INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- symmetrical helix system for vertical deflection
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
quick-heating cathod
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- for oscilloscopes with up to 500 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$V_{\mathrm{g}} 7(\ell)$	24 kV
First accelerator voltage	$V_{\mathrm{g} 2}$	3 kV
Minimum useful scan area		$100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Deflection coefficient		
horizontal	$M_{\text {x }}$	7,3 V/cm (max. $8,0 \mathrm{~V} / \mathrm{cm}$)
vertical	M_{y}	$2,9 \mathrm{~V} / \mathrm{cm}(\mathrm{max} .3,0 \mathrm{~V} / \mathrm{cm})$
Photographic writing speed	p.w.s.	. $3 \mathrm{~cm} / \mathrm{ns}$

OPTICAL DATA

Screen	metal-backed phosphor
type	GH
colour	green
persistence	medium short

Useful screen area
medium short
$\geqslant 102 \mathrm{~mm} \times 82 \mathrm{~mm}$; note 1 (last page)
Useful scan area
$\geqslant 100 \mathrm{~mm} \times 80 \mathrm{~mm}$
Internal graticule
type 123 ; see Fig. 5

HEATING

Indirect by a.c. or d.c.*
Heater voltage
$V_{f} \quad 6,3 \mathrm{~V}$
Heater current
$I_{f} \quad 0,24 \mathrm{~A}$
eating time to attain 10% of the cathode current at equilibrium conditions
approx. 5 s

Not to be connected in series with other tubes

MECHANICAL DATA

Dimensions and connections (see also outline drawings)
Overall length (socket included)
Faceplate dimensions
$\leqslant 419 \mathrm{~mm}$

Net mass
$118 \pm 1,0 \mathrm{~mm} \times 98 \pm 1,0 \mathrm{~mm}$

Base
approx. $1,2 \mathrm{~kg}$
12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)
Side pin protection band
Socket with solder tags
Socket with printed-wiring pins
Side contact connector for $\phi 0,65 \mathrm{~mm}$ pin (2 required)
Side contact connector for $\phi 0,45 \mathrm{~mm}$ pin (4 required
Final accelerator contact connector

Mu-metal shield

FOCUSING

DEFLECTION
x-plates
y-plates
Characteristic impedance of helix system
Bandwidth of helix system (-3 dB)
supplied with tube 332202710200
type 55594
type 55595
type 55596 (cat. no. 9390299 90002)
to be established
connection to final accelerator electrod is made via an EHT cable attached to
the tube
to be established
electrostatic
double electrostatic
symmetrical
symmetrical (helix system
$(2 \times 165 \Omega) \pm 3 \%$
approx. 1000 MHz

CAPACITANCES

x_{1} to all other elements except x_{2}	$C_{x 1}\left(x_{2}\right)$	$3,2 \mathrm{pF}$
x_{2} to all other elements except x_{1}	$C_{x 2}\left(x_{1}\right)$	$3,2 \mathrm{pF}$
x_{1} to x_{2}	$C_{x 1 x_{2}}$	$3,0 \mathrm{pF}$
x_{1} to y_{1}	$C_{x 1 y 1}$	$<0,2 \mathrm{pF}$
x_{2} to y_{1}	$C_{x 2 y 1}$	$<0,2 \mathrm{pF}$
x_{1} to y_{2}	$C_{x 1 y 2}$	$<0,2 \mathrm{pF}$
x_{2} to y_{2}	$C_{x 2 y 2}$	$<0,2 \mathrm{pF}$
Control grid to all other elements	$C_{g 1}$	$6,2 \mathrm{pF}$
Cathode to all other elements	C_{k}	$3,8 \mathrm{pF}$
Focusing electrode to all other elements	$C_{g 3}$	$7,6 \mathrm{pF}$

Dimensions in mm

Fig. 2 Electrode configuration.

detail A

detail B

7295537.1

Fig. 1 Outlines.
(1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \times 102 \mathrm{~mm}$ (diagonal 153 mm).
(2) The coil is fixed to the envelope with resin and adhesive tape.
(3) The length of the connecting leads of the rotation coil is min .350 mm .
(4) Reference points on faceplate for graticule alignment (see Fig. 5).
(5) The centre of the final accelerator contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the indicated position.
(6) The length of the E.H.T. cable is min .900 mm .

NOTES

1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. $102 \mathrm{~mm} \times 82 \mathrm{~mm}$ is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5)
2. The tube features internal magnetic correction for orthogonality between x - and y-traces, spot shaping (astigmatism) and eccentricity calibration. Correction is obtained at $\mathrm{V}_{\mathrm{g} 2-1, \mathrm{g4}}=2500$ to 3300 V ; optimum at $\mathrm{V}_{\mathrm{g} 2-1, g 4}=3000 \mathrm{~V}$.
3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case $\mathrm{V}_{\mathrm{g} 5}$ must be made equal to mean x -potential, and a range of 0 to -50 V with respect to mean y-potential will be required on g 4 for astigmatism correction. The circuit resistance for $\mathrm{V}_{\mathrm{g} 4}$ should be $\leqslant 10 \mathrm{k} \Omega$.
4. Deviation of mean y-plate potential with respect to $\mathrm{V}_{\mathrm{g} 2-1}$ will introduce spot distortion.
5. Deviation of linearity is defined as the proportional deviation of the deflection coefficient over any division on the x-axis and y-axis from the average values over the central eight (horizontal) and central six (vertical) divisions respectively.
6. A graticule consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and $98 \mathrm{~mm} \times 78 \mathrm{~mm}$ is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
7. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a resistance of $185 \pm 20 \Omega$ at $20^{\circ} \mathrm{C}$, which increases by approx. $0,4 \% / \mathrm{K}$ for rising temperature. Approx. $6,7 \mathrm{~mA}$ causes 1^{10} trace rotation.
8. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.

Fig. 6 Focusing voltage ($\mathrm{V}_{\mathrm{g} 3}$) as a function of grid drive voltage $\left(\mathrm{V}_{\mathrm{d}}\right)$; typical curve.

Fig. $70,5 \mathrm{mR} / \mathrm{h}$ isoexposure-rate limit curve, measured according to EIA standard RS-502 (formerly TEPAC104).

Fig. 4 Side-contact arrangement, bottom view.

Fig. 5 Front view of tube with internal graticule, type 123 (final accelerator contact at left-hand side) The faceplate reference points are used for aligning the graticule with the faceplate.
Line thickness $=0.2 \mathrm{~mm} ;$ dot diameter $=0.4 \mathrm{~mm}$; colour: red

TYPICAL OPERATION (voltages with respect to cathode)*

Conditions

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7}(\ell)$	24 kV
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	3 kV
Second accelerator voltage	$\mathrm{V}_{\mathrm{g} 2-1}$	3 kV
Focusing voltage	$\mathrm{V}_{\mathrm{g} 3}$	700 to 1100 V
Astigmatism control voltage	$\mathrm{V}_{\mathrm{g} 4}$	3 kV
Shield voltage for optimum geometry	$\mathrm{V}_{\mathrm{g} 5}$	3 kV
Deviation of mean y-plate potential from $\mathrm{V}_{\mathrm{g} 2-1}$	$\mathrm{~V}_{\mathrm{y}}$	max. $0,5 \mathrm{~V}$
Cut-off voltage for visual extinction of focused spot	$-\mathrm{V}_{\mathrm{g} 1}$	80 to 130 V

ut-off voltage for visual extinction of focused spot
Outer conductive coating (m) and mu-metal shield to be earthed.
Grid g 5 has two connections; the socket connection to be used for applying shield voltage $\mathrm{V}_{\mathrm{g} 5}$, the side pin connection to be used for proper earthing of g5 via a spark gap.

Performance

Horizontal deflection coefficient
 Vertical deflection coefficient

M_{x}
M_{y}

Deviation of deflection linearity
Geometry distortion
Eccentricity of undeflected spot with respect to internal graticule in horizontal direction
in vertical direction
Angle between x - and y-traces
Angle between x-trace and x-axis of internal graticule
Luminance reduction with respect to screen centre
x-axis, at a scan of $\pm 50 \mathrm{~mm}$
y-axis, at a scan of $\pm 40 \mathrm{~mm}$
any corner
Grid drive for $10 \mu \mathrm{~A}$ screen current
Line width
hotographic writing speed $\left(\mathrm{V}_{\mathrm{d}}=75 \mathrm{~V}\right.$
Polaroid 612 film; GH phosphor:
$\mathrm{F}=1,2$; magnification 0,5)
p.w.s.

2,9 V/cm
$\begin{array}{lll}\text { typ. } & 2,9 & \mathrm{~V} / \mathrm{cm} \\ \geqslant & 2,7 \mathrm{~cm}\end{array}$
$\begin{array}{ll}\geqslant & 2,7 \mathrm{~V} / \mathrm{cm} \\ \leqslant & 3,0 \mathrm{~V} / \mathrm{cm}\end{array}$
$\leqslant \quad 3 \%$ note 5
note 6
$\leqslant \quad 4 \mathrm{~mm}$
2 mm note 2
$90 \pm 0,5^{\circ} \quad$ note 2
$\leqslant \quad 50$
note 7
$\leqslant \quad 30 \%$
$\leqslant \quad 30 \%$
$\leqslant \quad 50 \%$
approx. 20 V
approx. $0,37 \mathrm{~mm}$ note 8

Fig. 6
note 2
note 3
note 4
to 130 V

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$V_{\mathrm{g}} 7(\mathrm{l})$	max.		kV Fig. 7
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max.		
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.		
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	max. min.	20	$\begin{aligned} & \text { V } \\ & \text { v } \end{aligned}$
Cathode to heater voltage positive negative	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & -\mathrm{V}_{\mathrm{kf}} \end{aligned}$	max. max.	125	v
Heater voltage	V_{f}	max. \min.	6,6	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage between $\mathrm{g} 4, \mathrm{~g} 5$ and any deflection plate	$\Delta V_{g 4, g 5, x, y}$	max.	500	V
Grid drive, averaged over 1 ms	V_{d}	max.	30	V
Screen dissipation	W_{ℓ}	max.		$\mathrm{mW} / \mathrm{cm}^{2}$
Control grid circuit resistance	$\mathrm{R}_{\mathrm{g} 1}$	max.		$\mathrm{M} \Omega$

PHILIPS

