D14-300GH/93

DEVELOPMENT SAMPLE DATA This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed mesh and metal-backed screen with internal graticule. The tube has side connections to the x and y-plates, and is intended for use in compact oscilloscopes with up to 150 MHz bandwidth.

QUICK REFERENCE DATA

SCREEN

Final accelerator voltage
0

MECHANICAL DATA

Dimensions and connections

See outline drawings
Overall length (socket included)
$\leqslant 395 \mathrm{~mm}$
$\leqslant 100 \times 120 \mathrm{~mm}^{2}$

Net mass

Base
approx. 1150 g
14 pin, all glass

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket, supplied with tube
Mu-metal shield
Side contact connector (7 required)
Final accelerator contact connector

FOCUSING

type 55572
type
type 55561
connection to final accelerator electrode is made via an EHT cable attached to the tube

DEFLECTION
electrostatic
x-plates
double electrostatic
symmetrical
y-plates
Angle between x and y-traces
symmetrical
$90 \pm 1^{\circ}$
$\leqslant 50$ *.
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650Ω. Under typical operating conditions, a maximum of 40 ampere-turns are required for the maximum rotation of 5°. This means the required current is 20 mA maximum at a required voltage of 13 V .
pHILIPS

TYPICAL OPERATION

Conditions

Final accelerator voltage	$V_{\mathrm{g}}(\mathrm{l})$	$16,5 \mathrm{kV}$	
Post deflection accelerator mesh electrode voltage	$V_{\mathrm{g} 7}$	2200 V	
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	$2200 \pm 100 \mathrm{~V}$	(note 1)
Interplate shield voltage	$V_{\mathrm{g} 5}$	2200 V	(note 2)
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	2200 V	
Astigmatism control electrode voltage	$V_{g 4}$	$2200 \pm 50 \mathrm{~V}$	(note 3)
Focusing electrode voltage	$V_{\mathrm{g} 3}$	620 to 800 V	
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 1}$	-60 to -110 V	

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other electrodes

Performance

Useful scan horizontal vertical

Deflection coefficien
horizontal
vertical
X approx. 8,7 V/cm
Line width
Grid drive for $10 \mu \mathrm{~A}$ screen curren
Geometry distortion
Deviation of deflection linearity
$\left.\geqslant \begin{array}{r}100 \mathrm{~mm} \\ 80 \mathrm{~mm}\end{array}\right\}$ (note 4)

NOTES

1. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 6}$ should be adjusted within the indicated range kvalues with respect to the mean x-plate potential)
2. The interplate shield voltage should be equal to the mean x-plate and y-plate potentials for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any

$C_{x 1(x 2)}$	5 pF
$C_{x 2(x 1)}$	5 pF
$C_{y 1}(y 2)$	$1,7 \mathrm{pF}$
$C_{y 2(y 1)}$	2 pF
$C_{x 1 x 2}$	$3,5 \mathrm{pF}$
$C_{y 1 y 2}$	$1,5 \mathrm{pF}$
$C_{g 1}$	6 pF
C_{k}	5 pF
$C_{g 3}$	5 pF

4. The tube is designed for optimum performance when operating at a ratio $V_{g 8}(\ell) / V_{g 2}=7,5$. If this ratio is smaller, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$
5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
6. A graticule consisting of horizontal and vertical line pairs according to Fig. 6, is aligned with the electrical x-axis of the tube. With optimum corrections applied (including orthogonality correction), any horizontal or vertical trace will fall between these line pairs.
7. Deviation of linearity is defined as the proportional deviation of the deflection coefficient over any division on the x-axis and y-axis from the average values over the central eight (horizontal) and central six (vertical) divisions respectively.
\downarrow

detail of side contact

Fig. 2 Pin arrangement; bottom view.

Fig. 3 Side-contact arrangement; bottom view.

Fig. 5 Internal graticule. Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$.

Notes to the drawing on opposite page

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape
3. EHT cable; minimum length is 530 mm .
4. Connection cable, comprising two wires for connection of the rotation coil, and one green wire for earthing the outer conductive coating. Minimum cable length is 400 mm .
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
