LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	\max.	18 kV
Post deflection accelerator mesh electrode voltage	$\mathrm{V}_{\mathrm{g} 7}$	\max.	2500 V
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g} 6}$	\max.	2500 V
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	\max.	2500 V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	\max.	2500 V
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	\max.	2500 V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	\max.	2500 V
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	\max.	200 V
min.	0 V		
Cathode to heater voltage			
positive	V_{kf}	\max.	125 V
negative	$-\mathrm{V}_{\mathrm{kf}}$	\max.	125 V
Voltage between astigmatism control			
electrode and any deflection plate	$\mathrm{V}_{\mathrm{g} 4 / \mathrm{x}}$	\max.	500 V
	$\mathrm{~V}_{\mathrm{g} 4 / \mathrm{y}}$	\max.	500 V
Grid drive, average		\max.	20 V
Screen dissipation	W_{ℓ}	\max.	$8 \mathrm{~mW} / \mathrm{cm}^{2}$
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	\max.	$1 \mathrm{M} \Omega$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed mesh and metal-backed screen with internal graticule. The tube has side connections to the x and y -plates, and is intended for use in compact oscilloscopes with up to 150 MHz bandwidth. This tube features a $1,5 \mathrm{~W}$ cathode with short warm-up time (quick-heating cathode).

Final accelerator voltage	$V_{\mathrm{g}} \mathrm{l}(\mathrm{\ell})$	$16,5 \mathrm{kV}$
Display area		$100 \times 80 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	$\begin{aligned} & 8,7 \mathrm{~V} / \mathrm{cm} \\ & 4,7 \mathrm{~V} / \mathrm{cm} \end{aligned}$
OPTICAL DATA		
Screen type persistence	metal-backed phosphor GH, colour green medium short	
Useful screen dimensions	\geqslant	$100 \times 80 \mathrm{~mm}^{2}$
Useful scan horizontal vertical	$\begin{aligned} & \geqslant \\ & \geqslant \end{aligned}$	$100 \text { mm }$ $80 \mathrm{~mm}$
Spot eccentricity in horizontal and vertical directions	\leqslant	6,5 mm
HEATING		
Indirect by a.c. or d.c.; parallel supply		
Heater voltage	V_{f}	6,3 V
Heater current	I_{f}	240 mA

MECHANICAL DATA

Dimensions and connections

See outline drawings

Overall length (socket included

Face dimensions
$\leqslant 397 \mathrm{~mm}$
$\leqslant 100 \times 120 \mathrm{~mm}^{2}$
Net mass
approx. 1 kg
14 pin, all glass
Base

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Accessories

Socket, supplied with tube
Side contact connector (7 required)
Final accelerator contact connector

FOCUSING

DEFLECTION
x-plates
y-plates
Angle between x and y-traces
Angle between y-trace and y-axis of the internal graticule

type 55572

type 55561
connection to final accelerator electrode is made via an EHT cable attached to the tube

electrostatic

double electrostatic
symmetrical
symmetrical
90 ± 10
$\leqslant 50$ *

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

Fig. 6 Quarter of graticule with horizontal and vertical line pairs, see note 6 on opposite page.
72785

The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650Ω. Under typical operating conditions, a maximum of 40 ampere-turns are required for the maximum rotation of 5°. This means the required current is 20 mA maximum at a required voltage of 13 V .

TYPICAL OPERATION

Conditions

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8(\ell)}$	$16,5 \mathrm{kV}$		
Post deflection accelerator mesh electrode voltage	$\mathrm{V}_{\mathrm{g} 7}$	2200 V		
Geometry control electrode voltage	$\mathrm{V}_{\mathrm{g} 6}$	2200 ± 100	V	(note 1)
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	2200	V	(note 2)
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	2200	V	
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	2200 ± 50	V	(note 3)
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	620 to 800	V	
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 1}$	-60 to -110 V		

Performance

Useful scan
horizontal
vertical
Deflection coefficient
horizontal
vertical

Line width
Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
Deviation of deflection linearity

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y 1
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other electrodes

$C_{x 1}(x 2)$	5 pF
$C_{x 2}(x 1)$	5 pF
$C_{y 1}(y 2)$	$1,7 \mathrm{pF}$
$C_{y 2}(y 1)$	2 pF
$C_{x 1 \times 2}$	3 pF
$C_{y 1 y 2}$	$1,6 \mathrm{pF}$
$C_{g 1}$	6 pF
C_{k}	$2,7 \mathrm{pF}$
$C_{g} 3$	5 pF

NOTES

1. The geometry control electrode voltage $\mathrm{V}_{\mathrm{g} 6}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential)
2. The interplate shield voltage should be equal to the mean x-plate and y-plate potentials for optimum spot quality.
3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4. The tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 8}(\ell) / \mathrm{V}_{\mathrm{g} 2}=7,5$. If this ratio is smaller, the useful scan may be smaller than $100 \mathrm{~mm} \times 80 \mathrm{~mm}$.
5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
6. A graticule consisting of horizontal and vertical line pairs according to Fig. 6, is aligned with the electrical x-axis of the tube. With optimum corrections applied (including orthogonality correction), any horizontal or vertical trace will fall between these line pairs.
7. Deviation of linearity is defined as the proportional deviation of the deflection coefficient over any division on the x-axis and y-axis from the average values over the central eight (horizontal) and central six (vertical) divisions respectively.

detail of side contact

Fig. 1 Outlines; for notes see bottom
of opposite page.

