E14-100GH

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced, split-beam oscilloscope tube with mesh and metalbacked screen.

QUICK REFERE	NCE DATA		¥. I.
Final accelerator voltage	Vg7(1)	10	kV
Display area		100 x 80	mm ²
Deflection coefficient, horizontal vertical	M _X M _y ' M _y ''	13.5 9 9	V/cm V/cm V/cm
Overlap of the systems		100	%

Bind			Colour	Persistence		
Blue		E14-100GH	green	medium short		
	Useful screen dime	ensions		min. 1	00 x 80	mm ²
		$(l)/V_{g2}, g_4 = 6.7$ izontal cical (each system		min. min.	100 80	mm mm
-	ove	clap			100	%
	Spot eccentricity in	n horizontal and v	vertical directio	ons max.	7	mm

HEATING : indirect by A.C. or D.C. ; parallel supply

SCREEN : Metal-backed phosphor

Heater voltage	V _f	6.3	V
Heater current	I _f	300	mA

Blue Binder, Tab.4

January 1972

MECHANICAL DATA

Dimensions in mm

Front view

Mounting position : any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

MECHANICAL DATA (continued)

Dimensions and connections

See a	lso out.	line c	Irawi	ing
-------	----------	--------	-------	-----

Overall length (socket included) Face dimensions	max. 425 mm max. 120 x 100 mm ²
Net weight	approx. 900 g
Base	14-pin all glass
Accessories	
Socket (supplied with tube) Final accelerator contact connector	type 55566 type 55563

FOCUSING Electrostatic

DEFLECTION	Double electrostatic
x-plates	symmetrical
y-plates	symmetrical

If the full deflection capacity of the tube is used, part of the beam is intercepted by the deflection plates; hence a low-impedance deflection plate drive is desirable.

Angle between x and y traces (each beam)		90 ± 1	0	
Angle between corresponding y traces at screen centre	max.	45		
Angle between x trace and horizontal			0	
avia of the face	max	5	0	

The x-trace can be aligned with the horizontal axis of the screen by rotating the entire image by means of a rotation coil. This coil will have less than 50 ampturns for the indicated max. rotation of 5° and should be positioned as indicated on the drawing.

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, and adjusted for optimum spot size at a beam current of 5 μ A per system.

	Line width at screen centre	l.w. approx.	0.35	mm
	CAPACITANCES			
'	x_1 to all other elements except x_2	C _{x1(x2)}	8	pF
	x2 to all other elements except x1	C _{x2(x1)}	8	pF
	y1' to all other elements except y2'	Cy1'(y2')	5	pF
	y2' to all other elements except y1'	^C y ₂ '(y ₁ ')	6.5	pF
	y_1 " to all other elements except y_2 "	^C y ₁ "(y ₂ ")	6.5	pF
	y2" to all other elements except y1"	^{Cy} 2"(y ₁ ")	5	pF

CAPACITANCES (continued)

$C_{x_1x_2}$	3.5	pF	
Cy1'y2'	1.5	pF	
Cy1"y2"	1.5	pF	
Cy1'y1''	0.005	pF	
Cy2"y2"	0.005	pF	
Cy1'y2"	0.001	pF	
Cy2'y1''	0.015	pF	
c_{g_1}	7	pF	
Ck	7	pF	
	Cy1'y2' Cy1'y2'' Cy1'y1'' Cy2'y2'' Cy1'y2'' Cy1'y2'' Cy2'y1'' Cg1	$\begin{array}{ccc} C_{y1} & & & \\ C_{y2} & & & \\ C_{y2} & & & \\ C_{y1} & & & \\ C_{y2} & & & \\ C_{y2} & & & \\ C_{y1} & & & \\ C_{y2} & & & \\ C_{y1} & & & \\ C_{y2} & & & \\ C_{y1} & & & \\ C_{y2} & & & \\ C_{y1} $	$C_{y_1'y_2'}$ 1.5pF $C_{y_1'y_2''}$ 1.5pF $C_{y_1'y_1''}$ 0.005pF $C_{y_2'y_2''}$ 0.005pF $C_{y_2'y_1''}$ 0.001pF $C_{y_2'y_1''}$ 0.015pF C_{g_1} 7pF

NOTES

4

1) This tube is designed for optimum performance when operating at a ratio $Vg_7(\ell)/V_{g_2,g_4} = 6.7$.

The geometry control voltage V_{g_6} should be adjusted within the indicated range (values with respect to the mean x-plate potential).

- 2) A negative control voltage on g5 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light. By varying the two voltages V_{g_5} and V_{g_6} it is possible to find the best compromise between background light and raster distortion.
- 3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4) The sensitivity at a deflection less than 75 % of the useful scan will not differ from the sensitivity at a deflection of 25 % of the useful scan by more than the indicated value.
- 5) A graticule, consisting of concentric rectangles of 100 mm x 80 mm and 96 mm x 77 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster of each system will fall between these rectangles.

TYPICAL OPERATING CONDITIONS

	Final accelerator voltage	Vg7(1)		10	kV	
	Geometry control electrode voltage	Vg6	1500	100 ± 100	v	1)
	Interplate shield voltage	V _{g5}		1500	V	
	Background illumination control voltage	ΔV_{g_5}	0	to -15	V	2)
	Focusing electrode voltage	V _{g3}	350	to 650	V	
	First accelerator voltage	V _{g2,g4}		1500	V	
	Astigmatism control voltage	$\Delta V_{g_2,g_4}$		<u>+</u> 75	V	3)
)	Control grid voltage for extinction of focused spot	V _{g1}	-20	to -70	V	
	Deflection coefficient, horizontal vertical	M _x app M _y ' app M _y '' app	prox.		V/c V/c V/c	em
	Deviation of deflection linearity	max	ς.	2	%	4)
	Geometry distortion	see	note 5)			
	Useful scan, horizontal vertical	min min		100 80	mm mm	
	Overlap of the two systems, horizontal vertical			100 100	% %	
	LIMITING VALUES (Absolute max. rating system	n)				
	Final accelerator voltage	Vg7(1)	max. min.	13 9	kV kV	
	Geometry control electrode voltage	v _{g6}	max.	2200	V	
	Interplate shield voltage	V _{g5}	max.	2200	V	
	Focusing electrode voltage	Vg3	max.	2200	V	
)	First accelerator and astigmatism control electrode voltage	v _{g2} ,g4	max. min.	2200 1350	V V	
	Control grid voltage	-v _{g1}	max. min.	200 0	V V	
	Voltage between astigmatism control electrode and any deflection plate	Vg4/x Vg4/y	max. max.	500 500	V V	
	Grid drive, average		max.	30	V	
	Screen dissipation	Wl	max.	3	mW	$/cm^2$
	Ratio Vg7(1)/Vg2,g4	Vg ₇₍₁₎ /Vg ₂ ,g	4 max.	6.7		

Notes see page 4

PHILIPS	January 1972	January 1972	PHILIPS	5
---------	--------------	--------------	---------	---