DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production D14-240GH/37

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFEREN	NCE DATA	1345			
Final accelerator voltage	Vg9(1)			20	kV
Display area		100	x	80	mm ²
Deflection coefficient, horizontal	M _x			9	V/cm
vertical	My			3	V/cm

SCREEN

Metal-backed phosphor

		colour	persistence	
	D14-240GH/37	green	medium short	
Useful screen dir	mensions		> 100 x 80	mm
Spot eccentricity and vertical di			< 6	mm

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V _f	6,3 V	
Heater current	If	300 m/	A

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections See also outline drawing Overall length (socket included)

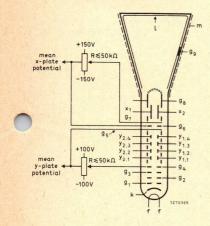
Face dimensions

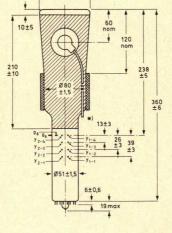
MECHANICAL DATA (continued)

Net mass	≈ 900 g
Base	14 pin, all glass
Accessories	
Socket (supplied with tube)	type 55566
Side contact connector (12 required)	type 55561
Final accelerator contact connector	note ¹)
Mu-metal shield	note ²)
FOCUSING	electrostatic
DEFLECTION	double electrostatic
x-plates	symmetrical
y-plates	symmetrical
Angle between x and y traces	900
Angle between x-trace and x-axis of the internal graticule	00
See also "Correction coils"	

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

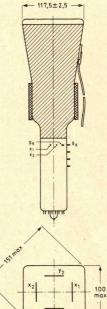
CAPACITANCES

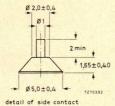

x_1 to all other elements except x_2	^C x ₁ (x ₂)	5	pF
x_2 to all other elements except x_1	C _{x2} (x1)	5	pF
y _{1.1} to all other elements except y _{2.1}	$C_{y_{1.1}(y_{2.1})}$	1,2	pF
$y_{2.1}$ to all other elements except $y_{1.1}$	$C_{y_{2.1}(y_{1.1})}$	1,2	pF
x ₁ to x ₂	$C_{x_1x_2}$	3	pF
y _{1.1} to y _{2.1}	C _{y1.1} y2.1	0,8	pF
Control grid to all other elements	Cg1	5,5	pF
Cathode to all other elements	Ck	4	pF

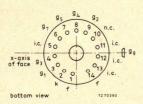

 The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.

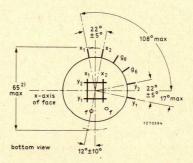
2) The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

DIMENSIONS AND CONNECTIONS


Dimensions in mm


PHILIPS


-97,5±2,5-



у.

120 max -

7270396

* length of cable approx. 460 mm

3

TYPICAL OPERATION

Conditions

4

Final accelerator voltage	Vg9(1)	20	«kV	
Post deflection accelerator mesh electrode voltage	Vg8	2000	v	
Geometry control electrode voltage	Vg7	2000 ± 150		
Interplate shield voltage	v _{g6}	2000	v ²)	
Deflection plate shield voltage	Vg5	2000	v ³)	
Astigmatism control electrode voltage	vg4	2000 ± 100	V ⁴)	10 m
Focusing electrode voltage		00 to 800	v	1
First accelerator voltage	Vg2	2000	v	
Control grid voltage for visual extinction of focused spot	v _{g1} -55	to -110	v	
Voltage on outer conductive coating	Vm	2000	v	
Performance				
Useful scan , horizontal vertical	>	100	mm ⁷⁵) mm	
Deflection coefficient, horizontal	M _x <	9 9,9	V/cm V/cm	
vertical	M _y <	3 3, 3	V/cm V/cm	
Line width	*	0, 45	mm 6)	
Writing speed	>	1,5	cm/ns^7)	
Deviation of linearity of deflection	se	ee note 8	%	
Geometry distortion	Se	ee note 9		
Grid drive for 10 µA screen current	*	20	V	(

1) The geometry control electrode voltage V_{g7} should be adjusted within the indicated range (values with respect to the mean x-plate potential).

- 2) The interplate shield voltage should be equal to the mean x-plate potential.
- 3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum performance.
- ⁴) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) If the tube is operated at a ratio $V_{g9(\ell)}/V_{g5} < 10$, the useful scan may be smaller than 100 mm x 80 mm.

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$v_{g_9(l)}$	max. min.	21 15	kV kV
Post defelction acceleration mesh electrode voltage	vg8	max.	2200	V
Geometry control electrode voltage	v _{g7}	max.	2400	V
Interplate shield voltage	Vg6	max.	2200	V
Deflection plate shield voltage	Vg5	max.	2200	V ·
Asigmatism control electrode voltage	v _{g4}	max. min.	2300 1800	V V
Focusing electrode voltage	v _{g3}	max.	2200	v
First accelerator voltage	v _{g2}	max. min.	2200 1900	V V
Control grid voltage	-v _{g1}	max. min.	200 0	V V
Cathode to heater voltage, positive negative	V _{kf} -V _{kf}	max. max.	125 125	V V
Voltage between astigmatism control				
electrode and any deflection plate	Vg4/x Vg4/y	max. max.	500 500	V V
Grid drive, average		max.	30	V
Screen dissipation	W	max.	8	mW/cm ²
Ratio V_{g_9}/V_{g_5}		max. 5 min.	10 8	

6) Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of $10 \,\mu$ A.

7)	Writing speed measuring of	conditions:
	Film	Polaroid 410 (10000 ASA)
	Lens	F 1/1,2
	Object to image ratio	1/0,5
	Modulation	$\Delta V_{g1} = 55 V$

- 8) The deflection coefficient over each division will not differ more than 5% from that over any other division, all these deflection coefficients being measured per division along the axes.
- 9) A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73, 6 mm is aligned with the electrical x- axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

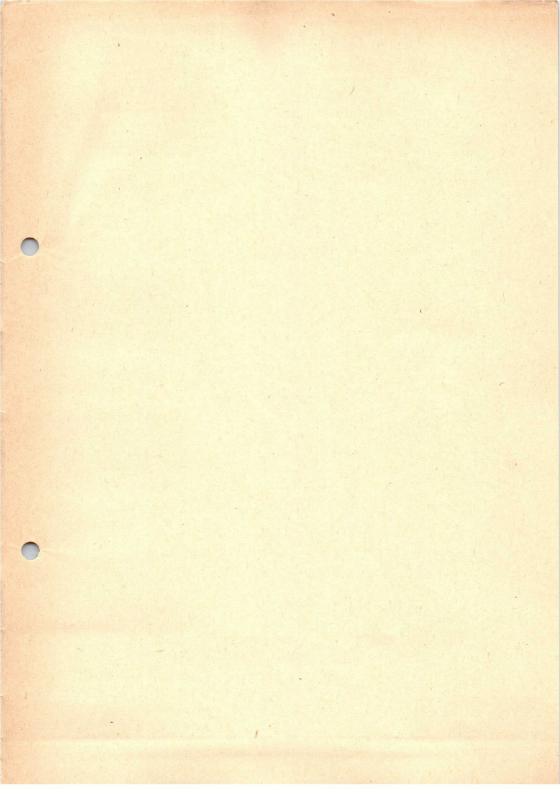
CORRECTION COILS

On request a correction coil unit can be made available consisting of:

- 1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
- 2. a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
- a coil L5 for image rotation which enables the alignment of the x trace with the x lines of the graticule.

Orthogonality (coils L1 and L2)

The current required under typical operating conditions with mu-metal shield being used is < 8 mA for complete correction of orthogonality. The resistance of each coil is $\approx 160 \ \Omega$.


Shift (coils L3 and L4)

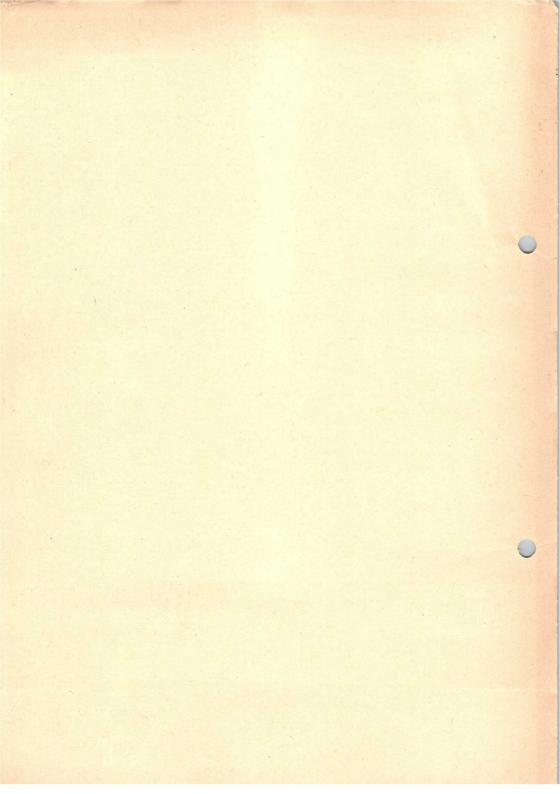

The current required under typical operating conditions with mu-metal shield being used is < 12 mA for a maximum shift of 5 mm. The resistance of each coil is $\approx 160 \Omega$.

Image rotation (coil L5)

6

The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of 5° . The coil has 1560 turns. This means that a current of < 18 mA is required. The resistance of the coil is $\approx 185 \Omega$.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFE	ERENCE DATA
Final accelerator voltage	V _{g9(l)} 20 kV
Display area	$100 \times 80 \text{ mm}^2$
Deflection coefficient, horizontal	M _x 9 V/cm
vertical	M _y 3 V/cm

SCREEN

Metal-backed phosphor

		colour	persistence	
	D14-240GH/37	green	medium short	
Useful screen di	imensions		> 100 x 80	mm
Spot eccentricity and vertical d			< 6	mm

HEATING

Indirect by a.c. or d.c.; parallel supply			
Heater voltage	v _f	6,3	v
Heater current	If	300	mA

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket included)	< 385 mm
Face dimensions	< 120 x 100 mm

Blue Binder, Tab

4

September 1975

PHILIPS

1

MECHANICAL DATA (continued)

Net mass	≈ 900 g
Base	14 pin, all glass
Accessories	
Socket (supplied with tube)	type 55566
Side contact connector (12 required)	type 55561
Final accelerator contact connector	note ¹)
Mu-metal shield	note ²)
FOCUSING	electrostatic
DEFLECTION	double electrostatic
x-plates	symmetrical
x-plates y-plates	symmetrical symmetrical
y-plates	symmetrical

See also "Correction coils"

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_1 to all other elements except x_2	^C x ₁ (x ₂)	5	pF	
x_2 to all other elements except x_1	C _{x2} (x1)	5	pF	
$y_{1.1}$ to all other elements except $y_{2.1}$	C _{y1.1} (y2.1)	1,2	pF	
$y_{2,1}$ to all other elements except $y_{1,1}$	$C_{y_{2,1}(y_{1,1})}$	1,2	pF	
x ₁ to x ₂	C _{x1x2}	3	pF	
y _{1.1} to y _{2.1}	C _{y1.1} y2.1	0,8	pF	
Control grid to all other elements	Cg1	5,5	pF	
Cathode to all other elements	Ck	4	pF	

1) The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.

 The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

PHILIPS

 \bigcirc

CORRECTION COILS

DIMENSIONS AND CONNECTIONS

Dimensions in mm

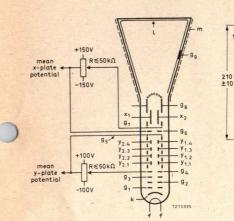
← 117,5±2,5 -

On request a correction coil unit can be made available consisting of:

- 1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
- 2. a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
- 3. a coil L5 for image rotation which enables the alignment of the x trace with the x lines of the graticule.

Orthogonality (coils Ll and L2)

The current required under typical operating conditions with mu-metal shield being used is < 8 mA for complete correction of orthogonality. The resistance of each coil is $\approx 160 \ \Omega$.


Shift (coils L3 and L4)

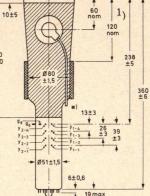
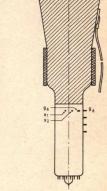
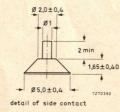
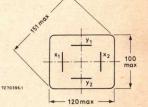
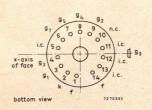

The current required under typical operating conditions with mu-metal shield being used is < 12 mA for a maximum shift of 5 mm. The resistance of each coil is $\approx 160 \Omega$.

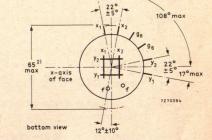
Image rotation (coil L5)


6


The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of 5⁰. The coil has 1560 turns. This means that a current of < 18 mA is required. The resistance of the coil is $\approx 185 \Omega$.






-97,5±2,5 -

1) Recommended position of correction coils.

2.

cable approx. 460 mm.

	2)	See	pag	re 2
	*)	Len	gth	of

PHILIPS

September 1975

September 1975

TYPICAL OPERATION

D14-240GH/37

I I PICAL OPERATION							
Conditions							
Final accelerator voltage	Vgg(1))	20		kV		
Post deflection accelerator mesh electrode voltage	Vg8		2000		v ·		
Geometry control electrode voltage	Vg7		2000	± 150	v	1)	
Interplate shield voltage	Vg6		2000		v	2)	
Deflection plate shield voltage	vg5		2000		v	3)	
Astigmatism control electrode voltage	vg4		2000	± 100	v	4)	
Focusing electrode voltage	Vg3	500 t	o 800		v		
First accelerator voltage	vg2		2000		v		
Control grid voltage for visual extinction of focused spot		55 to	-110		v		
Voltage on outer conductive coating	vm		2000		v		
Performance							
Useful scan, horizontal		>	100		mm	5)	1
vertical		>	80		mm		
Deflection coefficient, horizontal	M _x	<	9 9,9		V/cm V/cm		
vertical	My	<	3 3,3		V/cm V/cm		
Line width		æ	0, 45		mm	6)	
Writing speed		>	1,5	-	cm/n	.s ⁷)	
Deviation of linearity of deflection		see	note 8		%		
Geometry distortion		see	note 9				
Grid drive for 10 μ A screen current		*	20		v		0

¹) The geometry control electrode voltage V_{g7} should be adjusted within the indicated range (values with respect to the mean x-plate potential).

- 2) The interplate shield voltage should be equal to the mean x-plate potential.
- 3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum performance.
- 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) If the tube is operated at a ratio $V_{g9(l)}/V_{g5} < 10$, the useful scan may be smaller than 100 mm x 80 mm.

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	Vg9(1)	max. min.	21 15	kV kV
Post deflection acceleration mesh electrode voltage	Vg8	max.	2200	v
Geometry control electrode voltage	Vg7	max.	2400	v
Interplate shield voltage	Vg6	max.	2200	v
Deflection plate shield voltage	Vg5	max.	2200	v
Asigmatism control electrode voltage	vg4	max. min.	2300 1800	v v
Focusing electrode voltage	Vg3	max.	2200	v
First accelerator voltage	vg2	max. min.	2200 1900	v v
Control grid voltage	-vg1	max. min.	200 0	v v
Cathode to heater voltage, positive negative	V _{kf} -V _{kf}	max. max.	125 125	v v
Voltage between astigmatism control electrode and any deflection plate	V _{g4/x} V _{g4/y}	max. max.	500 500	v v
Grid drive, average		max.	30	v
Screen dissipation	W	max.	8	mW/cm ²
Ratio Vg9/Vg5	Vgg/Vgg	max. 5 min.	10 8	

6) Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of $10 \mu A$.

7) Writing speed measuring conditions:

Film	Polaroid 410 (10000 ASA)
Lens	F 1/1,2
Object to image ratio	1/0,5
Modulation	$\Delta V_{g1} = 55 V$

- 8) The deflection coefficient over each division will not differ more than 5% from that over any other division; all these deflection coefficients being measured per division along the axes.
- 9) A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73, 6 mm is aligned with the electrical x- axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

4	PHILIPS	September 1975	September 1975