INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x - and y-plates, and is intended for use in transistorized oscilloscopes up to a frequency of 50 MHz .

QUICK REFERENCE DATA				
Final accelerator voltage	$\mathrm{V}_{88}(\ell)$	10	kV	
Display area		100×80	$\mathrm{~mm}^{2}$	
Deflection coefficient, horizontal	M_{x}	15.5	$\mathrm{~V} / \mathrm{cm}$	
	M_{y}	$4.2 \mathrm{~V} / \mathrm{cm}$		

SCREEN : Metal backed phospho

$\stackrel{\cong}{\bar{n}}$

	Colour	Persistence
D14-121GH	green	medium short
D14-120GM	pusplish blue	long
D14-120GP	bluish green	medium short

Useful screen dimensions
Useful scan at $V_{g_{8}(\ell)} / V_{g_{2}, g_{4}}=6.7$,
horizontal
vertical
min.
80 -

Spot eccentricity in horizontal
and vertical directions
min. $100 \times 80 \mathrm{~mm}^{2}$

HEATING: Indirect by A.C. or D.C.; parallel supply Heater voltage Heater current

D14-121. \square
MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Dimensions and connections

See also outline drawing
Overall length (socket included)
Face dimensions
Net weight
385 mm
$\max .100 \times 120 \mathrm{~mm}^{2}$
approx. 900 g
14 pin, all glass
Accessories
Socket (supplied with tube)
Final-accelerator contact connector
type 55566
type 55563
type 55581 A

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	5.5 pF	
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	5.5 pF	
$\mathrm{C}_{\mathrm{y}_{1}}\left(\mathrm{y}_{2}\right)$	4	pF
$\mathrm{C}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$	4	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2.2	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.7	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.5	pF
C_{k}	4.5 pF	

Cathode to all other elements

Electrostatic
FOCUSING

DEFLECTION Double electrostatic

x -plates	symmetrical
y -plates	symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces $\quad 90 \pm 1^{\circ}$
Angle between x trace and the horizontal axis of the face max. $50{ }^{1}$)

LINE WIDTH

Mearured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Line width screen centre	l.w.	0.40 mm
over the whole screen area	l.w.	av. $<0.45 \mathrm{~mm}$

1) See page 5

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry-control electrode voltage
Post deflection and interplate shield voltage Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for extinction
of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection coefficient, horizontal
$\mathrm{V}_{\mathrm{g}_{8}(\ell)}$
V_{7}
$\mathrm{~V}_{7}$
$\Delta \mathrm{~g}_{6}$
$\mathrm{~g}_{6}$
$\mathrm{~g}_{5}$
$\mathrm{~V}_{\mathrm{g}_{3}}$
$\mathrm{~V}_{2}, \mathrm{~g}_{4}$
$\Delta \mathrm{~V}_{\mathrm{g}_{2},} \mathrm{~g}_{4}$
$\mathrm{~V}_{\mathrm{g}_{1}}$
M_{x}
M_{y}
Deviation of linearity of deflection
Geometry distortion
Useful scan, horizontal
vertical

LIMITING VALUES (Absolute max. rating system)

Notes

1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp . turns for the indicated max. rotation of 5° and should be positioned as indicated on the drawing.
2) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8}(\ell)$ / $\mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}} \leq 6.7$.
The geometry control voltage $\mathrm{V}_{\mathrm{g} 7}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
A negative control voltage on g_{6} (with respect to the mean x -plate potential) will cause some pincushion distortion and less background light.
By the use of the two voltages, $\mathrm{V}_{\mathrm{g}_{6}}$ and $\mathrm{V}_{\mathrm{g} 7}$, it is possible to find the best compromise between background light and raster distortion.
3) The deflection plate shield voltage should be equal to the mean y-plate potential . The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and 93 mm x 73.6 mm is aligned with the electrical x axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

For notes see page 5

INSTRUMENT CATHODE-RAY TUBE

development sample data

14 cm diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x-and y-plates, and is intended for use in transistorized oscilloscopes up to a frequency of 50 MHz .

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{8}(\ell)$	10	kV
Display area		100×80	$\mathrm{~mm}^{2}$
Deflection factor, horizontal	M_{x}	15.5	$\mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	4.2	$\mathrm{~V} / \mathrm{cm}$

SCREEN : Metal backed phosphor

	Colour	Persistence
D14-121GH	green	medium short

Useful screen dimensions
Useful scan at $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=6.7$,
horizontal
vertical
min. $100 \times 80 \mathrm{~mm}^{2}$

$$
\begin{array}{lrl}
\min . & 100 \quad \mathrm{~mm} \\
\min . & 80 \quad \mathrm{~mm}
\end{array}
$$

Spot eccentricity in horizontal and vertical directions.

6 mm

HEATING: Indirect by A.C. or D.C.; parallel supply
Heater voltage
Heater current

These data, based on the specifications and measured performance of development samples, afford a preliminary indication of the characteristics to be expected of the described product. Distribution of development samples implies no guarantee as to the subsequent availability of the product

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket included)
Face dimensions
Net weight
Base

Accessories

Socket (supplied with tube)	type 55566
Final-accelerator contact connector	type 55563
Mu-metal shield	type 55581 A

CAPACITANCES

x_{1} to all other elements except x_{2}	$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	5.5 pF
x_{2} to all other elements except x_{1}	$\mathrm{C}_{\mathrm{X}_{2}\left(\mathrm{x}_{1}\right)}$	5.5 pF
y_{1} to all other elements except y_{2}	$\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}$	4 pF
y_{2} to all other elements except y_{1}	$\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}$	4 pF
x_{1} to x_{2}	$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}$	2.5 pF
y_{1} to y_{2}	$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	2 pF
Control grid to all other elements	$\mathrm{C}_{\mathrm{g}_{1}}$	6 pF
Cathode to all other elements	C_{k}	5 pF

FOCUSING Electrostatic

DEFLECTION

x-plates
y-plates

Double electrostatic
symmetrical
symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

$$
90 \pm 1^{0}
$$

Angle between x trace and the horizontal axis of the face max. $5^{{ }^{1} \text {) }}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.
Line width
l.w. approx. 0.40 mm

[^0]
TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry-control electrode voltage
Post deflection and interplate shield voltage
$\mathrm{V}_{\mathrm{g}}^{8}(\mathrm{\ell})$ $V_{g_{7}}$
$V_{g_{6}}$ $\Delta V_{g_{6}}$
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for extinction of focused spot
Deflection factor, horizontal vertical

Useful scan, horizontal vertical

LIMITING VALUES (Absolute max. rating system)
Final accelerator voltage
Post deflection and interplate shield voltage and geometry control electrode voltage

Deflection plate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage

Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
$\mathrm{V}_{\mathrm{g}}(\ell)$
$\max . \quad 11 \mathrm{kV}$
min.
9 kV
approx. -60 V
approx. $15.5 \mathrm{~V} / \mathrm{cm}$
approx. $4.2 \mathrm{~V} / \mathrm{cm}$
min. 100 mm
min. 80 mm
Control grid voltage
Cathode to heater voltage
Voltage between astigmatism control
electrode and any deflection plate

Ratio $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{2}}, \mathrm{~g}_{4}$

W_{ℓ}	\max.	$3 \mathrm{~mW} / \mathrm{cm}^{2}$	
$\mathrm{~V}_{\mathrm{g}_{8}(\ell) /} \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}$	\max.	6.7	

For notes see page 5

Notes

1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp . turns for the indicated max. rotation of 5° and should be positioned as indicated on the drawing.
2) This tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g}_{8}(\ell)}$ / $\mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}} \leq 6.7$.
The geometry control voltage $\mathrm{V}_{\mathrm{g}_{7}}$ should be adjusted within the indicated range (values with respect to the mean x -plate potential).
A negative control voltage on g_{6} (with respect to the mean x -plate potential) will cause some pincushion distortion and less background light.
By the use of the two voltages, $\mathrm{V}_{\mathrm{g}_{6}}$ and V_{77}, it is possible to find the best compromise between background light and raster distortion.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x - and y-plate potentials should be equal for optimum spot quality.
4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
\square

[^0]: 1) See page 5
