DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production D14-250GH

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

		QUICK REFER	ENCE DATA		<u></u>
Accele	rator voltage		Vg2, g4, g5(l)	2000	V
Displa	y area			100 x 80	mm^2
Deflect	tion coefficient,	horizontal vertical	${ m M_X} { m M_y}$	≈ 24 ≈ 13,5	V/cm V/cm

SCREEN

Blue Binder, Tab

		colour	pers	istence	9		
W	D14-250GH	green	mediu	m shor	ct		
Useful screen d	imensions		≥	100	х	80	mm
Useful scan, how	rizontal rtical		≥ ≥			100 80	mm mm

HEATING

Indirect by a.c or d.c.; parallel supply			
Heater voltage	$V_{\mathbf{f}}$	6, 3	V
Heater current	${ m I_f}$	300	mA

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See	also	outline	drav	wing

Overall length (socket included)	≤			333	mm
Face dimensions	≤	121	x	100	mm
Net mass			≈	750	g
Base		14-p	oin a	all gla	SS

Accessories

55566 Socket (supplied with tube) type

Mu-metal shield type

FOCUSING electrostatic

DEFLECTION double electrostatic

symmetrical x-plates

symmetrical y-plates

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces	90° ± 1°
Angle between x-trace and horizontal axis of the face	see note 1)

CAPACITANCES

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x1(x2)}$	4	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x2(x1)}$	4	pF
y ₁ to all other elements except y ₂	Cy1(y2)	3,5	pF
y_2 to all other elements except y_1	C _{y2(y1)}	3	pF
x ₁ to x ₂	C_{x1x2}	1,6	pF
y ₁ to y ₂	C_{y1y2}	1,1	pF
Control grid to all other elements	C_{g1}	5,5	pF
Cathode to all other elements	$C_{\mathbf{k}}$	4	pF

1) The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of 400Ω . Under typical operating conditions, max. 30 ampere turns are required for the max. rotation of 50. This means: the required current is max. 30 mA at a required voltage of 12 V.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read out devices. This tube features a low heater power consumption.

QUICK REFER	ENCE DATA		
Accelerator voltage	$V_{g2, g4, g5(l)}$	2000	V
Display area		100 x 80	mm^2
Deflection coefficient, horizontal vertical	${ m M_X} { m M_y}$	≈ 24 ≈ 13,5	V/cm V/cm

The D14-251GH is equivalent to the type D14-250GH except for the following:

negative

HEATING

Binder,

HEATING			
Indirect by a.c. or d.c.; parallel su	apply		
Heater voltage	$V_{\mathbf{f}}$	6,3	V
Heater current	$\mathtt{I_f}$	95	mA
LIMITING VALUES (Absolute max.	rating system)		
Cathode to heater voltage, positive	V _{kf} max.	100	V

15 V

-Vkf max.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

TYPICAL O	PERATION
-----------	----------

Conditions 1)				
Accelerator voltage	Vg2, g4, g5(1)		2000	V
Astigmatism control voltage	$\Delta V_{g2,g4,g5(\ell)}$		±50	V 2)
Focusing electrode voltage	V_{g3}	≈	300	V
Control grid voltage for visual extinction of focused spot	v_{g1}	≤	- 65	V
Performance				
Useful scan, horizontal vertical		≥ ≥	100 80	mm mm
Deflection coefficient, horizontal	M_X	≈	24	V/cm
vertical	My	*	13,5	V/cm
Line width	1.w.	~	0,35	mm 3)
Deviation of linearity of deflection		≤	2	% ⁴)
Grid drive for 10 µA screen current		≈	10	V
LIMITING VALUES (Absolute max. rating system)				
Accelerator voltage	V_{g2} , $g3$, $g4(\ell)$	max. min.	2200 1500	V V
Focusing electrode voltage	V_{g3}	max.	2200	V
Control grid voltage	-V _{g1}	max. min.	200 0	V V
Cathode to heater voltage, positive negative	V _{kf} -V _{kf}	max.	125 125	V V
Grid drive, average		max.	20	V
Screen dissipation	W_{ℓ}	max.	3	mW/cm ²

NOTES

- 1) The mean x-plate potential and certainly the mean y-plate potential should be equal to Vg2, g4, g5(l) (with astigmatism control voltage set to zero).
- 2) When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
- 3) Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\rho} = 10 \, \mu A$.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:

- a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μA and adjust V_{g3} and V_{g2} , g4, $g5(\rho)$ for optimum spot quality at the centre of the screen.
- b) under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{V1} = V_{V2} = 2000 \text{ V}$; $V_{X1} = 1300 \text{ V}$; $V_{X2} = 1700 \text{ V}$, thus directing the total beam current to x2.

Measure the current on x_2 and adjust V_{g1} for $I_{x2} = 10 \,\mu\text{A}$,

- c) set again for the conditions under a), without touching the Vol control. The screen current of the resulting raster display is now exactly 10 µA.
- d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
- ⁴) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

Notes see page 5.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA

Accelerator voltage	V _{g2} , g4, g5 (ℓ) 2000) V
Display area	100 x 80	mm ²
Deflection coefficient		
horizontal	M _x 23	V/cm
vertical	M _y 13,5	V/cm

SCREEN

	colour	persistence
D14-250GH	green	medium short

Useful screen dimensions $\geqslant 100 \times 80 \, \text{mm}^2$ Useful scan
horizontal $\geqslant 100 \, \text{mm}$ vertical $\geqslant 80 \, \text{mm}$ Spot eccentricity in horizontal and vertical directions $< 7 \, \text{mm}$

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V _f	6,3 V
Heater current	If	300 mA

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

approx. 1000 g

Base

14-pin all glass

Dimensions and connections

See also outline drawing

Overall length (socket included) 333 mm Face dimensions 121 x 100 mm

Accessories

Socket (supplied with tube) type 55566 type 55590 Mu-metal shield

FOCUSING electrostatic

DEFLECTION double electrostatic

x-plates symmetrical symmetrical y-plates

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

900 ± 10 Angle between x and y-traces

Angle between x-trace and horizontal axis of the face see footnote

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{x1(x2)}$	4,5 pF	
x2 to all other elements except x1	$C_{\times 2(\times 1)}$	4,5 pF	
y ₁ to all other elements except y ₂	C _{y1(y2)}	3,5 pF	
y ₂ to all other elements except y ₁	Cy2(y1)	3 pF	
x ₁ to x ₂	C _{x1x2}	2 pF	
y ₁ to y ₂	Cy1y2	1,1 pF	
Control grid to all other elements	C _{g1}	6 pF	
Cathode to all other elements	$C_{\mathbf{k}}$	5 pF	

M3x 400 2

Note

The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of 400 Ω . Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 30 mA at a required voltage of 12 V.

Mullard

DIMENSIONS AND CONNECTIONS

Dimensions in mm

180 max

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- (2) The coil is fixed to the envelope by means of adhesive tape.
- (3) The length of the connecting leads of the rotation coil is min. 350 mm.

Mullard

TYPICAL OPERATION

Conditions (note 1)								
Accelerator voltage	Vg2, g4, g5(l)		2000	V				
Astigmatism control voltage	ΔV_{g2} , g4, g5(ℓ)		± 50	V	(note 2)			
Focusing electrode voltage	V _{g3}	220 t	o 370	V				
Control grid voltage for visual extinction of focused spot	V_{g1}	< ,	-65	٧				
Performance								
Useful scan horizontal vertical		<i>> ></i>		mm mm				
Deflection coefficient horizontal	M_X	<	25	V/cm V/cm V/cm				
vertical	My	<		V/cm				
Line width	l.w.	≈	0,35	mm	(note 3)			
Deviation of linearity of deflection		<	2	%	(note 4)			
Geometry distortion				see note 5				
Grid drive for 10 μ A screen current		≈	10	V				
LIMITING VALUES (Absolute maximum rating sys	tem)							
Accelerator voltage	V _{g2, g4, g5(ℓ)}	max. min.	2200 1500					
Focusing electrode voltage	V_{g3}	max.	2200	V				
Control grid voltage	$-v_{g1}$	max. min.	200	V				
Cathode to heater voltage positive negative	v_{kf} $-v_{kf}$	max.	125 125					
Grid drive, average		max.	20	V				
Screen dissipation	W _Q	max.	3	mW/cn	n ²			

NOTES

- 1) The mean x-plate potential and the mean y-plate potential should be equal to Vg2, g4, g5(1) (with astigmatism control voltage set to zero).
- 2) When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
- 3) Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I₀ = $10 \, \mu A$.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:

- a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μA and adjust V_{g3} and V_{g2} , g4, g5(1) for optimum spot quality at the centre of the screen.
- b) under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{V1} = V_{V2} = 2000 \text{ V}$; $V_{X1} = 1300 \text{ V}$; $V_{x2} = 1700 \text{ V}$, thus directing the total beam current to x2.

Measure the current on x_2 and adjust V_{g1} for I_{x2} = 10 μA ,

c) set again for the conditions under a), without touching the Vgl control.

The screen current of the resulting raster display is now 10 µA.

- d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
- 4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5) A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

Notes see page 5.

5