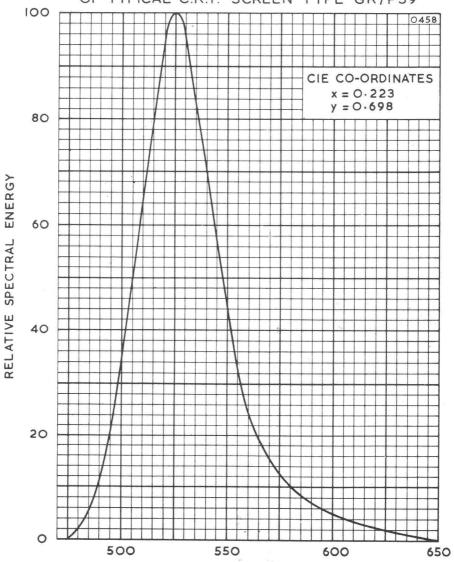
ANODE VOLTAGE = 4 kV

ANODE VOLTAGE = 4 kV ANODE CURRENT = 2.5 µA

Issue 1, Page 2

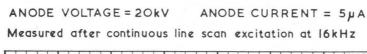

GP PERSISTENCE

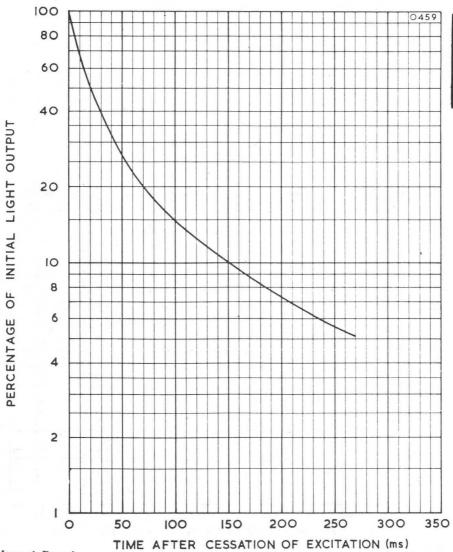
FINAL ANODE VOLTAGE 15kV


INITIAL LUMINANCE = I FOOT LAMBERT (3.43 nt)

Excitation: continuous focused raster

Measured on C.R.T. with aluminised screen

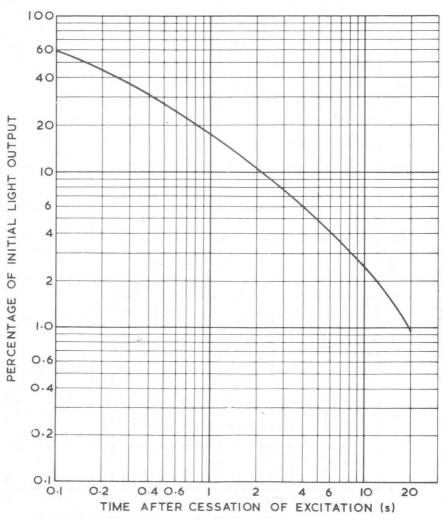



Issue 1, Page 1.

WAVELENGTH (λ) nm

HOSPHOR

GR/P39 PERSISTENCE

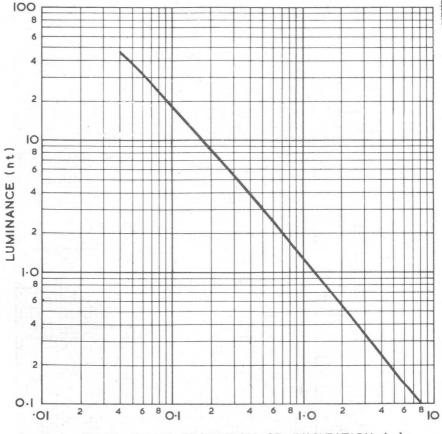


Issue 1, Page 2

GR/P39 PERSISTENCE

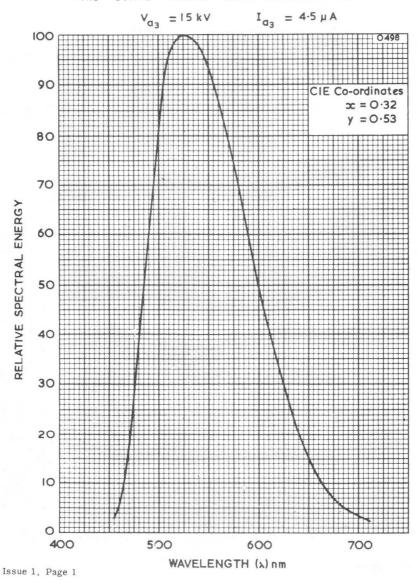
ANODE VOLTAGE = 15kV
INITIAL LUMINANCE = 1 FOOT LAMBERT

Excitation: Continuous focused raster


Issue 1, Page 3

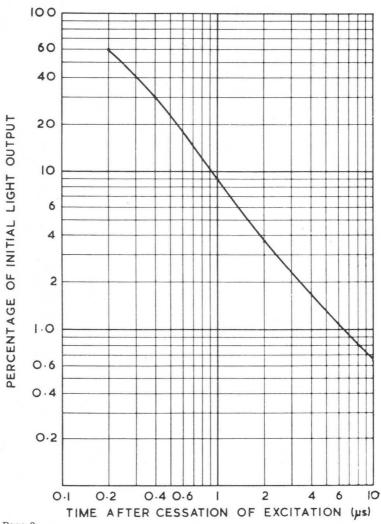
GR/P39 PERSISTENCE

FINAL ANODE VOLTAGE = 15 kV

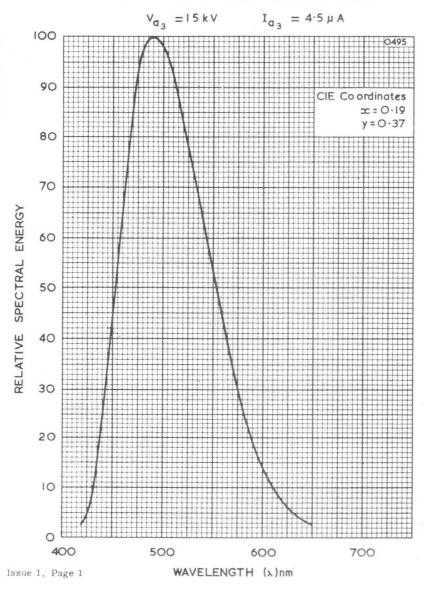

Excitation: single 20ms raster at IµA/cm²

Measured as average luminance of raster on C.R.T. with aluminised screen

TIME AFTER CESSATION OF EXCITATION (s)

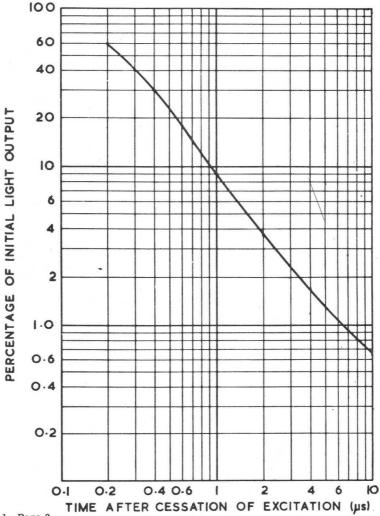

OF TYPICAL C.R.T. SCREEN TYPE GS
THIS CURVE VARIES WITH CURRENT DENSITY

GS AND GT PERSISTENCE


ANODE VOLTAGE = 15kV

Excitation: Pulsed focused spot

Issue 1, Page 2

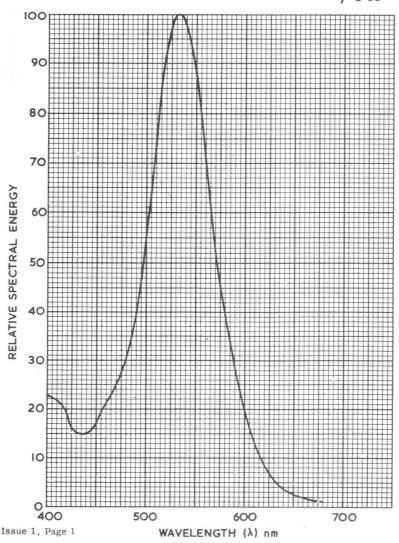

RELATIVE SPECTRAL ENERGY DISTRIBUTION
OF TYPICAL C.R.T. SCREEN TYPE GT
THIS CURVE VARIES WITH CURRENT DENSITY

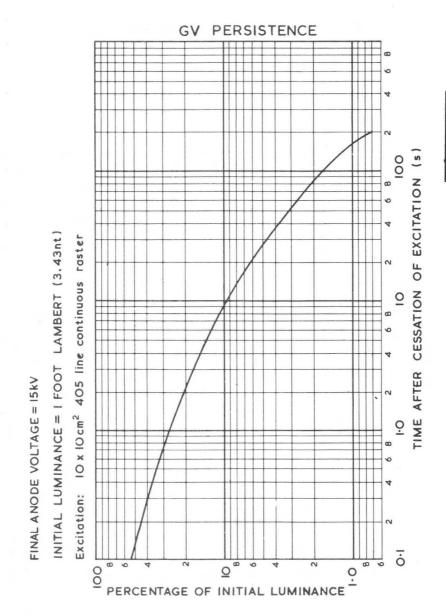
GS AND GT PERSISTENCE

ANODE VOLTAGE = 15kV

Excitation: Pulsed focused spot

Issue 1, Page 2 .

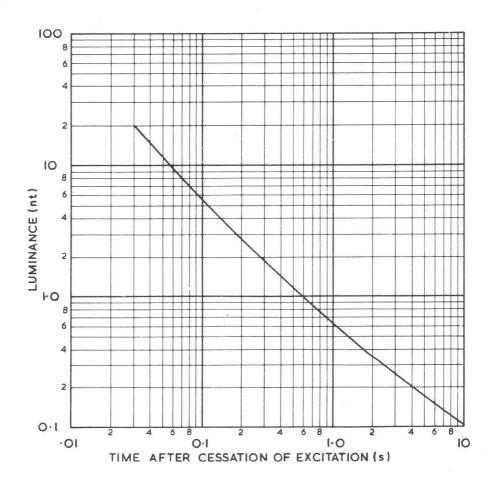

PHOSPHOR SCREENS

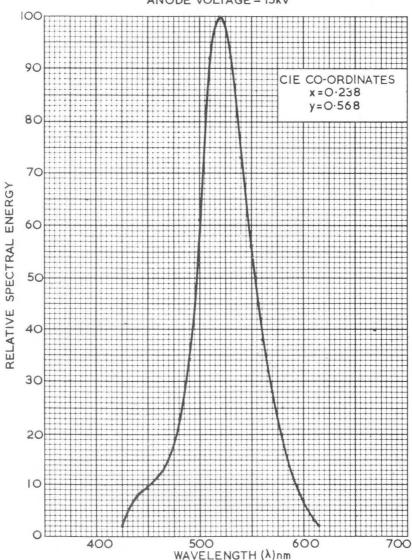

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GV

KELLY CHART COLOUR—YELLOWISH-GREEN (Phosphorescence)

SCREEN VOLTAGE = 15kV CIE CO-ORDINATES ∞ 0.28

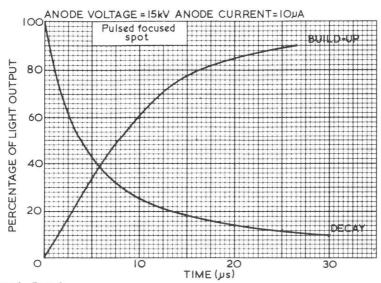
y 0.53




GV PERSISTENCE

FINAL ANODE VOLTAGE = 15kV

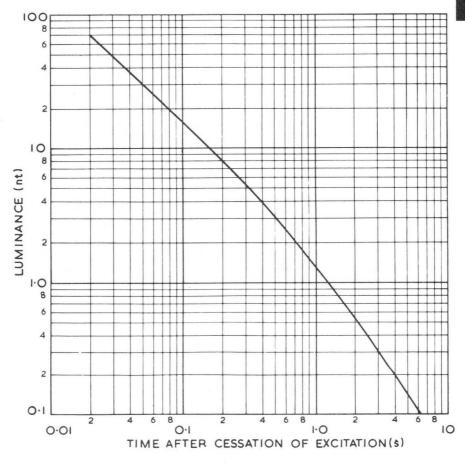
Excitation: single 20 ms raster at IµA/cm²


RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE GW/P42 ANODE VOLTAGE = 15kV

Issue 1, Page 1

GW/P42 PERSISTENCE AND BUILD-UP

TIME AFTER CESSATION OF EXCITATION(ms)

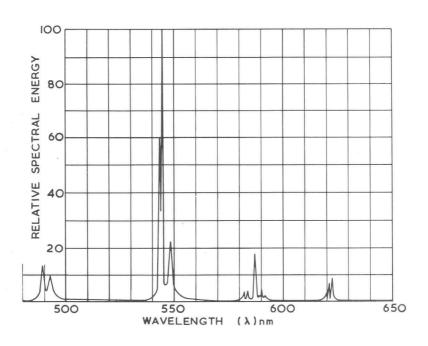

Issue 1, Page 2

GW/P42 PERSISTENCE

FINAL ANODE VOLTAGE = 15 kV

Excitation: single 20ms raster at IµA/cm²

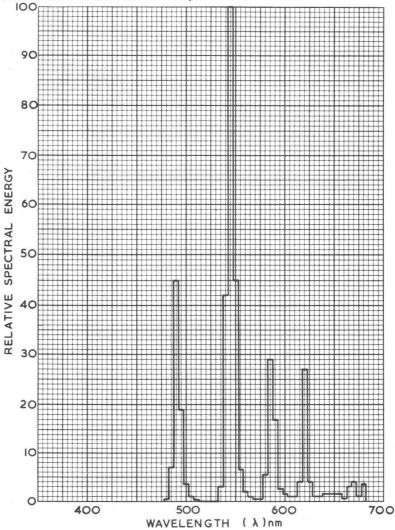
Measured as average luminance of raster on C.R.T. with aluminised screen.


Issue 1, Page 3

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL CRT SCREEN TYPE GX/P44

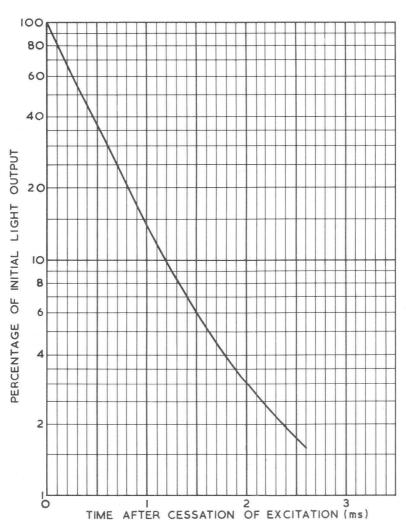
CIE CO-ORDINATES

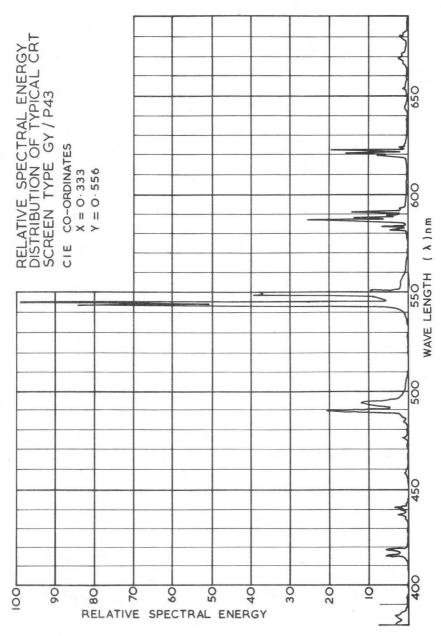
X = 0.300


Y = 0.596

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL CRT SCREEN TYPE GX / P44

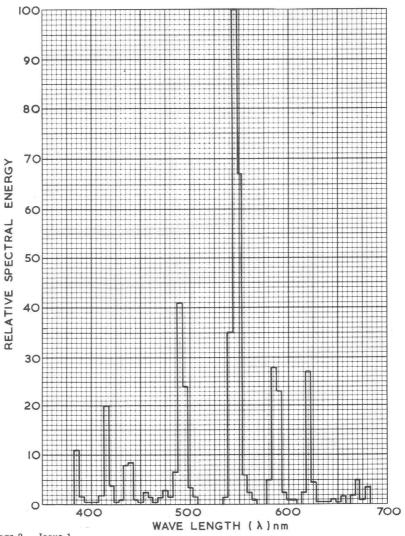
MEASURED IN 5nm BANDWIDTHS.


FINAL ANODE VOLTAGE 15 kV
FINAL ANODE CURRENT 20 JA

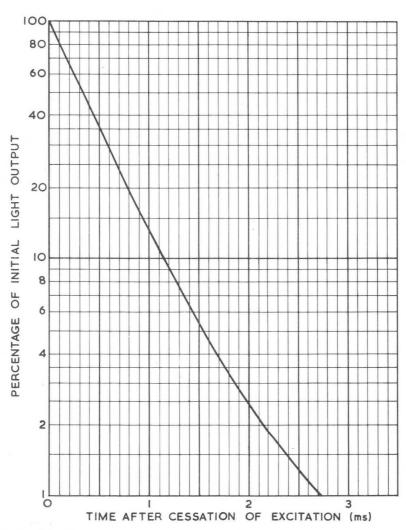

Page 2, Issue 1.

GX P44

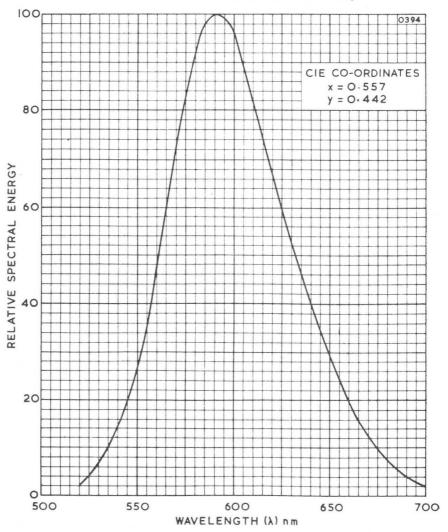
GX / P44 PERSISTENCE FINAL ANODE VOLTAGE = 20 kV PULSED SPOT


Page 3, Issue 1.

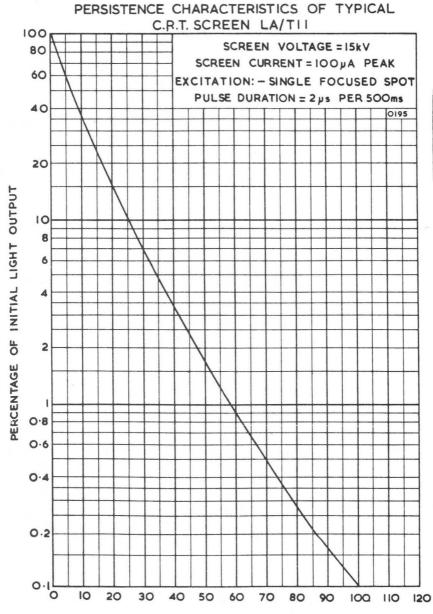
Page 1, Issue 1.

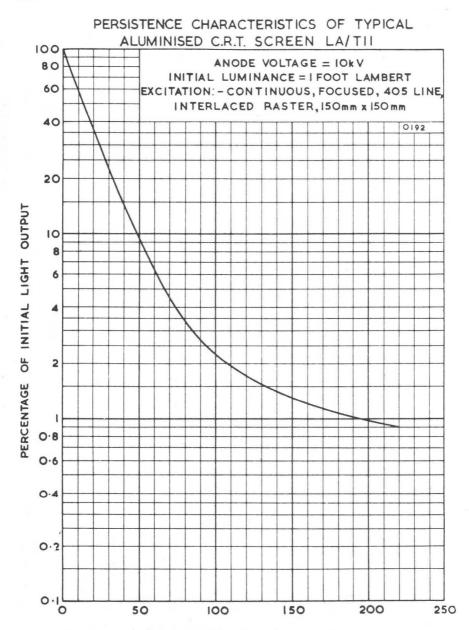

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL CRT SCREEN TYPE GY/P43 MEASURED IN 5nm BANDWIDTHS.

FINAL ANODE VOLTAGE = 15 kV FINAL ANODE CURRENT = 20 JA

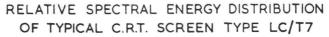

Page 2, Issue 1.

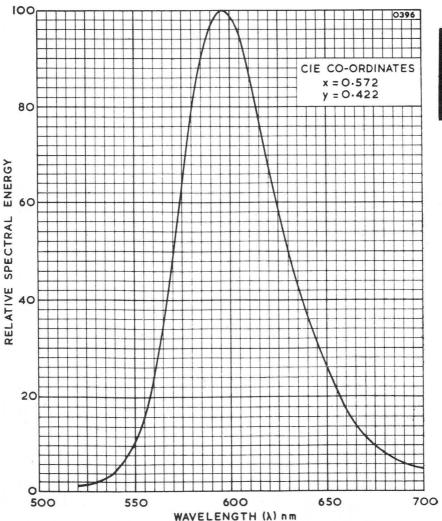
GY/P43 PERSISTENCE FINAL ANODE VOLTAGE = 20 kV PULSED SPOT




Page 3. Issue 1.

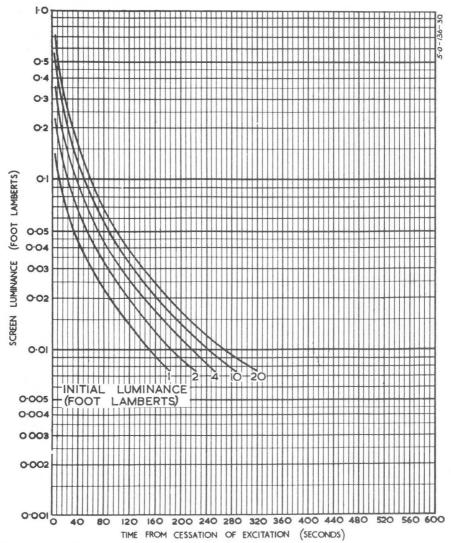
RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE LA/TII


HOSPHOR SCREENS



Issue 1, Page 3 TIME AFTER CESSATION OF EXCITATION(ms)

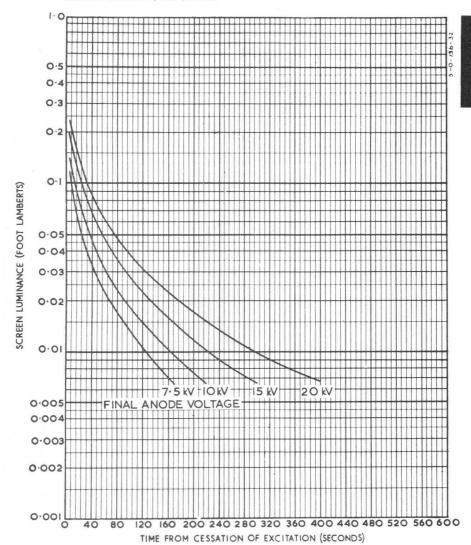
HOSPHOR SCREENS



PERSISTENCE CHARACTERISTICS of typical aluminised CRT screen.

Excitation—Continuous, focused, 405 line, interlaced raster, 150 mm × 150 mm. Final Anode Voltage—10 kV.

Note—This screen is liable to burn if a stationary or slow-moving spot is used even with low values of beam current.

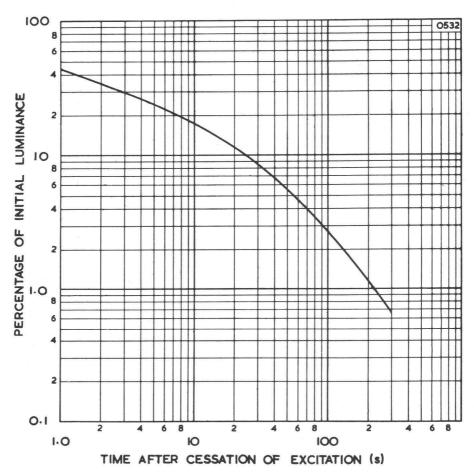


Issue 1, Page 2

Phosphor Screen

PERSISTENCE CHARACTERISTICS of typical aluminised C.R.T. screen. **Excitation**—Continuous, focused, 405 line, interlaced raster, 150 mm × 150 mm. **Initial Luminance**—1 Foot Lambert.

Note—This screen is liable to burn if a stationary or slow-moving spot is used even with low values of beam current.

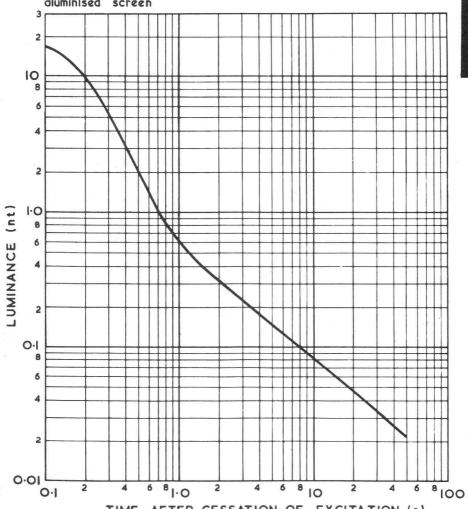


LC/T7 PERSISTENCE

FINAL ANODE VOLTAGE = 15kV
INITIAL LUMINANCE = 1 FOOT LAMBERT (3.43mt)

Excitation: continuous focused raster

Measured on C.R.T. with aluminised screen


Issue 1, Page 4

LC/T7 PERSISTENCE

FINAL ANODE VOLTAGE = 15kV

Excitation: single 20 ms raster at 1 µ A/cm²

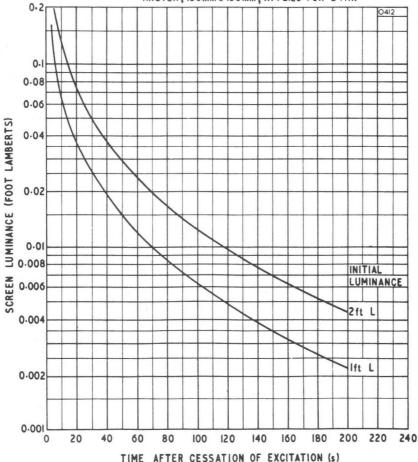
Measured as average luminance of raster on C.R.T. with aluminised screen

TIME AFTER CESSATION OF EXCITATION (s)

Issue 1, Page 5

RELATIVE SPECTRAL ENERGY DISTRIBUTION
OF TYPICAL C.R.T. SCREEN TYPE LD/P33/T15

PHOSPHOR

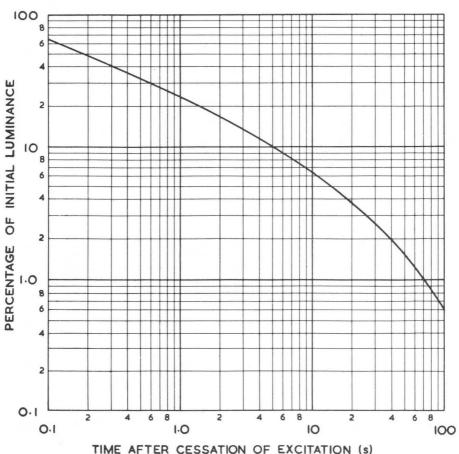

Note—This screen is liable to burn if a stationary or slow-moving spot is used even with low valves of beam current.

PERSISTENCE CHARACTERISTICS OF TYPICAL ALUMINISED C.R.T. SCREEN LD/P33/T15

FINAL ANODE VOLTAGE = 15kV

EXCITATION:- CONTINUOUS, UNFOCUSED, 405 LINE, INTERLACED

RASTER, 150mm x 150mm, APPLIED FOR 2 MIN

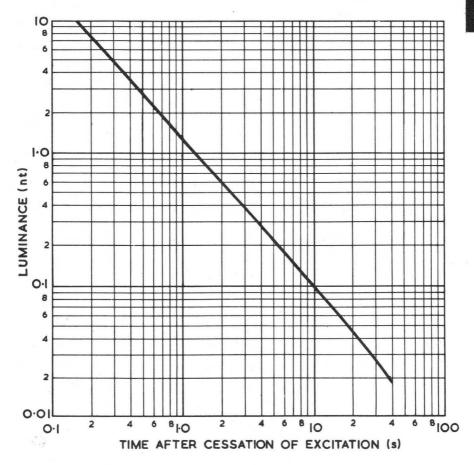

LD/P33/TI5 PERSISTENCE

FINAL ANODE VOLTAGE = 15kV

INITIAL LUMINANCE = I FOOT LAMBERT (3.43 nt)

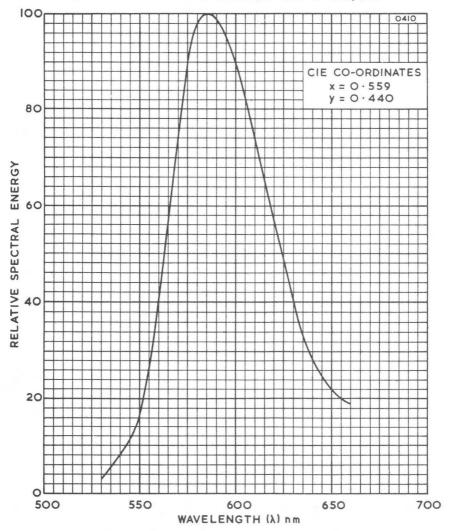
Excitation: continuous focused raster

Measured on C.R.T. with aluminised screen

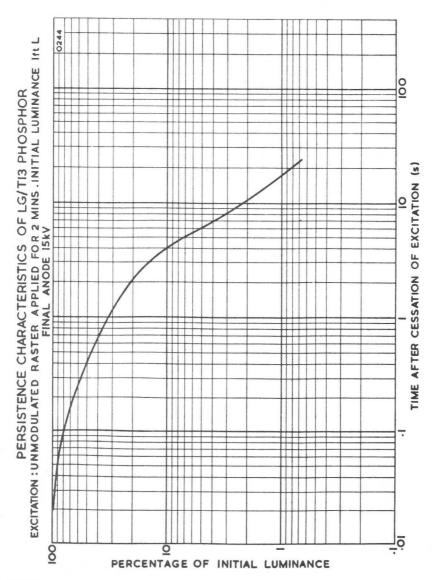


PHOSPHOR SCRFFNS

LD/P33/TI5 PERSISTENCE


FINAL ANODE VOLTAGE = 15 kV

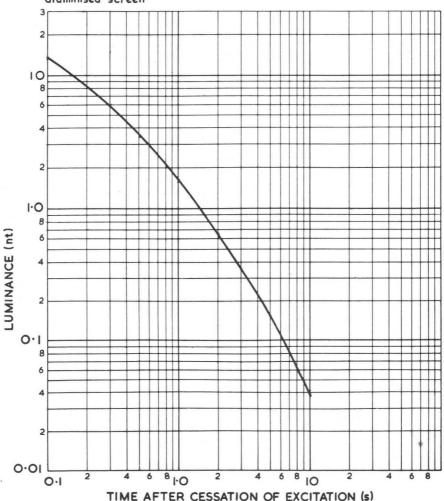
Excitation: single 20ms raster at $l\mu A/cm^2$ Measured as average luminance of raster on C.R.T. with aluminised screen.



Issue 1, Page 4

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE LG/TI3

Note—This screen is liable to burn if a stationary or slow-moving spot is used even with low values of beam current.

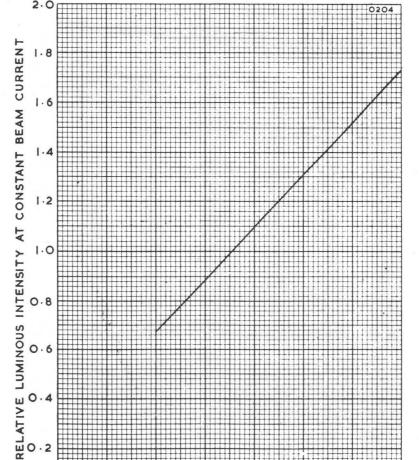

Issue 1, Page 2

LG/TI3 PERSISTENCE

FINAL ANODE VOLTAGE = 15 kV

Excitation: single 20ms raster at IµA/cm²

Measured as average luminance of raster on C.R.T. with aluminised screen $% \left\{ 1,2,\ldots,n\right\} =0$

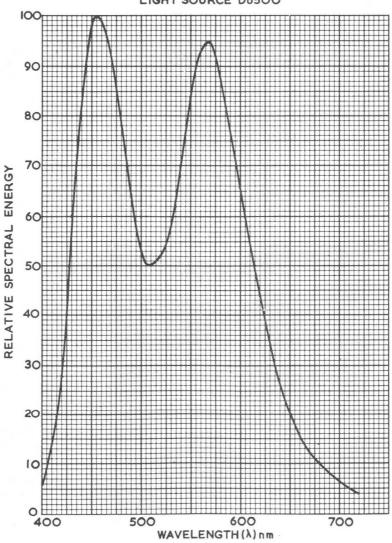

Issue 1, Page 3

Phosphor Screen

ALUMINISED W SCREEN CHARACTERISTIC

CHARACTERISTIC CURVE OF AVERAGE ALUMINISED W SCREEN

RELATIVE LUMINOUS INTENSITY AT VARIOUS FINAL ANODE VOLTAGES

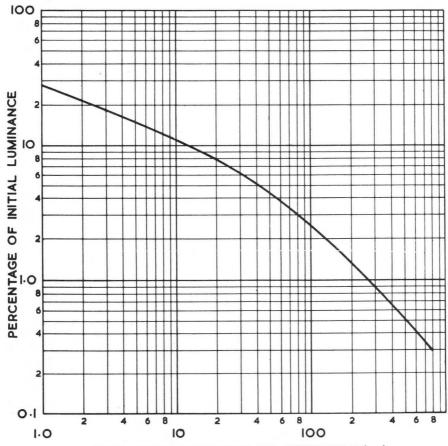

10

FINAL ANODE POTENTIAL (kV)

20

RELATIVE SPECTRAL ENERGY DISTRIBUTION OF TYPICAL C.R.T. SCREEN TYPE WA

THIS SCREEN IS A VISUAL MATCH TO THE STANDARD LIGHT SOURCE D6500

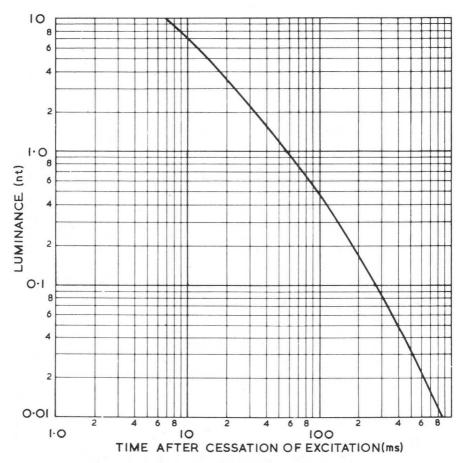

Issue 1, Page 1

WA PERSISTENCE

FINAL ANODE VOLTAGE = 15kV
INITIAL LUMINANCE = 1 FOOT LAMBERT (3.43nt)

Excitation: continuous focused raster

Measured as average luminance of raster on C.R.T. with aluminised screen


Issue 1, Page 2 TIME AFTER CESSATION OF EXCITATION (ms)

WA PERSISTENCE

FINAL ANODE VOLTAGE=15kV

Excitation: single 20ms raster at lµA/cm²

Measured as average luminance of raster on C.R.T. with aluminised screen.

Issue 1, Page 3

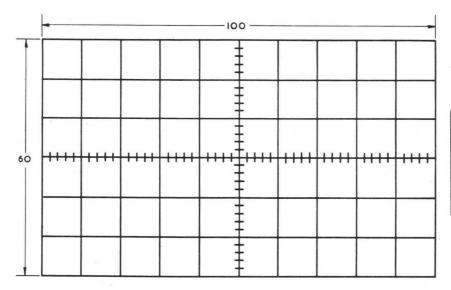
The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.


Thorn Radio Valves and Tubes Limited

Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

DETAILS OF GRATICULE

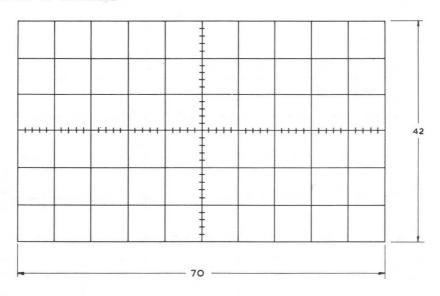
GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COLLS

All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 26 normally used on tubes with 13 cm diagonal .


The graticule x and y axes will be on tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

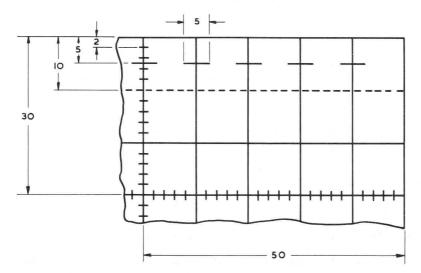
Type 32 Graticule

DETAILS OF GRATICULE

Dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.


Graticule type 32 normally used on tubes with 10 cm diagonal.

The graticule X and Y axes will be on the tube face axes ± 2°.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

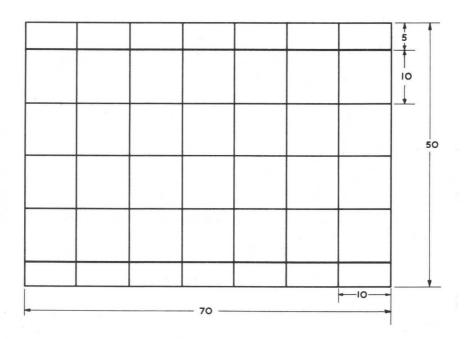
DETAIL OF ONE QUADRANT OF GRATICULE

GRATICULES GAUGES, BASES & CAPS, SOCKETS

All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.


Graticule type 34 normally used on tubes with 13 cm diagonal.

The graticule x and y axes will be on tube face axes ± 2°.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

BRIMAR

DETAILS OF GRATICULE

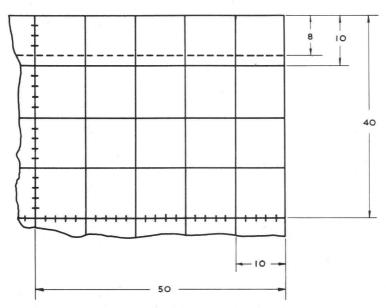
All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 42 normally used on tubes with a 10 cm diagonal.

The graticule axes will be on the tube face axes + 2°.


The centre of the graticule will be within 1 mm of the mechanical centre of the face.

Type 50

Type 51

DETAIL OF ONE QUADRANT OF GRATICULE

All dimensions in mm

Not to be scaled

GRATICULE 50

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

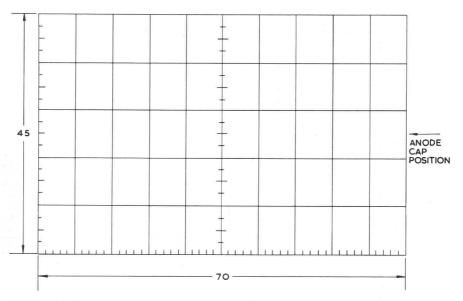
Square with 10 mm side. x and y axes, with markers at 10% and 90%.

Graticule 100 mm x 80 mm normally used on tubes with 14 and 15 cm diagonal.

The graticule x and y axes will be on the tube face axes ± 2°.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

GRATICULE 51 : Bonded face-plate light guide.


Tubes with graticule designation 51 (e.g. D14-280GH/51) have a 50 graticule together with a bonded face-plate to provide an alternative method of light injection and hence illumination of the graticule.

The bonded face-plate increases the tube overall length.

Thorn Radio Valves and Tubes Limited Page 1. Issue 3.

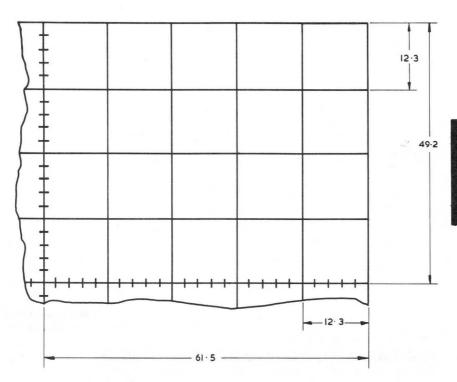
GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COILS DETAILS OF GRATICULE

All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 58 normally used on tubes with 10 cm diagonal.


The graticule X and Y axes will be on the tube face axes + 2°.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COLLS

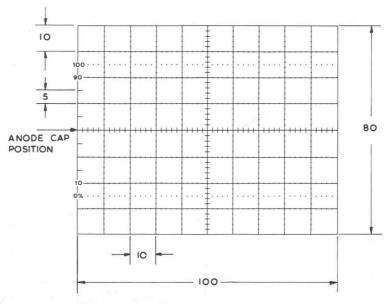
DETAIL OF ONE QUADRANT OF GRATICULE

All dimensions in mm

Not to be scaled

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Squares with 12.3 mm side. x and y axes.


Graticule normally used on tubes with 18 cm diagonal.

The graticule x and y axes will be on the tube face axes $\pm 2^{\circ}$.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

DETAILS OF GRATICULE

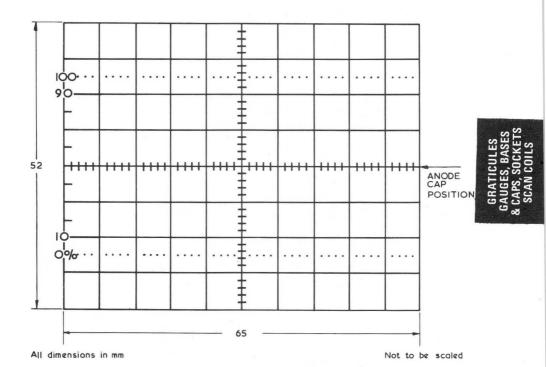
All dimension in mm

Not to be scaled
This dual purpose internal graticule is suitable for direct view or for illumination
with an appropriate light guide.

The graticule X and Y axes will be on the tube face axes + 2°.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

Type 98


This is the standard graticule suitable for most 14 cm diagonal tube types.

Type 82

This graticule is specially designed for use on certain mesh p.d.a. tubes, for example, D14-280GH/82 and D14-310GH/82.

DETAILS OF GRATICULE

This dual purpose internal graticule is suitable for direct view or for illumination with an appropriate light guide.

Graticule type 90 normally used on tubes with 10 cm diagonal.

The graticule X and Y axes will be on the tube face axes ± 2°.

The centre of the graticule will be within 1 mm of the mechanical centre of the face.

For C.R. Tubes having a Nominal Neck Diameter of 34-5 mm

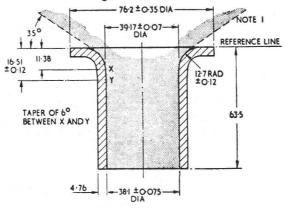
All dimensions in mm unless otherwise stated.

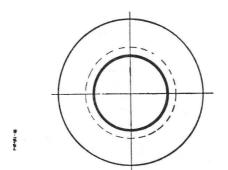
NOTE 1-Deflector Yoke Design

The internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

NOTE 2—Tolerances

The tolerances shown are initial manufacturing limits.
The figures given below are the maximum allowable limits for wear:


(A) + 0.059

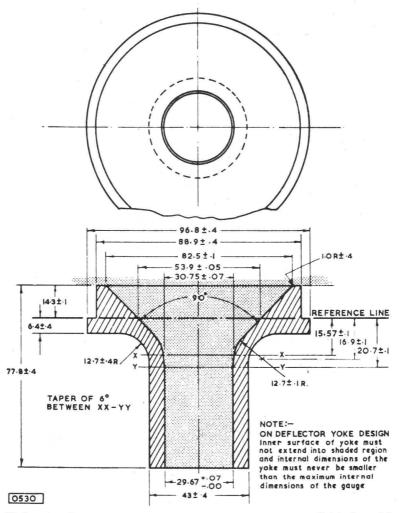

(B) + 0.075

Thorn Radio Valves and Tubes Limited Issue 3, Page 1 H

All dimensions in mm

NOTE 1—Deflector Yoke Design
The inner surface of the yoke must not extend into the shaded region and the internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

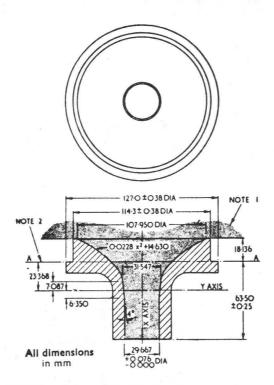
96-84 DIA 88-9 DIA 82-4 DIA 39·17 ±0·07 I-OI RAD DIA 6.35 12-7 ±0-12 RAD 77-8 TAPER OF 6° BETWEEN X AND Y All dimensions


For C.R. Tubes having a Nominal Neck Diameter of 36.5 mm

NOTE 1-Deflector Yoke Design

in mm

The inner surface of the yoke must not extend into the shaded region and the internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.


A NECK GAUGE FOR CATHODE RAY TUBES HAVING A NOMINAL NECK DIAMETER OF 28.5mm AND DEFLECTION ANGLE (PICTURE DIAGONAL) 90°

All dimensions in mm

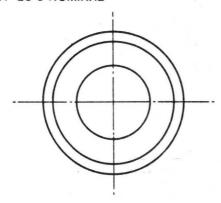
Not to be scaled

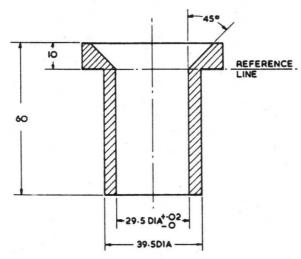
For C.R. Tubes having a nominal Neck Diameter of 28.5 mm Deflection Angle 110° approx. (Picture Diagonal)

NOTE 1.—Deflector Yoke Design.

The inner surface of the yoke must not extend into the shaded region and the internal dimensions of the yoke must never be smaller than the maximum internal dimensions of the gauge.

NOTE 2.-Reference Line.


The Reference Line is determined by the plane "A-A" when the gauge is seated against the funnel.



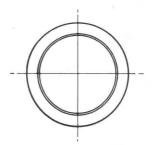
Reference Line Gauge

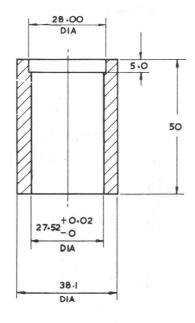
Gauge No. 18

NECK DIAMETER 28-5 NOMINAL

All dimensions in mm

Not to be scaled

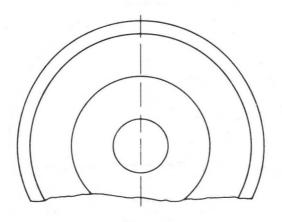

Thorn Radio Valves and Tubes Limited Issue 4, Page 1

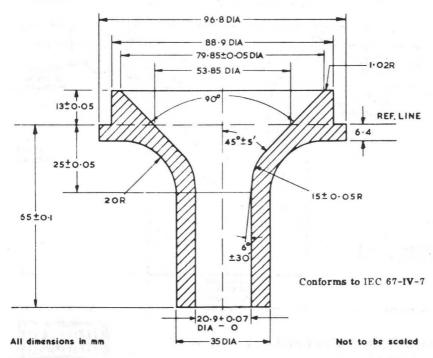


GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COILS

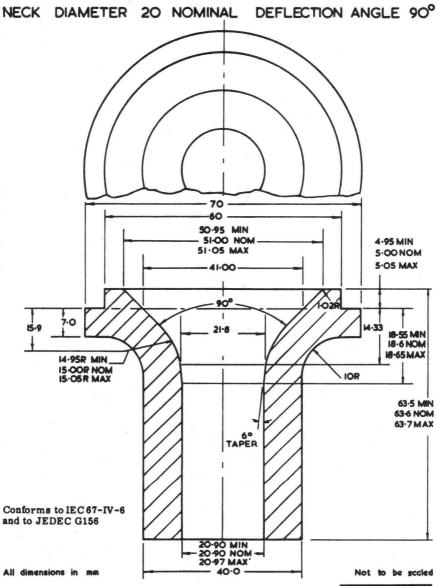
Gauge No. 19

Reference Line Gauge


Not to be scaled

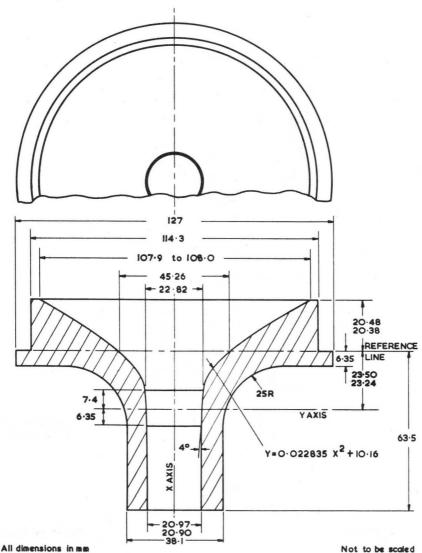

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1


NECK DIAMETER 20 NOMINAL DEFLECTION ANGLE 90°

Issue 1, Page 2

GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COILS



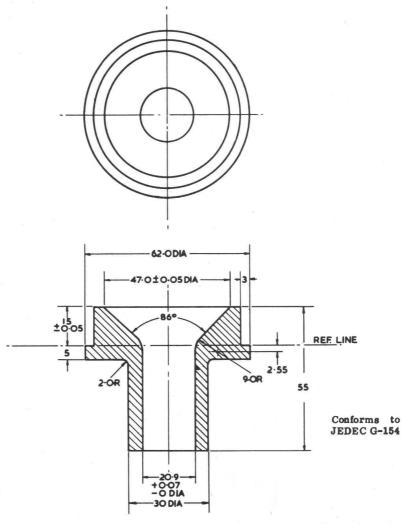
Thorn Radio Valves and Tubes Limited
Issue 1, Page 1

NECK DIAMETER 20 NOMINAL

DEFLECTION ANGLE 110°

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

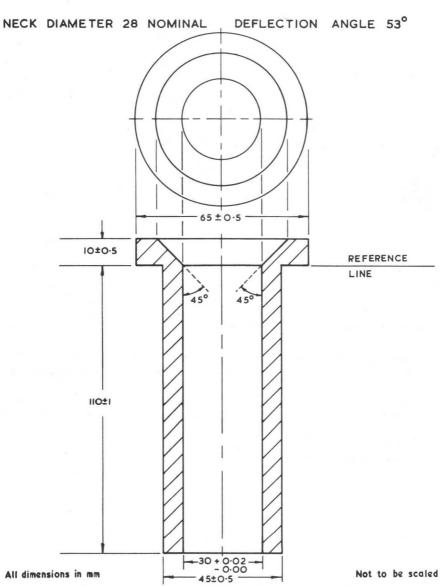


GRATICULES GAUGES, BASES & CAPS, SOCKETS SCAN COILS

Gauge No 23

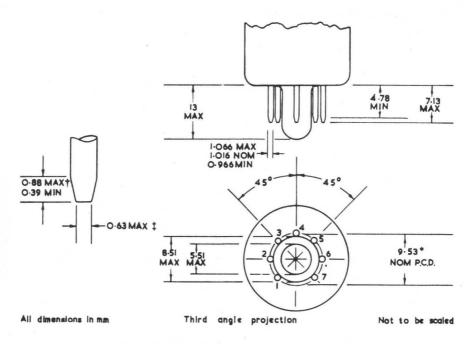
Reference Line Gauge

NECK DIAMETER 20 NOMINAL DEFLECTION ANGLE 70°

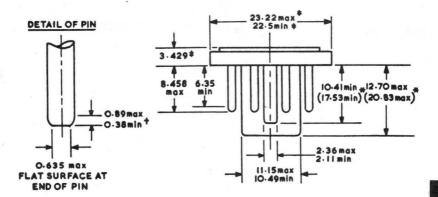


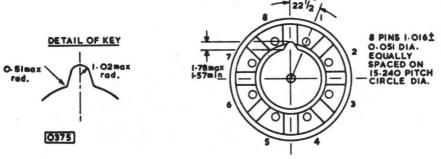
All dimensions in mm

Not to be scaled


Thorn Radio Valves and Tubes Limited Issue 1, Page 1

Thorn Radio Valves and Tubes Limited **Issue 1, Page 1**




The drawing shows the numbering of the pins as seen from their free ends.

- * The dimensions fixing the position of the pins refer to the fixed ends of the pins. The disposition may be checked by the appropriate gauge.
- † This dimension may vary within the limits shown around the periphery of any individual pin. The surface of the pin is convex or conical in shape and is not brought to a sharp point.
- I This surface is flat.

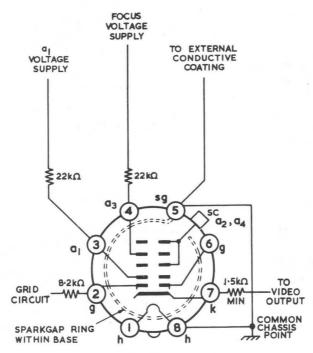
Conforms to JEDEC E7-91.

Thorn Radio Valves and Tubes Limited

Not to be scaled.

The millimetre dimensions are derived from the original inch dimensions.

The drawing shows the numbering of the pins as seen from their free ends.


- * Dimensions for variant B8H base.
- † This dimension may vary within the limits shown around the periphery of any individual pin. This surface of the pin shall be convex or conical in shape and shall not be brought to a sharp point.
- † These dimensions illustrate current practice and are not regarded as compatibility features.

Note

Base pin positions are held to tolerances such that the base will fit a flat-plate gauge having a thickness of 9.525 mm and eight equally spaced holes of 1.397 \pm 0.013 mm diameter located on a 15.240 \pm 0.013 mm diameter circle. The gauge is also provided with a centre hole to provide 0.254 mm diametric clearance for the spigot and key. Pin fit in the gauge shall be such that the entire length of pins will, without undue force, enter into and disengage from the gauge.

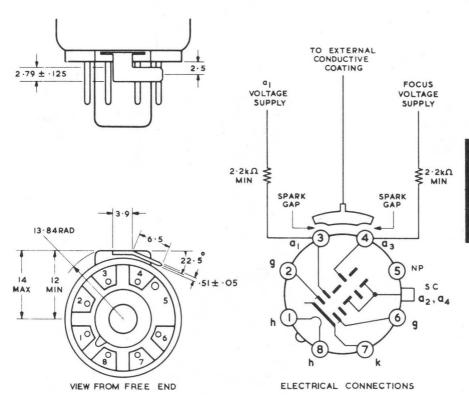
B8H Sparkguard R

BBH SPARKGUARD R C.R.T. BASE CONNECTIONS

ELECTRICAL CONNECTIONS
VIEW FROM FREE END OF BASE PINS

A metal ring within the B8H base, which is taken out to pin 5 (sg), forms a spark gap to all other tube electrodes thus providing flashover protection for all external electrode circuits and components.

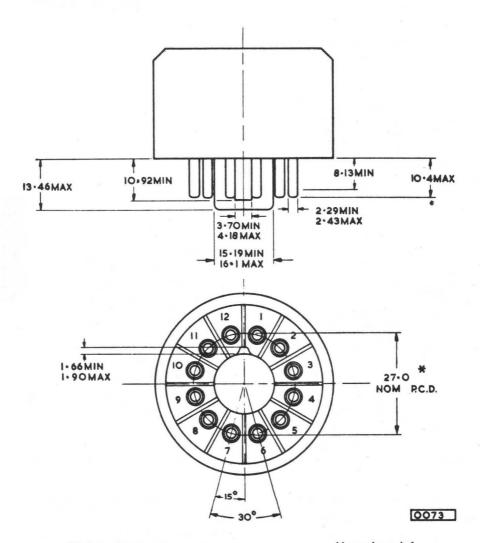
All leads must be as short and direct as possible. The external conductive coating should be connected to pin 5 only, with no other connection to chassis.


The resistors, preferably carbon composition type, in series with the supply leads should be such as to have a minimum surface leakage path between leads of 10 mm.

Tube types with the above sparkguard base have a suffix R after the type number and should only be used if the circuit modifications as above are incorporated.

JLES : BASES CKETS JILS

B8H SPARKGUARD S C.R.T BASE



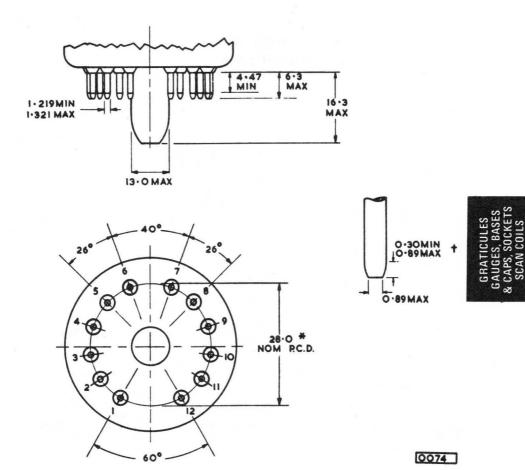
A metal plate within the B8H base, which is taken out to a flat, side, earthing tag, forms a spark gap to the first anode and focus electrode. The plastic of Sparkguard S is coloured black.

Tube types fitted with this base have a suffix S after the type number. Sparkguard Stubes can be used in any set without circuit modification, but in sets designed for Sparkguard R protection the side tag must be bonded to pin 5 on the socket.

It is recommended that the earthing tag should be returned to the external conductive coating by the shortest possible route. The resistors of $2.2k\Omega$ placed in series with the supply leads to the first anode and focus electrode should be such as to have a minimum surface leakage path between leads of 10 mm (e.g. at least $^1/2$ W size).

Connection to the earthing tag should be made by means of a push-on connector so that the connection may be removed whilst the deflector coil and other neck components are being fitted to the tube. An example of a suitable connector is the AMP ''110 Series Faston Receptable ''(AMP of Great Britain Ltd., Terminal House, Stammore, Middlesex).

All dimensions in mm.

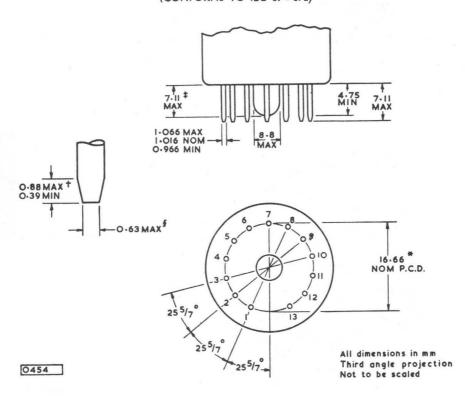

Not to be scaled.

Notes

*The dimensions fixing the positions of the pins refer to the fixed ends of the pins. The pin disposition may be checked only by means of the appropriate gauge.

The drawing shows the numbering of the pins as seen from their free ends.

Issue 1, Page 1

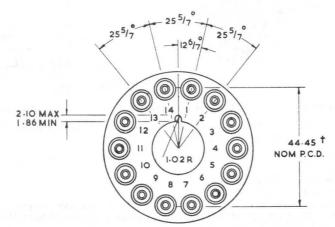

Not to be scaled.

Notes

- *The dimensions fixing the positions of the pins refer to the fixed ends of the pins. The pin disposition may be checked only by means of the appropriate gauge.
- †This surface of the pin shall be convex or conical in shape and shall not be brought to a sharp point.

The drawing shows the numbering of the pins as seen from their free ends.


B13B BASE (CONFORMS TO IEC 67-1-37a)



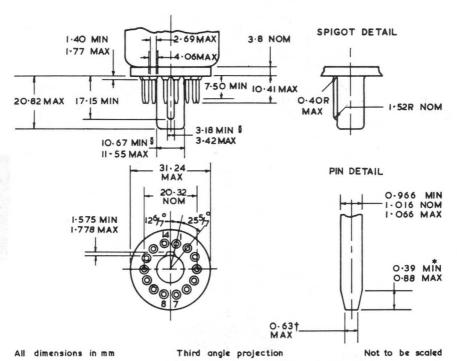
The drawing shows the numbering of the pins as seen from their free ends.

- * The dimensions fixing the position of the pins refer to the fixed ends of the pins. The pin disposition may be checked by the appropriate gauge.
- † This surface of the pin is convex or conical in shape and is not brought to a sharp point.
- § This surface is flat.
- † The tubulation should not project beyond the length of the pins. In some tube types, however, the tubulation does project beyond the length of the pins. Where this happens the maximum length of the tubulation is given on the tube outline drawing.

Conforms to B.S. B14A, I.E.C. 67-1-16a, JEDEC B14-38 and B14-45

All dimensions in mm

Third angle projection


Not to be scaled

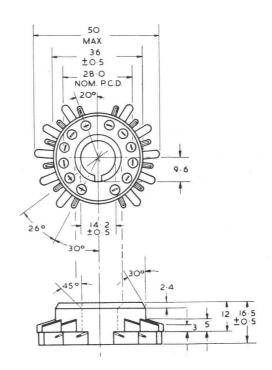
The drawing shows the numbering of the pins as seen from their free ends.

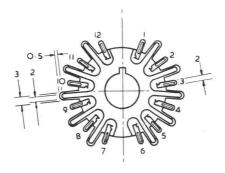
- * This dimension may be increased by 0.76 mm max. for solder.
- † The dimensions fixing the positions of the pins refer to the fixed ends of the pins. The pin disposition may be checked by the appropriate gauge.

Any projections on the under surface of the base other than those shown, such as a rim or external barriers, shall have a height not exceeding 2.79 mm.

Conforms to I.E.C. 67-I-47a, JEDEC B14-243

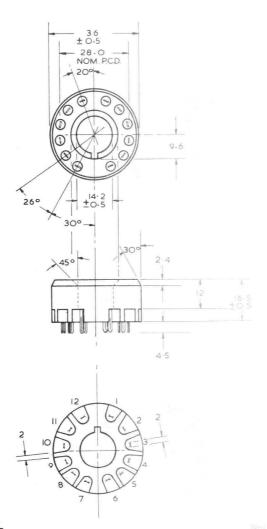
The drawing shows the numbering of the pins as seen from their free ends. The pin disposition may be checked by the appropriate gauge.


There is a second type with a shorter spigot having the following dimensions.


Type 2: Spigot length = 14.8 mm MAX Key length = 11.8 mm MIN

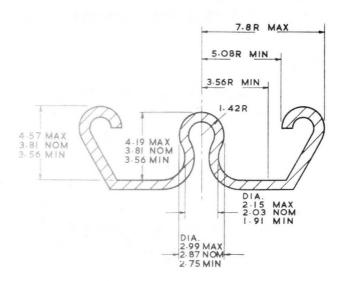
- * This dimension may vary within the limits shown around the periphery of any individual pin. This surface of the pin shall be convex or conical in shape and shall not be brought to a sharp point.
- † This surface shall be flat.
- § The dimensions given include any necessary taper.

Thorn Radio Valves and Tubes Limited Issue 1, Page 1



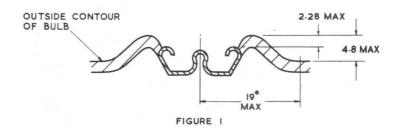
DDU

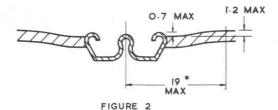
Thorn Radio Valves and Tubes Limited Issue 1. Page 1.


Not to be scaled

Thorn Radio Valves and Tubes Limited
Page 1, Issue 1.

Not to be scaled


Moses


- This drawing is for illustration only. The shape may be varied provided the specified dimensions are adhered to.
- 2. When attaching or detaching the connector, the total force required should not exceed 36N (8lbf) applied perpendicular to the plane of the cap rim.
- 3. Conforms to IEC 67-III-3 and JEDEC J1-22.

Thorn Radio Valves and Tubes Limited

CT7 SEAL TOLERANCES

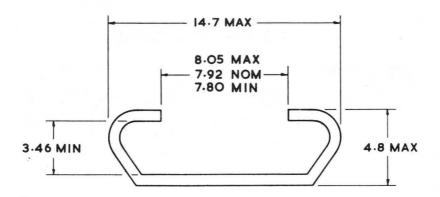
O.7 MAX

4.8 MAX

FIGURE 3

All dimensions in mm

Not to be scaled

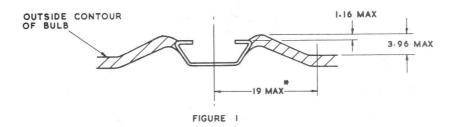

Notes

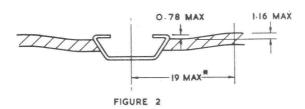
* Protrusion of glass around cap above bulb contour is limited to area bounded by circle concentric with cap axis and having radius of 19 mm maximum.

The shape of the cap is for illustration purposes only .

Angle between plane of the rim of cap and plane tangent to original contour of bulb at centre of cap will not be more than 10° .

Issue 1, Page 2




Not to be scaled

Notes

- 1. This drawing is for illustration only. The shape may be varied provided the specified dimensions are adhered to.
- 2. When attaching or detaching the connector, the total force required should not exceed 35 N (8 lbf) applied perpendicular to the plane of the cap rim.
- 3. Conforms to IEC 67-III-2 and JEDEC J1-21.

CT8 SEAL TOLERANCES

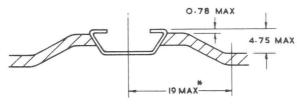


FIGURE 3

All dimensions in mm Notes Not to be scaled

* Protrusion of glass around cap above bulb contour is limited to area bounded by circle concentric with cap axis and having radius of 19 mm max.

The shape of the cavity cap is for illustration purposes only.

Angle between plane of the rim of cap and plane tangent to original contour of bulb at centre of cap will not be more than 10° .

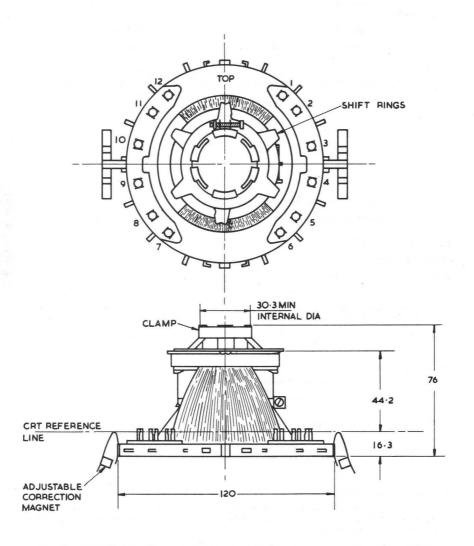
PRELIMINARY DATA

GENERAL

Scan ceils designed for 70°, 90° and 110° tubes with 28 mm diameter necks.

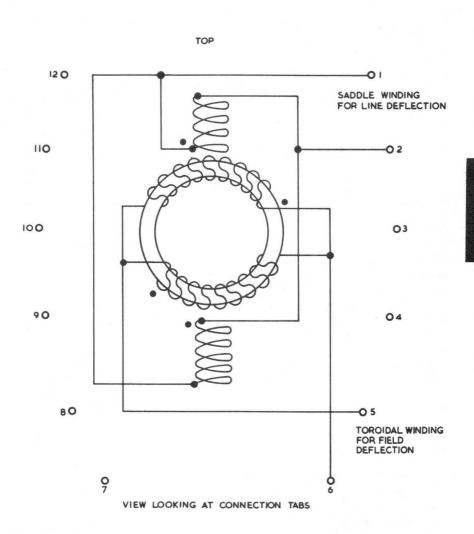
A short ferrite ring is used with saddle and toroidal wound coils. Shift rings and a clamp assembly are provided.

TBY1 has two picture shape correction rod magnets mounted on the x axis for adjustment by the user. This type is not suitable for tubes with diagonals smaller than $24\,\mathrm{cm}$.


RATINGS

Maximum voltage between line and field coils (50 Hz)			2.0	kV	
Maximum operating temperature			100	°C	
ELECTRICAL DATA*		X Axis	Y Axis		
Type of winding		Saddle	Toroidal		
Inductance at 1 kHz (Tolerance ± 5%)		2.9	7.6	mH	
Resistance at 20°C (Tolerance ± 6%)		4.1	3.2	Ω	
Deflection current, peak to peak, (Tolerance \pm 5%) for the following deflection		1.4 272	0.92 205	A mm	
Rectangularity between x and y traces †		90° ± 1.	90° ± 1.0°		
Maximum adjustment of shift ring (dia.)		60		mm	
Raster distortion §					
Test raster parallel to sides of rectangle to within		3.0		mm	
Maximum pincushion distortion	LHS RHS	1.6 3.0	A	mm mm	
Maximum barrel distortion	LHS RHS	3.0 1.6		mm mm	
Maximum pincushion or barrel distortion top or bottom		3.0		mm	

- * Applies, where applicable, to an M38-101.. tube operating at 15 kV
- † To meet this limit, a coupling coil has occasionally to be fitted to the assembly. This is wired in series with the line coils and adjusted at the factory to limit the coupling factor to less than 0.001.
- \$ Comparison of a test raster and rectangle of height 90% of the tube minimum screen height and aspect ratio 4:3.


Thorn Radio Valves and Tubes Limited lssue 1, Page 1

All dimensions in mm

Not to be scaled

PRELIMINARY DATA

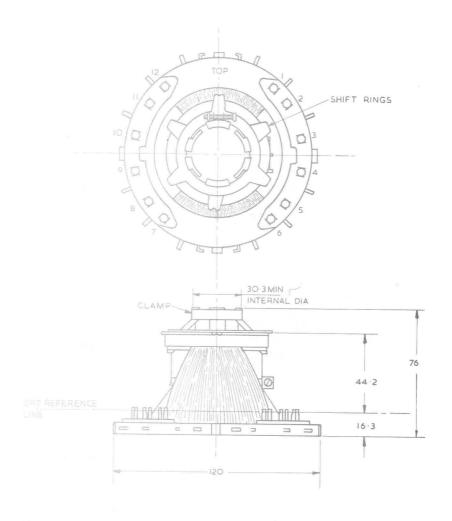
GENERAL

Scan coils designed for 70° flat faced tubes with 28 mm diameter necks. These coils are particularly suitable for smaller tubes giving adequate clearance of the EHT connector. A short ferrite ring is used with saddle and toroidal wound coils. Shift rings and a clamp assembly are provided.

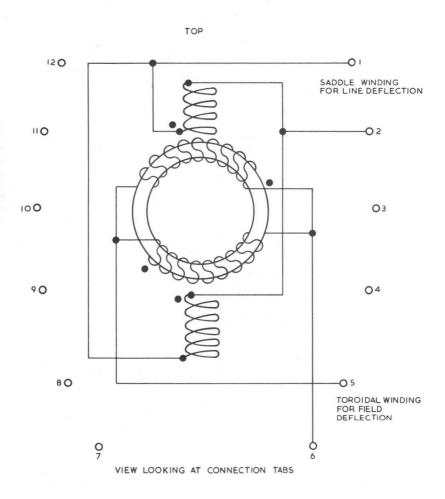
TBY2 has fixed picture shape correction rod magnets mounted within the plastic moulding.

To reduce raster distortion additional magnets may be placed on the pegs around the periphery of the plastic moulding.

RATINGS


Maximum voltage between line and field coils (50 Hz)			
Maximum operating temperature		100	
ELECTRICAL DATA*	X Axis	Y Axis	
Type of winding	Saddle	Toroida	
Inductance at 1 kHz (Tolerance ± 5%)	2.9	7.6	mH
Resistance at 20°C (Tolerance ± 6%)	4.1	3.2	
Deflection current, peak to peak, (Tolerance \pm 5%) for the following deflection	1.35 127	0.87 95	
Rectangularity between x and y traces †	90° ± 1	.0°	
Maximum adjustment by shift ring (diameter)	60		
Raster distortion §			
Test raster parallel to sides of rectangle to within			
Maximum pincushion distortion LHS RHS			
Maximum barrel distortion LHS			
Maximum pincushion or barrel distortion top or botto	m		

- * Measured, where applicable, on an M17-10.. tube operating at 14kV
- † To meet this limit, a coupling coil has occasionally to be fitted to the assembly. This is wired in series with the line coils and adjusted at the factory to limit the coupling factor to less than 0.001.
- § Comparison of a test raster and rectangle of height 90% of the tube minimum screen height and aspect ratio 4:3.


Thorn Radio Valves and Tubes Limited

Not to be scaled

Page 3, Issue 1

GENERAL - SCAN COILS

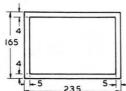
Scan coils can be used for 70°, 90° and 110° tubes with 20 mm diameter necks.

A short ferrite ring is used with saddle wound line and toroidal wound field coils. Shift rings and a neck clamp assembly are provided.

These scan coils are for use in low voltage transistor deflection circuits.

To reduce raster distortion picture shape correction magnets may be placed on the pegs around the periphery of the plastic moulding.

ELECTRICAL DATA	Tube Type	Anode Volts	X Axis	Y Axis	
Type of winding	Type	(kV)	Saddle	Toroidal	
Inductance at 1 kHz (Tol. X ± 5%, Y ± 8%)			0.258	30	mH
Resistance at 20°C (Tol. X ± 5%, Y ± 8%)			0.55	16.7	Ω
Deflection current, peak to peak, for full screen deflection					
	M14-100	10	3.6	0.36	Α
	M19-100	10	4.0	0.42	Α
	M23-110	10	4.1	0.42	A
	M28-12	12	4.5	0.45	A
	M31-120	11	5.1	0.53	Α
	M31-190	12	4.5	0.44	Α
	M38-160	13	5.5	0.56	A

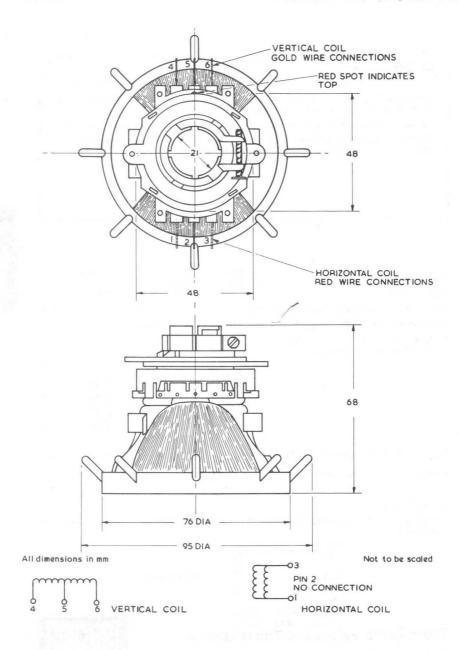

Rectangularity between x and y traces

90° + 1.0°

Suitable field and line scanning circuits are shown in TBK3 sheets.

Raster distortion

The edges of a test raster for M31-120.. can be contained between two concentric rectangles.



All dimensions in mm

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

Page 2, Issue 2.

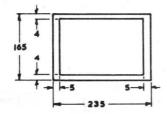
GENERAL - SCAN COILS

Scan coils can be used for 70°, 90° and 110° tubes with 20 mm diameter necks.

A short ferrite ring is used with saddle wound line and toroidal wound field coils. Shift rings and a neck clamp assembly are provided.

These scan coils are for use in low voltage transistor deflection circuits. The TBY5 is a version of the TBY3 with a low impedance field winding to permit operation with an integrated circuit drive amplifier.

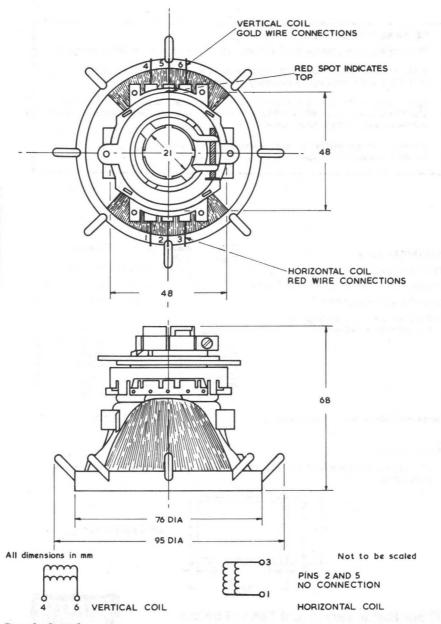
To reduce raster distortion picture shape correction magnets may be placed on the pegs around the periphery of the plastic moulding.


ELECTRICAL DATA	Tube Type	Anode Volts	X Axis	Y Axis	
Type of winding	Type	(kV)	Saddle	Toroidal	
Inductance at 1 kHz (Tol. $X \pm 5\%$, $Y \pm 8\%$)			0.258	7	mH
Typical resistance at 20°C			0.55	3.1	Ω
Deflection current, peak to peak, for full screen deflection					
tor this bereen deflection	M14-100	10	3.6	0.79	Α
	M19-100	10	4.0	0.91	Α
	M23-110	10	4.1	0.91	A
	M28-12	12	4.5	0.97	A
	M31-120	11	5.1	1.16	Α
	M31-190	12	4.5	0.97	A
	M38-160	13	5.5	1.22	A

Rectangularity between x and y traces

90° ± 1.0°

Raster distortion


The edges of a test raster for M31-120.. can be contained between two concentric rectangles.

All dimensions in mm

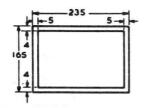
Thorn Radio Valves and Tubes Limited Page 1, Issue 1,

Page 2. Issue 2.

PRELIMINARY DATA

GENERAL -SCAN COILS

Scan coils can be used for 70°, 90° and 110° tubes with 20 mm diameter necks.

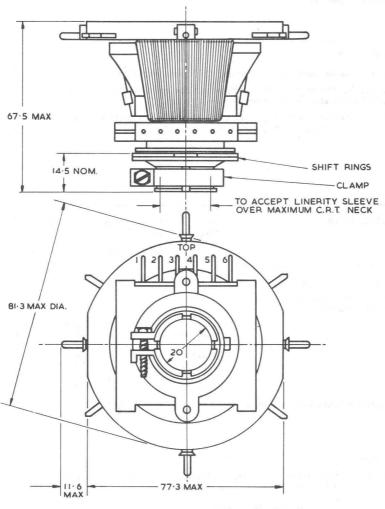

A short ferrite ring is used with saddle wound line and toroidal wound field coils. Shift rings and a neck clamp assembly are provided.

The reduce raster distortion picture shape correction magnets may be placed on the pegs around the periphery of the plastic moulding.

ELECTRICAL DATA	Tube Type	Anode Volts	X Axis	Y Axis	
Type of winding		(kV)	Saddle	Toroidal	
Inductance at 1 kHz (Tol. X ± 5%, Y ± 8%)			4.1	32	mH
Resistance at 20°C (Tol. X ± 5%, Y ± 8%)			8.8	16.0	Ω
Deflection current, peak to peak, for full screen deflection					
	M14-100	10	0.9	0.4	Α
	M19-100	10	1.0	0.4	A
	M23-110	10	1.0	0.4	A
	M28-12	12	1.1	0.5	A
	M31-120	11	1.3	0.5	A
	M31-190	12	1.1	0.4	Α
	M38-160	13	1.4	0.6	Α
Rectangularity between x and y traces			90° ±	1.0°	

Raster distortion

The edges of a test raster for nominal M31-120.. the corrected raster shape can be contained between two concentric rectangles.

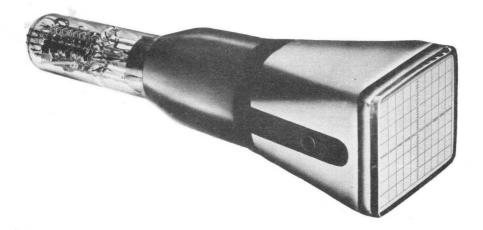


All dimensions in mm

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

All dimensions in mm


Not to be scaled

Page 2. Issue 1.

OSGILLOSGOPI TUBIS

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

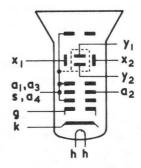
HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited


Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

OSCILLOSCOPE TUBES

GENERAL

This 1 inch diameter low voltage instrument tube with electrostatic focus and deflection is for use as a general purpose indicating device.

ABSOLUTE RATINGS

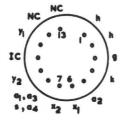
ABSOLUTE KATINGS		Max	Min	
First, third and fourth anode voltage	$V_{a1+a3+a4}$	1.5		kV
Second anode voltage	Va2	1.2	-	kV
Negative grid voltage	-V _g	200	0	V
Peak x plate to third anode voltage	vx-a3(pk)	500	-	V
Peak y plate to third anode voltage	vy-a3(pk)	500	-	V
Grid to cathode resistance	R_{g-k}	1.5	-	$M\Omega$
Average cathode current	Ik(av)	200	-	μ A
Heater to cathode voltage	v_{h-k}	± 125	-	v

All voltages referred to cathode unless otherwise stated.

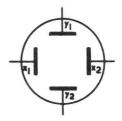
TUBE WEIGHT (approximate) - 43 g

PHOSPHOR SCREEN

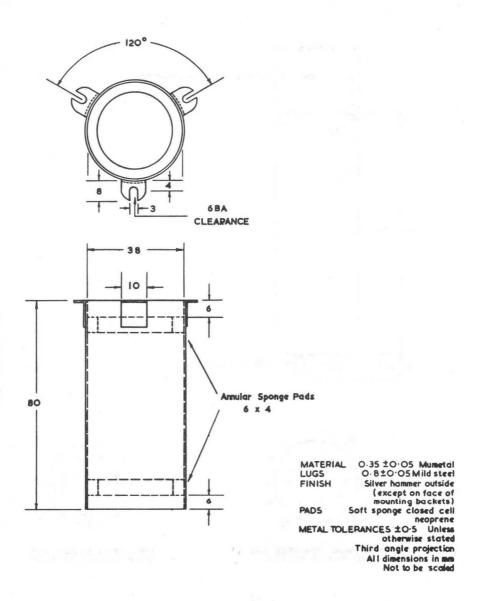
This type is usually supplied with GH phosphor (D3-130GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.



INTER-ELECTRODE CAPACITANCES


Cathode and heater to all	ck, h-all		2.5 pF
Grid to all	cg-all		6.5 pF
Grid to $x_1; x_2, y_1, y_2$ plates	cg-x1, x2, y1	, y2	1.9 pF
x ₁ plate to x ₂ plate	c _{x1-x2}		1.1 pF
y ₁ plate to y ₂ plate	c _{y1-y2}		0.4 pF
x ₁ plate to all, less x ₂ plate	cx1-all, less	x2	3.0 pF
x_2 plate to all, less x_1 plate	cx2-all, less	x1	3.0 pF
y ₁ plate to all, less y ₂ plate	cy1-all, less	y2	3.0 pF
y2 plate to all, less y1 plate	cy2-all, less	y1	2.7 pF
x ₁ ,x ₂ to y ₁ ,y ₂ plates	c _{x1,x2-y1,y}	72	0.3 pF
TYPICAL OPERATION - voltages w	ith respect to	cathode	
First, third and fourth anode voltage	V _{a1+a3+a4}	500	1000 V
Mean deflector plate potential*		500	1000 V
Second anode voltage for focus	v_{a2}	24 to 72	48 to 144 V
Grid voltage for spot cut-off	v_g	-10 to -24	-20 to -48 V
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	40 to 60	80 to 120 V/cm
y deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	29 to 44	58 to 88 V/cm

^{*} This tube is designed for symmetrical operation.

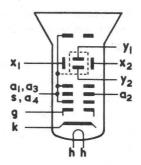

VIEW FROM PINS FREE END (PINS 687 AT BOTTOM)

(PINS 687 AT BOTTOM)

All dimensions in mm

Not to be scaled

Thorn Radio Valves and Tubes Limited



OSCILLOSCOPE THRES

GENERAL

This 3 inch diagonal rectangular oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	v_h	6.3	v
Heater current	$I_{\mathbf{h}}$	0.3	A

ABSOLUTE RATINGS

First, third and fourth anode voltage	V _{a1+a3+a4}	2000	Min	v
Second anode voltage	Va2	600	_	V
Negative grid voltage	$-\mathbf{v}_{\mathbf{g}}$	200	0	v
Peak x-plate to third anode voltage	vx-a3(pk)	500	-	V
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
x-plate to third anode resistance	R _{x-a3}	2.0		$M\Omega$
y-plate to third anode resistance	R_{y-a3}	2.0	-	$\mathbf{M}\boldsymbol{\Omega}$
Grid to cathode resistance	R_{g-k}	1.5	_	$\mathbf{M}\boldsymbol{\Omega}$
Average cathode current	I _{k(av)}	200	1	μ A
Heater to cathode voltage	v_{h-k}	± 125	-	V

All voltages referred to cathode unless otherwise stated.

TUBE WEIGHT (approximate) - 100 g

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D7-200GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order. For optimum performance with W phosphor, the tube should be used as near the maximum final anode voltage as possible.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES

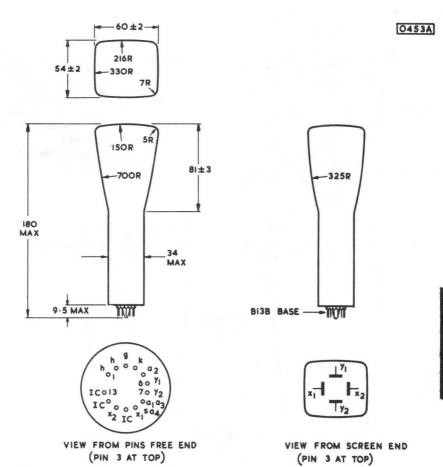
Cathode and heater to all	ck, h-all					3.0)	pF
Grid to all	cg-all					6.5	5	pF
Grid to x_1, x_2, y_1, y_2 plates	cg-x1, x2, y1	, y2				1.0)	pF
x ₁ plate to x ₂ plate	c _{x1-x2}					0.5	5	pF
y ₁ plate to y ₂ plate	c _{y1-y2}					1.3	3	pF
x ₁ plate to all, less x ₂ plate	cx1-all, less	x2				3.0)	pF
x2 plate to all, less x1 plate	cx2-all, less	x1				3.0)	pF
y ₁ plate to all, less y ₂ plate	cy1-all, less	y2				3.0)	pF
y2 plate to all, less y1 plate	cy2-all, less	y1				3.6)	pF
x_1, x_2 to y_1, y_2 plates	c _{x1, x2-y1, y}	2				0.3	3	pF
TYPICAL OPERATION - voltages with	respect to cat	hode				†		
First, third and fourth anode voltage	V _{a1+a3+a4}		10	00		180	00	V
Mean deflector plate potential*			10	00		180	00	V
Second anode voltage for focus	v_{a2}	65	to	200	115	to	355	V
Grid voltage for spot cut-off (approx)	v_g	-25	to	-50	-45	to	-90	v
x plate deflection coefficient	D _x	21	to	29	37	to	52	V/cm
y plate deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	25	to	35	45	to	63	V/cm
Minimum useful screen area	•	5	by	4	5	by	4	cm^2
Line width at centre, measured by shrinking raster, at 25 μA cathode cur	rent		0.	3		0.5	25	mm

^{*} This tube is designed for symmetrical operation.

NOTES

Rectangularity of x and y traces 90° ± 3°.

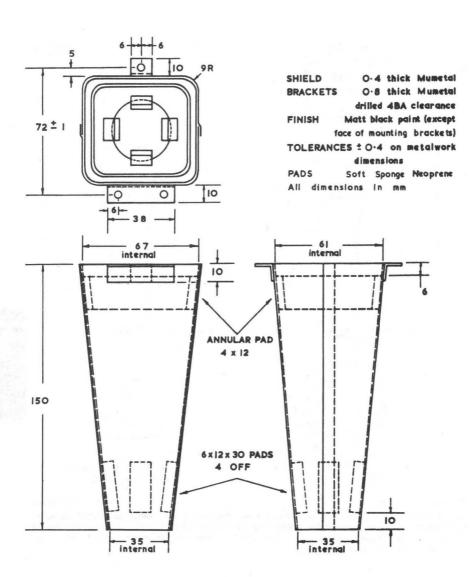
The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 3°.


The undeflected focused spot will lie within an 8 mm diameter circle central to the tube face.

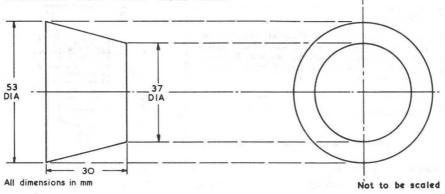
Adequate magnetic shielding is required and to avoid screen charging and hand effects it is recommended that the tube is operated with the final anodes at earthy potential.

For critical requirements any residual astigmatism may be corrected by adjustment of the final anode to mean x-plate potential within the range \pm 30V.

[†] Recommended for W phosphor.



All dimensions in mm


Not to be scaled

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Magnetic Shield MS3

MANDREL FOR TWIST COIL TW28

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS3 for D7-200..

WINDING

1200 turns of 0.080 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from the smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

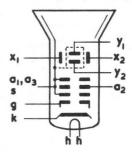
Resistance approximately 600 \, \Omega

Twist coefficient approximately 4mA/degree measured on a typical D7-200..tube with $V_{a1}=2kV$.

FITTING

The completed twist coil should be pushed hard onto the tube, with the lead out wires at one corner. Secure to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited


Page F1, Issue 2.

GENERAL

This 7 cm diagonal rectangular oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	$\mathbf{v_h}$	6.3	v
Heater current	I_h	0.12	A

ABSOLUTE RATINGS

ALCOHOL MATIMOS		Max	Min	
First and third anode voltage	v_{a1+a3}	2000	700	v
Second anode voltage	v_{a2}	600	-	V
Negative grid voltage	-v _g	200	1.0	V
Peak x-plate to third anode voltage	^v x-a3 (pk)	500	-	V
Peak y-plate to third anode voltage	∨y-a3(pk)	500	-	v
x-plate to third anode resistance	R_{x-a3}	2.0	-	MΩ
y-plate to third anode resistance	R_{y-a3}	2.0	-	$M\Omega$
Grid to cathode resistance	R_{g-k}	1.5	-	MΩ
Average cathode current	Ik(av)	200	-	μ A
Heater to cathode voltage	V_{h-k}	± 125	-	V

All voltages referred to cathode unless otherwise stated.

TUBE WEIGHT (approximate) - 150 g

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D7-201GH) giving a green trace of medium short persistance. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 2.

INTER-ELECTRODE CAPACITANCES

all	pF
7.0	pF
,x2,y1,y2 1.0	pF
2 1.2	pF
2 1.1	pF
ll, less x2 3.0	pF
ll, less x1 3.0	pF
ll, less y2 3.0	pF
ll, less y1 3.0	pF
2-y1,y2 0.3	pF
1	1.0 ., x2, y1, y2 .2 .2 .1.1 .11, less x2 .11, less x1 .11, less y2 .11, less y2 .11, less y1 .12 .13 .14 .15 .15 .16 .17 .17 .18 .18 .18 .18 .18 .18 .18 .18 .18 .18

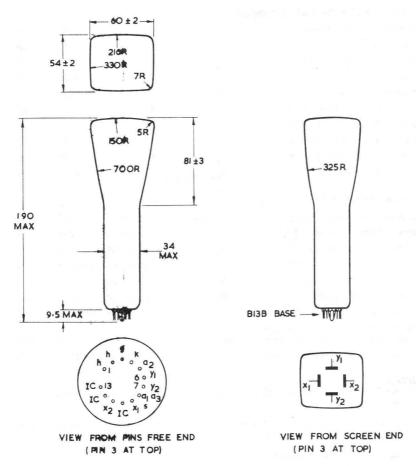
TYPICAL OPERATION - voltages with respect to cathode

First and third anode voitage	v_{a1+a3}		1200	1800	V
Mean deflector plate potential*			1200	1800	v
Second anode voltage for focus	v_{a2}	80	to 250	115 to 355	v
Grid voltage for spot cut-off	v_g	-30	to -60	-45 to -90	v
x plate deflection coefficient	D_X	29	to 37	44 to 56	V/cm
y plate deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	14	to 18	21 to 28	V/cm
Minimum useful screen area		5	by 4	5 by 4	cm^2
Line width at centre, measured by shrinking raster, at 10 μA beam of	urrent		0.24	0.20	mm
Grid drive to 10 μA beam current			18	17	V

NOTES

The undeflected focused spot will lie within an $8\ \mathrm{mm}$ diameter circle central to the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 5 cm \times 4 cm and 4.85 cm \times 3.88 cm.

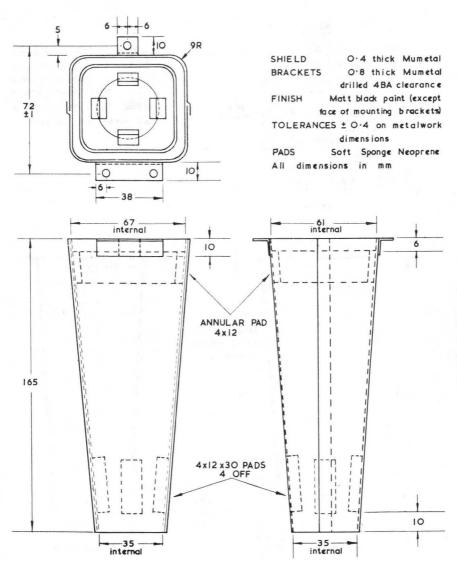

Rectangularity of x and y traces 90° ± 1.5°.

The horizontal trace will be parallel with the major axis of the rectangular face-plate to within \pm 3°.

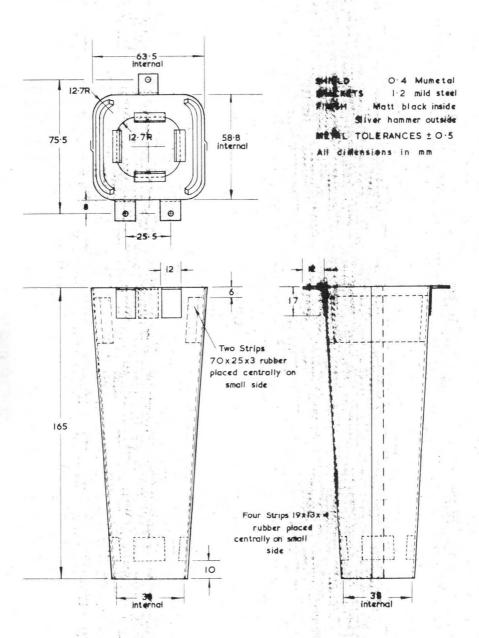
For critical requirements any residual astigmatism may be corrected by adjustment of the final anode to mean x-plate potential within the range \pm 30V.

Adequate magnetic shielding is required and to avoid screen charging and hand effects it is recommended that the tube is operated with the final anodes at earthy potential.

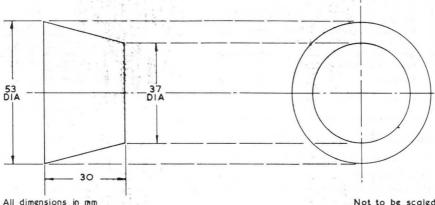
* This tube is designed for symmetrical operation.


All dimensions in mm

Not to be scaled


It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on base pin 3 position with respect to minor axis of the rectangular face-plate $\pm~5\,^{\circ}\text{.}$


Magnetic Shield MS34

Issue 1, Page E2

OSCILLOSCOPE Tubes

MANDREL FOR TWIST COIL TW28

Not to be scaled

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS33 for D7-201..

WINDING

1200 turns of 0.080 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

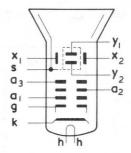
Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approximately 600 \Omega

Twist coefficient approximately 4mA/degree measured on a typical D7-201.. tube with $V_{a1} = 2kV$.

FITTING


The completed twist coil should be pushed hard onto the tube, with the lead out wires at one corner. Secure to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

GENERAL

This 9 cm diagonal rectangular short oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor drive deflection.

Heater voltage	v_h	6.3	V
Heater current	Ih	0.12	A

ABSOLUTE RATINGS - voltages with re	spect to cathode	Max	Min	
First anode voltage	v_{a1}	2200	800	V
Second anode voltage	v_{a2}	800	-	V
Third anode voltage	v_{a3}	2250	750	V
Negative grid voltage	-Vg	200	1.0	V
Peak x-plate to third anode voltage	v _x -a3(pk)	500	-	V
Peak y-plate to third anode voltage	vy-a3(pk)	500	_	V
Heater to cathode voltage	v_{h-k}	± 125		V
x-plate to third anode resistance	R _{x-a3}	2.0	-	$M\Omega$
y-plate to third anode resistance	Ry-a3	2.0	5. 10 TE C	МΩ
Grid to cathode resistance	R _{g-k}	1.5		МΩ
Peak cathode current	ik(pk)	500		μ A

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D9-110GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

INTER-ELECTRODE CAPACITANCES

MILK LELCTRODE CAPACITANCES				
Grid 1 to all	cg1-all		5.5	pF
Heater and cathode to all	ch, k-all		3.8	pF
x ₁ plate to x ₂ plate	c _{x1-x2}		1.2	pF
y ₁ plate to y ₂ plate	cy1-y2		1.4	pF
x ₁ plate to all, less x ₂ plate	c _{x1-all, less x2}		4.2	pF
x ₂ plate to all, less x ₁ plate	cx2-all, less x1		4.0	pF
y_1 plate to all, less y_2 plate	cy1-all, less y2		3.4	pF
y_2 plate to all, less y_1 plate	cy2-all, less y1		3.4	pF
x_1 , x_2 plates to y_1 , y_2 plates	$c_{x1,x2-y1,y2}$		0.8	pF
TYPICAL OPERATION - voltages with	respect to catho	ode.		
Mean deflector plate potential*		1500	2000	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1500†	2000†	v
Second anode voltage for optimum focus	v_{a2}	230 to 380	300 to 510	v
First anode voltage	v_{a1}	1500	2000	V
Shield voltage for optimum raster shape	V_S	1500†	2000†	V
Control grid voltage for cut-off	v_{g1}	-30 to -65	-40 to -87	v
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	21 to 26	28 to 34.8 V	/em

Shrinking raster measurement at centre

 D_{V}

9.6 to

6.6 x 4.0

12

13

0.31

12.8 to

6.6 x 4.0 cm²

16

13

0.27

V/cm

mm

y deflection coefficient

Minimum useful screen area Grid drive to 10 μA beam current

Line width at 10 μA beam current

^{*} This tube is designed for symmetrical operation.

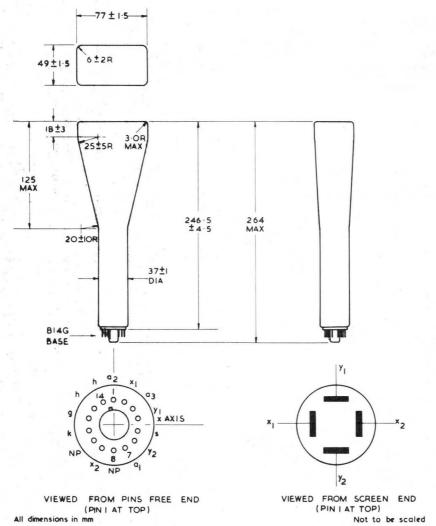
[†] The required voltage will not differ from the quoted value by more than \pm 50V.

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $6.6~\rm cm \times 4.0~\rm cm$ and $6.46~\rm cm \times 3.88~\rm cm$.

Rectangularity of x and y axes is 90° ± 1°.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. The mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 600 g

MOUNTING POSITION - unrestricted.

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Tolerance on base pin 1 position with respect to tube y axis ± 5°

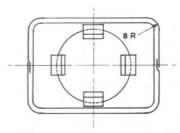
D9-110 ...

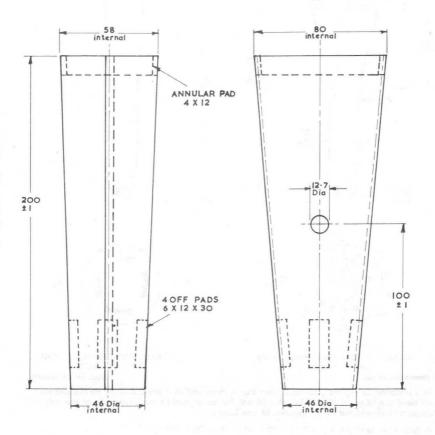
Magnetic Shield MS65

MATERIAL

0-35 ± 0-05 Mumetal Silver hammer outside

FINISH

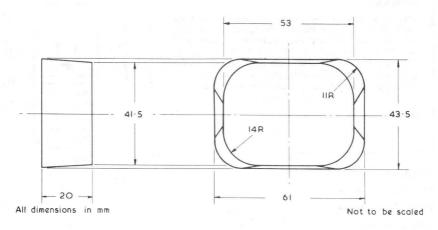

PADS


Soft sponge closed cell neoprene METAL TOLERANCES ± 0.5 Unless othewise stated

Third angle projection

All dimensions in mm

Not to be scaled



Page E1, Issue 1.

OSCILLOSCOPE THRES

MANDREL FOR TWIST COIL TW50

MANDREL

Shaped from wood to dimensions given above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield ${\rm MS\,65\,for}$ D9-110..

WINDING

 $1000 \ \text{turns}$ of $0.14 \ \text{mm}$ Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

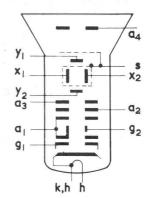
ELECTRICAL CHARACTERISTICS

Resistance approx. 210 Ω . Current required for \pm 5° twist is \pm 20 mA measured on a typical D9-110.. with V_{a1} = 2.0 kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and fastened with adhesive tape.

Thorn Radio Valves and Tubes Limited


Page F1. Issue 2.

GENERAL

This is a very short $7 \times 5 \,\mathrm{cm}^2$ rectangular tube with high deflection sensitivity designed for general purpose and portable oscilloscopes. The mesh p.d.a. system allows the tube to be transistor driven for medium bandwidth applications without additional electrode voltages. A means of beam blanking at anode potential which avoids d.c. coupling to the grid is incorporated.

Heater voltage	v_h	11	V
Heater current	Ih	75	mA

ABSOLUTE RATINGS

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	10	5.0	kV
Third anode voltage	v_{a3}	1.25	0.5	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.25	0.5	kV
Negative control grid voltage	-V _{g1}	200	1.0	V
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak \boldsymbol{x} plate to third anode voltage	$v_{x-a3(pk)}$	500	-	V
Peak y plate to third anode voltage	vy-a3(pk)	500	-	V
x plate to third anode resistance	R_{x-a3}	5.0	-	$M\Omega$
y plate to third anode resistance	Ry-a3	100	-	$k\Omega$
Control grid to cathode resistance	R _{g1-k}	1.5	-	$M\Omega$
Second anode current	I_{a2}	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		10:1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D10-210GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES				
Grid 1 to all	0.0		10	pF
Grid 2 to all	cg1-all		11	pF
	^c g2-all			
Grid 2 to Grid 1	cg2-g1		0.7	pF
Grid 1 to x_1 , x_2 , y_1 and y_2 plates	cg1-x1, x2	, y1, y2	1.2	pF
Heater and cathode to all	ch, k-all		3.5	pF
x ₁ plate to x ₂ plate	c _{x1-x2}		1.9	pF
y ₁ plate to y ₂ plate	cy1-y2		0.9	pF
x ₁ plate to all, less x ₂ plate	cx1-all, le	ess x2	5.7	pF
x ₂ plate to all, less x ₁ plate	cx2-all, le	ss x1	5.7	pF
y ₁ plate to all, less y ₂ plate	cy1-all, le	ess y2	5.4	pF
y ₂ plate to all, less y ₁ plate	cy2-all, le	ess yı	5.1	pF
x1, x2 plates to y1, y2 plates	cx1,x2 - y	1, y2	0.4	pF
TYPICAL OPERATION - voltages with res	pect to cathode	e		
Fourth anode voltage	Va4	6.0	10	kV
Mean deflector plate potential		600	1000	V
Third anode voltage for optimum astigmatism correction	v_{a3}	475 to 600	875 to 1000	v
Second anode voltage for optimum focus	$V_{\mathbf{a}2}$	100 to 220	160 to 380	v
First anode voltage	Val	600	1000	v
Shield voltage for optimum raster shape	V _S	600 to 725	1000 to 1125	v
Beam blanking voltage for cut-off	$V_{\mathbf{g}2}$	550†	920†	v
Control grid voltage for cut-off	v_{g1}	-30 to	-50 to	v
x plate deflection coefficient	$D_{\mathbf{X}}$	11.2 to 13.8	18.6 to 23	V/cm
y plate deflection coefficient	$D_{\mathbf{y}}$	8.0 to 10	13.4 to 16.6	V/cm
Minimum screen area		7 x 5	7 x 5	cm^2
Line width at centre		0.65	0.6	mm
Line width at edge at 5µA		1.0	0.95	mm
Line width at centre measured by shrinking raster	rent	0.35	0.32	mm

 $^{^{\}dagger}$ The beam is unblanked when v_{g2} = $v_{a1}.$ This grid 2 electrode should not be used as a brilliance control.

Issue 2, Page 2

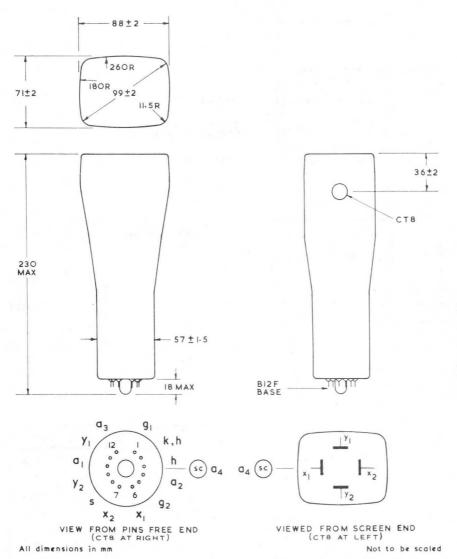
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle 5 mm radius from the geometric centre of the tube face.

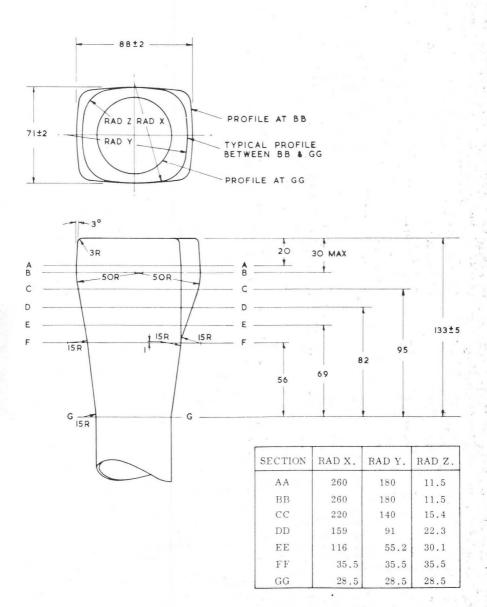
The total scanned area is $7~\rm cm~x~5~cm$ measured about a point $\pm~3~\rm mm$ from the centre of the tube face. The edges of a test raster will fall between two concentric rectangles $7~\rm cm~x~5~cm$ and $6.75~\rm cm~x~4.8~cm$.

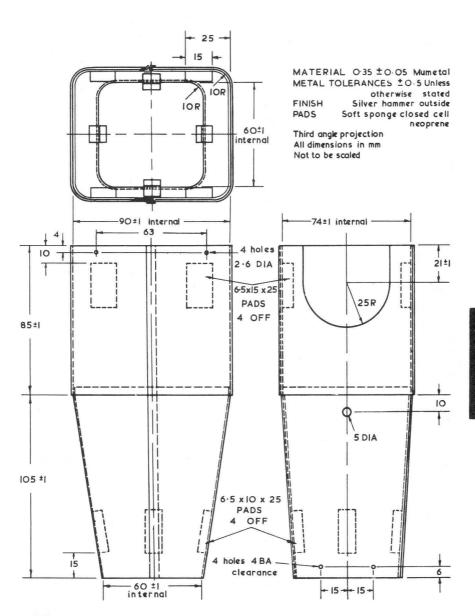
Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield and should not extend more than $100\,\mathrm{mm}$ from the face. 40 ampere turns will suffice with provision for reversing the current if necessary.

The deflection coefficient (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the deflection coefficient over 10% deflection.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50 V.

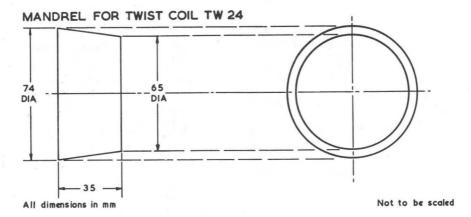
MAGNETIC SHIELDING


Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) - 500 g

MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.



Thorn Radio Valves and Tubes Limited

Issue 2, Page E1

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

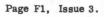
This twist coil is designed to be used in conjunction with magnetic shield MS6 for D10-210...

WINDING

900 turns of 0.125 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.


ELECTRICAL CHARACTERISTICS

Resistance approx. 270 $\,\Omega$. Twist coefficient approximately 5.5 mA/degree measured on typical D10-210.. with V_{a4} = 10 kV and V_{a1} = 1.0 kV.

FITTING

The completed twist coil should be pushed hard onto the tube with the lead-out wires in the middle of the short side of the tube on the same side as the cavity cap and sealed to the tube with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

OSCILLOSCOPE THRES

GENERAL

This 10 cm diameter short oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	$\mathbf{v_h}$	6.3	V
Heater current	I_h	0.3	A

			h	
ABSOLUTE RATINGS - voltages with resp	ect to cathode	Max	Min	
First anode voltage	v_{a1}	2200	800	V
Second anode voltage	v_{a2}	800	-	V
Third anode voltage	v_{a3}	2250	750	V
Negative grid voltage	$-v_g$	200	1.0	V
Peak x plate to third anode voltage	vx-a3 (pk)	500		V
Peak y plate to third anode voltage	[₩] y-a3 (pk)	500	-	V
Heater to cathode voltage	v_{h-k}	± 125	-	V
x plate circuit impedance	$\mathbf{z}_{\mathbf{x}}$	100	-	kΩ
y plate circuit impedance	$\mathbf{z_y}$	100	-	kΩ
Grid to cathode resistance	R_{g-k}	1.5		MΩ

PHOSPHOR SCREEN

Peak cathode current

This tube is usually supplied with GH phosphor (D10-230GH) giving a green trace of medium short persistance. Other phosphors can be made available to special order.

ik(pk)

500

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

INTER-ELECTRODE CAPACITANCE	S			
Grid to all	c _{g-all}		8.2	pF
Heater and cathode to all	ch.k-all		2.3	pF
x ₁ plate to x ₂ plate	c _{x1-x2}		1.7	pF
y ₁ plate to y ₂ plate	cy1-y2		1.3	pF
x1 plate to all, less x2 plate	cx1-all, less x2		5.0	pF
x2 plate to all, less x1 plate	cx2-all, less x1		4.8	pF
y1 plate to all, less y2 plate	cy1-all, less y2		3.6	pF
y2 plate to all, less y1 plate	cy2-all, less y1		3.7	pF
x1, x2 plates to y1, y2 plates	cx1,x2-y1,y2		0.7	pF
g to x_1 , x_2 , y_1 and y_2 plates	cg-x1, x2, y1, y2		0.6	pF
TYPICAL OPERATION - voltages with	th respect to catho	de.		
Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	v_{a3}	1500†	2000†	v
Second anode voltage for optimum focu	s V _{a2}	120 to 250	160 to 335	v
First anode voltage	v_{a1}	1500	2000	V
Shield voltage for optimum raster shap	e V _s	1500†	2000†	V
Control grid voltage for cut-off	v 2		- 30 to - 70	v
x deflection coefficient	D_X	21 to 26	28 to 34.8	V/cm
y deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	13 to 16	17.3 to 21.4	V/cm
Minimum useful screen area (Diagonal	9 cm)	8.0 x 6.4	8.0 x 6.	4 cm ²
Grid drive to $10\mu\text{A}$ beam current		10	11	v
Line width at $10\mu\text{A}$ beam current Shrinking raster measurement at certain	ntre	0.31	0.27	mm

^{*} This tube is designed for symmetrical operation.

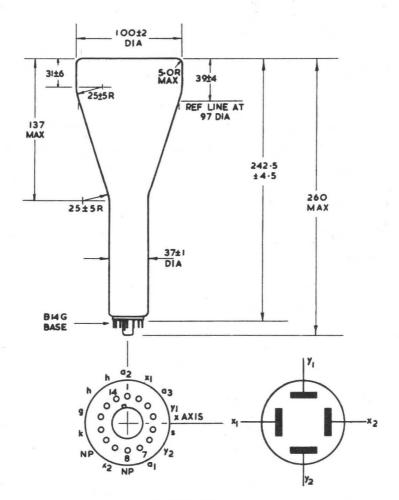
 $[\]dagger$ The required voltage will not differ from the quoted value by more than $\pm 30 V$.

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $7.0~\text{cm} \times 5.4~\text{cm}$ and $6.84~\text{cm} \times 5.26~\text{cm}$.

Rectangularity of x and y axes is 90° + 1°.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

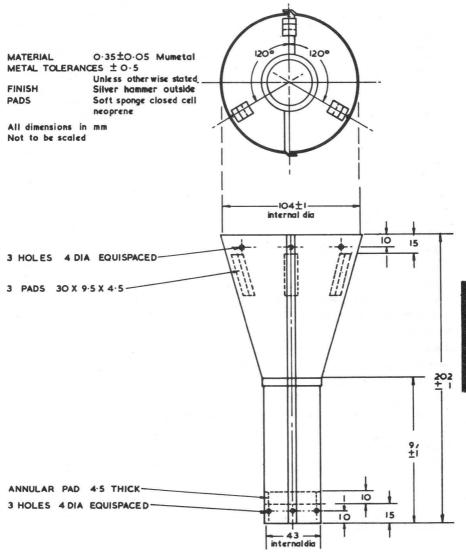
TUBE WEIGHT (approximate) 400 g

MOUNTING POSITION - unrestricted.

VIEWED FROM PINS FREE END

VIEWED FROM SCREEN END

All dimensions in mm


Not to be scaled

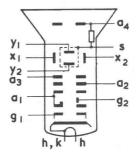
It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Tolerance on base pin 1 position with respect to tube y axis ± 5°

Issue 1, Page 4

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited


Issue 2, Page E1

GENERAL

This 10 cm diagonal rectangular, p.d.a. tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater Voltage	v_h	6.3	v
Heater Current	I _h	0.12	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	3.5	1.5	kV
Third anode voltage	v_{a3}	1.75	0.75	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.75	kV
Negative control grid voltage	$-v_{g1}$	200	1.0	V
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	v _{x-a3(pk)}	500	-	V
Peak y plate to third anode voltage	vy-a3(pk)	500	-	V
x plate circuit impedance	$\mathbf{Z}_{\mathbf{X}}$	100		$\mathbf{k}\Omega$
y plate circuit impedance	z_y	100	-	$\mathbf{k}\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	I_{a2}	10	-	μ A
P.D.A. ratio (Va4/Va3 nom)		2:1		
Helix resistance		1-	20	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D10-240GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANC	ES			
Grid to all	cg1-all		9.5	pF
Grid 2 to all	cg2-all		9.0	pF
Heater and cathode to all	ch, k-all		3.5	pF
x ₁ plate to x ₂ plate	c_{x1-x2}		2.0	pF
y ₁ plate to y ₂ plate	c_{y1-y2}		1.5	pF
x ₁ plate to all, less x ₂ plate	cx1-all, less x2		6.2	pF
x_2 plate to all, less x_1 plate	cx2-all, less x1		5.9	pF
y ₁ plate to all, less y ₂ plate	cy1-all, less y2		4.7	pF
y2 plate to all, less y1 plate	cy2-all, less y1		4.7	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	c _{x1,x2-y1,y2}		0.6	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	cg1-x1, x2, y1, y	2	1.0	pF
Grid 1 to Grid 2	cg1-g2		0.5	pF
TYPICAL OPERATION - voltage	es with respect to	cathode.		
Fourth anode voltage	v_{a4}	2.0	3.0	kV
Mean deflector plate potential		1000	1500	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1000*	1500*	v
Second anode voltage for optimum for	eus V _{a2}	175 to 350	260 to 525	v
First anode voltage	v_{a1}	1000	1500	V
Shield voltage for optimum raster sha		1000*	1500*	V
Beam blanking voltage for cut-off	v_{g2}	935†	1400†	V
Control grid voltage for cut-off	v_{g1}	-35 to -70	-50 to -100	v
x deflection coefficient	$D_{\mathbf{X}}$	21.6 to 26.4	32.4 to 39.6	V/cm
y deflection coefficient	$D_{\mathbf{y}}$	8.3 to 10.2	12.4 to 15.3	V/cm
Minimum screen area		7 x 5	7 x 5	cm^2
Line width at 10 µA beam current Shrinking raster measurement a Shrinking raster measurement a		0.27 0.42	0.20 0.33	mm
Grid drive for 10 μ A beam current (a		25	25	mm V
and and and part bound out tolle (a	FF-0467			•

^{*} The required voltage will not differ from the quoted value by more than ± 50V

 $[\]dagger$ The beam is is unblanked when $\text{V}_{g2}=\text{V}_{a1}.$ This grid 2 electrode should not be used as a brilliance control.

RASTER DISTORTION AND ALIGNMENT

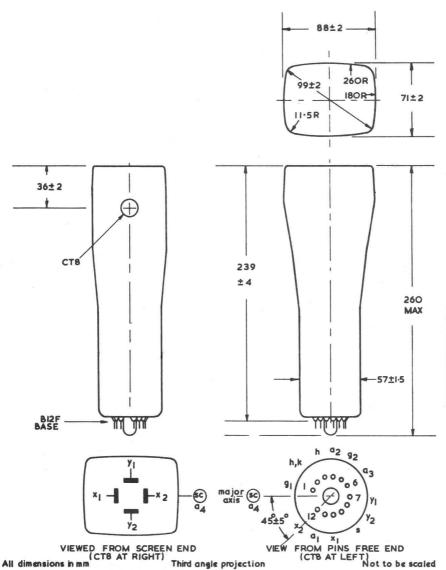
The following applies for the typical operation conditions.

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

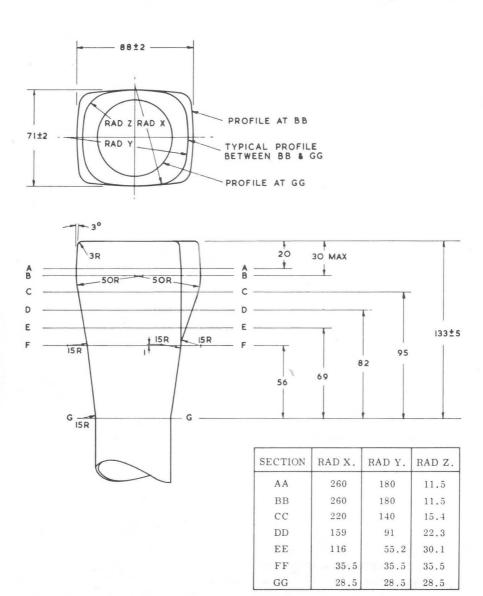
The edges of a test raster will fall between two concentric rectangles 7cm x 5cm and 6.86cm x 4.88cm. Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield, and should not be less than 50 mm from the face or extend more than 105 mm from the face. The ampere turns required will be equal to $16\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV), with provision for reversing the current if necessary.

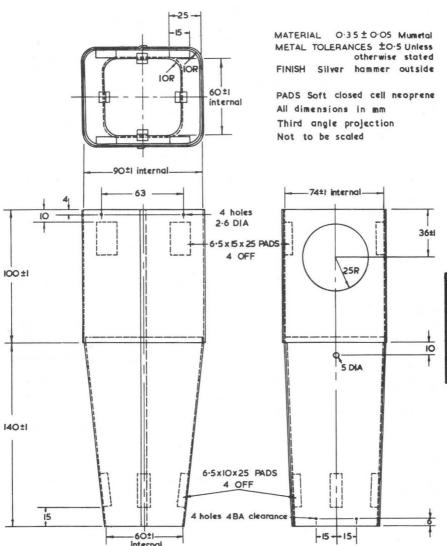
The deflection coefficient (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the deflection coefficient over 10% deflection.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING


Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 570g


MOUNTING POSITION unrestricted.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited

Issue 2, Page E1

CILLOSCOPE

Not to be scaled

MANDREL FOR TWIST COIL TW33

MANDREL

All dimensions in mm

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS7 for D10-240..

WINDING

900 turns of 0.10 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

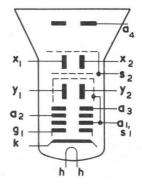
Resistance approx. 420 Ω . Twist coefficient approximately 5.6 mA/degree measured on typical D10-240.. with $V_{a4}=3$ kV and $V_{a1}=1.5$ kV.

FITTING

The completed twist coil should be pushed hard onto the tube with the lead-out wires in the middle of the short side of the tube on the same side as the cavity cap and sealed to the tube with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 3.


SCILLOSCOPE

PRELIMINARY DATA

GENERAL

This 6.8cm x 5.6cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and high brightness without additional electrode control voltages. The tube is designed for transistor deflection medium to high bandwidth applications.

Heater voltage	v_h	6.3	v
Heater current	$\mathbf{I_h}$	0.12	A

ABSOLUTE RATINGS		Max.	Min.	
Fourth anode voltage	v_{a4}	10	4.0	kV
Third anode voltage	v_{a3}	2.25	0.8	kV
Second anode voltage	v_{a2}	1.0	-	kV
First anode voltage	v_{a1}	2.2	0.75	kV
Negative control grid voltage	-v _{gl}	200	1.0	v
Peak x plate to third anode voltage	v _x -a3(pk)	500	-	v
Peak y plate to third anode voltage	^v y-a3(pk)	500	-	v
x plate to third anode resistance	R _{x-a3}	100	-	$k\Omega$
y plate to third anode resistance	Ry-a3	100	-	$k\Omega$
Control grid to cathode resistance	Rg1-k	1.5	-	$M\Omega$
Second anode current	I _{a2}	10	-	μ A
P.D.A. ratio (Va4/Va3)		7;1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D10-293GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 1.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	cg1-all	10	pF
Heater and cathode to all	ch, k-all	4.5	pF
x ₁ plate to x ₂ plate	c _{x1-x2}	1.0	pF
y1 plate to y ₂ plate	c _{y1-y2}	1.5	pF
x ₁ plate to all, less x ₂ plate	cx1-all, less x2	8.0	pF
x2 plate to all, less x1 plate	c _{x2-all, less x1}	8.0	pF
y ₁ plate to all, less y ₂ plate	^c y1-all, less y2	5.0	pF
y2 plate to all, less y1 plate	cy2-all, less y1	5.0	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	c _{x1} , x2-y1, y2	0.8	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-xl, x2, y1, y2	0.6	pF
TYPICAL OPERATION - Voltages wi	th respect to cathode		
Fourth anode voltage	v_{a4}	6.0	kV
Mean deflector plate potential		1000	v
Third anode voltage for optimum astigmatism correction	v_{a3}	970 to 1030	v
Second anode voltage for optimum focus	v_{a2}	180 to 340	v
First anode and y shield voltage	V _{a1+s1}	1000	V
Shield 2 voltage for optimum raster shape	V _{s2}	900 to 1050	v
Control grid voltage for cut-off	v_{g1}	-26 to -52	v
x deflection coefficient	D_X	10.5 to 12.8	V/cm
y deflection coefficient	D_y	3.8 to 4.8	V/cm
Line width at $10\mu A$ beam current			
Shrinking raster measurement at cer Microscope measurement at centre Microscope measurement at edge	ntre	0.32 0.55 0.8	mm mm mm
Grid Drive to $10\mu A$ beam current (approximately 10 pc.)	ox.)	17	v

OSCILLOSCOPE TUBES

RASTER DISTORTION AND ALIGNMENT

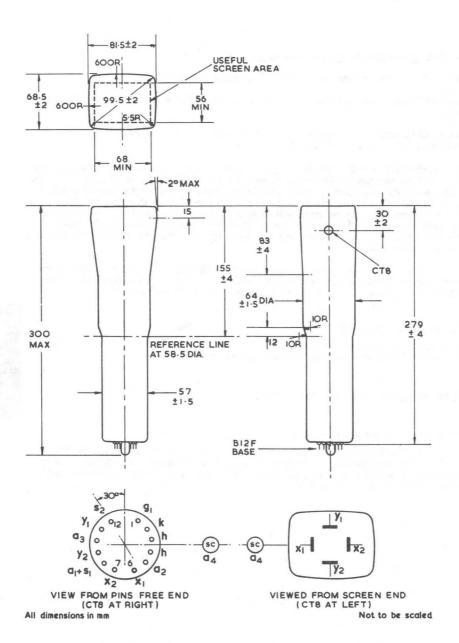
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

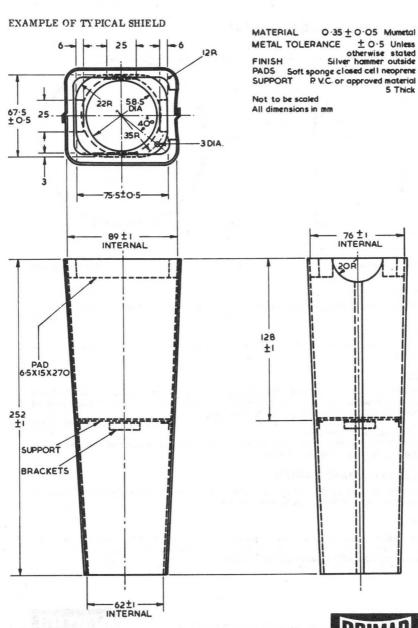
Raster distortion: The edges of a test raster will fall between two concentric rectangles $6.8~\rm cm \times 5.6~\rm cm$ and $6.55~\rm cm \times 5.4~\rm cm$.

Rectangularity of x and y axes is $90^{\circ}\pm1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 80mm from the face and should not extend more than 130 mm from the face. The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 25% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

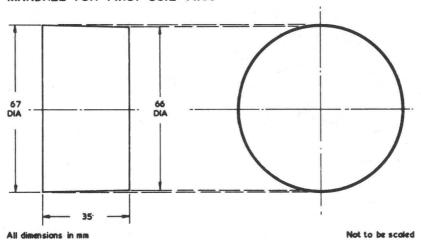

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) - 700 g.

MOUNTING Position unrestricted

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.



Page 4, Issue 1.

Thorn Radio Valves and Tubes Limited Page E1, Issue 1.

MANDREL FOR TWIST COIL TW56

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS 83 for D10-293...

WINDING

900 turns of 0.125 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coll and each edge of the mandrel.

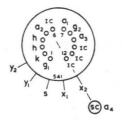
Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance 260 Ω ± 10 %. Twist coefficient approximately 8 mA/degree measured on typical D10-293.. with V_{a4} = 6 kV and V_{a1} = 1.0 kV.

FITTING


The completed twist coil should be pushed hard onto the tube with the lead-out wires in the middle of the short side of the tube on the same side as the cavity cap and sealed to the tube with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 1.

Maintenance Type

Base B12F, Cap CT8

D13-33GH

GENERAL

This 5 in. diagonal rectangular tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid. The standard phosphor is GH, but phosphor types GL, GM and BE are also available.

Heater Voltage	Vh	6.3	V
Heater Current	l _b	0.3	A

ABSOLUTE RATINGS

		Max	Min	
Fourth Anode Voltage	Va4	7.0	2.5	kV
Third Anode Voltage	V _{a3}	1.75	0.6	kV
Second Anode Voltage	Va2	1.0	0	kV n
First Anode Voltage	Vat	1.75	0-6	kV
Negative Control Grid Voltage	-V _{g1}	200	1.0	٧
Beam Blanking Voltage	V ₂₂	2.0	0.5	k٧
Peak x-plate to Third Anode Voltage	V _{x-a} 3(pk)	500		٧
Peak y-plate to Third Anode Voltage	Vy-a3(pk)	500	-	٧
Peak Heater to Cathode Voltage	Vh-k(pk)	250		٧
x-plate to Third Anode Resistance	R _{x-a3}	5.0	-	MΩ
y-plate to Third Anode Resistance	R _{y-a3}	100	-	kΩ
Control Grid to Cathode Resistance	Rg1-k	1.5	-	MΩ
Second Anode Current	122	10		μA
P.D.A. Ratio (V _{a4} /V _{a3})		4:1		
Helix Resistance		_	50	MΩ

All voltages referred to cathode unless otherwise stated.

INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-all	8-0	ρF
Cathode to all	Ck-all	3.5	pF
x ₁ plate to x ₂ plate	C _{x1-x2}	1.2	pF
y ₁ plate to y ₂ plate	Cy1-y2	4.5	pF
x ₁ plate to all less x ₂ plate	Cx1-all, less x2	3.5	pF
x ₂ plate to all less x ₁ plate	C×2-all, less ×1	3.5	pF
y ₁ plate to all less y ₂ plate	Cy1-all, less y2	5∙0	pF
y ₂ plate to all less y ₁ plate	Cy2-all, less y1	5-0	pF
Grid 1 and Cathode to x1, x2, y1 and y2 plates	Cg1, k-x1, x2, y1, y2	0.2	pF

Thorn Radio Valves and Tubes Limited Issue 3, Page 1

OSCILLOSCOPE TUBES

TYPICAL OPERATION—Voltages with respect to cathode.

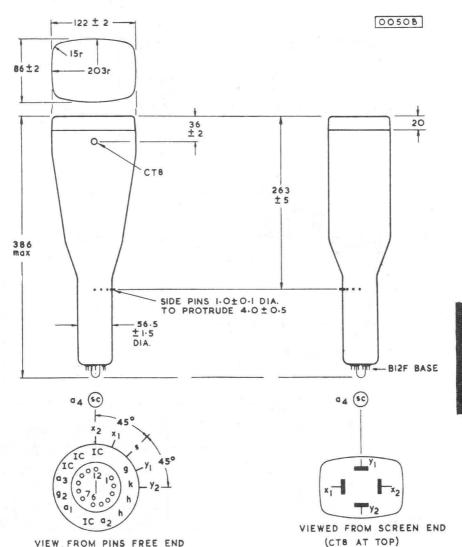
Fourth Anode Voltage	V_{a4}	3.0	4.0	6.0	kV
Mean Deflector Plate Potential		750	1000	1500	V
Third Anode Voltage for astigmatism correction	V _{a3}	750*	1000*	1500*	٧
Second Anode Voltage for focus	V_{a2}	50 to 200	75 to 275	100 to 400	V
First Anode Voltage	V_{a1}	750	1000	1500	V
Interplate shield voltage for optimum raster shape	٧s	750*	1000*	1500*	٧
Beam Blanking Voltage for cut-off	V_{g2}	700+	930+	1400†	V
Control Grid Voltage for cut-off	V_{g1}	-30 to -50	-40 to -70	-60 to -105	V
x-plate sensitivity	Sx	6·15 to 7·85	8·2 to 10·5	12·3 to 15·75	V/cm
y-plate sensitivity	Sy	7·8 to 10·1	10·5 to 13·5	15.75 to 20.3	V/cm
Minimum screen area (x × y)		10 × 6	10 × 6	10 × 6	cm ²
Line Width at centret		0.5	0.45	0.4	mm
Line Width at edge‡		0.9	0.8	0.8	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50 V.

Raster Distortion and Alignment

The total scanned area is 10 cm \times 6 cm measured from the centre of the tube face. Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm \times 6 cm and 9.8 cm \times 5.8 cm. Rectangularity of x and y axes is 90° \pm 1°.

The horizontal trace will be parallel with the axes of the rectangular face-plate to within $\pm 5^\circ$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 175 mm from the face. 34 ampere turns will suffice, with provision for reversing the current if necessary.


Magnetic Shielding

Adequate magnetic shielding is required. In addition, due attention should be paid to the position of the tube relative to transformers and chokes.

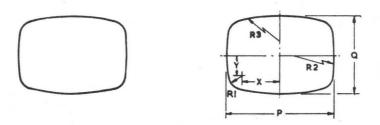
Approximate Net Tube Weight—0.9 kg (1 lb 15 oz)

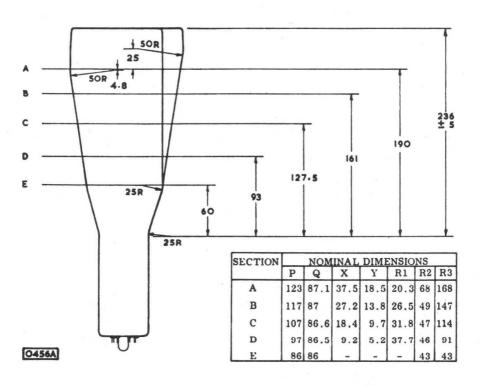
 $[\]dagger$ The beam is unblanked when $V_{g2}-V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

[‡] At 5.0 µA beam current.

Tolerance on all side pin positions $\pm 5^\circ$

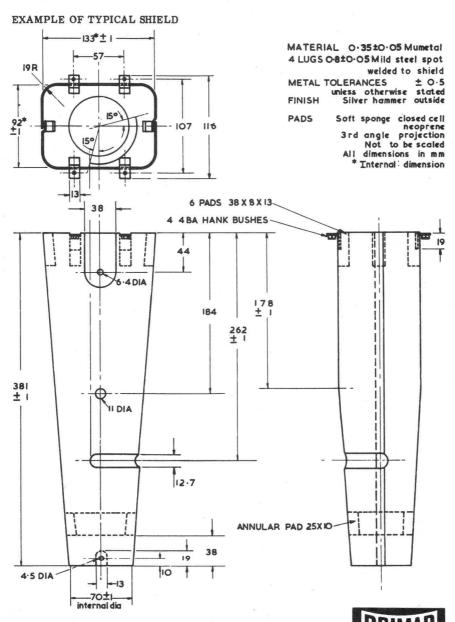
All dimensions in mm. Third angle projection. Not to be scaled.


Mounting Position—Unrestricted


It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

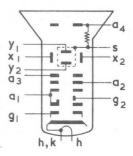
Issue 3, Page 3

D13-33GH


Oscilloscope Tube

All dimensions in mm.

Not to be scaled.



Thorn Radio Valves and Tubes Limited
Page E1 Issue 2

GENERAL

This 5 inch diagonal rectangular tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater Voltage	v_h	6.3	V
Heater Current	$I_{\mathbf{h}}$	0.3	A

ABSOLUTE RATINGS		Max	Mín	
Fourth anode voltage	v_{a4}	7.0	2.5	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative control grid voltage	-Vg1	200	1.0	\mathbf{v}
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	vx-a3(pk)	500	-	V
Peak y plate to third anode voltage	vy-a3(pk)	500	-	V
x plate to third anode resistance	R_{x-a3}	5.0	-	$\mathbf{M}\Omega$
y plate to third anode resistance	Ry-a3	100	-	$k\Omega$
Control grid to cathode resistance	Rg1-k	1.5	-	$\mathbf{M}\Omega$
Second anode current	I _{a2}	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		4:1		
Helix resistance			50	$\mathbf{M}\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-47GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES	5				
Grid to all	cg1-all			10	pF
Grid 2 to all	cg2-all			10	pF
Heater and cathode to all	ch, k-all			4.0	pF
x ₁ plate to x ₂ plate	c _{x1-x2}			2.1	pF
y1 plate to y2 plate	c _{y1-y2}			1.6	pF
x ₁ plate to all, less x ₂ plate	cx1-all, l	ess x2		7.0	pF
x2 plate to all, less x1 plate	cx2-all, l	ess x1		6.7	pF
y1 plate to all, less y2 plate	cy1-all, l			5.0	pF
y2 plate to all, less y1 plate	cy2-all, l	ess y1		5.0	pF
x1, x2 plates to y1, y2 plates	c _{x1,x2-y}	1,y2		0.8	pF
Grid 1 to x1, x2, y1, y2 plates	cg1-x1,x	2, y1, y2		1.3	pF
Grid 1 to Grid 2	c_{g1-g2}			0.6	pF
TYPICAL OPERATION - voltages w	ith respect	to cathode.			
Fourth anode voltage	v_{a4}	3.0	4.0	6.0	kV
Mean deflector plate potential		750	1000	1500	\mathbf{v}
Third anode voltage for optimum astigmatism correction	v_{a3}	750*	1000*	1500*	v
Second anode voltage for optimum focus	s V _{a2}	125 to 300	175 to 400	260 to 600	v
First anode voltage	v_{a1}	750	1000	1500	v
Shield voltage for optimum raster shape	e V _s	750*	1000*	1500*	V
Beam blanking voltage for cut-off	v_{g2}	700†	935†	1400†	v
Control grid voltage for cut-off	v_{g1}	-25 to -50	-35 to -65	-50 to -95	v
x deflection coefficient	$D_{\mathbf{x}}$	10.5 to 13.2	14.5 to 17.5	21 to 26.2 V	/cm
y deflection coefficient	$D_{\mathbf{y}}$	5.0 to 6.2	6.7 to 8.3	10 to 12.5 V	/cm
Minimum screen area		10 x 6	10 x 6	10 x 6	cm^2
Line width at centre at 5 μ A		0.5	0.45	0.4	mm
Line width at edge beam current		0.9	0.8	0.8	mm

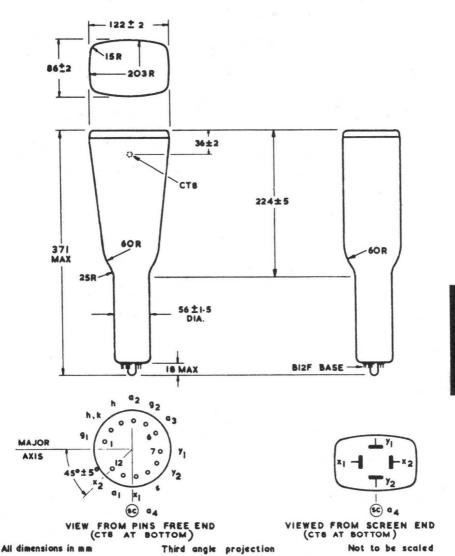
^{*} The required voltage will not differ from the quoted value by more than ± 50V.

 $[\]ensuremath{^{\uparrow}}$ The beam is unblanked when V_{g2} = V_{a1} . This grid 2 electrode should not be used as a brilliance control.

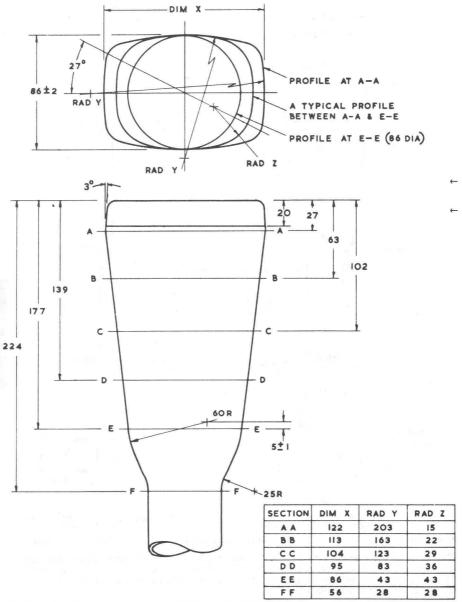
RASTER DISTORTION AND ALIGNMENT

The total screen area is $10~\rm cm~x~6~cm$ measured about a point $\pm~3~\rm mm$ from the centre of the tube face. The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face. The edges of a test raster will fall between two concentric rectangles $10~\rm cm~x~6~cm$ and $9.8~\rm cm~x~5.85~cm$.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 175 mm from the face. 24 ampere turns will suffice, with provision for reversing the current if necessary.

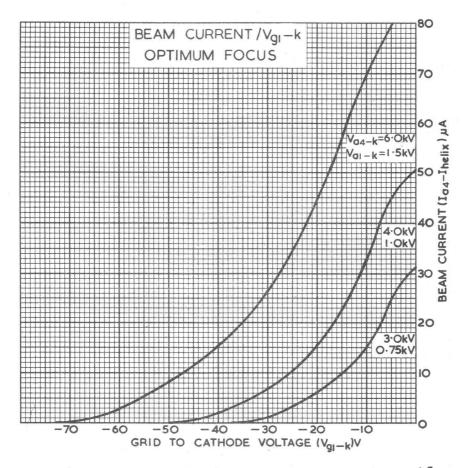

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V when the tube is operated at 4 kV.

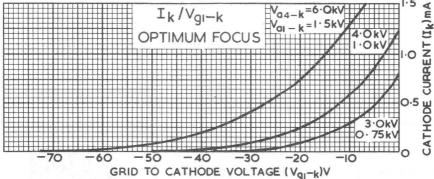
MAGNETIC SHIELDING


Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT(approximate) - 960 g

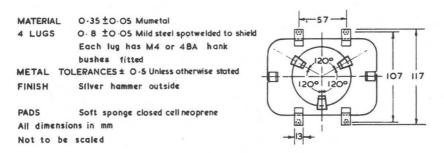
MOUNTING POSITION unrestricted.

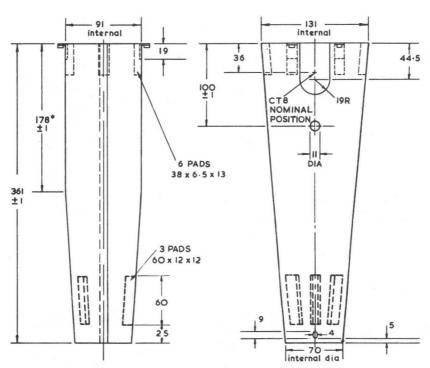

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.



All dimensions in mm Issue 3, Page 5

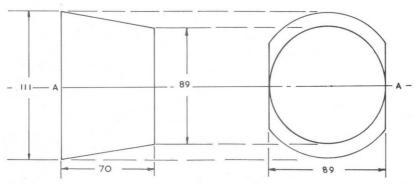
Third angle projection


Not to be scaled



Page C1, Issue 2.

Magnetic Shield MS23



^{*} Dimensions at this length are 92 outside x 102 outside with approx. 30R.

Thorn Radio Valves and Tubes Limited Page E1, Issue 4.

MANDREL FOR TWIST COIL TW 30

All dimensions in mm

Not to be scaled

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS23 for D13-47..

WINDING

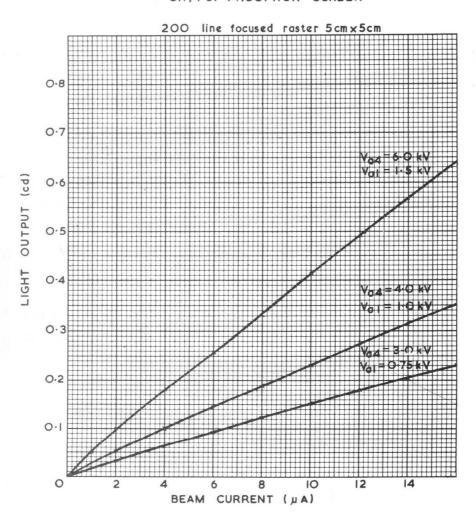
1150 turns of 0.16 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at position A.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

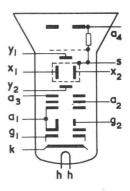
Resistance approx. 300 \, \Omega. Twist coil coefficient approx. 4.5 mA/degree measured on a typical D13-47.. with $V_{a1} = 1.5 \text{kV}$ $V_{a4-k} = 6 \text{kV}$.


FITTING

The completed twist coil should be pushed hard onto the tube with the lead out wires coming out through the appropriate hole in the shield and secured in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

TYPICAL LIGHT OUTPUT GH/P31 PHOSPHOR SCREEN



OSCILLOSCOPE Tubes

GENERAL

This is a short, rectangular, aluminised, all electrostatic tube providing a 10 cm x 6 cm display. High brightness and deflection sensitivity are achieved with a mesh p.d.a. system without additional electrode control voltages. The tube is designed for transistor deflection high bandwidth applications and incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3	V
Heater current	Ih	0.3	.A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	15.5	5.0	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative control grid voltage	$-v_{g1}$	200	1.0	v
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak heater to cathode voltage	vh-k(pk)	250	-	v
Peak x-plate to third anode voltage	vx-a3(pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
x-plate to third anode resistance	R _{x-a3}	5.0	-	$\mathbf{M}\Omega$
y-plate to third anode resistance	Ry-a3	100	-	$k\Omega$
Control grid to cathode resistance	Rg1-k	1.5	-	$\mathbf{M}\Omega$
Second anode current	I _{a2}	10	-	$\mu \mathbf{A}$
P.D.A. ratio (Va4/Va3)		11:1	5:1	
Helix resistance		-	100	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-51GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 4.

INTER-ELECTRODE CAPACITANCES					
Grid 1 to all	cg1-all			9.5	pF
Grid 2 to all	cg2-all			8.9	pF
Heater and cathode to all	ch, k-all			4.0	pF
x ₁ plate to x ₂ plate	c _{x1-x2}			1.8	pF
y1 plate to y2 plate	c _{y1-y2}			1.7	pF
x ₁ plate to all, less x ₂ plate	cx1-all,	less x2		4.1	pF
x_2 plate to all, less x_1 plate	cx2-all,	less x1		4.1	pF
y ₁ plate to all, less y ₂ plate	cy1-all,	less y2		2.8	pF
y ₂ plate to all, less y ₁ plate	cy2-all,	less y1		2.8	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	cx1,x2.	- y1, y2		0.5	pF
Grid 1 to grid 2	cg1-g2			0.6	pF
Grid 1 to x ₁ , x ₂ , y ₁ , y ₂ plates	c _{g1-x1} ,	x2, y1, y2		0.012	pF
TYPICAL OPERATION - Voltages with	respect t	to cathode			
Fourth anode voltage	v_{a4}	7.5	10	15	kV
Mean deflector plate potential		750	1000	1500	v
Third anode voltage for optimum astigmatism correction	v_{a3}	750*	1000*	1500*	v
Second anode voltage for optimum focus	v_{a2}	20 to 130	30 to 150	45 to 230	v
First anode voltage	v _{a1}	750	1000	1500	v
Shield voltage for optimum raster shape		750*	1000*	1500*	
Beam blanking voltage for cut-off	v_{g2}	710 to 790†	955 to 1045†	1435 to 1565†	v
Control grid voltage for cut-off	v_{g1}	-37 to -68	-50 to -90	-75 to -135	v
x deflection coefficient	$D_{\mathbf{X}}$	8.2 to 11.3	11 to 15	16.5 to 22.5	V/cm
y deflection coefficient	$\mathtt{D}_{\mathbf{y}}$	3.4 to 4.5	4.5 to 6.0	6.8 to 9.0	V/cm
Minimum useful screen area		10 x 6	10 x 6	10 x 6	cm^2
Line width at centre at 5	5μΑ	0.65	0.6	0.55	mm
Line width at edge bea	ım	1.1	1.05	1.0	mm
Line width at centre measured by shrinking raster	rent	0.40	0.34	0.30	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50V. \pm The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

SCILLOSCOPE THRES

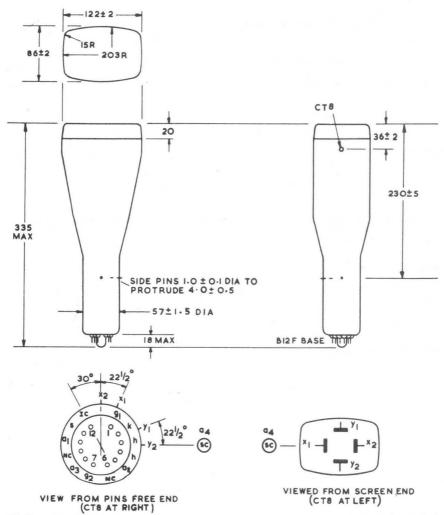
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $10~\text{cm} \times 6~\text{cm}$ and $9.80~\text{cm} \times 5.85~\text{cm}$.

Rectangularity of x and y axes is $90^{\circ}\pm1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm5^{\circ}$. A twist coil will be required to effect accurate alignment. This should,be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 150 mm from the face . 45 ampere turns for 10 kV operation or 54 ampere turns for 15 kV operation will suffice, with provision for reversing the current if necessary. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.

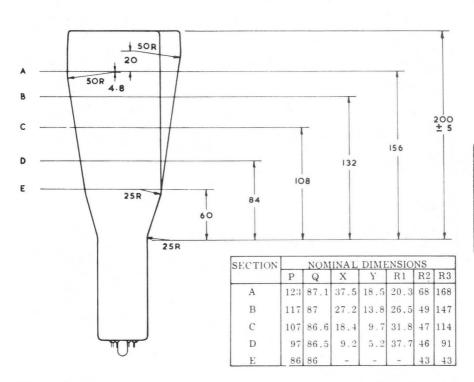

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

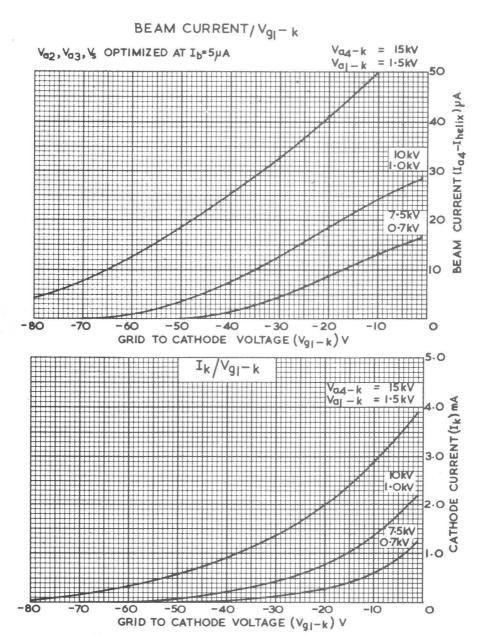
TUBE WEIGHT (approximate) - 880 g

MOUNTING POSITION - unrestricted

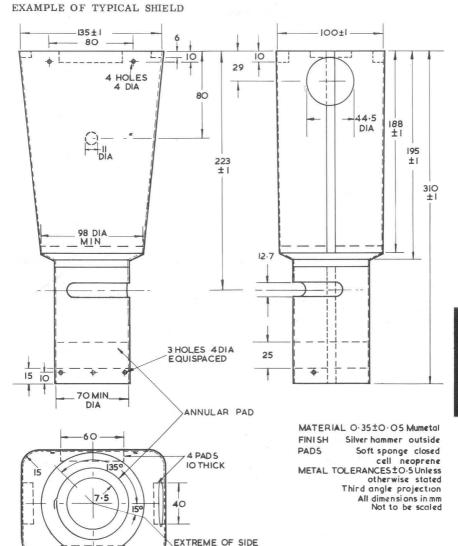

All dimensions in mm

Not to be scaled

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.


Tolerance on all side pin positions ± 5°.

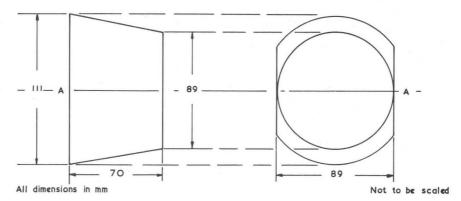
D13-51..



All dimensions in mm

Not to be scaled

Issue 3, Page C1



PINS SLOT

Thorn Radio Valves and Tubes Limited Page E1, Issue 3.

MANDREL FOR TWIST COIL TW21

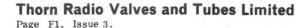
SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS36 for D13-51...

WINDING

1150 turns of 0.2 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on $450~\mathrm{mm}$ long thin flexible lead wires at position A.


Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

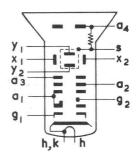
Resistance approx. 215 Ω. Twist coil coefficient approx. 7.0 mA/degree.

FITTING

The completed twist coil should be pushed hard onto the tube with the lead out wires coming out through the appropriate hole in the shield and secured in two places with suitable adhesive tape.

The D13-471.. oscilloscope tube has a 6.3 V $0.12\,\mathrm{A}$ heater otherwise it is identical to the D13-47..

PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (D13-471GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

GENERAL

This short 5 inch diameter flat-faced tube with electrostatic focusing and deflection is designed for general purpose applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3	V
Heater current	$I_{\mathbf{h}}$	0.3	Α

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	4.0	1.5	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	y_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative grid voltage	$-v_{g1}$	200	1.0	v
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x-plate to third anode voltage	vx-a3(pk)	500	-	V
Peak y-plate to third anode voltage	^v y-a3 (pk)	500	-	V
x-plate to third anode resistance	R_{x-a3}	5.0	-	$\mathbf{M}\Omega$
y-plate to third anode resistance	Ry-a3	100	-	kΩ
Control grid to cathode resistance	R_{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	I_{a2}	10	_	μA
P.D.A. ratio (Va4/Va3)		2.2:1		

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

Helix resistance

This type is usually supplied with GH phosphor (D13-600GH) giving agreen trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

15

 $M\Omega$

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES				
Grid 1 to all	cg1-all		9.5	рF
Grid 2 to all	cg2-all		10	pF
Heater and cathode to all	ch, k-all		3.5	pF
x ₁ plate to x ₂ plate	c_{x1-x2}		2.2	pF
y ₁ plate to y ₂ plate	cy1-y2		1.6	рF
x_1 plate to all, less x_2 plate	c _{x1-all, less x2}		6.3	pF
x_2 plate to all, less x_1 plate	cx2-all, less x1		6.3	pF
y ₁ plate to all, less y ₂ plate	cy1-all, less y2		5.2	pF
y ₂ plate to all, less y ₁ plate	cy2-all, less y1		5.0	pF
\mathbf{x}_1 , \mathbf{x}_2 plate to \mathbf{y}_1 , \mathbf{y}_2 plates	c _{x1,x2-y1,y2}		0.8	pF
Grid 1 to grid 2	^c g1-g2		0.6	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	^c g1-x1, x2, y1, y2		1.4	pF
TYPICAL OPERATION - voltages win	th respect to catho	ode.		
Fourth anode voltage	v_{a4}	2.0	3.0	kV
Mean deflector plate potential		1000	1500	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1000*	1500*	v
Second anode voltage for optimum focus	V_{a2}	200 to 340	300 to 500	V
First anode voltage	v_{a1}	1000	1500	V
Shield voltage for optimum raster shape	V _s	1000*	1500*	V
Beam blanking voltage for cut-off	V_{g2}	935†	1405†	V
Control grid voltage for cut-off	v_{g1}	-35 to -65	-50 to -95	v
x-deflection coefficient	$\mathtt{D}_{\mathbf{X}}$	14 to 18	21 to 27	V/cm
y-deflection coefficient	$D_{\mathbf{y}}$	6.6 to 8.5	10 to 12.7	V/cm
Minimum screen area (corners cut-off)		10 x 8	10 x 8	cm^2
Line width at centre-using microscope	at 10µA	0.55	0.5	mm
Line width at edge-using microscope	beam	0.85	0.82	mm
Line width at centre	current			
measured by shrinking raster		0.28	0.25	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 75V.

 $[\]dagger$ The beam is unblanked when v_{g2} = v_{a1} . This grid 2 electrode should not be used as a brilliance control.

Oscilloscope Tube

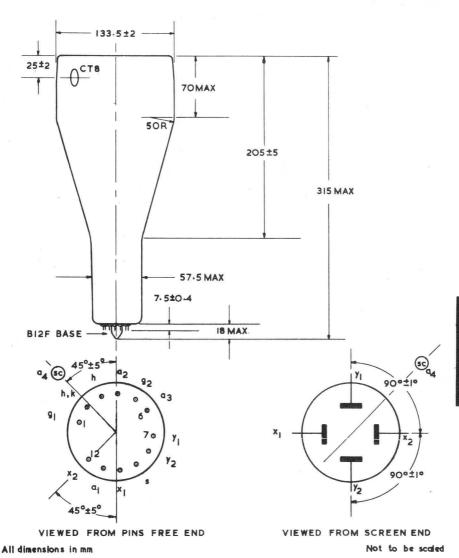
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.75 cm x 7.8 cm.

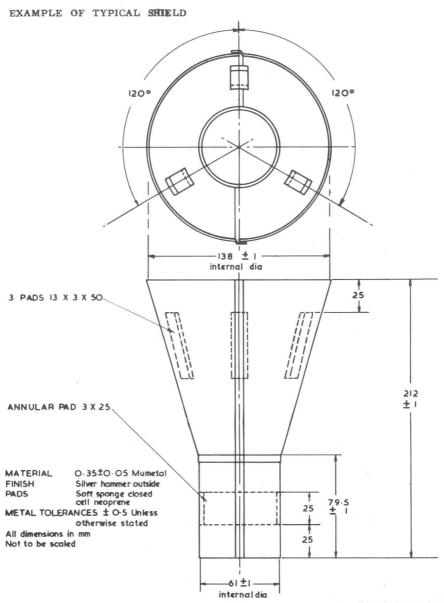
Rectangularity of x and y axes is 90° ± 1°.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 950g


MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Connecting leads should not be soldered directly to the tube pins.

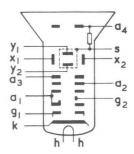
Magnetic Shield MS47

Thorn Radio Valves and Tubes Limited

Issue 2, Page E1

The D13-601.. oscilloscope tube has a 6.3 V 0.12 A heater otherwise it is identical to the D13-600..

PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (D13-601GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

GENERAL

This 13 cm diameter round tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater Voltage	$v_{\mathbf{h}}$	6.3	V
Heater Current	Ih	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	7.0	2.5	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative control grid voltage	-V _{g1}	200	1.0	V
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	v _{x-a3(pk)}	500	-	V
Peak y plate to third anode voltage	vy-a3 (pk)	500	-	V
x plate to third anode resistance	R_{x-a3}	5.0	-	$\mathbf{M}\Omega$
y plate to third anode resistance	Ry-a3	100	-	$\mathbf{k}\Omega$
Control grid to cathode resistance	Rg1-k	1.5	-	$\mathbf{M}\Omega$
Second anode current	I_{a2}	10	-	μ A
P.D.A. ratio (Va4/Va3 nom.)		4:1		
Helix resistance		-	50	$\mathbf{M}\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-610GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

INTER-ELECTRODE CAPACITANCES					
Grid to all	cg1-all			10	pF
Grid 2 to all	cg2-all			9.0	pF
Cathode to all	ck-all			3.5	pF
x ₁ plate to x ₂ plate	c_{x1-x2}			2.8	pF
y ₁ plate to y ₂ plate	c _{y1-y2}			2.0	pF
x ₁ plate to all, less x ₂ plate	c _{x1-all, l}	ess x2		5.7	pF
x2 plate to all, less x1 plate	c _{x2-all, l}	ess x1		5.6	pF
y ₁ plate to all, less y ₂ plate	cy1-all, l	ess y2		4.7	pF
y ₂ plate to all, less y ₁ plate	cy2-all, l	ess y1		4.5	pF
x_1 , x_2 plates to y_1 , y_2 plates	c _{x1} , x2-y1	, y2		0.7	pF
Grid 1 to x ₁ , x ₂ plates	cg1-x1, x2	2		0.5	pF
Grid 1 to y ₁ , y ₂ plates	cg1-y1, y2	2		0.5	pF
Grid 1 to Grid 2	cg1-g2			0.6	pF
TYPICAL OPERATION - voltages	with respe	et to cathode	е.		
Fourth anode voltage	v_{a4}	3.0	4.0	4.5	kV
Mean deflector plate potential		1.0	1.0	1.5	kV
Third anode voltage for optimum astigmatism correction	v_{a3}	1.0*	1.0*	1.5*	v
Second anode voltage for optimum focus	v_{a2}	170 to 380	175 to 400	255 to 570	v
First anode voltage	v_{a1}	1.0	1.0	1.5	kV
Shield voltage for optimum raster shape	V _S	1.0*	1.0*	1.5*	kV
Beam blanking voltage for cut-off	v_{g2}	935†	935†	1400†	V
Control grid voltage for cut-off	v_{g1}	-35 to -65	-35 to -65	-50 to -95	v
x deflection coefficient	D_X	12.5 to 15.8	14.5 to 17.5	18.8 to 23.7 V	/cm
y deflection coefficient	D_y	6.8 to 8.7	7.1 to 8.9	10.2 to 13.1 V	/cm
Minimum screen area (corners cut-off)		10 x 8	10 x 6	10 x 8	cm^2

.39

.48

.36

.50

.33

.44

mm

mm

Line width at 10µA beam current

Shrinking raster measurement at centre

Shrinking raster measurement at edge

^{*} The required voltage will not differ from the quoted value by more than $\pm\ 50\mbox{V}\,.$

 $[\]dagger$ The beam is unblanked when $v_{g2} = v_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Oscilloscope Tube

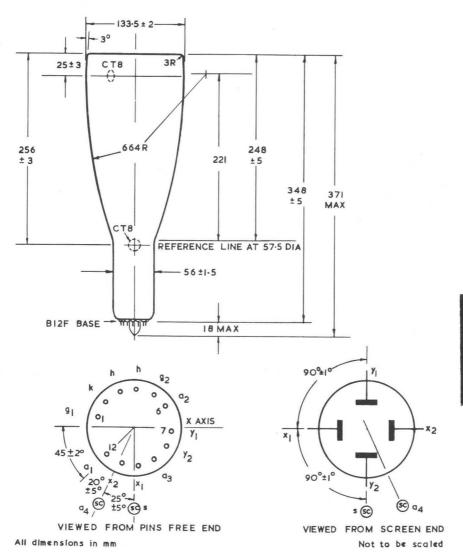
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.75 cm x 7.8 cm at a p.d.a. ratio of 3:1.

Rectangularity of x and y axes is 90° ± 1°.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

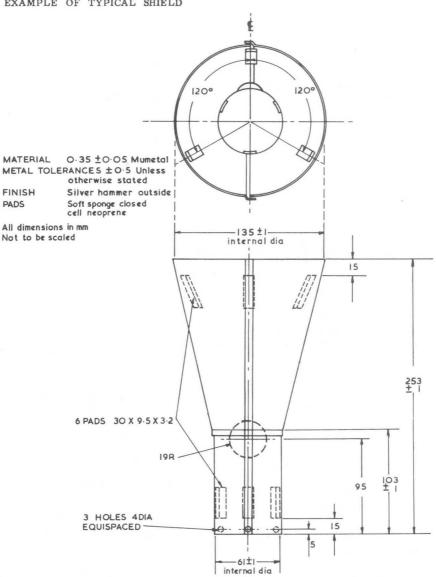
MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.


Connecting leads should not be soldered directly to the tube pins.

Issue 2, Page 4

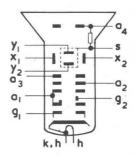
D13-610...

Magnetic Shield MS49

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited

Issue 2, Page E1



SCILLOSCOPE

GENERAL

This 13 cm diameter round tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater Voltage	v_h	6.3	V
Heater Current	Ih	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	7.0	2.5	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	V_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative control grid voltage	-Vg1	200	1.0	v
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	v _{x-a3 (pk)}	500	-	v
Peak y plate to third anode voltage	vy-a3 (pk)	500	-	v
x plate to third anode resistance	R_{x-a3}	100	-	$\mathbf{k}\Omega$
y plate to third anode resistance	Ry-a3	100	-	$\mathbf{k}\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	I_{a2}	10	-	μA
P.D.A. ratio (Va4/Va3 nom.)		4:1		
Helix resistance		-	50	$\mathbf{M}\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D13-611GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

INTER-ELECTRODE CAPACITANCES					
				10	pF
Grid 1 to all Grid 2 to all	cg1-all			9.0	pF
Heater and Cathode to all	0			4.0	pF
x1 plate to x2 plate	ch, k-all			2.0	pF
	c _{x1-x2}			1.4	
y ₁ plate to y ₂ plate	c _{y1-y2}			6.1	pF
x ₁ plate to all, less x ₂ plate	cx1-all, l				pF
x ₂ plate to all, less x ₁ plate	c _{x2} -all, l			5.8	pF
y ₁ plate to all, less y ₂ plate	cy1-all, l	-		4.6	pF
y ₂ plate to all, less y ₁ plate	cy2-all, l	ess y1		4.8	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	c _{x1,x2-y1}	, y2		0.6	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	cg1-x1, x2	2, y1, y2		1.0	pF
Grid 1 to Grid 2	c_{g1-g2}			0.5	pF
Anode 4 to coating M (approx.)	c _{a4-M}			300	pF
TVDICAL COST ATION					
TYPICAL OPERATION - voltages wit	h respect	to cathode.	•		
Fourth anode voltage	v_{a4}	3.5	4.0	4.5	kV
Mean deflector plate potential		1.0	1.0	1.5	kV
Third anode voltage for optimum astigmatism correction	v_{a3}	1.0*	1.0*	1.5*	v
Second anode voltage for optimum focus	V_{a2}	170 to 380	175 to 400	255 to 570	v
First anode voltage	v_{a1}	1.0	1.0	1.5	kV
Shield voltage for optimum raster shape	v_s	1.0*	1.0*	1.5*	kV
Beam blanking voltage for cut-off	V_{g2}	935†	935†	1400†	v
Control grid voltage for cut-off	v_{g1}	-35 to -70	-35 to -70	-50 to -105	v
x deflection coefficient	$D_{\mathbf{X}}$	14.1 to 16.9	14.5 to 17.5	18.8 to 23.7 V	/cm
y deflection coefficient	D_y	7.0-to 8.9	7.1 to 8.9	10.2 to 13.1 V	/cm
Minimum screen area (corners cut-off)		10 x 8	10 x 6	10 x 8	cm ²
Line width at 10μA beam current Shrinking raster measurement at cent	tre .	.37	.36	.33	mm
Shrinking raster measurement at edge	e	. 48	.50	.44	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50V.

 $[\]dagger$ The beam is unblanked when V_{g2} = V_{a1} . This grid 2 electrode should not be used as a brilliance control.

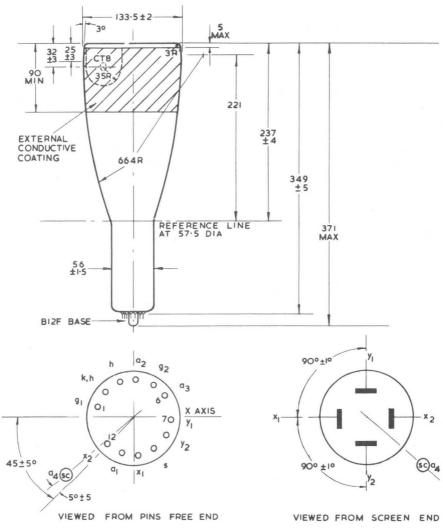
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 7 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $10 \text{ cm} \times 8 \text{ cm}$ and 9.75 cm and 7.8 cm at a p.d.a. ratio of 3.5:1.

Rectangularity of x and y axes is 90° ± 1 .

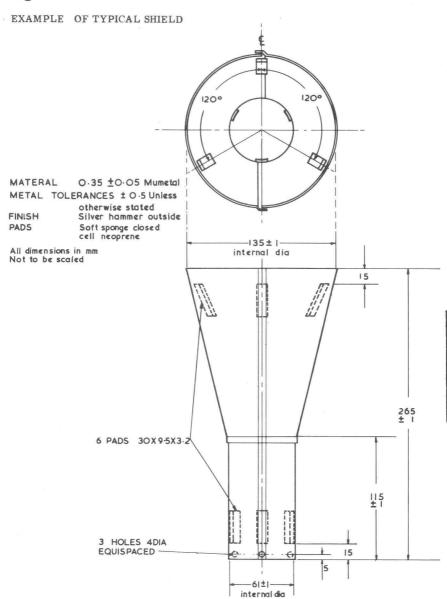

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

MOUNTING POSITION - unrestricted


All dimensions in mm

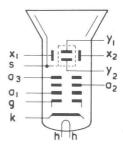
Not to be scaled

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Connecting leads should not be soldered directly to the tube pins.

Issue 1, Page 4

Thorn Radio Valves and Tubes Limited


Issue 2, Page E1

GENERAL

This 13 cm diameter oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	v_h	6.3	V
Heater current	I _h	0.3	A

ABSOLUTE RATINGS - voltages with re	espect to cathode	Max	Min	
First anode voltage	v_{a1}	2200	1250	V
Second anode voltage	v_{a2}	800	-	V
Third anode voltage	v_{a3}	2250	1200	V
Negative grid voltage	-Vg	200	1.0	V
Peak x-plate to third anode voltage	v _X -a3 (pk)	500	-	V
Peak y-plate to third anode voltage	vy-a3 (pk)	500	-	V
Heater to cathode voltage	v_{h-k}	\pm 125		V
x-plate to third anode resistance	R _{x-a3}	2.0	-	$\mathbf{M}\Omega$
y-plate to third anode resistance	Ry-a3	2.0	-	$\mathbf{M}\Omega$
Grid to cathode resistance	R_{g-k}	1.5	-	$\mathbf{M}\Omega$
Peak cathode current	ik(pk)	500	-	μ A

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D13-630GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

INTER - ELECTRODE CAPACITANCES					
Grid 1 to all	cg1-all		8.2	pF	
Heater and cathode to all	ch, k-all		2.3	pF	
x ₁ plate to x ₂ plate	c_{x1-x2}		1.7	pF	
y ₁ plate to y ₂ plate	c_{y1-y2}		1.3	pF	
\mathbf{x}_1 plate to all, less \mathbf{x}_2 plate	c _{x1-all,} les	s x2	5.0	pF	
x2 plate to all, less x1 plate	c _{x2} -all, les	s x1	4.8	pF	
y1 plate to all, less y2 plate	cy1-all, les	s y2	3.6	pF	
y2 plate to all, less y1 plate	cy2-all, les	s y1	.3.7	pF	
x_1 , x_2 plates to y_1 , y_2 plates	c _{x1,x2-y1,y}	2	0.7	pF	
TYPICAL OPERATION - voltages wit	h respect to c	cathode			
Mean deflector plate potential*		1500	2000	V	
Third anode voltage for optimum astigmatism correction	v_{a3}	1500†	2000†	v	
Second anode voltage for optimum focus	Va2	125 to 220	170 to 290	v	
First anode voltage	v_{a1}	1500	2000	V	
Shield voltage for optimum raster shape	V_S	1500 †	2000†	V	
Control grid voltage for cut-off	v_{g1}	-22 to -52	-30 to -70	v	
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	14.3 to 17.5	19 to 23	V/cm	
y deflection coefficient	Dy	9.0 to 11.3	12.0 to 15.0	V/cm	
Minimum useful screen area (Diagonal 1	1.4 cm)	10 x 8.0	10 x 8.	0 cm^2	
Grid drive to $10\mu\mathrm{A}$ beam current (approximately 10 mg/s)	ox)	10	11	V	
Line width at $10\mu\mathrm{A}$ beam current Shrinking raster measurement at cent	re	0.40	0.35	mm	

^{*} This tube is designed for symmetrical operation.

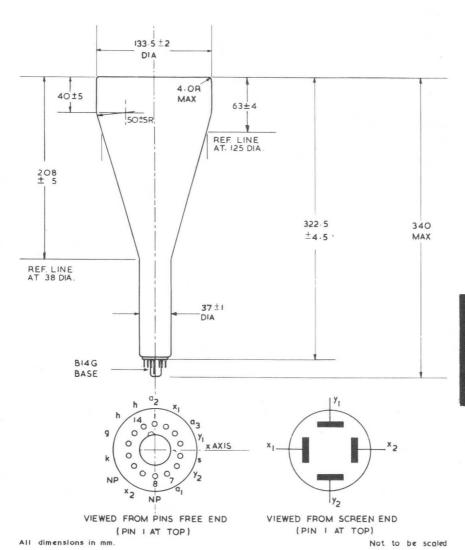
 $[\]dagger$ The required voltage will not differ from the quoted value by more than \pm 30V.

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 7 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $8.5~\text{cm} \times 7.0~\text{cm}$ and $8.3~\text{cm} \times 6.88~\text{cm}$.

Rectangularity of x and y axes is 90° ± 1°.

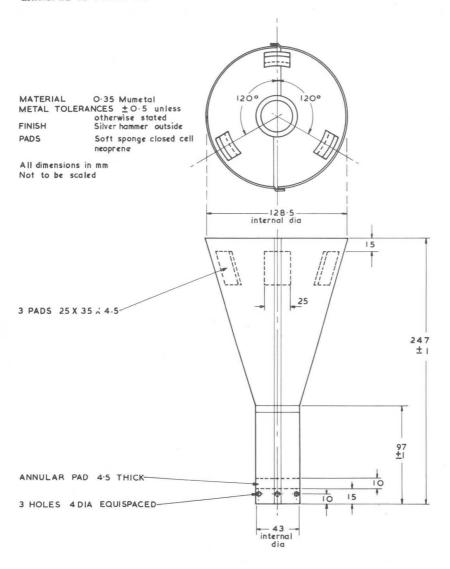

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 900 g

MOUNTING POSITION - unrestricted.



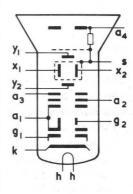
It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Tolerance on base pin 1 position with respect to tube y axis ± 5°

Magnetic Shield MS43

EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited $_{\mathrm{Page\ E1,\ Issue\ 2.}}$



SCILLOSCOPE TUBES

GENERAL

This 10 cm x 8 cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and very high brightness without additional electrode control voltages. The tube is designed for transistor scan high bandwidth applications, and incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3 V
Heater current	Ih	0.3 A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	16	5.0	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	V_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative control grid voltage	$-v_{g1}$	200	1.0	V
Beam blanking voltage	V_{g2}	2.0	0.5	kV
Peak x-plate to third anode voltage	v _x -a3(рк)	500	-	V
Peak y-plate to third anode voltage	vy-a3(pk)	500	-	v
x-plate to third anode resistance	R_{x-a3}	5.0	-	$M\Omega$
y-plate to third anode resistance	R_{y-a3}	1.00	-	$k\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$M\Omega$
Second anode current	I_{a2}	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		11:1		
Helix resistance		-	100	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-150GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 3.

Oscilloscope Tube

INTER-ELECTRODE CAPACITAN	CES					
Grid 1 to all		cg1-all			9.5	pF
Grid 2 to all		cg2-all			8.9	pF
Heater and cathode to all		ch, k-all			4.0	pF
x ₁ plate to x ₂ plate		c _{x1-x2}			1.9	pF
y1 plate to y2 plate		c _{v1-v2}			1.7	pF
x ₁ plate to all, less x ₂ plate			less x2		3.9	pF
x2 plate to all, less x1 plate		cx2-all,	less x1		3.9	pF
y1 plate to all, less y2 plate		cy1-all,			2.8	pF
y ₂ plate to all, less y ₁ plate		cy2-all,	less y1		2.8	pF
Grid 1 to grid 2		cg1-g2			0.7	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates x_1 , x_2 plates to y_1 , y_2 plates		cg1-x1, cx1, x2-	x2, y1, y2 y1, y2		0.012 0.5	pF pF
TYPICAL OPERATION - Voltages with respect to cathode						
Fourth anode voltage		v_{a4}	10	12	15	kV
Mean deflector plate potential			1000	1200	1500	V
Third anode voltage for optimum astigmatism correction		v_{a3}	1000*	1200*	1500*	v
Second anode voltage for optimum f	ocus	v_{a2}	25 to 180	30 to 200	40 to 250	v
First anode voltage		v_{a1}	1000	1200	1500	v
Shield voltage for optimum raster s	shape	v_s	970 to 1070	1170 to 1270	1470 to 1570	v
Beam blanking voltage for cut-off		v_{g2}	960 to 1040†	1150 to 1250†	1435 to 1565†	v
Control grid voltage for cut-off		v_{g1}	-40 to -75	-50 to -90	-60 to -115	v
x deflection coefficient		$\mathbf{D}_{\mathbf{X}}$	9.2 to 12.1	11 to 14.5	13.8 to	V/cm
y deflection coefficient		$\mathbf{D}_{\mathbf{y}}$	3.8 to 5.0	4.6 to 6.0	5.8 to 7.5	V/cm
Line width at centre	at 5μΑ		0.75	0.7	0.65	mm
Line width at edge	beam		1.1	1.0	0.9	$\mathbf{m}\mathbf{m}$
Line width at centre measured by shrinking raster	curre	nt	0.42	0.39	0.35	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50V.

 $^{^{\}dagger}$ The beam is unblanked when v_{g2} = v_{a1} . This grid 2 electrode should not be used as a brilliance control.

OSCILLOSCOPE Tubes

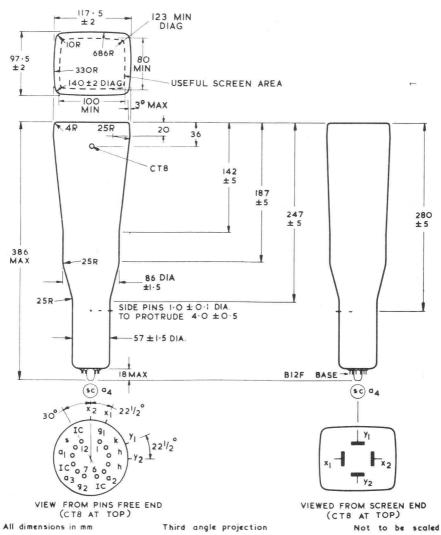
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

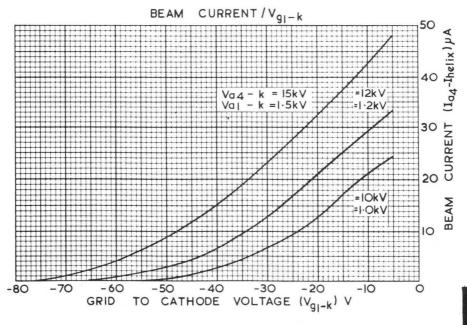
Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.80 cm x 7.84 cm.

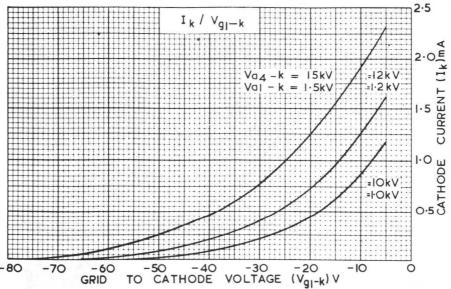
Rectangularity of x and y axes is $90^{\circ}\pm1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 70 mm from the face and should not extend more than 175 mm from the face. 45 ampere turns for 10 kV operation or 54 ampere turns for 15 kV operation will suffice, with provision for reversing the current if necessary. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

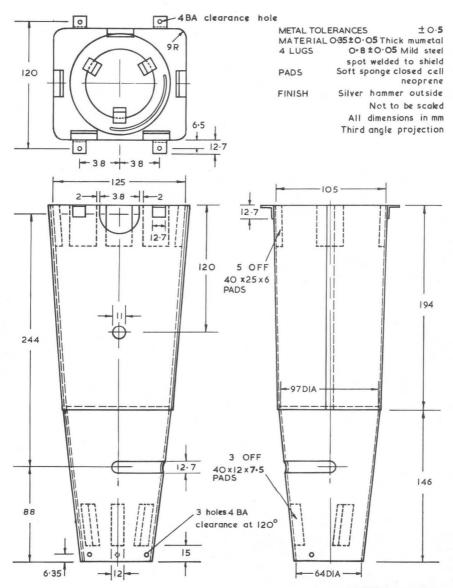
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) - 1.3 kg


MOUNTING POSITION- unrestricted

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions $\pm~5\,^{\circ}.$

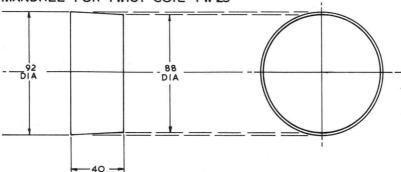


Issue 1, Page C1

D14-150...

EXAMPLE OF TYPICAL SHIELD

Magnetic Shield MS9



Thorn Radio Valves and Tubes Limited

Page E1. Issue 4.

MANDREL FOR TWIST COIL TW 25

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS9 for D14-150..

WINDING

1400 turns of 0.20 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel. Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from larger end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 230 Ω . Twist coefficient approximately 7 mA/degree measured on typical D14-150.. with V_{a4} = 15 kV and V_{a1} = 1.5 kV.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

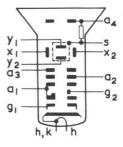
D14-170.. D14-171..

Oscilloscope Tube

OBSOLESCENT TYPES

The D14-170.. is replaced by the D14-172.. The D14-171.. is replaced by the D14-173..

The D14-172.. and the D14-173.. differ from the obsolescent tubes by having a 'squared-up' face-plate with a larger diagonal dimension.



ILLOSCOPE

GENERAL

This short 10 cm x 8 cm rectangular tube with electrostatic focusing and deflection is designed for general purpose applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3	\mathbf{v}
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	4.0	1.5	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	V_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative grid voltage	-V _{g1}	200	1.0	V
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	v _{x-a3(pk)}	500	-	V
Peak y plate to third anode voltage	vy-a3(pk)	500	-	V
x plate to third anode resistance	R_{x-a3}	5.0	-	$\mathbf{M}\boldsymbol{\Omega}$
y plate to third anode resistance	R_{y-a3}	100	-	$k\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	I_{a2}	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		2.2:1		
Helix resistance		-	15	$\mathbf{M}\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-172GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order,

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES					
Grid 1 to all	c _{g1-all}		10	pF	
Grid 2 to all	c _{g2-all}		10	pF	
Heater and cathode to all	ch, k-all		4.0	pF	
x ₁ plate to x ₂ plate	c _{x1-x2}		2.1	pF	
y ₁ plate to y ₂ plate	c_{y1-y2}		1.4	pF	
\mathbf{x}_1 plate to all, less \mathbf{x}_2 plate	c _{x1-all, less x2}		6.9	pF	
x2 plate to all, less x1 plate	c_{x2} -all, less x_1		6.6	pF	
y_1 plate to all, less y_2 plate	cy1-all, less y2		5.1	pF	
y ₂ plate to all, less y ₁ plate	cy2-all, less y1		5.1	pF	
x ₁ , x ₂ plates to y ₁ , y ₂ plates	c _{x1, x2-y1, y2}		0.8	pF	
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	cg1-x1,x2,y1,y2	2	1.4	pF	
Grid 1 to grid 2	c _{g1-g2}		0.7	pF	
TYPICAL OPERATION - voltages with	respect to cathod	e.			
Fourth anode voltage	V_{a4}	2.0	3.0	kV	
Mean deflector plate potential	aı	1000	1500	v	
Third anode voltage for optimum astigmatism correction	v_{a3}	1000*	1500*	v	
Second anode voltage for optimum focus	v_{a2}	180 to 380	270 to 570	V	
First anode voltage	v_{a1}	1000	1500	V	
Shield voltage for optimum raster shape	Vs	1000*	1500*	v	
Beam blanking voltage for cut-off	v_{g2}	935†	1405†	v	
Control grid voltage for cut-off	v_{g1}	-35 to -65	-50 to -95	v	
x deflection coefficient	D_{X}	15.7 to 18.7	23.5 to 28	V/cm	
y deflection coefficient	D_{y}	7.4 to 9.7	11 to 14.3	V/cm	
Line width at centre-using microscope	at 10µA	0.55	0.49	mm	
Line width at edge-using microscope	beam	0.90	0.88	mm	
Line width at centre measured by shrinking raster	current	0.28	0.25	mm	
* The manifest maltage will not differ for	som the aveted ve	lua bu mana th	- FOT	,	

^{*} The required voltage will not differ from the quoted value by more than $\pm \ 50 \text{V}\,.$

 $^{^{\}dagger}$ The beam is unblanked when $\rm V_{g2}$ = $\rm V_{a1}.$ This grid 2 electrode should not be used as a brilliance control.

DSCILLOSCOPE THRES

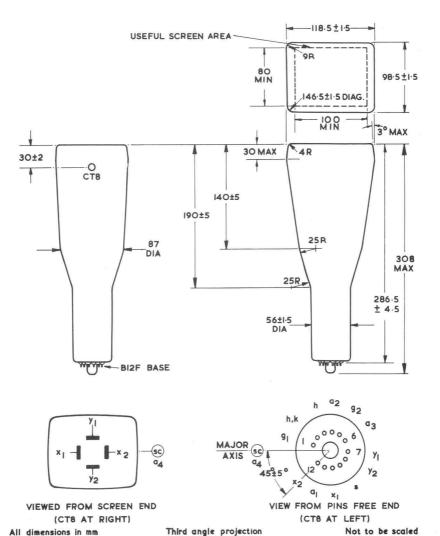
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 5 mm radius about the centre of the tube face.

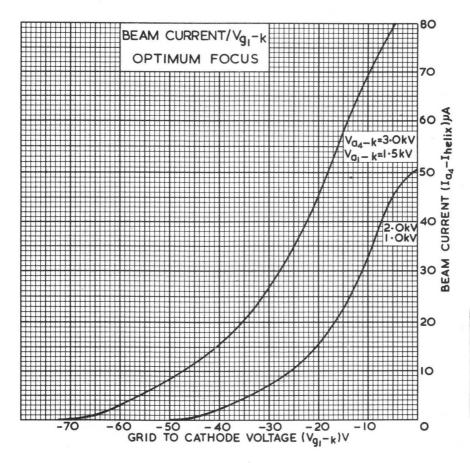
Raster distortion: the edges of a test raster will fall between two concentric rectangles $10~\rm cm~x~8~cm$ and $9.75~\rm cm~x~7.8~cm$.

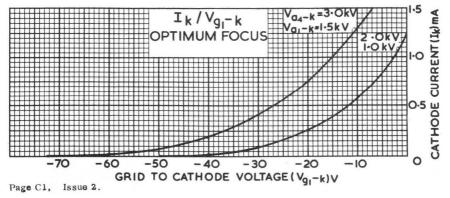
Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 165 mm from the face. 26 ampere turns will suffice, with provision for reversing the current if necessary.

It is preferable that the mean x andy plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V when the tube is operated at $3~\rm kV$.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) 1.0 kg


MOUNTING POSITION - unrestricted.

Oscilloscope Tube

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

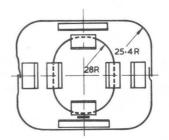
Magnetic Shield MS15

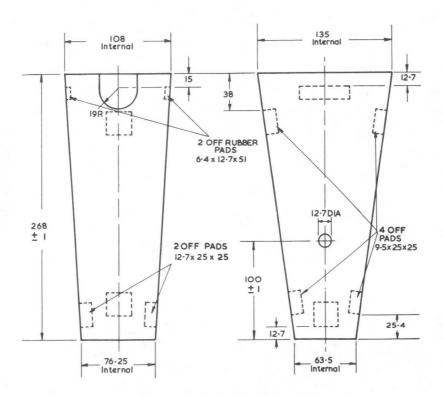
MATERIAL

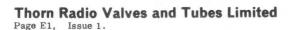
0.35 ± 0.05 Mumetal

FINISH PADS Silver hammer outside

ADS Soft sponge closed cell neoprene

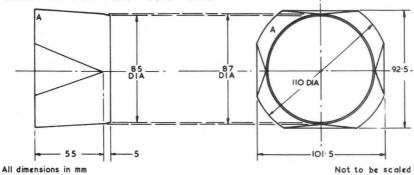

METAL TOLERANCES ± 0.5 Unless


otherwise stated


Third angle projection

All dimensions in mm

Not to be scaled



MANDREL FOR TWIST COIL TW20

MANDREL

Shaped from wood in the form of a shaped truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS15 for D14-172..

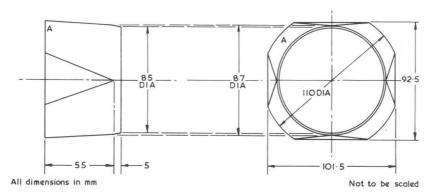
WINDING

575 turns of 0.28 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at

position A on drawing.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.


ELECTRICAL CHARACTERISTICS

Resistance approx. 50 Ω . Current required for \pm 5° twist is \pm 42 mA measured on typical D14-172.. with V_{a4} = 3 kV and V_{a1} = 1.5 kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

MANDREL FOR TWIST COIL TW26

MANDREL

Shaped from wood in the form of a shaped truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS15 for D14-172...

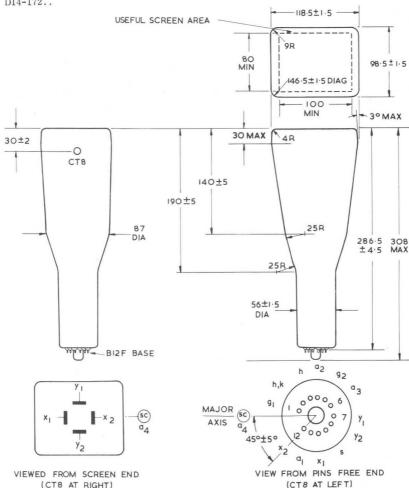
WINDING

2500 turns of 0.125 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS


Resistance approx. 1060 Ω . Current required for \pm 5° twist is \pm 10 mA measured on typical D14-172.. with V_{a4} = 3kV and V_{a1} = 1.5 kV.

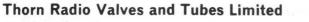
FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

This D14-173.. tube has a 6.3V, 0.12A heater otherwise it is identical to the D14-172...

Not to be scaled All dimensions in mm Third angle projection It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Thorn Radio Valves and Tubes Limited Page 1, Issue 3.


D14-180..

Oscilloscope Tube

MAINTENANCE TYPE

The D14-181.. is the replacement type for the D14-180..

The D14-180.. and D14-181.. differ only in the back cone region with the cylindrical region approximately 10 mm further from the face on the D14-181..

OSCILLOSCOPE TUBES

PRELIMINARY DATA

GENERAL

This 10cm x 8cm rectangular tube with electrostatic focusing and deflection is designed for medium bandwidth applications and is capable of being deflected by transistor circuits. It incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

	-5
لجيا	-x ₂
	-a ₂
	- g ₂

ABSOLUTE RATINGS		Max.	Min.	
Fourth anode voltage	v_{a4}	7.0	2.5	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative grid voltage	-Vg1	200	1.0	v
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x plate to third anode voltage	v _{x-a3(pk)}	500	-	v
Peak y plate to third anode voltage	v _{y-a3(pk)}	500	-	v
x plate to third anode resistance	R _{x-a3}	5.0	-	$\mathbf{M}\boldsymbol{\Omega}$
y plate to third anode resistance	Ry-a3	100	-,	$k\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	I _{a2}	10	- "	μ A
P.D.A. ratio (Va4/Va3)		4.3:1		
Helix resistance		-	50	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-181GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 1.

INTER-ELECTRODE CAPACITANCES Grid 1 to all	c _{g1-all}			10	рF
Grid 2 to all	cg2-all			10	pF
Heater and cathode to all	ch, k-all			4.0	pF
x ₁ plate to x ₂ plate	c _{x1-x2}			2.1	pF
y ₁ plate to y ₂ plate	c _{y1-y2}			1.4	pF
x ₁ plate to all, less x ₂ plate	c _{x1-all} ,	less v2		6.9	pF
x ₂ plate to all, less x ₁ plate	c _{x2-all} ,			6.6	pF
y ₁ plate to all, less y ₂ plate	cy1-all,			5.1	pF
\mathbf{y}_2 plate to all, less \mathbf{y}_1 plate	cy2-all,			5.1	pF
x1, x2 plates to y1, y2 plates	cx1,x2-y			0.8	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	cg1-x1, x			1.4	pF
Grid 1 to grid 2	cg1-g2			0.7	pF
TYPICAL OPERATION - voltages with	respect to	cathode			
Fourth anode voltage	v_{a4}	3.0	4.0	6.0	kV
Mean deflector plate potential		750	1000	1500	V
Third anode voltage for optimum astigmatism correction	v_{a3}	750*	1000*	1500*	v
Second anode voltage for optimum focus	v_{a2}	125 to 300	175 to 400	260 to 600	v
First anode voltage	v_{a1}	750	1000	1500	v
Shield voltage for optimum raster shape	V_S	750*	1000*	1500*	V
Beam blanking voltage for cut-off	v_{g2}	700†	935†	1400†	V
Control grid voltage for cut-off	v_{g1}	-25 to -50	-35 to -65	-50 to -95	v
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	10.6 to 12.8	14.1 to 17	21.2 to 25.5	V/cm
y deflection coefficient	D_{y}	5.0 to 6.6	6.7 to 8.7	10 to 13.1	V/cm
Minimum screen area		10 x 8	10 x 8	10 x 8	cm^2
Line width at centre-using microscope	at 5µA	0.52	0.47	0.42	mm
Line width at edge-using microscope	beam	0.94	0.89	0.84	mm
Line width at centre measured by shrinking raster	current	0.31	0.28	0.25	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50V.

 $[\]dagger$ The beam is unblanked when ${\rm V}_{g2}$ = ${\rm V}_{a1}$. This grid 2 electrode should not be used as a brilliance control.

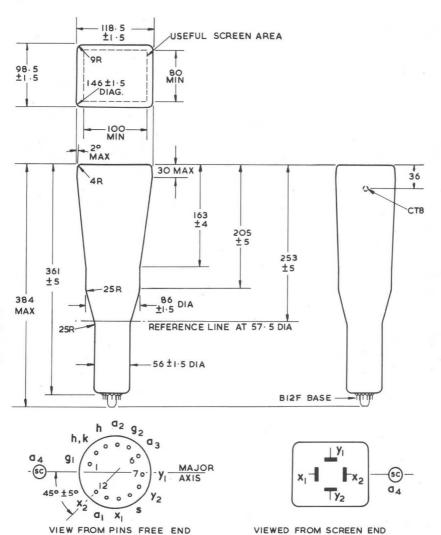
Oscilloscope Tube

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

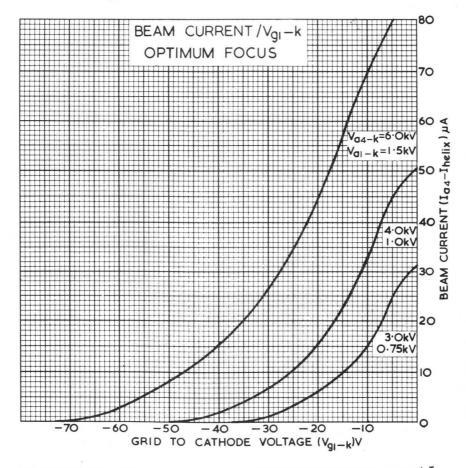
The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face. The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.8 cm x 7.8 cm.

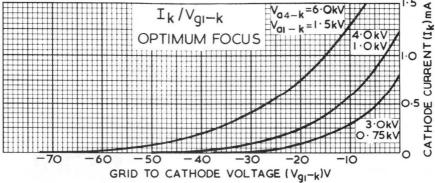
Rectangularity of x and y axes is $90^{\circ}\pm1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 195 mm from the face. The ampere turns required will be equal to $12\sqrt{V_{44}}$ (where V_{44} is quoted in kV), with provision for reversing the current if necessary.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate by more then 50V when the tube is operated at 4kV.

MAGNETIC SHIELDING

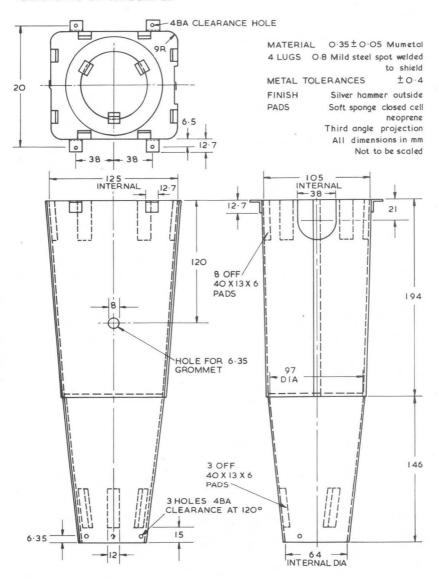
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) 1.1 kg


MOUNTING POSITION - unrestricted.

(CT8 AT LEFT) (CT8 AT RIGHT)

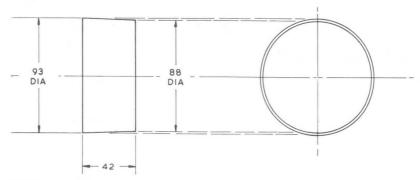
All dimensions in mm Third angle projection Not to be scaled it is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suppended by the base.



Page C1, Issue 1.

Magnetic Shield MS 20

EXAMPLE OF TYPICAL SHIELD



Thorn Radio Valves and Tubes Limited Page E1. Issue 1.

OSCILLOSCOPE Tubes

MANDREL FOR TWIST COIL TW 23

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS20 for $\mathrm{D}14\text{-}181..$

WINDING

1200 turns of 0.16 mm Lewmex Grade 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel. Start and finish of winding to be brought out on 450 mm long thin flexible lead wire from larger end of winding.

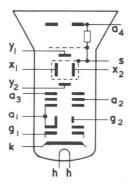
Varnish, if necessary, cover with adhesive backed crepe paper, and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

Resistance approx. 300Ω . Twist coefficient approximately 5mA/degree measured on typical D14-181.. with $V_{a\,4}=6$ kV and $V_{a\,1}=1.5$ kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.


Thorn Radio Valves and Tubes Limited Page F1, Issue 1.

GENERAL

This 10 cm x 8 cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and high brightness without additional electrode control voltages. The tube is designed for transistor deflection high bandwidth applications, and incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

ABSOLUTE RATINGS		Max.	Min.	
Fourth anode voltage	v_{a4}	16	5.0	kV
Third anode voltage	v_{a3}	1.75	0.6	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.75	0.6	kV
Negative control grid voltage	-V _{g1}	200	1.0	v
Beam blanking voltage	v_{g2}	2.0	0.5	kV
Peak x-plate to third anode voltage	$v_{x-a3(pk)}$	500	-	V
Peak y-plate to third anode voltage	vy-a3 (pk)	500	-	V
x-plate to third anode resistance	R_{x-a3}	5.0	-	$\mathbf{M}\Omega$
y-plate to third anode resistance	R_{y-a3}	100	-	$k\Omega$
Control grid to cathode resistance	R _{g1-k}	1.5	-	$M\Omega$
Second anode current	I_{a2}	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		11: 1	-	
Helix resistance		-	100	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-200GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes

Thorn Radio Valves and Tubes Limited Page 1, Issue 3.

INTER-ELECTRODE CAPACITANCES					
Grid 1 to all	c _{g1-all}			9.5	pF
Grid 2 to all	cg2-all			8.9	pF
Heater and cathode to all	ch, k-all			4.0	pF
x ₁ plate to x ₂ plate	c_{x1-x2}			1.9	pF
y ₁ plate to y ₂ plate	c_{y1-y2}			1.7	pF
x1 plate to all, less x2 plate	c _{x1-all,}	less x2		3.9	pF
x2 plate to all, less x1 plate	c _{x2-all} ,	less x1		3.9	pF
y ₁ plate to all, less y ₂ plate	cy1-all,	less y2		2.8	pF
y2 plate to all, less y1 plate	cy2-all,	less y1		2.8	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	c _{x1,x2} -	y1, y2		0.5	pF
Grid 1 to grid 2	cg1-g2			0.7	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	cg1-x1,	x2,y1,y2		0.012	pF
TYPICAL OPERATION Voltages with	respect	to cathode			
Fourth anode voltage	v_{a4}	10	12	15	kV
Mean deflector plate potential		1000	1200	1500	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1000*	1200*	1500*	v
Second anode voltage for optimum focus	v_{a2}	25 to 180	30 to 200	40 to 250	v
First anode voltage	v_{a1}	1000	1200	1500	V
Shield voltage for optimum raster shape	Vs	970 to 1070	1170 to 1270	1470 to 1570	V
Beam blanking voltage for cut-off	$v_{\mathbf{g}2}$	960 to 1040†	1150 to 1250†	1435 to 1565†	v
Control grid voltage for cut-off	v_{g1}	-40 to -75	-50 to -90	-60 to -115	v
x deflection coefficient	$D_{\mathbf{X}}$	9.2 to 11.8	11 to 14.2	13.8 to 17.7 V	/cm
y deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	3.6 to 4.5	4.3 to 5.4	5.4 to 6.8 V	/cm
Minimum screen area		10 x 8	10 x 8	10 x 8	cm^2
Line width at $5\mu A$ beam current					
Shrinking raster measurement at ce Microscope measurement at centre Microscope measurement at edge		0.47 0.80 1.0	0.41 0.73 0.98	0.39 0.70 0.96	mm mm

^{*} The required voltage will not differ from the quoted value by more than ± 50V.

[†] The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Oscilloscope Tube

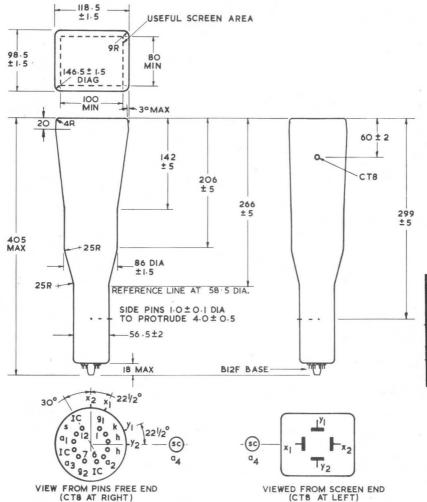
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

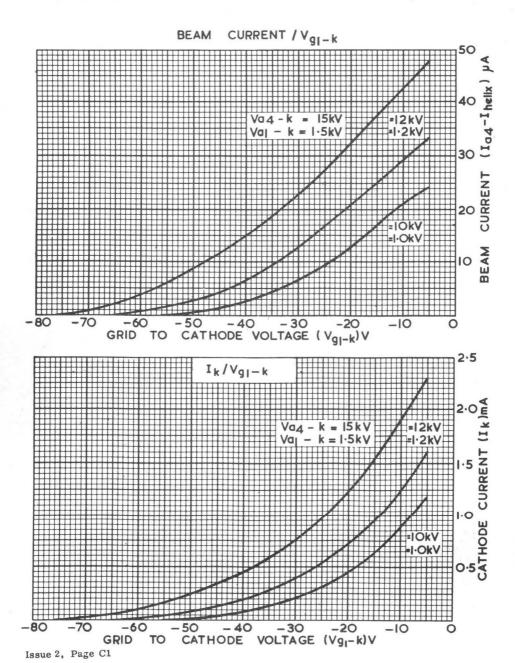
Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles $10~\rm cm~x~8~cm$ and $9.80~\rm cm~x~7.84~cm$.

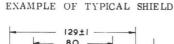
Rectangularity of x and y axes is 90° \pm 1°. The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 70 mm from the face and should not extend more than 195 mm from the face. The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV), with provision for reversing the current if necessary. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.

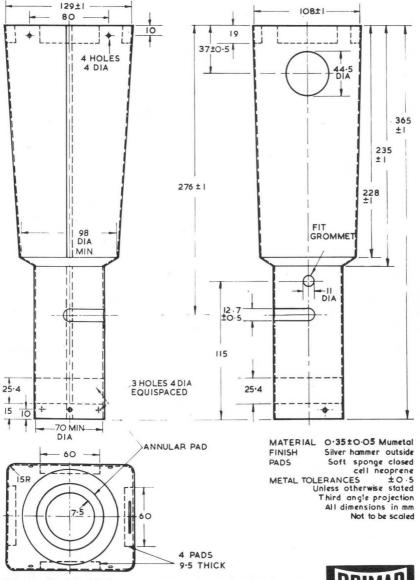

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

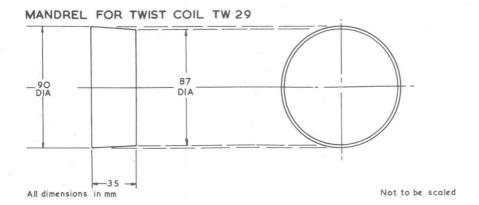

TUBE WEIGHT (approximate) - 1.3 kg


MOUNTING POSITION - unrestricted



All dimensions in mm Not to be scaled It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions ± 5°.



Thorn Radio Valves and Tubes Limited Page E1 Issue 4.

BRIMAR

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS11 for D14-200..

WINDING

1600 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

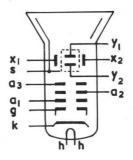
ELECTRICAL CHARACTERISTICS

Resistance approx.550 Ω . Twist coefficient approximately 7 mA/degree measured on typical D14-200. with V_{a4} = 15 kV and V_{a1} = 1.5 kV.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited


BRIMAR

OSCILLOSCOPE TUBES

GENERAL

This 10cm x 8cm display rectangular oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

Heater voltage	v_h	6.3	v
Heater current	I_h	0.12	Α

ABSOLUTE RATINGS - voltages with respect to cathode

			wax.	win.	
]	First anode voltage	v _{a1}	2200	1250	v
-	Second anode voltage	v_{a2}	800	-	V
-	Third anode voltage	v_{a3}	2250	1200	V
1	Negative grid voltage	-v _g	200	1.0	V
1	Peak x-plate to third anode voltage	v _x -a3(pk)	500	-	v
1	Peak y-plate to third anode voltage	vy-a3 (pk)	500	-	v
1	Heater to cathode voltage	V _{h-k} ±	125		v
2	x-plate to third anode resistance	R _{x-a3}	2.0	-	$\mathbf{M}\Omega$
3	y-plate to third anode resistance	R_{y-a3}	2.0	-	$M\Omega$
(Grid to cathode resistance	R_{g-k}	1.5	-	$M\Omega$
]	Peak cathode current	ik(pk)	500	-	μΑ

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D14-270GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

0.35

mm

0.4

INTER-ELECTRODE CAPACITANCES				
Grid 1 to all	cg1-all		8.2	pF
Heater and cathode to all	ch, k-all		3.8	pF
x ₁ plate to x ₂ plate	c _{x1-x2}		1.7	pF
y ₁ plate to y ₂ plate	^c y1-y2		1.3	pF
x ₁ plate to all, less x ₂ plate	cx1-all, less	x2	5.0	pF
x2 plate to all, less x1 plate	c _{x2} -all, less	x1	4.8	pF
y ₁ plate to all, less y ₂ plate	cy1-all, less	y2	3.6	рF
y2 plate to all, less y1 plate	cy2-all, less	y1	3.7	рF
x_1 , x_2 plates to y_1 , y_2 plates	c _{x1,x2-y1,y2}		0.7	pF
TYPICAL OPERATION - voltages with	respect to car	thode		
Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	v_{a3}	1500†	2000†	v
Second anode voltage for optimum focus	v_{a2}	125 to 220	170 to 290	v
First anode voltage	v_{a1}	1500	2000	v
Shield voltage for optimum raster shape	v_s	1500†	2000†	v
Control grid voltage for cut-off	v_{g1}	-22 to -52	-30 to -70	v
x deflection coefficient	D_X	14.3 to 17.5	19 to 23	V/cm
y deflection coefficient	$D_{\mathbf{y}}$	9 to 11.3		V/cm
Minimum useful screen area		10 x 8.0	10 x 8.0	cm ²
Grid drive to $10\mu A$ beam current		10	11	v
Line width at 10µA beam current				

^{*} This tube is designed for symmetrical operation.

Shrinking raster measurement at centre

 $[\]dagger$ The required voltage will not differ from the quoted value by more than \pm 30V.

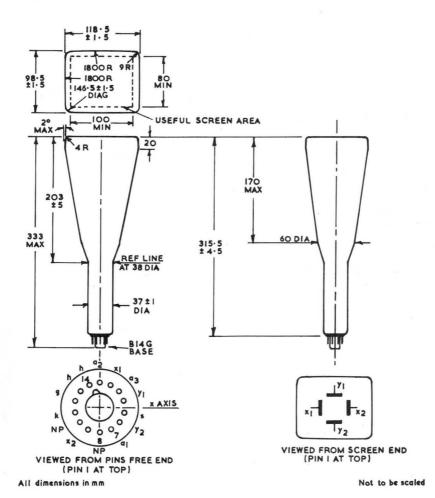
SCILLOSCOPE TUBES

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 7mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 8.5 cm x 7.0 cm and 8.3 cm x 6.88 cm.

Rectangularity of x and y axes is 90° + 1°.

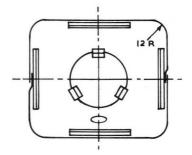

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

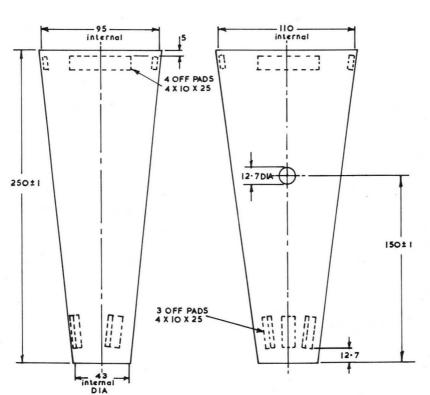
MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

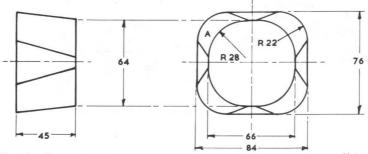
MOUNTING POSITION - unrestricted.


It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.


Tolerance on base pin 1 position with respect to tube y axis ± 5°

DSCILLOSCOPE TUBES

Third angle projection All dimensions in mm Not to be scaled



Thorn Radio Valves and Tubes Limited

Page E1, Issue 1,

MANDREL FOR TWIST COIL TW52

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a shaped truncated circular cone, dimensions as above.

This twist coil is designed to be used in conjunction with magnetic shield MS70 for D14-270..

WINDING

1000 turns of 0.14 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires at position A on drawing.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

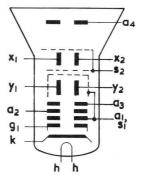
Resistance approx. 300Ω . Current required for $\pm 5^{\circ}$ twist is ± 20 mA measured on typical D14-270.. with $V_{a1} = 1.5 \text{ kV}$.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and locked in position with adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 1,


OSCILLOSCOPE Tubes

PRELIMINARY DATA

GENERAL

This 10cm x 8cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and high brightness without additional electrode control voltages. The tube is designed for transistor deflection medium to high bandwidth applications.

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	13	8.0	kV
Third anode voltage	v_{a3}	2.2	1.2	kV
Second anode voltage	v_{a2}	1.0	-	kV
First anode voltage	v_{a1}	2.2	1.1	kV
Negative control grid voltage	-V _{g1}	200	1.0	v
Peak x plate to third anode voltage	v _x -a3(pk)	500	-	v
Peak y plate to third anode voltage	v _{y-a3(pk)}	500	-	v
x plate to third anode resistance	R_{x-a3}	100	-	kΩ
y plate to third anode resistance	R_{y-a3}	100	-	$k\Omega$
Control grid to cathode resistance	Rg1-k	1.5	-	$M\Omega$
Second anode current	I_{a2}	10	-	μ A
P.D.A. ratio (V_{a4}/V_{a3})		7:1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-280GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

Oscilloscope Tube

INTER-ELECTRODE CAPACITANCES				
Grid 1 to all	cg1-all		9.5	pF
Heater and cathode to all	ch, k-all		3.5	p.F
\mathbf{x}_1 plate to \mathbf{x}_2 plate	c_{x1-x2}		2.0	pF
y ₁ plate to y ₂ plate	c _{y1-y2}		1.5	pF
x ₁ plate to all, less x ₂ plate	cx1-all, less x2		6.0	pF
x2 plate to all, less x1 plate	cx2-all, less x1		6.0	pF
y ₁ plate to all, less y ₂ plate	cy1-all, less y2		5.0	pF
y ₂ plate to all, less y ₁ plate	cy2-all, less y1		5.0	pF
x_1 , x_2 plates to y_1 , y_2 plates	c _{x1,x2-y1,y2}		0.8	pF
Grid 1 to x_1 , x_2 , y_1 , y_2 plates	$c_{g1-x1, x2, y1, y2}$		0.8	pF
TYPICAL OPERATION - Voltages with re	espect to cathode			
Fourth anode voltage	V_{a4}	10	12	kV
Mean deflector plate potential	41	1500	2000	v
Third anode voltage for optimum astigmatism correction	v_{a3}	1470 to 1530	1970 to 2030	v
Second anode voltage for optimum focus	v_{a2}	320 to 480	420 650	v
First anode and shield 1 voltage	v_{a1+s1}	1500	2000	V
Shield 2 voltage for optimum raster shape	V _{s2}	1400 to 1500	1900 to 2000	v
Control grid voltage for cut-off	v_{g1}	-40 to -80	-53 to -106	v
x deflection coefficient	D_X	10.5 to	14 to 17.4	V/cm
y deflection coefficient	D_y	4.2 to 5.2	5.6 to 6.9	V/cm
Minimum screen area		10 x 8	10x8	cm^2
Line width at 10µA beam current Shrinking raster measurement at ce Microscope measurement at centre Microscope measurement at edge	ntre	0.38 0.75 1.0	0.35 0.64 0.9	mm mm
Grid Drive to $10\mu A$ beam current (approx	(.)	18	19	v

Oscilloscope Tube

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

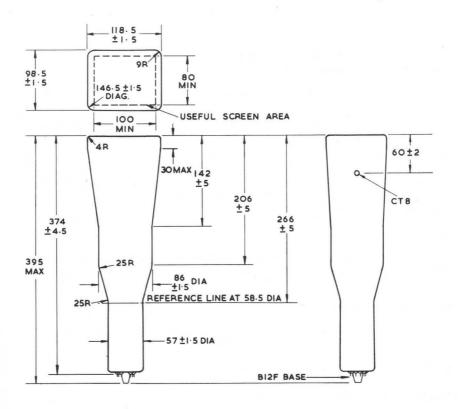
The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

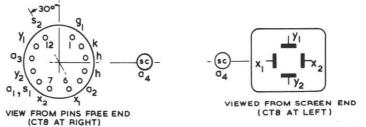
Raster distortion: The edges of a test raster will fall between two concentric rectangles $10~\text{cm} \times 8~\text{cm}$ and $9.80~\text{cm} \times 7.84~\text{cm}$.

Rectangularity of x and y axes is 90° \pm 1°. The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 130 mm from the face and should not extend more than 195 mm from the face. The ampere turns required will be equal to $14/\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 25% deflection.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

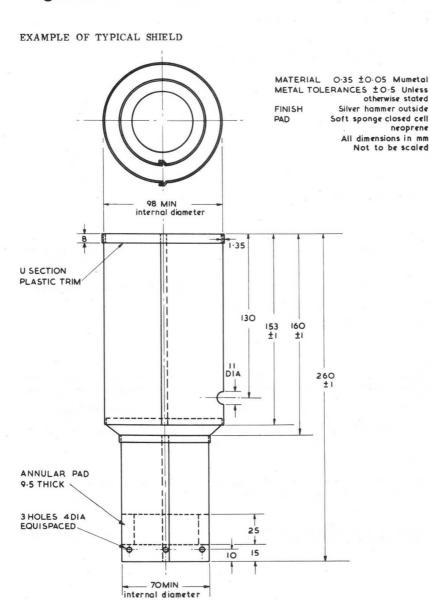

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT

(approximate) - 1.4 kg

MOUNTING POSITION

- unrestricted

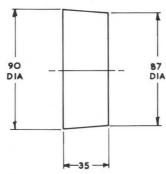


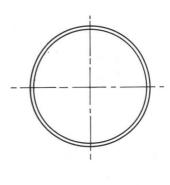
All dimensions in mm

Not to be scaled

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

neoprene





Page E1, Issue 1.

MANDREL FOR TWIST COIL TW29

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil, is designed to be used in conjunction with magnetic shield MS72 for D14-280...

WINDING

1600 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

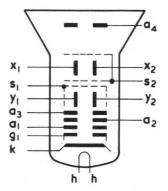
Resistance approx. 550 Ω . Twist coefficient approximately 6.5 mA/degree measured on typical D14-280.. with V_{ad} = 12kV and V_{al} = 2.0 kV.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 1.



PRELIMINARY DATA

GENERAL

This 10cm x 8cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and very high brightness without additional electrode control voltages. The tube is designed for transistor deflection high bandwidth and high writing speedapplications.

Heater voltage	v_h	6.3	v
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V _{a4}	18	8.0	kV
Third anode voltage	v_{a3}	2.25	1.0	kV
Second anode voltage	V_{a2}	1.0	0	kV
First anode voltage	v_{a1}	2.2	1.0	kV
Negative control grid voltage	$-v_{g1}$	200	1.0	v
Peak x plate to third anode voltage	v _{x-a3(pk)}	500	-	v
Peak y plate to third anode voltage	vy-a3(pk)	500	-	v
x plate to third anode resistance	R _{x-a3}	5.0	-	$M\Omega$
y plate to third anode resistance	Ry-a3	100	-	$\mathbf{k}\Omega$
Control grid to cathode resistance	R _{g1-k}	1.5	-	$M\Omega$
Second anode current	I _{a2}	10	-	μ A
P.D.A. ratio (V_{a4}/V_{a3})		9:1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D14-310GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

OSCILLOSCOPE TUBES

Oscilloscope Tube

0.28

0.44

0.60

24

mm

mm

mm

INTER-ELECTRODE CAPACITANCES					
Grid 1 to all	cg1-al	1		9.0	pF
Heater and cathode to all	ch, k-a			5.0	pF
x ₁ plate to x ₂ plate	c _{x1-x2}			3.5	pF
y1 plate to y2 plate	cy1-y2	2		1.5	pF.
x1 plate to all, less x2 plate	c _{x1-al}	l, less x2		5.0	pF
x2 plate to all, less x1 plate	c _{x2-al}	l, less x1		5.0	pF
y ₁ plate to all, less y2 plate	cy1-al	l, less y2		3.5	pF
y_2 plate to all, less y_1 plate	cy2-al	l, less y1		3.5	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	ex1,x2	2-y1, y2		0.2	pF
Grid 1 to x ₁ , x ₂ , y ₁ , y ₂ plates		,x2,y1,y2		0.05	pF
TYPICAL OPERATION - Voltages with	respec	t, to cathod	е		
Fourth anode voltage	v_{a4}	10	12	16	kV
Mean deflector plate potential		1250	1500	2000	v
Third anode voltage for optimum astigmatism correction	v_{a3}	1210 to 1290	1460 to 1540	1960 to 2040	v
Second anode voltage for optimum focus	v_{a2}	315 to 450	380 to 540	505 to 720	v
First anode voltage	V _{a1}	1250	1500	2000	V
y shield voltage	V _{s1}	1250	1500	2000	v
Shield voltage for optimum raster shape	v_{s2}	1180 to 1280	1420 to 1520	1905 to 2005	v
Control grid voltage for cut-off	v_{g1}	-30 to	-35 to -66	-48 to -88	v
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	9.1 to 11.6	11 to 14	14.6 to 18.6	V/cm
y deflection coefficient	Dy	2.8 to 3.6	3.4 to 4.3	4.5 to 5.8	V/cm
Minimum screen area		10 x 8	10 x 8	10 x 8	cm2

0.34

0.60.

0.70

23

0.31

0.50

0.65

23.5

Line width at 10 µA beam current

Shrinking raster measurement at centre

Microscope measurement at centre

Microscope measurement at edge

Grid Drive to 10µA beam current(approx.)

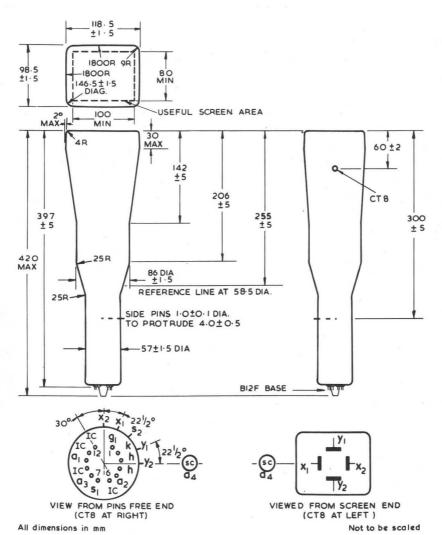
RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 8 mm radius about the centre of the tube face.

Raster distortion will not be greater than 2%. The edges of a test raster will fall between two concentric rectangles 10 cm x 8 cm and 9.80 cm x 7.84 cm.

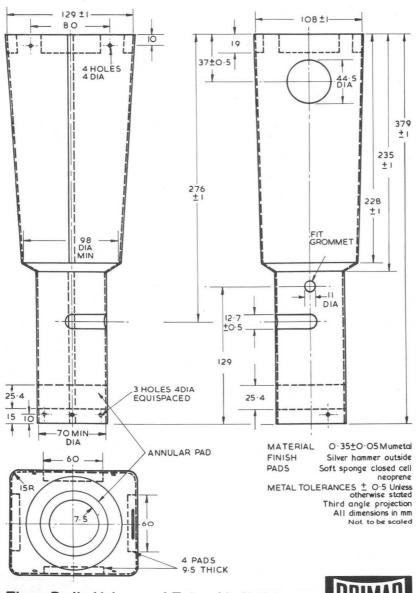
Rectangularity of x and y axes is 90° + 1°. The horizontal trace will be parallel with the axis of the rectangular face-plate to within + 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 90 mm from the face and should not extend more than 200 mm from the face. The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan shall not differ by more than 2% from the sensitivity over 10% deflection.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

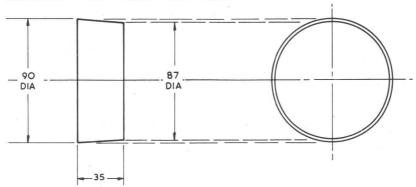
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) - 1.4 kg


MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions ± 5°.


EXAMPLE OF TYPICAL SHIELD

Thorn Radio Valves and Tubes Limited

Page E1, Issue 1.

MANDREL FOR TWIST COIL TW29

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS1 for D14-310...

WINDING

1600 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

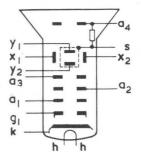
Resistance approx.550 Ω . Twist coefficient approximately 7 mA/degree measured on typical D14-310..with V_{a4} = 12 kV and V_{a1} = 1.5 kV.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 2.



SCILLOSCOPE THRES

GENERAL

This $10~\mathrm{cm} \times 10~\mathrm{cm}$ square faced tube with electrostatic focusing and deflection is designed for use as an x-y plotter. The tube incorporates spiral post deflection acceleration.

Heater voltage	v_h	6.3	V
Heater current	$I_{\mathbf{h}}$	0.3	Α

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	6.0	1.5	kV
Third anode voltage	v_{a3}	2.3	0.7	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	2.2	0.7	kV
Negative grid voltage	-V _{g1}	200	1.0	V
Peak x plate to third anode voltage	vx-a3(pk)	500	- "	v
Peak y plate to third anode voltage	vy-a3 (pk)	500	-	v
x plate to third anode resistance	R_{x-a3}	5.0	-	$M\Omega$
y plate to third anode resistance	Ry-a3	100	-	kΩ
Control grid to cathode resistance	Rg1-k	1.5	-	МΩ
Second anode current	I_{a2}	10	-	μA
P.D.A. ratio (V_{a4}/V_{a3})		3.2:1		
Helix resistance		-	50	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D16-100GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

D16-100...

Oscilloscope Tube

INTER-	ELECTRODE	CAPACITANCES
--------	-----------	--------------

Grid 1 to all	cg1-all			10.5	pF
Cathode to all	ck-all			3.5	pF
x ₁ plate to x ₂ plate	c _{x1-x2}			2.3	pF
y ₁ plate to y ₂ plate	c _{y1-y2}			1.0	pF
x ₁ plate to all, less x ₂ plate		, less x2		6.2	pF
x_2 plate to all, less x_1 plate	cx2-all	, less x1		6.4	pF
y ₁ plate to all, less y ₂ plate	c _{v1-all}	less v2		5.4	pF
y ₂ plate to all, less y ₁ plate	cy2-all	, less y1		5.2	pF
x_1 , x_2 plates to y_1 , y_2 plates	cx1, x2	-y1,y2		1.2	pF
Grid 1 to x ₁ , x ₂ plates	cg1-x1	, x2		0.8	pF
Grid 1 to y1, y2 plates	cg1-y1			0.8	pF
	0				
TYPICAL OPERATION - voltages with r	espect t	o cathode.			
Fourth anode voltage	v_{a4}	2.5	4.0	4.5	kV
Mean deflector plate potential		1250	2000	1500	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1200 to 1300	1925 to 2075	1425 to 1575	V
Second anode voltage for optimum focus	v_{a2}	250 to 450	400 to 720	280 to 580	V
First anode voltage	v_{a1}	1250	2000	1500	V
Shield voltage for optimum raster shape	V_S	1200 to 1300	1925 to 2075	1425 to 1575	V
Control grid voltage for cut-off	v_{g1}	-45 to -85	-72 to -135	-53 to -105	V
\boldsymbol{x} deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	13.5 to 17	21.6 to 27.2	18.5 to 23.5	V/cm
y deflection coefficient	$D_{\mathbf{y}}$	13.5 to 17	21.6 to 27.2	18.5 to 23.5	V/cm
Line width at $10\mu\mathrm{A}$ beam current					
Shrinking raster measurement at cen	tre	0.50	0.31	0.32	mm
Shrinking raster measurement at cor	ner	0.68	0.58	0.58	mm
Grid drive for 10 μ A beam current (appr	ox.)	28	26	27	V
The second secon	,				

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric squares $10~\rm cm \times 10~\rm cm$ and $9.74~\rm cm \times 9.74~\rm cm$ at a p.d.a. ratio not greater than 2:1.

Rectangularity of x and y axes is 90° + 1°.

The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 100 mm from the face and should not extend more than 170 mm from the face. The ampere turns required will be equal to $13\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 10% deflection.

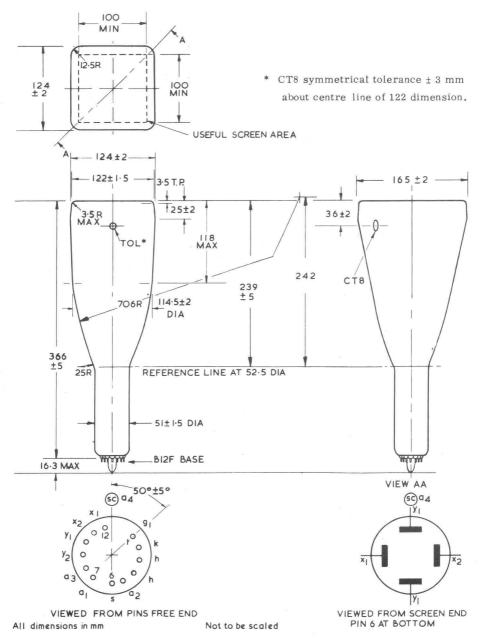
It is not advisable that the deflector plates be run asymmetrically, or severe raster distortion may result and the focus quality cannot be guaranteed. It is preferable that the tube be operated with mean x and y potentials equal, otherwise the raster distortion and focus quality will suffer and the limits for v_{a3} and v_{s} will differ from specification.

It is recommended that the maximum p.d.a. ratio is not exceeded as this may reduce scan area.

MAGNETIC SHIELDING

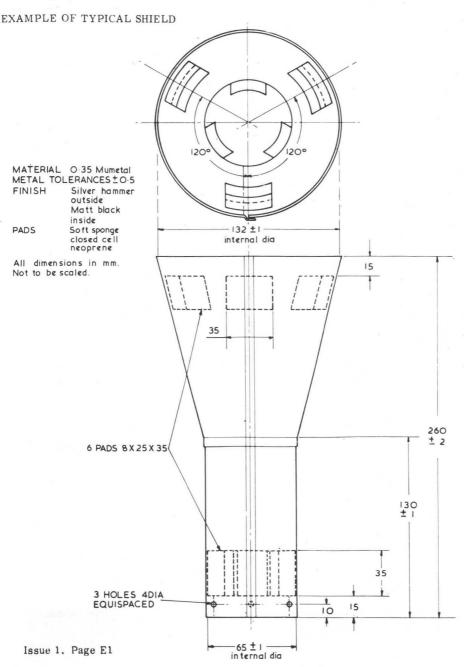
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg

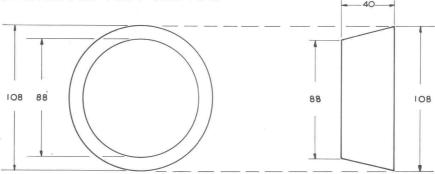

MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

OSCILLOSCOPE THRES


D16-100...

Oscilloscope Tube


Issue 2, Page 4

Tube Coil TW 45

MANDREL FOR TWIST COIL TW45

All dimensions in mm

SHIELD

This twist coil is designed to be used in conjunction with Magnetic Shield MS45 for D16-100.

WINDING

1500 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

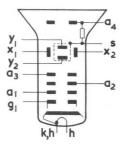
Resistance approx. 590 Ω . Twist coefficient approx, 3.4 mA/degree measured on a typical D16-100.. with V_{a1} = 2.0 kV and V_{a4-k} = 4.0 kV.

FITTING

The completed twist coil should be pushed hard on to the tube and secured in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1, Issue 2



OSCILLOSCOPE

GENERAL

This square faced tube with $10\,\mathrm{cm} \times 10\,\mathrm{cm}$ display area has spiral p.d.a., electrostatic focusing and deflection. The tube is designed for medium bandwidth applications and is capable of being deflected by transistor circuits.

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	7.0	2.5	kV
Third anode voltage	v_{a3}	1.8	0.6	kV
Second anode voltage	v _{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.8	0.6	kV
Negative grid voltage	$-v_{g1}$	200	1.0	v
Peak x plate to third anode voltage	v _x -a3(pk)	500	-	v
Peak y plate to third anode voltage	v _{y-a3(pk)}	500	-	v
x plate to third anode resistance	<i>y</i> 40 (pit)	100	-	$k\Omega$
y plate to third anode resistance		100	-	$k\Omega$
Control grid to cathode resistance		1.5	-	$\mathbf{M}\Omega$
Second anode current		10	-	μ A
P.D.A. ratio (Va4/Va3)		4.5:1		
Helix resistance		-	50	$M\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D16-110GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

INTER-ELECTRODE CAPACITANCES

cg1-all	12	pF
ch, k-all	7.0	pF
c _{x1-x2}	2.4	pF
c _{y1-y2}	1.5	pF
c _{x1-all, less x2}	6.3	pF
c _{x2-all, less x1}	6.6	pF
cy1-all, less y2	5.0	pF
cy2-all, less y1	5.0	pF
c _{x1,x2-y1,y2}	0.7	pF
cg1-x1, x2, y1, y2	1.4	pF
	Ch, k-all Cx1-x2 cy1-y2 Cx1-all, less x2 cx2-all, less x1 Cy1-all, less y2 cy2-all, less y1 Cx1, x2-y1, y2	Ch, k-all Cx1-x2 Cy1-y2 Cx1-all, less x2 Cx2-all, less x1 Cy1-all, less y2 Cy2-all, less y1 Cx1, x2-y1, y2 Cx1, x2-y1, y2 Cx1, x2-y1, y2 Cx2-all

	TYPICAL OPERATION - voltages w	vith respect to cathod	e.		
	Fourth anode voltage	V_{a4}	4.0	6.0	kV
	Mean deflector plate potential		1000	1500	v
	Third anode voltage for optimum astigmatism correction	v_{a3}	1000*	1500*	V
	Second anode voltage for optimum focus	v_{a2}	175 to 400	260 to 600	v
	First anode voltage	v_{a1}	1000	1500	v
	Shield voltage for optimum raster shape	V_s	1000*	1500*	V
	Control grid voltage for cut-off	V_{g1}	-27 to	-40 to	v
	x deflection coefficient	D_X	14.5 to 18.5	21.8 to 27.8 V	/cm
	y deflection coéfficient	$D_{\mathbf{y}}$	8.5 to 10.7	12.8 to 16.1 V	/cm
	Minimum screen area		10 x 10	10 x 10	cm^2
5	Line width at 10 μA beam current Shrinking raster measurement at cer	ntre	0.30	0.24	mm
	Grid drive to 10 µA beam current		17	17	V

^{*} The required voltage will not differ from the quoted value by more than \pm 50V.

D16-110...

OSCILLOSCOPE

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 6 mm radius about the centre of the tube face.

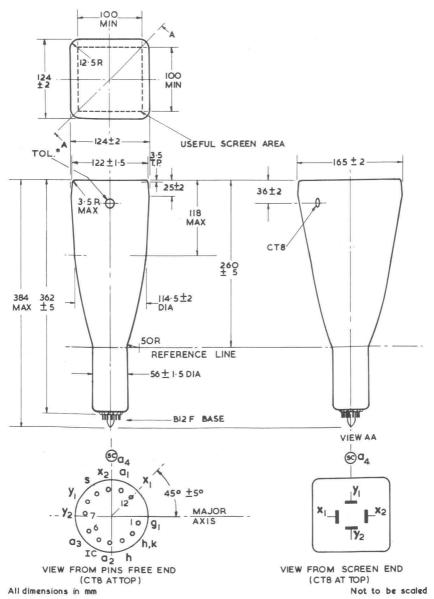
Raster distortion: the edges of a test raster will fall between two concentric squares $10~\text{cm} \times 10~\text{cm}$ and $9.7~\text{cm} \times 9.7~\text{cm}$.

Rectangularity of x and y axes is 90° ± 1°.

The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 160 mm from the face and should not extend more than 215 mm from the face. The ampere turns required will be equal to $13\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 10% deflection.

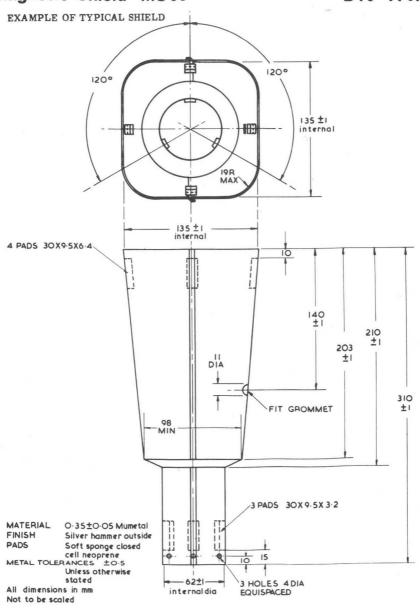
It is not advisable that the deflector plates be run asymmetrically, or severe raster distortion may result and the focus quality cannot be guaranteed. It is preferable that the tube be operated with mean x and y potentials equal, otherwise the raster distortion and focus quality will suffer and the limits for V_{a3} and V_{s} will differ from specification.

It is recommended that the maximum p.d.a. ratio is not exceeded as this may reduce scan area.


MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 1.2 kg


MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

* CT8 symmetrical tolerance ±3 mm about centre line of 122 dimension on CT8 side.


Issue 1. Page 4

Thorn Radio Valves and Tubes Limited

Issue 1, Page E1

SHIELD

This twist coil is designed to be used in conjunction with Magnetic Shield MS63 for D16-110..

WINDING

1500 turns of 0.140 mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

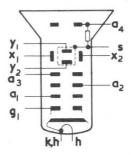
ELECTRICAL CHARACTERISTICS

Resistance approx. 590 Ω . Twist coefficient approx. 4.0 mA/degree measured on a typical D16-110.. with V_{a1} = 1.5 kV and V_{a4-k} = 6.0 kV.

FITTING

The completed twist coil should be pushed hard on to the tube and secured in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited



OSCILLOSCOPE TUBES

GENERAL

This short rectangular tube with $12~\mathrm{cm} \times 10~\mathrm{cm}$ display area, spiral p.d.a., electrosatic focusing and deflection is designed for general purpose applications. It is capable of being deflected by transistor circuits.

Heater voltage	$\mathbf{v_h}$	6.3	V
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V_{a4}	4.0	1.5	kV
Third anode voltage	v_{a3}	1.8	0.6	kV
Second anode voltage	v_{a2}	1.0	0	kV
First anode voltage	v_{a1}	1.8	0.6	kV
Negative grid voltage	$-v_{g1}$	200	1.0	v
Peak x plate to third anode voltage	v _{x-a3} (pk)	500	-	v
Peak y plate to third anode voltage	vy-a3 (pk)	500	- "	V
x plate circuit impedance	$Z_{\mathbf{X}}$	100	-	$k\Omega$
y plate circuit impedance	$\mathbf{z}_{\mathbf{y}}$	100	-	$k\Omega$
Control grid to cathode resistance	R _{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	Ia2	10		μ A
P.D.A. ratio (V_{a4}/V_{a3})		2.2:1		
Helix resistance		-	15	$\mathbf{M}\Omega$

All voltages referred to cathode unless otherwise stated

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D18-130GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

INTER-ELECTRODE CAPACITANCES			
Grid 1 to all	cg1-all	10	pF
Heater and cathode to all	ch, k-all	4.5	pF
x ₁ plate to x ₂ plate	c _{x1-x2}	2.3	pF
y ₁ plate to y ₂ plate	cy1-y2	1.2	pF
x1 plate to all, less x2 plate	cx1-all, less x2	6.3	pF
x2 plate to all, less x1 plate	cx2-all, less x1	5.9	pF
y1 plate to all, less y2 plate	cy1-all, less y2	4.8	pF
y2 plate to all, less y1 plate	cy2-all, less y1	4.9	pF
x1, x2 plates to y1, y2 plates	c _{x1,x2-y1,y2}	0.6	pF
Grid 1 to x1, x2, y1, y2 plates	cg1-x1, x2, y1, y2	0.9	pF
TYPICAL OPERATION - voltages with	n respect to cathode.		
Fourth anode voltage	Va4	3.0	kV
Mean deflector plate potential		1500	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1500*	v
Second anode voltage for optimum focus	V_{a2}	270 to 570	v
First anode voltage	V _{a1}	1500	V
Shield voltage for optimum raster shape	V_g	1500*	V
Minimum useful screen area		12 x 10	cm^2
Control grid voltage for cut-off	v_{g1}	-40 to -80	v
x deflection coefficient	D_X	23 to 29	V/cm
y deflection coefficient	$D_{\mathbf{y}}$	13 to 16.5	V/cm
Line width at 10 µA beam current Shrinking raster measurement at cent: Microscope measurement at centre	re	0.25 0.49	mm mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50V.

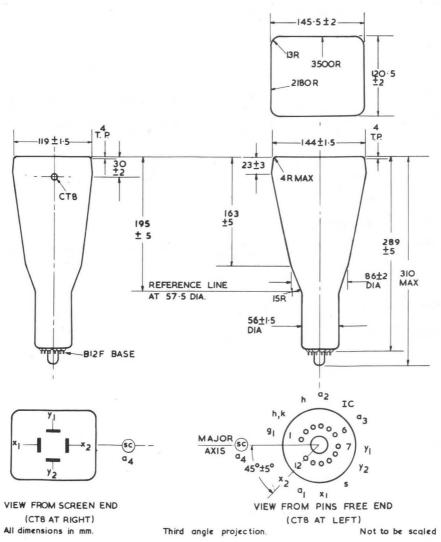
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 7.5 mm radius about the centre of the tube face.

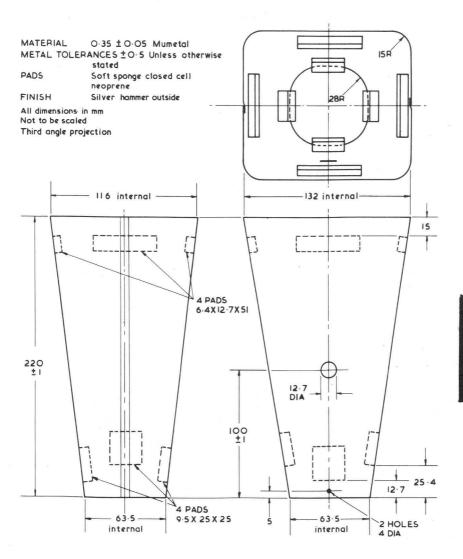
Raster distortion: the edges of a test raster will fall between two concentric rectangles $12 \text{ cm} \times 10 \text{ cm}$ and $11.7 \text{ cm} \times 9.75 \text{ cm}$.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within $\pm 5^{\circ}$. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield approximately 80 mm from the face and should not extend more than 130 mm from the face.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under any circumstances the mean y plate potential should never differ from the mean x plate potential by more than 50V when the tube is operated at 3 kV.


MAGNETIC SHIELDING

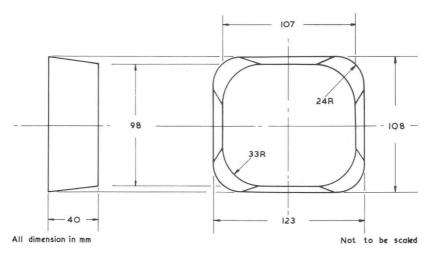
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


MOUNTING POSITION - unrestricted.

TUBE WEIGHT (approximate) 1.4 kg

CILLOSCOPE Tubes

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.



Thorn Radio Valves and Tubes Limited

Issue 2, Page E1

MANDREL FOR TWIST COIL TW 48

MANDREL

Shaped from wood to dimensions given above.

SHIELD

This twist coil is designed to be used in conjunction with magnetic shield MS61 for D18-130..

WINDING

2000 turns of 0.14 mm Lewmex Grade 1 or 2 wire, or approved alterative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel. Start and finish of winding to be brought out on 450 mm long thin flexible lead wires

from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

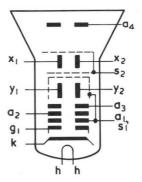
ELECTRICAL CHARACTERISTICS

Resistance approx. 900 $\Omega.$ Current required for \pm 5° twist is \pm 9.5 mA measured on a typical D18-130.. with $V_{a,\downarrow}$ = 3.0 kV and V_{a1} = 1.5 kV.

FITTING

The completed twist coil should be pushed onto the tube from the base end as far as it will travel and fastened with adhesive tape.

Thorn Radio Valves and Tubes Limited Page F1, Issue 3.


OSCILLOSCOPE TUBES

PRELIMINARY DATA

GENERAL

This 12 cm x 10 cm rectangular aluminised tube with electrostatic focusing and deflection uses a mesh p.d.a. to achieve high deflection sensitivity and high brightness without additional electrode control voltages. The tube is designed for transistor deflection medium to high bandwidth applications.

Heater voltage	v_h	6.3	V
Heater current	$I_{\mathbf{h}}$	0.3	Α

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	v_{a4}	13	8.0	kV
Third anode voltage	v_{a3}	2.5	1.4	kV
Second anode voltage	v_{a2}	1.0	-	kV
First anode voltage	v_{a1}	2.5	1.4	kV
Negative control grid voltage	$-v_{g1}$	200	1.0	v
Peak x plate to third anode voltage	v _x -a3(pk)	500	-	v
Peak y plate to third anode voltage	vy-a3(pk)	500	-	v
x plate to third anode resistance	R _{x-a3}	100	~	$k\Omega$
y plate to third anode resistance	R_{y-a3}	100	-	$k\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$M\Omega$
Second anode current	Ia2	10	-	μ A
P.D.A. ratio (V_{a4}/V_{a3})		7: 1	-	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D18-160GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITAN	CES		
Grid 1 to all	^c g1-all	9.5	pF
Heater and cathode to all	ch, k-all	3.5	pF
x ₁ plate to x ₂ plate	c _{x1-x2}	2.0	pF
y ₁ plate to y ₂ plate	^c y1-y2	1.5	pF
x ₁ plate to all, less x ₂ plate	Cx1-all, less x2	6.0	pF
x2 plate to all, less x1 plate	°x2-all, less x1	6.0	pF
y ₁ plate to all. less y ₂ plate	cy1-all, less y2	5.0	pF
y2 plate to all. less y1 plate	cy2-all, less y1	5.0	pF
x1. x2 plates to y1, y2 plates	cx1,x2-y1,y2	0.8	pF
Grid 1 to x_1 . x_2 , y_1 . y_2 plates	^c g1-x1, x2,y1,y2	0.8	pF
TYPICAL OPERATION - Voltages	with respect to cathode		
Fourth anode voltage	V _{a.1}	12	kV
Mean deflector plate potential		2000	v
Third anode voltage for optimum astigmatism correction	V _{a3}	1970 to 2030	v
Second anode voltage for optimum focus	V_{a2}	420 to 660	v
First anode and shield 1 voltage	V_{a1+s1}	2000	v
Shield 2 voltage for optimum raster shape	v_{s2}	1950 to 2050	v
Control grid voltage for cut-off	v_{g1}	-40 to -80	v
x deflection coefficient	D_{X}	11.0 to 14.2	V/cm
y deflection coefficient	D_{y}	4.3 to 5.8	V/cm
Minimum screen area		12x10	cm^2
Line width at 10μA beam current Shrinking raster measurement at Microscope measurement at cent Microscope measurement at edge	re	0.35 0.65 0.9	mm mm
Grid Drive to $10\mu A$ beam current (a)	pprox.)	18	V

SCILLOSCOPE TUBES

RASTER DISTORTION AND ALIGNMENT

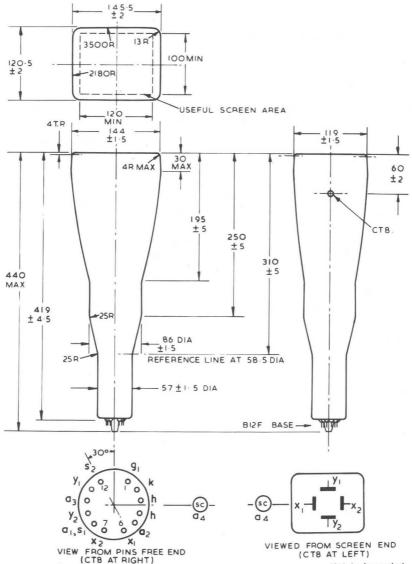
The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of 10 mm radius about the centre of the tube face.

Raster distortion: The edges of a test raster will fall between two concentric rectangles 120 mm $\,\mathrm{x}$ 100 mm and 117 mm $\,\mathrm{x}$ 97.5 mm.

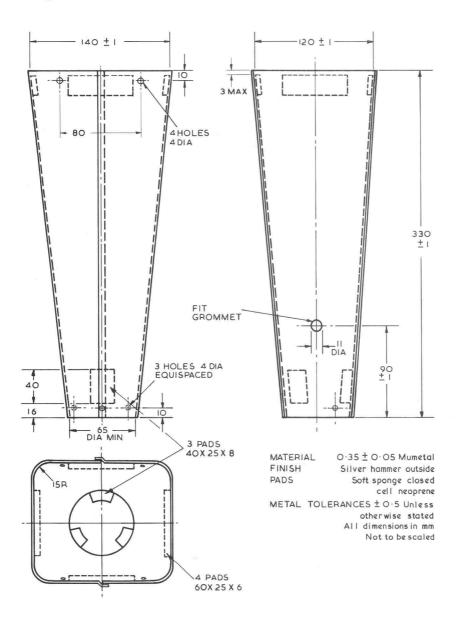
Rectangularity of x and y axes is $90^{\circ} + 1^{\circ}$. The horizontal trace will be parallel with the axis of the rectangular face-plate to within \pm 5°. A twist coil will be required to effect accurate alignment. This should be mounted inside the magnetic shield between 200 mm and 250 mm from the face.

The ampere turns required will be equal to $14\sqrt{V_{a4}}$ (where V_{a4} is quoted in kV) with provision for reversing the current. The sensitivity (for both x and y plates) at 75% deflection of the useful scan will not differ by more than 2% from the sensitivity over 25% deflection.


It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

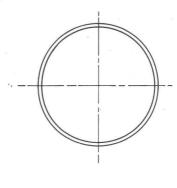
Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.


TUBE WEIGHT (approximate) - 2.1 kg

MOUNTING POSITION - unrestricted

All dimensions in mm
It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.


Page 4, Issue 2.



Thorn Radio Valves and Tubes Limited

MANDREL FOR TWIST COIL TW29

All dimensions in mm

Not to be scaled

MANDREL

Shaped from wood in the form of a truncated circular cone, dimensions as above.

This twist coil, is designed to be used in conjunction with magnetic shield MS84 for D18-160..

WINDING

1600 turns of 0.140mm Lewmex Grade 1 or 2 wire, or approved alternative, layer wound on the adhesive side of adhesive backed crepe paper to give 5 mm margins between the coil and each edge of the mandrel.

Start and finish of winding to be brought out on 450 mm long thin flexible lead wires from smaller end of winding.

Varnish, if necessary, cover with adhesive backed crepe paper and ensure that the edges of the coil are sealed in place.

ELECTRICAL CHARACTERISTICS

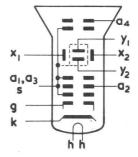
Resistance approx. 550Ω . Twist coefficient approximately 6.5 mA/degree measured on typical D18-160.. with V_{a4} = 12kV and V_{a1} = 2.0 kV.

FITTING

The completed twist coil should be pushed onto the tube and secured to tube in two places with suitable adhesive tape.

Thorn Radio Valves and Tubes Limited

Page F1. Issue 1.



MAINTENANCE TYPE

GENERAL

This 21 cm (8.5 inch) diameter tube with electrostatic focusing and deflection has a large display area and can operate at a p.d.a. ratio of 2:1.

Heater voltage	v_h	6.3	V
Heater current	Ih	0.3	A

ABSOLUTE RATINGS

ABSOLUTE NATINGS			
Maximum fourth anode voltage	Va4(max)	6.6	kV
Maximum first and third anode voltage	Val+a3(max)	3.3	kV
Maximum second anode voltage	Va2(max)	2.0	kV
Maximum negative grid voltage	-Vg(max)	220	V
Minimum negative grid voltage	-Vg(min)	1.0	V
$\label{eq:maximum peak x plate to third anode voltage} \\$	v _{x-a3(pk)max}	500	v
Maximum peak y plate to third anode voltage	vy-k(pk)max	500	v
Maximum peak heater to cathode voltage	vh-k(pk)max	150	$k\Omega$
Maximum x plate to third anode resistance	$R_{x-a3(max)}$	100	$k\Omega$
Maximum y plate to third anode resistance	Ry-a3(max)	100	kΩ
Maximum grid to cathode resistance	Rg-k(max)	1.5	$\mathbf{M}\Omega$
Maximum p.d.a. ratio		2:1	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D21-10GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Type D21-10GH is the commercial version of the CV9315.

INTER-ELECTRODE CAPACITANCES

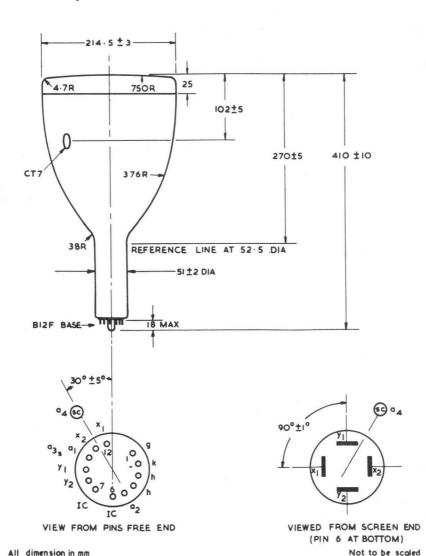
Grid to all	cg-all		8.0	pF	
Cathode to all	ck-all		10	pF	
x ₁ plate to x ₂ plate	c_{x1-x2}		4.0	pF	
y ₁ plate to y ₂ plate	cy1-y2		2.0	pF	
x ₁ plate to all, less x ₂ plate	c _{x1-all,le}	ss x2	8.0	pF	
x2 plate to all, less x1 plate	c _{x2-all, le}	ss x1	8.0	pF	
y ₁ plate to all, less y ₂ plate	cy1-all, le	ss y2	6.0	pF	
y_2 plate to all, less y_1 plate	cy2-all, le	ss y1	6.0	pF	
TYPICAL OPERATION - voltages with respect to cathode					
Fourth anode voltage	v_{a4}	4.0	6.0	kV	
First and third anode and shield voltage	$v_{a1+a3+s}$	2.0	3.0	kV	
Second anode voltage	v_{a2}	540 to 800	800 to 1200	v	
Grid voltage for cut-off	v_g	-24 to -56	-36 to -84	v	
x deflection coefficient	$D_{\mathbf{X}}$	23 to 32	34.5 to 48	V/cm	
y deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	19 to 27	28.5 to 40.5	V/cm	
Minimum screen area		15 x 15	15 x 15	cm ²	

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 10 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $12.5~\rm cm \times 12.5 \ cm$ and $12.25~\rm cm \times 12.25 \ cm$.

Rectangularity of x and y axes is 90° ± 1°.

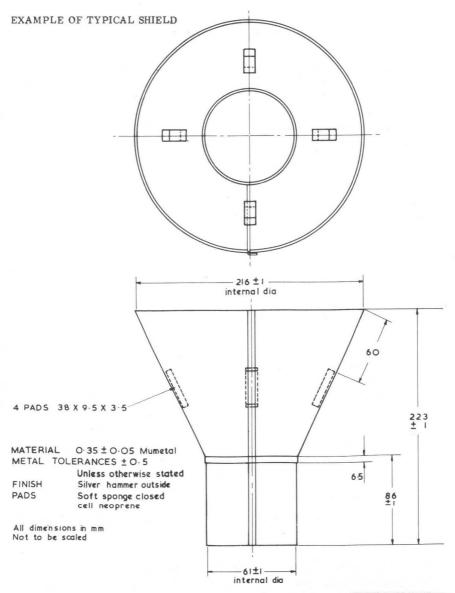

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. The mean y plate potential should never differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 2.4 kg

MOUNTING POSITION - unrestricted

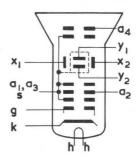


All dimension in mm

Connecting leads should not be soldered directly to tube pins.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Magnetic Shield MS 52


Thorn Radio Valves and Tubes Limited

Issue 1, Page E1

This 21 cm (8.5 inch) diameter aluminised tube with electrostatic focusing and deflection has a large display area and can operate at a p.d.a. ratio of 2:1.

Heater voltage	v_h	6.3	v
Heater current	I_h	0.3	A

ABSOLUTE RATINGS

Maximum fourth anode voltage	Va4(max)	6.6	kV
Maximum first and third anode voltage	Va1+a3(max)	3.3	kV
Maximum second anode voltage	Va2(max)	2.0	kV
Maximum negative grid voltage	-Vg(max)	220	v
Minimum negative grid voltage	-Vg(min)	1.0	v
$\label{eq:maximum peak x plate to third anode voltage} \\$	vx-a3(pk)max	500	v
$\label{eq:maximum peak y plate to third anode voltage} \\$	vy-k(pk)max	500	V
Maximum peak heater to cathode voltage	vh-k(pk)max	150	V
Maximum x plate to third anode resistance	R _{x-a3(max)}	100	$\mathbf{k}\Omega$
Maximum y plate to third anode resistance	Ry-a3(max)	100	$k\Omega$
Maximum grid to cathode resistance	Rg-k(max)	1.5	$\mathbf{M}\Omega$
Maximum p.d.a. ratio		2:1	

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (D21-102GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

INTER-ELECTRODE CAPACITANCES

Grid to all	cg-all	8.0	pF
Cathode to all	c _{k-all}	10	рF
x ₁ plate to x ₂ plate	c _{x1-x2}	4.0	pF
y ₁ plate to y ₂ plate	c _{y1-y2}	2.0	pF
x ₁ plate to all, less x ₂ plate	cx1-all, less x2	8.0	pF
x_2 plate to all, less x_1 plate	cx2-all, less x1	8.0	pF
y ₁ plate to all, less y ₂ plate	cy1-all, less y2	6.0	pF
y ₂ plate to all, less y ₁ plate	cy2-all, less y1	6.0	рF
TYPICAL OPERATION - voltages wit	h respect to cathode		
Fourth anode voltage	V_{a4}	6.0	kV

Fourth anode voltage	Va4	6.0	kV
First and Third anode and shield voltage	$V_{a1+a3+s}$	3.0	kV
Second anode voltage	V_{a2}	800 to 1200	v
Grid voltage for cut-off	v_g	-36 to -84	v
x deflection coefficient	$D_{\mathbf{X}}$	34.5 to 48	V/c m
y deflection coefficient	$D_{\mathbf{y}}$	28.5 to 40.5	V/c m
Minimum screen area (corners cut)		15 x 15	cm^2

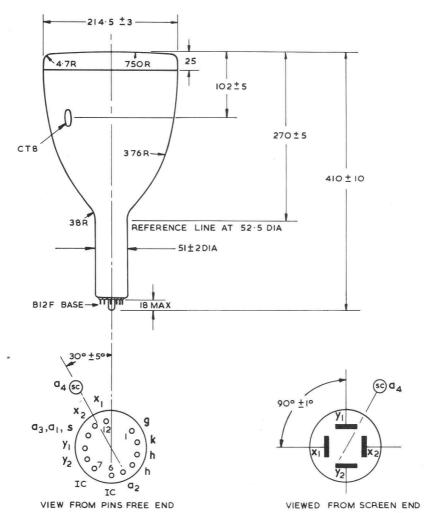
RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of 10 mm radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 12.5 cm x 12.5 cm and 12.25 cm x 12.25 cm.

Rectangularity of x and y axes is 90° ± 1°.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. The mean y plate potential should never differ from the mean x plate potential by more than 50V.

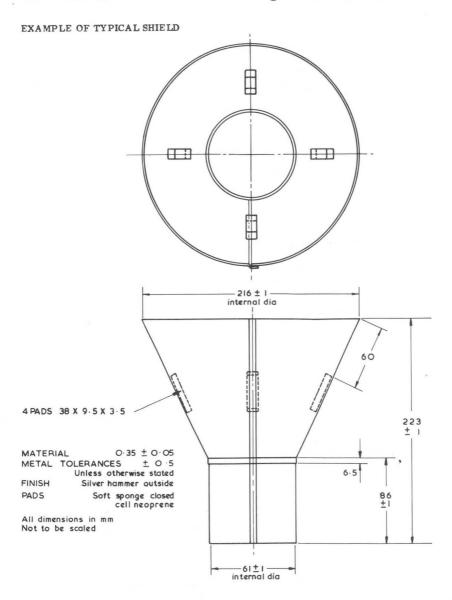

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 2.4 kg

MOUNTING POSITION - unrestricted

Page 2, Issue 1


All dimensions in mm

(PIN 6 AT BOTTOM)

Not to be scaled

Connecting leads should not be soldered directly to tube pins.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Thorn Radio Valves and Tubes Limited Page E1, Issue 1

Maintenance Type

0 IC (sc) a4

Base B12F, Cap CT8

02 92

SE4D

GENERAL

This 4 inch diameter tube incorporates a means of beam blanking at anode potential which avoids d.c. coupling to the grid. The screen is not aluminised. The standard phosphor for this tube is P31, but P7 and P11 can be supplied to special order.

6.3 Heater Voltage Vh 0.3 A Heater Current

ABSOLUTE RATINGS

Maximum Fourth Anode Voltage	$V_{a4(max)}$	7.0	kV
Minimum Fourth Anode Voltage	V _{a4(min)}	2.0	kV
Maximum Third Anode Voltage	V _{a3(max)}	2.0	kV
Maximum Second Anode Voltage	V _{a2(max)}	500	V
Maximum First Anode Voltage	V _{a1(max)}	1.7	kV
Maximum Negative Control Grid Voltage	-V _{g1(max)}	300	V
Minimum Negative Control Grid Voltage	-V _{gl(min)}	1.0	V
Maximum x plate to Third Anode Voltage	$V_{x-a3(max)}$	500	V
Maximum y plate to Third Anode Voltage	$V_{y-a3(max)}$	500	V
Maximum Peak Heater to Cathode Voltage	Vh-k(pk)max	250	V
Maximum x plate to Third Anode Resistance	R _{x-a3(max)}	5.0	$M\Omega$
Maximum y plate to Third Anode Resistance	R _{y=a3(max)}	100	kΩ
Maximum Control Grid to Cathode Resistance	R _{g1-k(max)}	1.5	MΩ
Minimum Helix Resistance	81-1/1114/	50	MΩ
Maximum P.D.A. Ratio		4:1	

All votages referred to cathode unless otherwise stated.

INTER-ELECTRODE CAPACITANCES

HATER-ELECTRODE C	AIACITAITCES		
Grid 1 to all	Cg1-all	8.5	pF
Grid 1 to Grid 2	Cg1-g2	0.3	pF
Grid 2 to all	Cg2-all	6.7	pF
Cathode to all	Ck-all	3.2	pF
x ₁ plate to x ₂ plate	C _{×1-×2}	1.7	pF
y ₁ plate to y ₂ plate	C _{y1-y2}	1.3	pF
x ₁ and x ₂ plates to y ₁ and y ₂ plates	C _{×1,×2-y1,y2}	0.5	pF
x ₁ plate to all, less x ₂ plate	Cx1-all, less x2	3.3	pF
x2 plate to all, less x1 plate	Cx2-all, less x1	3.3	pF
y ₁ plate to all, less y ₂ plate	Cy1-all, less y2	3.2	pF
y2 plate to all, less y1 plate	Cy2-all, less y1	3.2	pF
Grid 1 to x_1 , x_2 , y_1 and y_2 plates The SE4D/P31 is also known as the CV8299.	Cg1-x1,x2,y1,y2	0-03	pF

Thorn Radio Valves and Tubes Limited

The SE4D/T14 is also known as the CV8300.

Issue 2, Page 1

TYPICAL OPERATION—Voltages with respect to cathode.

Fourth Anode Voltage	Va4	3.0	4.0	6.0	kV
Mean Deflector Plate Potential		750	1000	1500	V
Third Anode Voltage for astigmatism					
correction	V_{a3}	750*	1000*	1500*	V
Second Anode Voltage for focus	V_{a2}	60 to 160	80 to 200	80 to 300	V
First Anode Voltage	V_{a1}	750	1000	1500	V
Interplate Shield Voltage for optimum					
raster shape	Vs	700 to 800	950 to 1050	1450 to 1550	V
Control Grid Voltage for visual cut-off	V_{g1}	-27 to -50	-35 to -65	-53 to -98	V
Beam Blanking Voltage	V _{g2}	695†	930+	1395†	V
Maximum x plate Deflection Coefficient	$D_{x(max)}$	19	25	37.5	V/cm
Maximum y plate Deflection Coefficient	$D_{y(max)}$		7.5	11.25	V/cm
Maximum Second Anode Current	la2(max)	10	10	10	μA
Maximum Fourth Anode Current	I _{a4(max)}	75	100	150	μA
Minimum Screen Area		5×8	5 × 8	5 × 8	cm
Line Width		0.5	0.4	0.35	mm

^{*} The required voltage will not differ from the quoted value by more than \pm 50V.

Raster Distortion

At the recommended P.D.A. ratios, over the nominally useful screen area, raster distortion will not be greater than 2 per cent. Raster geometry can be adjusted by varying the interplate shield voltage (V_s) with respect to the mean deflector plate potential. It is essential to ensure that the correct raster shape has been achieved by this means before adjusting for optimum focus.

Deflection of the spot is proportional to the voltage applied to the deflector plates within \pm 2 per cent.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

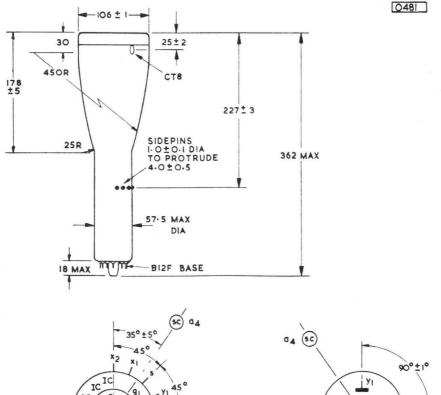
The Deflector System

Both x and y plates are designed for symmetrical operation. Should the tube be required to operate asymmetrically, some degradation of focus and trace geometry will result.

If the mean plate potentials for both x and y plates are the same, the third anode voltage for astigmatism correction will be within \pm 50 V of the mean plate potential.

If the x plate mean potential differs considerably from that of the y, greater variation of the third anode voltage (V_{a3}) and the interplate shield voltage (V_{s}) will be required, and the x and y sensitivities will decrease.

The y plate mean potential should not be allowed to become greater than that of the x or severe deflection defocusing will result.


The deflection system is designed to intercept part of the beam, so that low impedance deflector plate drive is desirable.

Magnetic Shielding

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

Net Tube Weight—0.8 kg (13/4 lb)

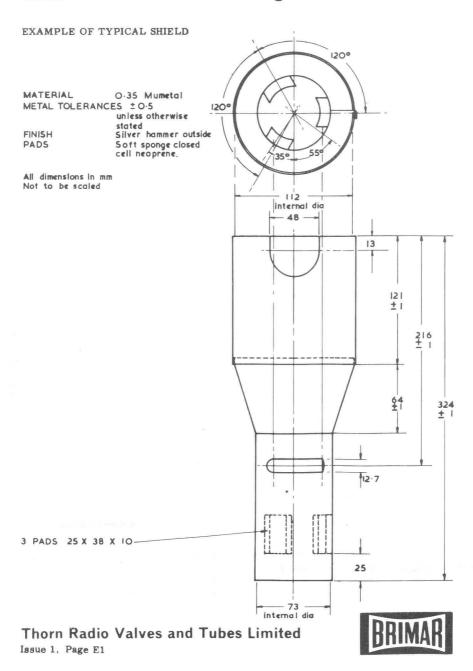
 $[\]dagger$ The beam is unblanked when $V_{g2}=V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

VIEW FROM PINS FREE END All dimensions in mm.

(PIN 6 AT BOTTOM) Not to be scaled.

VIEWED FROM SCREEN END

x₁


Mounting Position-Unrestricted.

5 SIDEPINS EQUISPACED ON 90° ARC

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions \pm 5°.

Magnetic Shield MS55

GENERAL

This 5 in. diameter screen cathode ray tube has two electron guns, common x plates and a spiral post deflection accelerator. The tube has a common beam alignment electrode and a separate beam blanking electrode on each gun.

The standard phosphor screen is P31(GH), and screen types P2(GL), P7(GM) and P11(BE) are available to special order.

Heater Voltage	V_h	6.3	V
Heater Current	l _h	0.6	Α

ABSOLUTE RATINGS

		Max	Min	
Fourth Anode Voltage	V_{a4}	8.0	2.5	kV
Third Anode Voltage	V_{a3}	2.0	0.7	kV
Second Anode Voltage	V_{a2}	1.0	0	kV
First Anode Voltage	V _{a1}	1.7	0.7	kV
Negative Control Grid Voltage	$-V_{g1}$	200	1.0	V
Beam Blanking Voltage	V _{g2}	1.8	0.55	kV
Peak x plate to Third Anode Voltage	Vx-a3(pk)	500	-	V
Peak y plate to Third Anode Voltage	Vy-a3(pk)	500	-	V
x plate to Third Anode Resistance	R_{x-a3}	5.0	-	$M\Omega$
y plate to Third Anode Resistance	R_{y-a3}	100	-	kΩ
Control Grid to Cathode Resistance	R _{g1-k}	1.5	-	$M\Omega$
Second Anode Current (each gun)	la2	10		μA
P.D.A. Ratio (V _{a4} /V _{a3})		4.0		
Post Deflection Helix Resistance		-	60	$M\Omega$

All voltages referred to cathode unless otherwise stated.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	Cg1-all	7.6*	pF
Cathode to all	c _{k-all}	5.4*	pF
x ₁ plate to x ₂ plate	c _{×1-×2}	3.05	pF
y ₁ plate to y ₂ plate	Cy1-y2	1.9*	pF
x ₁ plate to all, less x ₂ plate	Cx1-all, less x2	3.8	pF
x2 plate to all, less x1 plate	Cx2-all, less x1	3.8	pF
y'1 plate to all, less y'2 plate	Cy'1-all, less y'2	3.05	pF
y'2 plate to all, less y'1 plate	Cy'2-all, less y'1	4.0	pF
y"1 plate to all, less y"2 plate	Cy"1-all, less y"2	4.0	pF
y"2 plate to ail, less y"1 plate	Cy"2-all, less y 1	3.05	pF
Grid 1 and Cathode to x_1 , x_2 , y_1 and y_2 plates	Cg1,k-x1,x2, y1, y2	0.5*	pF

^{*} Each gun.

Net Tube Weight (approx) I-15 kg (2-5 lb)

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

TYPICAL OPERATION

All voltages referred to cathode unless otherwise stated.

The state of the s					
Fourth Anode Voltage	V_{a4}	3.0	4.0	6.0	kV
Third Anode to Mean y plate Voltage for astigmatism correction	V _{a3-y(av)}	±50	±50	±50	٧
Second Anode Voltage for Focus (Range)	V_{a2}	75 to 250	100 to 300	150 to 450	V
First Anode Voltage	V_{a1}	750	1000	1500	V
Interplate Shield to Mean x plate Voltage for optimum raster shape	$V_{s-x(av)}$	±50	±50	±50	٧
Mean Plate Potentials		750	1000	1500	V
Control Grid Voltage for cut-off	V_{g1}	-35 to -55	-45 to -75	-65 to -110	V
Beam Blanking to First Anode Voltage	V_{g2-a1}	-50*	-70*	-100*	V
Beam Alignment to First Anode Voltage for coincidence of vertical traces	V _{bax-a1}	±50	±50	±50	٧
Minimum Screen Area (each gun)		5 × 10	5×10	5×10	cm ²
Minimum Overlap		4.0	4.0	4.0	cm
Minimum x plate Sensitivity	$S_{x(min)}$	16.5	22	33	V/cm
Minimum y plate Sensitivity	$S_{y(min)}$	5.5	7.0	10.5	V/cm
Line Width (Centre)		0.6	0.5	0.5	mm
Line Width (Edge)		1.2	1.0	1.0	mm

^{*} The beam is unblanked when $V_{g2} = V_{a1}$. This grid 2 electrode should not be used as a brilliance control.

Raster Distortion and Alignment

Total scanned area is 6cm (y) \times 10cm (x) minimum, measured about a centre \pm 3mm from the centre of the tube face.

Angle between axes of deflecting plates is $90^{\circ} + 1^{\circ}$.

Angle between axes of two guns is 1° maximum.

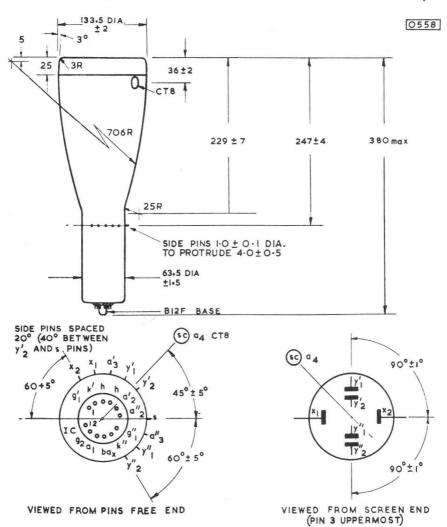
The undeflected spots will lie within two rectangles 6 mm \times 4 mm, the 6 mm side being vertical, whose centres lie on the vertical centre line of the face, displaced 6 mm above and below the horizontal centre line.

Coincidence of the two vertical traces at the centre of the tube may be achieved by varying the voltage on the beam alignment electrode.

The vertical traces, when deflected in the x direction, will register to one line width. Full deflection registration will be obtained by varying the cathode voltage of one gun with respect to the other. The variation in cathode voltage required will not be greater than \pm 1 per cent of V_{a3} .

Raster distortion on each raster will not be greater than 2 per cent. The edges of a test raster scanned by one gun will fall between two concentric rectangles 100 mm \times 50 mm and 102 mm \times 51 mm.

The individual mean y plate potentials should not differ by more than 10V, and the difference between these and the mean x plate potential should be as low as possible. Unless these conditions are met, raster distortion, linearity and sensitivity cannot be guaranteed, and the voltages required for a₃ and the interplate shield (s) will differ from those specified.

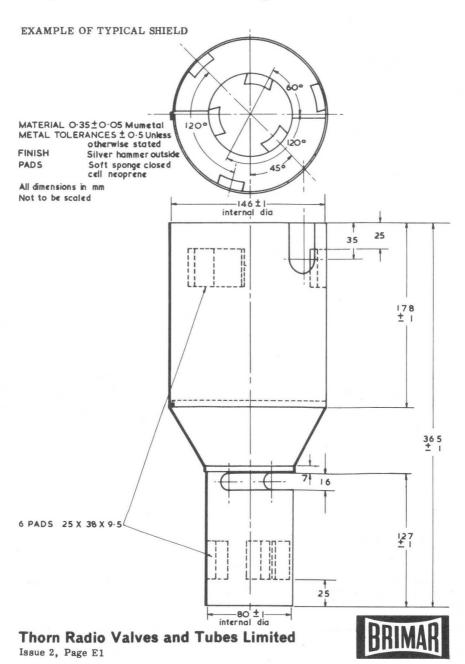

It is advisable that the y deflector plate drive impedance should be as low as possible, as the y plates intercept part of the beam near the edge of the scan area.

Magnetic Shielding

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

Issue 3, Page 2

Not to be scaled.

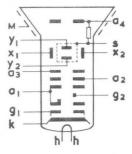


Mounting Position—Unrestricted.

It is advisable to support the tube near the screen, and at a second point on the parallel neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base. Connecting leads should not be soldered directly to the tube pins.

Tolerance on all side pin positions ± 5°.

All dimensions in mm.


Oscilloscope Tube

Maintenance Type

GENERAL

This short 13 cm diameter flat-faced tube with electrostatic focusing and deflection is designed for general purpose applications. It has a large screen area coupled with good performance and the added facility of beam blanking at anode potential which avoids d.c. coupling to the grid.

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

ABSOLUTE RATINGS		Max	Min	
Fourth anode voltage	V_{a4}	5.0	1.5	kV
Third anode voltage	v_{a3}	2.5	0.6	kV
Second anode voltage	v_{a2}	500	0	V
First anode voltage	v_{a1}	2.5	0.7	kV
Negative grid voltage	$-v_{g1}$	300	1.0	V
Beam blanking voltage	Vg2	2.5	0.5	kV
Peak x plate to third anode voltage	v _{x-a3 (pk)}	500	-	V
Peak y plate to third anode voltage	vy-a3 (pk)	500	-	V
Peak heater to cathode voltage	vh-k(pk)max	250	-	v
x plate to third anode resistance	R_{x-a3}	5.0	-	$\mathbf{M}\Omega$
y plate to third anode resistance	Ry-a3	100	-	$k\Omega$
Control grid to cathode resistance	R_{g1-k}	1.5	-	$\mathbf{M}\Omega$
Second anode current	I _{a2}	10	-	μ A
P.D.A. ratio (Va4/Va3 nom.)		2: 1		
Helix resistance		-	15	$\mathbf{M}\Omega$

All voltages referred to cathode unless otherwise stated.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (SE5F/GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Note: Prior to 1972 this tube was produced without external conductive coating.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES					
Grid 1 to all	cg1-all			8.0	pF
Grid 2 to all	cg2-all			10	pF
Cathode to all	ck-all			4.75	pF
x1 plate to x2 plate	c _{x1-x2}			2.75	pF
y ₁ plate to y ₂ plate	c _{y1-y2}			1.5	pF
x ₁ plate to all, less x ₂ plate	c _{x1-all} ,	less x2		6.0	pF
x2 plate to all, less x1 plate	c _{x2-all} ,	less x1		6.0	рF
y ₁ plate to all, less y ₂ plate	cy1-all,	less y2		6.5	pF
y2 plate to all, less y1 plate	cy2-all,	less y1		6.5	pF
x ₁ , x ₂ plates to y ₁ , y ₂ plates	cx1,x2	-y1, y2		1.5	pF
Grid 1 & cathode to x ₁ & x ₂ plates	cg1,k-x	1,x2		0.9	pF
Grid 1 & cathode to y ₁ & y ₂ plates	cg1,k-y	1, y2		0.5	pF
Anode 4 to coating M (approx.)	ca4-M			400	pF
TYPICAL OPERATION Voltages with	respect	to cathode			
Fourth anode voltage	V_{a4}	2.0	3.0	4.0	kV
Mean deflector plate potential		1000	1500	2000	V
Third anode voltage for optimum astigmatism correction	v_{a3}	1000*	1500*	2000*	v
Second anode voltage for optimum focus	v_{a2}	50 to 200	75 to 250	80 to 360	v
First anode voltage	v_{a1}	1000	1500	2000	v
Shield voltage for optimum raster shape	v_s	1000*	1500*	2000*	v
Beam blanking voltage for cut-off	v_{g2}	950†	1430†	1900†	V
Control grid voltage for cut-off	v_{g1}	-30 to -55	-45 to -80	-56 to -100	v
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	18.6 to 23.5	28 to 35	37 to 47	V/cm
y deflection coefficient	$\mathbf{D}_{\mathbf{y}}$	7.4 to 10	11 to 15	14.5 to 20	V/cm
Minimum screen area (corners cut-off)		8 x 10	8 x 10	8 x 10	cm^2
Line width at centre at $10\mu\mathrm{A}$ beam curre measured by microscope	ent	0.6	0.5	0.4	mm

^{*} The required voltage will not differ from the quoted value by more than $\pm 50 V$.

 $[\]dagger$ The beam is unblanked when v_{g2} = $v_{a1}.$ This grid 2 electrode should not be used as a brilliance control.

OSCILLOSCOPE

RASTER DISTORTION AND ALIGNMENT

The following data applies for the typical operation conditions.

The undeflected spot will fall in a circle of $6\,\mathrm{mm}$ radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles $10 \text{ cm} \times 6 \text{ cm}$ and $9.80 \text{ cm} \times 5.88 \text{ cm}$.

Raster geometry can be adjusted by varying the interplate shield voltage $(V_{\rm S})$ with respect to the mean deflector plate potential. The interplate shield voltage $(V_{\rm S})$ for optimum raster shape will be within $\pm\,50{\rm V}$ of the mean deflector plate potential, though differing from the third anode voltage $(V_{\rm a3})$. It is essential to ensure that the correct raster shape has been achieved by this means before adjusting for optimum focus.

For an 8 cm x 10 cm raster the corners will be cut to 120 mm minimum diameter.

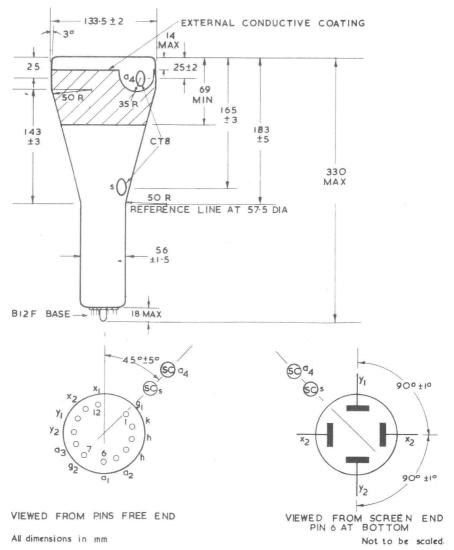
Rectangularity of X and Y axes is 90° ± 1°.

Both X and Y plates are designed for symmetrical operation. Should the tube be required to operate asymmetrically, some degradation of focus and trace geometry will result.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

The Y plate mean potential should not be allowed to become greater than that of the X or severe deflection defocusing will result.

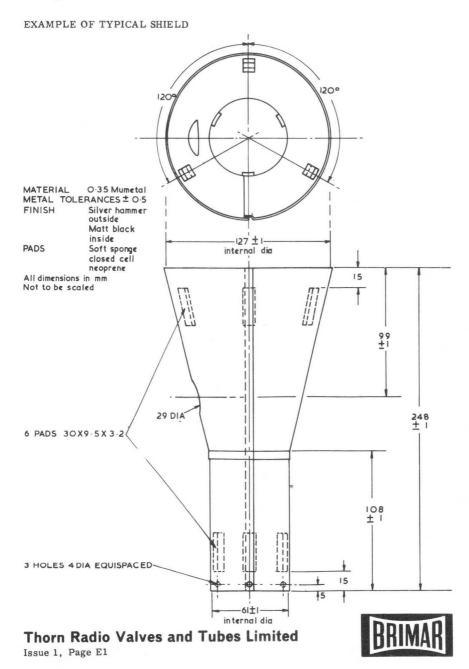
The deflector system is designed to intercept part of the beam, so that low impedance deflector plate drive is desirable.


SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

The primary object of the external conductive coating is as an electrostatic shield and and in use this coating should be earthy.

TUBE WEIGHT (approximate) 1.0 kg (2.25 lb)


MOUNTING POSITION - unrestricted

It is advisable to support the tube near the screen and at a second point on the neck near the base. The tube should not be subjected to any stress from the use of clamps and should not be suspended by the base.

Connecting leads should not be soldered directly to the tube pins.

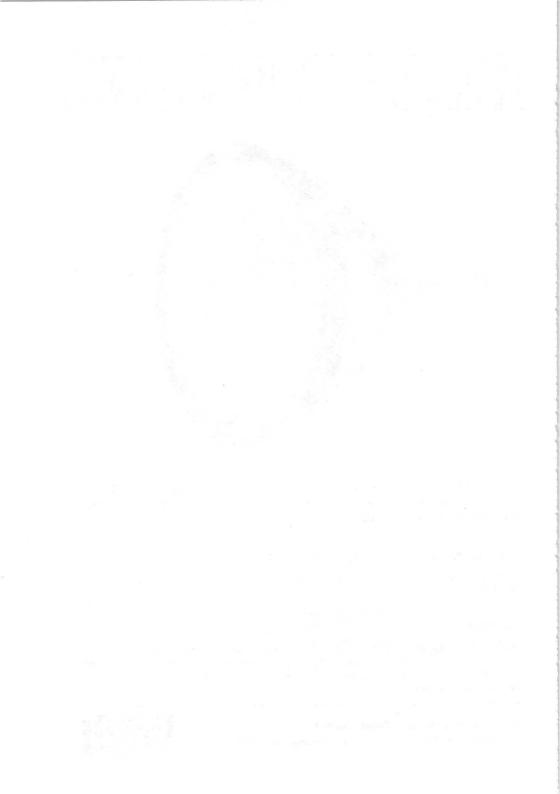
Issue 3, Page 4

RADAR TUBES

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.


WARNING

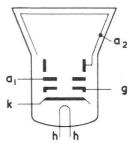
These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited

Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

Round flat face 12 inch tube, 50° deflection Magnetic focus and deflection Straight tetrode gun, non ion trap Aluminised screen, orange trace LC phosphor, very long persistence

Heater Voltage


 v_h

6.3 V

Heater Current

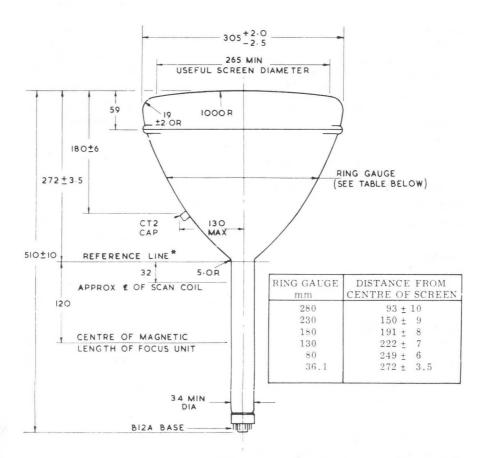
Ih

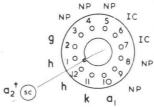
0.3 A

ABSOLUTE RATINGS - voltages referred to cathode

ABSOLUTE RATINGS - Voltages referre	d to cathode		
Maximum second anode voltage	$V_{a2(max)}$	15.5	kV
Minimum second anode voltage	$V_{a2(min)}$	9.0	kV
Maximum first anode voltage	$v_{a1(max)}$	600	V
Minimum first anode voltage	$v_{a1(min)}$	250	v
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	150	v
Maximum beam current	I _{b(max)}	50	μ A
INTER-ELECTRODE CAPACITANCES			
Cathode to all	ck-all	< 12	pF
Grid to all	cg-all	< 12	pF

TYPICAL OPERATION - grid modulation, voltages referred to cathode


Second anode voltage	v_{a2}		15	kV
First anode voltage	v _{a1}		300	V
Grid to cathode voltage for cut-off	v_{g-k}	-30	to -90	V
Average peak to peak modulating voltage for modulation up to 50 μA			24	V
Maximum deviation of unfocused and undeflected spot from centre of screen			15	mm
Maximum unfocused spot diameter for 50 μA beam current			15	mm
Maximum line width for 50 μA beam curren	t*		0.4	mm
LC screen persistence to 10% (approximate)		25	S


^{*} Measured on T.V. raster with frame scan expanded.

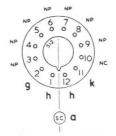
The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

Thorn Radio Valves and Tubes Limited

BRIMAR

All dimensions in mm

Not to be scaled


- * Reference line is the line where a 36.1 diameter ring gauge 100 mm long will stop against bulb.
- † Anode cap in line with spigot ± 15°.

Issue 1, Page 2

Compass Tube

CV5119

Maintenance Type

B12A (5 Pin) Base, CT8 Cap

GENERAL

Round Flat Face —6 in. Diameter Trea Internal Compass Scale—Uniformly graduated T1 Phosphor —Medium Persistence High Brightness Level

Treated to reduce Specular Reflection Aluminised Screen—Green Trace Magnetic Focus and Deflection evel

Heater Voltage V_h 6·3 V Heater Current I_h 0·6 A

RATINGS

$V_{a(max)}$	10*	kV
V _{a(min)}	7.5	kV
Vh-k(max)	150	٧
		$V_{a(min)}$ 7.5

* 10 kV is a design centre rating, the absolute maximum of 12.5 kV must not be exceeded.

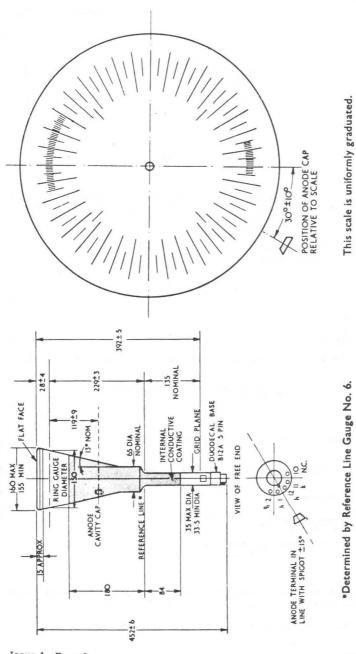
INTER-ELECTRODE CAPACITANCES +

Cathode to all	Ck-all	5.3	pF
Grid to all	Cg-all	4.7	pF

† These capacitances include an AEI wafer type duodecal holder.

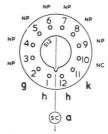
TYPICAL OPERATION—Grid Modulation (Voltages referred to cathode)

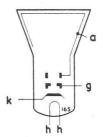
Anode Voltage	Va	9.5	kV
Grid to Cathode Voltage for cut-off of 140 mm focused line	Vg	-43 to -93	٧
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		30	٧
Maximum Peak to Peak Modulating Voltage for modulation of limit CRT up to 150 μ A		35	V


Note

A resistance should be inserted in the anode circuit in order to limit the discharge current to 100 mA max, in the event of a flash-over inside the tube.

Tube Weight (approx)-Net 21 lb


Packed 161 lb


All dimensions in mm. Not to be scaled.

Issue 1, Page 2

Maintenance Type

B12A (5 Pin) Base, CT8 Cap

GENERAL

Round Flat Face —6 in. Diameter Internal Compass Scale Aluminised Screen—Green Trace Magnetic Focus and Deflection

Heater Voltage Heater Current Treated to reduce Specular Reflection Graduated with Octantal Correction T1 Phosphor—Medium Persistence High Brightness Level

V_h 6·3 V I_h 0·6 A

RATINGS

Maximum Anode Voltage	$V_{a(max)}$	10*	kΥ
Minimum Anode Voltage	V _{a(min)}	7.5	kV
Maximum Heater to Cathode Voltage,			
Heater Negative (d.c.)	$V_{h-k(max)}$	150	V

* 10 kV is a design centre rating, the absolute maximum of 12.5 kV must not be exceeded.

INTER-ELECTRODE CAPACITANCES †

Cathode to all	C _{k-all}	5.3	pF
Grid to all	Cg-all	4.7	pF

† These capacitances include an AEI wafer type duodecal holder.

TYPICAL OPERATION—Grid Modulation (Voltages referred to cathode)

Anode Voltage	Va	9.5	kV
Grid to Cathode Voltage for cut-off of 140 mm focused line	٧g	-43 to -93	٧
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		30	٧
Maximum Peak to Peak Modulating Voltage for		35	V

Note

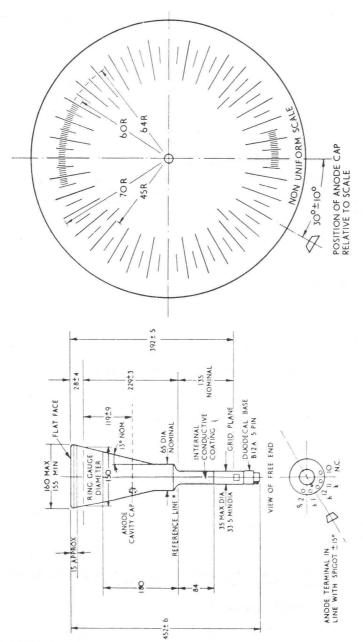
A resistance should be inserted in the anode circuit in order to limit the discharge current to 100 mA max. in the event of a flash-over inside the tube.

Tube Weight (approx)-Net 21 lb

Packed 161 lb

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1



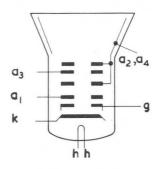
RADAR TUBES

This scale has octantal corrections.

All dimensions in mm Not to be scaled.

* Determined by Reference Line Gauge No. 6.

Issue 1, Page 2


KADAK TUBES

PRELIMINARY DATA

GENERAL

Round face, 10 cm tube, 30° deflection 36.5 mm maximum neck diameter Electrostatic focus, magnetic deflection Straight gun Clear glass

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS (voltages refer	red to cathode)		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	8.0	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	4.0	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	V
Maximum first anode voltage	Val(max)	550	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k (max)}$	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	vh-k(pk)max	400*	v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

All voltages referred to cathode

* During a warming up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor(F10-100LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

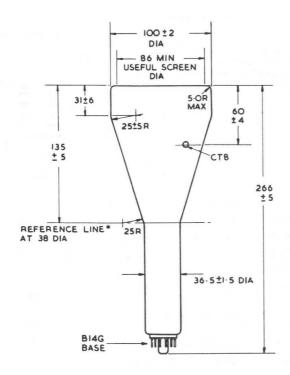
INTER-ELECTRODE CAPACITANCES

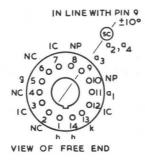
Cathode to all	c _{k-all}	3.5	pF
Grid to all	cg-all	10	pF

* Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

Second and fourth anode voltage	$v_{a2+a4-k}$	5.0	kV
First anode voltage	V _{a1-k}	400	V
Third anode voltage range for focus	Va3-k	0 to 400	V
Grid to cathode voltage range for cut-off of raster	v_{g-k}	-40 to -77	v
LD screen raster persistence to 10% (approx.)	4.0	s


TYPICAL OPERATION - Cathode modulation, voltages referred to grid


Second and fourth anode voltage	$V_{a2+a4-g}$	5.0	kV
First anode voltage	V _{a1-g}	400	V
Third anode voltage range for focus	Va3-g	0 to 400	V
Cathode to grid voltage range for cut-off of raster	v_{k-g}	36 to 66	v
LD screen raster persistence to 10% (approx.)	4.0	S

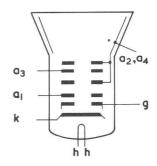
The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

TUBE WEIGHT (approximate) - 400 g

MOUNTING POSITION - unrestricted

All dimensions in mm

Not to be scaled


* Gauge 38 mm internal diameter, 50 mm long to slide freely over neck.

Issue 1, Page 3

GENERAL

Round face, 15 cm tube, 53° deflection 29.4 mm maximum neck diameter Electrostatic focus, magnetic deflection Straight gun, aluminised screen Clear glass

Heater voltage	v_h	6.3	V
Heater current	$I_{\mathbf{h}}$	0.3	A

ABSOLUTE RATINGS (voltages refer	rred to cathode)		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5†	k V
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	7.5	kV
Maximum third anode voltage	Va3(max)	+1000 to -500	V
Maximum first anode voltage	Val(max)	550	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	v _{h-k(pk)max}	400\$	v
Maximum impedance, grid to cathode (50 Hz)	$Z_{g-k(max)}$	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	$R_{g-k(max)}$	1.5	$\mathbf{M}\Omega$

All voltages referred to cathode

- $\dagger I_{a2+a4} = 0$
- § During a warming up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F15-101LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

0 to 400

25

36 to 66

4.0

S

INTER-ELECTRODE CAPACITANCES	S	*	†	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	cg-all	6.5	8.0	pF
* Holder capacitance balanced out.	0			
† Total capacitances including a typica	al B8H holder.			
TYPICAL OPERATION - Grid modula	ation, voltages re	ferred to ca	thode.	
Second and fourth anode voltage	$v_{a2+a4-k}$		9.0	kV
First anode voltage	v_{a1-k}		400	V
Third anode voltage range for focus	v_{a3-k}	0	to 400	V
Average peak to peak picture modulating voltage for $200\mu\text{A}$ cathod			29	v
Grid to cathode voltage range for cut-off of raster	v_{g-k}	-40	to -77	v
LD screen raster persistence to 10% (approx.)		4.0	S
TYPICAL OPERATION - Cathod	e modulation, vol	tages referi	red to grid	
Second and fourth anode voltage	$v_{a2+a4-g}$		9.0	kV
First anode voltage	Val-g		400	V

The LD screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

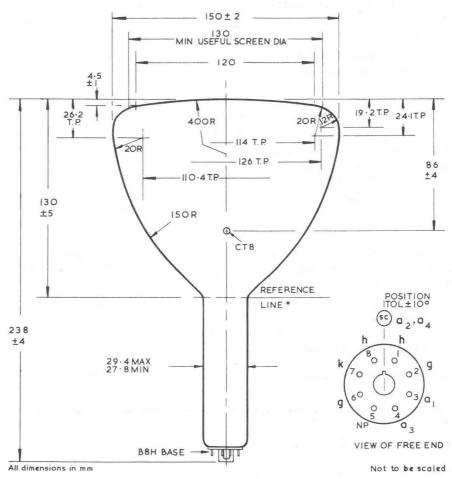
 v_{a3-g}

 v_{k-g}

TUBE WEIGHT (approximate) - 0.6 kg

modulating voltage for 200 µA cathode current

LD screen raster persistence to 10% (approx.)


MOUNTING POSITION - unrestricted

Third anode voltage range for focus

Cathode to grid voltage range for

Average peak to peak picture

cut-off of raster

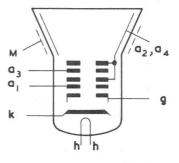
A straight line passing centrally through the neck will pass within $\pm\ 2$ mm of the centre of the screen.

* Determined by reference gauge No. 31

GENERAL

Round face, 16 cm (6 inch) tube, 37° deflection.

Electrostatic focus, magnetic deflection Straight gun, aluminised screen Clear glass, external conductive coating


29.4 mm maximum neck diameter.

Heater voltage

 v_h 6.3 V 0.3 A

Heater current

 I_h

ABSOLUTE	RATINGS	(voltages	referred	to	cathode)
ABSULUTE	KAIINGS	(VOITAGES	referred	U	cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$		18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$		10	kV
Maximum third anode voltage range	Va3(max)	+1000	to -500	V
Maximum first anode voltage	Val(max)		600	\mathbf{v}
Minimum first anode voltage	$V_{a1(min)}$		300	V
Maximum negative grid voltage	-Vg(max)		150	V
Maximum positive grid voltage	$v_{g(max)}$		0	V
Maximum heater to cathode voltage heater negative (d.c.) heater positive (d.c.)	V _{h-k(max)}		200 125	v v
Maximum peak heater to cathode voltage heater negative heater positive	vh-k(pk)max		300 250	v v
Maximum third anode current	Ia3(max)	±	15	μ A
Maximum first anode current	Ial(max)	±	15	μ A
Maximum heater to cathode resistance	R _{h-k(max)}		1.0	$M\Omega$
Maximum grid to cathode resistance	Rg-k(max)		1.5	$M\Omega$
Maximum grid to cathode impedance (50 Hz)	Zg-k(max)		500	$\mathbf{k}\Omega$
Maximum cathode to earth impedance (50 Hz)	Z _{k-e(max)}		100	$\mathbf{k}\Omega$

PHOSPHOR SCREEN

This tube is usually supplied with LD phosphor (F16-101LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

INTER-ELECTRODE CAPACIT	TANCES	
-------------------------	--------	--

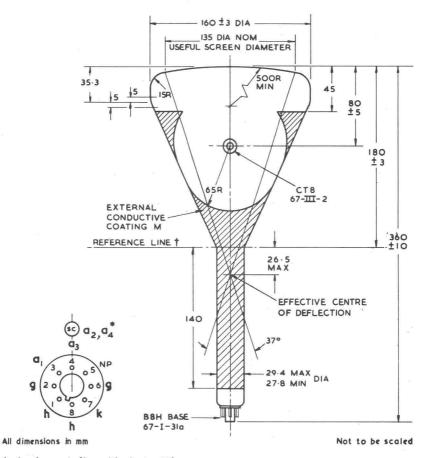
ck-all	< 6	. 0	pF
cg-all	< 10)	pF
c _{a2+a4} -M	75	50	pF
v_{a2+a4}	1	1	kV
v_{a3}	0 to	400	V.
v_{a1}	5	00	V
Vg-k*	-27 to	-44	v
V _k -g*	25 to	40	v
	2	5 †	v
	0	. 3	m m
	4	.0	S
	${^{c}}_{g-all}$ ${^{c}}_{a2+a4-M}$ ${^{v}}_{a2+a4}$ ${^{v}}_{a3}$ ${^{v}}_{a1}$ ${^{v}}_{g-k}$	V _{a2+a4} 14 V _{a3} 0 to V _{g-k*} -27 to V _{k-g*} 25 to	c_{g-all} < 10

The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontering per hour, the window will normally provide adequate protection.

- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.

TUBE WEIGHT (approximate) - 1.2 kg (2 lb 10 oz)


MOUNTING - unrestricted

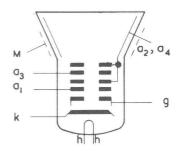
The tube should not be supported by the base alone and under no circumstances should the socket be used to support the tube.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

- * Anode cap in line with pin 4 ± 10°.
- † Determined by Reference Gauge No. 18. (See T.D.S. 5-0-91-18).


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 3.0 mm at the deflection centre and at a point 100 mm from the reference line.

GENERAL

Round face, 21cm tube, 41° deflection Electrostatic focus, magnetic deflection Straight gun, aluminised screen Clear glass, external conductive coating 35.5 mm maximum neck diameter

ABSOLUTE RATINGS (voltages referred to cathode)

Contract to the country contract to the second contract to the contract of the	A SANTAN MANAGEMENT OF THE SANTAN AND A SANT		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18 †	kV
Minimum second and fourth anode voltage	V _{a2+a4(min)}	10	kV
Maximum third anode voltage range	v_{a3}	+1000 to -300	V
Maximum first anode voltage	$V_{a1(max)}$	800	V
Minimum first anode voltage	V _{al(min)}	400	V
Maximum negative grid voltage	-Vg(max)	150	V
Minimum peak negative grid voltage	-vg(min)	1.0	V
Maximum heater to cathode voltage heater negative (d.c.) heater positive (d.c.)	V _h -k(max)	200 125	V V
Maximum peak heater to cathode voltage heater negative heater positive	Vh-k(pk)max	300 250	V V
Maximum first anode current	$I_{a1(max)}$	±15	μ A
Maximum third anode current	$I_{a3(max)}$	±15	μA
Maximum heater to cathode resistance	R _{h-k} (max)	1.0	$\mathbf{M}\Omega$
Maximum grid to cathode resistance	$R_{g-k(max)}$	1.5	$\mathbf{M}\Omega$
Maximum grid to cathode impedance (50 Hz)	$Z_{g-k(max)}$	500	$k\Omega$
Maximum cathode to earth impedance (50 Hz) $$	$Z_{k-e(max)}$	100	$k\Omega$

- * For series operation the surge heater voltage must not exceed 9.5V r.m.s. when the the supply is switched on. When used in a series heater chain a current limiting device may be necessary in the circuit to ensure that this voltage is not exceeded.
- † Adequate precautions should be taken to ensure that the equipment is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube.

PHOSPHOR SCREEN

This tube is usually supplied with LD phosphor (F21-10LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 4, Page 1

Radar Tube F21-10..

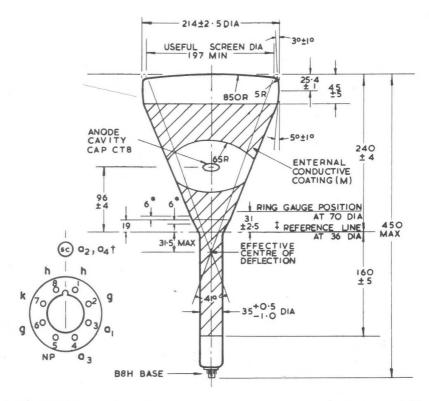
INTER-ELECTRODE CAPACITANCES				
Cathode to all	ck-all	<	6.0	pF
Grid to all	cg-all	<	10	pF
Anodes 2 and 4 to external conductive coating M (approx.)	^c a2+a4-M		1000	pF
TYPICAL OPERATION				
Second and fourth anode voltage	V_{a2+a4}		14	kV
Third anode voltage range for focus	v_{a3}	0	to 400	v
First anode voltage	Val		600	v
Grid to cathode voltage for visual extinction of focused spot	v_{g-k^*}	-32	to -48	v
Cathode to grid voltage for visual extinction of focused spot	v_{k-g*}	30	to 45	v
Average peak to peak modulating voltage for modulation up to 150 μA			25 †	V
LD screen persistence to 10% (approximate)			4.0	S

The LD screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.

TUBE WEIGHT (approximate) - 2.6 kg (5 lb 10 oz)


MOUNTING - unrestricted

The tube should not be supported by the base alone and under no circumstances should the socket be used to support the tube.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

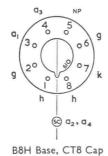
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

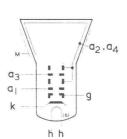
Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

All dimensions in mm

Not to be scaled

- * Weld is contained within this area (12 mm)
- † Anode cap in line with spigot ± 10°.
- ‡ Gauge 36 mm I/D x 100 mm long to slide freely over neck.


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at a point 102 mm from the reference line.

RADAR TUBES

Maintenance Type

GENERAL

Round Face	$-8\frac{1}{2}$ in. Diameter	Deflection Angle -65° Diameter	
Electrostatic Fo	cus—Magnetic Deflection	Aluminised Screen —Orange Trace	
Straight Gun	-Non Ion Trap	LC Phosphor —Very Long Persist	ence
	External Cor	ductive Coating	
	Heater Voltage	V _h 6·3* V	
	Heater Current	I _h 0⋅3 A	

ABSOLUTE RATINGS

Maximum Second and Fourth Anode Voltage Minimum Second and Fourth Anode Voltage Maximum Third Anode Voltage (Range)	V _{a2,a4(max)} V _{a2,a4(min)}	18† 10 0 to -300	kV kV V
Maximum First Anode Voltage	V _{a3(max)} +1000 V _{a1(max)}	800	V
Minimum First Anode Voltage Maximum Heater to Cathode Voltage,	V _{a1(min)} V _{h-k(max)}	400	٧
Heater Negative (d.c.)	ii k(iiikk)	200	V
Heater Positive (d.c.)		125	V
Maximum Peak Heater to Cathode Voltage,	Vh-k(pk)max		
Heater Negative		300	V
Heater Positive		250	V
Maximum Negative Grid Voltage	$-V_{g(max)}$	150	V
Minimum Peak Negative Grid Voltage	-Vg(pk)min	1.0	V
Maximum First Anode Current	la1(max)	± 15	μA
Maximum Third Anode Current	la3(max)	± 15	μA
Maximum Heater to Cathode Resistance	$R_{h-k(max)}$	1.0	MΩ
Maximum Grid to Cathode Resistance	$R_{g-k(max)}$	1.5	$M\Omega$
Maximum Grid to Cathode Impedance (f=50 Hz)	$Z_{g-k(max)}$	500	kΩ
Maximum Cathode to Earth Impedance (f=50 Hz)	Zk-e(max)	100	$k\Omega$

All voltages referred to cathode.

- * For series operation the surge heater voltage must not exceed 9.5V R.M.S. when the supply is switched on. When used in a series heater chain a current limiting device may be necessary in the circuit to ensure that this voltage is not exceeded.
- † Adequate precautions should be taken to ensure that the associated equipment is protected from damage which may be caused by a possible high voltage flashover within the cathode ray tube.

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

INTER-ELECTRODE CAPACITANCES

Grid to all Cathode to all	C _{g-all} C _{k-all}	<10 <6·0	pF pF
Anode 2 and Anode 4 to External Conductive Coating (approx.)	C _{a2,a4-} M	750	pF
TYPICAL OPERATIO	N		
Second and Fourth Anode Voltage	$V_{a2.a4}$	14	kV
Third Anode Voltage for Focus (Range)	V _{a3}	0 to 400	V
First Anode Voltage	V_{a1}	600	V
Grid to Cathode Voltage for visual extinction of focused spot	V _{g-k} *	-32 to -48	٧
Cathode to Grid Voltage for visual extinction of focused spot	V_{k-g}^*	30 to 45	٧
Average Peak to Peak Modulating Voltage for modulation up to 150 µA		25†	٧
LC Screen Persistence		200‡	S

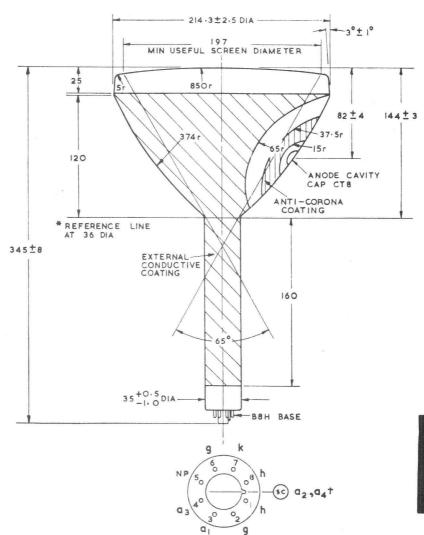
The LC screen is liable to burn even at low values of beam current if operated with stationary or slow-moving spot.

MOUNTING POSITION: Any

The tube should not be supported by the base alone. Under no circumstances should the socket be used to support the tube.

Tube Weight (approx.)—Net 1.7 kg (3 lb 12 oz)

Note


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

^{*} For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.

[†] Grid modulation from spot cut-off.

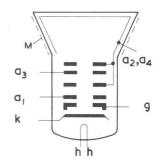
[‡] Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

All dimensions in mm.

Not to be scaled.

Notes

* Gauge 36 mm $I/D \times 100$ mm long to slide freely over neck.


† Anode cap in line with base key, tolerance \pm 15°.

The tube should not be handled in the region of the anti-corona coating.

GENERAL

Round face, 21 cm dia.tube 60° deflection. Clear glass. Aluminised screen. Electrostatic focus, magnetic deflection 29.4 mm maximum neck diameter.

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

ABSOLUTE RATINGS - voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage range	Va3(max)	± 500	V
Maximum first anode voltage	$V_{a1(max)}$	550	V
Maximum negative grid voltage	-Vg(max)	200	V
Maximum peak negative grid voltage	-vg(pk)max	400	V
Minimum negative grid voltage	-Vg(min)	1.0	V
Maximum heater to cathode voltage heater negative (d.c.)	V _{h-k(max)}	200	V
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	400*	V
Maximum impedance, grid to cathode (50 $\rm Hz)$	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

^{*} During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F21-13OLD)giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

RADAR Tubes

INTER-ELECTRODE CAPACITANCES

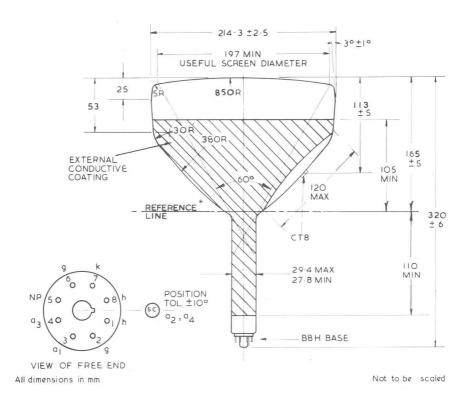
Cathode to all	c _{k-all}	3.0*	рF
Grid to all	cg-all	6.5*	pF
Anodes 2 and 4 to external conductive coating M (approx.)	c _{a2+a4-M}	800	рF

^{*} Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

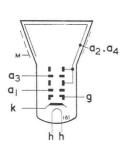
Second and fourth anode voltage	v_{a2+a4}	14	kV
First anode voltage	v_{a1}	400	V
Third anode voltage range for focus	v_{a3}	0 to + 400	V
Grid to cathode voltage range for cut-off of spot	v_g	-34 to -78	V
LD screen persistence to 10% (approx.)		4.0	S

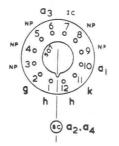
The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

MOUNTING

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.


When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.


TUBE WEIGHT (approximate) - net 3 kg

There is an annular region of anti-corona coating with an external diameter of $75~\mathrm{mm}$ surrounding the CT8 cap, the tube should not be handled in this region.

* Determined by reference line gauge No. 15 (See T.D.S. No. 5-0-91-15)

B12A (7 pin) Base, CT8 Cap

GENERAL

Round Face —9 in. Diameter
Electrostatic Focus—Magnetic Deflection
Straight Gun —Non Ion Trap
External Conductive Coating
Heater Voltage
Heater Current

Round Face —60° Diameter
Aluminised Screen—Orange Trace
LD Phosphor —Long Persistence
Vh 6·3 V

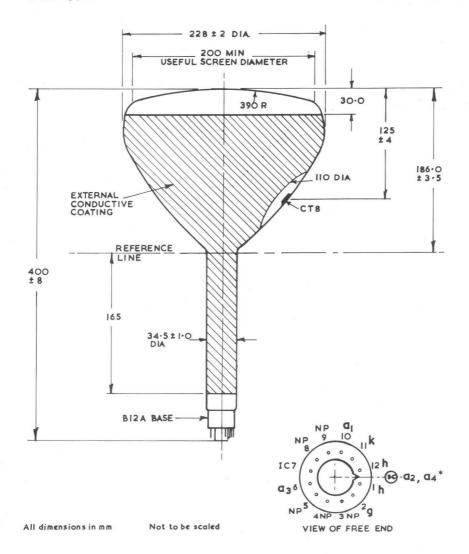
RATINGS

Maximum Second and Fourth Anode Voltage	Va2.a4(max)	15*	
Minimum Second and Fourth Anode Voltage	Va2,a4(min)	8.0	kΥ
Maximum Third Anode Voltage	Va3(max)	± 500	V
Maximum First Anode Voltage	Va1(max)	500	٧
Maximum Heater to Cathode Voltage,	Vh-k(max)		
Heater Negative (d.c.)		200	V
Maximum Peak Heater to Cathode Voltage,	Vh-k(pk)max		
Heater Negative		400†‡	V

- * 15kV is a design centre rating, the absolute rating of 16.5 kV must not be exceeded.
- † Absolute rating.
- ‡ During a warming-up period not exceeding 1 minute.

INTER-ELECTRODE CAPACITANCES

Cathode to All	Ck-all	7.0§ pF
Grid to All	c _{g-all}	9.0§ pF
Anode 2 and Anode 4 to External Conductive Coating	C _{22,24-M}	750 approx pF
§ These capacities include a typical duodecal holder.		


TYPICAL OPERATION—Grid Modulation (Voltages referred to cathode)

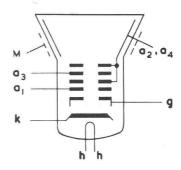
Second and Fourth Anode Voltage	Va2.a4	12	kV
First Anode Voltage	V_{a1}	300	V
Third Anode Voltage for Focus (Range)	V _{a3}	-300 to +300	V
Grid to Cathode Voltage for Cut-off of Raster	V _g	-30 to -78	V
Average Peak to Peak Modulating Voltage for	•		
Modulation up to $150\mu A$		24	V
Line Width $(I_{a2+a4}=50\mu A)$		0.4 to 0.6	mm
LD Screen Persistence to 10% (approximate)		4.0	S

The LD screen is liable to burn even at low values of beam current if operated with stationary or slow-moving spot.

MOUNTING POSITION—Unrestricted

Net Tube Weight (approx) 2.7 kg (6 lb)

* Anode cap in line with spigot ± 15°


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102mm from the reference line.

GENERAL

Round face, 22 cm tube, 60° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap External conductive coating Aluminised screen

Heater voltage V_h 6.3 Heater current I_h 0.3 A

ABSOLUTE RATINGS - Voltages referred to cathode

$V_{a2+a4(max)}$	16.5	kV
$V_{a2+a4(min)}$	8.0	kV
Va3(max)	± 500	V
Val(max)	500	V
$v_{h-k(max)}$	200	v
vh-k(pk)max	400†	v
	V _{a2+a4(min)} V _{a3(max)} V _{a1(max)} V _{h-k(max)}	Va2+a4(min) 8.0 Va3(max) ± 500 Va1(max) 500 Vh-k(max) 200 Vh-k(pk)max

[†] During a warming-up period not exceeding 1 minute.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F22-11LD) giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

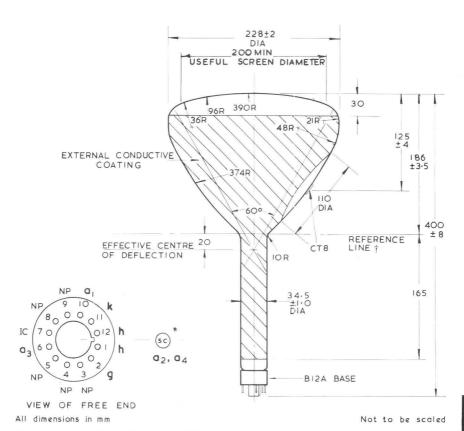
INTER-ELECTRODE CAPACITANCES

Cathode to all	ck-all	7.0*	pF
Grid to all	cg-all	9.0*	pF
Anodes 2 and 4 to external conductive coating, M (approx.)	^C a2+a4-M	750	pF

* Including a typical duodecal holder.

TYPICAL OPERATION - grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}		12		kV
Third anode voltage range for focus	v_{a3}	-300	to -	+300	V
First anode voltage	v_{a1}		300)	V
Grid to cathode voltage for cut-off of raster	v_{g-k}	-30	to	-78	V
Average peak to peak modulating voltage for modulation up to 150 μA			24		v
Line width at $I_{a2+a4} = 50 \mu A$		0.4	to	0.6	mm
LD screen persistence to 10% (approximate)			4.0		S

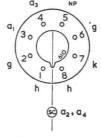

The LD screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

TUBE WEIGHT (approximate) - 2.7 kg (6 lb)

MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e,h.t. supply.

When flashover protection is incorporated the chassis return path of the external conductive coating (M) should be made in a manner appropriate to the protection system employed.


* Anode cap in line with spigot ± 10°. † Determined by 36.1 diameter ring gauge. There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed $4.0~\mathrm{mm}$ at the deflection centre and $4.5~\mathrm{mm}$ at a point $102~\mathrm{mm}$ from the reference line.

F31-10LC F31-10LD

Radar Tube

a₃ a₁ g

B8H Base, CT8 Cap

GENERAL

Round Face	—12 in. Diameter	Deflection	Angle	-40° Diameter
Electrostatic Fo	cus —Magnetic Deflection	Aluminised	Screen	n —Orange Trace
Straight Gun	-Non Ion Trap	LC Phosph	or	-Very Long Persistence
External Condu		LD Phosph	or	-Long Persistence
	Heater Voltage	V_h	6.3	V
	Heater Current	l _b	0.3	Α

RATINGS.

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	16*	kV
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	kV
Maximum Third Anode Voltage Range	V _{a3(max)}	+1000 to -300	V
Maximum First Anode Voltage	V _{a1(max)}	800	V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	$V_{h-k(max)}$	200	٧
Maximum Peak Heater to Cathode Voltage, Heater Negative	Vh-k(pk)max	300†‡	· V
Minimum Negative Grid Voltage	$-V_{g(min)}$	1.0	V
Maximum Negative Grid Voltage	$-V_{g(max)}$	200	V
Maximum Grid to Cathode Resistance	$R_{g-k(max)}$	1.5	$M\Omega$

All voltages referred to cathode.

- * 16 kV is a design centre rating, the absolute rating of 18.5 kV must not be exceeded.
- † Absolute rating.
- During a warming-up period not exceeding 1 minute.

INTER-ELECTRODE CAPACITANCES

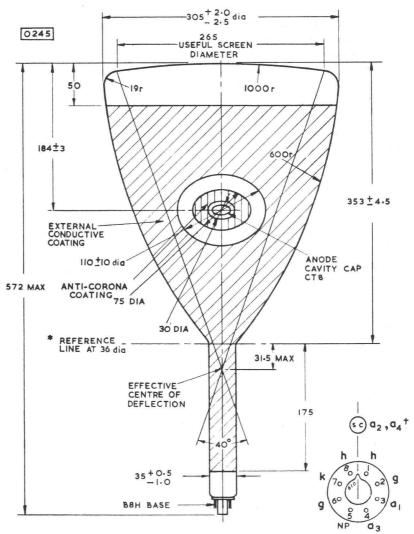
Grid to all	C _{g-all}	<10	pF
	C _{k-all}	< 6·0	pF
Anode 2 and Anode 4 to External Conductive Coating (approx)	Ca2,a4-M	2500	рF

TYPICAL OPERATION—Grid Modulation (Voltages referred to Cathode)

Second and Fourth Anode Voltage	$V_{a2,a4}$	15	kV
First Anode Voltage	V_{a1}	600	٧
Third Anode Voltage for focus (Range)	V_{a3}	-300 to +300	V
Grid to Cathode Voltage for visual extinction of focused spot	Vg	-40 to -85	٧
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		25	٧
Persistence of LC screen		200§	S
Persistence of LD screen		100§	s

The LC and LD screens are liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.


§ Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

MOUNTING POSITION—Unrestricted

Net Tube Weight (approx)—13 lb 8 oz (6.2 kg)

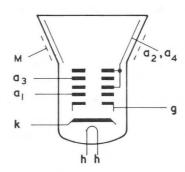
Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

Radar Tube

All dimensions in mm.

Not to be scaled.

- * Gauge 36 mm I/D 100 mm long to slide freely over neck.
- \dagger Anode cap in line with base key, tolerance $\pm 15^{\circ}$.


The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.

The tube should not be handled in the region of the anti-corona coating.

RADAR

GENERAL

Round face, 12 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gum, non ion trap External conductive coating Aluminised screen Heater voltage V_h 6.3 \dot{V} Heater current I_h 0.3 A

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	V _{a3(max)}	± 500	V
Maximum first anode voltage	$v_{a1(max)}$	500	v
Minimum first anode voltage	$v_{a1(min)}$	200	v
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	V
Maximum heater to cathode voltage	$V_{h-k(max)}$	150	v
Maximum heater to cathode resistance with separate heater transformer	$R_{h-k(max)}$	100 1.0	$\mathbf{k}\Omega$ $\mathbf{M}\Omega$

PHOSPHOR SCREEN

This tube is usually supplied with either LC phosphor (F31-11LC) giving an orange trace of very long persistence or LD phosphor (F31-11LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

The F31-11LD is also known as the CV5819.

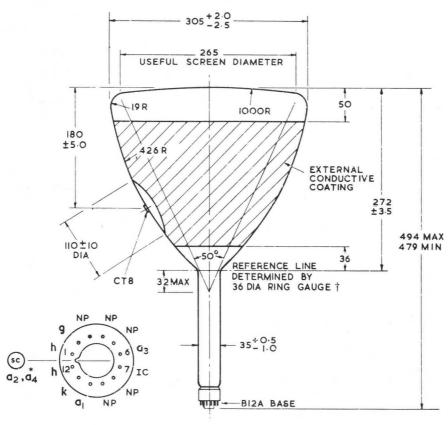
Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	< 8.0	pF
Grid to all	cg-all	< 8.0	pF
Anodes 2 and 4 to external conductive coating, M (approx.)	^c a2+a4-M	1500	рF
TYPICAL OPERATION Could medulation (welt-	and unformed t	+	

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}	14	kV
Third anode voltage range for focus	v_{a3}	-300 to +300	V
First anode voltage	v_{a1}	300	V
Grid to cathode voltage for cut-off	v_g	-30 to -70	V


LC screen persistence to 10% (approxima	te) 25 s
LD screen persistence to 10% (approxima	te) 4.0 s

The LC and LD screens are liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

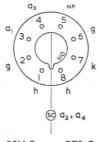
TUBE WEIGHT (approximate) - 5.4 kg (12 lb)

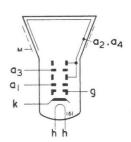
MOUNTING POSITION - unrestricted

All dimensions in mm

Not to be scaled

- * Anode cap in line with spigot ± 15°.
- † Gauge 36 mm I/D x 100 mm long to slide freely over neck.


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at a point 102 mm from the reference line.

F31-12..

Radar Tube

B8H Base, CT8 Cap

GENERAL

		GLI	ALIVAL	
R	ound Face	-12 inch Diameter	Deflection Angle	e —40° Diameter
EI	ectrostatic Foc	us —Magnetic Deflection	Aluminised Scre	en —Orange Trace
St	raight Gun	-Non Ion Trap	LC Phosphor	—∀ery Long Persistence
		External Cor	nductive Coating	

Heater Voltage	V_h	6.3	V
Heater Current	Ih	0.3	Α

RATINGS

KAIIN	GS		
Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	16*	kV
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	kV
Maximum Third Anode Voltage Range	$V_{a3(max)}$	+1000 to -300	V
Maximum First Anode Voltage	$V_{a1(max)}$	800	V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	$V_{h-k(max)}$	200	٧
Maximum Peak Heater to Cathode Voltage, Heater Negative	Yh-k(pk)max	300†‡	٧
Minimum Negative Grid Voltage	$-V_{g(min)}$	1.0	V
Maximum Negative Grid Voltage	$-V_{g(max)}$	200	V
Maximum Grid to Cathode Resistance	$R_{g-k(max)}$	1.5	$M\Omega$

All voltages referred to cathode.

- * 16 kV is a design centre rating, the absolute rating of 18.5 kV must not be exceeded.
- † Absolute rating.
- ‡ During a warming-up period not exceeding 1 minute.

INTER-ELECTRODE CAPACITANCES

Grid to all	C _{g-all}	<10	pF
Cathode to all	C _{k-all}	< 6.0	pF
Anode 2 and Anode 4 to External Conductive			
Coating (approx)	Ca2 a4-M	2500	ρF

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F31-12LC) giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

Persistence of LC screen

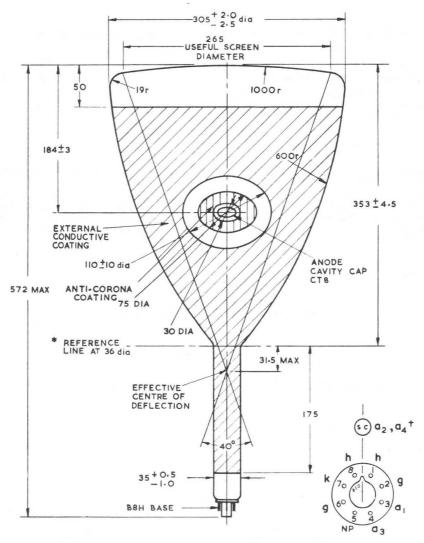
R	S
PA	8
₹	2
Œ	

Second and Fourth Anode Voltage	$V_{a2,a4}$	16	kV
First Anode Voltage	V_{a1}	600	V
Third Anode Voltage for focus (Range)	V_{a3}	-150 to $+450$	٧
Grid to Cathode Voltage for visual extinction of			

Grid to -44 to -70 focused spot ٧g Average Peak to Peak Modulating Voltage for 25 modulation up to 150 μ A 2008

TYPICAL OPERATION—Grid Modulation (Voltages referred to Cathode)

The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

§ Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

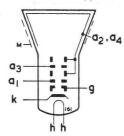
MOUNTING POSITION—Unrestricted

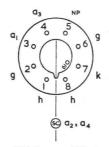
Net Tube Weight (approx)—6.2 kg (13 lb 8 oz)

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard S base see separate sheet.

All dimensions in mm.

Not to be scaled.


- * Gauge 36 mm I/D 100 mm long to slide freely over neck.
- \dagger Anode cap in line with base key, tolerance $\pm 15^{\circ}$.


The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.

The tube should not be handled in the region of the anti-corona coating.

Issue 1, Page 3

Maintenance Type

B8H Base, CT8 Cap

GENERAL

Round Face —12 in. Diameter Electrostatic Focus —Magnetic Deflection

Deflection Angle —40° Diameter Aluminised Screen —Orange Trace

Straight Gun —Non Ion Trap

LC Phosphor —Very Long Persistence

External Conductive Coating

V_h 6·3 V I_b 0·3 A

Heater Voltage Heater Current

RATINGS

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	16*	kV
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	kV
Maximum Third Anode Voltage Range	V _{a3(max)}	+1000 to -300	٧
Maximum First Anode Voltage	$V_{a1(max)}$	800	V
Maximum Heater to Cathode Voltage, Heater Negative (d.c.)	$V_{h-k(max)}$	200	٧
Maximum Peak Heater to Cathode Voltage, Heater Negative	Vh-k(pk)max	300†‡	٧
Minimum Negative Grid Voltage	$-V_{g(min)}$	1.0	٧
Maximum Negative Grid Voltage	$-V_{g(max)}$	200	٧
Maximum Grid to Cathode Resistance	$R_{g-k(max)}$	1.5	$M\Omega$

All voltages referred to cathode.

- * 16 kV is a design centre rating, the absolute rating of 18·5 kV must not be exceeded.
- † Absolute rating.
- ‡ During a warming-up period not exceeding 1 minute.

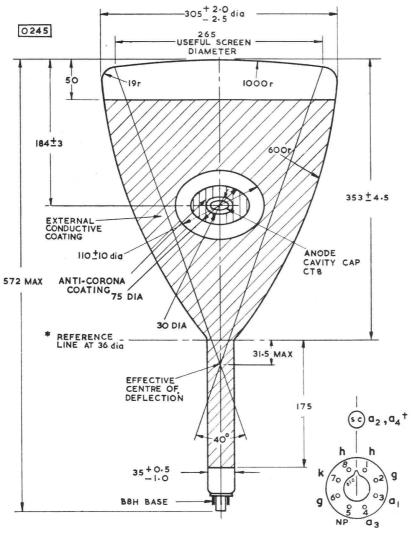
INTER-ELECTRODE CAPACITANCES

Grid to all	Cg-all	<10	pΕ
Cathode to all	Ck-all	< 6.0	pF
Anode 2 and Anode 4 to External Conductive			
Coating (approx)	Ca2, a4-M	2500	рF

TYPICAL OPERATION—Grid Modulation (Voltages referred to Cathode)

Second and Fourth Anode Voltage	$V_{a2,a4}$	15	kV
First Anode Voltage	V_{a1}	600	V
Third Anode Voltage for focus (Range)	V_{a3}	-300 to +300	٧
Grid to Cathode Voltage for visual extinction of focused spot	V_{g}	-40 to -85	· V
Average Peak to Peak Modulating Voltage for modulation up to 150 μ A		25	٧
Line Width ($I_{a2} + {}_{a4} = 50\mu A$)		0.5 to 0.7	mm
Persistence of LC screen		200§	s

The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

§ Persistence is defined as the time taken from the cessation of continuous excitation for the luminance to decay from 1 foot lambert to approximately 1% of that value.

MOUNTING POSITION—Unrestricted

Net Tube Weight (approx)—13 lb 8 oz (6·2 kg)

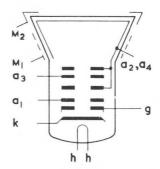
Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

All dimensions in mm.

Not to be scaled.

- * Gauge 36 mm I/D 100 mm long to slide freely over neck.
- † Anode cap in line with base key, tolerance $\pm 15^{\circ}$.

The projected neck axis shall pass within 3.5 mm of the geometric centre of the tube. Neck eccentricity with respect to the geometric centre of the tube face shall not exceed 4.0 mm at the deflection centre and 4.5 mm at 102 mm from the reference line.


The tube should not be handled in the region of the anti-corona coating.

Maintenance Type

GENERAL

Rectangular face, 12 inch, 110° diagonal Rimband reinforced envelope 29.4mm maximum neck diameter Electrostatic focus, magnetic deflection Straight gun, aluminised screen Grey glass, 50% transmission (approx.) External conductive coating

Heater voltage	v_h	6.3	V
Heater current	$I_{\mathbf{h}}$	0.3*	A

DESIGN CENTRE RATINGS

Maximum second and fourth anode voltage	$V_{a2+a4}(max)$	13.5†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10.5	kV
Maximum third anode voltage	Va3(max)	+1000 to -50	0 V
Maximum first anode voltage	Val(max)	550	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	v _{h-k(pk)max}	400\$	v
Maximum impedance, grid to cathode (50 Hz) $$	$Z_{g-k(max)}$	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

Ali voltages referred to cathode

- * In a series heater chain the CRT should always be connected at the chassis end.
- † The absolute rating of 16.5 kV must not be exceeded.
- § During a warming up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LD phosphor (F31-14LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix letter after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	рF
Grid to all	cg-all	6.5	8.0	рF
Anodes 2 and 4 to coating M_1 (approx.)	ca2+a4-M1	450		pF
Anodes 2 and 4 to band M ₂ (approx.)	c _{a2+a4-M2}	150		pF
* Holder capacitance balanced out.				
† Total capacitances including a typical	B8H holder.			
TYPICAL OPERATION - Grid modulat	ion, voltages refe	rred to cathod	e.	
Second and fourth anode voltage	$V_{a2+a4-k}$	12		kV
First anode voltage	v_{a1-k}	400		V
Third anode voltage range for focus	v_{a3-k}	0 to 4	00	V
Final anode current (peak)	ia2+a4(pk)	200		μA
Average peak to peak picture modulating voltage		29		V
Grid to cathode voltage range for cut-off of raster	v_{g-k}	-40 to -	77	V
LD screen persistence to 10% (approx.)		4.0		S
TYPICAL OPERATION - Cathode modu	lation, voltages re	eferred to grid	Į.	
Second and fourth anode voltage	$V_{a2+a4-g}$	12		kV
First anode voltage	V _{a1-g}	400		V
Third anode voltage range for focus	V _{a3-g}	0 to 4	00	V
Final anode current (peak)	ia2+a4(pk)	200		μA
Average peak to peak picture modulating voltage		25		V
Cathode to grid voltage range for cut-off of raster	v_{k-g}	36 to 6	6	V
LD screen persistence to 10% (approx.)		4.0		S

The LD screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

PICTURE CENTRING

Maximum magnet flux density at centre of neck should not be less than	15	Gs
Maximum distance of centre of magnetic field from reference line	53	mm

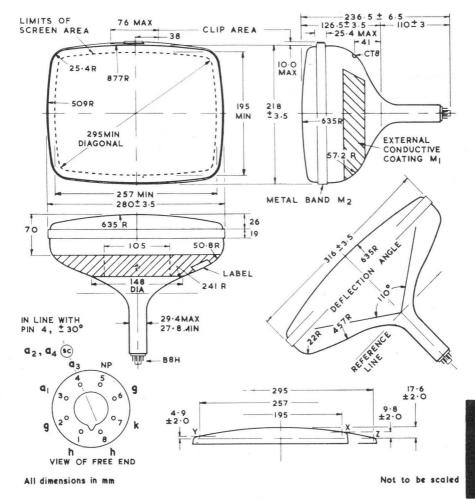
DEFLECTION ANGLES

Height 80° Width 99° Diagonal 110°

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal rimband (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c. / d.c. equipment, for example $2\,M\Omega$.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 2.7 kg (6.0 lb)

† Determined by Reference Gauge No.16. (JEDEC No. 126)

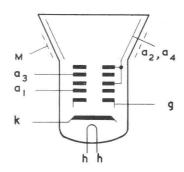
Radar Tube

The F31-111.. is the F31-11.. with increased line width.

PHOSPHOR SCREEN

This type is usually supplied with an LC phosphor (F31-111LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

Thorn Radio Valves and Tubes Limited



RADAR TUBES

GENERAL

Round face, 12 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gun, aluminised screen Clear glass, external conductive coating 35.5 mm maximum neck diameter

Heater voltage	v_h	6.3	V
Heater current	$I_{\mathbf{h}}$	0.3	A

ABSOLUTE RATINGS (voltages referred to cathode)

ABSOLUTE RATINGS (Voltages Teleffed to	cathode)		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	V _{a3(max)}	+1000 to -300	V
Maximum first anode voltage	V _{a1(max)}	800	V
Minimum first anode voltage	$V_{a1(min)}$	400	V
Maximum negative grid voltage	-Vg(max)	150	V
Minimum negative grid voltage	$-V_{g(min)}$	1.0	V
Maximum heater to cathode voltage heater negative (d.c.) heater positive (d.c.)	$v_{h-k(max)}$	200 150	v v
Maximum peak heater to cathode voltage heater negative heater positive	vh-k(pk)max	300 250	V V
Maximum heater to cathode resistance	Rh-k(max)	1.0	$\mathbf{M}\Omega$
Maximum grid to cathode resistance	Rg-k(max)	1.5	$M\Omega$
Maximum grid to cathode impedance (50 Hz)	$z_{g-k(max)}$	500	$k\Omega$
Maximum cathode to earth impedance (50 Hz)	Z _{k-e(max)}	100	$k\Omega$

PHOSPHOR SCREEN

This tube is usually supplied with LD phosphor (F31-112LD) giving an orange trace of very long persistence. Other phosphors can be made available to special order. .

NECK LENGTH

This tube has an extended neck length to accommodate an auxiliary high frequency deflector coil.

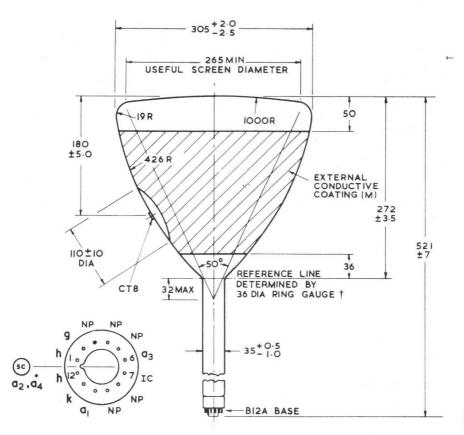
Thorn Radio Valves and Tubes Limited

	INTER-	ELECTRODE	CAPACITANCES
--	--------	-----------	--------------

c _{k-all}	3.5	pF
cg-all	7.5	pF
c _{a2+a4-M}	1500	pF
V_{a2+a4}	14	kV
v_{a3}	0 to 400	V
v_{a1}	600	V
Vg-k*	-32 to -48	v
v _{k-g*}	30 to 45	v
	25 †	v
	25	S
	4.0	s
	cg-all ca2+a4-M Va2+a4 Va3 Va1 Vg-k*	Cg-all 7.5 Ca2+a4-M 1500 Va2+a4 14 Va3 0 to 400 Va1 600 Vg-k* -32 to -48 Vk-g* 30 to 45 25 † 25

The LC and LD screens are liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16~kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5~milliröntgens per hour, the window will normally provide adequate protection.


- * For grid modulation, all voltages are measured with respect to the cathode. For cathode modulation, all voltages are measured with respect to the grid.
- † Grid modulation from spot cut-off.

TUBE WEIGHT (approximate) - 5.4 kg (12 lb)

MOUNTING - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

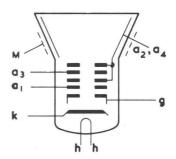
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

All dimensions in mm

Not to be scaled

- * Anode cap in line with spigot ± 10°.
- † Gauge 36 mm I/D x 100 mm long to slide freely over neck.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The projected neck axis shall pass within $3.5\;\mathrm{mm}$ of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed $4.0~\mathrm{mm}$ at the deflection centre and $4.5~\mathrm{mm}$ at a point $102~\mathrm{mm}$ from the reference line.

It is recommended that the deflector coil assembly including ''position' and 'write' coils should not extend further than 100 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

GENERAL

Round face, 16 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap Clear glass External conductive coating Aluminised screen 35.5 mm maximum neck diameter v_h V Heater voltage 6.3 Heater current 0.3

ABSOLUTE RATINGS (voltages referred to cathode)

Ih

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	20	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	$v_{a3(max)}$	± 500	v
Maximum first anode voltage	$v_{a1(max)}$	500	V
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	$-v_{g(min)}$	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	200	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	400*	v

A

PHOSPHOR SCREEN

This tube is usually supplied with LC phosphor (F41-12LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 4, Page 1

^{*} During a warming up period not exceeding one minute.

RADAR TUBES

INTER-ELECTRODE CAPACITANCES

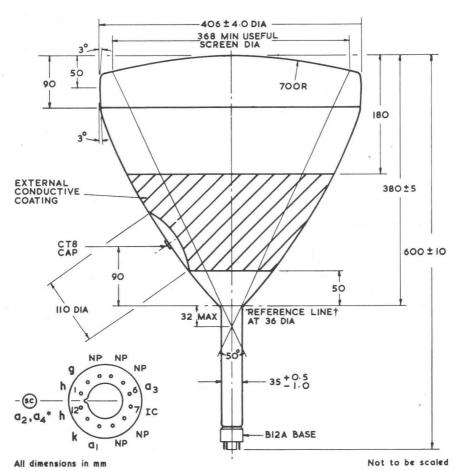
		*	+	
Cathode to all	c _{k-all}	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	ca2+a4-M	1200		pF

- * Holder capacitance balanced out.
- † Total capacitances including a typical B12A duodecal holder.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	V_{a2+a4}	15	kV
Third anode voltage range for focus	v_{a3}	-300 to +300	v
First anode voltage	v_{a1}	300	v
Grid to cathode voltage for cut-off of raster	v_g	-40 to -80	v
Average peak to peak modulating voltage for modulation up to 150 μA		24	v
LC screen persistence to 10% (approximate)		25	s

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safe-guard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 11.8 kg (26 lb)

MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

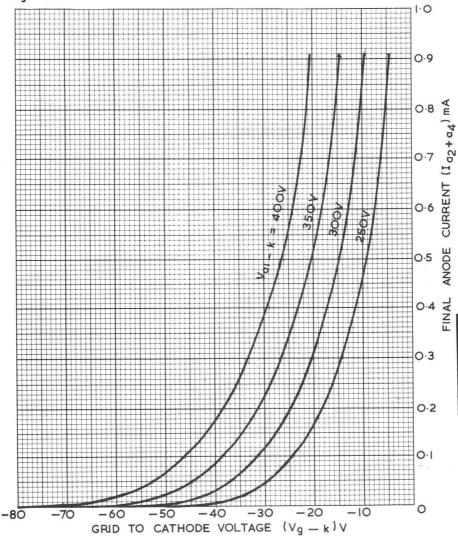
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

*. Anode cap in line with spigot ± 10°

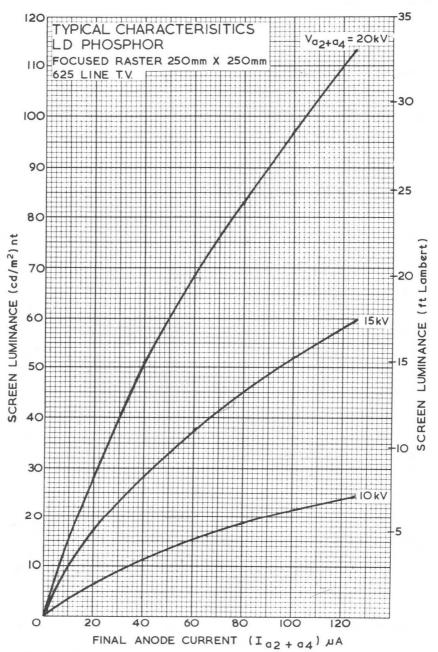
† Gauge 36 I/D x 100 long to slide freely over neck.

There is an annular region of anti-corona coating with an external diameter of $75~\mathrm{mm}$ surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face. The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

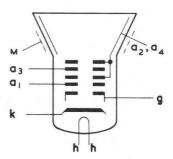

GRID MODULATION I_{a2+a4}/V_g-k

 $V_{02} + 04 = 10$ to 20 kV


FIGURES FOR EXTINCTION OF FOCUSED SPOT

 $V_{aj} - k$ 250 300 350 400

 V_{g-k} -50 -60 -70 -80


Page C1, Issue 1.

Page C1, Issue 1.

RADAR TUBES

GENERAL Round face, 16 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap Clear glass External conductive coating Aluminised screen 35.5 mm maximum neck diameter

ABSOLUTE RATINGS (voltages referred to cathode)

KATINGS			
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	20	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	$v_{a3(max)}$	± 500	V
Maximum first anode voltage	$V_{a1(max)}$	500	V
Maximum negative grid voltage	$-v_{g(max)}$	200	v
Minimum negative grid voltage	$-v_{g(min)}$	1.0	V
Maximum heater to cathode voltage heater negative (d.c.)	$v_{h-k(max)}$	200	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	400*	v

^{*} During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LC phosphor (F41-13LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 24 Page 1

Radar Tube

INTER-ELECTRODE CAPACITANCES

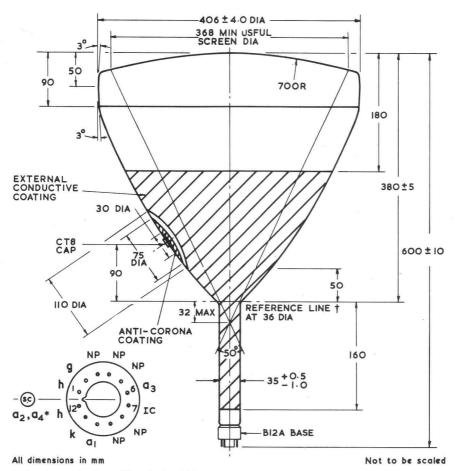
		*	+	
Cathode to all	ck-all	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	ca2+a4-M	1200		pF

- * Holder capacitance balanced out.
- † Total capacitances including a typical B12A duodecal holder.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltag	e V _{a2}	+a4	15	kV
Third anode voltage range for	focus V _{a3}	-300	to +300	V
First anode voltage	v_{a1}		300	V
Grid to cathode voltage for cut	-off of raster Vg	-40	to -64	V
Average peak to peak modulati modulation up to 150 μA	ng voltage for		24	v
LC screen persistence to 10%	(approximate)		25	s

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.


If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 11.8 kg (26 lb)

MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

- * Anode cap in line with spigot ± 10°
- † Gauge 36 I/D x 100 long to slide freely over neck.

The tube should not be handled in the region of the anti-corona coating.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face. The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The F41-14.. is the F41-12.. with an increased line width* of 0.5 to 0.7 mm at $I_{\rm A2}$ + $a_{\rm 4}$ = 50 $\mu A_{\rm *}$

* Microscope measurement.

TUBE WEIGHT (approximate) - 11.8 kg (26 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-14LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-12.. data sheets.

Radar Tube

OBSOLETE TYPE

The F41-12.. is the replacement type for the F41-120..

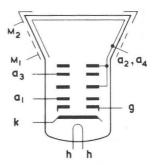
The F41-120..is the F41-12.. with a grey glass face-plate having a light transmission of approximately 52%.

TUBE WEIGHT (approximate) - 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-120LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-12.. data sheets.


RADAR Tubes

Maintenance Type

GENERAL

Round face, 16 inch tube, 50° deflection Metal mounting frame Electrostatic focus, magnetic deflection Straight gun. non ion trap External conductive coating Aluminised screen

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	20	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage	Va3(max)	± 500	V
Maximum first anode voltage	V _{a1(max)}	500	V
Maximum negative grid voltage	$-V_{g(max)}$	200	V
Minimum negative grid voltage	$-V_{g(min)}$	1.0	V
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	200	V
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	400*	V

^{*} During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with either LC phosphor (F41-121LC) giving an orange trace of very long persistence or GR phosphor (F41-121GR) giving a yellowish-green trace of very long persistence. Other phosphors can be made available to special order,

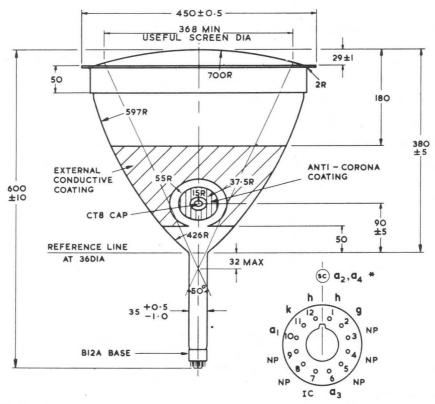
Thorn Radio Valves and Tubes Limited

Œ	ES
⊴	踞
9	5
<u>~</u>	F

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	c _{k-all}	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, \mathbf{M}_1	c _{a2+a4-M1}	1200		pF
Anodes 2 and 4 to mounting frame, \mathbf{M}_2	c _{a2+a4-M2}	250		pF
* Holder capacitance balanced out.				

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	V_{a2+a4}	15	kV
Third anode voltage range for focus	v_{a3}	-300 to +300	\mathbf{v}
First anode voltage	v_{a1}	300	V
Grid to cathode voltage for cut-off of raster	$v_{\mathbf{g}}$	-40 to -80	V
Average peak to peak modulating voltage for modulation up to 150 $\mu\mathrm{A}$		24	V
LC screen persistence to 10% (approximate)		25	s


The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 12 kg

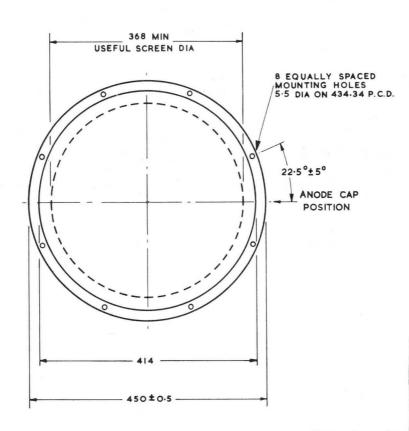
MOUNTING POSITION - unrestricted

[†] Total capacitances including a typical B12A duodecal holder.

All dimensions in mm

Not to be scaled

The tube should not be handled in the region of the anti-corona coating.


For details of the mounting frame see following page.

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and the final anode may be used to provide smoothing for the e.h.t. supply.

^{*} Anode cap in line with spigot ± 10°.

RADAR TUBES

MOUNTING FRAME 14 SWG (2-03 mm) METAL

All dimensions in mm

Not to be scaled

OBSOLETE TYPE

The F41-123.. is the replacement type for the F41-122..

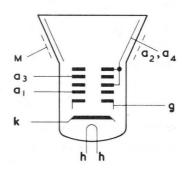
The F41-122..is the F41-123.. with a grey glass face-plate having a light transmission of approximately 52%.

TUBE WEIGHT (approximate) - 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LG phosphor (F41-122LG) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-123.. data sheets.



RADAR Tubes

GENERAL

Round face, 16 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap Clear glass External conductive coating Aluminised screen

55.5 mm maximum	neck dia	imeter	
Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	20	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	Va3(max)	± 500	v
Maximum first anode voltage	$V_{a1(max)}$	500	v
Maximum negative grid voltage	$-v_{g(max)}$	200	V
Minimum negative grid voltage	$-v_{g(min)}$	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	200	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	400*	v

^{*} During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LG phosphor (F41-123LG) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

NECK LENGTH

This tube has an extended neck length to accommodate an auxiliary high frequency deflector coil.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

INTER-ELECTRODE CAPACITANCES

		*	+	
Cathode to all	c _{k-all}	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	ca2+a4-M	1200		pF

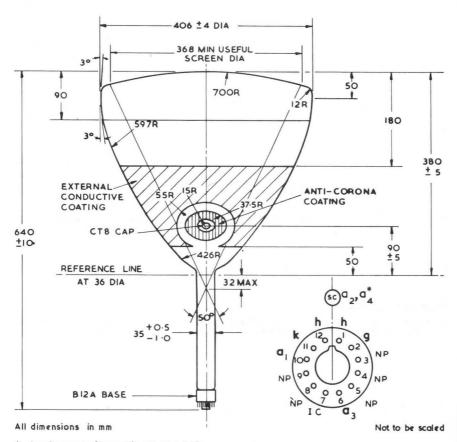
^{*} Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}	15,	kV
Third anode voltage range for focus	v_{a3}	-300 to +300	v
First anode voltage	v_{a1}	300	V
Grid to cathode voltage for cut-off of raster	v_g	-40 to -80	V
Average peak to peak modulating voltage for modulation up to 150 μA		24	¥
LG screen persistence to 10% (approximate)		4.0	s

The LG screen is liable to burn even at low values of beam current if operated with a stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.


TUBE WEIGHT (approximate) - 11.8 kg (26 lb)

MOUNTING POSITION - unrestricted

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

[†] Total capacitances including a typical B12A duodecal holder.

* Anode cap in line with spigot ± 10°.

The tube should not be handled in the region of the anti-corona coating.

The projected neck axis shall pass within $4.0\ \mathrm{mm}$ of the geometric centre of the tube face.

The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

It is recommended that the deflector coil assembly including "position" and "write" coils should not extend further than 95 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

The F41-124.. is the F41-123.. with a third anode voltage range for focus of 0 to 400 $\,\mathrm{V}$.

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-124LC)giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see F41-123.. data sheets.

OBSOLETE TYPE

The F41-13.. is the replacement type for the F41-130..

The F41-130, is the F41-13.. with a grey glass face-plate having a light transmission of approximately 52% .

TUBE WEIGHT (approximate) - 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-130LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For all other data please see the F41-13.. data sheets.

RADAR TUBES

Radar Tube

OBSOLETE TYPE

The F41-14.. is the replacement type for the F41-140..

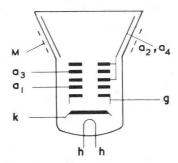
The F41-140..is the F41-14..with a grey glass face-plate having a light transmission of approximately 52% .

TUBE WEIGHT (approximate) 9.0 kg (20 lb)

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (F41-140LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

For other data please see the F41-14.. data sheets.


GENERAL

Round face, 16 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap Clear glass. External conductive coating

Aluminised screen 35.5 mm maximum neck diameter

Heater voltage V_h

V 6.3 0.3 Heater current A I_h

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second an	d fourth anode voltage	$V_{a2+a4(max)}$	20	kV
Minimum second and	d fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anod	le voltage	V _{a3(max)}	± 500	V
Maximum first anod	e voltage	Val(max)	500	V
Maximum negative g	rid voltage	-Vg(max)	200	V
Minimum negative g	rid voltage	$-v_{g(min)}$	1.0	v
Maximum heater to heater negative (V _{h-k(max)}	200	v
Maximum peak heater negative	er to cathode voltage	vh-k(pk)max	400*	v

^{*} During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This tube is usually supplied with LC phosphor (F41-141LC) giving an orange trace of very long persistence. Other phosphors can be made available to special order.

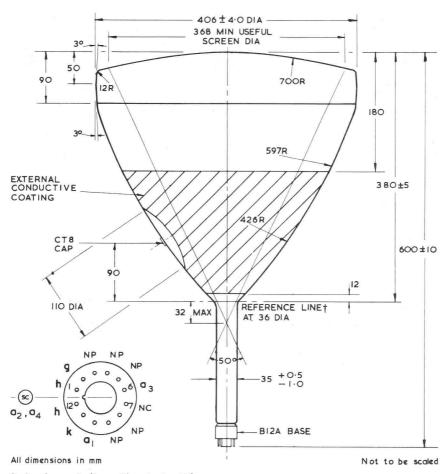
INTER - ELECTRODE CAPACITANCES

INTER ELECTRODE ON ACTION		*	†	
Cathode to all	ck-all	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to external conductive coating, M	Ca2+a4-M	14	100	pF

^{*} Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation (voltages referred to cathode)

Second and fourth anode voltage	v_{a2+a4}	18	kV
Third anode voltage range for focus	v_{a3}	-300 to $+300$	V
First anode voltage	v_{a1}	300	V
Grid to cathode voltage for cut-off of raster	v_g	-40 to -80	V
Average peak to peak modulating voltage for modulation up to 150 μA		24	v
Line width at 50 μA beam current microscope measurement		0.5 to 0.7	mm
LC screen persistence to 10% (approximate)		25	S

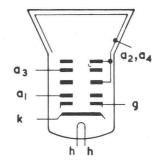

The LC screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 milliröntgens per hour, the window will normally provide adequate protection.

TUBE WEIGHT (approximate) - 9 kg (20 lb)

MOUNTING POSITION - unrestricted

[†] Total capacitances including a typical B12A duodecal holder.


- * Anode cap in line with spigot ± 15°
- † Gauge 36 I/D x 100 long to slide freely over neck.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The projected neck axis shall pass within 4.0 mm of the geometric centre of the tube face. The eccentricity of the neck axis with respect to a line perpendicular to the geometric centre of the tube face shall not exceed 4.5 mm at the deflection centre and 5.0 mm at a point 102 mm from the reference line.

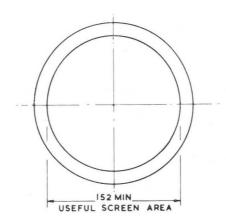
GENERAL

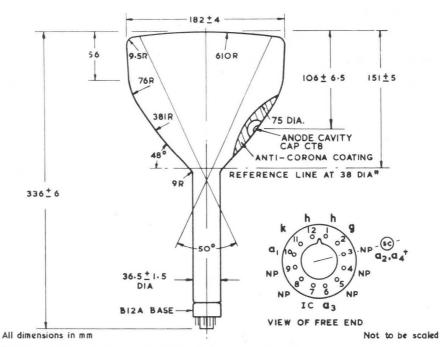
Round face 7 inch tube, 50° deflection Electrostatic focus, magnetic deflection Straight gun, non ion trap Aluminised screen, orange trace P33(LD)phosphor, very long persistence

ABSOLUTE RATINGS (voltages referred to cathode)

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	11	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	6.0	kV
Maximum third anode voltage range	Va3(max)	+1100 to -550	v
Maximum first anode voltage	$V_{al(max)}$	770	v
Maximum negative grid voltage	$-v_{g(max)}$	200	V
Maximum positive grid voltage	$v_{g(max)}$	0	V
Maximum peak positive grid voltage	Vg(pk)max	0	V
Maximum peak heater to cathode voltage heater negative or positive	vh-k(pk)max	200	v
Maximum grid to cathode resistance	$R_{g-k(max)}$	1.5	$M\Omega$

Other phosphors are available to special order.


INTER-ELECTRODE CAPACITANCES


Cathode to all	ck-all		5.0	pF
Grid to all	cg-all		6.0	pF
TYPICAL OPERATION - grid modulation (vo	oltages referred	to catho	ode)	
Second and fourth anode voltage	v_{a2+a4}		7.0	kV
Third anode voltage range for focus	v_{a3}	0	to 250	V
First anode voltage	v_{a1}		300	V
Grid to cathode voltage for visual extinction of focused spot	v_{g-k}	-28	to -72	v
P33 (LD) screen persistence to 10% (approxim	ate)		3.0	s

The P33(LD) screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

TUBE WEIGHT (approximate) - 1.6 kg (3.5 lb)

MOUNTING POSITION - unrestricted

* Gauge 38 mm I/D 50 mm long to slide freely over neck.

† Anode cap in line with pin 3 ± 10°

The tube should not be handled in the region of the anti-corona coating.

Issue 3, Page 3

DATA DISPLAT & MONITOR TUBES

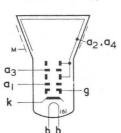
The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

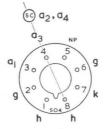
HEALTH AND SAFETY AT WORK ACT, 1974

Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.


Thorn Radio Valves and Tubes Limited


Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS

CV6198

Maintenance Type

Base B8H, Cap CT8

GENERAL

Rectangular Face —8½ in. Diagonal Electrostatic Focus —Magnetic Deflection LG Phosphor —Very Long Persistence Heater Voltage Heater Current

Deflection Angle —90° Diagonal Aluminised Screen —Orange Trace External Conductive Coating V_h 11·5 V I_h 0·15 A

RATINGS

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	16*	k١
Minimum Second and Fourth Anode Voltage	V _{a2,a4(min)}	8.0	k٧
Maximum Third Anode Voltage	$V_{a3(max)}$	- 700	\
Maximum First Anode Voltage	$V_{a1(max)}$	500	1
Maximum Heater to Cathode Voltage,	$V_{h-k(max)}$		
Heater Negative (d.c.)	(200	1

*16 kV is a design centre rating, the absolute rating of 18 kV must not be exceeded. All voltages referred to cathode.

INTER-ELECTRODE CAPACITANCES

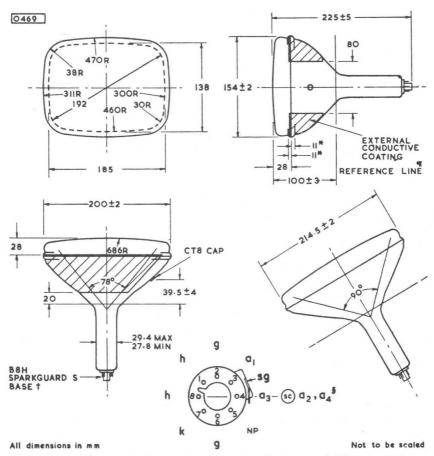
		•	8	
Grid to all	c_{g-all}	7.0	8.5	PF
Cathode to all	Ck-all	3.0	3.5	pF
Anode 2 and Anode 4 to External Condu	ctive			
Coating (approx)	Ca2,a4-M	400		pF
I Inter electrode capacitance with holder	halanced out			

¶ Inter-electrode capacitance with holder balanced out.

§ Inter-electrode capacitance including a typical B8H holder.

TYPICAL OPERATION—Grid Modulation (all voltages reterred to cathode)

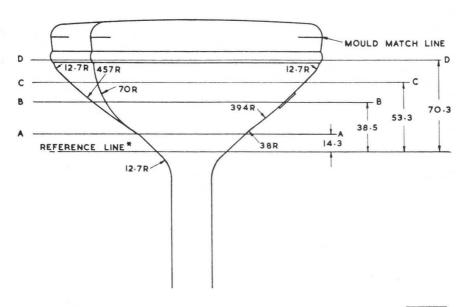
Second and Fourth Anode Voltage	$V_{a2,a4}$	14	kV
First Anode Voltage	V _{a1}	400	V
Third Anode Voltage for Focus (Range)	V_{a3}	0 to 400	V
Grid to Cathode Voltage for cut-off of	Raster V _g	-30 to -72	V
Average Peak to Peak Modulating Volta	age for		
Modulation up to 150μA		24	V
I.G. Screen Persistence to 100/ (approx	imate)	4.0	

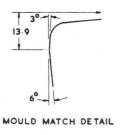

The LG screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

Note

This tube can be supplied with a number of different phosphors as requested.

This tube is fitted with a B8H Sparkguard S base, details of which are given on a separate sheet.


Net Tube Weight (approx)—1.36 kg (3 lb).


There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

- * During the face sealing operation the glass in this area (total 22 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † The socket for the B8H button base should not be rigidly mounted, it should have flexible leads and be allowed to move freely. The design of the socket should be such that the wiring cannot impress lateral strains through the socket contacts on the base.
- § Anode cap in line with pin 4 ± 30°.
- ¶ Determined by Reference Gauge No. 15.

CV6198

0470

	UM CONE		
SEC'N	MAJOR AXIS	MINOR AXIS	DIAG'L
A-A	82.4	82.4	82.4
B-B	146	134	153
C-C	180	149	193
D-D	201	155	216

All dimensions in mm

Not to be scaled

^{*} Determined by Reference Line Gauge No. 15.

M8-100..


Data Display or Monitor Tube

PRELIMINARY DATA

GENERAL

Rectangular face-plate 82 mm x 32 mm Ruggedised gun construction Electrostatic focus, magnetic deflection Flying lead connections to base and anode Aluminised screen, clear glass 20.7 mm maximum neck diameter.

Heater voltage	v_h	11	V
Heater current	I_h	75	mA

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	12	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8	kV
Maximum third anode voltage	$v_{a3(max)}$	-50 to +500	V
Maximum first anode voltage	Val(max)	350	V
Maximum negative grid voltage	-Vg(max)	100	V
	-Vg(min)	1*	V
Maximum heater to cathode voltage heater negative (d.c.)	Vh-k(max)	110	v
Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

^{*} A $10\,k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with GX phosphor (M8-100GX). This is a line spectrum phosphor giving a yellowish green fluorescence of medium persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 180 g

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1

INTER-ELECTRODE CAPACITANCES

Cathode to all	ck-all	4.0*	pF
Grid to all	cg-all	7.0*	pF

^{*} Lead capacitance balanced out.

TYPICAL OPERATION - Grid modulation (Voltage referred to cathode)

Second and fourth anode voltage	V _{a2+a4-k}	10	kV
First anode voltage	Val-k	250	v
Third anode voltage range for focus	Va3-k	0 to 350	v
Grid to cathode voltage for cut-off of raster	Vg-k	35 to -69	v
Typical line width at $30\mu A$ beam current shrinking raster measurement at tube for the shrinking raster measurement at the shrinking ras	ace centre	0.25	mm
TYPICAL OPERATION - Cathode mo	odulation (Voltage ref	erred togrid)	
Second and fourth anode voltage	Va2+a4-g	10	kV

First anode voltage Val-g 250 Third anode voltage range for focus Va3-g 0 to 350 Cathode to grid voltage for Vk-g

cut-off of raster 32 to 58

Characteristic curves as M23-110...

MOUNTING

The tube can be mounted in any position.

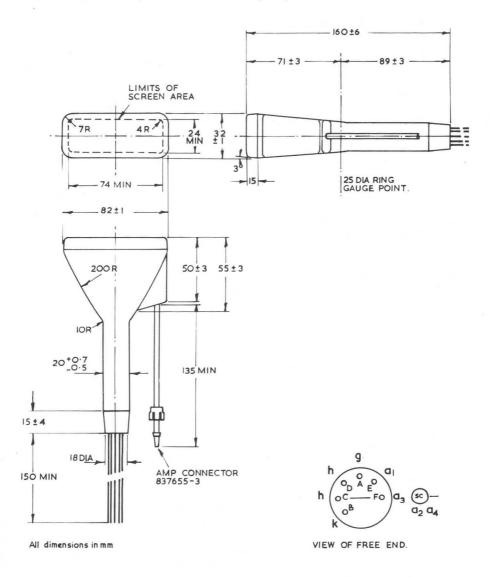
When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

ENVIRONMENTAL TESTS CAPABILITIES

Temperature range:	Operational	-15°C to + 85°C
	Storage	-54°C to +85°C

Vibration endurance	5 to 55 Hz 1.	.5g maximun
	55 to 2000 Hz 1.	.0g constant

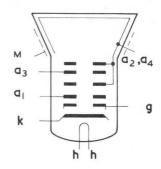
Bump and shock	6 bumps, 6g, 11ms, half sine wave,
	all three area


	all three axes	
Tropical environment	95% relative humidity	

cycled 38°C to 50°C. total 48 hr	s
	cycled 38°C to 50°C. total 48 hr

Altitude:	Operational	5000m
	Non operational	6000m

M8-100..


Data Display or Monitor Tube

Page 3, Issue 1.

GENERAL

Rectangular face, 14 cm, 70° diagonal Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 62% transmission (approx) 20.7 mm maximum neck diameter External conductive coating

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8	kV
Maximum third anode voltage	$V_{a3(max)}$	- 50 to +500	V
Maximum first anode voltage	$V_{a1(max)}$	350	V
Maximum negative grid voltage	-Vg(max)	100	V
Minimum negative grid voltage	$-v_{g(min)}$	1*	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	110	v
Maximum peak heater to cathode voltage heater negative	v _{h-k(pk)max}	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

* A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M14-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 400 g

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M14-100.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES

Cathode to all	ck-all	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M (min.)	ca2+a4-M (min)	200	рF

^{*} Holder capacitance balanced out.

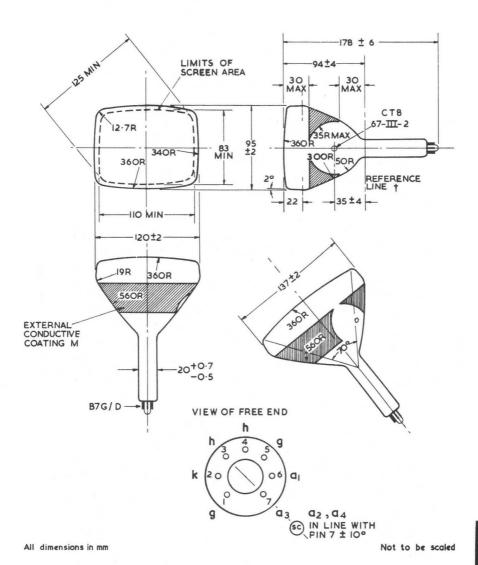
TYPICAL OPERATION - Grid modulation (Voltage referred to cathode)

Second and fourth anode voltage	$V_{a2+a4-k}$		10	kV
First anode voltage	v_{a1-k}		250	V
Third anode voltage range for focus	V _{a3-k}	0	to 350	V
Average peak to peak picture modulating voltage up to 100 μA			24	v
Grid to cathode voltage for cut-off of raster	v_{g-k}	-3	5 to - 69	v

TYPICAL OPERATION - Cathode modulation (Voltage referred to grid)

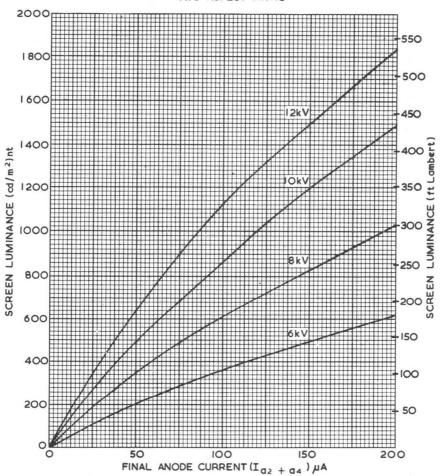
Second and fourth anode voltage	$v_{a2+a4-g}$		10	kV
First anode voltage	v_{a1-g}		250	V
Third anode voltage range for focus	v_{a3-g}	0	to 350	V
Average peak to peak picture modulating voltage up to 100 μA			20	v
Cathode to grid voltage for cut-off of raster	v_{k-g}	32	to 58	v

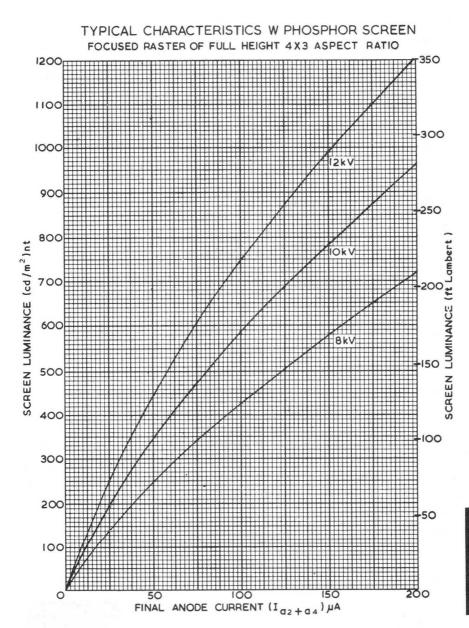
MOUNTING


There is an annular region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

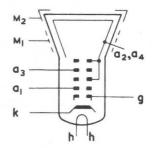
The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.


When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.


Characteristic curves as M23-110...

† Determined by reference line gauge No. 23

TYPICAL CHARACTERISTICS GH PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4x3 ASPECT RATIO



DATA DISPLAN & MONITOR THRES

GENERAL

Rectangular flat face, 6 inch 70° diagonal tube Ruggedised construction, metal mounting frame Electrostatic focus, magnetic deflection Flying lead connections for base and anode Aluminised screen, external conductive coating Clear glass, 27.4 ± 0.05 mm neck diameter.

Heater voltage	v_h	6.3	V
Heater current	Ih	0.3	A

ABSOLUTE RATINGS - All voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	V _{a2+a4(min)}	12	kV
Maximum third anode voltage	V _{a3(max)}	1000	v
Maximum negative third anode voltage	-V _{a3(max)}	500	V
Maximum first anode voltage	V _{a1(max)}	500	V
Maximum negative grid voltage	-Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	V
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	200	v
neater negative (a.c.)			

TYPICAL OPERATION - Grid modulation, voltages with respect to cathode

Second and fourth anode voltage	v_{a2+a4}		14	kV
First anode voltage	v_{a1}		400	V
Third anode voltage range for focus	v_{a3}	0	to 400	V
Grid to cathode voltage for cut-off of raster	v_g	-31	to -71	v

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

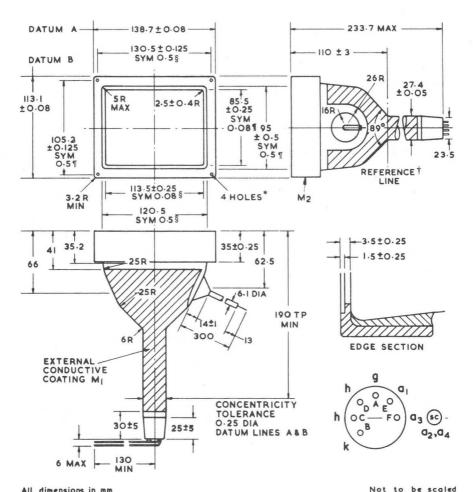
This type is usually supplied with W phosphor (M16-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Type M16-100W is the commercial version of the CV6244.

Thorn Radio Valves and Tubes

Issue 2, Page 1

INTER-ELECTRODE CAPACITANCES	 Lead capacitances balanced out
0.41 1.4 11	


Cathode to all	c _{k-all}	4.0	pF
Grid to all	cg-all	15	pF
Anode 2 and anode 4 to coating M_1 (minimum)	^c a2+a4-M1(min)	350	pF
Anode 2 and anode 4 to frame M_2 (minimum)	ca2+a4-M2(min)	80	pF

TUBE WEIGHT (approximate) - 1.0 kg	
ENVIRONMENTAL TEST CAPABILITIES	
Storage and operational temperature range	-30°C to +55°C
Vibration endurance	10 to 60 Hz displacement \pm 0.15 mm 60 to 2000 Hz $$ 2 g all three axes for a specified time
Centrifuge	13g all three axes 2 minutes each
Bump and shock	40g all three axes for specified number of bumps
Tropical environment	95% relative humidity, cycled 20°C to 40°C, total 10 days
Mould growth	To BS2011 Test 2J severity 28 days
Salt mist	To BS2011 Test 2K 92.5% humidity, 35°C, total 28 days
Solar heat	Continuous cycling 30°C to 84°C total 5 days

NOTE

The external conductive coating of this tube should be connected to chassis. capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

All dimensions in mm

Frame finish - black anodised. Minimum useful screen area 113 x 85

- * Tapped 6 32UNC x 7.0 deep.
- † Determined by Reference Line Gauge No. 19
- § Symmetrical tolerance width Datum A.
- ¶ Symmetrical tolerance width Datum B.

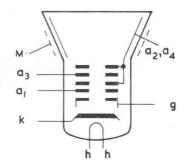
Issue 2, Page 3

M17-10..

The M17-10... monitor tube has a 11.5V, 0.15A heater otherwise it is identical to the M17-12...

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M17-10W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.


For all other data please see M17-12.. data sheets.

GENERAL

Rectangular face, 7 inch, 70° diagonal Electrostatic focus, magnetic deflection Aluminised screen, clear glass 29.4 mm maximum neck diameter Straight gun, non ion trap External conductive coating

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$v_{a2+a4(max)}$	16†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	12	kV
Maximum third anode voltage	$v_{a3(max)}$	+1000 to -500	V
Maximum first anode voltage	$\dot{v}_{a1(max)}$	500	V
Maximum negative grid voltage	-Vg(max)	200	V
Maximum peak negative grid voltage	-vg(pk)max	400	V
Minimum negative grid voltage	$-V_{g(min)}$	1.0	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	200	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	vh-k(pk)max	400\$	v
Maximum impedance, grid to cathode(50 Hz)	$z_{g-k(max)}$	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

- * In a series heater chain the CRT should always be connected at the chassis end.
- † The absolute rating of 18 kV must not be exceeded.
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M17-12W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 5, Page 1

INTER - ELECTRODE CAPACITANCES	5	*	†	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	cg-all	6.5	8.0	pF
Anodes 2 and 4 to coating M (approx.)	c _{a2+a4-M}	35	50	pF
* Holder canacitance balanced out	t Total capacitano	es including	typical ho	lder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

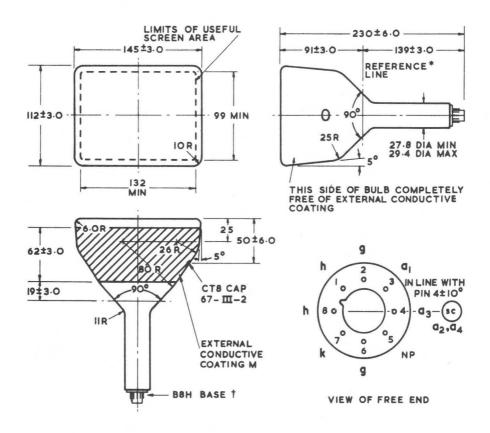
Second and fourth anode voltage	$V_{a2+a4-k}$	14	kV
First anode voltage	v_{a1-k}	400	v
Third anode voltage range for focus	v_{a3-k}	0 to 400	V
Grid to cathode voltage range for cut-off of raster	v_{g-k}	-38 to -78	v

TYPICAL OPERATION - Cathode modulation, voltages referred to grid

Second and fourth anode voltage	$V_{a2+a4-g}$	14	kV
First anode voltage	V_{a1-g}	400	v
Third anode voltage range for focus	v_{a3-g}	0 to 400	v
Cathode to grid voltage range for cut-off of raster	v_{k-g}	35 to 68	v

If this tube is operated at voltages in excess of 16 kV x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

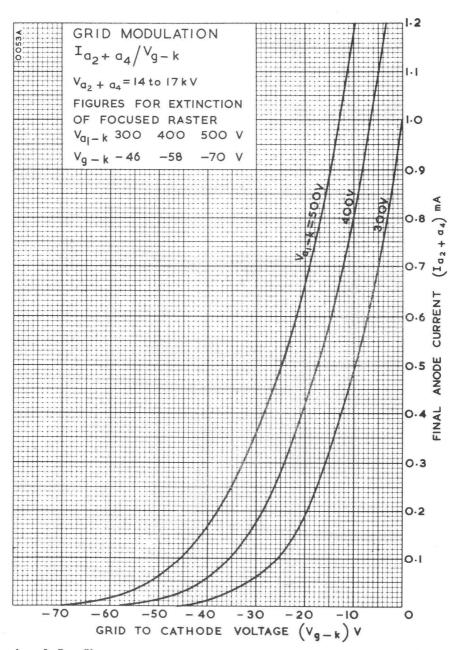
MOUNTING


The tube can be mounted in any position.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

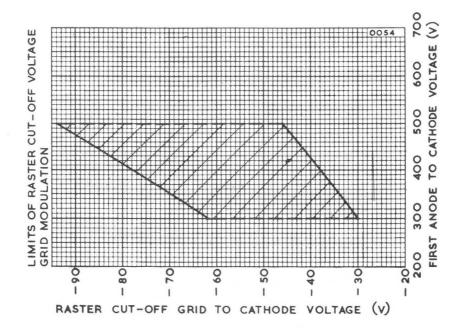
When flashover protection is incorporated the chassis return path of the external conductive coating should be made in a manner appropriate to the protection system employed.

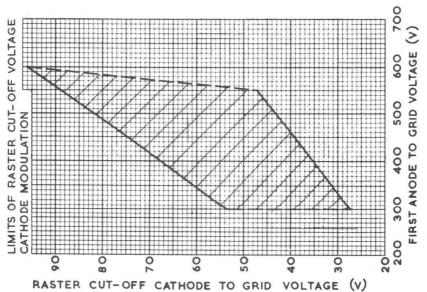
TUBE WEIGHT (approximate) - net 650g



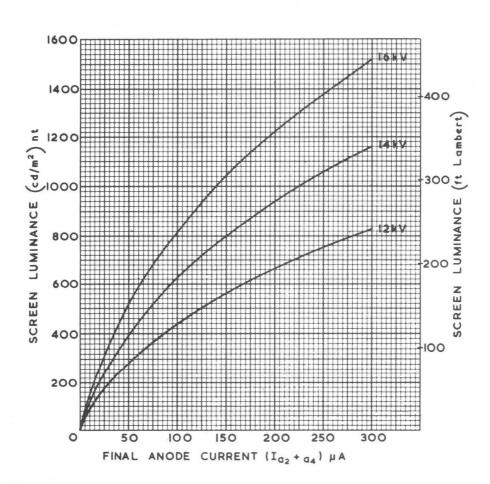
All dimensions in mm

Not to be scaled


There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

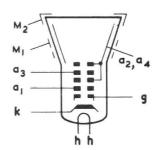

- * Determined by reference line gauge No. 15
- † The tube socket should not be rigidly mounted, it should have flexible leads and be allowed to move freely.

Issue 5, Page C2


Issue 5, Page C3

DATA DISPLAY & MONITOR TUBES

TYPICAL CHARACTERISTICS
W PHOSPHOR


FOCUSED RASTER OF FULL HEIGHT

4 x 3 ASPECT RATIO

GENERAL

Rectangular face, 7 inch 70° diagonal Bonded face-plate with mounting frame Electrostatic focus, magnetic deflection Straight gun, aluminised screen 29.4 mm maximum neck diameter Clear glass, external conductive coating Heater voltage V_h 11.5 V Heater current I_h 0.15 A

DESIGN CENTRE RATINGS - Voltages referred to cathode

$V_{a2+a4(max)}$	16*	kV
$V_{a2+a4(min)}$	12	kV
$V_{a3(max)}$	+1000 to -500	v
	500	v
	200	v
	400	V
	1.0	V
$v_{h-k(max)}$	200	v
vh-k(pk)max	400†	v
$Z_{g-k(max)}$	0.5	$M\Omega$
Rg-k(max)	1.5	$M\Omega$
	$\begin{array}{c} V_{a2+a4(min)} \\ V_{a3(max)} \\ V_{a1(max)} \\ -V_{g(max)} \\ -v_{g(pk)max} \\ -V_{g(min)} \\ V_{h-k(max)} \\ \end{array}$	Va2+a4(min) 12 Va3(max) +1000 to -500 Va1(max) 500 -Vg(max) 200 -vg(pk)max 400 -Vg(min) 1.0 Vh-k(max) 200 Vh-k(pk)max 400† Zg-k(max) 0.5

- * The absolute rating of 18 kV must not be exceeded.
- † During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M17-15W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

BRIMAR

M17-15..

Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANC	ES	*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	6.5	8.0	pF
Anodes 2 and 4 to coating $\text{M}_{1}(\text{approx}.$	c _{a2+a4-M1}	200		pF
Anodes 2 and 4 to frame $\ensuremath{\mathrm{M}}_2$ (approx.) c _{a2+a4-M2}	80		pF
w vv 11				

^{*} Holder capacitance balanced out. † Total capacitances including typical holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode.

Second and fourth anode voltage	$V_{a2+a4-k}$	14	kV
First anode voltage	v_{a1-k}	400	V
Third anode voltage range for focus	v_{a3-k}	0 to 400	V
Grid to cathode voltage range for cut-off of raster	v_{g-k}	-38 to -78	v

TYPICAL OPERATION - Cathode modulation, voltages referred to grid

Second and fourth anode voltage	$V_{a2+a4-g}$	14	kV
First anode voltage	v_{a1-g}	400	V
Third anode voltage range for focus	V _{a3-g}	0 to 400	V
Cathode to grid voltage range for cut-off of raster	v_{k-g}	35 to 68	v

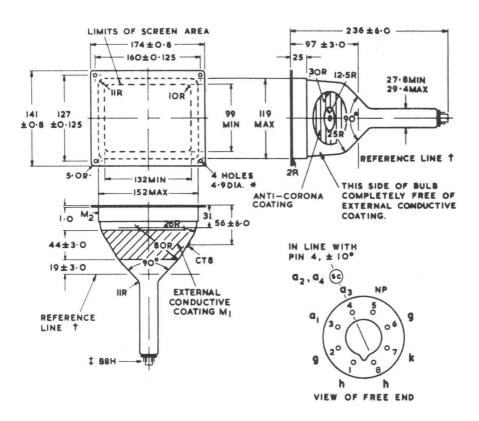
Characteristic curves as M17-12...

If this tube is operated at voltages in excess of 16 kV x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

MOUNTING

The tube can be mounted in any position.

The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.


The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 $M\Omega.$

When flashover protection is incorporated the chassis return paths of $\rm M_1$ and $\rm M_2$ should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 1.1 kg

M17-15..

All dimensions in min

Not to be scaled

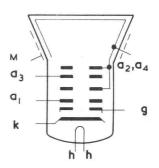
There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

- * It is recommended that 2BA bolts be used for mounting the tube.
- † Determined by reference line gauge No. 15

M17-152BE Data Display or Monitor Tube

The M17-152BE is the M17-15BE with a fine grain and minimal blemish screen for medical applications.

For all other information please see the data sheets for type M17-15...


Thorn Radio Valves and Tubes Limited

BRIMAR

GENERAL

Rectangular face, 19 cm, 90° diagonal Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 65% transmission (approx) 20.7 mm maximum neck diameter External conductive coating

Heater voltage	v_h	11	V
Heater current	I _h	75	mA

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	$V_{a3(max)}$	-50 to +500	V
Maximum first anode voltage	$V_{a1(max)}$	350	V
Maximum negative grid voltage	-Vg(max)	100	V
Minimum negative grid voltage	-Vg(min)	1.0*	V
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	110	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

* A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M19-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 800g

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 2.

M19-100.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M (min.)	c _{a2+a4-M(min)}		pF

^{*} Holder capacitance balanced out.

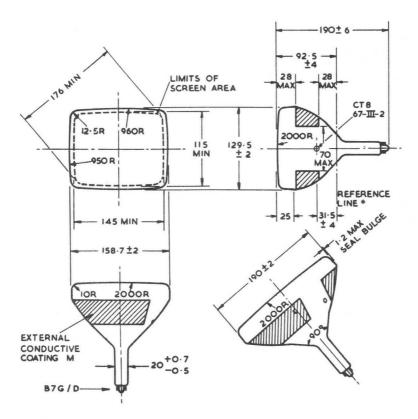
TYPICAL OPERATION - Grid modulation (Voltage referred to cathode)

Second and fourth anode voltage	$V_{a2+a4-k}$		10	kV
First anode voltage	V _{a1-k}		250	V
Third anode voltage range for focus	Va3-k	0	to 350	V
Average peak to peak picture modulating voltage up to 100 μA			24	v
Grid to cathode voltage for cut-off of raster	v_{g-k}	-3	5 to - 69	V

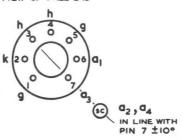
TYPICAL OPERATION - Cathode modulation (Voltage referred to grid)

Second and fourth anode voltage	$v_{a2+a4-g}$		10	kV
First anode voltage	v_{a1-g}		250	v
Third anode voltage range for focus	v_{a3-g}	0	to 350	V
Average peak to peak picture modulating voltage up to 100 μA			20	v
Cathode to grid voltage for cut-off of raster	v_{k-g}	32	to 58	v

MOUNTING


There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.


The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

Characteristic curves as M23-110...

VIEW OF FREE END

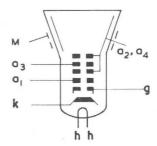
All dimensions in mm

Not to be scaled

* Determined by reference line gauge No. 21 (See T.D.S. 5-0-91-21)

DATA DISPLA & MONITOF TUBES

M21-13...


Data Display or Monitor Tube

MAINTENANCE TYPE

GENERAL

Rectangular face,21 cm 90° diagonal tube Electrostatic focus, magnetic deflection Straight gun, aluminised screen 29.4 mm maximum neck diameter Clear glass, external conductive coating

Heater voltage	v_h	11.5	V
Heater current	I_h	0.15	A

DESIGN CENTRE RATINGS - voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	16*	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	kV
Maximum third anode voltage	Va3(max)	± 700	V
Maximum first anode voltage	$V_{a1(max)}$	500	V
Maximum negative grid voltage	-Vg(max)	200	V
Minimum negative grid voltage	$-V_{g(min)}$	1.0	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	200	v

^{* 16} kV is a design centre rating, the absolute rating of 18 kV must not be exceeded.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

PHOSPHOR SCREEN

This type is usually supplied with LC phosphor (M21-13LC) giving an orange trace of very long persistence or with W (television white) phosphor. Other phosphor screens can be made to special order.

Tube incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	t	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	6.5	8.0	pF
Anodes 2 and 4 to coating M (approx.)	ca2+a4-M	40	00	pF

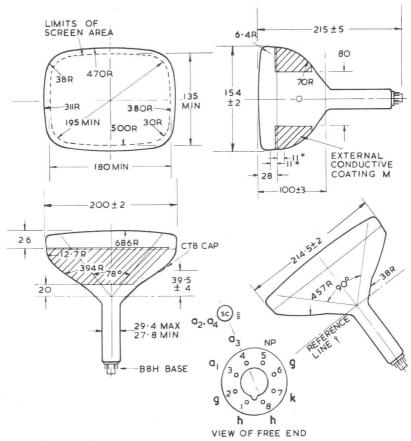
- * Holder capacitance balanced out.
- † Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	V_{a2+a4}		12		kV
First anode voltage	Va1		400	1	v
Third anode voltage range for focus	v_{a3}	0	to	400\$	v
Grid to cathode voltage range for cut-off of raster	v_g	-30	to	-72	v
Average peak to peak modulating voltaginal anode current = 150 μ A	age		24		v
LC screen persistence to 10% (approx	.)		20		8

The LC screen is liable to burn even at low values of beam current if operated with a stationary or slow-moving spot.

\$ The change of spot size with variation of focus voltage is small and the limit of 0 to 400V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least -100V to +500V will be required.


MOUNTING

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The design of the socket should be such that the wiring cannot impress lateral strains through the socket contacts on the base. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

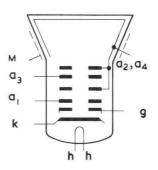
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 1.3 kg

All dimensions in mm

Not to be scaled

- * During the face sealing operation the glass in this area (total 22 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † Determined by Reference Gauge No. 15
- \$ Anode a2, a4 cap in line with pin 4 tolerance ± 10°


There is an annular region of anti-corona coating with an external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.

GENERAL

Rectangular face, 23 cm, 90° diagonal Electrostatic focus, magnetic deflection Aluminised screen

Grey glass, 50% transmission (approx) 20.7 mm maximum neck diameter External conductive coating

Heater voltage	v_h	11	V
Heater current	I_h	75	mA

ABSOLUTE RATINGS - Voltages referred to cathode

Max	kimum second and fourth anode voltage	$v_{a2+a4(max)}$	13.5	kV
Min	imum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	kV
Max	ximum third anode voltage	$v_{a3(max)}$	-50 to +500	V
Max	ximum first anode voltage	$v_{a1(max)}$	350	V
Max	ximum negative grid voltage	-V _{g(max)}	100	V
Min	imum negative grid voltage	$-v_{g(min)}$	1.0*	v
	ximum heater to cathode voltage, neater negative (d.c.)	$V_{h-k (max)}$	110	v
	ximum peak heater to cathode voltage heater negative	vh-k(pk)max	130	v
Max	kimum impedance, grid to cathode (50	Hz) Zg-k(max)	0.5	$\mathbf{M}\Omega$
Max	ximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

* A $10\,\mathrm{k}\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M23-110W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 1.4 kg

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M23-110.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}		3.0*	pF
Grid to all	cg-all		4.0*	рF
Anodes 2 and 4 to coating M (min.)	$c_{a2+a4-M(min)}$		300	рF
* Holder capacitance balanced out.				
TYPICAL OPERATION - Grid modu	lation (Voltage referr	ed t	o cathode)	
Second and fourth anode voltage	$V_{a2+a4-k}$		10	kV
First anode voltage	Val-k		250	V
Third anode voltage range for focus	v_{a3-k}	0	to 350	V
Average peak to peak picture modulating voltage up to 100 μ A			21	V
Grid to cathode voltage for cut-off of raster	V_{g-k}	-38	5 to -69	v
TYPICAL OPERATION - Cathode m	odulation (Voltage ref	ferr	ed to grid)	
Second and fourth anode voltage	$v_{a2+a4-g}$		10	kV
First anode voltage	Val-g		250	V
Third anode voltage range for focus	Va3-g	0	to 350	v
THE CO. IN CO.	-			

MOUNTING

Average peak to peak picture modulating voltage up to 100 μA

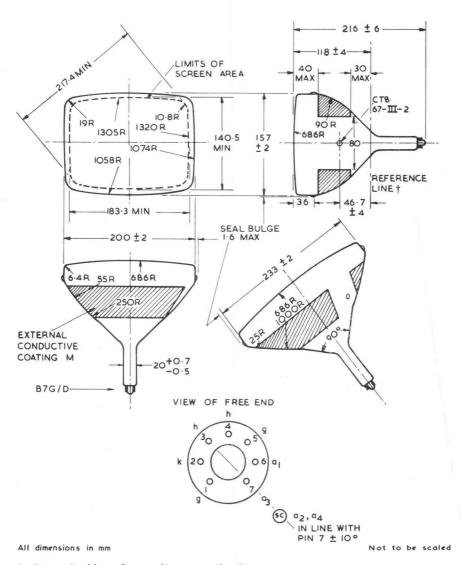
Cathode to grid voltage for

cut-off of raster

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

 v_{k-g}

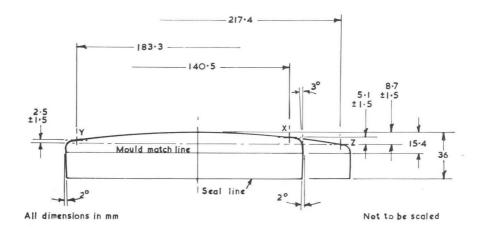
18

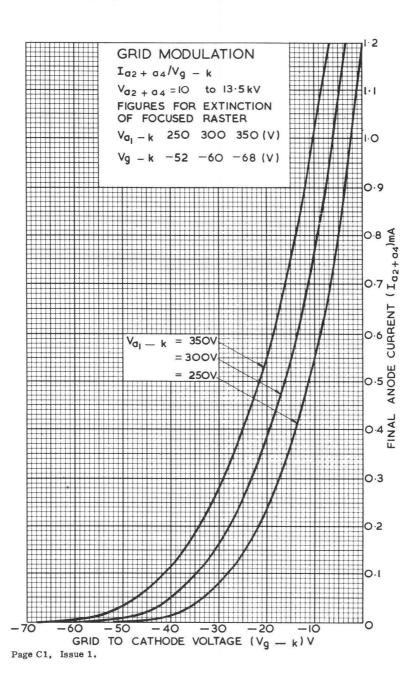

32 to 58

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

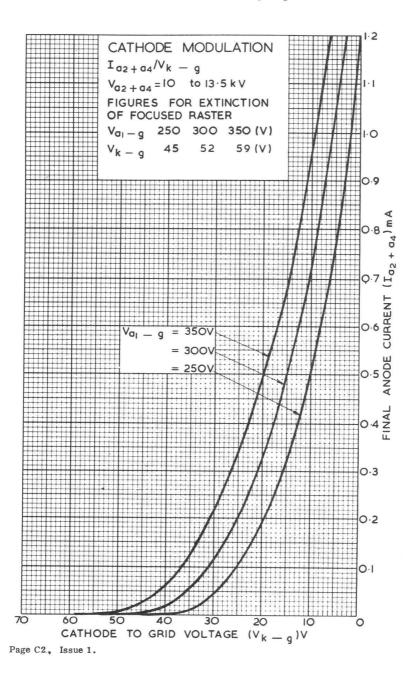
When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

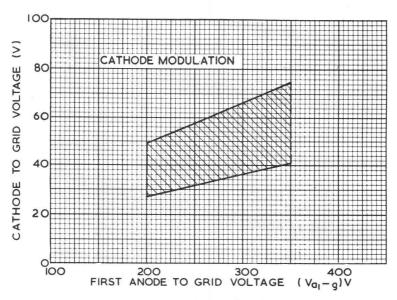

M23-110..

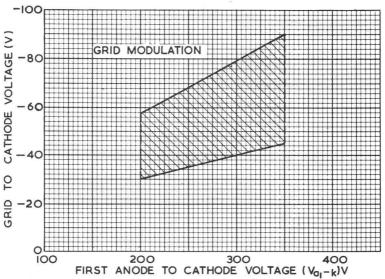


† Determined by reference line gauge No. 21

Minimum usefull screen area 242 cm²

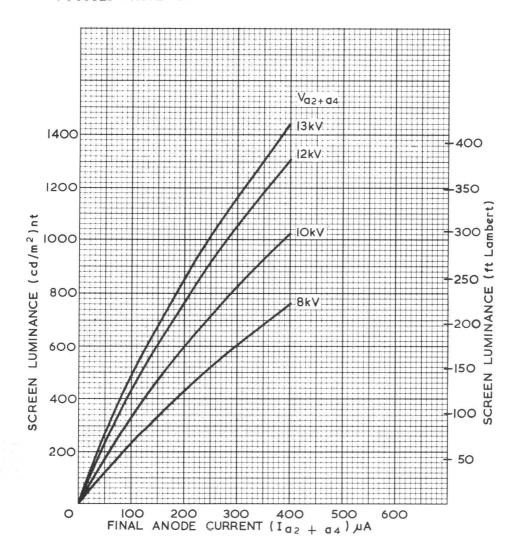

Page 3, Issue 2.



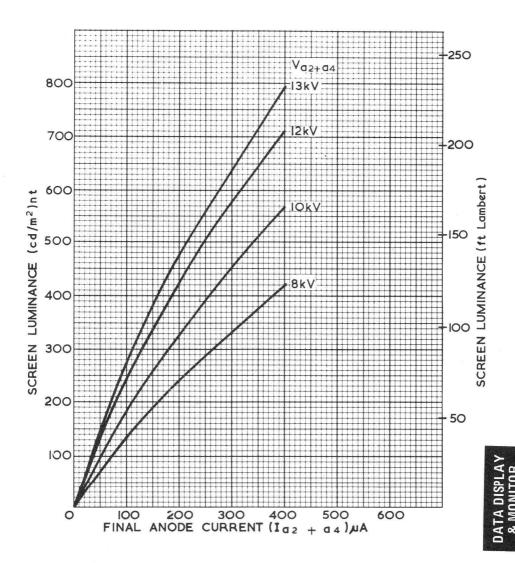


M23-110.. Data Display or Monitor Tube

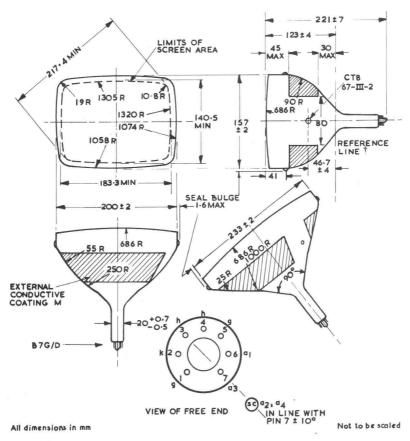
LIMITS OF RASTER CUT-OFF VOLTAGE



DATA DISPLAY & MONITOR TUBES


M23-110GH Data Display or Monitor Tube

TYPICAL CHARACTERISTICS GH PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4X3 ASPECT RATIO



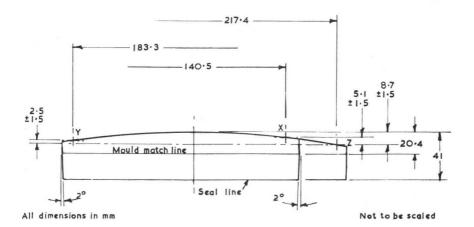
Page C1, Issue 1.

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4 X 3 ASPECT RATIO

The M23-111.. is the M23-110.. with a tinted bonded face-plate giving a total glass transmission of approximately 30%. The external surface is treated to reduce specular reflection

† Determined by reference line gauge No. 21

PHOSPHOR SCREEN

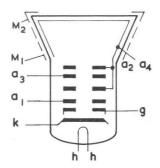

This type is usually supplied with W phosphor (M23-111W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - net 1.7kg

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1

M23-112...


Data Display or Monitor Tube

PRELIMINARY DATA

GENERAL

Rectangular face, 23 cm, 90° diagonal Rimguard III reinforced envolope * Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 50% transmission (approx) 20.7 mm maximum neck diameter External conductive coating

Heater voltage Vh 11 V Heater current Ib 75 mA

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	8.0	$k \boldsymbol{V}$
Maximum third anode voltage	$v_{a3(max)}$	-50 to +500	V
Maximum first anode voltage	$V_{a1(max)}$	350	v
Maximum negative grid voltage	-Vg(max)	100	v
Minimum negative grid voltage	$-V_{g(min)}$	1.0 †	v
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	110	v
Maximum peak heater to cathode voltage heater negative	v _{h-k(pk)max}	130	v
Maximum impedance, grid to cathode (50Hz)	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

- * This tube meets the requirements for intrinsically safetubes laid down in the section of I.E.C. Publication 65 dealing with implosion.
- † A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M23-112GH) giving a Green trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 1.5kg

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

INTER-ELECTRODE CAPACITANCES

Cathode to all	ck-all	3.0*	рF
Grid to all	cg-all	4.0*	рF
Anodes 2 and 4 to coating $M_1(min.)$	ca2-a4M1 (min)	300	рF
Anodes 2 and 4 to metal M2(approx)	ca2-a4-M2	100	рF
* TT-1.1	2		

* Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation (Voltage referred to cathode)

Second and fourth anode voltage	$V_{a2+a4-k}$		10	kV
First anode voltage	Val-k		250	V
Third anode voltage range for focus	v_{a3-k}	0	to 350	v
Average peak to peak picture modulating voltage up to 100 μA			24	v
Grid to cathode voltage for cut-off of raster	v_{g-k}	-35	to -69	v

TYPICAL OPERATION - Cathode modulation (Voltage referred to grid)

Second and fourth anode voltage	$v_{a2+a4-g}$		10	kV
First anode voltage	V _{a1-g}		2 50	V
Third anode voltage range for focus	Va3-g	0	to 350	V
Average peak to peak picture modulating voltage up to 100 μ A			20	v
Cathode to grid voltage for cut-off of raster	v_{k-g}	3 2	to 58	v

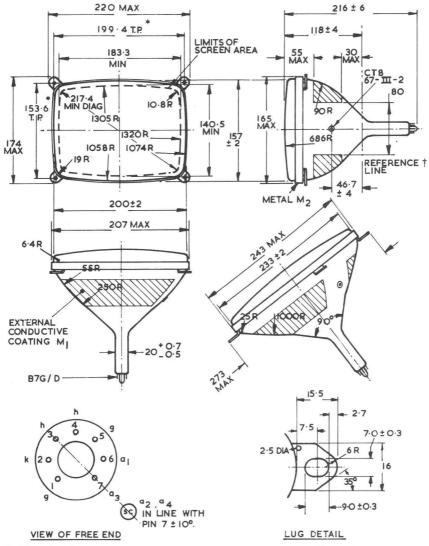
MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and bulb contours.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal (M₂) should be connected to the chassis in an a.c., receiver operating from an isolating transformer, or via a suitable leakage path in an a.c., d.c. receiver, for example 2 M Ω .


When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

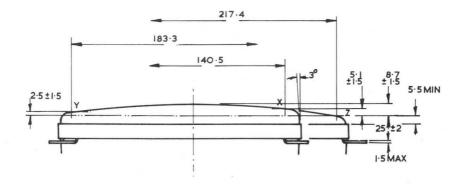
There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

Characteristic curves as M23-110...

M23-112...

Data Display or Monitor Tube

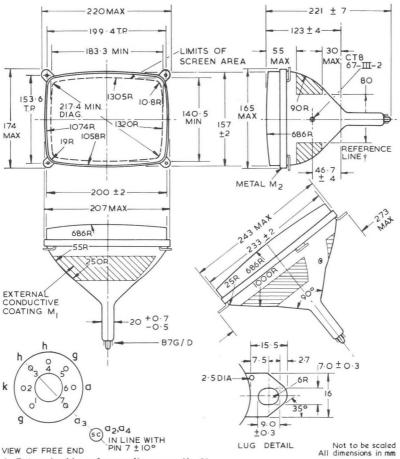
All Dimensions in mm.


Not to be scaled.

Minimum screen area 242 cm²

- * The bolts to be used for mounting the tube must lie within circles of 4.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs
- † Determined by reference line gauge No. 21.

Page 3, Issue 1.


M23-112..

All Dimensions in mm.

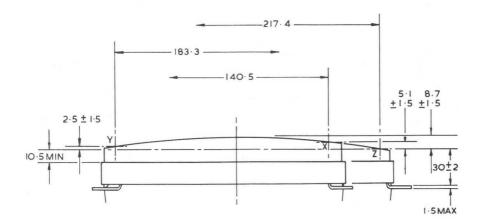
Not to be scaled.

The M23-113.. is the M23-112.. with a tinted bonded face-plate giving a total glass transmission of approximately 30%. The external surface is treated to reduce specular reflection.

† Determined by reference line gauge No.21

PHOSPHOR SCREEN

This type is usually supplied with GV phosphor (M23-113GV) giving a green trace of very long persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT (approximate) - net 1.8kg.

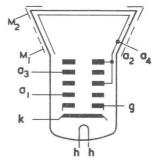
Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

M23-113...

All dimensions in mm

Not to be scaled


M24-120 ...

Data Display or Monitor Tube

GENERAL

Rectangular face, 24 cm, 90° diagonal Rimguard reinforced envelope* Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 52% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

Heater voltage Heater current V_h 6.3 V I_h 0.3 A

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage range	$V_{a3(max)}$	± 700	V
Maximum first anode voltage	Val(max)	600	V
Minimum first anode voltage	Val(min)	200	V
Maximum negative grid voltage	-Vg(max)	200	V
Minimum negative grid voltage	-Vg(min)	1.0†	V
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	200	v
Maximum peak heater to cathode voltage heater negative	Vh-k(pk)max	250	v
Maximum impedance, grid to cathode (50 Hz)	$Z_{g-k(max)}$	0.5	МΩ
Maximum resistance, grid to cathode	$R_{g-k(max)}$	1.5	$\mathbf{M}\Omega$

 $[\]uparrow~A~10~k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M24-120W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

* This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes .

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

INTER - ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	6.5	7.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	ca2+a4-M1	4	00	pF
Anodes 2 and 4 to metal M2 (approx.)	ca2+a4-M2	1	25	pF

- * Holder capacitance balanced out.
- † Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	V_{a2+a4}	12	to 16	kV
First anode voltage	v_{a1}		400	V
Third anode voltage range for focus	v_{a3}	0	to 400 §	V
Grid to cathode voltage for cut-off of raster	v_g	-38	3 to -82	v
Typical line width at 50 µA (Shrinking ra	ster)		0.2	mm

§ The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage range of at least -100V to +500V will be required.

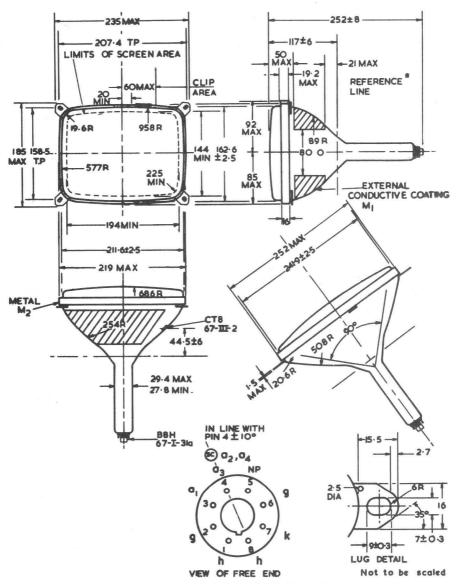
MOUNTING

If a mask is used with this tube it should be flexible enough to take up small variations in fixing and bulb contours.

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

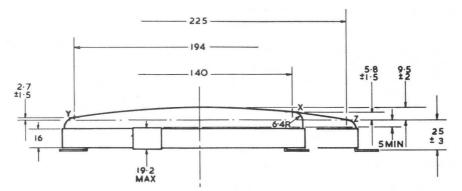
The bolts for mounting the tube must lie within circles of 4 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.


The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

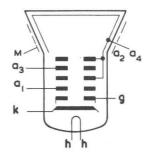
TUBE WEIGHT (approximate) 1.8 kg


Issue 2, Page 2

* Determined by reference line gauge No. 15 (See T.D.S. 5-0-91-15)

Issue 2, Page 3

Data Display or Monitor Tube M24-120..



All dimensions in mm

Not to be scaled

GENERAL

Rectangular face, 24 cm, 90° diagonal Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 52% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10	kV
Maximum third anode voltage range	$v_{a3(max)}$	± 700	V
Maximum first anode voltage	Val(max)	600	V
Minimum first anode voltage	$v_{a1(min)}$	200	v
Maximum negative grid voltage	-Vg(max)	200	V
Minimum negative grid voltage	$-v_{g(min)}$	1.0 †	v
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	200	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	250	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

 $[\]uparrow~A~10\,k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M24-121W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

The M24-121.. is the M24-120.. without implosion protection.

Thorn Radio Valves and Tubes Limited
Issue 1, Page 1

M24-121...

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	6.5	7.5	pF
Anodes 2 and 4 to coating M (approx.)	ca2+a4-M	40	00	pF

- * Holder capacitance balanced out.
- † Total capacitances including a typical B8H holder.

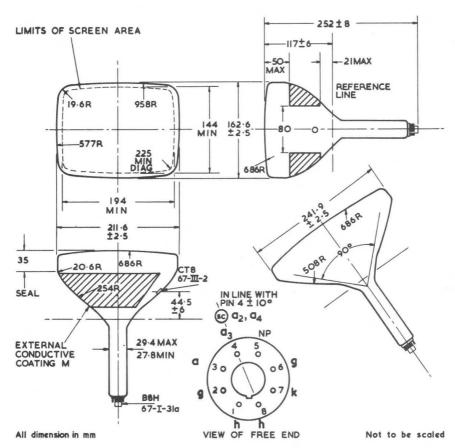
TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	Va2+a4	12	to 16	kV
First anode voltage	v_{a1}		400	v
Third anode voltage range for focus	v_{a3}	0	to 400 §	v
Grid to cathode voltage for cut-off of raster	v_g	-38	to -82	v
Typical line width at $50\mu\text{A}$ (Shrinking ra	aster)		0.2	mm

§ The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage range of at least -100V to +500V will be required.

MOUNTING

If a mask is used with this tube it should be flexible enough to take up small variations in bulb contours.

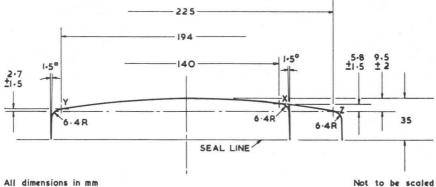

There is a region of anti-corona coating surrounding the CT8 cap, the tube should not be handled in this region.

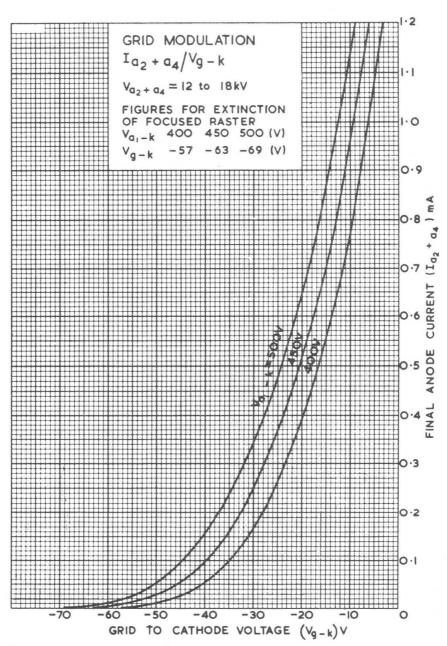
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

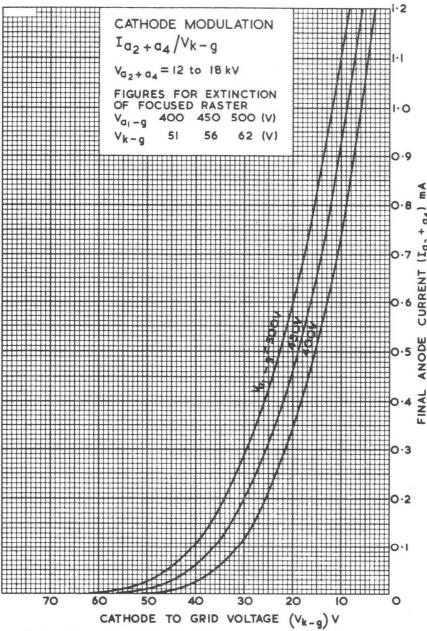
When flashover protection is incorporated the chassis return path should be made in a manner appropriate to the protection system employed.

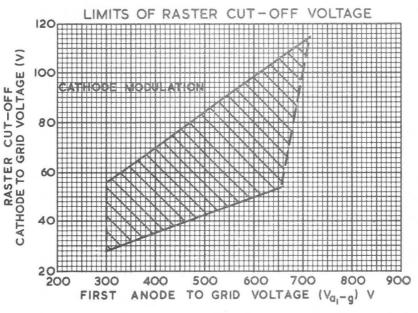
TUBE WEIGHT (approximate) 1.7 kg

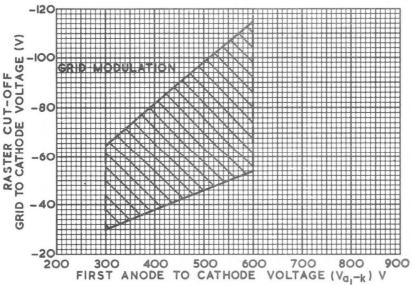

- * During the face sealing operation the glass in this area may be disturbed and the shape may be either convex or concave. The bulb should not be gripped within this region unless special precautions are taken, such as, the use of resilient packing material.
- † Determined by reference line gauge No. 15.


Thorn Radio Valves and Tubes Limited

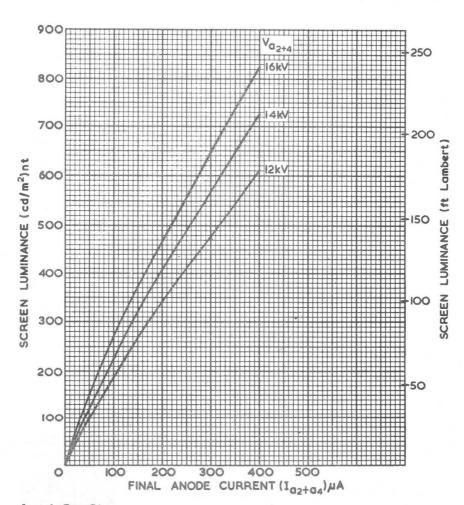
Issue 1, Page 3




M24-121..



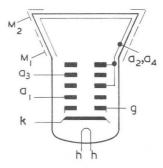
Issue 1, Page C1



Issue 1, Page C3

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4 x 3 ASPECT RATIO

M24-130..


Data Display or Monitor Tube

PRELIMINARY DATA

GENERAL

Rectangular face, 24 cm, 90° diagonal Bonded face-plate treated to reduce specular reflection. Ruggedised gun construction Rimguard reinforced envelope with mounting lugs Flying lead connections for base and anode Electrostatic focus, magnetic deflection Grey glass, 32% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

	_		
Heater voltage	v_h	6.3	V
Heater current	\mathbf{I}_{h}	0.3	A

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4}(min)$	10	kV
Maximum third anode voltage range	$V_{a3(max)}$	± 700	V
Maximum first anode voltage	$V_{a1}(max)$	600	V
Minimum first anode voltage	$V_{al(min)}$	200	V
Maximum negative grid voltage	-Vg(max)	200	V
Minimum negative grid voltage	-Vg(min)	1.0†	V
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	200	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk) max	250	v
Maximum impedance, grid to cathode(50 Hz)	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

[†] A 10 $k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with GJ phosphor (M24-130GJ) giving a yellowish-green trace of medium persistence. Other phosphor screens can be made available to special order.

This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

M24-130..

INTER-ELECTRODE CAPACITANCES		*	
Maximum cathode to all	ck-all (max)	5.0	pF
Maximum grid to all	cg-all (max)	16	pF
Minimum anodes 2 and 4 to coating M_1	$c_{a2+a4-M1}$ (min)	550	pF
Minimum anodes 2 and 4 to metal \mathbf{M}_2	ca2+a4-M2 (min)	100	pF

^{*} Flying leads capacitance balanced out.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	v_{a2+a4}	12	to 16	kV
First anode voltage	v_{a1}		400	V
Third anode voltage range for focus	v_{a3}	0	to 400 §	V
Grid to cathode voltage for cut-off of raster	V_g	- 38	to -82	v
Typical line width at 50 µA (Shrinking ra	aster)		0.2	mm

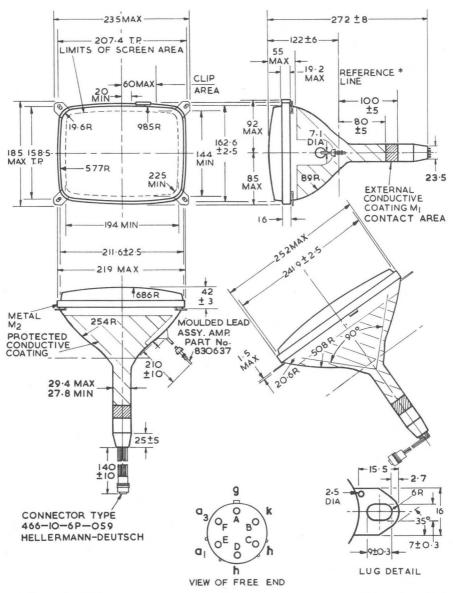
[§] The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage range of at least -100V to +500V will be required.

MOUNTING

If a mask is used with this tube it should be flexible enough to take up small variations in fixing and bulb contours.

The bolts for mounting the tube must lie within circles of 4 mm diameter centred on the true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.


The metal frame (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 $M\Omega$.

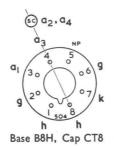
When flashover protection is incorporated the chassis return paths of M1 and M2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - 2.2kg

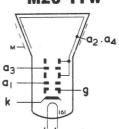
M24-130...

Data Display or Monitor Tube

All dimension in mm


Not to be scaled

* Determined by reference line gauge No. 15


Page 3, Issue 1.

Monitor Tube

Maintenance Type

M28-11W

GENERAL

Rectangular Face —11 in. Diagonal Deflection Angle —90° Diagonal Aluminised Screen—Silver Activated Phosphor Electrostatic Focus —Magnetic Deflection Grey Glass —58% Transmission (approx) Straight Gun —Non Ion Trap External Conductive Coating

Heater Voltage Heater Current V_h 11·5 V I_h 0·15 A

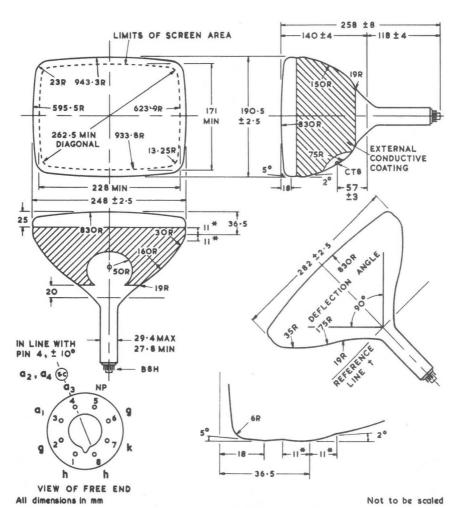
DESIGN CENTRE RATINGS

Maximum Second and Fourth Anode Voltage	$V_{a2,a4(max)}$	18*	kV	
Minimum Second and Fourth Anode Voltage	$V_{a2,a4(min)}$	12	kV	
Maximum Third Anode Voltage	$V_{a3(max)}$	± 700	V	
Maximum First Anode Voltage	$V_{a1(max)}$	500	V	
Maximum Negative Grid Voltage	$-V_{g(max)}$	200	v	
Minimum Negative Grid Voltage	-V _{g(min)}	1.0	v	
Maximum Heater to Cathode Voltage,	V _{h-k(max)}			
Heater Negative (d.c.)	,,	200	V	

* 18kV is a design centre rating, the absolute rating of 20kV must not be exceeded. All voltages referred to cathode.

INTER-ELECTRODE	CAPACITANCES	•	8	
Grid to all	Cg-all	7.0	8.5	ρF
Cathode to all	C _{k-all}	3.0	3.5	
Anode 2 and Anode 4 to External Conductive	300.0000			ρ.
Coating (approx)	Ca2,a4-M	70	00	ρF
Holder capacitance balanced out				ρ.

§ Total capacitances including a typical B8H holder.

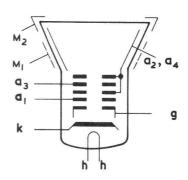

TYPICAL OPERATION—Grid Modulation (all voltages referred to cathode)

Second and Fourth Anode Voltage	$V_{a2,a4}$	14	kV	
First Anode Voltage	V_{a1}	400	V	
Third Anode Voltage for Focus (Range)	V_{a3}	0 to 400	v	
Grid to Cathode Voltage for cut-off of raster	Vg	-40 to -76	v	
Average Peak to Peak Modulating Voltage	•		,	
(Final Anode current=200µA)		29	V	

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range. The normal glass protective viewing window may provide such a safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

Tubes incorporating a B8H sparkguard base will have a suffix S after the type number. For details of the sparkguard base see separate sheet.

Thorn Radio Valves and Tubes Limited


* During the face sealing operation the glass in this area (total 22mm) may be disturbed. As the shape of the contour within this area may be either convex or concave the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).

† Determined by T.D.S. Reference Gauge No. 91-15 (See T.D.S. 5-0-91-15)

There is an annular region of anti-corona coating with diameters of 25 mm and 60 mm surrounding the CT8 cap, the tube should not be handled in this region. The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and the final anode may be used to provide smoothing for the e.h.t. supply.

GENERAL

Rectangular face, 28 cm, 90° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen. Grey glass, 58% transmission (approx.) 20 mm neck diameter External conductive coating

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	14*	kV
Minimum second and fourth anode voltage	Va2+a4(min)	7.5	kV
Maximum third anode voltage	Va3(max)	-50 to + 500	v
Maximum first anode voltage	$v_{a1(max)}$	350	v
Maximum negative grid voltage	$-v_{g(max)}$	100	v
Maximum peak negative grid voltage	-vg(pk)max	350†	v
Maximum positive grid voltage	v_g	0 \$	v
Maximum heater to cathode voltage, heater negative (d.c.)	V _{h-k(max)}	110	v
Maximum peak heater to cathode voltage, heater negative	vh-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz) $$	Zg-k(max)	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

- $* I_{a2+a4} = 0$
- † Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- § A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M28-12W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

M28 – 12.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES

Cathode to all	ck-all	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M ₁ (approx.)	ca2+a4-M1	600	pF
Anodes 2 and 4 to shell M2 (approx.)	ca2+a4-M2	125	рF

^{*} Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation (Voltage referred to cathode)

Second and fourth anode voltage	$v_{a2+a4-k}$	11	13	$k\mathbb{V}$
First anode voltage	v_{a1-k}	250	350	V
Third anode voltage range for focus	v_{a3-k}	0 to 350	50 to 400	V
Grid to cathode voltage for cut-off of raster	v_{g-k}	-35 to -69	-46 to -91	V

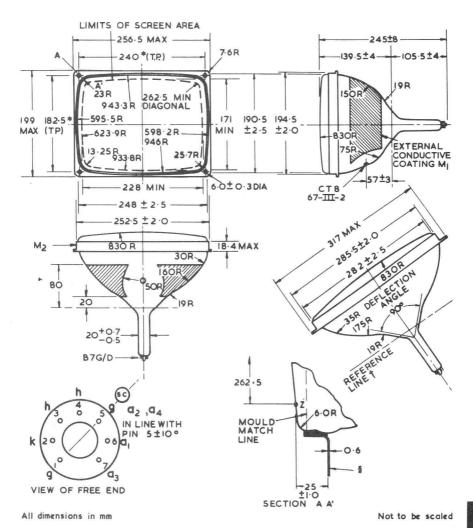
TYPICAL OPERATION - Cathode modulation (Voltage referred to grid)

Second and fourth anode voltage	$v_{a2+a4-g}$		11		13	kV
First anode voltage	v_{a1-g}		250		350	V
Third anode voltage range for focus	v_{a3-g}	0	to 350	50	to 400	V
Cathode to grid voltage for cut-off of raster	v_{k-g}	32	to 58	44	to 80	V

MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and faceplate contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

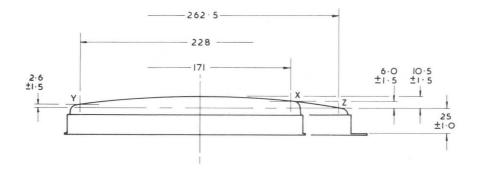

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal shell (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 $M\Omega$.

When flashover protection is incorporated the chassis return paths of $\rm M_1$ and $\rm M_2$ should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - 2.2 kg



^{*} The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.

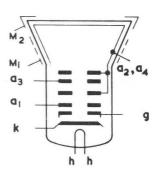
[†] Determined by reference line gauge No. 20 (See T.D.S. No. 5-0-91-20)

[§] Maximum departure from flatness of the rim is 1.0 mm. Issue 1, Page 3,

M28 – 12.. Data Display or Monitor Tube

All dimensions in mm

Not to be scaled


Characteristic curves as M31-190...

GENERAL

Rectangular face, 11 inch, 90° diagonal Rimguard III reinforced envelope* Integral mounting lugs Electrostatic focus, magnetic deflection Straight gun. Aluminised screen Grey glass, 58% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

Heater voltage 11.5 Heater current

0.15

DESIGN CENTRE RATINGS - Voltages referred to cathode

	orion to cutiloud		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18 †	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	12	kV
Maximum third anode voltage	$V_{a3(max)}$	± 700	v
Maximum first anode voltage	$V_{a1(max)}$	500	v
Maximum negative grid voltage	$-v_{g(max)}$	200	v
Minimum negative grid voltage	$-V_{g(min)}$	1.0	v
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	200	v

A

† The absolute rating of 20kV must not be exceeded.

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M28-13W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

* This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

Thorn Radio Valves and Tubes Limited

M28-13...

Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	^c g-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	^C a2+a4-M1	600		pF
Anodes 2 and 4 to frame M_2 (approx.)	ca2+a4-M2	125		pF
* Holder capacitance balanced out.				

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

† Total capacitances including a typical B8H holder.

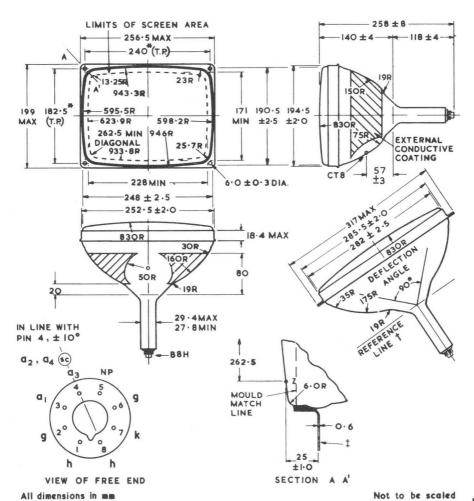
Second and fourth anode voltage	v_{a2+a4}		14		kV
First anode voltage	v_{a1}		400		V
Third anode voltage range for focus	V_{a3}	0	to	400	V
Grid to cathode voltage for cut-off of raster	v_g	-40	to	-76	v
Average peak to peak modulating voltage for $200\mu\text{A}$ final anode current	ge		29		v
Typical line width § at 100 ft-L (343 nt). 155 μA		0.3		mm

§ Using shrinking raster method.

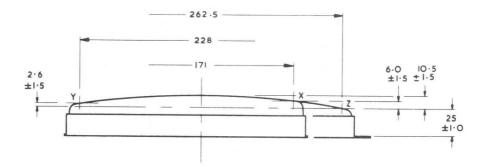
MOUNTING

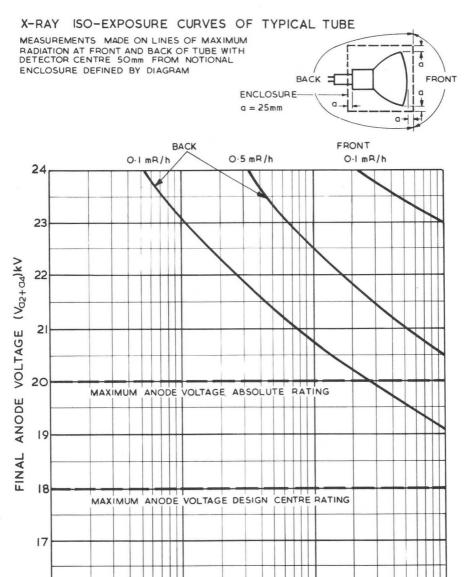
This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 60 mm surrounding the CT8 cap, the tube should not be handled in this region.


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.


The metal frame (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example $2~M\Omega$.


When flashover protection is incorporated the chassis return paths of $\rm M_1$ and $\rm M_2$ should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 2.1 kg

- * The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15 (See T.D.S. No. 5-0-91-15).
- 1 Maximum departure from flatness of the rim is 1.0 mm.

8

100

6

4

FINAL ANODE CURRENT (Ig2+g4),4A

2

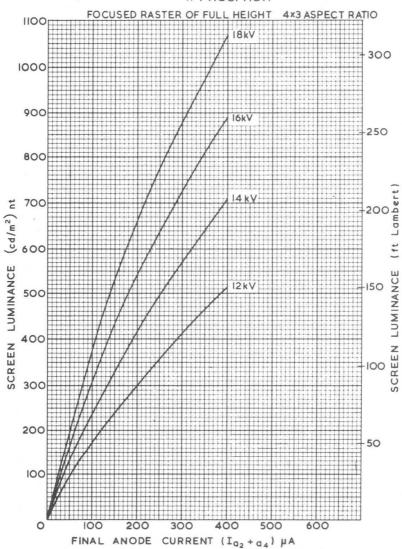
4 6 8

1000

DATA DISPLA & MONITOR TUBES

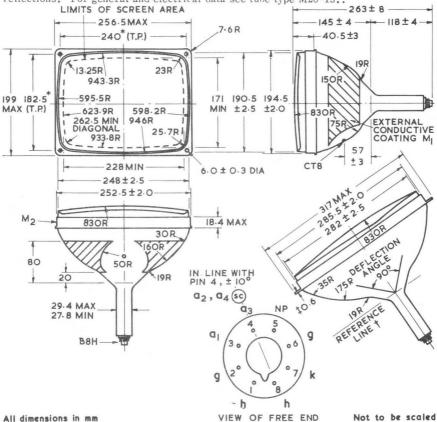
Page C1, Issue 1.

1.0


2

4

10


16

TYPICAL CHARACTERISTICS W PHOSPHOR

MAINTENANCE TYPE

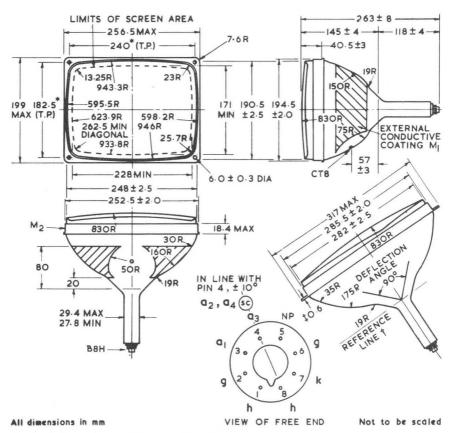
The M28-131.. is the M28-13.. with a bonded face-plate treated to reduce specular reflections. For general and electrical data see tube type M28-13..

- * The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15.
- ‡ Maximum unflatness of the rim is 1.0 mm.

PHOSPHOR SCREEN

This type is usually supplied with GR phosphor (M28-131GR) giving a yellowish-green trace of very long persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - 2.5 kg


Thorn Radio Valves and Tubes Limited

Page 1. Issue 4.

DATA DISPLAY & MONITOR TUBES

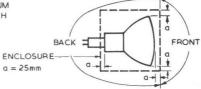
The M28-132.. is the M28-13.. with a tinted bonded face-plate treated to reduce specular reflections. The total centre glass transmission is approximately 35%. For other general and electrical data see tube type M28-13..

- * The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15. (See T.D.S. No. 5-0-91-15)
- 1 Maximum unflatness of the rim is 1.0 mm.

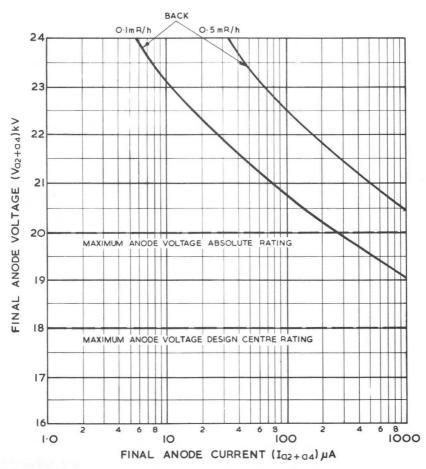
PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M28-132GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) 2.5 kg


Thorn Radio Valves and Tubes Limited

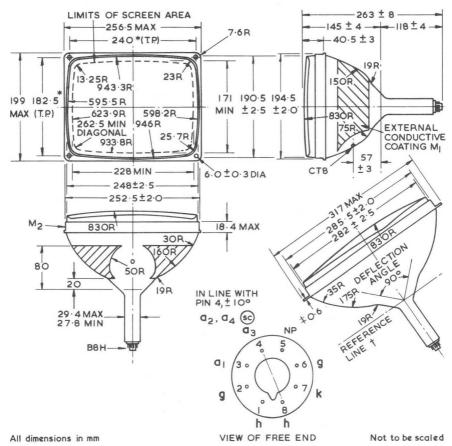
Issue 2, Page 1,



X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE 50mm FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-I $\ensuremath{\mathsf{mR}}\xspace/\ensuremath{\mathsf{h}}\xspace$



Page C1, Issue 1.

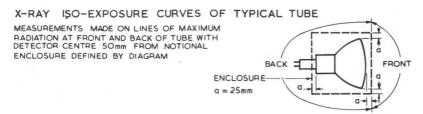
M28 - 133..

Data Display or Monitor Tube

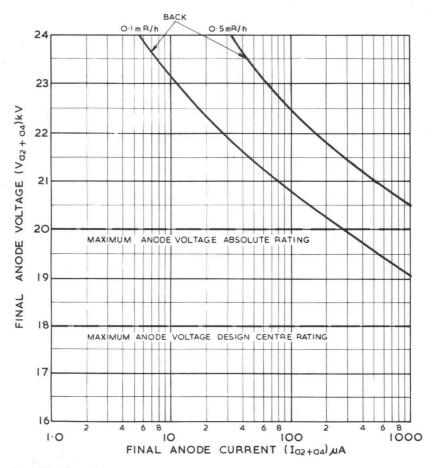
The M28-133.. is the M28-13.. with a tinted bonded face-plate treated to reduce specular reflections. The total centre glass transmission is approximately 18%. For other general and electrical data see tube type M28-13..

- * The bolts to be used for mounting the tube must lie within the circles of 5.0 mm diameter centred on these true positions.
- † Determined by reference line gauge No. 15
- 1 Maximum unflatness of the rim is 1.0mm.

PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (M28-133GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) 2.5 kg.

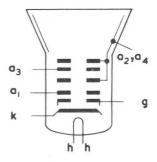

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED OIM R/h

Page C1, Issue 1.

M31-100...


Data Display or Monitor Tube

Maintenance Type

GENERAL

Rectangular face, 31 cm, 70° diagonal tube Bonded faceplate treated to reduce specular reflections. Aluminised screen. Electrostatic focus, magnetic deflection 38 mm maximum neck diameter Grey glass, 50% transmission (approx.) Straight gun, non ion trap

Heater voltage	v_h	6.3	v
Heater current	I_h	0.3	Α

ABSOLUTE RATINGS - Voltages referred to cathode

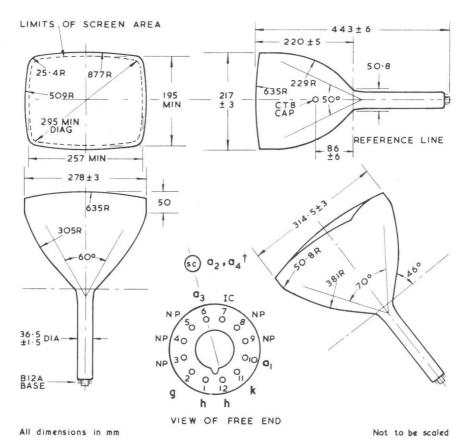
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	$V_{a3(max)}$	+ 800	v
Maximum first anode voltage	$V_{a1(max)}$	800	V
Maximum negative grid voltage	-Vg(max)	180	v
Maximum positive grid voltage	$V_{g(max)}$	0	v
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	200	v

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-100GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

The M31-100GH is also known as the CV6237.


TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	v_{a2+a4}		12		
First anode voltage	v_{a1}		400	v	
Third anode voltage range for focus	v_{a3}	0	to +400	v	
Grid to cathode voltage for cut-off of raster	v_g	-30	to -70	v	
INTER-ELECTRODE CAPACITANCES		*	+		
Cathode to all	ck-all	3.5	4.5	pF	
Grid to all	Cg-all	7.0	7.5	pF	

^{*} Holder capacitance balanced out.

TUBE WEIGHT (approximate) - 4.4 kg

[†] Total capacitance including a typical holder.

- * Determined by reference line gauge No. 12 (See T.D.S. No. 5-0-91-12)
- † Anode a2, a4 cap in line with pin 6, tolerance ± 10°

The socket for the base should not be rigidly mounted, it should have flexible leads and be allowed to move freely.

There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

M31-101..

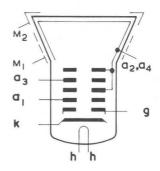
Maintenance Type

The M31-101.. is the M31-100.. with an increased neck length to permit the use of an additional high frequency deflector coil ("write" coil) for data display applications. The neck length of this tube is 264 mm making the overall length 484 + 6 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-101GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

For all other data please see M31-100.. data sheets.



M31-120...

Data Display or Monitor Tube

GENERAL

Rectangular face, $31\,\mathrm{cm}$ (12 in), $110\,^\circ$ diagonal Rimguard III reinforced envelope**
Integral mounting lugs, 20 mm dia. neck Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 50% transmission (approx.) Straight gun, non ion trap External conductive coating Heater voltage V_h 11 V Heater current I_h 140 mA

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}	13.5†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10.5*	kV
Maximum third anode voltage - range	Va3(max)	-50 to +500	V
Maximum first anode voltage	Val(max)	350	V
Maximum negative grid voltage	-Vg(max)	100	V
Maximum peak negative grid voltage	-vg(max)	350§	V
Maximum positive grid voltage	Vg(max)	O¶	V
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	110	v
Maximum peak heater to cathode voltage, heater negative	vh-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

All voltages referred to cathode

- † The absolute rating of 16.5 kV must not be exceeded.
- * Absolute minimum rating is 8.5 kV.
- § Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- 1 A $10\,\mathrm{k}\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- ** This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M31-120W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

INTER-ELECTRODE CAPACITANCES

0-41-1-411	0		3.0*		nF
Cathode to all	c _{k-all}				pF
Grid to all	cg-all		4.0*		pF
Anodes 2 and 4 to coating M _{1(min.)}	$c_{a2+a4-M1(min.)}$		450		pF
Anodes 2 and 4 to shell M2 (approx.)	c _{a2+a4} -M2		200		pF
* Holder capacitance balanced out.					
TYPICAL OPERATION - Grid modul	ation (Voltages refer	rred	to cathode)	
Second and fourth anode voltage	V _{a2+a4-k}		12		kV
First anode voltage	Val-k		250		V
Third anode voltage range for focus	Va3-k	0	to 350		V
Final anode current (peak)	ia2+a4(pk)		250		$\mu \mathbf{A}$
Average peak to peak picture modulating voltage			33		V
Grid to cathode voltage for cut-off of raster	v_{g-k}	-3	5 to - 69		v
TYPICAL OPERATION - Cath	ode modulation (Volt	age 1	referred to	grid)	
Second and fourth anode voltage	$v_{a2+a4-g}$		12		kV
First anode voltage	Val-g		250		V
Third anode voltage range for focus	v _{a3-g}	0	to 350		V
Final anode current (peak)	ia2+a4 (pk)		250		μ A
Average peak to peak picture modulating voltage			26		v

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

 v_{k-g}

32 to 58

Cathode to grid voltage for

cut-off of raster

M31-120. Data Display or Monitor Tube

PICTURE CENTRING

Maximum magnet flux density at centre
of neck should not be less than 15 Gs

Maximum distance of centre of magnetic
field from reference line 44 mm

DEFLECTION ANGLES

Height 80° Width 99° Diagonal 110°

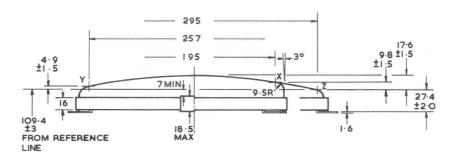
MOUNTING

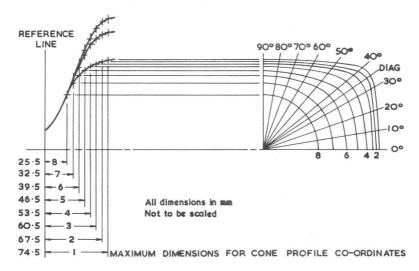
This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

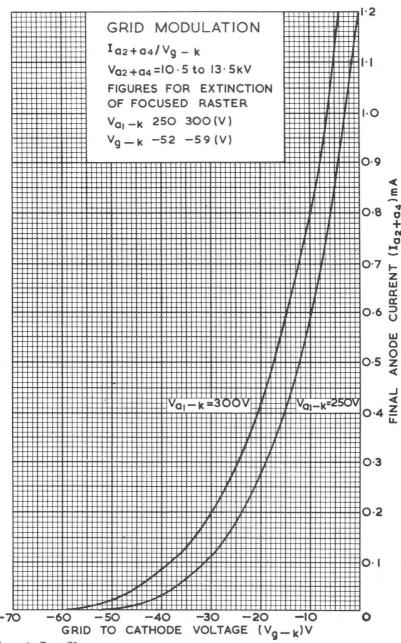
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

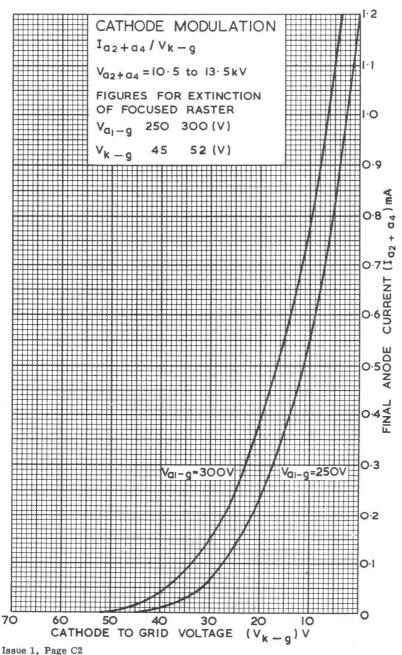

The metal shell (M_2) should be connected to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example $2\,M\Omega$.

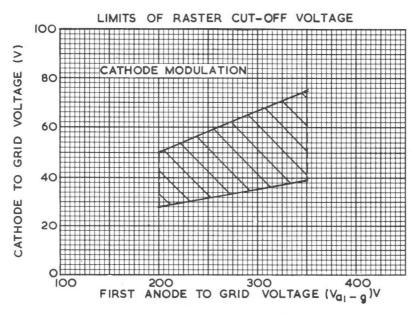

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

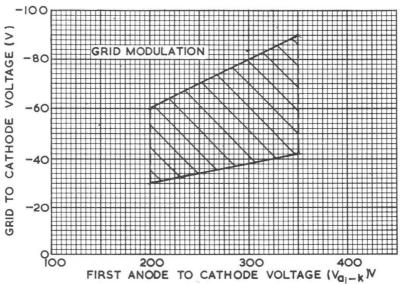
TUBE WEIGHT (approximate) - net 3.0 kg (6.5 lb)


† Determined by reference line gauge No. 22. (See T.D.S. 5-0-91-22)

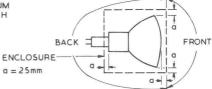
^{*} The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.



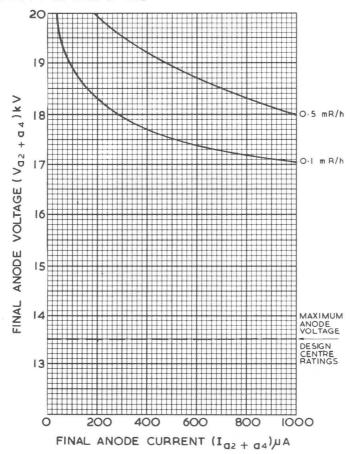



Reference Plane No.	0° Major	10°	20°	30°	Diag.	40°	50°	60°	70°	80°	90° Minor
1	140.2	141.5	146.0	154.0	157.8	154.6	136.7	123.5	115.5	111.0	109.6
2	137.8	139.2	143.4	151.1	154.1	151.5	134.3	121.6	113.7	109.4	108.1
3	133.9	134.8	137.8	143.0	145.3	143.2	129.4	118.4	111.1	107.3	106.0
4	127.3	127.7	129.3	132.0	133.2	132.1	122.3	113.2	107.2	103.8	102.6
5	116.4	116.8	117.7	.119.2	120.0	119.3	112.8	105.9	101.5	98.6	98.1
6	103.0	103.2	103.8	104.8	105.2	104.7	101.5	97.0	94.2	92.5	91.9
7	87.0	87.1	87.2	87.4	87.8	87.1	85.9	84.6	83.6	83.0	82.8
8	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3	68.3

Issue 1, Page C1



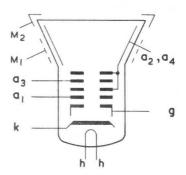
M31-120.. Data Display or Monitor Tube


X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM
RADIATION AT FRONT AND BACK OF TUBE WITH
DETECTOR CENTRE 50mm FROM NOTIONAL
ENCLOSURE DEFINED BY DIAGRAM
BACK

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-1 mR/h

RADIATION FROM BACK OF TUBE


Page C4, Issue 1.

Maintenance Type

GENERAL

Rectangular face, 12 inch, 110° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen. Bonded face-plate Face treated to reduce reflections Grey glass, 50% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3*	Α

DESIGN CENTRE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	13.5†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10.5	kV
Maximum third anode voltage	V _{a3(max)}	+1000 to -500	V
Maximum first anode voltage	$V_{a1(max)}$	550	V
Maximum negative grid voltage	-Vg(max)	150	V
Maximum peak negative grid voltage	-vg(pk)max	400	V
Maximum positive grid voltage	$V_{g(max)}$	O¶	V
Maximum heater to cathode voltage, heater negative (d.c.)	$V_{h-k(max)}$	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	vh-k(pk)max	400§	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

- * In a series heater chain the CRT should always be connected at the chassis end.
- † The absolute rating of 16.5 kV must not be exceeded.
- \P $A\,10\,k\Omega\,grid$ series resistor mounted close to the tube base is recommended to limit the peak grid voltage
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with LG phosphor $(M31-182\,LG)$ giving an orange trace of very long persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 3, Page 1

M31-182.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	рF
Grid to all	cg-all	6.5	8.0	pF
Anodes 2 and 4 to coating M_1 (min)	ca2+a4-M1 (min)		450	pF
Anodes 2 and 4 to frame M_2 (approx.)	$c_{a2+a4-M2}$		200	pF
* Holder capacitance balanced out.				
† Total capacitances including a typical	B8H holder.			
TYPICAL OPERATION - Grid modulat	tion, voltages refer	red to c	athode.	
Second and fourth anode voltage	Va2+a4-k		12	kV
First anode voltage	V _{a1-k}		400	V
Third anode voltage range for focus	v_{a3-k}	0	to 400	V
Final anode current (peak)	ia2+a4(pk)	200	350	μA
Average peak to peak picture modulating voltage		29	36	v
Grid to cathode voltage range for cut-off of raster	v_{g-k}	-40) to -77	v
LG screen persistence to 10% (approx.)			3.0	8
TYPICAL OPERATION - Cathode modu	lation, voltages ref	erred to	grid	
Second and fourth anode voltage	V _{a2+a4-g}		12	kV
First anode voltage	V _{a1-g}		400	V
Third anode voltage range for focus	V _{a3-g}	(to 400	V
Final anode current (peak)	ia2+a4(pk)	200	350	μA
Average peak to peak picture modulating voltage		25	31	v
Cathode to grid voltage range for cut-off of raster	v_{k-g}	36	3 to 66	v
LG screen persistence to 10% (approx.)			3.0	8

The LG screen is liable to burn even at low values of beam current if operated with stationary or slow moving spot.

This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PICTURE CENTRING

Maximum magnet flux density at centre of neck should not be less than

15 Gs

Maximum distance of centre of magnetic field from reference line

mm

DEFLECTION ANGLES

Height 80°

Width 99°

Diagonal

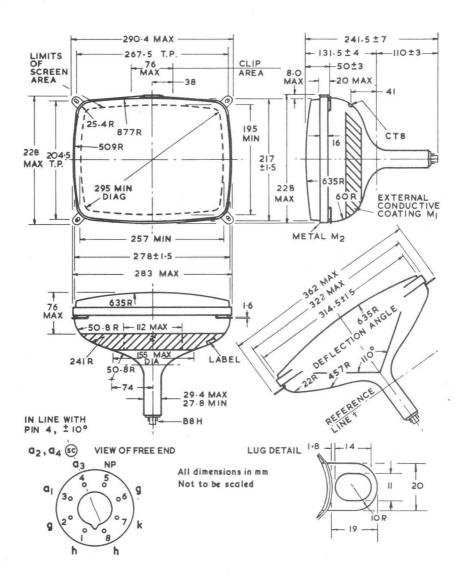
53

110°

MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.


The bolts to be used for mounting must lie within circles of 6.5 mm diameter centred on the true positions of the lug holes. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 $M\Omega$.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 3.4 kg (7.5 lb)

† Determined by reference line gauge No. 16. (B.S.RL4: IEC67-IV-3: JEDEC126)

Minimum screen area 477 cm²

Issue 5, Page 4

GENERAL

Rectangular face, 12 inch, 110° diagonal Rimguard III reinforced envelope

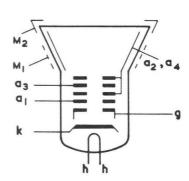
Integral mounting lugs

Electrostatic focus, magnetic deflection Aluminised screen

Grey glass, 50% transmission (approx.)

Straight gun, non ion trap

External conductive coating


Heater voltage

 v_h

6.3

Heater voltage

Ih 0.3*

DESIGN CENTRE RATINGS - Voltages referred to cathode

DESIGN CENTRE RATINGS TOLLA	ges reterred to cathode	
Maximum second and fourth anode vol	tage $V_{a2+a4(max)}$ 16†	kV
Minimum second and fourth anode volt	tage V _{a2+a4(min)} 10.5	kV
Maximum third anode voltage	$V_{a3(max)}$ +1000 to -500	v
Maximum first anode voltage	V _{a1(max)} 550	V
Maximum negative grid voltage	$-V_{g(max)}$ 150	V
Maximum peak negative grid voltage	-vg(pk)max 400**	V
Maximum positive grid voltage	Vg(max) 0¶	V
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$ 250	v
Maximum peak heater to cathode volta heater negative (absolute rating)	age, Vh-k(pk)max 400\$	v
Maximum impedance, grid to cathode	(50 Hz) Z _{g-k(max)} 0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode		$\mathbf{M}\Omega$

- * In a series heater chain the CRT should always be connected at the chassis end.
- † The absolute rating of 18 kV must not be exceeded.
- ¶ A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- § During a warming-up period not exceeding 45 seconds.
- ** Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.

PHOSPHOR SCREEN

This type is usually supplied with a W phosphor (M31-184W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

Monitor Tube

INTER-ELECTRODE CAPACITANCE	S	*	Ť	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	cg-all	6.5	8.0	рF
Anodes 2 and 4 to coating M1 (min)	(a2+a4-M1(min)	4	50	pF
Anodes 2 and 4 to shell M2 (approx.)	Ca2+a4-M2	2	00	рF
* Holder capacitance balanced out.				
† Total capacitances including a typic	al B8H holder.			
TYPICAL OPERATION Grid modula	ation (Voltage refer	red to cath	ode)	
Second and fourth anode voltage	V _{a2+a4-k}	1	5	kV
First anode voltage	V _{a1-k}	4	00	V
Third anode voltage range for focus	Va3-k	0 to	100	V
Final anode current (peak)	ia2:a4(pk)	200	350	μA
Average peak to peak picture modulating voltage		29	36	V
Grid to cathode voltage for cut-off of raster	V_{g-k}	- 10 to	5 -77	V
TYPICAL OPERATION Cathode mo	dulation (Voltage re	eferred to	grid)	
Second and fourth anode voltage	Va2-a4-g	1	5	kV
First anode voltage	v_{a1-g}	4	00	V
Third anode voltage range for focus	V _{a3-g}	0 to	+00	V
Final anode current (peak)	ia2·a4	200	350	μA
Average peak to peak picture modulating voltage		25	31	V
Cathode to grid voltage for cut-off of raster	V_{k-g}	36 to	o 66	V

This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PICTURE CENTRING

Maximum magnet flux density at centre of neck should not be less than	15	Gs
Maximum distance of centre of magnetic field from reference line	53	mm

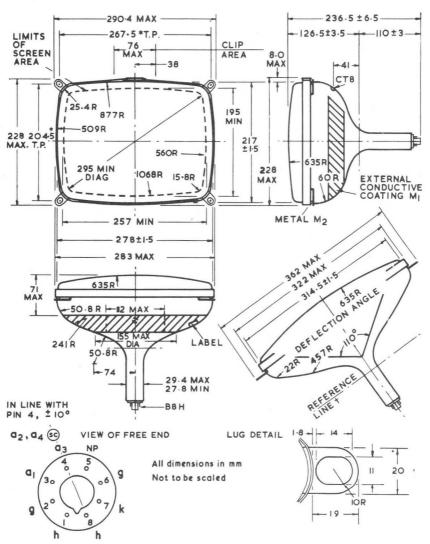
DEFLECTION ANGLES

Height 80° Width 99° Diagonal 11

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

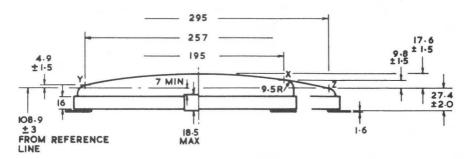

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

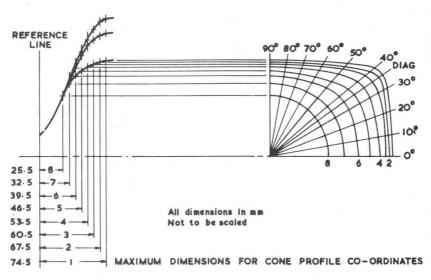
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal rimband (M_2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c. / d.c. equipment, for example $2\,M\Omega_{\cdot}$

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

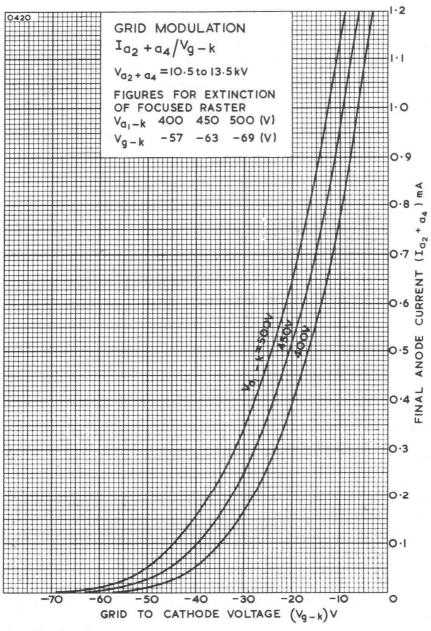
TUBE WEIGHT (approximate) - net 3.0 kg (6.5 lb)

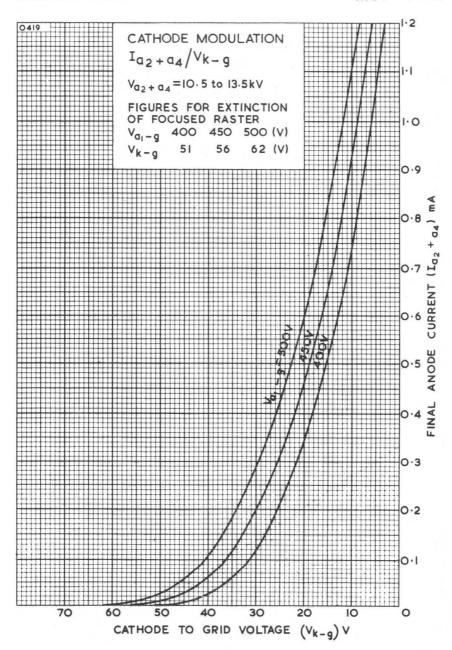



* The bolts to be used for mounting the tube must lie within circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.

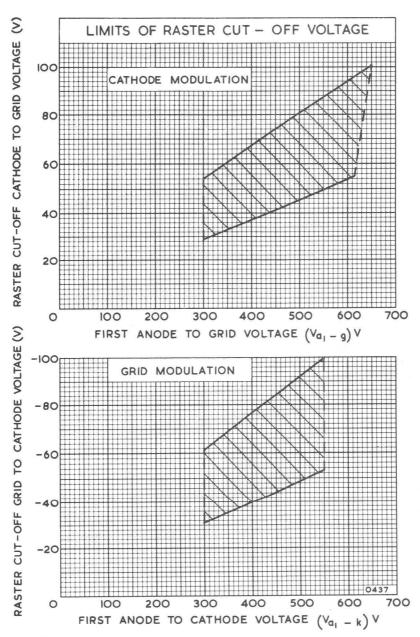
† Determined by reference line gauge No.16. (B.S.RL4: IEC67-IV-3: JEDEC126)

Minimum screen area 477 cm²

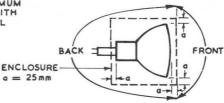

Issue 2, Page 4

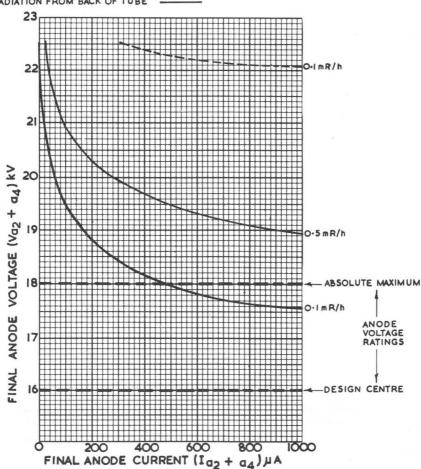


Reference Plane No.	, 0° Major	10°	20°	30°	Diag.	40°	50°	60°	70°	80°	90° Minor
1 2	140.2 137.8	141.5 139.2				154.6 151.5					
3 4	133.9 127.3	134.8 127.7									
5 6	116.4 103.0								101.5 94.2	98.6 92.5	98.1 91.9
7 8	87.0 68.3	87.1 68.3	87.2 68.3			87.1 68.3	85.9 68.3	84.6 68.3	83.6 68.3	83.0 68.3	82.8 68.3

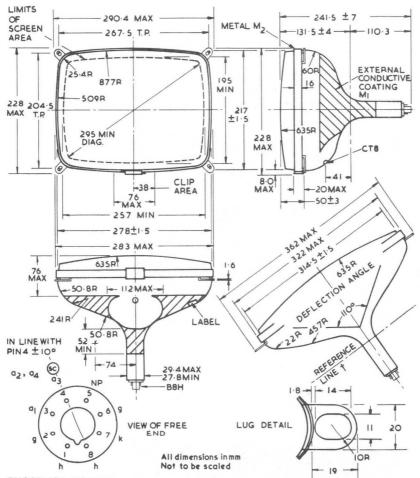

Issue 1, Page 5

Page C1. Issue 2.


Page C2, Issue 1.


Page C3, Issue 1.

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE


MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE 50 mm FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM.

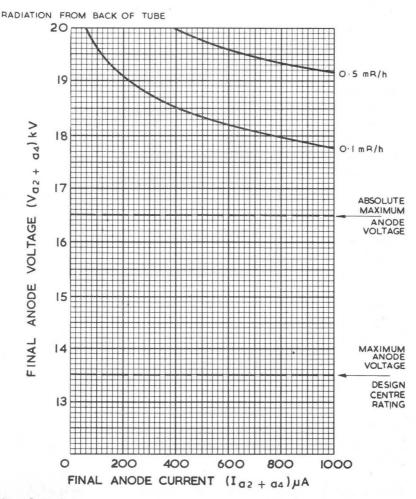
RADIATION FROM FRONT OF TUBE ----

The M31-185.. is the M31-182.. with a tinted bonded faceplate giving a total glass transmission of approximately 15%. The M31-185.. has external conductive coating dimensions as shown below which also differ from the M31-182..

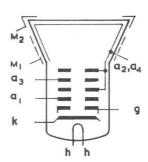
PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-185GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

† Determined by reference line gauge No.16. (B.S.RL4: IEC67-IV-3: JEDEC126) Minimum screen area 477 cm²


Thorn Radio Valves and Tubes Limited

Issue 2, Page 1


M31-185...

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-1 m R/h

GENERAL

Rectangular face, 31 cm (12in), 90° diagonal Rimguard III reinforced envelope** Integral mounting lugs, 20 mm dia. neck Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 50% transmission (approx.) Straight gun, non ion trap External conductive coating Heater voltage V_h 11 V Heater current I_h 75 mA

DESIGN CENTRE RATINGS Voltages referred to cathode

Maximum second and fourth anode voltage	Va2+a4(max)	13.5†	kV
Minimum second and fourth anode voltage	Va2+a4(min)	10.5*	kV
Maximum third anode voltage - range	$V_{a3(max)}$	-50 to +500	V
Maximum first anode voltage	$V_{a1(max)}$	350	V
Maximum negative grid voltage	-Vg(max)	100	V
Maximum peak negative grid voltage	-vg(max)	350\$	\mathbf{v}
Maximum positive grid voltage	$v_{g(max)}$	O¶	V
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	110	v
Maximum peak heater to cathode voltage, heater negative	vh-k(pk)max	130	v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

All voltages referred to cathode

- † The absolute rating of 16.5kV must not be exceeded.
- * Absolute minimum rating is 8.5 kV.
- § Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- \P A 10 kW grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- ** This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor ($M31-190\mathrm{GH}$) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 1.

M31-190..

INTER-ELECTRODE CAPACITANCES			
Cathode to all	ck-all	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M	ca2+a4-M1	700	рF
Anodes 2 and 4 to shell M2 (approx.)	c _{a2+a4-M2}	200	pF
* Holder capacitance balanced out.			
TYPICAL OPERATION - Grid modulation	n (Voltages referred to	cathode)	
Second and fourth anode voltage	V _{a2+a4-k}	12	kV
First anode voltage	V _{a1-k}	250	V
Third anode voltage range for focus		to 350	V
Average peak to peak picture modulating voltage up to 250μA		33	v
Grid to cathode voltage for cut-off of raster	V _{g-k} -39	5 to -69	v
TYPICAL OPERATION - Cathode module	ation (Voltages referre	d to grid)	
Second and fourth anode voltage	V _{a2+a4-g}	12	kV
First anode voltage	V _{a1-g}	250	V
Third anode voltage range for focus	V _{a3-g}) to 350	v
Average peak to peak picture modulating voltage up to $250\mu A$		26	v
Cathode to grid voltage for cut-off of raster	V _{k-g} 32	to 58	v

This data should be read in conjunction with Operational Recommendations for ${\bf Industrial}$ Cathode Ray Tubes.

M31-190...

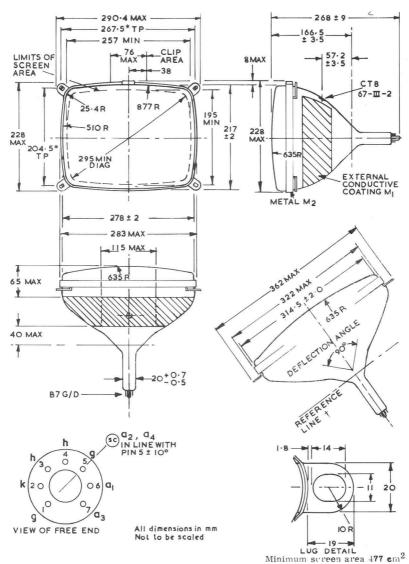
Data Display or Monitor Tube

MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and bulb contours.

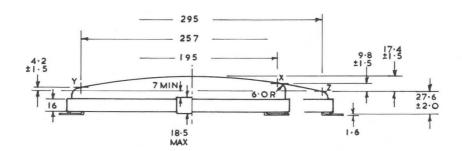
There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

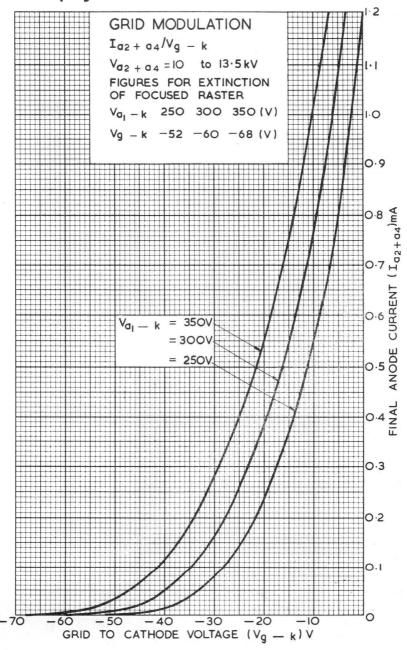
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 36 mm diameter which is centred on the perpendicular from the centre of the face.

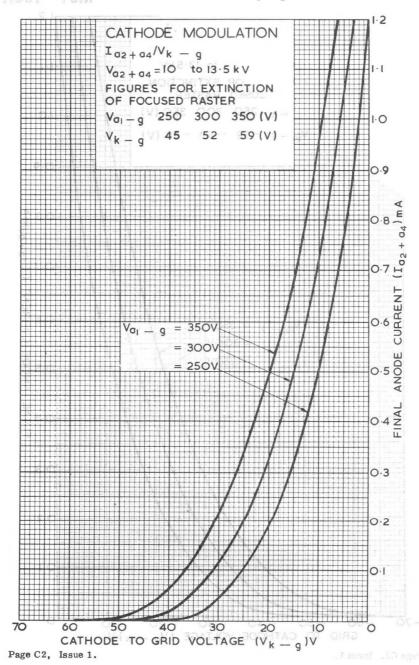

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal shell (M_2) should be connected to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 M Ω .

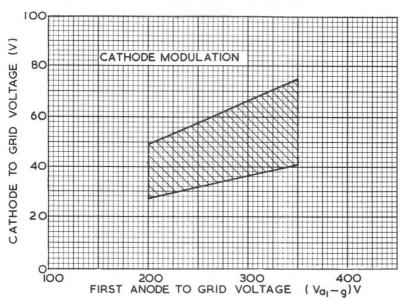
When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

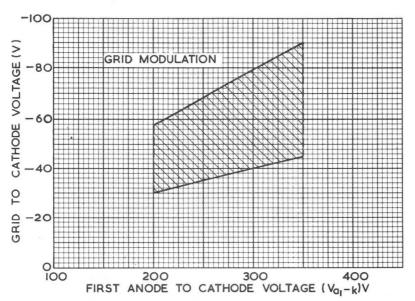

TUBE WEIGHT (approximate) - net 3.0 kg (6.5lb)



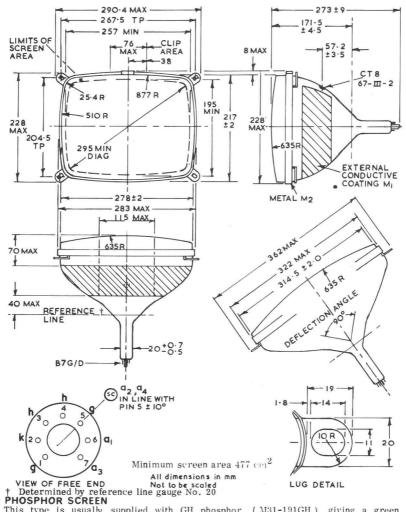

* The bolts to be used for mounting the tube must lie within circles of 7.0mm diameter centred on these true positions. One of the four lugs may deviate 2.0mm maximum from the plane through the other three lugs.

† Determined by reference line gauge No. 20, (See T.D.S. 5-0-91-20)





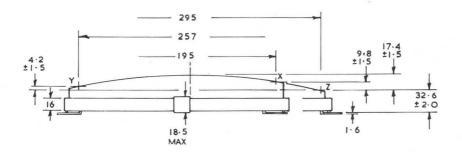
Page C1, Issue 1.



LIMITS OF RASTER CUT-OFF VOLTAGE

The M31-191.. is the M31-190.. with a tinted bonded face-plate giving a total glass transmission of approximately 15% and the surface treated to reduce specular reflections.

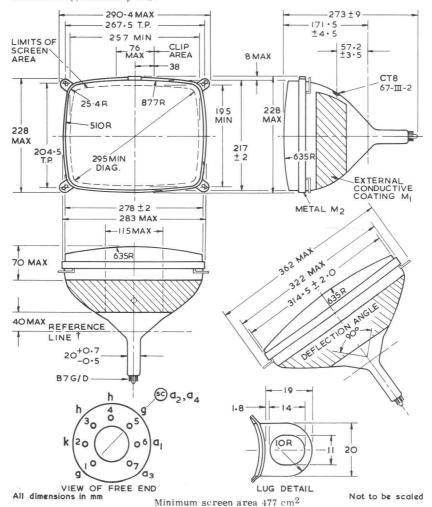
This type is usually supplied with GH phosphor (M31-191GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT

(approximate) - net 3.6 kg

Thorn Radio Valves and Tubes Limited

Page 1. Issue 2.



MOUNTING

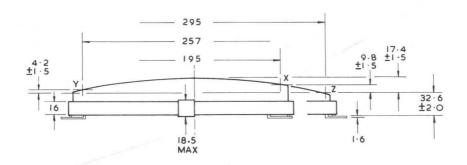
The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0mm maximum from the plane through the other three lugs.

The M31-192.. is the M31-190.. with a bonded face-plate giving a total glass transmission of approximately 50%.

† Determined by reference line gauge No. 20

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M31-192W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.


TUBE WEIGHT

(approximate)-net 3.6 kg

Thorn Radio Valves and Tubes Limited

MOUNTING

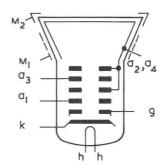
The bolts to be used for mounting the tube must lie within circles of 7.0~mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0~mm maximum from the plane through the other three lugs.

M31-212...

Data Display Tube

PRELIMINARY DATA

GENERAL


Rectangular face, 31cm (12in). 90° diagonal tube specifically designed for high character density data display applications.

Bonded tinted face-plate treated to reduce specular reflection.** Aluminised screen. Integral mounting lugs, 20 mm dia. neck.

Electrostatic focus, magnetic deflection. Grev glass. 15% total transmission (approx).

External conductive coating.

Heater voltage	v_h	11	V
Heater current	I_h	75	mA

DESIGN CENTRE RATINGS Voltages referred to cathode

]	Maximum second and fourth anode voltage	V _{a2+a4(max)}	13.5 †	kV
]	Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10.5 *	kV
]	Maximum third anode voltage - range	V _{a3(max)}	-50 to +500	V
1	Maximum first anode voltage	$v_{a1(max)}$	350	V
	Maximum negative grid voltage	-Vg(max)	100	V
]		-v _{g(max)}	350 ₹	v
]	Maximum positive grid voltage	$v_{g(max)}$	0 5	V
1	Maximum heater to cathode voltage heater negative (d.c.)	$v_{h-k(max)}$	110	v
1	Maximum peak heater to cathode voltage heater negative	^v h-k(pk)max	130	v
1	Maximum impedance, grid to cathode (50Hz)	Zg-k(max)	0.5	$M\Omega$
1	Maximum resistance, grid to cathode	Rg-k(max)	1.5	$M\Omega$

All voltages referred to cathode

- † The absolute rating of 16.5kV must not be exceeded.
- * Absolute minimum rating is 8.5 kV.
- § Maximum pulse duration 22% of one cycle with a maximum of 1.5 ms.
- ? A 10 k Ω grid series registor mounted close to the tube base is recommended to limit the peak grid voltage.
- **This tube meets the requirements for intrinsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M31-212GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Page 1. Issue 1.

INTER-ELECTRODE CAPACITANCES

Cathode to all	ck-all	3.0*	pF
Grid to all	cg-all	4.0*	pF
Anodes 2 and 4 to coating M1	°a2+a4-M1	700	pF
Anodes 2 and 4 to shell M_2 (Approx)	^c a2+a4-M2	200	pF
* Holder capacitance balanced out.			

TYPICAL OPERATION - Grid modulation (Voltages referred to cathode)

Second and fourth anode voltage	V _{a2+a4-k}	12	kV
First anode voltage	Val-k	300	V
Third anode voltage for best overall focus*	v_{a3-k}	0 to 350	v
Drive for peak beam current of $200\mu A$		32	v
Grid to cathode voltage for cut-off of raster	v_{g-k}	-40 to -79	v

TYPICAL OPERATION - Cathode modulation (Voltages referred to grid)

Second and fourth anode voltage	$V_{a2+a4-g}$	12	kV
First anode voltage	V _{a1-g}	350	v
Third anode voltage for best overall focus*	$v_{a\beta-g}$	0 to 350	v
Drive for peak beam current of $200\mu A$		28	v
Cathode to grid voltage for cut-off of raster	v_{k-g}	41 to 75	v

* RESOLUTION IN DATA DISPLAYS

The spot performance over the screen is sufficiently uniform to permit a focus setting within this range which allows rapid and positive recognition of alpha-numeric characters of density 2000 max. (i.e. character size 2.8 mm x 5 mm minimum) If it is required to pass through the point of focus at any point on the screen a focus range of -50V to 400V with respect to cathode should be provided.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes

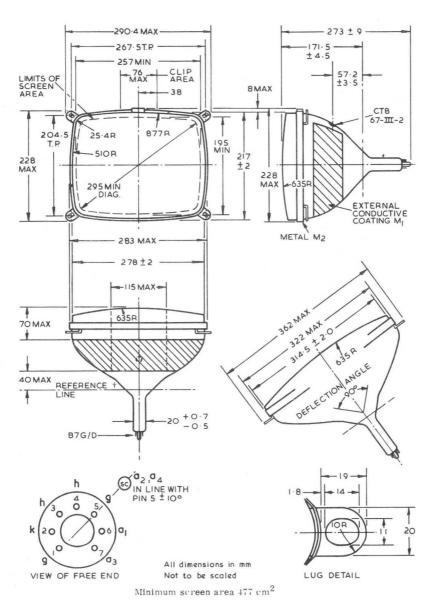
M31-212...

Data Display Tube

MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and bulb contours.

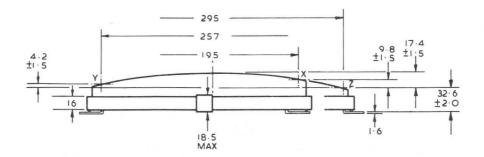
There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 36 mm diameter which is centred on the perpendicular from the centre of the face.

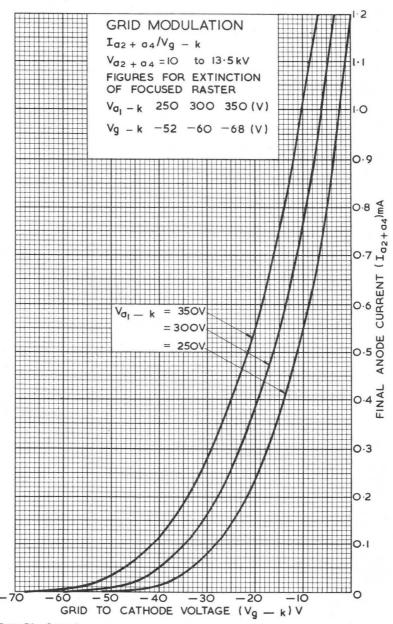
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal shell (M_2) should be connected to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 $M\Omega$.

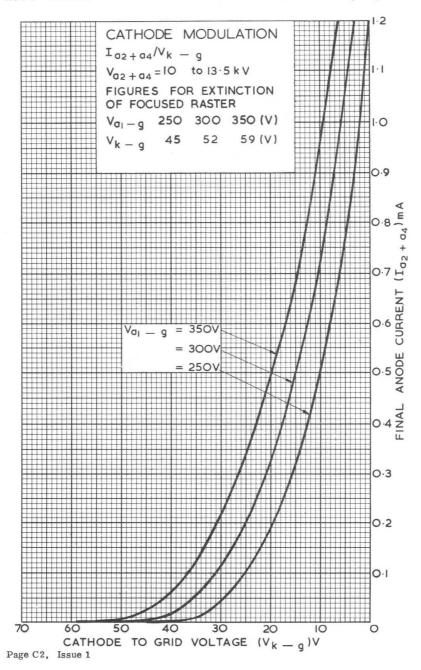
When flashover protection is incorporated the chassis return paths of $\rm M_1$ and $\rm M_2$ should be made in a manner appropriate to the protection system employed.


TUBE WEIGHT (approximate) - net 3.6 kg.

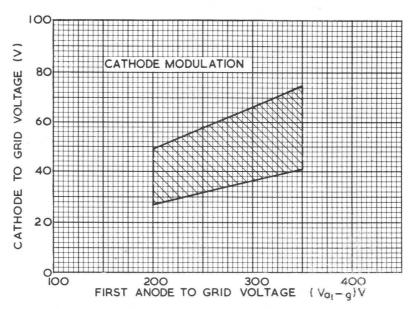
† Determined by reference line gauge No. 20

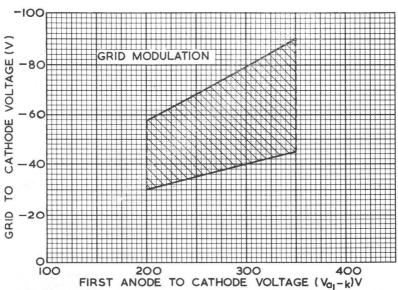

Page 4. Issue 1.

Data Display Tube

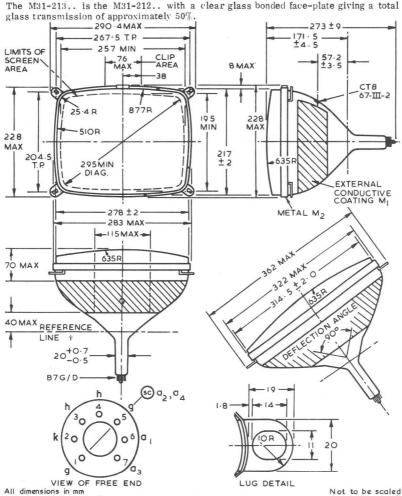


MOUNTING


The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.



Page C1, Issue 1.



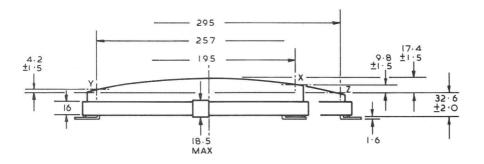
LIMITS OF RASTER CUT-OFF VOLTAGE

Page C3, Issue 1.

† Determined by reference line gauge No. 20.

Minimum screen area 477 cm²

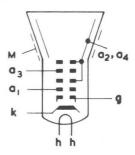
PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (M31-213GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

TUBE WEIGHT (approximate) - net 3.6 kg.

Thorn Radio Valves and Tubes Limited

Page 1. Issue 1.


MOUNTING

The bolts to be used for mounting the tube must lie within circles of 7.0 mm diameter centred on the lug holes true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.

GENERAL

Rectangular face, 36 cm 70° diagonal tube Grey glass, 60% transmission (approx.) Electrostatic focus, magnetic deflection Straight gun, aluminised screen

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3*	Α

ABSOLUTE RATINGS - voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	V _{a3(max)}	± 500	v
Maximum first anode voltage	V _{a1(max)}	500	v
Maximum negative grid voltage	$-V_{g(max)}$	200	V
Minimum negative grid voltage	$-v_{g(min)}$	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	180	v
Maximum peak heater to cathode voltage heater negative	vh-k(pk)max	400†	v

- * In a series heater chain the C.R.T. should always be connected at the chassis end.
- † During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M36-141W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

If this tube is operated at voltages in excess of 18 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at The normal glass protective viewing window may provide such a close range. safeguard. If the radiation measured in contact with this window does not exceed 0.5 millirontgens per hour, the window will normally provide adequate protection.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

INTER-ELECTRODE CAPACITANCES

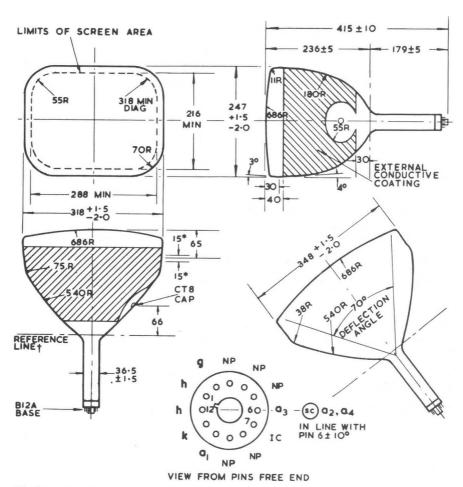
Cathode to all	ck-all	7.0*	pF
Grid to all	cg-all	9.0*	pF
Anodes 2 and 4 to external conductive coating, M (approximate)	^C a2+a4-M	1300	pF

^{*} Total capacitances including a typical holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	V_{a2+a4}		12	kV
First anode voltage	v_{a1}		300	V
Third anode voltage range for focus	v_{a3}	-200	to +200†	V
Grid to cathode voltage for cut-off of raster	v_g	-30	to -72	V
Average peak to peak modulating voltage for modulation up to 150 μ A			24	v

[†] The change of spot size with variation of focus voltage is small and the limit of ±200V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least ±300V will be required.


MOUNTING

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

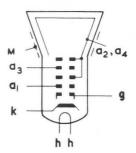
When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT

(approximate) - 4.7 kg

All dimensions in mm

Not to be scaled


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

- * During the face sealing operation the glass in this area (Total 30 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave, the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † Determined by Reference line gauge No. 12. (See T.D.S. No. 5-0-91-12).

Maintenance Type

GENERAL

Rectangular face, 14 inch 70° diagonal Bonded faceplate protection Grey glass 60% transmission (approx) Electrostatic focus, magnetic deflection Straight gun, aluminised screen

ABSOLUTE RATINGS - voltages referred to cathode

9			
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	10	kV
Maximum third anode voltage	$V_{a3(max)}$	± 500	V
Maximum first anode voltage	$V_{a1(max)}$	500	V
Maximum negative grid voltage	$-v_{g(max)}$	200	V
Minimum negative grid voltage	$-V_{g(min)}$	1.0	V
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	180	v
Maximum peak heater to cathode voltage heater negative	v _{h-k(pk)max}	400*	v

^{*} During a warming up period not exceeding one minute.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M36-142W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

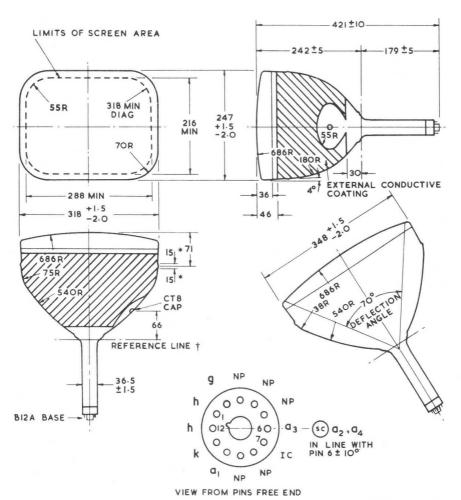
If this tube is operated at voltages in excess of 16~kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

ATA DISP & MONIT TUBES

M36-142..

Data Display or Monitor Tube

TYPICAL OPERATION - Grid modulation, voltages referred to cathode


Second and fourth anode voltage	V_{a2+a4}	14	kV
First anode voltage	v_{a1}	300	V
Third anode voltage range for focus	v_{a3}	-200 to +200†	V
Grid to cathode voltage for cut-off of raster	V_g	-30 to -72	V
Average peak to peak modulating voltage for modulation up to 150 μ A		24	v

† The change of spot size with variation of focus voltage is small and the limit of ± 200V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus a voltage of at least ± 300V will be required.

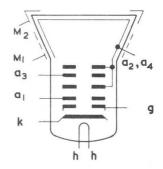
INTER-ELECTRODE CAPACITANCES

Cathode to all	c _{k-all}	7.0	pF
Grid to all	cg-all	9.0	pF
Anodes 2 and 4 to external conductive coating, M (approximate)	^c a2+a4-M	1300	pF

TUBE WEIGHT (approximate) - 5.4 kg

All dimensions in mm

Not to be scaled


There is an annular region of anti-corona coating with an external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

- * During the face sealing operation the glass in this area (Total 30 mm) may be disturbed. As the shape of the contour within this area may be either convex or concave, the bulb should not be gripped within this region unless special precautions are taken (such as the use of resilient packing material).
- † Determined by Reference line gauge No. 12.

GENERAL

Rectangular face, 15 inch, 90° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Straight gun. Aluminised screen Grey glass, 50% transmission (approx) 29.4 mm maximum neck diameter External conductive coating

Heater voltage	v_h	11.5	V
Heater current	I_h	0.15	A

ABSOLUTE RATINGS - Voltages referred to cathode

Maximum second and fourth anode voltage	V _{a2+a4(max)}		20†	kV
Minimum second and fourth anode voltage	$V_{a2+a4}(min)$		12	kV
Maximum third anode voltage	V _{a3(max)}	<u>+</u>	700	V
Maximum first anode voltage	$V_{a1(max)}$		600	V
Maximum negative grid voltage	-Vg(max)		200	V
Minimum negative grid voltage	-Vg(min)		1.0	V
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$		200	v

 $[\]dagger$ $I_{a2+a4} = 0$

If this tube is operated at voltages in excess of $16\ kV$, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M38-100W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number . For details of the Sparkguard bases see separate sheets.

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	6.5	7.5	pF
Anodes 2 and 4 to coating M_{1} (approx)	ca2+a4-M1	70	0	pF
Anodes 2 and 4 to frame M2 (approx)	^c a2+a4-M2	25	0	pF
* Holder capacitance balanced out.				

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode voltage	V_{a2+a4}		16		kV
First anode voltage	v_{a1}		400		V
Third anode voltage range for focus	v_{a3}	0	to	400 §	V
Grid to cathode voltage for cut-off of raster	Vg	-38	to	-82	V

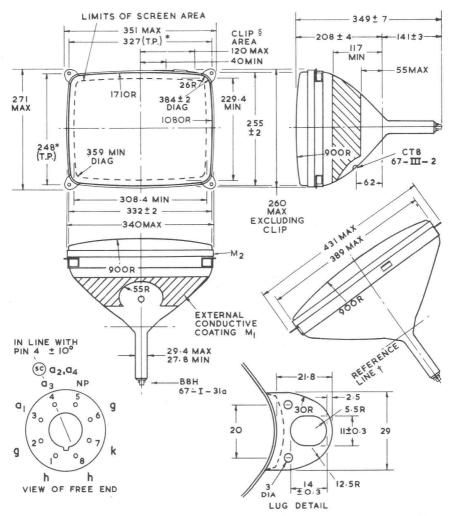
[§] The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. it is required to pass through the point of focus a voltage of at least -100V to +500V will be required.

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

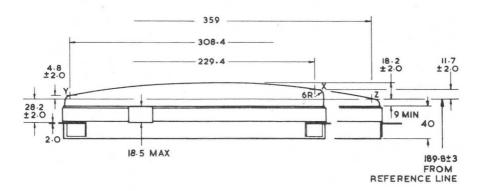

The external conductive coating (M1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

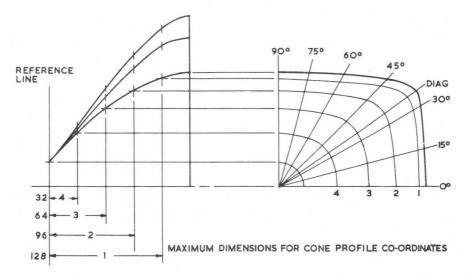
The metal frame (M2) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

When flashover protection is incorporated the chassis return paths of M1 and M2 should be made in a manner appropriate to the protection system employed.

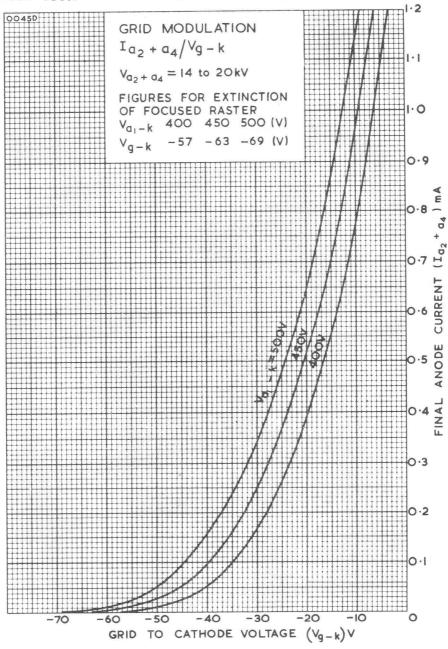
TUBE WEIGHT (approximate) - net 5.7 kg (12.5 lb)

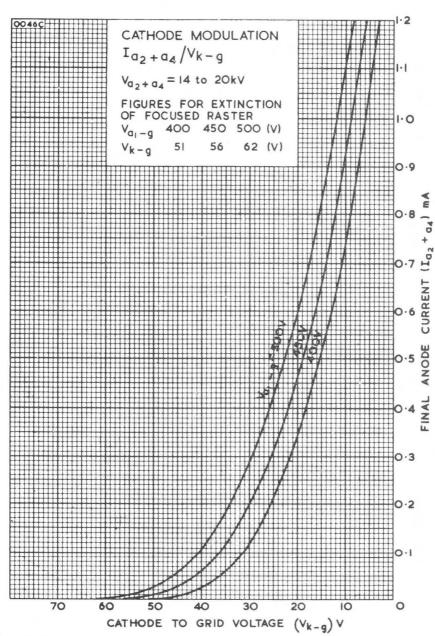
[†] Total capacitances including a typical B8H holder.

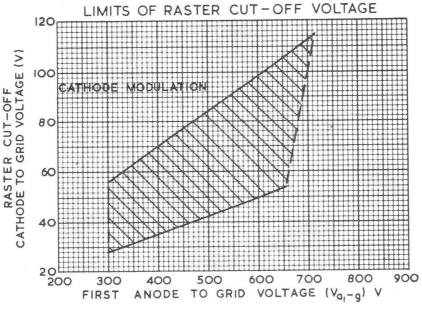


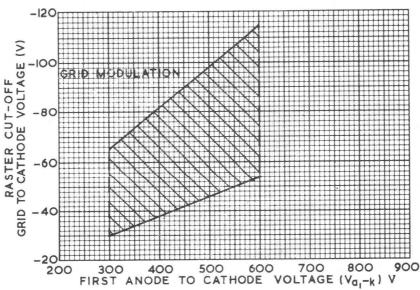

All dimensions in mm

Not to be scaled

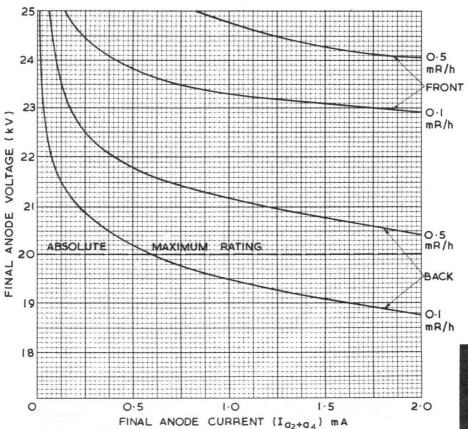

- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 15, (See T.D.S. No. 5-0-91-15).
- § Total thickness of shell, tension band and clip 8 mm maximum.


M38-100...

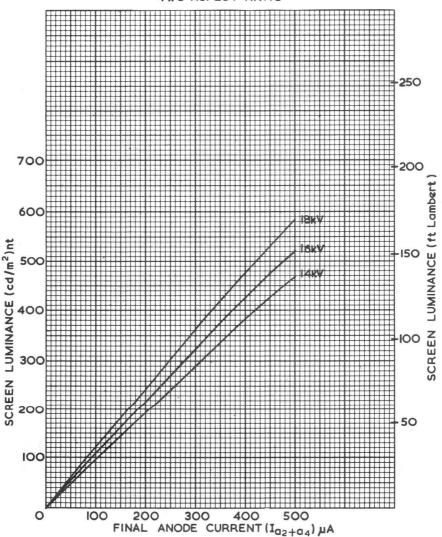




Reference Plane No.	0° Major	15°	30°	Diag.	45°	60°	75°	90° Minor
1 2	160.7	164.9	177.6	181.6	165.9	140.5	127.9	124.0
	134.0	136.6	145.5	148.0	139.3	122.0	112.6	109.7
3	103.0	104.8	110.3	111.3	107.9	97.7	92.0	90.5
4	66.8	67.4	69.3	69.4	69.0	66.0	64.0	63.5

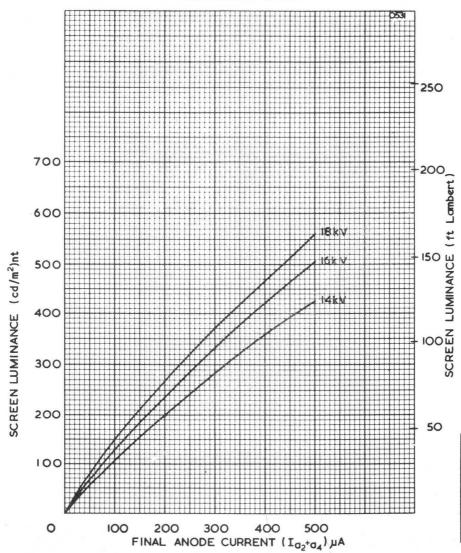


Issue 4, Page C3


Data Display or Monitor Tube M38-100...

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE 50mm FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM BACK = FRONT ENCLOSURE $a = 25 \, \text{mm}$


TYPICAL CHARACTERISTICS GJ PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT 4x3 ASPECT RATIO

Issue 1, Page C1

TYPICAL CHARACTERISTICS

W PHOSPHOR SCREEN
FOCUSED RASTER OF FULL HEIGHT
4x3 ASPECT RATIO

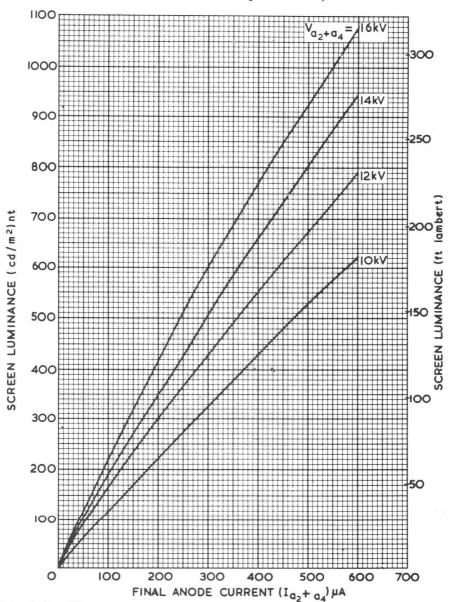
M38-101.. Data Display or Monitor Tube

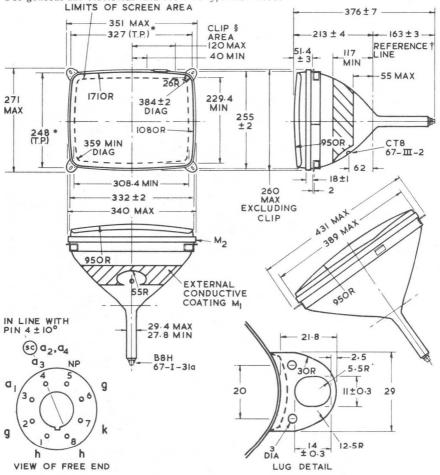
The M38-101.. is the M38-100.. with an increased neck length to permit the use of an additional high frequency deflector coil ("write" coil) for data display applications.

The neck length of this tube is 163 ± 3 mm making the overall length 371 ± 7 mm

It is recommended that the deflector coil assembly including "position and write" coils should not extend further than 60 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

PHOSPHOR SCREEN


This type is usually supplied with GH phosphor (M38-101GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

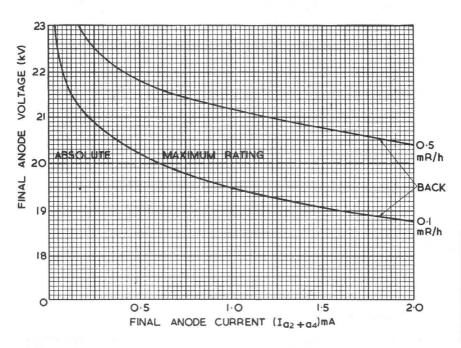

Issue 2, Page 1

TYPICAL CHARACTERISTICS GH PHOSPHOR SCREEN Focused raster of full height 4x3 aspect ratio

The M38-102.. is the M38-101.. with a bonded face-plate to reduce specular reflections. For general and electrical data see tube type M38-100..

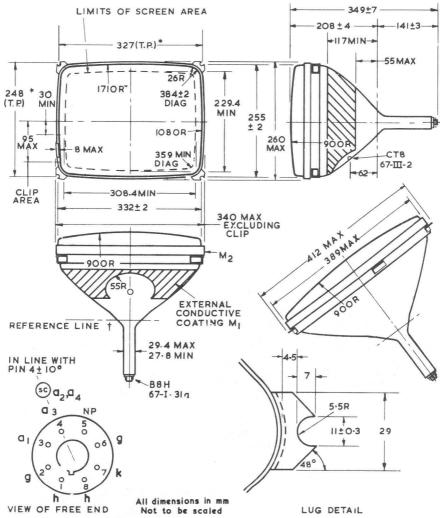
All dimensions in mm

TUBE WEIGHT (approx) - net 6.0 kg


Not to be scaled

- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 15. (See T.D.S. No. 5-0-91-15).
- § Total thickness of frame, tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

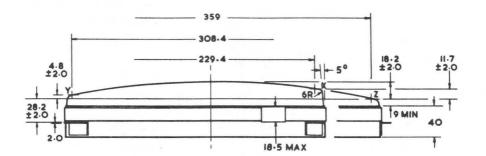

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-1 mR/h

DATA DISPLA & MONITOR TUBES

Page C1, Issue 1.

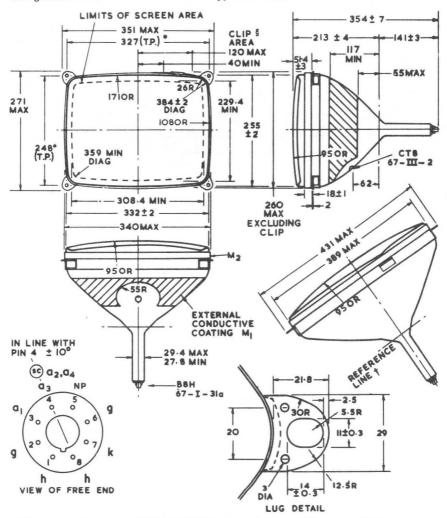
For general and electrical data on the M38-103.. see tube type M38-100.., the tubes differ only in lug shape and tension band clip position.

- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 15 (See T.D.S. No. 5-0-91-15).


TUBE WEIGHT (approx.) - net 5.3 kg

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1


M38-103..

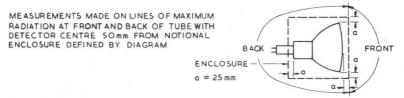
M38-104...

Data Display or Monitor Tube

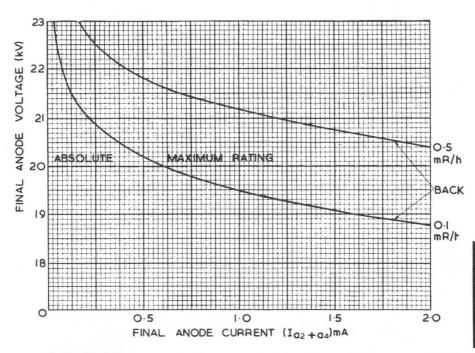
The M38-104.. is the M38-100.. with a bonded face-plate to reduce specular reflections. For general and electrical data see tube type M38-100..

All dimensions in mm TUBE WEIGHT (approx.) - net 6.0 kg Not to be scaled

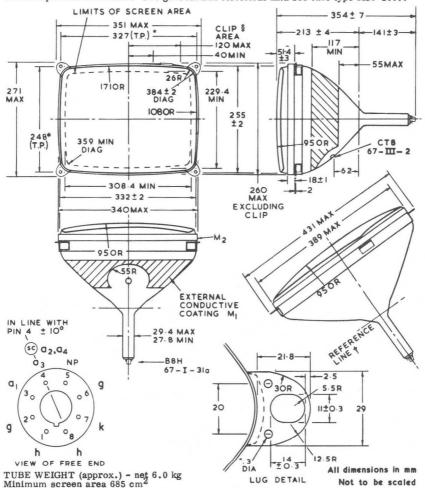
- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- t Determined by reference line gauge No. 15. (See T.D.S. No. 5-0-91-15).
- § Total thickness of frame tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.


This type is usually supplied with GR phosphor. Other screens available to special order.

Thorn Radio Valves and Tubes Limited


Issue 2, Page 1

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE


UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED OIMR/h

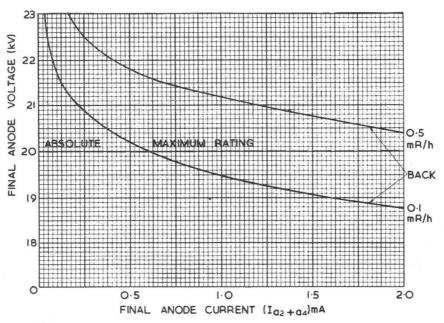
DATA DISPLAY & MONITOR TUBES

Page C1, Issue 1.

The M38-105.. is the M38-100.. with a tinted bonded face-plate. The total centre glass transmission is approximately 15% and the surface is treated to reduce specular reflection. For general and electrical data see tube type M38-100..

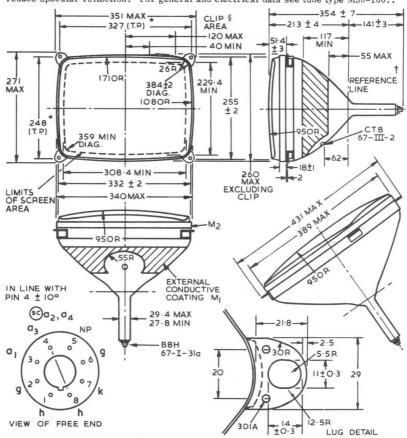
- This type is usually supplied with W phosphor. Other screens available to special order.

 * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 15.
- § Total thickness of frame tension band and clip 8 mm maximum. project in front of the frame dimension.


Thorn Radio Valves and Tubes Limited Page 1, Issue 1.

The clip will not

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE


UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O I mR/h

8 MON

Page C1, Issue 1.

The M38-106.. is the M38-100.. with a tinted bonded face-plate. The total centre glass transmission is approximately 30% and the surface is treated to reduce specular reflection. For general and electrical data see tube type M38-100..

All dimensions in mm

Not to be scaled

Minimum screen area 685 cm². TUBE WEIGHT (approx.) - net 6.0 kg.

* The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.

Determined by reference line gauge No. 15.

§ Total thickness of frame tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.

This type is usually supplied with GH Phosphor. Other screens available to special order.

Thorn Radio Valves and Tubes Limited Page 1. Issue 1.

M38-111...

MAINTENANCE TYPE

The M38-111.. is the M38-113.. with a bonded face-plate and with external conductive coating. The overall length is 438 ± 8 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M38-111GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

For all other information please see the data sheets for type M38-113..

M38-112...

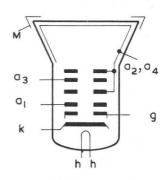
Data Display or Monitor Tube

Maintenance Type

The M38-112.. is the M38-111.. without a bonded faceplate thus making the overall length 433 \pm 8 mm and the faceplate radius 900 mm.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M38-112GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.


For all other information please see the data sheets for type M38-111..

GENERAL

Rectangular face, 15 inch, 90° diagonal tube Rimguard III reinforced envelope * Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 50% transmission (approx.) Straight gun, non ion trap 38 mm maximum neck diameter

oo min maximum	HOCK C	ilamoto 2	
Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

ABSOLUTE RATINGS -Voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	12	kV
Maximum third anode voltage	Va3(max)	+1000	V
Maximum first anode voltage	$V_{a1(max)}$	800	V
Maximum negative grid voltage	- Vg(max)	200	V
Minimum negative grid voltage	- Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	200	v

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prelonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with GH phosphor (M38-113GH) giving a green trace of medium short persistence. Other phosphor screens can be made available to special order.

NECK LENGTH

This tube has an extended neck length to accommodate an auxiliary high frequency deflector coil.

* This tube meets the requirements for intrinsically safe tube laid down in the section of I.E.C. Publication 65 dealing with implosion.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Limited

Page 1, Issue 2.

M38-113.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.5	4.5	pF
Grid to all	cg-all	7.0	7.5	pF
Anodes 2 and 4 to frame M (approx)	c _{a2+a4-M}	2	50	pF

^{*} Holder capacitance balanced out.

[†] Total capacitance including a typical holder.

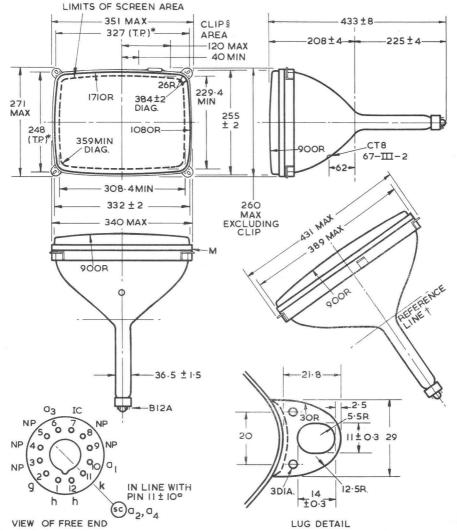
TYPICAL OPERATION	Grid modulation, voltages	referred to cathode	
Second and fourth anode voltage	v_{a2+a4}	15	kV
First anode voltage	v_{a1}	400	v
Third anode voltage range for cent	re focus V _{a3}	0 to 400§	V
Grid to cathode voltage for cut-off of raster	v_{g}	-30 to -70	v

§ The change of spot size with variation of focus voltage is small and the limit of 0 to 400 V is such that an acceptable focus quality is obtain within this range. If it is required to pass through the point of focus a voltage of a least -100V to +500V will be required. The voltage for corner focus will be greater than at the face centre by approximately 500 V with a suitably designed deflection yoke.

MOUNTING

Any mask used in the mounting of this tube should be flexible enough to take up small variations in fixing and faceplate contours.

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

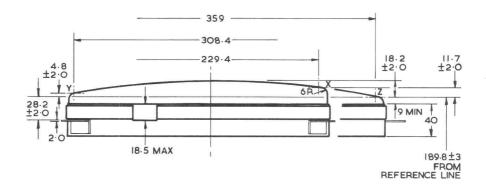

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

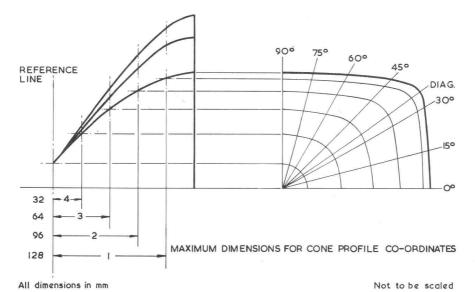
It is recommended that the deflector coil assembly including "position and write" coils should not extend further than 70 mm from the reference line otherwise there may be undesirable interaction with the tube gun.

The metal frame (M) should be connected directly to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in non isolated equipment, for example 2 $M\Omega$.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - 5.5 kg

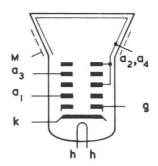



All dimensions in mm

Not to be scaled

- * The bolts to be used for mounting the tube must lie within the circles of 6.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 13.
- § Total thickness of frame, tension band and clip 8 mm maximum. The clip will not project in front of the frame dimension.

M38-113.. Data Display or Monitor Tube


Reference 0° 30° 15° Diag. 45° 60° 75° 90° Plane No. Major Minor 1 160.7 164.9 177.6 181.6 165.9 140.5 127.9 124.0 2 134.0 136.6 109.7 145.5 148.0 139.3 122.0 112.6 3 103.0 104.8 110.3 111.3 107.9 97.7 92.0 90.5 69.4 4 66.8 67.4 69.3 69.0 66.0 64.0 63.5

Page 4, Issue 1.

GENERAL

Rectangular face, 38 cm, 110° diagonal Electrostatic focus, magnetic deflection Straight gun. Aluminised screen Grey glass, 50% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

Heater voltage	v_h	6.3	V	
Heater current	$I_{\mathbf{h}}$	0.3	A	

ABSOLUTE RATINGS - Voltages referred to cathode

ABSOLUTE KATINGS VOILEGES TOIGHT OF	to cuttodo		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	Va2+a4(min)	13	kV
Maximum third anode voltage range	Va3(max)	+1000 to -500	V
Maximum first anode voltage	V _{a1(max)}	550	V
Minimum first anode voltage	Val(min)	350	V
Maximum negative grid voltage	-Vg(max)	150	V
Minimum negative grid voltage	$-V_{g(min)}$	1.0	V
Maximum heater to cathode voltage, heater negative (d.c.)	Vh-k(max)	250	v
heater positive (d.c.)		135	v
Maximum peak heater to cathode voltage	vh-k(pk)max		
heater negative heater positive	- /	300 180	V
	_		
Maximum impedance, grid to cathode (50 Hz)	$Z_{g-k(max)}$	100	$\mathbf{k}\Omega$
Maximum resistance, grid to cathode	$R_{g-k(max)}$	1.5	$\mathbf{M}\Omega$

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M38-120W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

M38-120...

Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES		*	t	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	7.0	8.5	pF
Anodes 2 and 4 to coating M (approx.)	^c a2+a4-M	60	00	pF

^{*} Holder capacitance balanced out.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode	v_{a2+a4}	16	kV
First anode voltage	Va1	400	V
Third anode voltage range for focus	v_{a3}	0 to 400 §	V
Grid to cathode voltage for cut-off of raster	v_g	-40 to -85	v

This tube will resolve 650 lines measured at a beam current of 100 μA

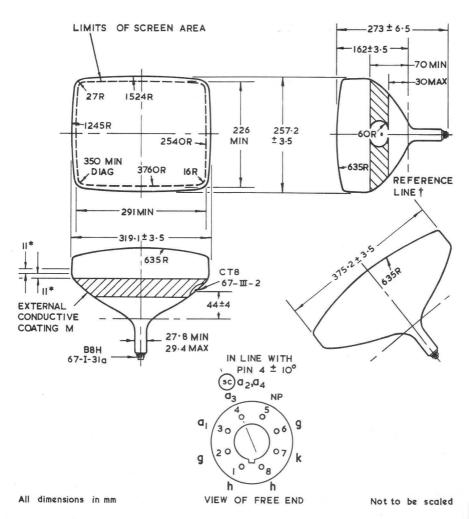
§ The change of spot size with variation of focus voltage is small and the limit of
0 to 400 V is such that an acceptable focus quality is obtained within this range. If
it is required to pass through the point of focus a voltage of at least -100V to +500V
will be required.

RESOLUTION OPTIMISATION

For optimum overall resolution an external beam steering magnet may be required. Adjustment of the magnet should not be such that a general reduction of brightness or shading of the raster occurs. Typically the flux density at neck centre should be adjustable from 0 to 0.8 mT (0 to 8 gauss).

MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

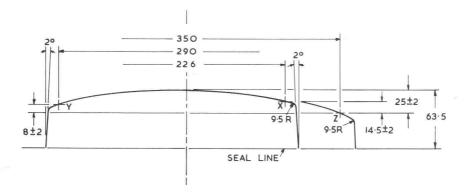

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return path of M should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 4.5 kg

[†] Total capacitances including a typical B8H holder.

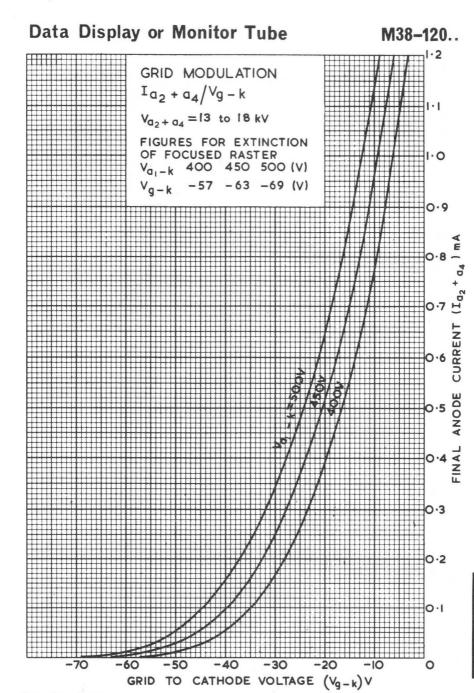



* During the face sealing operation the glass in this area (±11 mm) may be disturbed and the shape may be either convex or concave. The bulb should not be gripped within this region unless special precautions are taken, such as, the use of resilient packing material.

[†] Determined by reference line gauge No. 16 (B.S. RL4: IEC 67-IV-3: JEDEC 126).

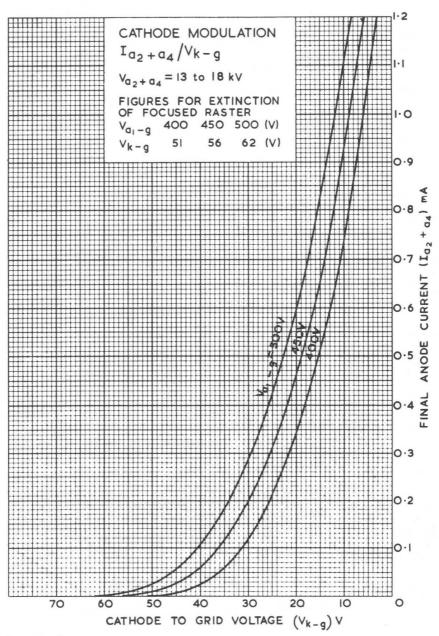
M38-120..

Data Display or Monitor Tube

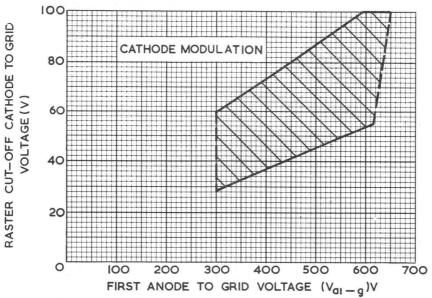


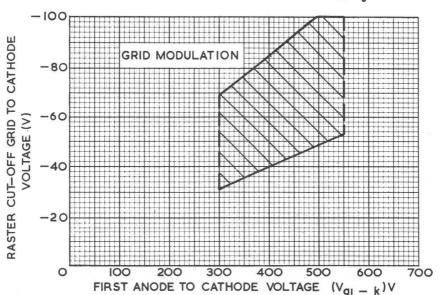
All dimensions in mm

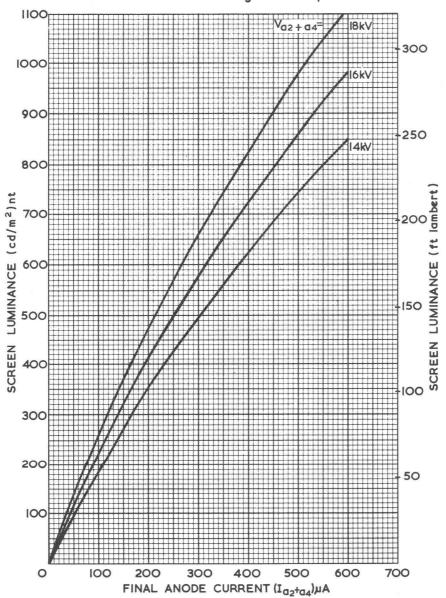
Not to be scaled


Reference Élane No.	0° Major	10°	20°	30°	36°42' Diag.		50°	60°	70°	80°	90° Minor
1	155	157	162	170	173	171	156	141	131	126	124
2	140	141	143	143	141	140	134	126	119	116	115
3	112	112	110	108	106	105	104	102	101	99	99
4	90	89	88	86	86	86	85	85	86	86	85
5	63	64	63	63	63	63	63	64	64	64	64

Page 4, Issue 3.

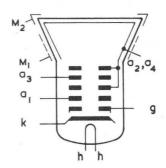

Page C1, Issue 1.


DATA DISPLAY & MONITOR TUBES


Page C2, Issue 1.

LIMITS OF RASTER CUT-OFF VOLTAGE

TYPICAL CHARACTERISTICS GH PHOSPHOR SCREEN Focused raster of full height 4x3 aspect ratio



Page C4, Issue 1.

GENERAL

Rectangular face, 38 cm, 110° diagonal Rimguard IV reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Straight gun. Aluminised screen Grey glass, 50% transmission (approx.) 29.4 mm maximum neck diameter External conductive coating

Heater voltage	v_h	6.3	V
Heater current	I_h	0.3	A

ABSOLUTE RATINGS - Voltages referred to cathode

A VOITAGES TETETTED IN	o cathode		
Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	18	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	13	kV
Maximum third anode voltage range	Va3(max)	+1000 to -500	V
Maximum first anode voltage	$v_{a1(max)}$	550	V
Minimum first anode voltage	$v_{al(min)}$	350	V
Maximum negative grid voltage	-Vg(max)	150	V
Minimum negative grid voltage	-Vg(min)	1.0	V
Maximum heater to cathode voltage, heater negative (d.c.) heater positive (d.c.)	$V_{h-k(max)}$	250 135	v
Maximum peak heater to cathode voltage heater negative heater positive	vh-k(pk)max	300 180	v v
Maximum impedance, grid to cathode (50 Hz)	Zg-k(max)	100	$\mathbf{k}\Omega$
Maximum resistance, grid to cathode	Rg-k(max)	1.5	$\mathbf{M}\Omega$

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor (M38-121W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

This data should be read in conjunction with Operational Recommendations for Industrial Cathode ray tubes.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1

M38-121.. Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES

		*	+	
Cathode to all	c _{k-all}	3.0	3.5	pF
Grid to all	cg-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	ca2+a4-M1	60	00	pF
Anodes 2 and 4 to metal M2 (approx.)	c _{a2+a4-M2}	25	50	pF

- * Holder capacitance balanced out.
- † Total capacitances including a typical B8H holder.

TYPICAL OPERATION - Grid modulation, voltages referred to cathode

Second and fourth anode	V_{a2+a4}	16	kV
First anode voltage	v_{a1}	400	v
Third anode voltage range for focus	v_{a3}	0 to 400 §	v
Grid to cathode voltage for cut-off of raster	v_g	-40 to -85	v

This tube will resolve 650 lines measured at a beam current of 100 μ A

§ The change of spot size with variation of focus voltage is small and the limit of
0 to 400 V is such that an acceptable focus quality is obtained within this range. If
it is required to pass through the point of focus a voltage of at least -100V to +500V
will be required.

RESOLUTION OPTIMISATION

For optimum overall resolution an external beam steering magnet may be required. Adjustment of the magnet should not be such that a general reduction of brightness or shading of the raster occurs. Typically the flux density at neck centre should be adjustable from 0 to 0.8 mT (0 to 8 gauss).

MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.


The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e,h.t. supply.

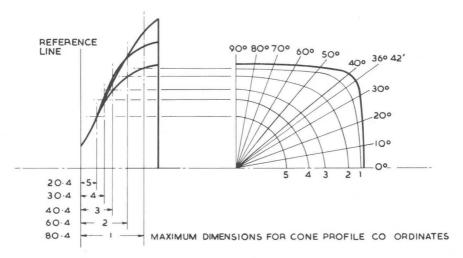
The metal (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c.equipment, for example $2\,M\Omega$.

When flashover protection is incorporated the chassis return paths of $\rm M_1$ and $\rm M_2$ should be made in a manner appropriate to the protection system employed.

TUBE WEIGHT (approximate) - net 4.7 kg

Issue 2, Page 2

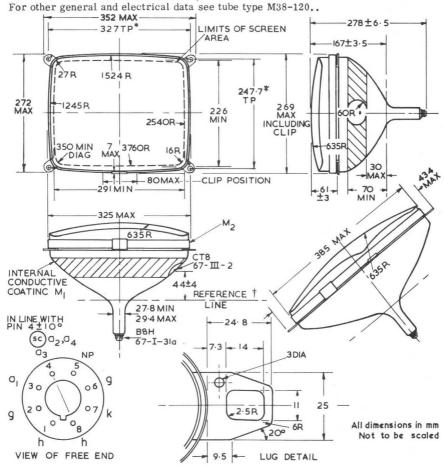



- * The bolts to be used for mounting the tube must lie within the circles of 7.5mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S. RL4: IEC 67-IV-3: JEDEC 126).

Minimum useful screen area 646 cm²

Page 3, Issue 3.

M38-121.. Data Display or Monitor Tube


All dimensions in mm

Not to be scaled

Reference Plane No.	0° Major	10°	20°		36°42¶ Diag.	40°	50°	60°	70°	80°	90° Minor
1 2	155	157	162	170	173	171	156	141	131	126	124
	140	141	143	143	141	140	134	126	119	116	115
3	112	112	110	108	106	105	104	102	101	99	99
4	90	89	88	86	86	86	85	85	86	86	85
5	63	64	63	63	63	63	63	64	64	64	64

Page 4 Issue 2.

The M38-122.. is the M38-120.. with a tinted bonded face-plate, reinforced envelope, and integral mounting lugs. The total centre glass transmission is approximately 15% and the surface is treated to reduce specular reflections.

TUBE WEIGHT (approximate) 5.5 kg

- * The bolts to be used for mounting the tube must lie within the circles of 7.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- \dagger Determined by reference line gauge No. 16 (B.S. RL4 : IEC 67-IV-3 : JEDEC 126) .

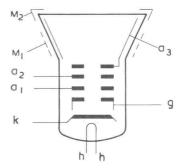
Minimum useful screen area 646 cm²

Thorn Radio Valves and Tubes Limited

Page 1. Issue 4.

ATA DISPLAY & MONITOR TUBES

M38-142...


Data Display or Monitor Tube

PRELIMINARY DATA

GENERAL

Rectangular face, 38 cm, 110° diagonal Rimguard IV reinforced envelope Integral mounting lugs High voltage electrostatic focus Magnetic deflection Grey glass, 50% transmission (approx.) Aluminised screen External conductive coating 29.4 mm maximum neck diameter

 $\begin{array}{cccc} \text{Heater voltage} & \text{V}_h & \text{6.3} & \text{V} \\ \text{Heater current} & \text{I}_h & \text{0.3} & \text{A} \end{array}$

ABSOLUTE RATINGS - Voltages referred to cathode

1			
Maximum third anode voltage	$v_{a3(max)}$	20*	kV
Minimum third anode voltage	$V_{a3(min)}$	14	kV
Maximum second anode voltage	V _{a2(max)}	5.0	kV
Maximum first anode voltage	V _{a1(max)}	770	V
Maximum negative grid voltage	-V _{g(max)}	155	V
Minimum negative grid voltage	$v_{g(max)}$	-1 ¶	V
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	250	v
Maximum peak heater to cathode voltage, heater negative	vh-k(pk)max	400 §	v
Maximum impedance, grid to cathode (50 $\rm Hz)$	Zg-k(max)	0.5	$M\Omega$
Maximum resistance, grid to cathode	$R_{g-k(max)}$	1.5	$M\Omega$
Maximum peak cathode current	ik(pk)max.	0.5	mA

- \P A 10 $k\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- § During a warming-up period not exceeding 45 seconds. * $I_{a3} = 0$

PHOSPHOR SCREEN

This type is usually supplied with a W phosphor (M38-142W) giving a television white trace of medium short persistence. Other phosphor screens can be made available to special order.

This data should be read in conjunction with Operational and Safety Recommendations for Industrial Cathode ray tubes.

Thorn Radio Valves and Tubes Limited Page 1, Issue 1.

0.2

mm

INTER-ELECTRODE CAPACITANCES

raster measurements at face centre

Cathode to all (max)	C1- 11 /	7.0	pF
,	ck-all (max)	1.0	PI
Grid to all (max)	cg-all (max)	10	pF
Anode 3 to coating M (approx.)	ca3-M	600	pF
DEFLECTION ANGLES			
Height 76° Wid	lth 93°	Diagonal	110°
TYPICAL OPERATION - Grid modulation	voltages referred	to cathode	
Third anode voltage	v_{a3}	17	kV
First anode voltage	V _{a1}	450	v
Second anode voltage for centre focus(nom)	v_{a2}	4.0	kV
Grid to cathode voltage for cut-off of raster	v_g	- 35 to -85	v
Typical line width at 50 μA beam current shr	inking		

Note: To obtain best overall performance, a dynamic focus voltage variation of approximately 450V is required between the centre of the screen and any corner.

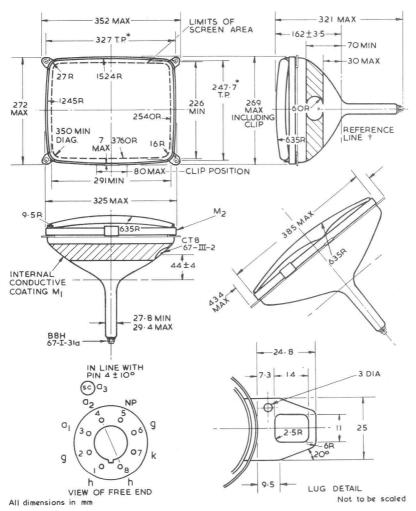
MOUNTING

There is an annular region of anti-corona coating with external diameter of 75 mm surrounding the CT8 cap, the tube should not be handled in this region.

The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely.

The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal (M_2) should be connected to the chassis in a.c. equipment operating from an isolating transformer, or via a suitable leakage path in a.c./d.c. equipment, for example 2 M Ω .

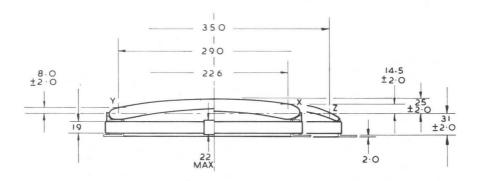

When flashover protection is incorporated the chassis return paths of $\rm M_1$ and $\rm M_2$ should be made in a manner appropriate to the protection system employed.

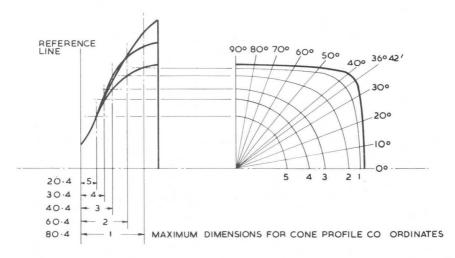
TUBE WEIGHT (approximate) - net 4.7 kg.

^{*} In operation the second anode current will vary with beam current. To avoid focus variation the supply impedance should be kept low.

M38-142...

Data Display or Monitor Tube




- * The bolts to be used for mounting the tube must lie within the circles of 7.5 mm diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16(B.S. RL4: IEC 67-IV-3: JEDEC 126).

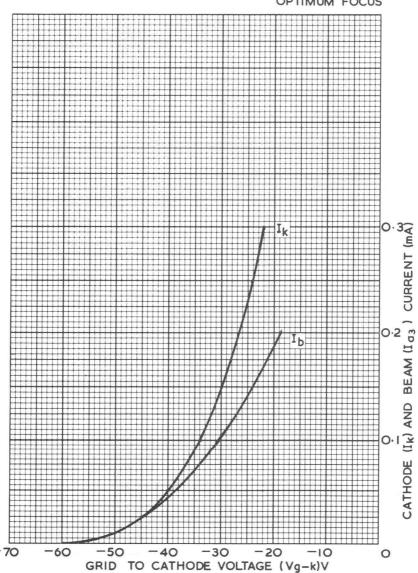
Minimum useful screen area 646 cm2

Page 3, Issue 2.

Data Display or Monitor Tube M38 - 142 ...

All dimensions in mm

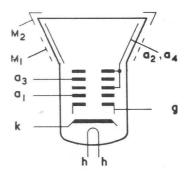
Not to be scaled


Reference Plane No.	0° Major	10°	20°	30°	36°42° Diag.	40°	50°	60°	70°	80°	90° Mino
1	155	157	162	170	173	171	156	141	131	126	124
2	140	141	143	143	141	140	134	126	119	116	115
3	112	112	110	108	106	105	104	102	101	99	99
4	90	89	88	86	86	86	85	85	86	86	85
5	63	64	63	63	63	63	63	64	64	64	64

M38 – 142.. Data Display or Monitor Tube

$$I_k, I_{a3}/V_{g-k}$$
 $V_{a3} = 17kV$ $V_{a1} = 450V$

OPTIMUM FOCUS



Page C1, Issue 1.

GENERAL

Heater current

Rectangular face, 17 inch, 110° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grev glass, 48% transmission (approx.) Straight gun, non ion trap External conductive coating Heater voltage 6.3 I_h 0.3* A

DESIGN CENTRE RATINGS - Voltages referred to cathode

Va2+a4(max)	18†	kV
$V_{a2+a4(min)}$	13	kV
$V_{a3(max)}$	+1000 to -500	v
Val(max)	700	v
$-V_{g(max)}$	150	v
-vg(pk)max	400**	v
$V_{g(max)}$	0 ¶	v
V _{h-k(max)}	250	v
vh-k(pk)max	400 §	v
$Z_{g-k(max)}$	0.5	$M\Omega$
Rg-k(max)	1.5	$M\Omega$
	$\begin{array}{c} v_{a3}(max) \\ v_{a1}(max) \\ -v_{g}(max) \\ -v_{g}(pk)max \\ v_{g}(max) \\ v_{h-k}(max) \\ \end{array}$	Va2+a4(min) 13 Va3(max) +1000 to -500 Va1(max) 700 -Vg(max) 150 -vg(pk)max 400** Vg(max) 0 ¶ Vh-k(max) 250 Vh-k(pk)max 400 \$ Zg-k(max) 0.5

- * In a series heater chain the CRT should always be connected at the chassis end.
- ** Maximum pulse duration 22% of one cycle with a max. of 1.5 ms. $t_{a2+a4} = 0$.
- ¶ A $10 \,\mathrm{k}\Omega$ grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with either a GR phosphor (M44-120GR) giving a yellowish green trace of very long persistence or a W (television white) phosphor. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	7.0	8.5	рF
Anodes 2 and 4 to coating M ₁ (approx.)	c _{a2+a4-M1}	700 to	1300	pF
Anodes 2 and 4 to shell M2 (approx.)	c _{a2+a4-M2}	20	00	pF
* Holder capacitance balanced out.				
† Total capacitances including a typical	B8H holder.			
TYPICAL OPERATION - Grid modula	ation, voltage 1	referred to cat	hode	
Second and fourth anode voltage	$v_{a2+a4-k}$	16	16	kV
First anode voltage ¶	v_{a1-k}	4Ó0	500	V
Third anode voltage range for focus	v_{a3-k}	0 to 400	0 to 400	V
Final anode current (peak)	ia2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		40.5	45	V
Grid to cathode voltage limits for cut-off of raster	v_{g-k}	-40 to -77	-50 to -93	v
GR screen raster persistence to 10% (ap	oprox.)	2.	. 0	S
TYPICAL OPERATION - Cathode modul	lation, voltage	referred to gr	rid	
Second and fourth anode voltage	$V_{a2+a4-g}$	16	16	kV
First anode voltage ¶	V _{a1-g}	400	500	V
Third anode voltage range for focus	Va3-g	0 to 400	0 to 400	V
Final anode current (peak)	ia2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		35.5	39.5	V
Cathode to grid voltage limits for cut-off of raster	v_{k-g}	36 to 66	45 to 80	V
GR screen raster persistence to 10% (ap	prox.)	2.	. 0	S

If this tube is operated at voltages in excess of $18\ kV$, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

[¶] Within this range a higher first anode voltage will provide improved focus performance.

M44-120...

PICTURE CENTRING

Maximum magnet flux density at centre of neck should not be less than	17	Gs
Maximum distance of centre of magnetic field from reference line	53	mm

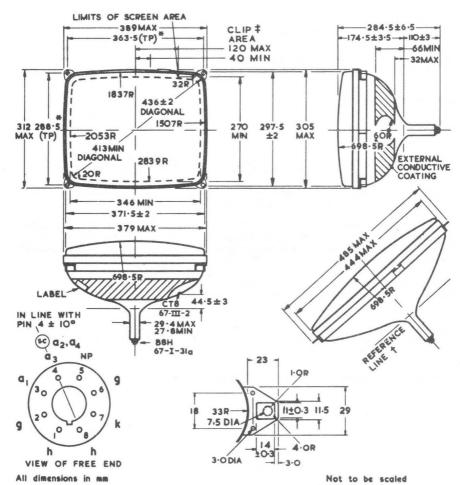
DEFLECTION ANGLES

Height 83°	Width 100°	Diagonal	110°
------------	------------	----------	------

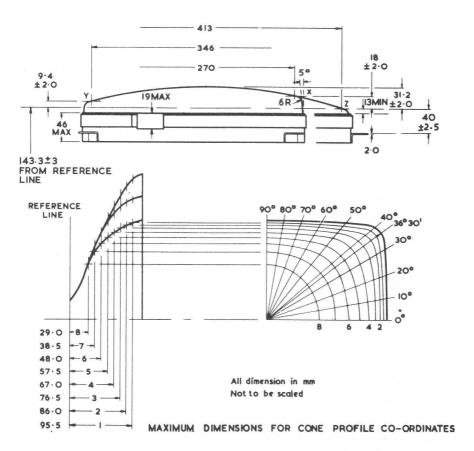
MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 100 mm surrounding the CT8 cap, the tube should not be handled in this region.


The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 44 mm diameter which is centred on the perpendicular from the centre of the face.

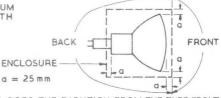
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.


The metal frame (M_2) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 $M\Omega$.

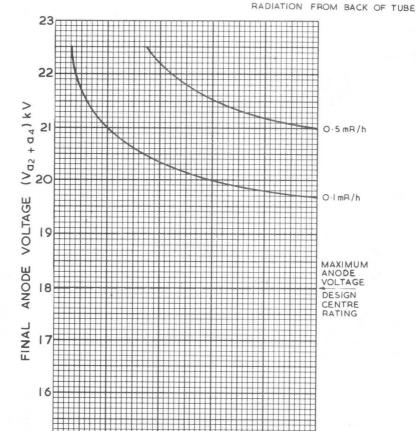
TUBE WEIGHT (approximate) - net 5.5 kg (12 lb)

Characteristic curves as M50-120...

- * The bolts to be used for mounting the tube must lie within the circles of 7.5 mm. diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S. RL4: IEC 67-IV-3: JEDEC 126)
- * Total thickness of shell, tension band and clip 8 mm maximum.



Reference Plane No.	0° Major	10°	20°	30°	36°30' Diag.	40°	50°	60°	70°	80°	90° Minor
1 2					210.8 199.0						
3 4		ment one-district	300,000,000,000,000,000,000,000,000,000		184.8 168.1	100000000000000000000000000000000000000				100000000000000000000000000000000000000	
5 6					149.9 131.2				25		
7 8	107.5 82.8	107.8 82.8			109.5 82.8			104.8 82.8			


M44-120.. Data Display or Monitor Tube

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

MEASUREMENTS MADE ON LINES OF MAXIMUM RADIATION AT FRONT AND BACK OF TUBE WITH DETECTOR CENTRE 50mm FROM NOTIONAL ENCLOSURE DEFINED BY DIAGRAM.

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-Imr/h

Page C1, Issue 1.

200

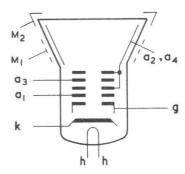
400

FINAL ANODE CURRENT (Iq2 + q4) µA

600

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT

4x3 ASPECT RATIO 500 -120 SCREEN LUMINANCE (cd/m2)nt 200 100 20


200

FINAL ANODE CURRENT (Iq2+q4) HA

600

GENERAL

Rectangular face, 20 inch, 110° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grey glass, 45% transmission (approx.) Straight gun, non ion trap External conductive coating Heater voltage Vh 6.3 V Heater current Ih 0.3* A

DESIGN CENTRE RATINGS - Voltages referred to cathode

I	Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	20†	kV
I	Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	13	kV
I	Maximum third anode voltage	$V_{a3(max)}$	+1000 to -500	V
1	Maximum first anode voltage	$V_{a1(max)}$	700	V
1	Maximum negative grid voltage	-Vg(max)	150	V
1	Maximum peak negative grid voltage	-vg(pk)max	400**	V
1	Maximum positive grid voltage	$V_{g(max)}$	O¶	V
1	Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	250	V
1	Maximum peak heater to cathode voltage, heater negative (absolute rating)	vh-k(pk)max	400\$	V
I	Maximum impedance, grid to cathode (50 Hz)	$Z_{g-k(max)}$	0.5	$\mathbf{M}\Omega$
I	Maximum resistance, grid to cathode	$R_{g-k(max)}$	1.5	$M\Omega$

- * In a series heater chain the CRT should always be connected at the chassis end.
- † Ia2+a4 = 0. **Maximum pulse duration 22% of one cycle with a max. of 1.5 ms.
- ¶ A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- § During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with either a GR phosphor (M50-120GR) giving a yellowish-green trace of very long persistence or a W (television white) phosphor. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

45 to 80

2.0

36 to 66

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	ca2+a4-M1	10	000	pF
Anodes 2 and 4 to shell M2 (approx.)	ca2+a4-M2	35	0	pF
* Holder capacitance balanced out.				
† Total capacitances including a typical	l B8H holder.			
TYPICAL OPERATION - Grid modulat	ion, voltage re	eferred to cath	iode	
Second and fourth anode voltage	V _{a2+a4-k}	16	16	kV
First anode voltage ¶	V _{a1-k}	400	500	V
Third anode voltage range for focus	v_{a3-k}	0 to 400	0 to 400	V
Final anode current (peak)	ia2+a4(pk)	500	500	μ A
Average peak to peak picture modulating voltage		40.5	45	v
Grid to cathode voltage limits for cut-off of raster	v_{g-k}	-40 to -77	-50 to -93	v
GR screen raster persistence to 10% (a	pprox.)	2.	0	S
TYPICAL OPERATION - Cathode modul	ation, voltage	referred to gr	·id	
Second and fourth anode voltage	$V_{a2+a4-g}$	16	16	kV
First anode voltage ¶	V _{a1-g}	400	500	V
Third anode voltage range for focus	V _{a3-g}	0 to 400	0 to 400	V
Final anode current (peak)	ia2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		35.5	39.5	v
Cathode to grid voltage limits for	v_{k-g}	36 to 66	45 to 80	V

[¶] Within this range a higher first anode voltage will provide improved focus performance.

If this tube is operated at voltages in excess of 20 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

cut-off of raster

GR screen raster persistence to 10% (approx.)

M50-120...

Data Display or Monitor Tube

PICTURE CENTRING

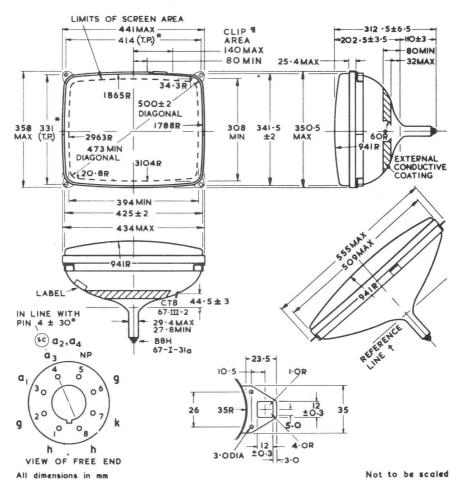
Maximum magnet flux density at centre of neck should not be less than	17	Gs
Maximum distance of dentre of magnetic field from reference line	53	mm

DEFLECTION ANGLES

Height 81° Width 98°	Diagonal 110°
----------------------	---------------

MOUNTING

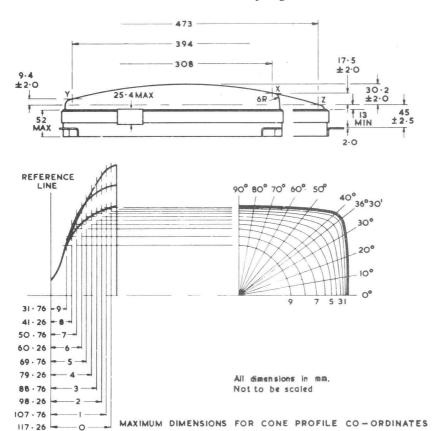
This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.


There is an annular region of anti-corona coating with external diameter of 100 mm surrounding the CT8 cap, the tube should not be handled in this region.

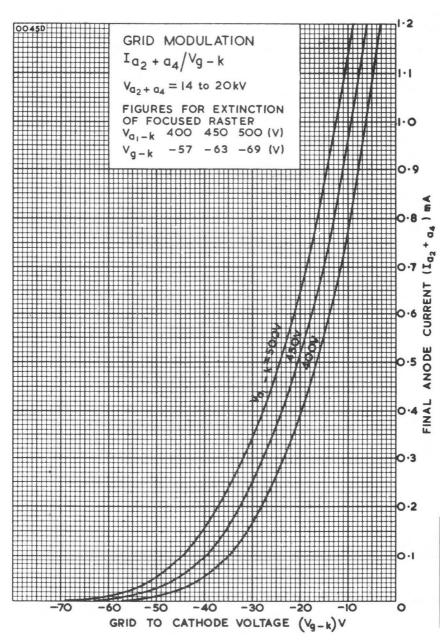
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 40 mm diameter which is centred on the perpendicular from the centre of the face.

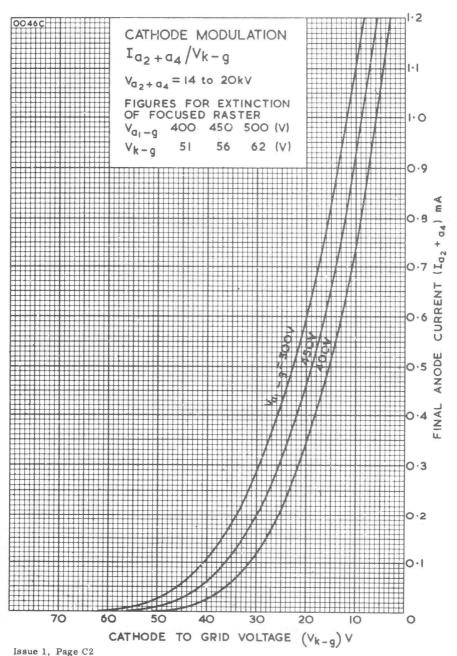
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

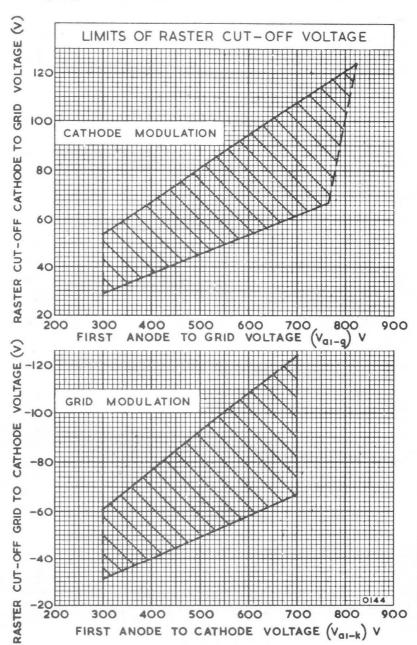
The metal frame (M_2) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example $2\ M\Omega$.


TUBE WEIGHT (approximate) - net 9.5 kg (21 lb)

- * The bolts to be used for mounting the tube must lie within the circles of 8.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S.RL4: IEC 67-IV-3: JEDEC 126). See T.D.S. 5-0-91-16.
- ¶ Total thickness of shell, tension band and clip 8.0 mm maximum.

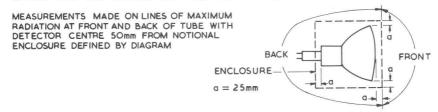

M50-120...


Data Display or Monitor Tube

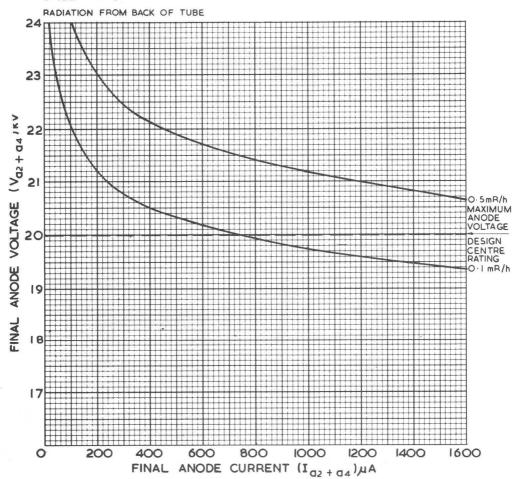


Reference Plane No.	0° Major	10°	20°	30°	36°30' Diag.		50°	60°	70°	80°	90° Minor
0 1		Commence of the	100000000000000000000000000000000000000	110000000000000000000000000000000000000		243.7 238.1	Non-Active and Colors				
2 3			The state of the s	THE RESERVE OF THE PARTY OF THE		225.6 211.6	And the second second				
4 5						196.1 179.7					
6 7						162.1 143.4					
8 9		5	126.6 101.0			122.6 99.2		118.2 99.1			200000000000000000000000000000000000000

Issue 1, Page 5

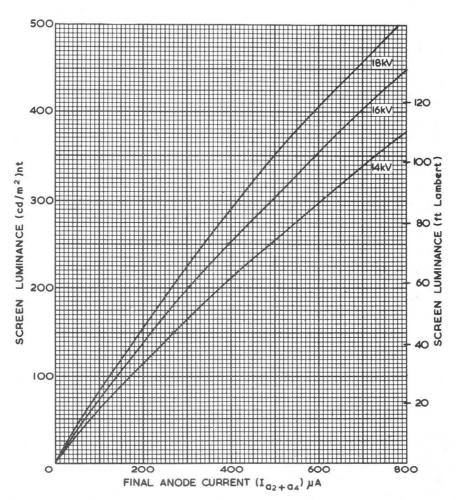

Issue 1, Page C3

DATA DISPLA & MONITOR TUBES


M50-120..

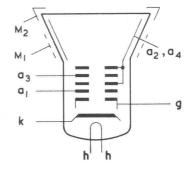
Data Display or Monitor Tube

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE



UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-1 mR/h

Page C4, Issue 1.


TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT

GENERAL

Heater current

Rectangular face, 24 inch, 110° diagonal Rimguard III reinforced envelope Integral mounting lugs Electrostatic focus, magnetic deflection Aluminised screen Grev glass, 42% transmission (approx.) Straight gun, non ion trap External conductive coating Heater voltage 6.3

DESIGN CENTRE RATINGS - Voltages referred to cathode

Ih

0.3*

A

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	20†	kV
Minimum second and fourth anode voltage	$V_{a2+a4(min)}$	13.	kV
Maximum third anode voltage	$V_{a3(max)}$	+1000 to -500	V
Maximum first anode voltage	$V_{a1(max)}$	700	V
Maximum negative grid voltage	-Vg(max)	150	V
Maximum peak negative grid voltage	-vg(pk)max	400**	V
Maximum positive grid voltage	$V_{g(max)}$	O¶	V
Maximum heater to cathode voltage, heater negative (d.c.)	$v_{h-k(max)}$	250	v
Maximum peak heater to cathode voltage, heater negative (absolute rating)	vh-k(pk)max	400\$	v
Maximum impedance, grid to cathode (50 Hz)	$Z_{g-k(max)}$	0.5	$\mathbf{M}\Omega$
Maximum resistance, grid to cathode	$R_{g-k(max)}$	1.5	$\mathbf{M}\Omega$

- * In a series heater chain the CRT should always be connected at the chassis end.
- ** Maximum pulse duration 22% of one cycle with a max. of 1.5 ms.
- \P A 10 k Ω grid series resistor mounted close to the tube base is recommended to limit the peak grid voltage.
- & During a warming-up period not exceeding 45 seconds.

PHOSPHOR SCREEN

This type is usually supplied with either a GR phosphor (M61-120GR) giving a yellowishgreen trace of very long persistence or a W (television white) phosphor. Other phosphor screens can be made available to special order.

Tubes incorporating a B8H Sparkguard base will have a suffix after the type number. For details of the Sparkguard bases see separate sheets.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

500

39.5

45 to 80

2.0

uА

500

35.5

36 to 66

INTER-ELECTRODE CAPACITANCES		*	†	
Cathode to all	ck-all	3.0	3.5	pF
Grid to all	cg-all	7.0	8.5	pF
Anodes 2 and 4 to coating M_1 (approx.)	ca2+a4-M1	10	000	pF
Anodes 2 and 4 to shell M_2 (approx.)	ca2+a4-M2	35	50	pF
* Holder capacitance balanced out.				
† Total capacitances including a typica	al B8H holder			
TYPICAL OPERATION - Grid modulat	ion, voltage r	referred to catl	node	
Second and fourth anode voltage	$V_{a2+a4-k}$	16	16	kV
First anode voltage ¶	v_{a1-k}	400	500	V
Third anode voltage range for focus	v_{a3-k}	0 to 400	0 to 400	V
Final anode current (peak)	ia2+a4(pk)	500	500	μA
Average peak to peak picture modulating voltage		40.5	45	v
Grid to cathode voltage limits for cut-off of raster	v_{g-k}	-40 to -77	-50 to -93	v
GR screen raster persistence to 10% (a	pprox.)	2	. 0	s
	A.			
TYPICAL OPERATION - Cathode modul	ation, voltage	e referred to g	rid	
Second and fourth anode voltage	$v_{a2+a4-g}$	16	16	kV
First anode voltage ¶	v_{a1-g}	400	500	V
Third anode voltage range for focus	v_{a3-g}	0 to 400	0 to 400	V

ia2+a4(pk)

If this tube is operated at voltages in excess of 20 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

Final anode current (peak)

modulating voltage

cut-off of raster

Average peak to peak picture

Cathode to grid voltage limits for

GR screen raster persistence to 10% (approx.)

[¶] Within this range a higher first anode voltage will provide improved focus performance.

M61-120...

Data Display or Monitor Tube

PICTURE CENTRING

of neck should not be less than	17	Gs
Maximum distance of centre of magnetic field from reference line	53	mm

DEFLECTION ANGLES

Height 81° Width	98°	Diagonal	110°
------------------	-----	----------	------

MOUNTING

This tube is intended for 'push-through' presentation without masking, but if a mask is used it should be flexible enough to take up small variations in fixing and bulb contours.

There is an annular region of anti-corona coating with external diameter of 100 mm surrounding the CT8 cap, the tube should not be handled in this region.

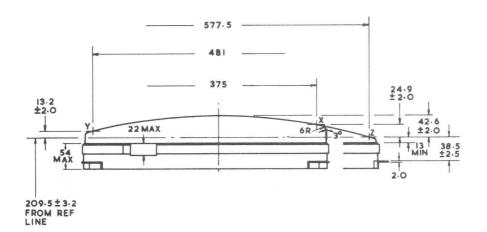
The tube can be mounted in any position. The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The bottom circumference of the base shell will fall within a circle of 40 mm diameter which is centred on the perpendicular from the centre of the face.

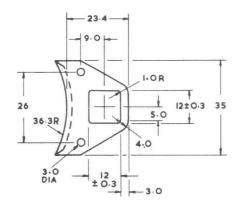
The external conductive coating (M_1) of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

The metal frame (M_2) should be connected directly to the chassis in an a.c. receiver operating from an isolating transformer, or via a suitable leakage path in an a.c./d.c. receiver, for example 2 $M\Omega$.

TUBE WEIGHT (approximate) - net 13.2 kg (29 lb)

Characteristic curves as M50-120...

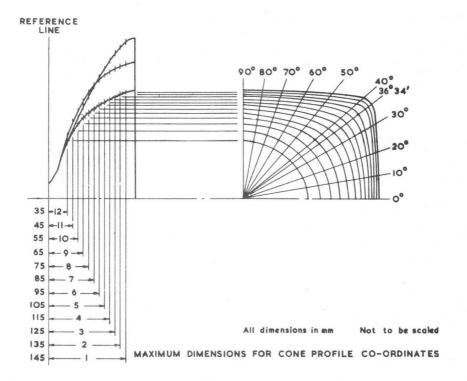

LIMITS OF SCREEN AREA


523 MAX

362±8 -

- * The bolts to be used for mounting the tube must lie within the circles of 8.0 mm diameter centred on these true positions. One of the four lugs may deviate 2.0 mm maximum from the plane through the other three lugs.
- † Determined by reference line gauge No. 16 (B.S.RL4: IEC 67-IV-3: JEDEC 126).

Data Display or Monitor Tube

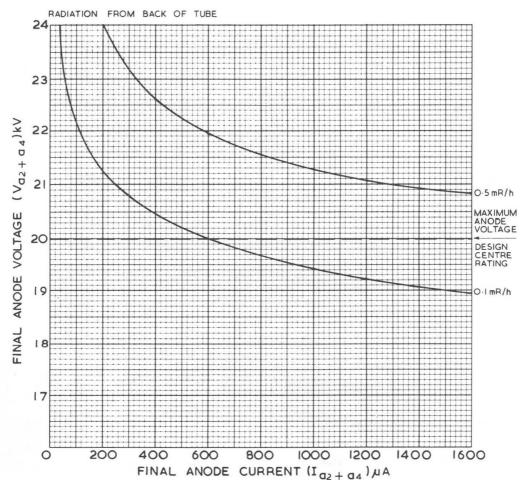


All dimensions in mm

Not to be scaled

Data Display or Monitor Tube

M61-120..

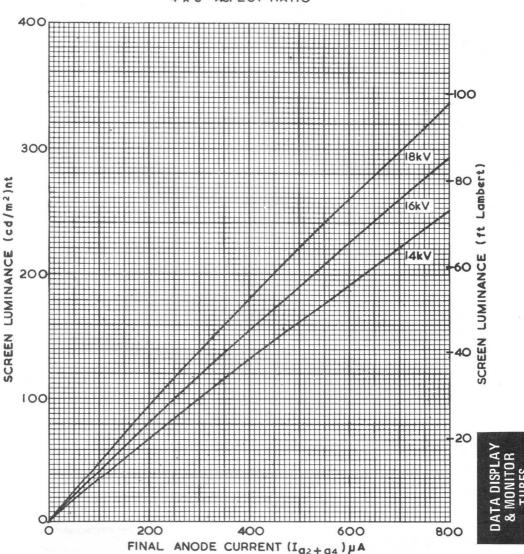

Reference Plane No.	0° Major	10°	20°	30°	36°34' Diag.	40°	50°	60°	70°	80°	90° Minor
1 2			265.0 259.4			288.5 278.0	The Park of the Pa				
3 4			252.0 245.0			266.0 253.5					
5 6	229.5 221.0					240.0 224.0					
7 8						209.0 192.5					
9 10						175.5 156.5					
11 12		100000000000000000000000000000000000000	200000000000000000000000000000000000000	2000 S S S	D00000 00000 00	135.5 113.5	1501400 0000000	N 111 11 11 11 11 11 11 11 11 11 11 11 1			

M61-120...

Data Display or Monitor Tube

X-RAY ISO-EXPOSURE CURVES OF TYPICAL TUBE

UNDER NO CONDITION REPRESENTED HERE DOES THE RADIATION FROM THE TUBE FRONT EXCEED O-1 mR/h $\,$

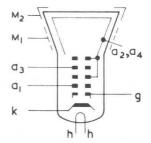


Page C1, Issue 1.

Issue 1, Page C1

TYPICAL CHARACTERISTICS W PHOSPHOR SCREEN FOCUSED RASTER OF FULL HEIGHT

4 x 3 ASPECT RATIO


Data Display or Monitor Tube

ABRIDGED SPECIFICATION

GENERAL

Rectangular flat face, 22 cm 70° diagonal tube Ruggedised construction, metal mounting frame Electrostatic focus, magnetic deflection Flying lead connections for base and anode Aluminised screen, external conductive coating Clear glass, 26.95 + 0.5 mm neck diameter.

Heater voltage	v_h	6.3	V
Heater current	Ih	0.3	Α

ABSOLUTE RATINGS - All voltages referred to cathode

Maximum second and fourth anode voltage	$V_{a2+a4(max)}$	20	kV
Maximum third anode voltage	$v_{a3(max)}$	800	V
Maximum negative third anode voltage	-Va3(max)	300	V
Maximum first anode voltage	$v_{a1(max)}$	800	V
Maximum negative grid voltage	$-v_{g(max)}$	150	V
Minimum negative grid voltage	-Vg(min)	1.0	V
Maximum heater to cathode voltage heater negative (d.c.)	$V_{h-k(max)}$	100	v

TYPICAL OPERATION- Grid modulation, voltages with respect to cathode

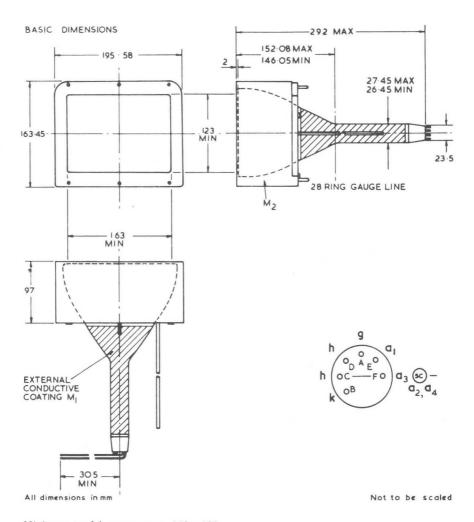
Second and fourth anode voltage	V_{a2+a4}	14	kV
First anode voltage	v _{a1}	400	v
Third anode voltage range for focus	v_{a3}	-50 to 400	V
Grid to cathode voltage for cut-off of raster	V_g	-35 to -75	V

If this tube is operated at voltages in excess of $16~\rm kV$, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

PHOSPHOR SCREEN

This type is usually supplied with W phosphor giving a television white trace of medium short persistence.

Thorn Radio Valves and Tubes Limited

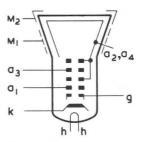

Data Display or Monitor Tube 59-60/90/037

INTER-ELECTRODE CAPACITANCES	Lead capacitances balanced out
Cathode to all - maximum Grid to all - maximum Anode 2 and anode 4 to all (minimum)	Ck-all(max) 8.0 pF Cg-all(max) 25 pF Ca2+a4-all(min) 250 pF
TUBE WEIGHT (maximum) - 3.25 kg ENVIRONMENTAL TESTS CAPABILITIES	
Storage and operational temperature range	-30°C to +55°C.
Vibration endurance	10 to 60 Hz displacement ± 0.15 mm 60 to 2000 Hz 2g all three axes for a specified time
Acceleration	13 g all three axes 2 minutes each
Bump and shock	40 g all three axes for specified number of bumps
Tropical environment	95% relative humidity. cycled 20°C to 35°C, total 100 hrs.
Mould growth	To BS2011 Test 2J severity 28 days
Salt mist	To BS2011 Test 2K 92.5% humidity, 35°C, total 28 days
Solar heat	Continuous cycling 30°C to 84°C total 5 days

NOTE

The external conductive coating of this tube should be connected to chassis. capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply

59-60/90/037 Data Display or Monitor Tube


Minimum useful screen area 162 x 122.

ABRIDGED SPECIFICATION

GENERAL

Rectangular face, 38 cm, 90° diagonal Ruggedised Construction Rimguard III reinforced envelope* Integral mounting lugs Electrostatic focus, magnetic deflection Flying lead connections for base and anode Aluminised screen, external conductive coating Grey glass, 50% transmission (approx) 29.4 mm maximum neck diameter

Heater voltage	v_h	6.3	V
Heater currant	I h	0.3	A

ARSOLUTE RATINGS - All voltages referred to cathode

710001011			
Maximum second and fourth anode voltage	Va2+a4(max)	18	kV
Maximum third anode voltage	$V_{a3(max)}$	700	v
Maximum negative third anode voltage	- Va3(max)	700	v
Maximum first anode voltage	Val(max)	600	v
Maximum negative grid voltage	- Vg(max)	200	v
Minimum negative grid voltage	-Vg(min)	1.0	v
Maximum heater to cathode voltage heater negative (d.c.)	$\mathbf{v}_{h-k(max)}$	200	v

TYPICAL OPERATION -Grid modulation, voltages with respect to cathode

Second and fourth anode voltage	v_{a2+a4}	16	kV
First anode voltage	v_{a1}	400	v
Third anode voltage range for focus	v_{a3}	0 to 400	V
Grid to cathode voltage for cut-off of raster	\mathbf{v}_{σ}	-42 to -86	v

If this tube is operated at voltages in excess of 16 kV, x-ray radiation shielding may be necessary to avoid possible danger of personal injury from prolonged exposure at close range.

* This tube meets the requirements for intrimsically safe tubes laid down in the section of I.E.C. Publication 65 dealing with implosion.

PHOSPHOR SCREEN

This type is supplied with W phosphor giving a television white trace of medium short persistence.

This data should be read in conjuction with Brimar Operational and Safety Recommendations for Industrial Cathode Ray Tubes.

Thorn Radio Valves and Tubes Ltd. is an Approved Manufacturer of Cathode Ray Tubes. to MOD (PE) Defence Standard 05-21 and BS 9000.

Thorn Radio Valves and Tubes Limited

Page 1 Issue1.

59-60/90/074 Data Display or Monitor Tube

INTER-ELECTRODE CAPACITANCES	Lead capacitances	balanced out	
Cathode to all - maximum	ck-all(max)	5.0	pF
Grid to all - maximum	cg-all(max)	16	pF
Anode 2 and anode 4 to M1 (minimum)	ca2+a4-M1(min)	800	pF
Anode 2 and anode 4 to M2 (minimum)	ca2+a4-M2(min)	150	pF
TUBE WEIGHT (maximum) - 6kg ENVIRONMENTAL TESTS CAPABILITIES			

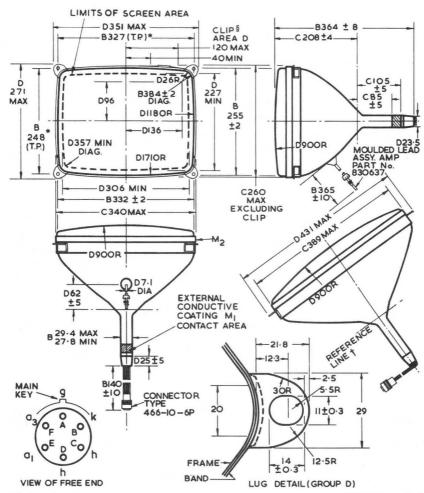
Operational temperature range	-40°C to +70°C
Vibration endurance	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Acceleration	10g all three axes 15 seconds each
Bump and shock	30g all three axes for specified number of bumps
Damp heat	92.5% relative humidity, total 40°C 10 days
Mould growth	To BS2011 Test 2J severity 28 days

-55°C to +80°C

To BS2011 Test 2K

92.5% humidity, 35°C, total 3 days

NOTE


Salt mist

Storage temperature range

The external conductive coating of this tube should be connected to chassis. The capacitance between this coating and final anode may be used to provide smoothing for the e.h.t. supply.

When flashover protection is incorporated the chassis return paths of M_1 and M_2 should be made in a manner appropriate to the protection system employed.

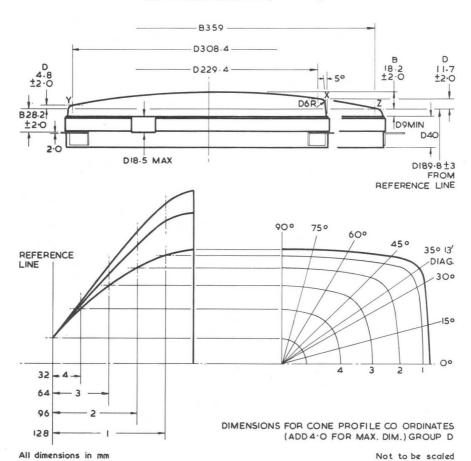
INSPECTION DRAWING

All dimensions in mm

Not to be scaled

The bolts to be used for mounting the tube must lie within the circles of $8.5~\mathrm{mm}$ diameter centred on these true positions. One of the four lugs may deviate 2 mm maximum from the plane through the other three lugs (Group D).

† Determined by reference line gauge


§ Total thickness of shell, tension band and clip 8 mm maximum. (Group D).

Note: Group letters are associated with each dimension.

Page 3, Issue 1.

59-60/90/074 Data Display or Monitor Tube

INSPECTION DRAWING (Continued)

Reference Plane No.	0° Major	15°	30°	35° 13' Diag.	45°	60°	75°	90° Minor
1 2	156.7	160.9	173.6	177.6	161.9	136.5	123.9	120.0
	130.0	132.6	141.5	144.0	135.3	118.0	108.6	105.7
3	99.0	100.8	106.3	107.3	103.9	93.7	88.0	86.5
4	62.8	63.4	65.3	65.4	65.0	62.0	60.0	59.5

Page 4, Issue 1.

SPEGIAL TUBES

The facilities and organisation provided by Thorn Radio Valves and Tubes Limited meet the requirements of the M.O.D. (P.E.) Defence Standard 05-21 and BS 9000.

HEALTH AND SAFETY AT WORK ACT, 1974

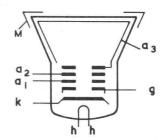
Attention is drawn to the recommendations under this heading in the Operational Recommendations.

WARNING

These tubes should be used in accordance with their published ratings, and in conformity with the Operational Recommendations of the company's data handbook. The company will not entertain claims for loss or damage where this advice has been disregarded.

Thorn Radio Valves and Tubes Limited

Mollison Avenue - Brimsdown - Enfield - Middlesex EN3 7NS



GENERAL

Round flat face 5 inch diameter 25° tube Mounting flange, potted anode lead Electrostatic focus, magnetic deflection Resolution greater than 1200 lines Aluminised screen

Heater	voltage	v_h	6.3	V
Heater	current	Ih	0.3	Α

ABSOLUTE RATINGS

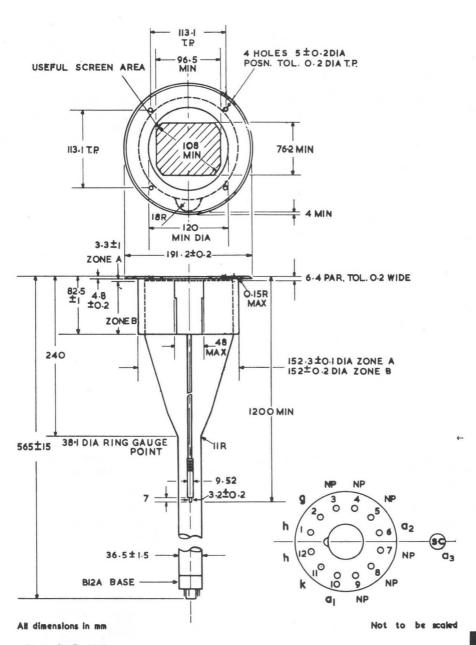
	2000		
Maximum third anode voltage	$v_{a3(max)}$	16	kV
Minimum third anode voltage	$V_{a3(min)}$	12	kV
Maximum second anode voltage range	$V_{a2(max)}$	2.5 to 5.5	kV
Maximum first anode voltage	$V_{al(max)}$	500	v
Maximum negative grid voltage	$-V_{g(max)}$	150	v
Maximum heater to cathode voltage	$V_{h-k(max)}$	± 150	v
Maximum final anode current	I _{a3(max)}	10	μ A
Maximum second anode current	$I_{a2(max)}$	600	μ A
Maximum resistance grid to cathode	$R_{g-k(max)}$	1.5	$\mathbf{M}\Omega$

Adequate precautions should be taken to ensure that the associated circuitry and the tube are protected from damage which may be caused in the event of a high voltage flash-over within the tube.

PHOSPHOR SCREEN

This type is usually supplied with GS phosphor (Q13-202GS) giving a yellowish-green trace of very short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

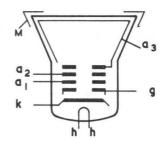


Flying—spot Scanner Tube

INTER-ELECTRODE CAPACITANCES			
Cathode to all	c _{k-all}	4.0	pF
Grid to all	cg-all	12	pF
Anode 3 to shell M	c _{a3-M}	200	pF
TYPICAL OPERATION voltages with respect to c	athode.		
Third anode voltage	v_{a3}	15	kV
Second anode voltage range for focus	v_{a2}	3.7 to 5.2	kV
First anode voltage	v_{a1}	300	V
Grid to cathode voltage for cut-off $(I_{a3} = 0.5 \mu A)$	v_g	-30 to -70	V
Resolution by shrinking raster $(I_{a3} = 4.5 \mu A)$		> 1200	lines
Maximum spot diameter at 60% peak luminance (I_{a3} = 4.5 μ A)		0.07	mm
Maximum screen noise (peak to peak)		30*	%
Typical radiant output ($I_{a3} = 4.5 \mu A$)		250	μW
GS screen persistence to 10% (approx.)		0.9	μs

^{*} Measured with 0.07mm spot at a writing speed of 25 m/s and with a detector bandwidth of 1.5 MHz.

TUBE WEIGHT (approximate) - 2.0 kg


Issue 2, Page 3

Flying-spot Scanner Tube

GENERAL

Round flat face 5 inch diameter 25° tube Mounting flange, potted anode lead Electrostatic focus, magnetic deflection Resolution greater than 1600 lines Aluminised screen

Heater voltage	v_h	6.3	v
Heater current	I_h	0.3	A

ABSOLUTE RATINGS

Maximum third anode voltage	$v_{a3(max)}$	16	kV
Minimum third anode voltage	Va3(min)	12	kV
Maximum second anode voltage range	$v_{a2(max)}$	2.5 to 5.5	kV
Maximum first anode voltage	$v_{al(max)}$	500	v
Maximum negative grid voltage	$-v_{g(max)}$	150	v
Maximum heater to cathode voltage	$v_{h-k(max)}$	± 150	v
Maximum final anode current	Ia3(max)	10	μA
Maximum second anode current	Ia2(max)	600	μA
Maximum resistance grid to cathode	$R_{g-k(max)}$	1.5	$\mathbf{M}\boldsymbol{\Omega}$

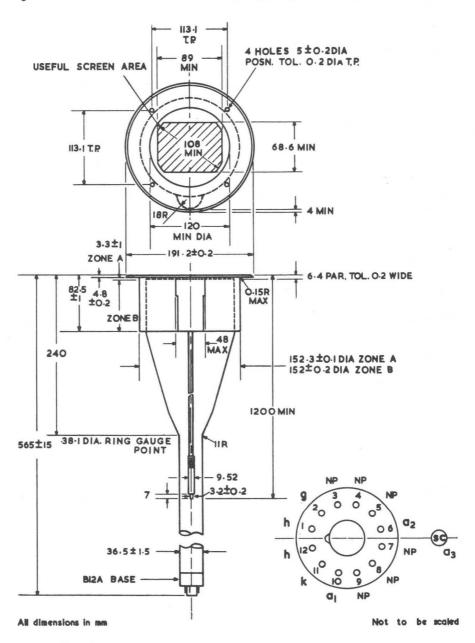
Adequate precautions should be taken to ensure that the associated circuitry and the tube are protected from damage which may be caused in the event of a high voltage flash-over within the tube.

PHOSPHOR SCREEN

This type is usually supplied with GT phosphor (Q13-203GT) giving a bluish-green trace of very short persistence. Other phosphor screens can be made available to special order.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

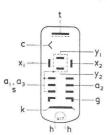

INTER-ELECTRODE CAPACITANCES

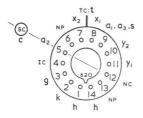
Cathode to all	ck-all	4.0	pF
Grid to all	cg-all	12	pF
Anode 3 to shell M	ca3-M	200	pF
TYPICAL OPERATION - voltages with respect to	cathode.		
Third anode voltage	v_{a3}	15	kV
Second anode voltage range for focus	v_{a2}	3.7 to 5.2	kV
First anode voltage	v_{a1}	300	v
Grid to cathode voltage for cut-off ($I_{a3} = 0.5 \mu A$)	v_g	-30 to -70	v
Resolution by shrinking raster ($I_{a3} = 4.5 \mu A$)		> 1600	lines
Maximum spot diameter at 60% peak luminance ($I_{a3} = 4.5 \mu A$)		0.05	mm
Maximum screen noise (peak to peak)		45*	%
Typical radiant output power $(I_{a3} = 4.5 \mu A)$		250	μW
GT screen spot persistence to 10% (approx.)		0.9	ив

TUBE WEIGHT (approximate) - 2.0 kg

Measured with 0.05mm spot at a writing speed of 25 m/s and with a detector bandwidth of 1.5 MHz.

Flying-spot Scanner Tube




Issue 1, Page 3

Monoscope Tube

XR1000

Maintenance Type

Base B14A, Cap CT7

GENERAL

This monoscope is used for electrical generation of alpha-numeric characters and symbols. The output signals are generated by scanning the individual characters and symbols which are arranged in an array, typically 8×8 , on a target. The electron gun has electrostatic focus and deflection.

This device has applications in business and data processing equipment for cathode ray tube display.

Heater Voltage	V_h	6.3	V
Heater Current	l _b	0.3	Α

ABSOLUTE RATINGS

Maximum Target Voltage	$V_{t(max)}$	2850	V
Maximum Collector Voltage	V _{c(max)}	2850	V
Maximum First and Third Anode Voltage	$V_{a1+a3(max)}$	2850	V
Maximum Second Anode Voltage	V _{a2(max)}	1100	V
Maximum Collector to Target Voltage	$V_{c-t(max)}$	20	V
Maximum Peak x-plate to Third Anode Voltage	Vx-a3(pk)max	550	V
Maximum Peak y-plate to Third Anode Voltage	Vy-a3(pk)max	550	V
Maximum Grid Voltage	/ uo(pk/mux		
Negative Value	$-V_{g(max)}$	220	V
Positive D.C. and Peak Value	Vg(pk)max	0	V
Maximum Peak Heater to Cathode Voltage	Vh-k(pk)max	+ 200	V
Maximum Grid to Cathode Resistance	R _{g-k(max)}	1.5	ΜΩ
Maximum Resistance in any Deflection	\$ K(1112A)		
Electrode circuit*		5.0	ΜΩ

All voltages measured with respect to cathode unless otherwise stated.

INTER-ELECTRODE CAPACITANCES

Grid to all	C _{g-all}	10.6	ρF
Cathode to all	C _{k-all}	5.1	pF
Collector to all	C _{C-all}	5.7	pF
Target to all	C _{t-all}	2.3	pF
x ₁ plate to x ₂ plate	c _{×1-×2}	1.5	pF
y ₁ plate to y ₂ plate	Cy1-y2	2.7	pF
x ₁ plate to all, less x ₂ plate	C×1-all, less ×2	6.9	pF
x ₂ plate to all, less x ₁ plate	Cx2-all less x1	6-4	pF
y ₁ plate to all, less y ₂ plate	Cy1-all, less y2	8.6	pF
y ₂ plate to all, less y ₁ plate	Cy2-all, less y1	8.3	pF

The target used with this tube is indicated by a letter suffix to the type number.

Thorn Radio Valves and Tubes Limited

^{*} It is recommended that the deflecting electrode circuit resistances be approximately equal.

TYPICAL OPERATION AND CHARACTERISTICS

Target Voltage	V _c	1200	٧
First and Third Anode Voltage	V_{a1+a3}	1200	V
Mean Deflector Plate Potential		1200*	V
Minimum Collector to Target Potential	$V_{c-t(min)}$	3.0	V
Second Anode Voltage for Focus	V_{a2}	150 to 515	V
Grid to Cathode Voltage for beam cut-off	Vg	-25 to -65	V
Deflection voltage per symbol area $(8 \times 8 \text{ array})$ Vertical direction (nominal) Horizontal direction (nominal)		9·0 6·5	V V
Voltage required for full beam deflection† (nominal) Between centres of lowest and highest rows		90	٧
Between centres of extreme left and right columns		55	٧
Target Load Resistance		500	Ω
Typical Peak Output Signal		5.0	μA

^{*} If the mean deflector plate potential differs from the first and third anode voltage the quality of focus will deteriorate.

Notes: The electron beam should be cut-off when no raster is being scanned otherwise a blemish may be produced by a change in the secondary emission of the target. It is recommended that no character be used in such a way that it has a usage factor greater than ten times the average.

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

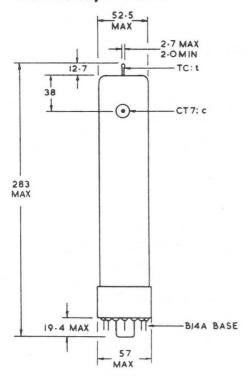
PRINCIPLE OF OPERATION

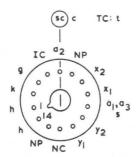
In operation a smaller raster is generated just large enough to scan a single character on the target. The scan circuit also selects and positions the beam on the character to be generated.

As the electron beam lands on the target surface secondary emission electrons are produced and are attracted to the collector which is held at a slightly more positive voltage. The secondary emission from the printed character is lower than from the surrounding target surface where the secondary emission ratio is considerably greater than unity. Hence when the beam lands on the character the target current falls.

The changes of the target current through the load resistance produce the output video voltage signal. By synchronisation of scan and scan position any entire character can be recreated on the final display cathode ray tube. Using suitable circuitry any individual monoscope target character or any sequence of characters can be selected and displayed as required.

Characters can be "read out" from the monoscope at a rate exceeding 60,000 characters per second, corresponding to the rate required for a display of approximately 1,000 characters refreshed at 50 fields per second, with due allowance made for retrace times in the display. The resolution capability is adequate for a display of this complexity.


Approximate Net Tube Weight—380g (0.84 lb.)


[†] Undeflected beam normally at centre of target pattern.

Monoscope Tube


XR1000

VIEW FROM PINS FREE END (PIN 5 AT TOP)

VIEWED FROM PINS FREE END (PIN 5 AT TOP)

All dimensions in mm.

Not to be scaled

Care should be taken to avoid bending the target pin as this may cause misalignment of the target.

Issue 2, Page 3

Maintenance Type

MONOSCOPE

TARGET "A"

TYPICAL TARGET

USING ECMA FOUNT OCR-B

Alignment of Traces

A positive voltage on y₁ deflects beam towards top row.

A positive voltage on x2 deflects beam towards left hand column.

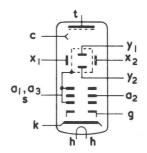
Angle between x and y traces $90^{\circ} \pm 1^{\circ}$.

Angle between trace and target symbols \pm 1°.

See XR1000 data for tube electrical and mechanical details.

Thorn Radio Valves and Tubes Limited

Issue 2, Page 1



Maintenance Type

GENERAL

This monoscope is used for electrical generation of alpha-numeric characters and symbols. The output signals are generated by scanning the individual characters and symbols which are arranged in an array, typically 8 x 8, on a target. The electron gun has electrostatic focus and deflection. This device has applications in business and data processing equipment for cathode ray tube display.

Heater Voltage	v_h	6.3	V
Heater Current	I_h	0.3	A

ABSOLUTE RATINGS

Maximum target voltage	$v_{t(max)}$	2850	v
Maximum collector voltage	$v_{c(max)}$	2850	V
Maximum collector to target voltage	$V_{c-t(max)}$	20	v
Maximum first and third anode voltage	V _{a1+a3(max)}	2850	v
Maximum second anode voltage	V _{a2(max)}	1100	v
$\label{eq:maximum peak x plate to third anode voltage} \\$	vx-a3(pk)max	550	V
$\label{eq:maximum peak y plate to third anode voltage} \\$	vy-a3(pk)max	550	v
Maximum grid voltage negative value positive d.c. and peak value	-V _{g(max)} v _{g(pk)max}	220 0	v v
Maximum peak heater to cathode voltage	vh-k(pk)max	±. 200	V
Maximum grid to cathode resistance	$R_{g-k(max)}$	1.5	$M\Omega$
Maximum resistance in any deflection electrode circuit*		5.0	МΩ

All voltages measured with respect to cathode unless otherwise stated.

* It is recommended that the deflecting electrode circuit resistances be approximately equal.

The target used with this tube is indicated by a letter suffix to the type number.

Thorn Radio Valves and Tubes Limited

μΑ

1.5

INTER-ELECTRODE CAPACITANCES

	Grid to all	cg-all		10.6		pF	
	Cathode to all	ck-all		5.1		pF	
	Collector to all	cc-all		5.7		pF	
	Target to all	ct-all		2.3		pF	
	x ₁ plate to x ₂ plate	c _{x1-x2}		2.7		pF	
	y ₁ plate to y ₂ plate	c _{y1-y2}		1.5		pF	
	x ₁ plate to all, less x ₂ plate	c _{x1-all,} less x2		8.6		pF	
	x_2 plate to all, less x_1 plate	c _{x2-all, less x1}		8.3		pF	
	y ₁ plate to all, less y ₂ plate	cy1-all, less y2		6.4		pF	
	y2 plate to all, less y1 plate	c_{y2} -all, less y1		6.9		pF	
TYPICAL OPERATION AND CHARACTERISTICS							
	Target voltage	v_t		1200		V	
	First and third anode voltage	V_{a1+a3}		1200		V	
	Mean deflectorplate voltage			1200†		V	
	Minimum collector to target voltage	$v_{c-t(min)}$		3.0		V	
	Second anode voltage for focus	v_{a2}	150	to 515		V	
	Grid to cathode voltage for beam cut-off	v_g	-25	to -65		V	
	Deflection voltage per symbol area (8 x 8 array) Vertical direction (nominal) Horizontal direction (nominal)			6.5 9.0		V V	
	Voltage required for full beam deflection* (noming Between centres of lowest and highest rows Between centres of extreme left and right colu			55 90		v v	
	Target load resistance			500		Ω	

* Undeflected beam normally at centre of target pattern.

† If the mean deflector plate potential differs from the first and third anode voltage the quality of focus will deteriorate.

CAUTION

Typical peak output signal

The electron beam should be cut-off when no raster is being scanned otherwise a blemish may be produced by a change in the secondary emission of the target. It is recommended that no character be used in such a way that it has a usage factor greater than ten times the average.

NOTE

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

PRINCIPLE OF OPERATION

In operation a small raster is generated just large enough to scan a single character on the target. The scan circuit also selects and positions the beam on the character to be generated.

As the electron beam lands on the target surface secondary emission electrons are produced and are attracted to the collector which is held at a slightly more positive voltage. The secondary emission from the printed character is lower than from the surrounding target surface where the secondary emission ratio is considerably greater than unity. Hence when the beam lands on the character the target current falls.

The changes of the target current through the load resistance produce the output video voltage signal. By synchronisation of scan and scan position any entire character can be recreated on the final display cathode ray tube. Using suitable circuitry any individual monoscope target character or any sequence of characters can be selected and displayed as required.

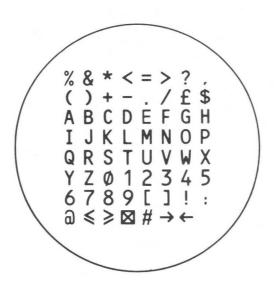
Characters can be "read out" from the monoscope at a rate exceeding 60,000 characters per second, corresponding to the rate required for a display of approximately 1,000 characters refreshed at 50 fields per second, with due allowance made for retrace times in the display. The resolution capability is adequate for a display of this complexity.

TUBE WEIGHT (approximate) 380 g (0.84 lb)

All dimensions in mm

Not to be scaled

Care should be taken to avoid bending the target pin as this may cause misalignment of the target.


OPERATIONAL BLOCK DIAGRAM

* Zero mean voltage

Maintenance Type

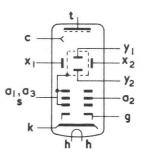
TARGET "A" TYPICAL TARGET USING ECMA FOUNT OCR-B

Alignment of Traces

A positive voltage on y1 deflects beam towards top row. A positive voltage on x2 deflects beam towards left hand column. Angle between x and y traces 90 - 1 Angle between trace and target symbols ± 1.

See XR1002 data for tube electrical and mechanical details.

Thorn Radio Valves and Tubes Limited



Maintenance Type

GENERAL

This monoscope is used for electrical generation of alpha-numeric characters and symbols. The output signals are generated by scanning the individual characters and symbols which are arranged in an array, typically 8 x 8, on a target. The electron gun has electrostatic focus and deflection. This device has applications in business and data processing equipment for cathode ray tube display.

Heater Voltage	v_h	6.3	V
Heater Current	I_h	0.3	Α

ABSOLUTE RATINGS

Maximum target voltage	$v_{t(max)}$	2850	v
Maximum collector voltage	$V_{c(max)}$	2850	v
Maximum collector to target voltage	$V_{c-t(max)}$	20	V
Maximum first and third anode voltage	$V_{a1+a3(max)}$	2850	V
Maximum second anode voltage	V _{a2(max)}	1100	v
$\label{eq:maximum peak x plate to third anode voltage} \\$	vx-a3(pk)max	550	v
$\label{eq:maximum peak y plate to third anode voltage} \\$	vy-a3(pk)max	550	v
Maximum grid voltage negative value positive d.c. and peak value	-Vg(max) vg(pk)max	220 0	v v
Maximum peak heater to cathode voltage	vh-k(pk)max	± 200	v
Maximum grid to cathode resistance	Rg-k(max)	1.5	$M\Omega$
Maximum resistance in any deflection electrode circuit*		5.0	ΜΩ

All voltages measured with respect to cathode unless otherwise stated.

* It is recommended that the deflecting electrode circuit resistances be approximately equal.

The target used with this tube is indicated by a letter suffix to the type number.

Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

2.5

μΑ

INTER-ELECTRODE CAPACITANCES

Grid to all	cg-all		9.0		pF
Cathode to all	ck-all		3.5		pF
Collector to all	cc-all		5.5		pF
Target to all	ct-all		2.5		pF
x ₁ plate to x ₂ plate	c_{x1-x2}		2.3		pF
y ₁ plate to y ₂ plate	c_{y1-y2}		0.9		${\tt pF}$
x ₁ plate to all, less x ₂ plate	c _{x1-all, less x2}		7.5		pF
x ₂ plate to all, less x ₁ plate	cx2-all, less x1		7.5		p F
y ₁ plate to all, less y ₂ plate	cy1-all, less y2		6.0		${\tt pF}$
y2 plate to all, less y1 plate	cy2-all, less y1		6.5		pF
TYPICAL OPERATION AND CHARACTERISTICS					
Target voltage	v_t		1200		V
First and third anode voltage	V_{a1+a3}		1200		V
Mean deflectorplate voltage			1200	†	V
Minimum collector to target voltage	$V_{c-t(min)}$		3.0		V
Second anode voltage for focus	V_{a2}	150	to 51	.5	V
Grid to cathode voltage for beam cut-off	v_g	-25	to -6	55	\mathbf{v}
Deflection voltage per symbol area for two arrays Vertical direction (nominal) Horizontal direction (nominal)			8 x 8 6.5 9.0	12 x 8 6.5 6.0	V V
Voltage required for full beam deflection* (nomina Between centres of lowest and highest rows Between centres of extreme left and right colu			55 90	55 95	V V
Target load resistance			500		Ω

* Undeflected beam normally at centre of target pattern.

† If the mean deflector plate potential differs from the first and third anode voltage the quality of focus will deteriorate.

CAUTION

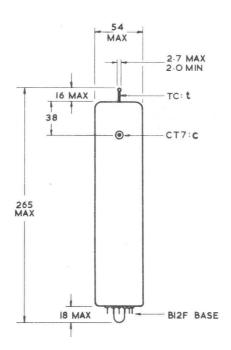
Typical peak output signal

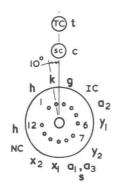
The electron beam should be cut-off when no raster is being scanned otherwise a blemish may be produced by a change in the secondary emission of the target. It is recommended that no character be used in such a way that it has a usage factor greater than ten times the average.

NOTE

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

PRINCIPLE OF OPERATION


In operation a small raster is generated just large enough to scan a single character on the target. The scan circuit also selects and positions the beam on the character to be generated.

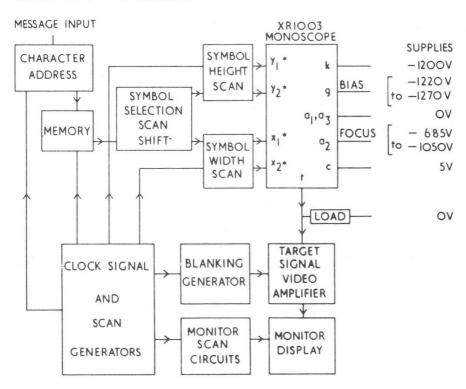

As the electron beam lands on the target surface secondary emission electrons are produced and are attracted to the collector which is held at a slightly more positive voltage. The secondary emission from the printed character is lower than from the surrounding target surface where the secondary emission ratio is considerably greater than unity. Hence when the beam lands on the character the target current falls.

The changes of the target current through the load resistance produce the output video voltage signal. By synchronisation of scan and scan position any entire character can be recreated on the final display cathode ray tube. Using suitable circuitry any individual monoscope target character or any sequence of characters can be selected and displayed as required.

Characters can be ''read out'' from the monoscope at a rate exceeding 60,000 characters per second, corresponding to the rate required for a display of approximately 1,000 characters refreshed at 50 fields per second, with due allowance made for retrace times in the display. The resolution capability is adequate for a display of this complexity.

TUBE WEIGHT (approximate) 330 g (0.73 lb)

VIEW FROM PINS FREE END


All dimensions in mm

Not to be scaled

Care should be taken to avoid bending the target pin as this may cause misalignment of the target.

Issue 1, Page 4

OPERATIONAL BLOCK DIAGRAM

* Zero mean voltage

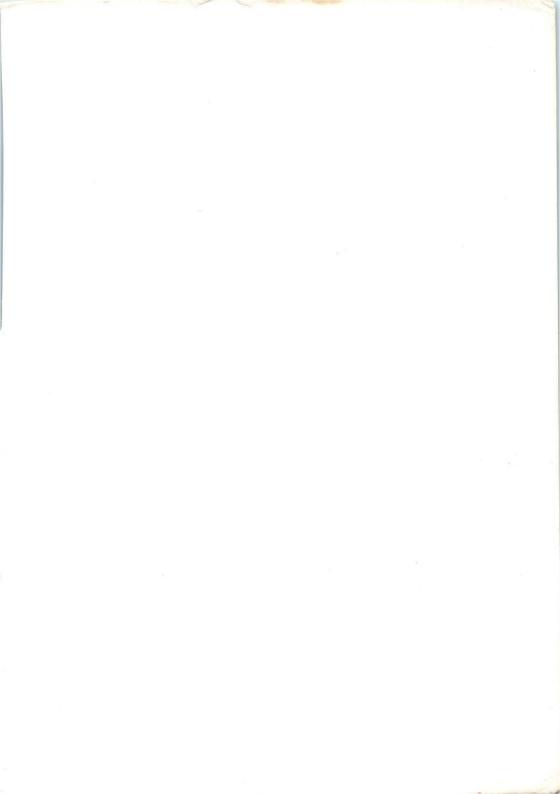
Maintenance Type

TARGET "A"
TYPICAL TARGET
USING ECMA FOUNT OCR-B

Alignment of Traces

A positive voltage on y_1 deflects beam towards top row. A positive voltage on x_2 deflects beam towards left hand column. Angle between x and y traces $90^{\circ} \pm 1^{\circ}$. Angle between trace and target symbols $\pm 1^{\circ}$.

See XR1003 data for tube electrical and mechanical details.


Thorn Radio Valves and Tubes Limited

Issue 1, Page 1

NOTES

NOTES

THORN RADIO VALVES & TUBES LIMITED

Mollison Avenue, Brimsdown, Enfield, Middlesex EN3 7NS.

Telephone: 01-804 1201

PRICE £5.90