
D13-48..

INSTRUMENT CATHODE-RAY TUBE

development sample data

Development samples are distributed without guarantee for further supply. Development sample data represent the characteristics and ratings of development samples and are to be regarded as first indications of the ultimate performance to be achieved by the product in preparation.

9.9.1966

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA					
Accelerator voltage	$V_{g_2, g_4, g_5}(\ell)$	2000	v		
Display area	2 1 0	100 x 80	mm ²		
Deflection factor, horizontal	M _x	approx. 30	V/cm		
vertical	My	approx. 15	V/cm		

SCREEN

	colour	persistence
D13-48GH	green	medium short

Useful screen diameter

Useful scan at $Vg_2, g_4, g_5(\ell) = 2000 V$

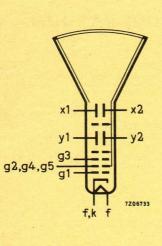
horizontal	min.	100	mm
vertical	min.	80	mm

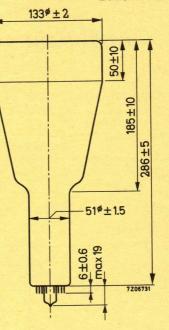
vertical min. 80 mm

The useful scan may be shifted vertically to a max. of $5 \, \text{mm}$ with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	Vf	6.3 V
Heater current	If	300 mA


7Z2 7548


min. 114 mm

D13-48.

MECHANICAL DATA

Dimensions in mm

CONNECTIONS INDICATED ON SAMPLES

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections			
See also outline drawing			
Overall length	max.	310	mm
Face diameter	max.	135	mm
Base 14 pin all glass			
Net weight	approx.	650	g
Accessories			
Socket (supplied with tube)	type 5	5566	
Mu-metal shield	type	7Z2	7549

PHILIPS

D13-48..

CAPACITANCES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	4	pF
x_2 to all other elements except x_1	$C_{x_2(x_1)}$	4	pF
y_1 to all other elements except y_2	C _{y1} (y ₂)	3.5	pF
y_2 to all other elements except y_1	$C_{y_2(y_1)}$	3.5	pF
x ₁ to x ₂	$C_{x_1x_2}$	3	pF
y ₁ to y ₂	Cy1y2	2	pF
Control grid to all other elements	Cg1	6	pF
Cathode to all other elements	Ck	5	pF

FOCUSING

electrostatic

DEFLECTION	double electrostatic
x plates	symmetrical
y plates	symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90 \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell} = 10 \ \mu A^{-1}$).

Line width

1.w. 0.35 mm

1) The beam current should be determined as follows:

Accelerator voltage	$V_{g2, g4, g5}(l)$	2000	v
Focusing electrode voltage	Vg2	adjus	ted
y plate voltage	$v_{g_3} v_{y_1} = v_{y_2}$	2000	V
x1 plate voltage	V _{x1} , , , , , , , , , , , , , , , , , , ,	1300	v
x ₂ plate voltage	V _{x2}	1700	v
Current, measured on x ₂	I _{X2}	10	μA
Grid No.1 voltage (adjust for $I_{x_2} = 10 \mu\text{A}$)	2		

With the above V_{g_1} , adjusted V_{g_3} , and all other voltages according to the typical operating conditions, the beam current $I_{\ell} = 10 \ \mu A$.

7Z2 7550

TYPICAL OPERATING CONDITIONS

Accelerator voltage	$v_{g_2, g_4, g_5(\ell)}$		2000	V
Astigmatism control voltage	$\Delta V_{g_2, g_4, g_5(l)}$		± 75	V 1)
Focusing electrode voltage	v _{g3}	approx.	300	V
Control grid voltage for visual				
extinction of focused spot	vg1	approx.	-40	V
Deflection factor, horizontal	M _x	approx.	30	V/cm
vertical	My	approx.	15	V/cm
Deviation of linearity of deflection		max.	2	% ²)
Useful scan, horizontal		min.	100	mm
vertical		min.	80	mm

LIMITING VALUES

A seclenator voltage	V	max.	2200	V
Accelerator voltage	$V_{g_2, g_4, g_5}(l)$	min.	1500	V
Focusing electrode voltage	v _{g3}	max.	2200	V
	V	max.	200	V
Control grid voltage, negative	-v _{g1}	min.	0	v
Cathode to heater voltage	V _{kf}	cathode	connee	cted to
		heater		
Grid drive, average		max.	20	v
Screen dissipation	Wl	max.	3	mW/cm ²

The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment the control voltage will be within the stated range.

²⁾ The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.