

D14-12..

INSTRUMENT CATHODE-RAY TUBE

development sample data

Development samples are distributed without guarantee for further supply. Development sample data represent the characteristics and ratings of development samples and are to be regarded as first indications of the ultimate performance to be achieved by the product in preparation.

9.9.1966

INSTRUMENT CATHODE-RAY TUBE

 $14\ {\rm cm}$ diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen.

QUICK REFERENCE DATA				
Final accelerator voltage	$v_{g_6(l)}$		10	kV
Display area		100 x	80	mm ²
Deflection factor, horizontal	M _x	approx.	16	V/cm
vertical	My	approx.	4	V/cm

SCREEN

	colour	persistence
D14-12GH	green	medium short

Useful screen dimensions

min. 100 x 80 mm²

Useful scan at $V_{g_6(\ell)}/V_{g_2,g_4} = 6.5$ horizontal

horizontal	min. 100		mm	
vertical	min.	80	mm	

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	V _f	5.3	v
Heater current	If	300	mA

D14-12.

MECHANICAL DATA

Dimensions in mm

CONNECTIONS INDICATED ON SAMPLES

,

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections			
See also outline drawing			
Overall length (socket included)	max.	390	nım
Face dimensions	max.	100 x 120	mm ²
Net weight	approx	•	g
Base 14 pin all glass			
Accessories			
Socket	type	55566	
Final accelerator contact connector	type	55563	
Mu-metal shield	type	7	Z2 7544

PHILIPS

D14-12..

CAPACITANCES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	5	pF
x_2 to all other elements except x_1	$C_{x_2(x_1)}$	5	pF
y1 to all other elements except y2	C _{y1(y2})	4	pF
y_2 to all other elements except y_1	C _{y2} (y1)	4	pF
x ₁ to x ₂	C _{x1} x ₂	3	pF
y ₁ to y ₂	Cy1y2	2	pF
Control grid to all other elements	C _{g1}	6	pF
Cathode to all other elements	Ck	5	pF

FOCUSING

electrostatic

DEFLECTION	double electrostation		
x plates	symmetrical		
y plates	symmetrical		

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces $90 \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell} = 10 \ \mu A$.

Line width

l.w. approx. 0.40 mm

D14-12..

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$V_{g_6(l)}$	10 000	V
Interplate shield voltage	Vg5	1500	V
Geometry control voltage	Δv_{g_5}	t.b.f.	V ¹)
Focusing electrode voltage	V _{g3} ap	oprox. 375	V
First accelerator voltage	Vg2,g4	1500	V
Astigmatism control voltage	$\Delta V_{g_2, g_4}$	<u>+</u> 75	V ²)
Control grid voltage for visual			
extinction of focused spot	Vgl ar	oprox40	v
Deflection factor, horizontal	M _x ar	oprox. 16	V/cm
vertical	M _y ap	oprox. 4	V/cm
Useful scan, horizontal	m	in. 100	mm
vertical	m	in. 80	mm

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	V	max.	11 000	V
That accelerator voltage	*g6(l)	min.	9000	V
Interplate shield voltage				
geometry control electrode voltage	ge V _{g5}	max.	1650	V
Focusing electrode voltage	v_{g_3}	max.	1650	V
First accelerator and astigmatism		max	1650	V
control electrode voltage	v _{g2} , g ₄	min.	1350	v
Control with a large		max.	200	V
Control grid voltage	-v _{g1}	min.	0	V
Cathode to heater voltage	V _{kf}	cathode connected to heater		ed to
Voltage between astigmatism contr	ol			
electrode and any deflection plate	Vg4/x	max.	50,0	V
	Vg4/y	max.	500	v .
Grid drive, average		max.	20	v
Screen dissipation	We	max.	3	mW/cm2
Ratio $V_{g_6(\ell)}/V_{g_2,g_4}$	$v_{g_6(\ell)}/v_{g_2,g_4}$	max.	6	
For notes see page 5				700 75 46

PHILIPS

NOTES

1. This tube is designed for optimum performance when operating at the ratio $V_{g6(\ell)}/V_{g2, g4}$ = 6. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance.

For any necessary adjustment its potential will be within the stated range.

2. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.

