INSTRUMENT CATHODE-RAY TUBE

10 cm diameter metal-backed flat-faced double gun oscilloscope tube with post-deflection acceleration by means of a helical electrode and low interaction between beams.

QUICK REFERENCE DATA			
Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 8}(\ell)$	4000	V
Display area	horizontal	full scan	
Deflection factor, horizontal	vertical	7	cm
	M_{X}	17	$\mathrm{~V} / \mathrm{cm}$
vertical	M_{y}	7.4	$\mathrm{~V} / \mathrm{cm}$

SCREEN

	Colour	Persistence
E10-130BE	blue	medium short
E10-130GH	green	medium short
E10-130GM	yellowish green	long
E10-130GP	bluish green	medium short

Useful screen diameter
min. 85 mm
Useful scan (each gun) at $\mathrm{V}_{\mathrm{g}_{8}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=4$

horizontal full scan	
vertical	$\min .70 \mathrm{~mm}$

The useful scan may be shifted vertically to a maximum of 5 mm with respect to the geometric centre of the face plate.

HEATING

Indirect by A. C. or D. C.; parallel supply

Heater voltage	V_{f}	6.3	V
	Heater current	I_{f}	300
mA			

MECHANICAL DATA

Mounting position: any
The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

Dimensions and connections

Overall length

Face diameter
Net weight
Accessories

Socket, supplied with tube	type	55566
Final-accelerator contact connector	type	55563
Side contact connector	type	55561
Mu-metal shield	type	55545

CAPACITANCES

$\mathrm{x}_{1}{ }^{\prime}$ to all other elements except $\mathrm{x}_{2}{ }^{\prime}$
$x_{2}{ }^{\prime}$ to all other elements except $x_{1}{ }^{\prime}$
$x_{1}{ }^{\prime \prime}$ to all other elements except $\mathrm{x}_{2}{ }^{\prime \prime}$
$\mathrm{x}_{2}{ }^{\prime \prime}$ to all other elements except $\mathrm{x}_{1}{ }^{\prime \prime}$
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
yl to y_{2}
Grid No. 1 to all other elements
Cathode to all other elements

FOCUSING	Electrostatic
DEFLECTION	Double electrostatic
x plates	symmetrical
y plates	symmetrical

Angle between x and y traces (each gun)

$\mathrm{C}_{\mathrm{x}_{1}}{ }^{\prime}\left(\mathrm{x}_{2}{ }^{\prime}\right)$	4.5 pF	
$\left.\mathrm{C}_{\mathrm{x}_{2}}{ }^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}\right)$	3	pF
$\mathrm{C}_{\mathrm{x}_{1}}{ }^{\prime \prime}\left(\mathrm{x}_{2}{ }^{\prime \prime}\right)$	3	pF
$\left.\mathrm{C}_{\mathrm{x}_{2}}{ }^{\prime \prime}{ }^{\prime} \mathrm{x}_{1}{ }^{\prime \prime}\right)$	4.5	pF
$\mathrm{C}_{\mathrm{y}_{1}}{ }^{\left(\mathrm{y}_{2}\right)}$	2	pF
$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\left(\mathrm{y}_{1}\right)}$	2	pF
$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	2	pF
$\mathrm{C}_{\mathrm{y}_{1} \mathrm{Y}_{2}}$	1.5	pF
$\mathrm{C}_{\mathrm{g}_{1}}$	5.2	pF
C_{k}	5	pF

Angle between corresponding x traces at the centre of the screen $\max .0 .6 \quad 0$

Angle between corresponding y traces at the centre of the screen
$\max \quad 1 \quad 0$
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

LINE WIDTH

Measured with the shrinking-raster method in the centre of the screen.
Final accelerator voltage
Astigmatism-control electrode voltage
First accelerator voltage
Beam current
Line width
$\left.\begin{array}{lrll}\mathrm{V}_{\mathrm{g}_{8}}(\ell) & 4000 & \mathrm{~V} \\ \mathrm{~V}_{\mathrm{g} 5} & 1000 & \mathrm{~V} & 2\end{array}\right)$

HELIX
Post-deflection accelerator helix resistance
min. $100 \mathrm{M} \Omega$
$\overline{2) \text { See page } 5}$

TYPICAL OPERATING CONDITIONS (each gun, if applicable)

LIMITING VALUES (each gun, if applicable) (Absolute max. rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}}{ }^{(\ell)}$	max. min.	$\begin{aligned} & 5000 \\ & 2700 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Intergun shield voltage	Vg_{7}	max.	1200	V
Geometry control electrode voltage	Vg_{6}	\max.	1200	V
Astigmatism control electrode voltage	V_{5}	max. min.	$\begin{array}{r} 1200 \\ 800 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g}}^{4}$	max.	1200	V
Beam blanking electrode voltage	Vg_{3}	\max.	1200	V
First accelerator voltage	V_{2}	max. min.	$\begin{array}{r} 1200 \\ 200 \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Control grid voltage, negative positive	$\begin{array}{r} -\mathrm{V}_{\mathrm{g}_{1}} \\ \mathrm{Vg}_{\mathrm{g}} \end{array}$	$\max _{\max }$.	200	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Cathode to heater voltage, cathode positive cathode negative	$\begin{gathered} \mathrm{V}_{\mathrm{kf}} \\ -\mathrm{V}_{\mathrm{kf}} \end{gathered}$	\max. \max.	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Average cathode current	I_{k}	max.	300	$\mu \mathrm{A}$
Screen dissipation	W_{ℓ}	\max.	3	$\mathrm{mW} / \mathrm{cm}^{2}$
Ratio $\mathrm{V}_{\mathrm{g}_{8}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}$	$\mathrm{V}_{\mathrm{g}}(\mathrm{l})$	\max.	4	

[^0]CIRCUIT DESIGN VALUES (each gun, if applicable)

Focusing voltage
Control grid voltage for extinction of focused spot
Deflection factor at $\mathrm{V}_{8}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=4$ horizontal
vertical
Focusing electrode current
Control grid circuit resistance
$\mathrm{Vg}_{4} \quad 200$ to $320 \mathrm{~V} \quad$ per kV of V_{2}
$\mathrm{Vg}_{1} \quad-25$ to $-90 \mathrm{~V} \quad$ per kV of Vg_{2}
$\mathrm{M}_{\mathrm{X}} \quad 14$ to $20 \mathrm{~V} / \mathrm{cm}$ per kV of $\mathrm{V}_{\mathrm{g}_{5}}$
$\mathrm{M}_{\mathrm{y}} \quad 6.4$ to $8.4 \mathrm{~V} / \mathrm{cm}$ per kV of Vg_{5}
$\mathrm{Ig}_{4} \quad-15$ to $+10 \mu \mathrm{~A}$
$\mathrm{R}_{\mathrm{g}} \quad \max .1 .5 \mathrm{M} \Omega$
${ }^{1}$) This tube is designed for optimum performance when operating at the ratio $\mathrm{V}_{\mathrm{g}_{8}}(\ell) / \mathrm{V}_{\mathrm{g}_{5}}=4$. Operation at higher ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage and the intergun shield voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
${ }^{3}$) The sensitivity at a deflection of $\leq 75 \%$ of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
4) A graticule consisting of concentric rectangles of $60 \mathrm{~mm} \times 60 \mathrm{~mm}$ and $57.5 \mathrm{~mm} \times 57.5 \mathrm{~mm}$ is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum potentials applied.
${ }^{5}$) The deflection of one beam when balanced DC voltages are applied to the deflection plates of the other beam, will not be greater than the indicated value.
${ }^{6}$) With 50 mm vertical traces superimposed at the tube face centre and deflected horizontally $\pm 4 \mathrm{~cm}$ by voltages proportional to the relative deflection factors, horizontal separation of the corresponding points of the traces will not be greater than the indicated value.

[^0]: $\left.\left.\left.{ }^{1}\right)^{2}\right)^{3}\right)^{4},{ }^{5}{ }^{6}$) See page 5

