INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced, split-beam oscilloscope tube with mesh and metal backed screen.

MECHANICAL DATA
Dimensions in mm

Mounting position : any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

MECHANICAL DATA (continued)

Dimensions and connections
See also outline drawing.

| Overall length (socket included) | max. | 425 | mm |
| :--- | :--- | :--- | :--- | :--- |
| Face dimensions | max. | 120×100 | $\mathrm{~mm}^{2}$ |
| Net weight | approx. | 900 | g |
| Base | 14-pin all glass | | |
| Accessories | | | |
| Socket (supplied with tube) | type | 55566 | |
| Final accelerator contact connector | type | 55563 | |

Final accelerator contact connector

FOCUSING

DEFLECTION

x -plates
Electrostatic
symmetrica
If the full deflection capacity of the tube is used, part of the beam is intercepted by the deflection plates; hence a low-impedance deflection plate drive is desirable.
Angle between x and y traces (each beam)
$90 \pm 1 \quad 0$
Angle between corresponding y traces at screen centre max. ${ }_{45}$ Angle between x trace and horizontal
\max.
$5 \quad 0$
The x-trace can be aligned with the horizontal axis of the screen by rotating the entire image by means of a rotation coil. This coil will have less than 50 ampturns for the in dicated max. rotation of 5° and should be positioned as indicated on the drawing.

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, and adjusted for optimum spot size at a beam current of $5 \mu \mathrm{~A}$ per system.
Line width at screen centre
1.w. approx. 0.35 mm

CAPACITANCES

x_{1} to all other elements except x_{2}	$\mathrm{C}_{\mathrm{x}_{1}\left(\mathrm{x}_{2}\right)}$	8	pF
x_{2} to all other elements except x_{1}	$\mathrm{C}_{\mathrm{x}_{2}\left(\mathrm{x}_{1}\right)}$	8	pF
$\mathrm{y}_{1}{ }^{\prime}$ to all other elements except $\mathrm{y}_{2}{ }^{\prime}$	$\mathrm{C}_{\mathrm{y}_{1}}{ }^{\prime}\left(\mathrm{y}_{2}{ }^{\prime}\right)$	5	pF
$\mathrm{y}_{2}{ }^{\prime}$ to all other elements except $\mathrm{y}_{1}{ }^{\prime}$	$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\prime}\left(\mathrm{y}_{1}{ }^{\prime}\right)$	6.5	pF
$\mathrm{y}_{1}{ }^{\prime \prime}$ to all other elements except $\mathrm{y}_{2}{ }^{\prime \prime}$	$\mathrm{C}_{\mathrm{y}_{1}}{ }^{\prime \prime}\left(\mathrm{y}_{2}{ }^{\prime \prime}\right)$	6.5	pF
$\mathrm{y}_{2}{ }^{\prime \prime}$ to all other elements except $\mathrm{y}_{1}{ }^{\prime \prime}$	$\mathrm{C}_{\mathrm{y}_{2}{ }^{\prime \prime}\left(\mathrm{y}_{1}{ }^{\prime \prime}\right)}$	5	pF

CAPACITANCES (continued)

x_{1} to x_{2}	$\mathrm{C}_{\mathrm{x}_{1} \mathrm{x}_{2}}$	3.5	pF
$\mathrm{y}_{1}{ }^{\prime}$ to $\mathrm{y}_{2}{ }^{\prime}$	$\mathrm{CyI}_{1} \mathrm{y}_{2}{ }^{\prime}$	1.5	pF
y_{1} " to $\mathrm{y}_{2}{ }^{\prime \prime}$	$\mathrm{C}_{1}{ }^{\prime \prime} \mathrm{y}_{2}{ }^{\prime \prime}$	1.5	pF
$y_{1}{ }^{\prime}$ to $\mathrm{yl}^{\prime \prime}$	$\mathrm{C}_{1}{ }^{\prime} \mathrm{y}_{1}{ }^{\prime \prime}$	0.005	pF
$\mathrm{y}_{2}{ }^{\prime}$ to $\mathrm{y} 2^{\prime \prime}$	$\mathrm{C}_{\mathrm{y} 2}{ }^{\prime} \mathrm{y} 2^{\prime \prime}$	0.005	pF
$\mathrm{y}_{1}{ }^{\prime}$ to $\mathrm{y}_{2}{ }^{\prime \prime}$	$\mathrm{C}_{\mathrm{y}_{1}}{ }^{\prime} \mathrm{y}_{2}{ }^{\prime \prime}$	0.001	pF
$\mathrm{y}_{2}{ }^{\prime}$ to $\mathrm{y}_{1}{ }^{\prime \prime}$	$\mathrm{C}_{\mathrm{y}_{2}}{ }^{\prime} \mathrm{y}_{1}{ }^{\prime \prime}$	0.015	pF
Control grid to all other elements	$\mathrm{C}_{\mathrm{g}_{1}}$	7	pF
Cathode to all other elements	C_{k}	7	pF

NOTES

1) This tube is designed for optimum performance when operating at a ratio $\mathrm{Vg}_{7(\ell)} / \mathrm{V}_{\mathrm{g}_{2}, \mathrm{~g}_{4}}=6.7$
The geometry control voltage V_{g} should be adjusted within the indicated range (values with respect to the mean x -plate potential).
2) A negative control voltage on $g 5$ (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light. By varying the two voltages $\mathrm{V}_{\mathrm{g}_{5}}$ and $\mathrm{V}_{\mathrm{g}_{6}}$ it is possible to find the best compromise between background light and raster distortion.
3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
4) The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
5) A graticule, consisting of concentric rectangles of $100 \mathrm{~mm} \times 80 \mathrm{~mm}$ and 96 mm x 77 mm is aligned with the electrical x -axis of the tube. With optimum correction potentials applied a raster of each system will fall between these rectangles.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Geometry control electrode voltage
Interplate shield voltage
Background illumination control voltage
Focusing electrode voltage
First accelerator voltage
Astigmatism control voltage
Control grid voltage for extinction of focused spot
Deflection coefficient, horizontal vertical

Deviation of deflection linearity
Geometry distortion
Useful scan, horizontal vertical
Overlap of the two systems, horizontal vertical

LIMITING VALUES (Absolute max. rating system) Final accelerator voltage

Geometry control electrode voltage
Interplate shield voltage
Focusing electrode voltage
First accelerator and astigmatism control electrode voltage
Control grid voltage
Voltage between astigmatism control electrode and any deflection plate

Grid drive, average
Screen dissipation
Ratio $\mathrm{Vg}_{\mathrm{g}}(\ell) / \mathrm{V}_{\mathrm{g} 2}, \mathrm{~g}_{4}$

$\overline{\text { Notes see page } 4}$

