# **INSTRUMENT CATHODE-RAY TUBE**

14 cm diagonal, rectangular flat -faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x- and y-plates, internal graticule and a light -conducting glassplate set in front of the face.

| QUICK REFE                    | RENCE DATA     | 1. 2.    | 1 2 4           |
|-------------------------------|----------------|----------|-----------------|
| Final accelerator voltage     | $V_{g8(l)}$    | 10       | kV              |
| Display area                  |                | 100 x 80 | mm <sup>2</sup> |
| Deflection factor, horizontal | M <sub>x</sub> | 15.2     | V/cm            |
| vertical                      | My             | 4.1      | V/cm            |

SCREEN : Metal backed phosphor

|               |                                              | Colour                           | Persistend                       | ce     |   |
|---------------|----------------------------------------------|----------------------------------|----------------------------------|--------|---|
|               | D14-160BE/09<br>D14-160GH/09<br>D14-160GM/09 | blue<br>green<br>yellowish-green | medium sho<br>medium sho<br>long | ort    |   |
| Useful screen | dimensions                                   |                                  | min. 100                         | ) x 80 | n |
| Useful scan a | t $V_{g8(l)}/V_{g2, g4} = 6.7$ ,             |                                  |                                  |        |   |
|               | horizontal                                   |                                  | min.                             | 100    | n |
|               | vertical                                     |                                  | min.                             | 80     | n |

The scanned raster can be centred and aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer (see page 5).

### **HEATING** : Indirect by A.C. or D.C.; parallel supply

| Heater voltage | $V_{f}$ | 6.3 V  |
|----------------|---------|--------|
| Heater current | If      | 300 mA |

1

# D14-160../09

## MECHANICAL DATA



bottom view





7200870.1



The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

October 1970

2

8

# D14-160. /09

# D14-160../09

3

mm

#### Orthogonal ity and shift (coils L3 and L4)

The current required under typical operating conditions without the mu-metal shield being used is max. 45 mA for complete correction of orthogonality and shift. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of each coil is approx.  $225\Omega$ .

#### Image rotation (coils L1 and L2)

The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 50 A turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 30 mA per coil is required which can be obtained by using a 24 V supply when the coils are connected in series or a 12 V supply when they are in parallel.

### Connecting the coils

The coils have been connected to the 8 soldering tags according to Fig. 2.



With L3 and L4 connected in series according to Fig. 3 a current in the direction indicated will produce a 3 clockwise rotation of the vertical trace and an anti--clockwise rotation of the horizontal trace. With the connection according to Fig. 4 the current as indicated will produce an upward shift.





| MECHANICAL DATA (continued)<br>Dimensions and connections   |                                       | Dimensions in mn                          |                       |  |
|-------------------------------------------------------------|---------------------------------------|-------------------------------------------|-----------------------|--|
| See also outline d<br>Overall length (so<br>Face dimensions | rawing<br>ocket included)             | max. 417.5 n<br>max. 100 x 120 n          | nm<br>nm <sup>2</sup> |  |
| Net weight                                                  |                                       | approx. 1300 g                            |                       |  |
| Base                                                        | a set a set a set a                   | 14 pin, all glass                         |                       |  |
| Accessories                                                 |                                       |                                           |                       |  |
| Socket (supplied w<br>Final-accelerator<br>Mu-metal shield  | vith tube)<br>c contact connector     | type 55566<br>type 55563<br>type 55585 1) |                       |  |
| FOCUSING<br>DEFLECTION                                      | Electrostatic<br>Double electrostatic |                                           |                       |  |

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

900

Angle between x and y traces

Angle between x trace and the horizontal axis of the face  $0^{\circ}$ . See page 5 "Correction coils".

symmetrical

#### LINE WIDTH

y-plates

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I $\boldsymbol{\ell}$  = 10  $\mu$ A.

|   | Line width at the centre of the screen   | 1.w. | av.            | $0.3 \\ 0.35$ | mm<br>mm |
|---|------------------------------------------|------|----------------|---------------|----------|
|   | CAPACITANCES                             |      |                |               |          |
| 1 | $x_1$ to all other elements except $x_2$ |      | $C_{x_1}(x_2)$ | 5.5           | pF       |
|   | $x_2$ to all other elements except $x_1$ |      | $C_{x_2(x_1)}$ | 5.5           | pF       |
|   | $y_1$ to all other elements except $y_2$ |      | $C_{y_1(y_2)}$ | 3.5           | pF       |
|   | $y_2$ to all other elements except $y_1$ |      | $C_{y_2(y_1)}$ | 3.5           | pF       |
|   | x <sub>1</sub> to x <sub>2</sub>         |      | $C_{x_1x_2}$   | 2             | pF       |
|   | y <sub>1</sub> to y <sub>2</sub>         |      | Cy1y2          | 1.6           | pF       |
|   | Control grid to all other elements       |      | Cg1            | 5.5           | pF       |
|   | Cathode to all other elements            |      | Ck             | 4             | pF       |
|   | 1) See page 5                            |      |                |               |          |

PHILIPS October 1970 October 1970 Electronic Components and Materials Division

#### **TYPICAL OPERATING CONDITIONS**

| Final accelerator voltage                     | Vg8(0)                        |         | 10      | kV               |  |
|-----------------------------------------------|-------------------------------|---------|---------|------------------|--|
| Geometry-control electrode voltage            | Vg7                           | 1500    | ) ± 100 | V <sup>2</sup> ) |  |
| Post deflection and interplate shield voltage | Vg6                           |         | 1500    | V                |  |
| Background illumination control voltage       | $\Delta V_{g6}$               | 0 1     | to -15  | $V^2$ )          |  |
| Deflection plate shield voltage               | Vgr                           |         | 1500    | V <sup>3</sup> ) |  |
| Focusing electrode voltage                    | Vgo                           | 450     | to 550  | V                |  |
| First accelerator voltage                     | Vg2, 94                       |         | 1500    | V                |  |
| Astigmatism control voltage                   | $\Delta V_{g_2}$ , $\sigma_1$ |         | ±50     | V <sup>4</sup> ) |  |
| Control grid voltage extinction               | 82, 84                        |         |         |                  |  |
| of focused spot                               | Vg1                           | -25     | to -60  | V                |  |
| Grid drive for 10 µA screen current           | 81                            | approx  | . 20    | V                |  |
| Deflection factor, horizontal                 | Mx                            |         | 15.2    | V/cm             |  |
|                                               | A                             | max.    | 16      | V/cm             |  |
| vertical                                      | My                            |         | 4.1     | V/cm             |  |
|                                               | ,                             | max.    | 4.4     | V/cm             |  |
| Deviation of linearity deflection             |                               | max.    | 2       | % <sup>5</sup> ) |  |
| Geometry distortion                           |                               | See not | te 6    |                  |  |
| Useful scan, horizontal                       |                               | min.    | 100     | mm               |  |
| vertical                                      |                               | min.    | 80      | mm               |  |
|                                               |                               |         |         |                  |  |
| LIMITING VALUES                               |                               |         |         |                  |  |
| Final accelerator voltage                     | V                             | max.    | 13      | kV               |  |
| I mai accelerator voltage                     | vg8(l)                        | min.    | 9       | kV               |  |
| Post deflection and interplate shield voltage |                               |         |         |                  |  |
| and geometry control electrode voltage        | Vg7, Vg6                      | max.    | 2200    | V                |  |
| Deflection shield voltage                     | Vg5                           |         | 2200    | v .              |  |
| Focusing electrode voltage                    | Vg3                           |         | 2200    | V                |  |
| First accelerator and astigmatism             | 00                            | max     | 2200    | V                |  |
| control electrode voltage                     | Vg2, g4                       | max.    | 1350    | V                |  |
|                                               | 02 04                         | man.    | 200     | V                |  |
| Control grid voltage                          | -Vg1                          | max.    | 200     | V                |  |
|                                               | V                             | min.    | 125     | V                |  |
| Cathode to heater voltage                     | Vkf                           | max.    | 125     | V                |  |
| Valtare between actirmatism control           | -vkf                          | max.    | 125     | V                |  |
| electrode and any deflection plate            | V                             |         | 500     | 37               |  |
| electrode and any deflection plate            | $vg_4/x$                      | max.    | 500     | V                |  |
| Grid drive average                            | vg4/y                         | max.    | 20      | V                |  |
| Screen dissipation                            | W.                            | max.    | 30      | V 2              |  |
| Ratio Vr. /Vr. C. V.                          | WV L                          | max.    | 67      | inw/cm-          |  |
| $vg_{8(l)}/vg_{2},g_{4}$ $vg_{8(l)}$          | $(l)^{/ vg_2, g_4}$           | max.    | 0.7     |                  |  |

### Notes

<sup>1</sup>) To avoid damage to the side contacts the narrower end of the Mu-metal shield should have an internal diameter of not less than 65 mm.

<sup>2</sup>) This tube is designed for optimum performance when operating at a ratio  $V_{g8(\ell)}/V_{g2,g4} \le 6.7$ .

The geometry control voltage  $V_{g_7}$  should be adjusted within the indicated range (values with respect to the mean x-plate potential).

A negative control voltage on g6 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light.

By the use of the two voltages,  $V_{g_6}$  and  $V_{g_7}$ , it is possible to find the best compromise between background light and raster distortion.

If a fixed voltage on g<sub>6</sub> is required this voltage should be 10 V lower than the mean x-plate potential.

- <sup>3</sup>) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x- and y-plate potentials should be equal for optimum spot quality.
- 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6) A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73.6 mm is aligned with the electrical x axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

#### **CORRECTION COILS**

#### General

The D14-160../09 is provided with a coil unit consisting of: (see Fig. 1) 1. a pair of coils L3 and L4 which enable

- a. the angle between the x and y traces at the centre of the screen to be made exactly 90<sup>0</sup> (orthogonality correction);
- b. the scanned area to be shifted up and down (vertical shift)
- 2. a pair of coils  $L_1$  and  $L_2$  for image rotation which enable the alignment of the x trace with the x lines of the graticule.



For notes see page 5

| 4 | Patrine Consider to Same Algeria Diameria | October 1970 | October 1970 | PHILIPS<br>Electronic Components and Materials Division | 5 |
|---|-------------------------------------------|--------------|--------------|---------------------------------------------------------|---|
|---|-------------------------------------------|--------------|--------------|---------------------------------------------------------|---|