INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh and metal-backed screen, primarily intended for use in compact oscilloscopes with 25 to 50 MHz bandwidth. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8}(\ell)$	10 kV
Display area		
Deflection coefficient horizontal vertical		$100 \times 80 \mathrm{~mm}^{2}$

PTICAL DATA
persistence
Useful screen dimension
.ㅡㅡ Useful scan
horizontal
vertical
metal-backed phosphor

Spot eccentricity in horizontal
and vertical directions GH, colour green medium short
$\geqslant 100 \times 80 \mathrm{~mm}^{2}$

HEATING
Indirect by a.c. or d.c.; parallel supply
Heater voltage $\quad V_{f} \quad 6,3 \mathrm{~V}$
Heater current
If 240 mA
MECHANICAL DATA
Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass	approx. 1000 g
Base	14 pin, all glass
Final accelerator contact	small ball (JEDEC J1-25)

Dimensions and connections

See also outline drawing
Overall length
$\leqslant \quad 343 \mathrm{~mm}$

Face dimensions
$\leqslant \quad 100 \times 120 \mathrm{~mm}^{2}$ (note 1)

Accessories

Socket, supplied with tube
Mu-metal shield
type 55566
type 55592
type 55569

FOCUSING

electrostatic
DEFLECTION
x-plates
double electrostatic
symmetrical
symmetrical
$90+10$
Angle between x and y-traces
f
a
If use is made of the full deflection capabilities of the tube the deflection

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	7 pF
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	7 pF
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	4 pF
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	4 pF
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$2,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	6 pF
C_{k}	$2,7 \mathrm{pF}$

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 350Ω. Under typical operating conditions, max. 35 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 35 mA at a required voltage of max. 12 V .

Notes to the drawings on opposite page.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape.
3. The centre of the contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
4. The length of the connecting leads of the rotation coil is min .350 mm .

DIMENSIONS AND CONNECTIONS

For notes to the drawings see bottom of opposite page

TYPICAL OPERATION

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}(\mathrm{l})$	10	kV	
Post deflection accelerator mesh electrode voltage	$V_{\mathrm{g} 7}$	2000	V	
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	2000 ± 100	V	(note 1)
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	2000	V	(note 2)
First accelerator voltage	$V_{\mathrm{g} 2, \mathrm{~g} 4}$	2000	V	
Astigmatism control electrode voltage	$\Delta V_{\mathrm{g} 2, \mathrm{~g} 4}$	± 75	V	(note 3)
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	400 to 560	V	
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 1}$	-25 to -70	V	

Performance

Useful scan
horizontal
Deflection coefficien horizontal
vertical

Line width

Deviation of linearity of deflection
Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
$\geqslant \quad 100 \mathrm{~mm}$
(note 4)
$\left.\begin{array}{llr} & \geqslant & 100 \mathrm{~mm} \\ & \geqslant & 80 \mathrm{~mm}\end{array}\right\}$ (note 4)

NOTES

1. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 6}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
2. The interplate shield voltage should be equal to the mean x-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4. The tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8}(\ell) / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=5$.

If this ratio is smaller than 5 , the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$
6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
7. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

