INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

* Not to be connected in series with other tubes

MECHANICAL DATA

Dimensions and connections (see also outline drawings)
Overall length (socket included)
Faceplate dimensions
$\leqslant 338 \mathrm{~mm}$

Net mass

approx. 1 kg
Base

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Socket with solder tags
Socket with printed-wiring pins
Side contact connector for $\phi 0,65 \mathrm{~mm}$ pin (4 required)
Final accelerator contact connector
Mu-metal shield
supplied with tube
type 55594
type 55595
type 55596 (AMP87313)
type 55569/55597
55599
FOCUSING
DEFLECTION
x-plates
electrostatic
double electrostatic
symmetrical
symmetrical

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y
x_{1} to $\times 2$
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements
Focusing electrode to all other element
Final accelerator electrode to all other element

$C_{x 1(x 2)}$	$2,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	$2,3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	$1,7 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	$1,8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	3 pF
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,3 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	$6,5 \mathrm{pF}$
C_{k}	$3,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3}$	8 pF
$\mathrm{C}_{\mathrm{g} 7}$	480 pF

Fig. 1 Outlines.

1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) wil pass through an opening of $122 \times 102 \mathrm{~mm}$ (diagonal 153 mm)
2. The coil is fixed to the envelope with resin and adhesive tape.
3. The length of the connecting leads of the rotation coil is min .350 mm .
4. Reference points on faceplate for graticule alignment (see Fig. 5)
5. The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.

Fig. 6 Beam current (I_{bx}) and focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) as a function of grid drive voltage (V_{d}); typical curves.
I_{bx} is the beam current, without scan, measured on $\times 2$, when the deflection plate potential have been adjusted to $\mathrm{V}_{\mathrm{y} 1}=\mathrm{V}_{\mathrm{y} 2}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 1}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{x} 2}=1900 \mathrm{~V}$, thus directing the total beam current to $\times 2$.

screen current $(\mu \mathrm{A})$
100

Fig. $70,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve, measured according to TEPAC104.

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
2. The deflection plates must be operated symmetrically; floating mean x - or y-potentials will result into non-uniform line width and geometry distortion. The mean x - and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astig matism and geometry. A range of $\Delta \mathrm{V}_{\mathrm{g} 5}=-50$ to +50 V may be applied for pincushion/barrel correction. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x -potential, and a range of 0 to -25 V with respect to mean y-potential will be required on g 4 for astigmatism correction. The circuit resistance for $V_{g 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. At typical operation $\left(\mathrm{V}_{\mathrm{g} 5}=2200 \mathrm{~V}, \mathrm{~V}_{\mathrm{g} 7}=16,5 \mathrm{kV}\right)$ approx. $6,5 \mathrm{~mA}$ causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances $\left(\pm 5^{\circ}\right.$) and earth magnetic field with reasonable shielding $\left(\pm 2^{\circ}\right)$.
The required current for 10 trace rotation is related to approx. $\sqrt{\mathrm{V}}_{\mathrm{g} 5}$.
7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Fig. 3 Side-contact arrangement bottom view.

Fig. 4 Electrode configuration.

Fig. 5 Front view of tube with internal graticule, type 123. The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0,2 \mathrm{~mm}$; dot diameter $=0,4 \mathrm{~mm}$; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage
Mean deflection plate potential
Shield voltage for optimum geometry
First accelerator and astigmatism control voltage
Focusing voltage
Grid 2 voltage
Cut-off voltage for visual extinction of focused spot

LIMITING VALUES (Absolute maximum rating system)

Performance

Horizontal deflection coefficient
M_{x}
Vertical deflection coefficient
Geometry distortion
Eccentricity of undeflected spot
in horizontal direction
in vertical direction
Angle between x - and y-traces
Angle between x-trace and x-axis of internal graticule
Luminance reduction with respect to screen centre
x-axis, outer graticule line
y-axis, outer graticule line
any corner
Grid drive for $10 \mu \mathrm{~A}$ screen current
I.w

Line width , $V_{d}=50 \mathrm{~V}$,
Polaroid 612 film; GH phosphor;
Polaroid 612 film; GH phos
$F=1,2$; magnification 0,5)
$8,3 \mathrm{~V} / \mathrm{cm} \pm 10 \%$
$4,0 \mathrm{~V} / \mathrm{cm} \pm 5 \%$
$\leqslant \quad 2 \%$ note 4 note 5
$\leqslant \quad 4 \mathrm{~mm}$
$\leqslant \quad 2 \mathrm{~mm}$
90° note 2
$\leqslant \quad 50 \quad$ note 6
$\leqslant \quad 30 \%$
$\leqslant \quad 30 \%$
approx. 20 V
approx. $0,33 \mathrm{~mm}$ note 7
$2,0 \mathrm{~cm} / \mathrm{ns}$
$V_{g 7(\ell)}$
$V_{g 5}$
$V_{g 4}$
$V_{g 3}$
$V_{g 2}$
$-V_{g 1}$ max. 18 kV Fig. 7 max. 3,3 kV
ax. $3,3 \mathrm{kV}$
max. $2,5 \mathrm{kV}$ m. 0 V
max. 125 V
,
max. $6,6 \mathrm{~V}$
min. 6,0 V
$\max .500 \mathrm{~V}$
max. $8 \mathrm{~mW} / \mathrm{cm}^{2}$
$\max .1 \mathrm{M} \Omega$

* Notes are on last page but one

