INSTRUMENT CATHODE-RAY TUBE

7 cm diagonal, rectangular flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and monitoring devices.

QUICK REFERENCE DATA		
Accelerator voltage	$V_{g 2, g 4, g 5(\ell)}$	1000 V
Display area		$60 \times 36 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	M_{x}	$12,5 \mathrm{~V} / \mathrm{cm}$

SCREEN

	colour	persistence
D7-220GH	green	medium short

Useful screen dimensions	$\geqslant 60 \times 36 \mathrm{~mm}$	
Useful scan horizontal vertical	\geqslant	60 mm
Spot eccentricity in horizontal and vertical directions	\geqslant	36 mm
	$<$	5 mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
$V_{f} \quad 6,3 \mathrm{~V}$
Heater current
If 300 mA
MECHANICAL DATA
Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.
Net mass
approx. 350 g
Base
12-pin all glass; JEDEC B12-246

Dimensions and connections

See also outline drawing

Overall length
 Face dimensions

\leqslant
225 mm

$$
72,5 \times 49 \mathrm{~mm}
$$

Accessories

Socket, supplied with tube
type 55589
Mu-metal shield
type 55535
FOCUSING
electrostatic
double electrostatic
symmetrical
symmetrical
90 ± 10
$\leqslant 3^{\circ}$ *
Angle between x and y-traces
\rightarrow Angle between x-trace and horizontal axis of the face
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

\rightarrow CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	$4,0 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	$4,1 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	$4,2 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	$5,4 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$1,6 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	$1,8 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 1}$	$7,0 \mathrm{pF}$
C_{k}	$5,0 \mathrm{pF}$

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 250Ω. Under typical operating conditions, a maximum of 10 ampere-turns are required for the maximum rotation of 3°. This means the required current is 10 mA maximum at a required voltage of $2,5 \mathrm{~V}$ maximum.

DIMENSIONS AND CONNECTIONS

1) The bulge at the frit seal does not exceed the maximum dimensions.
2) The coil is fixed to the envelope by means of adhesive tape.
3) The length of the connecting leads of the rotation coil is min .350 mm .

TYPICAL OPERATION

Conditions (note 1)

Accelerator voltage
Astigmatism control voltage
\rightarrow Focusing electrode voltage
Control grid voltage for visual
extinction of focused spot

Performance

Useful scan horizontal
vertical
Deflection coefficient
horizontal
vertical
Line width
$V_{g 2, g 4, g 5(\ell)}$
$\Delta V_{g 2}, g 4, g 5(\ell)$
$V_{g 3}$
$V_{g 3}$
$\mathrm{V}_{\mathrm{g} 1} \leqslant$
100 to 180 V
$-35 \mathrm{~V}$

see note 5
000 V
180 V

Deviation of linearity of deflection
Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage	$V_{g 2}, \mathrm{~g} 4, \mathrm{~g} 5(\ell)$	max. \min.	$\begin{array}{r} 2200 \mathrm{~V} \\ 900 \mathrm{~V} \end{array}$
Focusing electrode voltage	$V_{\mathrm{g} 3}$	max.	2200 V
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	max. min.	$\begin{array}{r} 200 \mathrm{~V} \\ 0 \mathrm{~V} \end{array}$
Cathode to heater voltage positive negative	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & -\mathrm{V}_{\mathrm{kf}} \end{aligned}$	max. max.	$\begin{aligned} & 125 \mathrm{~V} \\ & 125 \mathrm{~V} \end{aligned}$
Grid drive, average		max.	20 V
Screen dissipation	W_{ℓ}	max.	$3 \mathrm{~mW} / \mathrm{cm}^{2}$

NOTES

1. The mean x-plate potential and the mean y-plate potential should be equal to $\mathrm{V}_{\mathrm{g} 2}, \mathrm{~g} 4, \mathrm{~g} 5(\ell)$ (with astigmatism control voltage set to zero).
2. When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
3. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows.
a) Under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ for optimum spot quality at the centre of the screen.
b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{x} 1}=\mathrm{V}_{\mathrm{x} 2}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 1}=300 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 2}=700 \mathrm{~V}$, thus directing the total beam current to y_{2}. Measure the current on y_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{y} 2}=10 \mu \mathrm{~A}$.
c) Set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
d) Focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule, consisting of concentric rectangles of $57,0 \mathrm{~mm} \times 33,0 \mathrm{~mm}$ and $56 \mathrm{~mm} \times 31,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles

INSTRUMENT CATHODE-RAY TUBE

7 cm diagonal, rectangular flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and monitoring devices.

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	1000 V
Display area		$60 \times 36 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	M_{x}	$12,5 \mathrm{~V} / \mathrm{cm}$

SCREEN

	colour	persistence
D7-220GH	green	medium short

| Useful screen dimensions | $\geqslant 60 \times 36 \mathrm{~mm}$ |
| :--- | :--- | :--- |
| Useful scan | |
| \quad horizontal | |
| vertical | |$\gg 60 \mathrm{~mm}$

HEATING
Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	300 mA

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.
Net mass
approx. 350 g
Base
12-pin all glass; JEDEC B12-246

Dimensions and connections
See also outline drawing
Overall length
$\leqslant \quad 225 \mathrm{~mm}$

Face dimensions $\leqslant \quad 72,5 \times 49 \mathrm{~mm}$

Accessories

Socket, supplied with tube
type 55589
Mu-metal shield type 55535

FOCUSING
electrostatic
DEFLECTION
double electrostatic
x-plates
symmetrical
y-plates
symmetrical
Angle between x and y-traces
Angle between x-trace and horizontal axis of the face

$$
90 \pm 10
$$

90 ± 10
$\leqslant 30$ *

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$C_{x 1(x 2)}$	$4,0 \mathrm{pF}$
$C_{x 2(x 1)}$	$4,1 \mathrm{pF}$
$C_{y 1(y 2)}$	$4,2 \mathrm{pF}$
$C_{y 2(y 1)}$	$5,4 \mathrm{pF}$
$C_{x 1 \times 2}$	$1,6 \mathrm{pF}$
$C_{y 1 y 2}$	$1,8 \mathrm{pF}$
$C_{g 1}$	$7,0 \mathrm{pF}$
C_{k}	$5,0 \mathrm{pF}$

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 250Ω. Under typical operating conditions, a maximum of 10 ampere-turns are required for the maximum rotation of 3°. This means the required current is 10 mA maximum at a required voltage of $2,5 \mathrm{~V}$ maximum.

DIMENSIONS AND CONNECTIONS

(1) The bulge at the frit seal does not exceed the maximum dimensions.
(2) The coil is fixed to the envelope by means of adhesive tape.
(3) The length of the connecting leads of the rotation coil is min .350 mm .

bottom view

TYPICAL OPERATION

Conditions (note 1)
Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual extinction of focused spot

$V_{g 2, g 4, g 5}(\ell)$	1000 V	
$\triangle V_{g 2, g 4, g 5}(\ell)$	$\pm 50 \mathrm{~V}$	(note 2)
$V_{g 3}$	100 to 180 V	
$V_{g 1}$	\leqslant	-35 V

Performance
Useful scan
horizontal
vertical
Deflection coefficient
horizontal
vertical

Line width
Deviation of linearity of deflection
Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
I.w.
M_{x}
M_{y}
see note 5

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage
Focusing electrode voltage
Control grid voltage
Cathode to heater voltage positive
negative
Grid drive, average
Screen dissipation
$V_{g 2, g 4}, g 5(\ell)$
$V_{g} 3$
$-\mathrm{V}_{\mathrm{g} 1}$
$V_{k f}$
$-V_{k f}$
W_{ℓ}
max. 2200 V
min. 900 V
max. 2200 V
max. 200 V
min. 0 V
max. 125 V
max. 125 V
max. 20 V
max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$

NOTES

1. The mean x-plate potential and the mean y-plate potential should be equal to $V_{g 2, g 4, g 5(\ell)}$ (with astigmatism control voltage set to zero).
2. When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
3. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell}=10 \mu \mathrm{~A}$.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows.
a) Under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ for optimum spot quality at the centre of the screen.
b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{x} 1}=\mathrm{V}_{\mathrm{x} 2}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 1}=300 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 2}=700 \mathrm{~V}$, thus directing the total beam current to y_{2}. Measure the current on V_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{y} 2}=10 \mu \mathrm{~A}$.
c) Set again for the conditions under a), without touching the $\mathrm{V}_{\mathrm{g} 1}$ control. The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
d) Focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5. A graticule, consisting of concentric rectangles of $57,0 \mathrm{~mm} \times 33,0 \mathrm{~mm}$ and $56 \mathrm{~mm} \times 31,6 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBE

7 cm diagonal, rectangular flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and monitoring deviges. This tube features a low heater power consumption.

QUICK REFERENCE DATA

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	1000 V
Display area		$60 \times 36 \mathrm{~mm}^{2}$
Deflection coefficient horizontal vertical	M_{X}	$12,5 \mathrm{~V} / \mathrm{cm}$

The D7-221GH is equivalent to the type D7-220GH except for the following:

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	$6,3 \mathrm{~V}$
Heater current	I_{f}	95 mA

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage
positive
negative
Control grid circuit resistance

CAPACITANCES

Cathode to all other elements

C_{k}

INSTRUMENT CATHODE-RAY TUBE

cm diagonal, rectangular flat faced monoaccelerator oscilloscope tube primarily in ended for use in inexpensive oscilloscopes and monitoring devices.

SCREEN

	colour	persistence
D7-220GH	green	medium short

Useful screen dimensions	$\geq 60 \times 36$	mm	
Useful scan, horizontal			
vertical	\geq	60	mm
	\geq	36	mm
Spot eccentricity in horizontal and vertical directions	$<$	5	mm

HEATING

Indirect by a.c. or d.c.; parallel supply
Heater voltage
Heater current
$\mathrm{I}_{\mathrm{f}} \quad 300 \mathrm{~mA}$

MECHANICAL DATA

Mounting position : any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube

Net mass
Base
≈ 350 g 12-pin all glass; JEDEC B12-246

Dimensions and connection

See also outline drawing

Overall length
225 mm
Face dimensions
$\leq 72,5 \times 49 \mathrm{~mm}$

Accessories
Socket（appotic Sypptied wiph tub） 241250000002 Mm－metel thield 55535

FOCUSING

DEFLECTION

x －plates
y－plates
Angle between x and y traces
Angle between x trace and horizontal axis of the face
electrostatic
double electrostatic
symmetrical
symmetrical

$$
90 \pm 1^{0}
$$

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam，hence a low impedance deflection plate drive is desirable．

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
Control grid to all other elements
Cathode to all other elements

$\mathrm{C}_{\mathrm{x} 1 \text {（ } \mathrm{x} 2)}$	$3,2 \mathrm{pF} \quad \mathrm{V}$
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	$3,4 \mathrm{pF} 3,6$
$\mathrm{C}_{\mathrm{y} 1 \text {（y2）}}$	$4,9 \mathrm{pF} 4.7$
$\mathrm{C}_{\mathrm{y} 2(\mathrm{yl})}$	$4,7 \mathrm{pF} 4,7$
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$1,5 \mathrm{pF} \quad \vee$
$\mathrm{C}_{\mathrm{yly} 2}$	$2,0 \mathrm{pF}-1.8$
$\mathrm{C}_{\mathrm{g} 1}$	$6,3 \mathrm{pF}$
C_{k}	$4,7 \mathrm{pF} 5$

[^0]
INSTRUMENT CATHODE－RAY TUBE

7 cm diagonal，rectangular flat faced monoaccelerator oscilloscope tube primarily in－ tended for use in inexpensive oscilloscopes and monitoring devices．
This tube features a low heater power consumption．

QUICK REFERENCE DATA					
Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	1000	V		
Display area		60×36	$\mathrm{~mm}^{2}$		
Deflection coefficient，horizontal					
	vertical	M_{x}	12,5	$\ddagger 5$	
	M_{y}	V / cm			
		24	$\mathrm{~V} / \mathrm{cm}$		

The D7－212GH is equivalent to the type $\mathrm{D} 7-221 \mathrm{GH}$ except for the following： HEATING
Indirect by a．c．or d．c．；parallel supply
Heater voltage
V_{f}
$6,3 \quad \mathrm{~V}$

Heater current
I_{f}
95 mA
LIMITING VALUES（Absolute max．rating system）
Cathode to heater voltage，positive $\quad \mathrm{V}_{\mathrm{kf}} \quad \max .100 \mathrm{~V}$ negative $\quad-\mathrm{V}_{\mathrm{kf}} \quad \max . \quad 15 \quad \mathrm{~V}$

$3 p F$

TYPICAL OPERATION

Conditions ${ }^{2}$)

Accelerator voltage
Astigmatism control voltage
Focusing electrode voltage
Control grid voltage for visual
extinction of focused spot

Performance

Useful scan, horizontal
Deflection coefficient, horizontal vertical

Line width

Deviation of linearity of deflection

$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	1000	V	
$\Delta \mathrm{~V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	± 50	V	3
$\mathrm{~V}_{\mathrm{g} 3}$	90 to 170	V	
$\mathrm{~V}_{\mathrm{gl} 1}$	\leq	-35	V

Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion
LImiting values (Absolute max. rating system)

Accelerator voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$	\max. min.	$\begin{array}{r} 2200 \\ 900 \end{array}$	v
Focusing electrode voltage	V_{g}	max.	2200	V
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	max min.	200 0	$\begin{aligned} & \text { v } \\ & \text { V } \end{aligned}$
Cathode to heater voltage	$\begin{gathered} \mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kf}} \end{gathered}$	max. \max.	125	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Grid drive, average		max.	20	V
Screen dissipation	w_{ℓ}	max.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
	$R_{g_{1}}$	max		$M \Omega$

NOTES

${ }^{2}$) The mean x-plate potential and the mean y-plate potential should be equal to $V_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ (with astigmatism control voltage set to zero).
3) When putting the tube into operation the astigmatism control voltage should beadjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 2 are adhered to.
${ }^{4}$) Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\ell}=10 \mu \mathrm{~A}$.
As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
a) under typical operating conditions, apply a small raster display (no overscan), adjust $\mathrm{V}_{\mathrm{g} 1}$ for a beam current of approx. $10 \mu \mathrm{~A}$ and adjust $\mathrm{V}_{\mathrm{g} 3}$ and $\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4, \mathrm{~g} 5(\ell)}$ for optimum spot quality at the centre of the screen.
b) under these conditions, but without raster, the deflection plate voltages should be changed to: $\mathrm{V}_{\mathrm{x} 1}=\mathrm{V}_{\mathrm{x} 2}=1000 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 1}=550 \mathrm{~V} ; \mathrm{V}_{\mathrm{y} 2}=700 \mathrm{~V}$, thus directing the total beam current to y_{2}. $\widehat{300 \mathrm{~V}}$
Measure the current on y_{2} and adjust $\mathrm{V}_{\mathrm{g} 1}$ for $\mathrm{I}_{\mathrm{y} 2}=10 \mu \mathrm{~A}$.
c) set again for the conditions under a), without touching the V_{gl} control.

The screen current of the resulting raster display is now $10 \mu \mathrm{~A}$.
d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
${ }^{5}$) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
${ }^{6}$) A graticule, consisting of concentric rectangles of $57,0 \mathrm{~mm} \times 33,0 \mathrm{~mm}$ and $55,8 \mathrm{~mm}$ $x 32,0 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles.

Notes see page 5.

[^0]: ${ }^{1}$ ）The tube is provided with a rotation coil，concentrically wound around the tube neck， enabling the alignment of the x－trace with the mechanical x－axis of the screen．The coil has a resistance of 260Ω ，and the maximum current required is 10 mA ．

