made available for evaluation. It does not necessarily imply that the device will go into regular production

NOTES

- 1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 102 mm x 82 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
- 2. The deflection plates must be operated symmetrically; floating mean x- or y-potentials will result into non-uniform line width and geometry distortion. The mean x- and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry.
 - The tube features internal magnetic correction for orthogonality between x- and y-traces, spot shaping (astigmatism) and eccentricity calibration. Correction is obtained at $V_{a2.04} = 1800 \text{ V}$ to 2500 V; optimum at $V_{q2,q4} = 2200 \text{ V}$.
- 3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case V_{05} must be made equal to mean x-potential, and a range of 0 to -25 V with respect to mean y-potential will be required on g2,g4 for astigmatism correction. The circuit resistance for $V_{g2,g4}$ should be $\leq 10 \text{ k}\Omega$.
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5. A graticule consisting of concentric rectangles of 100 mm x 80 mm and 98 mm x 78 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
- 6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 185 Ω at 20 °C (max. 270 Ω at 80 °C). Approx. 6,5 mA causes 1° trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances (± 50) and earth magnetic field with reasonable shielding (± 20).
- 7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_Q = 10 \mu A$.

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

V _{g7(ℓ)}	16,5 kV
$V_{g2,g4}$	2,2 kV
	100 mm x 80 mm
M_X	7,8 V/cm
My	4 V/cm (max. 4,2 V/cm
p.w.s.	2,0 cm/ns
	V _{g2,g4} M _x M _y

OPTICAL DATA

blue binder, tab 4

SCIECT	metal backed phosphici	
type	GH	
colour	green	
persistance	medium short	
Useful screen area	≥ 102 mm x 82 mm; note 1 (page	
Useful scan area	≥ 100 mm x 80 mm	

HEATING

Internal graticule

Heater voltage	

Heater voltage	Vf	
Heater current	If	

Heating time to attain 10% of the cathode current at equilibrium conditions

approx. 5 s

6.3 V 240 mA

metal-backed phosphor

type 93; see Fig. 5

^{*} Not to be connected in series with other tubes.

Control grid circuit resistance

 $1~\mathrm{M}\Omega$

max.

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included) ≤ 338 mm

Faceplate dimensions $118 \pm 1 \text{ mm} \times 98 \pm 1 \text{ mm}$

Net mass approx. 1 kg

Base 12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 6) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping) supplied with tube Socket with solder tags type 55589/55594

Socket with printed-wiring pins type 55595

Side contact connector for ϕ 0,6 mm pin (4 required) type 2422 034 11976 (AMP87313)

Final accelerator contact connector type 55569

Mu-metal shield to be established

FOCUSING electrostatic

DEFLECTION double electrostatic

x-plates symmetrical y-plates symmetrical

LIMITING VALUES	(Absolute r	maximum	rating system)
-----------------	-------------	---------	----------------

Final accelerator voltage	V _{g7(ℓ)}	max.	18	kV
Shield voltage	V_{g5}	max.	2,5	kV
First accelerator and astigmatism control voltage	$V_{g2,g4}$	max.	2,5	kV
Focusing electrode voltage	V_{g3}	max.	2,5	kV
Control grid voltage	$-v_{g1}$	max. min.	200	V
Cathode to heater voltage positive	V_{kf}	max.	125	V
negative	$-V_{kf}$	max.	125	V
Heater voltage	V_{f}	max. min.	6,6 6,0	
Voltage between g4,g5 and any deflection plate	$\Delta V_{g4,g5,x,y}$	max.	500	V
Grid drive, averaged over 1 ms	V_d	max.	25	V
Screen dissipation	Wo	max.	8	mW/cm ²

R_{g1}

PHILIPS

2

TYPICAL OPERATION	(voltages with	respect to cathode)*
-------------------	----------------	----------------------

ond		

Final accelerator voltage	$V_{g7(l)}$	16,5 kV	
Mean deflection plate potential		2,2 kV	note 2
Shield voltage for optimum geometry	V_{g5}	2,2 kV	note 3
First accelerator and astigmatism control voltage	$V_{g2,g4}$	2,2 kV	note 3
Focusing voltage	V_{g3}	400 to 800 V	
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	50 to 100 V	

Outer conductive coating (m) and mu-metal shield to be earthed.

Mx		7,8	$V/cm \pm 10\%$
My		4,0	V/cm ± 5%
	<	2	% note 4
			note 5
	_	1	mm
		2	mm
		900	note 2
	\leq	50	note 6
	<	30	%
	<	30	%
	\leq	50	%
V_d	approx.	20	V
I.w.	approx. (0,35	mm note 7
	M _y	M _y	My 4,0 ≤ 2 ≤ 4 ≤ 2 90° ≤ 5° ≤ 30 ≤ 30 ≤ 30 < 50 V _d approx. 20

p.w.s.

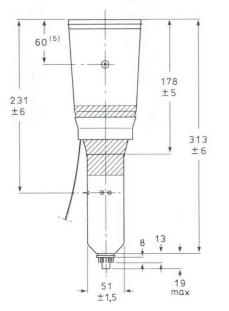
CAPACITANCES

x ₁ to all other elements except x ₂	C _{x1(x2)}	2,4 pF
x_2 to all other elements except x_1	$C_{x2(x1)}$	2,4 pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	1,9 pF
y ₂ to all other elements except y ₁	$C_{y2(y1)}$	1,9 pF
x ₁ to x ₂	C_{x1x2}	1,8 pF
y ₁ to y ₂	Cy1y2	1,5 pF
Control grid to all other elements	C_{g1}	6 pF
Cathode to all other elements	c_k	3,2 pF
Focusing electrode to all other elements	c_{g3}	5 pF

DEVELOPMENT SAMPLE DATA

Photographic writing speed (V_d = 50 V; Polaroid 612 film; GH phosphor;

F = 1,2; magnification 0,5)



2,0 cm/ns

^{*} Notes are on page 8.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

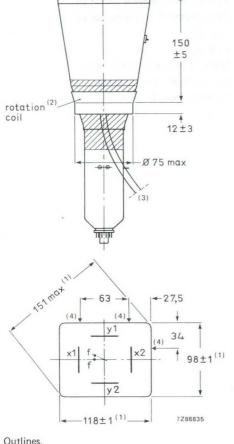


Fig. 1 Outlines.

- Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will
 pass through an opening of 122 x 102 mm (diagonal 153 mm).
- 2. The coil is fixed to the envelope with resin and adhesive tape.
- 3. The length of the connecting leads of the rotation coil is min. 350 mm.
- 4. Reference points on faceplate for graticule alignment (see Fig. 5).
- 5. The centre of the final accelerator contact is situated within a square of 10 mm x 10 mm around the indicated position.

PHILIPS

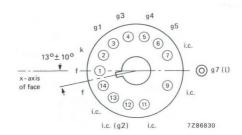


Fig. 2 Pin arrangement; bottom view.

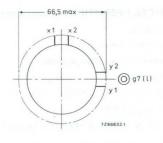


Fig. 3 Side-contact arrangement bottom view.

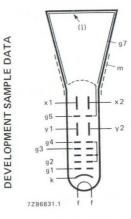


Fig. 4 Electrode configuration.

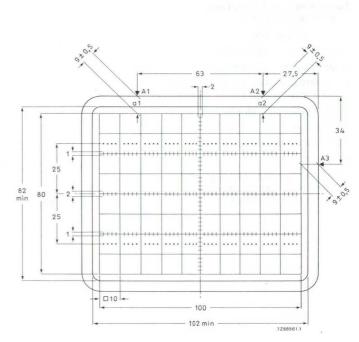


Fig. 5 Front view of tube with internal graticule, type 93. The faceplate reference points A1, A2 and A3 are used for aligning the graticule with the faceplate. $|a1 - a2| \le 0.3$ mm.

Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

NOTES

- 1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 102 mm x 82 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
- 2. The deflection plates must be operated symmetrically; floating mean x- or y-potentials will result into non-uniform line width and geometry distortion. The mean x- and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry.
 - The tube features internal magnetic correction for orthogonality between x- and y-traces, spot shaping (astigmatism) and eccentricity calibration.
- 3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $V_{q\bar{5}}$ must be made equal to mean x-potential, and a range of 0 to -25~Vwith respect to mean y-potential will be required on g4 for astigmatism correction. The circuit resistance for V_{a4} should be $\leq 10 \text{ k}\Omega$.
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5. A graticule consisting of concentric rectangles of 100 mm x 80 mm and 98 mm x 78 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
- 6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 185 \pm 25 Ω at 20 °C, which increases by approx. 0,4%/K for rising temperature. Approx. 6,5 mA causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances (\pm 5°) and earth magnetic field with reasonable shielding (\pm 2°).
- 7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_0 = 10 \mu A$.
- 8. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), when the tube is used within its limiting values (beam current $I_0 \le 100 \,\mu\text{A}$).

Data based on pre-production

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- · high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	٧ _{g7(ℓ)}	16,5 kV
First accelerator voltage	V_{g4}	2,2 kV
Minimum useful scan area		100 mm x 80 mm
Deflection coefficient horizontal	M_X	8,3 V/cm
vertical	My	4 V/cm (max. 4,2 V/cm)
Photographic writing speed	p.w.s.	2,0 cm/ns

OPTICAL DATA

Screen	metal-backed phosphor
type	GH
colour	green
persistance	medium short
Jseful screen area	≥ 102 mm x 82 mm; note 1 (page 8)
Jseful scan area	≥ 100 mm x 80 mm
nternal graticule	type 93; see Fig. 5

HEATING

Internal graticule

Indirect by a c or d c *

munect by a.c. or u.c.		
Heater voltage	V_{f}	6,3 V
Heater current	If	240 mA

Heating time to attain 10% of the cathode current at equilibrium conditions

approx. 5 s

^{*} Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included) ≤ 338 mm

Faceplate dimensions 118 ± 0,5 mm x 98 ± 0,5 mm

Net mass approx. 1 kg

Base 12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 6) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)

Socket with solder tags

Socket with printed-wiring pins

Side contact connector for ϕ 0,6 mm pin (4 required)

Final accelerator contact connector

Mu-metal shield

FOCUSING

DEFLECTION

x-plates

y-plates

supplied with tube

type 55594

type 55595

type 55596 (AMP87313)

type 55569/55597

to be established

electrostatic

double electrostatic

symmetrical

symmetrical

LIMITING VALUES (Absolute maximum rating system)

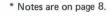
	Final accelerator voltage	V _{g7(ℓ)}	max.	18	kV note 8
	Shield voltage	V_{g5}	max.	3,3	kV
	First accelerator and astigmatism control voltage	V_{g4}	max.	3,3	kV
	Focusing electrode voltage	V _{g3}	max.	2,5	kV
	Control grid voltage	$-v_{g1}$	max. min.	200	V
	Cathode to heater voltage positive	V _{kf}	max.	125	V
	negative	$-V_{kf}$	max.	125	V
)	Heater voltage	V _f	max. min.	6,6	
	Voltage between g2 and g4	$\Delta V_{g2,g4}$	max.	2	kV
	Voltage between g4,g5 and any deflection plate	$\Delta V_{g4,g5,x,y}$	max.	500	V
	Grid drive, averaged over 1 ms	V_d	max.	25	V
	Screen dissipation	Wg	max.	8	mW/cm ²
	Control grid circuit resistance	Rat	max.	1	MΩ

PHILIPS

TYPICAL OPERATION (voltages with respect to cathode)*

_					20				
C	n	n	а	ı	t	ı	n	n	S

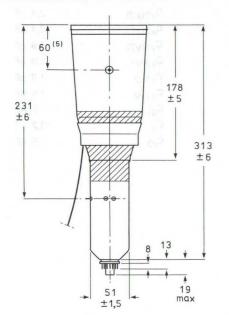
Final accelerator voltage	V _{g7(ℓ)}	16,5	kV	
Mean deflection plate potential		2,2	kV	note 2
Shield voltage for optimum geometry	V_{g5}	2,2	kV	note 3
First accelerator and astigmatism control voltage	V_{g4}	2,2	kV	note 3
Focusing voltage	V_{g3}	400 to 800	V	
Grid 2 voltage	V_{g2}	2,2	kV	
Cut-off voltage for visual extinction of focused spot	$-v_{g1}$	50 to 100	V	

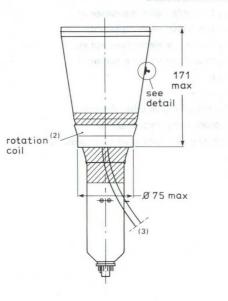

Outer conductive coating (m) and mu-metal shield to be earthed.

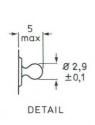
Performance			
Horizontal deflection coefficient	M _×	8,3 V/cm ± 10%	
Vertical deflection coefficient	My	4,0 V/cm ± 5%	
Deviation of deflection linearity		≤ 2 % note 4	
Geometry distortion		note 5	
Eccentricity of undeflected spot in horizontal direction		≤ 4 mm	
in vertical direction		< 2 mm	
Angle between x- and y-traces		90° note 2	
Angle between x-trace and x-axis of internal graticule		< 50 note 6	
Luminance reduction with respect to screen centre x-axis, outer graticule line		≤ 30 %	
y-axis, outer graticule line		≤ 30 %	
any corner		≤ 50 %	
Grid drive for 10 µA screen current	V_d	approx. 20 V	
Line width	I.w.	approx. 0,35 mm note 7	
Photographic writing speed ($V_d = 50 \text{ V}$; Polaroid 612 film; GH phosphor;			
F = 1,2; magnification 0,5)	p.w.s.	2,0 cm/ns	

PHILIPS

CAPACITANCES


x ₁ to all other elements except x ₂	C _{x1(x2)}	2,4 pF
x2 to all other elements except x1	C _{x2(x1)}	2,4 pF
y ₁ to all other elements except y ₂	Cy1(y2)	1,9 pF
y ₂ to all other elements except y ₁	Cy2(y1)	1,9 pF
x ₁ to x ₂	C _{x1x2}	1,8 pF
y ₁ to y ₂	C _{y1y2}	1,5 pF
Control grid to all other elements	C _{g1}	6 pF
Cathode to all other elements	c_k	3,2 pF
Focusing electrode to all other elements	C _{g3}	5 pF




July 1983

DIMENSIONS AND CONNECTIONS

Dimensions in mm

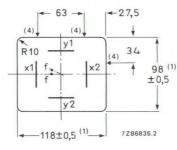


Fig. 1 Outlines.

- 1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of 122 x 102 mm (diagonal 153 mm).
- 2. The coil is fixed to the envelope with resin and adhesive tape.
- 3. The length of the connecting leads of the rotation coil is min. 350 mm.
- 4. Reference points on faceplate for graticule alignment (see Fig. 5).
- 5. The centre of the final accelerator contact is situated within a square of 10 mm x 10 mm around the indicated position.

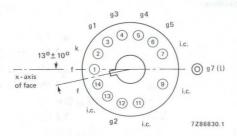


Fig. 2 Pin arrangement; bottom view.

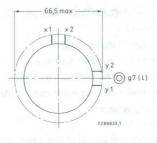


Fig. 3 Side-contact arrangement bottom view.

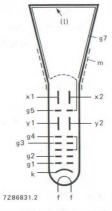


Fig. 4 Electrode configuration.

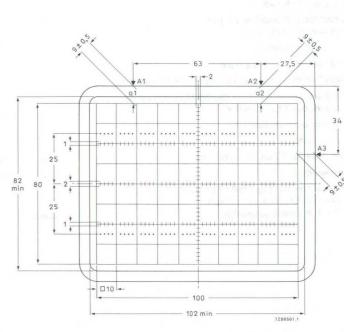


Fig. 5 Front view of tube with internal graticule, type 93. The faceplate reference points A1, A2 and A3 are used for aligning the graticule with the faceplate. $|a1 - a2| \le 0.3$ mm.

Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

PHILIPS