INSTRUMENT CATHODE-RAY TUBES

12 cm diagonal rectangular flat-faced oscilloscope tubes with mesh and metal-backed screen with internal graticule. For use in compact oscilloscopes.

QUICK REFERENCE DATA

Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connection

See outline drawings

Overall length (socket included)

Face dimensions
Net mass
Base
$\leqslant 335 \mathrm{~mm}$
$\leqslant 88 \mathrm{~mm} \times 100 \mathrm{~mm}$
approx. 700 g
14 pin, all glass

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Accessories

Socket, supplied with tube
type 55566
Side contact connector (5 required)
Final accelerator contact connector
FOCUSING
type 55561

DEFLECTION
x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and x-axis of the internal graticule type 55563A

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.
electrostatic
double electrostatic symmetrical symmetrica 90 ± 10 $\leqslant 50$ *

- * The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 150Ω. Under typical operating conditions, approx. 50 ampere-turns are required for the maximum rotation of 5°.

LIMITING VALUES (Absolute maximum rating system)
Final accelerator voltage

$V_{\text {g }}(\mathrm{l})$	max min.	$\begin{array}{r} 11 \mathrm{kV} \\ 9 \mathrm{kV} \end{array}$
$V_{\mathrm{g} 7}$	max.	2200 V
$V_{\mathrm{g} 6}$	max.	2200 V
$\mathrm{V}_{\mathrm{g} 5}$	max	2200 V
$V_{\mathrm{g} 3}$	max.	2200 V
$\mathrm{V}_{\mathrm{g} 2,94}$	max. min.	$\begin{aligned} & 2200 \mathrm{~V} \\ & 1350 \mathrm{~V} \end{aligned}$
$V_{g 1}$	max. min.	$\begin{array}{r} -200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
$\begin{aligned} & V_{k f} \\ & -V_{k f} \end{aligned}$	max. max.	$\begin{array}{r} 100 \mathrm{~V} \\ 15 \mathrm{~V} \end{array}$
$V_{g 4 / x}$	max.	$500 \mathrm{~V}$
94/y	max.	
w_{ℓ}	max.	$8 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{R}_{\mathrm{g} 1}$	max.	$1 \mathrm{M} \Omega$

Notes

1. The tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8(\ell)} / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=6,7$. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 7}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
A negative control voltage $\mathrm{V}_{\mathrm{g} 6}$ (with respect to the mean x-plate potential) will cause some incushion distortion and less background light, a positive control voltage will give some barre distortion, and a slight increase of background light. By the use of the two voltages V_{g} and $\mathrm{V}_{\mathrm{g} 7}$, the best compromise between background light and raster distortion can be found.
2. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range
4. Measured with the shrinking raster method in the centre of the screen, under typical operating conditions, adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$
5. A graticule consisting of concentric rectangles of $80 \mathrm{~mm} \times 64 \mathrm{~mm}$ and $78,2 \mathrm{~mm} \times 62,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a aligned with the electrical x-axis of the
6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

subdivision $1,6 \mathrm{~mm}$

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
\square

$C_{x 1}(x 2)$	$5,3 \mathrm{pF}$
$C_{x 2}(x 1)$	$5,3 \mathrm{pF}$
$C_{y 1(y 2)}$	$3,6 \mathrm{pF}$
$C_{y 2}(y 1)$	$3,6 \mathrm{pF}$
$C_{x 1 \times 2}$	$2,1 \mathrm{pF}$
$C_{y 1 y 2}$	$1,7 \mathrm{pF}$
$C_{g 1}$	$5,5 \mathrm{pF}$
C_{k}	$4,5 \mathrm{pF}$

TYPICAL OPERATION (for notes see bottom of opposite page)

Conditions

Final accelerator voltage
Geometry control electrode voltage
Post deflection shield and interplate shield voltage
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control electrode voltage
Control grid voltage for visual extinction of focused spot

$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$ ()	10 kV
$V_{\mathrm{g} 7}$	$1500 \pm 100 \mathrm{~V}$ (note 1)
$V_{\mathrm{g} 6}$	1500 V
$\Delta \mathrm{V}_{\mathrm{g} 6}$	0 to -15 V (note 1)
$\mathrm{V}_{\mathrm{g} 5}$	1500 V (note 2)
V_{g}	250 to 350 V
$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	1500 V
$\Delta V_{\mathrm{g} 2, \mathrm{~g}} 4$	$\pm 50 \mathrm{~V}$ (note 3)
$\mathrm{V}_{\mathrm{g} 1}$	-20 to -60 V

Performance

Useful scan
horizontal
vertical
Deflection coefficient
horizontal
vertical

Line width
Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion

$$
\begin{array}{ll}
\geqslant & 80 \mathrm{~mm} \\
\geqslant & 64 \mathrm{~mm}
\end{array}
$$

$M_{X} \quad 15,6 \mathrm{~V} / \mathrm{div}$
$M_{\mathrm{y}} \leq 17 \mathrm{~V} / \mathrm{div}$
$\leq \quad 45 \mathrm{~V} / \mathrm{div}$
l.w. typ. $0,35 \mathrm{~mm}$ (note 4)

Deviation of deflection linearity

approx.

see note 5
$\leqslant 2 \%$; see note 6

Fig. 1 Outlines; for notes see bottom of opposite page.

Notes to the drawing on opposite pag

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than $2,8 \mathrm{~mm}$
2. The coil is fixed to the envelope by means of adhesive tape.
3. Connection cable, comprising two wires for connection of the rotation coil, and one green wire for earthing the outer conductive coating. Minimum cable length is 120 mm ,
4. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position
