INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

SCREEN

	colour	persistence
D14-250GH	green	medium short

[^0]HEATING
Indirect by a.c or d.c.; parallel supply
Heater voltage $\quad \mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$
Heater current
$\mathrm{I}_{\mathrm{f}} \quad 300 \mathrm{~mA}$

MECHANICAL DATA
Mounting position : any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections
See also outline drawing
Overall length (socket included)

| \leq | | 333 | mm |
| :--- | :--- | :--- | :--- | :--- |
| \leq | 121×100 | mm | |

Net mass
Base
14-pin all glass

Accessories

Socket (supplied with tube)

type

type

FOCUSING

DEFLECTION
x -plates
y-plates
electrostatic
double electrostatic
symmetrical
symmetrical
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

$$
\text { Angle between } x \text { and } y \text { traces }
$$

$90^{\circ} \pm 1^{0}$
Angle between x-trace and horizontal axis of the face
see note ${ }^{1}$)

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y2 to all other elements except y_{1}
x_{1} to x_{2}
y1 to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1}(\mathrm{x} 2)$	4	pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	4	pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	3,5	pF
$\mathrm{C}_{\mathrm{y} 2} 2(\mathrm{y} 1)$	3	pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	1,6	pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	1,1	pF
$\mathrm{C}_{\mathrm{g} 1}$	5,5	pF
C_{k}	4	pF

[^1]
INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices. This tube features a low heater power consumption.

QUICK REFERENCE DATA			
Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g} 4, \mathrm{~g} 5(\ell)$	2000	V
Display area		100×80	mm^{2}
Deflection coefficient, horizontal	M_{X}	≈ 24	V / cm
vertical	M_{y}	$\approx 13,5$	V / cm

The D14-251GH is equivalent to the type D14-250GH except for the following:

Heater voltage	V_{f}	6,3	V
Heater current	I_{f}	95	mA

$$
\begin{array}{rlrr}
\mathrm{V}_{\mathrm{kf}} & \max . & 100 & \mathrm{~V} \\
-\mathrm{V}_{\mathrm{kf}} & \text { max. } & 15 & \mathrm{~V}
\end{array}
$$

TYPICAL OPERATION

Conditions ${ }^{1}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$		2000	V
$\Delta V_{g 2, g 4, g 5(\ell)}$		± 50	V
$\mathrm{V}_{\mathrm{g}} 3$	\approx	300	V
$\mathrm{V}_{\mathrm{g} 1}$	\leq	-65	V

Performance

Useful scan, horizontal vertical

\geq	100	mm
\geq	80	mm

Deflection coefficient, horizontal

Line width
Deviation of linearity of deflection
$\leq 2 \%{ }^{4}$)

Grid drive for $10 \mu \mathrm{~A}$ screen current
LIMITING VALUES (Absolute max. rating system)
Accelerator voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage, positive negative
Grid drive, average
Screen dissipation

	max.	2200	V
$\mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 3, \mathrm{~g} 4(\ell)}$	min.	1500	V
$\mathrm{~V}_{\mathrm{g} 3}$	max.	2200	V
$-\mathrm{V}_{\mathrm{g} 1}$	max.	200	V
$\mathrm{~V}_{\mathrm{kf}}$	min.	0	V
$-\mathrm{V}_{\mathrm{kf}}$	\max.	125	V
	\max.	125	V
	\max.	20	V

NOTES

1) The mean x-plate potential and certainly the mean y-plate potential should be equal to $\mathrm{Vg} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)$ (with astigmatism control voltage set to zero).
${ }^{2}$) When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
${ }^{3}$) Measured with the shrinking raster method in the centre of the screen.under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\boldsymbol{\ell}}=10 \mu \mathrm{~A}$. As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x_{2}
Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{X} 2}=10 \mu \mathrm{~A}$
c) set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control.

The screen current of the resulting raster display is now exactly $10 \mu \mathrm{~A}$.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{4}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

Notes see page 5 .

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA

Accelerator voltage
Display area
Deflection coefficien
horizontal
vertical
SCREEN

	colour	persistence
D14-250GH	green	medium short

Useful screen dimensions
$\geqslant 100 \times 80 \mathrm{~mm}$
Useful scan

horizontal

vertical
$\geqslant \quad 100 \mathrm{~mm}$

Spot eccentricity in horizontal
and vertical directions
$\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g} 4, \mathrm{~g} 5(\ell) \quad 2000 \mathrm{~V}$ $100 \times 80 \mathrm{~mm}$

HEATING
Indirect by a.c. or d.c.; parallel supply
Heater voltage $\quad \mathrm{V}_{\mathrm{f}}$ 6,3 V
Heater current
I_{f}
300 mA
MECHANICAL DATA
Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass approx. 1000 g

Base

Dimensions and connections
See also outline drawing
Overall length (socket included)
333 mm
Face dimensions
\leqslant $121 \times 100 \mathrm{~mm}$

Accessories

Socket (supplied with tube)
type 55566
Mu-metal shield
type 55590
FOCUSING
electrostatic
DEFLECTION
double electrostatic
symmetrical
symmetrical
y-plates
use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces

Angle between x-trace and horizontal axis of the face

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
see footnote

$C_{x 1(x 2)}$	$4,5 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,5 \mathrm{pF}$
$C_{y 1(y 2)}$	$3,5 \mathrm{pF}$
$C_{y 2(y 1)}$	3 pF
$C_{x 1 x 2}$	2 pF
$C_{y 1 y 2}$	$1,1 \mathrm{pF}$
$C_{g 1}$	6 pF
C_{k}	5 pF

Note
The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of fhe x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of 400Ω. Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 30 mA at a required voltage of 12 V .

bottom view ${ }^{7273498}$
(1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm . (2) The coil is fixed to the envelope by means of adhesive tape
(3) The length of the connecting leads of the rotation coil is min .350 mm .

TYPICAL OPERATION

Conditions (note 1)

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, g 5(\ell)}$	2000 V
Astigmatism control voltage	$\Delta \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, g 5(\ell)}$	$\pm 50 \mathrm{~V}$
Focusing electrode voltage Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 3}$	220 to 370 V
	$\mathrm{~V}_{\mathrm{g} 1}$	\leqslant

Performance

Useful scan
horizontal
vertical
Deflection coefficient
horizontal
vertical
Line width
Deviation of linearity of deflection
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ screen current
LIMITING VALUES (Absolute maximum rating system)
Accelerator voltage

Focusing electrode voltage
Control grid voltage
Cathode to heater voltage positive
negative
Grid drive, average
Screen dissipation

$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g}}(\ell)$	max. min.	$\begin{aligned} & 2200 \mathrm{~V} \\ & 1500 \mathrm{~V} \end{aligned}$
V_{g}	max.	2200 V
$-\mathrm{V}_{\mathrm{g} 1}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
V_{kf}	max.	125 V
$-V_{k f}$	max.	125 V
	max.	20 V

NOTES

1) The mean x-plate potential and the mean y-plate potential should be equal to $\mathrm{Vg} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)$ (with astigmatism control voltage set to zero).
${ }^{2}$) When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
${ }^{3}$) Measured with the shrinking raster method in the centre of the screen.under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan),
adjust $V_{g 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2000 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 1}=1300 \mathrm{~V} ; \mathrm{V}_{\mathrm{x} 2}=1700 \mathrm{~V}$, thus directing the total beam current to x_{2}.
Measure the current on x_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{x} 2}=10 \mu \mathrm{~A}$,
c) set again for the conditions under a), without touching the V_{gl} control.

The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{4}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times$ 73 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

[^0]: Useful screen dimensions
 $\geq 100 \mathrm{x} \quad 80$
 Useful scan, horizonta
 \geq
 00 mm

[^1]: 1) The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x -trace with the mechanical x -axis of the screen.
 The coil has 1000 turns and a resistance of 400Ω. Under typical operating conditions, max. 30 ampere turns are required for the max. rotation of 5°. This means : the required current is max. 30 mA at a required voltage of 12 V .
