INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFERENCE DATA					
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$)			20	kV
Display area		100	x	80	mm^{2}
Deflection coefficient, horizontal	M_{X}			9	V / cm
vertical	M_{y}			3	V / cm

SCREEN

Metal-backed phosphor

	colour	persistence
D14-240GH/37	green	medium short

Useful screen dimensions
$>100 \mathrm{x} 80 \mathrm{~mm}$
Spot eccentricity in horizontal
and vertical directions
$<6 \mathrm{~mm}$

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
$\mathrm{V}_{\mathrm{f}} \quad 6,3 \quad \mathrm{~V}$

Heater current
$\mathrm{I}_{\mathrm{f}} \quad 300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing
Overall length (socket included) < 385 mm
Face dimensions
$<120 \times 100 \mathrm{~mm}$

MECHANICAL DATA (continued)

Net mass

Base

Accessories

Socket (supplied with tube)
Side contact connector (12 required)
Final accelerator contact connector
Mu-metal shield

FOCUSING

DEFLECTION

x -plates
y-plates
Angle between x and y traces
Angle between x-trace and x-axis of the internal graticule
$\approx \quad 900 \mathrm{~g}$
14 pin, all glass
type 55566
type 55561
note ${ }^{1}$)
note ${ }^{2}$)
electrostatic
double electrostatic
symmetrical
symmetrical

$$
90^{\circ}
$$

See also "Correction coils"
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
$y_{1.1}$ to all other elements except $y_{2.1}$
y2.1 to all other elements except $\mathrm{y}_{1.1}$
x_{1} to x_{2}
$\mathrm{y}_{1.1}$ to $\mathrm{y}_{2} .1$
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{X}_{1}\left(\mathrm{x}_{2}\right)}$	5	pF
$\mathrm{C}_{\mathrm{X}_{2}\left(\mathrm{x}_{1}\right)}$	5	pF
$\mathrm{C}_{\mathrm{y}_{1.1}\left(\mathrm{y}_{2.1}\right)}$	1,2	pF
$\mathrm{C}_{\mathrm{y}_{2.1}}\left(\mathrm{y}_{1.1}\right)$	1,2	pF
$\mathrm{C}_{\mathrm{X}_{1} \mathrm{x}_{2}}$	3	pF
$\mathrm{C}_{\mathrm{y}_{1.1} \mathrm{y}_{2.1}}$	0,8	pF
C_{1}	5,5	pF
C_{k}	4	pF

1) The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.
${ }^{2}$) The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

* length of cable approx. 460 mm

TYPICAL OPERATION

Conditions

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$)	20	kV
Post deflection accelerator mesh electrode voltage	$\mathrm{V}_{\mathrm{g}_{8}}$	2000	V
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g}_{7}}$	2000 ± 150	$\mathrm{V}{ }^{1}$)
Interplate shield voltage	V_{g}	2000	$\mathrm{V}{ }^{2}$)
Deflection plate shield voltage	V_{5}	2000	$\mathrm{V}{ }^{3}$)
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	2000 ± 100	V ${ }^{4}$)
Focusing electrode voltage	V_{3}	500 to 800	V
First accelerator voltage	V_{g}	2000	V
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g}_{1}}-55$	to -110	V
Voltage on outer conductive coating	V_{m}	2000	V
Performance			
Useful scan , horizontal vertical		$\begin{array}{r} 100 \\ 80 \end{array}$	$\underset{\mathrm{mm}}{\mathrm{~mm}}$
Deflection coefficient, horizontal	M_{x}	$\begin{array}{r} 9 \\ 9,9 \end{array}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
vertical	M_{y}	$\begin{array}{r} 3 \\ 3,3 \end{array}$	$\begin{aligned} & \mathrm{V} / \mathrm{cm} \\ & \mathrm{~V} / \mathrm{cm} \end{aligned}$
Line width		0,45	$\mathrm{mm}{ }^{\text {6 }}$
Writing speed		1,5	$\mathrm{cm} / \mathrm{ns}^{7}$)
Deviation of linearity of deflection		see note 8	\%
Geometry distortion		see note 9	
Grid drive for $10 \mu \mathrm{~A}$ screen current		20	V

[^0]${ }^{2}$) The interplate shield voltage should be equal to the mean x-plate potential.
3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum performance.
${ }^{4}$) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
5) If the tube is operated at a ratio $\mathrm{V}_{\mathrm{g} 9}(\ell) / \mathrm{V}_{\mathrm{g} 5}<10$, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\ell)$	\max. min.	$\begin{aligned} & 21 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
Post defelction acceleration mesh electrode voltage	V_{g}	max.	2200	V
Geometry control electrode voltage	V_{g}	max.	2400	V
Interplate shield voltage	$\mathrm{V}_{\mathrm{g}_{6}}$	max.	2200	V
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	max.	2200	V
Asigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}}^{4}$	max. min.	$\begin{aligned} & 2300 \\ & 1800 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{3}}$	max.	2200	V
First accelerator voltage	V_{g}	\max. min.	$\begin{aligned} & 2200 \\ & 1900 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Control grid voltage	$-\mathrm{V}_{\mathrm{g}_{1}}$	max. min.	$\begin{array}{r} 200 \\ 0 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Cathode to heater voltage, positive negative	$\begin{gathered} \mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kf}} \end{gathered}$	\max. \max.	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & \mathrm{v}_{\mathrm{g}_{4} / \mathrm{x}} \\ & \mathrm{v}_{\mathrm{g}_{4} / \mathrm{y}} \end{aligned}$	max.	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Grid drive, average		max.	30	V
Screen dissipation	W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{Vg}_{9} / \mathrm{V}_{\mathrm{g}_{5}}$	$\mathrm{V}_{\mathrm{g} \rho} / \mathrm{V}_{\mathrm{g}}$	max. min.	10 8	

${ }^{6}$) Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
7) Writing speed measuring conditions:

Film	Polaroid 410 (10000 ASA)
Lens	F $1 / 1,2$
Object to image ratio	$1 / 0,5$
Modulation	$\Delta \mathrm{V}_{\mathrm{g} 1}=55 \mathrm{~V}$

8) The deflection coefficient over each division will not differ more than 5% from that over any other division, all these deflection coefficients being measured per division along the axes.
${ }^{9}$) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73,6 \mathrm{~mm}$ is aligned with the electrical x - axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

CORRECTION COILS

On request a correction coil unit can be made available consisting of:

1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
2. a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
3. a coil L5 for image rotation which enables the alignment of the x trace with the x lines of the graticule.

Orthogonality (coils L1 and L2)

The current required under typical operating conditions with mu-metal shield being used is $<8 \mathrm{~mA}$ for complete correction of orthogonality.
The resistance of each coil is $\approx 160 \Omega$.
Shift (coils L3 and L4)
The current required under typical operating conditions with mu-metal shield being used is $<12 \mathrm{~mA}$ for a maximum shift of 5 mm .
The resistance of each coil is $\approx 160 \Omega$.
Image rotation (coil L5)
The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of 5°. The coil has 1560 turns. This means that a current of $<18 \mathrm{~mA}$ is required. The resistance of the coil is $\approx 185 \Omega$.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFERENCE DATA					
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l})$			20	kV
Display area		100	x	80	mm^{2}
Deflection coefficient, horizontal	M_{X}			9	V / cm
vertical	M_{y}			3	V / cm

SCREEN
Metal-backed phosphor

	colour	persistence
D14-240GH/37	green	medium short

Useful screen dimensions
$>100 \times 80$
mm
Spot eccentricity in horizontal and vertical directions

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage $\quad \mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$
Heater current $\quad \mathrm{I}_{\mathrm{f}} \quad 300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing
Overall length (socket included)
$<385 \mathrm{~mm}$
Face dimensions
$<120 \times 100 \mathrm{~mm}$

D14-240GH/37

MECHANICAL DATA (continued)
Net mass
≈ 900
Base
14 pin, all glass
Accessories
Socket (supplied with tube)
Side contact connector (12 required)
Final accelerator contact connector
Mu-metal shield
type 55566
type 55561
note ${ }^{1}$)
note ${ }^{2}$)

electrostatic

double electrostatic
symmetrical
symmetrical
Angle between x and y traces

Angle between x-trace and x-axis of the internal graticule
See also "Correction coils"
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}

$\mathrm{C}_{\mathrm{x}_{1}}\left(\mathrm{x}_{2}\right)$	5	pF
$\mathrm{C}_{\mathrm{x}_{2}}\left(\mathrm{x}_{1}\right)$	5	pF
$\mathrm{C}_{\mathrm{y}_{1.1}\left(\mathrm{y}_{2.1}\right)}$	1,2	pF
$\mathrm{C}_{\mathrm{y}_{2.1}}\left(\mathrm{y}_{1.1}\right)$	1,2	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	3	pF
$\mathrm{C}_{\mathrm{y}_{1.1}} \mathrm{y}_{2.1}$	0,8	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5,5	pF
C_{k}	4	pF

[^1]
CORRECTION COILS

On request a correction coil unit can be made available consisting of:

1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
2. a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
3. a coil L5 for image rotation which enables the alignment of the x trace with the x lines of the graticule.

Orthogonality (coils L1 and L2)

The current required under typical operating conditions with mu-metal shield being used is $<8 \mathrm{~mA}$ for complete correction of orthogonality.
The resistance of each coil is $\approx 160 \Omega$.

Shift (coils L3 and L4)

The current required under typical operating conditions with mu-metal shield being used is $<12 \mathrm{~mA}$ for a maximum shift of 5 mm .
The resistance of each coil is $\approx 160 \Omega$.

Image rotation (coil L5)

The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of 5^{6}. The coil has 1560 turns. This means that a current of $<18 \mathrm{~mA}$ is required.
The resistance of the coil is $\approx 185 \Omega$.

detail of side contact

${ }^{1}$) Recommended position of correction coils.
${ }^{2}$) See page 2.
*) Length of cable approx. 460 mm .

TYPICAL OPERATION

Conditions			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g}_{9}(\ell)}$	20	kV
Post deflection accelerator mesh electrode voltage	V_{g}	2000	V
Geometry control electrode voltage	V_{g}	2000 ± 150	$\mathrm{V}{ }^{1}$)
Interplate shield voltage	$\mathrm{V}_{\mathrm{g}_{6}}$	2000	$\mathrm{V}{ }^{2}$)
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g}_{5}}$	2000	$\mathrm{V}{ }^{3}$)
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}_{4}}$	2000 ± 100	$\mathrm{V}{ }^{4}$)
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}_{3}}$	- 800	V
First accelerator voltage	V_{g}	2000	V
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g}_{1}}-55$	-110	V
Voltage on outer conductive coating	V_{m}	2000	V
Performance			
Useful scan, horizontal vertical		$\begin{array}{r} 100 \\ 80 \end{array}$	$\left.\underset{\mathrm{mm}}{\mathrm{~mm}}{ }^{5}\right)$
Deflection coefficient, horizontal ${ }_{\text {c }}$ vertical	M_{x}	$\begin{array}{r} 9 \\ 9,9 \end{array}$	V / cm V / cm
	M_{y}	$\begin{array}{r} 3 \\ 3,3 \end{array}$	V / cm V / cm
Line width		0,45	mm 6)
Writing speed		1,5	$\mathrm{cm} / \mathrm{ns}^{7}$)
Deviation of linearity of deflection	see note 8		\%
Geometry distortion	see note 9		
Grid drive for $10 \mu \mathrm{~A}$ screen current		20	V

[^2]LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage
Post deflection acceleration mesh electrode voltage Geometry control electrode voltage
Interplate shield voltage
Deflection plate shield voltage
Asigmatism control electrode voltage
Focusing electrode voltage
First accelerator voltage

Control grid voltage
Cathode to heater voltage, positive negative

Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{Vg}_{9} / \mathrm{V}_{\mathrm{g}_{5}}$

$\mathrm{V}_{\mathrm{g}}(\mathrm{l}$)	max.	21 15	$\begin{aligned} & \mathrm{kV} \\ & \mathrm{kV} \end{aligned}$
V_{8}	max.	2200	V
V_{g}	max.	2400	V
$\mathrm{V}_{\mathrm{g}_{6}}$	max.	2200	V
V_{5}	max.	2200	V
V_{4}	\max. \min.		V
V_{3}	max.	2200	V
V_{g}	max.	$\begin{aligned} & 2200 \\ & 1900 \end{aligned}$	V
$-\mathrm{V}_{1}$	\max. \min.	200 0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{kf}	\max.	125	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	125	V
$\mathrm{V}_{\mathrm{g}} / \mathrm{x}$	\max.	500	V
$\mathrm{V}_{\mathrm{g}} / \mathrm{y}$	max.	500	V
	max.	30	V
W_{ℓ}	max.	8	$\mathrm{mW} / \mathrm{cm}^{2}$
$\mathrm{v}_{\mathrm{g} 9} / \mathrm{V}_{\mathrm{g} 5}$	\max. \min.	10	

6) Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
7) Writing speed measuring conditions:

Film	Polaroid $410(10000 \mathrm{ASA})$
Lens	$\mathrm{F} 1 / 1,2$
Object to image ratio	$1 / 0,5$
Modulation	$\Delta \mathrm{V}_{\mathrm{g} 1}=55 \mathrm{~V}$

8) The deflection coefficient over each division will not differ more than 5% from that over any other division; all these deflection coefficients being measured per division along the axes.
9) A graticule, consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73,6 \mathrm{~mm}$ is aligned with the electrical x - axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

[^0]: 1) The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 7}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
[^1]: ${ }^{1}$) The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.
 ${ }^{2}$) The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

[^2]: 1) The geometry control electrode voltage $V_{g 7}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
 2) The interplate shield voltage should be equal to the mean x-plate potential.
 3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum performance.
 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
 ${ }^{5}$) If the tube is operated at a ratio $\mathrm{V}_{\mathrm{g} 9(\ell)} / \mathrm{V}_{\mathrm{g} 5}<10$, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
 The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.
