INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x - and y-plates, internal graticule and a light-conducting glassplate set in front of the face.

The scanned raster can be centred and aligned with the internal graticule by mean of correction coils fitted around the tube by the manufacturer (see page 5).

HEATING : Indirect by A.C. or D. C.; parallel supply Heater voltage
Heater current

V_{f}	6.3	V
If	300	mA

The tube should not be supported by the base alone and under no circumstances
should the socket be allowed to support the tube.

Orthogonal ity and shift (coils L3 and L4)

The current required under typical operating conditions without the mu-metal shield being used is max. 45 mA for complete correction of orthogonality and shift.
It will be 30% to 50% lower with shield, depending on the shield diameter.
The resistance of each coil is approx. 225Ω.
Image rotation (coils L_{1} and L_{2})
The image rotation coils are wound concentrically around the tube neck.
Under typical operating conditions 50 A turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 30 mA percoil is required which can be obtained by using a 24 V supply when the coils are connected in series or a 12 V supply when they are in parallel.

Connecting the coils
The coils have been connected to the 8 soldering tags according to Fig. 2.

Fig. 2

With L_{3} and L_{4} connected in series according to Fig. 3 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti--clockwise rotation of the horizontal trace.
With the connection according to Fig. 4 the current as indicated will produce an upward shift.

MECHANICAL DATA (continued)

Dimensions and connections

See also outline drawing
Overall length (socket included)
Face dimensions

Net weight

Base
Accessories
Socket (supplied with tube) type 55566
Final-accelerator contact connector type 55563
Mu-metal shield type 55585

FOCUSING Electrostatic

DEFLECTION Double electrostatic

$$
\begin{array}{ll}
\mathrm{x} \text {-plates } & \text { symmetrical } \\
\mathrm{y} \text {-plates } & \text { symmetrical }
\end{array}
$$

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.
Angle between x and y traces

Angle between x trace and the horizontal axis of the face 0°.
See page 5 "Correction coils".

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.
Line width at the centre of the screen

| l.w. | 0.3 mm | |
| :--- | :--- | :--- | :--- |
| l.w. | \quad av. | 0.35 mm |

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	5.5	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	5.5	pF
$\left.\mathrm{C}_{\mathrm{y}_{1}\left(\mathrm{y}_{2}\right)}\right)$	3.5	pF
$\left.\mathrm{C}_{\mathrm{y}_{2}\left(\mathrm{y}_{1}\right)}\right)$	3.5	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{y}_{2}}$	1.6	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.5	pF
C_{k}	4	pF

1) See page 5

max.	417.5	mm
max.	100×120	$\mathrm{~mm}^{2}$
approx. $\quad 1300$	g	
14 pin, all glass		
type 55566		
type 55563		
type 55585	$1)$	

1)

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry-control electrode voltage Post deflection and interplate shield voltage
Background illumination control voltage
Deflection plate shield voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage extinction
of focused spot
Grid drive for $10 \mu \mathrm{~A}$ screen current
Deflection factor, horizontal
vertical

Deviation of linearity deflection
Geometry distortion
Useful scan, horizontal
vertical

LIMITING VALUES

Final accelerator voltage
Post deflection and interplate shield voltage and geometry control electrode voltage
Deflection shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage

Control grid voltage
Cathode to heater voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{Vg}_{8(\ell)} / \mathrm{V}_{2}, \mathrm{~g}_{4}$
$\mathrm{V}_{\mathrm{g}}(\ell(\ell)$
V_{7}
$\mathrm{~V}_{6}$
$\Delta \mathrm{~V}_{6}$
$\mathrm{~V}_{5}$
$\mathrm{~V}_{\mathrm{g}_{3}}$
$\mathrm{~V}_{2}, \mathrm{~g}_{4}$
$\Delta \mathrm{~V}_{2}, \mathrm{~g}_{4}$

10	kV
1500 ± 100	$\left.\mathrm{~V}^{2}\right)$
1500	V
0 to -15	$\mathrm{~V}^{2}$)
1500	$\left.\mathrm{~V}^{3}\right)$
450 to 550	V
1500	V
± 50	$\mathrm{~V}^{4}$)

$\begin{array}{rrr}-25 \text { to } & -60 & \mathrm{~V} \\ \text { pprox. } & 20 & \mathrm{~V}\end{array}$ $\begin{array}{ll}15.2 & \mathrm{~V} / \mathrm{cm}\end{array}$

max. | 16 | $\mathrm{~V} / \mathrm{cm}$ | |
| ---: | ---: | ---: |
| | 4.1 | $\mathrm{~V} / \mathrm{cm}$ |

\max 4.4 V/cm -
See note 6
min. 100
min. 80

$\mathrm{Vg}_{8(\ell)}$	max.	13	kV
min.	9	kV	

$\mathrm{Vg}_{7}, \mathrm{~V}_{6} \max . \quad 2200 \mathrm{~V}$
Vg_{5}
$\mathrm{Vg}_{2}, \mathrm{~g}_{4}$
$\begin{array}{ll} & 2200 \\ \text { min. } & 1350\end{array}$
$-\mathrm{Vg}_{1} \quad \max \quad 200$

