INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with post-deflection acceleration mesh, primarily intended for use in compact oscilloscopes with 15 to 20 MHz bandwidth.

Final accelerator voltage			$V_{\mathrm{g} 7}(\ell)$	$\begin{gathered} 4 \mathrm{kV} \\ 100 \times 80 \mathrm{~mm}^{2} \end{gathered}$
Display area				
Deflection coefficient horizontal vertical			$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	$19,5 \mathrm{~V} / \mathrm{cm}$ $10,5 \mathrm{~V} / \mathrm{cm}$
SCREEN				
		colour	persistence	
	D14-260GH	green	medium short	
Useful screen dimensions $\quad \geqslant 100 \times 80 \mathrm{~mm}^{2}$				
Useful scan horizontal vertical			\geqslant	$\begin{array}{r} 100 \mathrm{~mm} \\ 80 \mathrm{~mm} \end{array}$
Spot eccentricity in horizontal				
HEATING				
Indirect by a.c. or d.c.; parallel supply				
Heater voltage $V^{\text {d }}$				6,3 V
Heater current If_{f}				300 mA
MECHANICAL DATA				
Mounting position: any				
The tube should not be supported by the base alone and under no circumstances should the socket b allowed to support the tube.				
Net mass ap				approx. 1050 g
Base 14				14-pin, all glass
Final accelerator contact				(JEDEC J1-25)

Dimensions and connections

See also outline drawing
Overall lenģth
\leqslant
333 mm
Face dimensions
\leqslant
$00 \times 120 \mathrm{~mm}$

Accessories

Socket, supplied with tube

Mu-metal shield
Final accelerator contact connector
type 55566
type 55591

FOCUSING
type 55569

DEFLECTION
x-plates
y-plates
Angle between x and y-traces
Angle between x-trace and horizontal axis of the face
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x_{1} to all other elements except x_{2}	$C_{x 1}(x 2)$	7 pF
x_{2} to all other elements except x_{1}	$C_{x 2}(x 1)$	$6,5 \mathrm{pF}$
y_{1} to all other elements except y_{2}	$C_{y 1}(y 2)$	4 pF
y_{2} to all other elements except y_{1}	$C_{y 2}(y 1)$	$3,5 \mathrm{pF}$
x_{1} to x_{2}	$C_{x 1 x 2}$	$2,2 \mathrm{pF}$
y_{1} to y_{2}	$C_{y 1 y 2}$	$1,1 \mathrm{pF}$
Control grid to all other elements	$C_{g 1}$	$6,1 \mathrm{pF}$
Cathode to all other elements	C_{k}	5 pF

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with post-deflection acceleration mesh, primarily intended for use in compact oscilloscopes with 15 to 20 MHz bandwidth. This tube features a low heater consumption.

QUICK REFERENCE DATA		
Final accelerator voltage	$V_{g 7(\ell)}$	4 kV
Display area Deflection coefficient horizontal vertical		$100 \times 80 \mathrm{~mm}^{2}$

The D14-261GH is equivalent to the type D14-260GH except for the following.

HEATING

LIMITING VALUES (Absolute maximum rating system)
Cathode to heater voltage
negative
Control grid circuit resistanc
C_{k}
$2,5 \mathrm{pF}$

* The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 400Ω. Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 30 mA at a required voltage of 12 V .

Notes to the drawings on opposite page.

1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm .
2. The coil is fixed to the envelope by means of adhesive tape.
3. The centre of the contact is situated within a square of $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ around the true geometrical position.
4. The length of the connecting leads of the rotation coil is min .350 mm

DIMENSIONS AND CONNECTIONS
Dimensions in mm
For notes to the drawings see bottom of opposite page.

00

TYPICAL OPERATION

Conditions

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}} 7(\ell)$	4 kV	
Post deflection accelerator mesh electrode voltage	$V_{\mathrm{g} 6}$	2000 V	
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	2000 V	(note 1)
First accelerator voltage	$V_{g 2, g 4}$	2000 V	
Astigmatism control electrode voltage	$\Delta V_{g 2, g 4}$	$\pm 50 \mathrm{~V}$	(note 2)
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$.	300 to 480 V	
Control grid voltage for visual extinction of focused spot	$\mathrm{V}_{\mathrm{g} 1}$	-30 to -70 V	

Performance

Useful scan

horizontal

vertical
$\left.\begin{array}{rr}\geqslant & 100 \mathrm{~mm} \\ \geqslant & 80 \mathrm{~mm}\end{array}\right\}$ (note 3)
Deflection coefficient
horizontal

Deviation of linearity of deflection
Grid drive for $10 \mu \mathrm{~A}$ screen current
Geometry distortion

M_{x}		$19,5 \mathrm{~V} / \mathrm{cm}$	
	\leqslant		
$21,5 \mathrm{~V} / \mathrm{cm}$			
M_{y}	\leqslant	$10,5 \mathrm{~V} / \mathrm{cm}$	
	$\leqslant 11,6 \mathrm{~V} / \mathrm{cm}$		
I.w.	$\approx 0,35 \mathrm{~mm} \quad$ (note 4)		
	\leqslant	2%	(note 5)

$19,5 \mathrm{~V} / \mathrm{cm}$
21,5 V/cm
$11,6 \mathrm{~V} / \mathrm{cm}$
$\%$ (note 4)
20 V
see note 6

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 7(\ell)}$	\max.	$4,4 \mathrm{kV}$
min.	3 kV		
Post deflection accelerator mesh electrode voltage	$\mathrm{V}_{\mathrm{g} 6}$	\max.	2200 V
Interplate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	\max.	2200 V
First accelerator and		\max.	2200 V
\quad astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}$	\min.	1500 V
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	\max.	2200 V
Control grid voltage	$-\mathrm{V}_{\mathrm{g} 1}$	\max.	200 V
min.	0 V		

Cathode to heater voltage positive
negative
Grid drive, average
Screen dissipation
Control grid circuit resistance
$\begin{array}{lll}\mathrm{V}_{\mathrm{kf}} & \max . & 125 \mathrm{~V} \\ -\mathrm{V}_{\mathrm{kf}} & \max . & 125 \mathrm{~V}\end{array}$
$-\mathrm{V}_{\mathrm{kf}}$ max. 125 V
$W_{\ell} \quad$ max. $\quad 3 \mathrm{~mW} / \mathrm{cm}^{2}$
$\mathrm{R}_{\mathrm{g} 1} \max . \quad 1 \mathrm{M} \Omega$

NOTES

1. The interplate shield voltage should be equal to the mean x-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
2. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
3. The tube is designed for optimum performance when operating at a ratio $\mathrm{V}_{\mathrm{g} 7} 7(\ell) / \mathrm{V}_{\mathrm{g} 2, \mathrm{~g} 4}=2$.
. The tube is designed for optimum performance when operating at a ratio $V_{g} 7(l) / V_{g}$,
4. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of $10 \mu \mathrm{~A}$.
5. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
6. A graticule consisting of concentric rectangles of $95 \mathrm{~mm} \times 75 \mathrm{~mm}$ and $93 \mathrm{~mm} \times 73 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.
