INSTRUMENT CATHODE-RAY TUBE

development sample data

The D13-50../01 is a wide-band oscilloscope tube designed for observation and measurement of high frequency phenomena.
This tube has a rectangular 13 cm diagonal flat face with aluminized screen and internal graticule, post-deflection accelerator with mesh, vertical deflection by means of a symmetrical helix system, scan magnification in the vertical direction by means of an electrostatic quadrupole lens and correction coils for trace alignment, vertical shift of the display area and correction of the orthogonality of traces.

QUICK REFERENCE DATA			
Final accelerator voltage	$V_{\mathrm{gl2}(\ell)}$	15 kV	
Display area	$100 \times$	$60 \mathrm{~mm}^{2}$	
Deflection factor, horizontal	M_{x}	$15 \mathrm{~V} / \mathrm{cm}$	
	M_{y}	$2 \mathrm{~V} / \mathrm{cm}$	
vandical	B	800 MHz	

SCREEN

D13-50GH/01	colour green	persistence medium short

Useful screen dimensions

$$
\min .100 \times 60 \mathrm{~mm}^{2}
$$

Useful scan at $V_{g 12(\ell)} N_{92}=6$
horizontal min . 100 mm
vertical $\quad \mathrm{min}$. 60 mm
By means of adjusting the current in the correction coils, full coverage of the internal graticule by the scanned area can be obtained for any tube.

These data, based on the specifications and measured performance of development samples, afford a preliminary indication of the characteristics to be expected of the described product. Distribution of development samples implies no guarantee as to the subsequent availability of the product

DESCRIPTION

General

The D13-50.. $/ 01$ has been primarily designed for wide-band high-frequency applications. It combines high brightness, high deflection sensitivity and a large bandwidth of the vertical deflection system.
In order to obtain the high sensitivity, the post-deflection acceleration system embodies a mesh. The sensitivity in the vertical direction has been further increased by means of an electrostatic quadrupole lens that has been inserted between the vertical deflection system and the horizontal deflection plates. The large band-width has been obtained by using, for the vertical deflection, a delay-line system instead of deflection plates. With the typical operating conditions, 2500 V first accelerator voltage and 15000 V final accelerator voltage, the vertical and the horizontal deflection factors are about $2 \mathrm{~V} / \mathrm{cm}$ and $15 \mathrm{~V} / \mathrm{cm}$ respectively, with a $10 \times 6 \mathrm{~cm}^{2}$ display area.
The bulb has a rectangular face and the screen is aluminized. To eliminate parallax errors, an internal graticule is incorporated. Correction coils have been provided to permit image rotation, correction of the orthogonality of traces and the adjustment of the vertical useful scan with respect to the graticule.

Rise time of the display τ as a function of the rise time of the input signal τ_{2} fig. 1

The vertical deflection system

For the vertical deflection, a delay-line system is used so that transit-time effects are practically eliminated. The system consists of two flattened helices to which a symmetrical deflection signal should be applied. Under these conditions, the characteristic impedance of each helix is 150Ω. The input and output terminals are brought out on opposite sides of the neck on the same plane. The input terminals are connected to the beginning of the helices by means of a matched, internal two-wire transmission line. The output of the deflection system should be properly terminated in order to avoid signal reflections.
With the typical operating conditions, the band-width of the deflection system, i.e. the frequency at which the sensitivity is 3 dB below its value at D.C., is about 800 MHz . Even above this frequency, the response decreases only gradually so that, for narrow-bandapplications, the tube can be used with reduced vertical sensitivity up to about 2000 MHz .
The rise-time τ_{1}, i.e. the time interval during which the display of an idealstepfunction signal applied to the input goes from 10% to 90% of its final value, is about 0.45 ns . If the input signal has the rise-time τ_{2}, the rise-time τ of the display is approximately given by

$$
\tau=\sqrt{\tau_{1}^{2}+\tau_{2}^{2}}
$$

In fig. 1, τ has been plotted as a function of τ_{2}, with $\tau_{1}=0.45 \mathrm{~ns}$. If, for example, the tube is used in combination with an amplifier and the rise-time of the display is to be 1.4 ns (corresponding with 250 MHz band-width), the rise-time of the amplifier should be 1.33 ns . It can be seen that in this region the rise-time of the display is almost equal to the amplifier rise-time, without a significant contribution of the cathode-ray tube.
If the tube is to be used without an amplifier in order to make use of its full bandwidth capabilities, care should be taken to ensure good symmetry of the input signal.
Fig. 2 shows how the tube can be connected to a 50Ω coaxial input. A matched power divider is used which delivers two identical output signals. One of these is inverted by means of a pulse inverter. An additional length of 50Ω cableshould be inserted into the path of the non-inverted signal having the same delay time as the pulse inverter so that the two signals arrive at the input of the deflection system at the same time. The 75Ω shunt resistors serve to obtain a correct termination of the 50Ω lines. Since each branch of the power divider has 6 dB attenuation, the sensitivity, measured at the 50Ω input, is also $2 \mathrm{~V} / \mathrm{cm}$.

Connection to an asymetrical 50Ω input
A: Power divider
B: Inverter
R_{1}, R_{2} : Resistors 75Ω
R_{3}, R_{4} : Resistors 150Ω
C : Cable D^{\prime}, D^{4} : Deflection system
Note: Delay of inverter B and cable C are equal fig. 2
Scan magnifier and focusing system
As already mentioned, an electrostatic quadrupole lens, i.e. an electron lens which has two mutually perpendicular planes of symmetry, divergent in one plane and convergent in the other, is used for the magnification of the vertical deflection. This lens is inserted between the vertical deflection system and the horizontal deflection plates, with its plane of divergence in the direction of the vertical deflection. Therefore, it magnifies the vertical deflection without affecting the horizontal deflection.

Because of the astigmatic properties of this quadrupole lens, a conventional, rotationally symmetrical focusing lens cannot be used. Instead of this, two more electrostatic quadrupole lenses are incorporated so that focusing is accomplished by means of three quadrupole lenses, with alternating orientation of their planes of convergence and divergence. The focusing action is schematically shown in fig. 3. The strength of the scan-magnifier lens is controlled by applying to the electrode g8 a negative voltage with respect to $\mathrm{g2}$. Within a certain range of this voltage, corresponding to a scan-magnification factor Msc, i.e. the ratio of the deviations on the screen with and without scan magnification respectively, between 1.8 and 2 the combined effect of the three lenses will yield an approximately circular spot at moderate beam currents. (At high beam currents, when space-charge repulsion causes an increase of spot size, the width of the vertical lines will be smaller than that of the horizontal lines).

fig. 3
In this range, line-width at a fixed value of screen current, and screen current at a fixed value of grid nr. 1 voltage, are increasing functions of the scan-magnification factor. Figs. 4 and 5 show the average relative change with respect to the values at $\mathrm{Msc}=1.9$ which, generally, is the most suitable compromise.

For minimum defocusing of vertical lines near the upper and lower edge of the display area, the electrode g_{7} should be kept at a positive voltage with respect to g_{2} (about 200 V with 2500 V first accelerator voltage). As this voltage also has some effect on the scan-magnification factor, both g_{7} and g_{8} should be connected to g_{2} when the deviation without scan magnification is being measured.

Line-width as a function of the scan-magnification factor (approximately) Line-width at $M_{s c}=1.9$ is $100 \%, I_{\ell}=$ sonst.
fig. 4

Screen current as a function of the scan-magnification factor (approximately) Screen current at $M_{s c}=1.9$ is $100 \%, V_{g 1}=$ const. fig. 5

For the adjustment of the scan-magnification factor the following procedure is recommended:
a. Set $V_{g 7}$ and $V_{g 8}$ to 0 with respect to g_{2}.
b. Displaya time-base line and adjust $\mathrm{V}_{\mathrm{g} 5}$ so that the line appears sharply focused.
c. Apply a square wave signal to the vertical deflection system (the vertical parts of the trace will be out of focus but this is immaterial) and adjust the amplitude so that the height of the display has a convenient value, e.g. 30 mm .
d. Set V_{g} and $V_{g 8}$ to the appropriate values and readjust $V_{g 5}$ so that the horizontal parts of the trace are again in focus.
e. Check the height of the display (e.g. for $M_{s c}=1.9$ this height should now be 57 mm).
f. If necessary, readjust $V_{g 8}$ until the desired value of $M_{s c}$ has been obtained.

Focusing is controlled by means of the electrode voltages $V_{g 3}$ and V_{95}. Having two focus controls is, in fact, not an extra complication, as a separate astigmatism control is not required. The electrodes g_{4} and g_{6} can be used to centre the beam with respect to the vertical and horizontal deflection systems.

The voltages of the focusing and correction electrodes can be adjusted as follows:
a. Display a square-wave signal on the screen so that both horizontal and vertical traces are visible.
b. Adjust $V_{g 5}$ so that the horizontal parts of the display are in focus. The vertical parts will, in general, be out of focus.
c. Adjust $\mathrm{V}_{\mathrm{g} 3}$ so that the vertical traces are brought into focus. Now the horizontal parts of the display will be out of focus again.
d. Repeat b) and c) successively until both vertical and horizontal traces are simultaneously in focus.
e. Adjust V_{g} for equal brightness at the left-hand and right-hand edges of the display area. If necessary, readjust the focus be means of V_{g5}.
f. Adjust $\mathrm{V}_{\mathrm{g} 4}$ so that the position of a horizontal trace not deflected in the vertical direction is at the centre of the vertical useful scan. If necessary, readjust the focus by means of V_{g}.
If the graticule is not fully covered by the scanned area the image should be shifted by adjusting the correction coil current (see page 16) before the adjustment of $V_{g 4}$ is made.

The procedure for the adjustment of the scan-magnification factor and for focusing, as described above, seems to be rather complicated.
However, in practice it will be suffucient to adjust $\mathrm{V}_{\mathrm{g} 8}$ to its nominal value without determining the scan-magnification factor for each individual tube. As to focusing, the user can, with some experience, achieve the best setting with very few adjustments.

Post-deflection acceleration

The use of a p.d.a. shield (mesh) ensures a high deflection sensitivity. A geometry control electrode, 910 , serves for the correction of pin cushion or barrel distortion of the pattern. In order to suppress background illumination due to secondary electrons originating from the p.d.a. shield g 11 , this shield should be kept 12 V negative with respect to 910 whereas the voltage of the interplate shield, gg should be equal to the mean x-plate potential.

HEATING: Indirect by A.C. or D.C. : parallel supply
Heater voltage
Heater current

| $V_{f} \quad 6.3 \mathrm{~V}$ |
| :--- | :--- |
| $\mathrm{I}_{\mathrm{f}} \quad 300 \mathrm{~mA}$ |

CAPACITANCES

x_{1} to all ofher elements except x_{2}
x_{2} to all other elements except x_{1}
x_{1} to x_{2}
Control grid to all other elements
Cathode to all other elements

$C_{\times 1(\times 2)}$	4.5	pF
$C_{\times 2(\times 1)}$	4.5	pF
$C_{\times 1 \times 2}$	2.7	pF
$C_{\mathrm{g} 1}$	6	pF
C_{k}	5	pF

1) Clear area for light conductor
2) These dimensions apply to the illumination plate which will always be within the limits $117 \pm 1.5 \times 79 \pm 1.5 \mathrm{~mm}$ of the tube face.

Notes: see page 8

MECHANICAL DATA (continued)

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing
Overall length (socket and front glass plate inclusive) max. 493 mm

Face dimensions

Base

Accessories

Socket
Final accelerator contact connector
Side contact connector
Mu-metal screen
FOCUSING electrostatic ${ }^{1}$)
DEFLECTION double electrostatic
x plates symmetrical
The y deflection system consists of a symmetrical delay
line system. Characteristic impedance
$2 \times 150 \Omega$
Bandwidth ($-3 d B$)
Rise time
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam: hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90^{\circ} .{ }^{4}$) (see page 14 "Correction coils")

[^0]deflection system. If the actual signal has an appreciable rise-time, τ_{2}, the risetime of the tube can be determined from
$$
\tau_{1}=\sqrt{\tau^{2}+\tau_{2}^{2}}
$$
where τ is the rise-time observed on the display.
This should be measured after the angle between the x-traces and y-traces has been corrected by means of the correction coils, otherwise two measurements have to be taken (using either a different polarity of the vertical deflection signal or different direction of the time-base sweep) and the true value of τ has to be calculated'as the arithmetic mean of the two results.
4) Deviations from the orthogonality of traces can be eliminated by means of correction coils.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen undertypical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$ and a screen magnification factor $M_{s C}=1.9$. See also 3), page 13.

Line width
TYPICAL OPERATING CONDITIONS
Final accelerator voltage
Post deflection shield voltage (with respect to g_{10})

Geometry control electrode voltage
Interplate shield voltage
Scan magnifier electrode voltage (with respect to g_{2})

Correction electrode voltage (with respect to g_{2})
Horizontal beam centering electrode voltage
Vertical beam centering electrode voltage
Focusing electrode voltages
(with respect to g_{2})
First accelerator voltage
Control grid voltage for visual extinction of a focused spot
Deflection factor, horizontal vertical.

Deviation of linearity of deflection
I.w. approx. 0.35 mm

$V_{g 12(\ell)}$	15000	V
$V_{g 11-910}$	-9 to -15	V

$\left.V_{g 10} \quad 2500 \pm 100 \quad V^{1}\right)$
$\left.\mathrm{V}_{\mathrm{g} 9} \quad 2500 \mathrm{~V} \quad 2\right)$
$\vee_{g 8-92}-250$ to $-375 \quad \vee \quad 3$)
$\left.V_{97-g_{2}} \quad+200 \quad \vee \quad 4\right)$

$V_{g_{6}}$	2500 ± 50	V	$6)$
$V_{g 4}$	2500 ± 50	V	$5)$
$V_{g_{5}-g_{2}}$	-400 to -600	V	
$V_{g 3^{-}}-600$ to -800	V		
$V_{g 2}$	2500	V	

$V_{g 1} \quad-50$ to $-150 \quad \mathrm{~V}$

$M \times$	approx.	15	$\mathrm{~V} / \mathrm{cm}$	
$M y$	approx.	2	$\mathrm{~V} / \mathrm{cm}^{7}$	7
		2	$\%$	$8)$

Notes see page 13

Geometry distortion

Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)

Notes to pages 11 and 12

1) This voltage should be adjusted for optimum pattern geometry.
2) This voltage should be equal to the mean x-plate potential.
3) The range indicated corresponds to a scan magnification factor $M_{s c}$, i.e. the ratio by which the vertical deviation on the screen is increased, in the approximate range $1.8<M_{s c}<2.0$, and the tube should not be operated outside this range. Within this range, line-width and screen current at a fixed value of the controlgrid voltage are increasing functions of $M_{s c}$. The best compromise between brightness and line width is usually found at $M_{s c} \approx 1.9$ which corresponds to $\mathrm{V}_{\mathrm{g} 8^{-}} \approx$ 310 V .
4) For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be approximately adjusted to the value indicated. Since the value of $\mathrm{V}_{\mathrm{g} 7-\mathrm{g}}$ has some effect on the scan-magnification factor both $V_{g 7}$ and $V_{g 8}$ should be connected to g_{2} when the deviation without scan magnification is to be measured.
5) By adjusting this voltage a sput not deflected in the vertical direction may be centered with respect to the vertical useful scan.
6) This voltage should beadjusted for equal brightness in the x-direction with respect to the electrical centre of the tube.
7) For a scan-magnification factor $M_{s c}=1.9$. In the above mentioned range of $V_{98-g 2}$ the vertical deflection factor will vary approximately $\pm 5 \%$.
8) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
9) A rectangle of 98 by $58.2 \mathrm{~mm}^{2}$ is concentrically aligned with the internal graticule of the tube. The edges of a raster will fall between this rectangle and the boundary lines of the internal graticule with correction potentials applied.

CORRECTION COILS

The tube is provided with a coil unit consisting of:

1. a pair of coils (nrs. 1 and 2), with approx. 220Ω D.C. resistance per coil, for
a) correction of the orthogonality of the x - and y-traces so that the angle between these traces at the centre of the screen can be made exactly 90°.
b) vertical shift of the scanned area.
2. a single coil (nr. 3) with approx. 550Ω D.C. resistance, for image rotation (alignment of the x-trace with the x-lines of the graticule).

Orthogonality and shift:

The change in the angle between the traces and the shift of the scanned area will be proportional to the algebraic sum and the algebraic difference of the currents in the coils nrs. 1 and 2.
Under typical operating conditions and with the coil unit closely surrounded by a mu-metalshield, the currents required are max. 5 mA per degree of angle correction and max. 2 mA per millimeter shift. The supply circuit for these coils should be so designed that in each coil a maximum current of 20 mA , with either polarity, can be produced.
If a wider mu-metal shield is used the above-mentioned values have to be multiplied by a factor $K(1<K<2)$ the value of which depends on the dimensions of the shield and approaches 2 for the case no shield is present.

Image rotation:

Under typical operating conditions, a current of max. 45 mA will be required for the alignment.

fig. 1
P_{1}, P_{2} potentiometers $220 \Omega, 1 \mathrm{~W}$: ganged
P_{3}, P_{4} potentiometers $220 \Omega, 1 \mathrm{~W}$: ganged

With the above circuit almost independent control for shift and angle correction is achieved. This facilitates the correct adjustment to a great extent.
The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped (see fig. 2)

fig. 2
P_{1}, P_{2} potentiometers 220Ω, 1 Watt: ganged P_{3}, P_{4} potentiometers 220Ω, I Watt: ganged

A further reduction of the dissipation can be obtained by providing a commutator for each coil (see circuit fig. 3).
The procedure of adjustment will then become more complicated but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

$\mathrm{S}_{1}, \mathrm{~S}_{2}$ commutators
A suitable circuit forthe image rotating coil is given in fig. 4.

P_{5}, P_{6} potentiometers $500 \Omega, 3$ Watt: ganged fig. 4

The following procedure of adjustment is recommended
a. Align the x trace with the graticule by means of the image rotating coil.
b. With the tube fully scanned in the vertical direction, the image has to be shifted so that the graticule is fully covered. With the circuit according to fig. 1 this is done by means of the ganged potentiometers P_{1} and P_{4}.
c. Adjustment of orthogonality by means of the ganged potentiometers P_{2} and P_{3}. A slight readjustment of P_{1} and P_{4} may be necessary afterwards.
d. Readjustment of the image rotation if necessary.

With a circuit according to fig. 2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.

The most convenient deflection signal is a square wave form permitting an easyand fairly accurate visual check of orthogonality.

ILLUMINATION OF THE GRATICULE

To illuminate the internal graticule a light conductor (e.g. of perspex) should be used. In order to achieve the most efficient light conductance, the holes for the lamps and the edge adjacent to the tube should be polished, and the distance between the perspex plate and the tube should be as small as possible. It is advisable to apply reflectivematerial to the outer circumference and, if possible, also to the upper and lowerfaces of the light conductor. The thickness of the conductor should not exceed 3 mm , and its position relative to the frontplate of the tube should be adjusted for optimum illumination of the graticule lines.

1) Reflective material.
2) Polished.

3) Close and constant distance to front plate of tube. It is necessary that the light conductor and the front plate of the tube are in plane.
4) If possible reflective material.

[^0]: ${ }^{1}$) Because of the applications of a quadrupole lens for the magnification of the vertical deflection, two more quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided but a separate astigmatism control voltage is not required.
 2) The band-width is defined as the frequency at which the vertical deflection sensitivity, is 3 dB lower than at D.C.
 3) The rise-time is defined as the time interval between 10% and 90% of the final value of deflection when an ideal step-function signal is applied to the vertical

