DEVELOPMENT SAMPLE DATA This information is derived from development samples made available for evaluation. It does not form part of our data handbook system and does not necessarily imply that the device will go into production

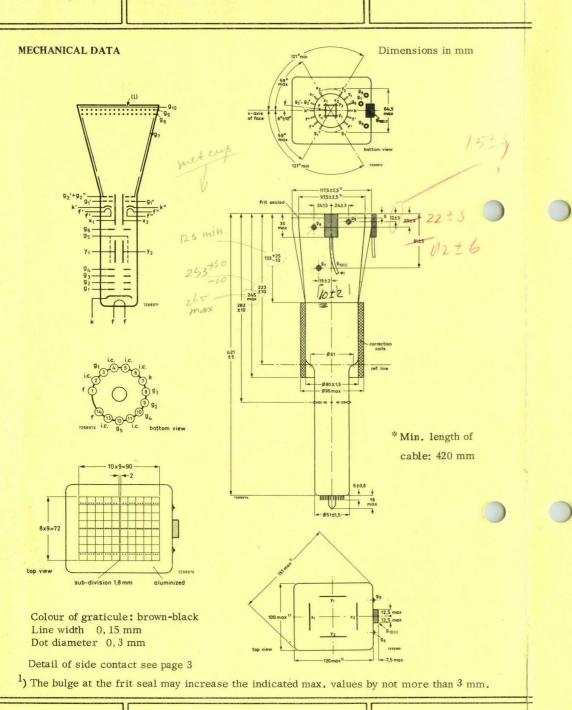
L14-110GH/55

INSTRUMENT CATHODE-RAY TUBE

14 cm-diagonal rectangular flat-faced direct-view storage tube with variable persistence and internal graticule, intended for oscilloscope applications.

	QUICK REFEREN	ICE DATA			
)	Final accelerator voltage Display area (10 x 8 divisions of 9 mm)	$v_{g_{10}}(\ell)$	90	8,5 x 72	kV mm ²
	Deflection coefficient, horizontal vertical	M _x M _y		9,5 4,1	V/div V/div

SCREEN


Metal backed phosphor

Tab 4			Persistence (non-store mode)			istence re mod	1		
		L14-110GH/55	green	medium-short		vari	able		
Binder	Use	ful screen dimension	S	min.	90	x	72	mn	1
an	Use	ful scan, horizontal		min.			90	mn	ı
BI		vertical		min.			72	mn	1
	Spot	t eccentricity in hori:	zontal						
	aı	nd vertical directions		max.			6	mn	1

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer.

HEATING

-	Writing section			
J	Indirect by a.c. or d.c.; parallel supply			
	Heater voltage	V _f -	6,3	V
	Heater current	I_{f}	300	mA .
	Viewing section			
	Indirect by d.c.; parallel supply			
	Heater voltage	V _f .	6,3	V
	Heater current	I _f ,	300	mA
	Heater voltage	Vf"	6,3	V
	Heater current	I _f "	300	mA

PHILIPS

February 1973

2

MECHANICAL DATA (continued)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

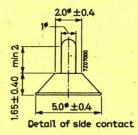
The tags near the screen should not be subjected to mechanical stress.

Dimensions and connections

See also outline drawing					
Overall length (socket included)		max.	445	mm	
Face dimensions		max. 100) x 120	mm ²	
Net weight		approx.	1100	g	
Base		14 pin, a	ll glass		
Accessories					
Socket (supplied with tube)		type	55566		
Side contact connector (14 required)		type	55561		
Contact connector for g7, g8, and g9		type	55560		
FOCUSING	electros	static			
DEFLECTION	double e	electrostat	tic		
x-plates	symmet	rical			
y-plates	symmet	rical			
Angle between x and y traces			90	0	
Angle between x-trace and x-axis of the internal graticule			0	0	
See also "Correction coils"					

LINE WIDTH = for

February 1973


Serformance.

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I_b = 10 μ A (measured against x-plates)

1.w.

Line width at the centre of the screen

PHILIPS

CAPACITANCES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	6	pF	
x_2 to all other elements except x_1	$C_{x_2(x_1)}$	6	pF	
y_1 to all other elements except y_2	Cy1(y2)	3,5	pF .	
y_2 to all other elements except y_1	C _{y2} (y1)	3,5	pF	
x ₁ to x ₂	C _{x1x2}	3	pF	
y ₁ to y ₂	$C_{y_1y_2}$	2	pF	
g ₁ to all other elements	Cg1	6	pF	
g1' to all other elements	C _{g1} ,	7	pF	1
g ₁ " to all other elements	с _{g1} "	7	pF	
k to all other elements	Ck	5	pF	
k' to all other elements	C _k '	5	pF	
k" to all other elements	C _k "	5	pF	
g7 to all other elements	Cg7	35	pF	
g9 to all other elements	Cg9	35	pF	

TYPICAL OPERATING CONDITIONS

A. Writing section (voltages with respect to writing gun cathode k)

	Final accelerator voltage	$v_{g_{10}}(l)$		8500	V ¹)	
	Geometry control electrode voltage	Vg6		1500 ± 10	0 V	
	Deflection plate shield voltage	Vg5		1500	v ⁸)	
	Astigmatism control electrode voltage	vg4		1500 ± 50	V	
	Focusing electrode voltage	vg3	500 to	600	v	
	First accelerator voltage	v _{g2}		1500	V	
3	Control grid voltage for visual extinction					
• '	of focused spot	v _{g1}	-40 to	-80	v	(
	Grid drive for 10 μ A beam current			≈ 25	V	
	Deflection coefficient, horizontal	M _X	max.	9,5 10,5	V/div V/div	
	vertical	My	max.	4, 1 4, 4	V/div V/div	
1	Geometry distortion		see note			
).	Deviation of linearity of deflection		max.	2	% ³)	
	Useful scan, horizontal		min.	90	mm	
1	vertical		min.	72	mm	
1						

OPERATING NOTES

Modes of operation

1 Store mode

a. Dynamic erasure (variable persistence)

Dynamic erasure can be achieved by applying erasing pulses of positive polarity to the backing electrode. $\ell_{\rm l}$

The pulse amplitude required is approximately & V and the persistence of a stored display can be controlled by varying the duty factor of these pulses.

b. Static erasure

If no dynamic erasing pulses are applied, the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, the backing electrode should first be connected to the collector electrode voltage and then returned to its original potential for about 100 ms; after that, an erasing pulse of positive polarity and a duration of not less than 300 ms should be applied. For the adjustment of the amplitude of this pulse see "Procedure of adjustment".

2 Non-store mode

For non-store operation, it is sufficient to make the backing electrode about 35 V negative with respect to the viewing gun cathodes. The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Procedure of adjustment

a. Adjust the cathode current of each viewing gun to 0, 4 mA by means of its control grid voltage.

b. Adjustment of the erasing pulse amplitude (static erasure)

The pulse amplitude should be just sufficient to suppress any background illumination at the centre of the display area (this adjustment should be done under low ambient light conditions). $io f_{\rm NM}$?

Data on storage time and maximum writing speed are based on erasure to "just black". A larger pulse amplitude (erasure to "blacker than black") yields a longer storage time at the expense of maximum writing speed. On the other hand, writing speed can be increased if some background illumination is tolerated.

To erase to "just black" the amplitude of this pulse is approximately 8 V. www.l) -

c. Adjustment of the collimator voltage

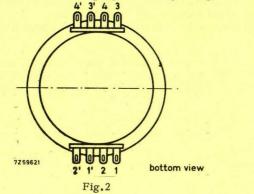
With dynamic erasing pulses applied and a persistence control setting that yields a convenient background illumination intensity, the collimator voltage is adjusted for optimum background uniformity. This voltage will be approximately 75 V with respect to the viewing gun cathode potential. If this voltage is too high or too low, there is a decrease of intensity at the four corners or at the centres of the vertical edges of the display area respectively.

For a good erasure of the display, the collimator voltage should be as low as possible.

V -

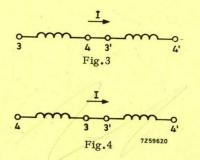
v

mA


DVg J

7050

0,4


Connecting the coils

The coils have been connected to 8 soldering tags according to Fig. 2.

With L₃ and L₄ connected in series according to Fig.3 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti-clockwise rotation of the horizontal trace.

With the connection according to Fig.4 the current as indicated will produce an upward shift.

8

Backing electrode voltage, 0 to 5 V Vg9 v non-storage operation -35 Vg9 Vg8 150 V 4) 30 to 120 Vg7 V 5) Vg2;,g2" 50 First accelerator voltage

 $V_{g_{10}(\ell)}$

Ik', Ik"

 $V_{g_1'}$, $V_{g_1''}$ -30 to -70

(voltages with respect to viewing gun cathodes k' and k")

Control grid voltage for cut-off Cathode current (each viewing gun)

PERFORMANCE

B. Viewing section

Collector voltage

Collimator voltage

Final accelerator voltage

storage operation

Writing speed in store mode	greater than 100	div/ms ⁶)
Storage time	greater than 1,5	min ⁷)

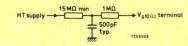
LIMITING VALUES (Absolute max. rating system)

A. Writing section (voltages with respect to writing gun cathode k)

Einel accolorator voltare	V	max.	9500	v
Final accelerator voltage	Vg10(1)	min.	7000	V
Geometry control electrode voltage	v _{g6}	max.	2100	v
Deflection plate shield voltage	Vg5	max.	2000	V
Astigmatism control electrode voltage	Vg4	max. min.		v v
Focusing electrode voltage	Vg3	max.	1000	v
First accelerator voltage	Vg2	max. min.		v v
Control grid voltage, positive	V _{g1}	max.	0	v
negative	v_{g_1} - v_{g_1}	max.	200	V
Cathode to heater voltage, positive	Vkf	max.	125	V
negative	-V _{kf}	max.	125	V
Voltage between astigmatism control electrode				
and any deflection plate	Vg4/x	max.	500	V
A STATE OF A	Vg4/y	max.	500	. V
find drive (average coltage).	and the	1 Y . 4		

February 1973

D Minutes and


	B. Viewing section (voltages with respect to view otherwise specified)	ving gun cathod	es k' ai	nd k" unle	SS	
	Final accelerator voltage	V	max.	8000	v	
	That accelerator voltage	Vg ₁₀ (1)	min.	5500	V	
	Backing electrode voltage,		max.	5	V	
	storage operation	Vg9	min.		v	
	non-storage operation	77	max.	50	V	
	non-storage operation	-Vg9	min.	25	V	
	Collector voltage	37	max.	175	V	1020
	Collector voltage	Vg8	min.	175 125		
	Collimator voltage	37	max.	120		200
	Collimator voltage	Vg7	min.	30	V	.0.
	First accelerator veltare	V	max.	60	v	
	First accelerator voltage	Vg2',g2''	min.	40	V	
	Cathode to heater voltage, positive	Vk'f', Vk''f''	max.	125	V	
	negative	-Vk'f', -Vk''f''	max.	125	V	
w/	Cathode current (each viewing gun)	T. T.	max.	0,5	mA	1
\cap	(cathode current (each viewing gui)	Ik', Ik"	min.	-0.3	mA	Υ.
	Control grid voltage, positive	Vg1'; Vg1"	max.	0	v	;
	negative	v_{g_1} , v_{g_1} , - v_{g_1} , - v_{g_1} ,	max.	200	V	

anthodog let and lett unl

NOTES

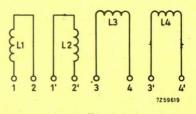
6

 To protect the tube against excessive surge current during erasure, an adequately dimensioned RC-network must be connected in series with the screen terminal lead.

- 2) A graticule consisting of concentric rectangles of 88 mm x 70 mm and 86 mm x 68, 5mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.
- 3) The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- ⁴) The collimator electrode voltage should be adjusted for optimum uniformity of background illumination.
- 5) The voltage V_{g_2} , g_2 " should be equal to the mean x-plate potential.

- 6) The writing speed is defined as the maximum speed at which a written trace is just visible, starting from a background which is just black. The indicated value is guaranteed for a centred rectangle of 6 (vertical) x 8 (horizontal) divisions, except for the outer corner halves of the four 1 x 1 areas. The writing speed can be increased to approx. 1 cm/µs if some background is tolerated.
- ⁷) The storage time is defined as the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
- 8) This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.

CORRECTION COILS


General

The L14-110GH/55 is provided with a coil unit consisting of: (see Fig.1) 1. a pair of coils L_3 and L_4 which enable

a. the angle between the x and y traces at the centre of the screen to be made exactly 90⁰ (orthogonality correction);

b. the scanned area to be shifted up and down (vertical shift))

2. a pair of coils L_1 and L_2 for image rotation which enable the alignment of the x-trace with the x - lines of the graticule

Orthogonality and shift (coils L3 and L4)

The current required under typical operating conditions without a mu-metal shield being used is max. 20 mA for complete correction of orthogonality and shift. It will be 30 % to 50 % lower with shield, depending on the shield diameter. The resistance of the coil is approx. 225 Ω .

Image rotation (coils L_1 and L_2)

The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 22 A-turns are required for maximum rotation of 5° . Both coils have 850 turns. This means that a current of max.12, 5mA per coil is required which can be obtained by using a 12 V supply when the coils are connected in series or a 6 V supply when they are in parallel.

February 1973

INSTRUMENT CATHODE-RAY TUBE

14 cm-diagonal rectangular flat-faced direct-view storage tube with variable persistence and internal graticule, intended for oscilloscope applications.

QUICK REFERENCE	DATA		
Final accelerator voltage	$V_{g_{10}}(\ell)$	8,5	kV
Display area (10 x 8 divisions of 9 mm)		90 x 72	mm ²
Deflection coefficient, horizontal	M _x	9,5	V/div
vertical	My	4,1	V/div
Writing speed		1	cm/µs

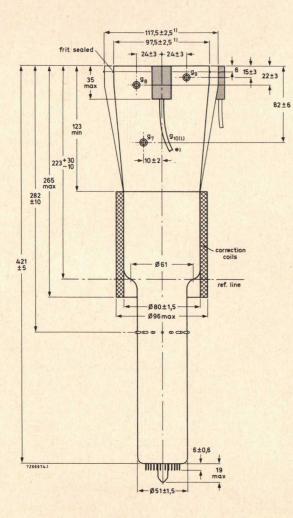
SCREEN

Metal backed phosphor

Tab 4			Colour	Persistence (non-store mode)			istenc re moo	
		L14-110GH/55	green	medium-short		vari	able	
Binder	Use	ful screen dimension	S ,	min.	.90	x	72	mm
ue	Use:	ful scan, horizontal		min.			90	mm
BI		vertical		min.			72	mm
	+	eccentricity in hori						
	ar	nd vertical directions	3	max.			6	mm

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer.

HEATING


~	Writing section				
)	Indirect by a.c. or d.c.; parallel supply				
	Heater voltage		V _f	6,3	v
	Heater current		If	300	mA
	Viewing section				
	Indirect by d.c.; parallel supply				
	Heater voltage		V _f ,	6,3	V
	Heater current		If'	300	mA
	Heater voltage		Vf"	6,3	V
	Heater current		I _f ''	300	mA
		11 1 1 1 1			

MECHANICAL DATA

Dimensions in mm

0

0

* min. length of cable: 420 mm

2

¹) The bulge at the frit seal may increase the indicated max. values by not more than 3 mm.

December 1974

OPERATING NOTES

Modes of operation

1 Store mode

a. Dynamic erasure (variable persistence)

Dynamic erasure can be achieved by applying erasing pulses of positive polarity to the backing electrode.

The pulse amplitude required is approximately 9 V (< 15 V) and the persistence of a stored display can be controlled by varying the duty factor of these pulses.

b. Static erasure

If no dynamic erasing pulses are applied, the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, the backing electrode should first be connected to the collector electrode voltage and then returned to its original potential for about 100 ms; after that, an erasing pulse of positive polarity and a duration of not less than 300 ms should be applied. For the adjustment of the amplitude of this pulse see "Procedure of adjustment".

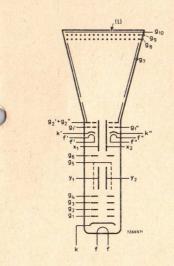
2 Non-store mode

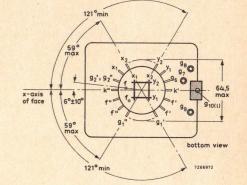
For non-store operation, it is sufficient to make the backing electrode about 35 V negative with respect to the viewing gun cathodes. The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

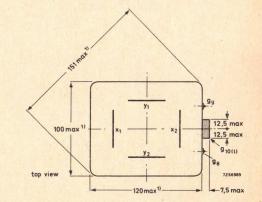
Procedure of adjustment

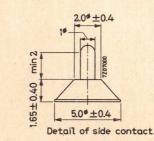
- a. Adjust the cathode current of each viewing gun to 0, 4 mA by means of its control grid voltage.
- b. Adjustment of the erasing pulse amplitude (static erasure)

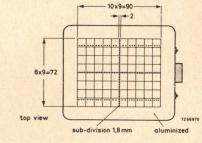
The pulse amplitude should be just sufficient to suppress any background illumination at the centre of the display area (this adjustment should be done under low ambient light conditions).


Data on storage time and maximum writing speed are based on erasure to "just black". A larger pulse amplitude (erasure to "blacker than black") yields a longer storage time at the expense of maximum writing speed. On the other hand, writing speed can be increased if some background illumination is tolerated.


To erase to "just black" the amplitude of this pulse is approximately 9 V.


c. Adjustment of the collimator voltage


With dynamic erasing pulses applied and a persistence control setting that yields a convenient background illumination intensity, the collimator voltage is adjusted for optimum background uniformity. This voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage is too high or too low, there is a decrease of intensity at the four corners or at the centres of the vertical edges of the display area respectively.


For a good erasure of the display, the collimator voltage should be as low as possible.

Colour of graticule: brown-black Line width 0, 15 mm Dot diameter 0, 3 mm

DHILIDS

L14-110GH/55

MECHANICAL DATA

Dimensions in mm

December 1974

3

L14-110GH/55

MECHANICAL DATA (continued)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

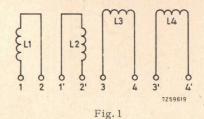
The tags near the screen should not be subjected to mechanical stress.

Dimensions and connections

See also outline drawing

Overall length (socket included)	max. 445 mm
Face dimensions	max. 100 x 120 mm
Net mass	approx. 1,1 kg
Base	14 pin, all glass
Accessories	
Socket (supplied with tube)	type 55566
Side contact connector (14 required)	type 55561

FOCUSING	electrostatic	
DEFLECTION	double electrostatic	
x-plates	symmetrical	
y-plates	symmetrical	
Angle between x and y traces	90	0
Angle between x-trace and x-axis of the internal graticule	0	0 :
See also "Correction coils"		


LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_b = 10 \ \mu A$ (measured against x-plates)

Line width at the centre of the screen

0,35

1.w.

Orthogonality (coils L3 and L4)

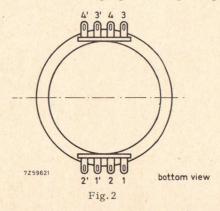
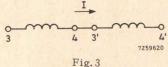

The current required under typical operating conditions without a mu-metal shield being used is max. 20 mA for complete correction of orthogonality. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of the coil is approx. 225 Ω .

Image rotation (coils L_1 and L_2)


The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 22 A-turns are required for maximum rotation of 5° . Both coils have 850 turns. This means that a current of max. 12, 5 mA per coil is required which can be obtained by using a 12 V supply when the coils are connected in series or a 6 V supply when they are in parallel.

Connecting the coils

The coils have been connected to 8 soldering tags according to Fig. 2.

With L_3 and L_4 connected in series according to Fig. 3 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti-clockwise rotation of the horizontal trace.

1

December 1974

mm

December 1974

NOTES

 These values are valid at cut-off of both flood guns and the writing gun. The H. T. unit must be capable to supply 0, 5 mA. To protect the tube against excessive surge current during erasure, an adequately dimensioned RC-network must be connected in series with the screen terminal lead.

- 2) A graticule consisting of concentric rectangles of 88 mm x 70 mm and 86 mm x 68,5mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.
- ³) The sensitivity at a deflection less than 75 % of the useful scan will not differ from the sensitivity at a deflection of 25 % of the useful scan by more than the indicated value.
- ⁴) The collimator electrode voltage should be adjusted for optimum uniformity of background illumination.
- 5) The voltage V_{g_2} , g_2 " should be equal to the mean x-plate potential.
- ⁶) The writing speed is defined as the maximum speed at which a written trace is just visible, starting from a background which is just black. The indicated value is guaranteed for a centred rectangle of 6 (vertical) x 8 (horizontal) divisions, except for the outer corner halves of the four 1 x 1 areas.

The writing speed can be increased to approx. 1 cm/ $\!\mu s$ if some background is tolerated.

- 7) The storage time is defined as the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
- 8) This voltage should be equal to the mean y-plate potential.The mean x and y-plate potentials should be equal for optimum spot quality.

CORRECTION COILS

General

8

The L14-110GH/55 is provided with a coil unit consisting of: (see Fig. 1)

- 1. a pair of coils L₃ and L₄ which enable the angle between the x and y traces at the centre of the screen to the made exactly 90° (orthogonality correction).
- 2. a pair of coils L_1 and L_2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

CAPACITANCES

	x_1 to all other elements except x_2	C _{x1(x2)}	6	pF
	x_2 to all other elements except x_1	$C_{x_2(x_1)}$	6	pF
	y_1 to all other elements except y_2	Cy1(y2)	3	pF
	y_2 to all other elements except y_1	C _{y2} (y1)	3	pF
	x ₁ to x ₂	C _{x1x2}	2,5	pF
	y ₁ to y ₂	Cy1y2	2	pF
	g ₁ to all other elements	Cg ₁	6	pF
)	g1' to all other elements	Cg1,	5,5	pF
	g1" to all other elements	C _{g1} "	5,5	pF
	k to all other elements	Ck	5	pF
	k' to all other elements	Ck'	5	pF
	k" to all other elements	Ck"	5	pF
	g ₇ to all other elements	Cg7	30	pF
	g ₉ to all other elements	C _{g9}	25	pF

December 1974

PHILIPS

			Second States			and the second of
TYPICAL OPERATION						LIMITING VA
Conditions						A. Writing
A. Writing section (voltages with respect to writing	gun catho	de k)				Final accele
Final accelerator voltage	Vg10(1)		8500	V ¹)		
Geometry control electrode voltage	Vg6		1500±100	v		Geometry co
Deflection plate shield voltage	Vg5		1500	v ⁸)		Deflection p
'Astigmatism control electrode voltage	Vg4		1500 ± 50	v		Astigmatisn
Focusing electrode voltage	Vg3	400 to	600	V ,		Focusing ele
First accelerator voltage	v _{g2}		1500	V	0	
Control grid voltage for visual extinction						First accele
of focused spot	v _{g1}	-40 to	-80	V		Control grid
B. Viewing section (voltages with respect to viewi	ng gun cat	thodes k'	and k")			Cathada ta k
				v 1)		Cathode to h
Final accelerator voltage	Vg10(1)		7050	V -)		Voltage betv
Backing electrode voltage, storage operation	Vg9	C) to 5	v		and any de
non-storage operation	Vg9		、 -35	V		
Collector voltage	Vg8		150	V		Grid drive,
Collimator voltage	Vg7	30	to 120	v ⁴)		B. Viewing s
First accelerator voltage	Vg2;,g2	"	50	V 5)		
Control grid voltage for cut-off	v _{g1} , v	g1" -30	to -70	V		Final accele
Cathode current (each viewing gun)	I _k , I _k ,		0,4	mA		D. 1. 1
Performance						Backing elec storage o
Grid drive for 10 μ A beam current			≈ 25	v		
Deflection coefficient, horizontal	Mx		9,5	V/div V/div		non-stora
		max.	10,5 4,1	V/div	Q.	Collector vo
vertical	My	max.	4,4	V/div		
Geometry distortion		see not	e 2	2		Collimator
Deviation of linearity of deflection		max.	2	% ³)		Einst accel
Useful scan, horizontal		min.	90 72	mm mm		First accele
vertical		min.	: than 100	div/m	5 6	Cathode to l
Writing speed in store mode		-	than 1,5	min	7)	
Storage time		greater	. chun 1, 0	mm		Control grid

LIMITING VALUES (Absolute max. rating system)

A. Writing section (voltages with respect to writing gun cathode k)

	Final accelerator voltage	Vg10(1)	max. min.		V V
	Geometry control electrode voltage		max.		v V
	Deflection plate shield voltage	Vg ₆	max.		v
	Denection plate shield voltage	V _{g5}			
	Astigmatism control electrode voltage	v _{g4}	max. min.		V V
	Focusing electrode voltage	Vg3	max.	1000	v
)	First accelerator voltage	V _{g2}	max.		V
			min.	1250	V
	Control grid voltage, positive	$v_{g_1} - v_{g_1}^{g_1}$	max.	0	V
	negative	-Vg1	max.	200	V
	Cathode to heater voltage, positive	Vkf	max.	125	V
	negative	-V _{kf}	max.	125	V
	Voltage between astigmatism control electrode				
	and any deflection plate	Vg ₄ /x	max.	500	V
		V _{g4} /x V _{g4} /y	max.	500	V
	Grid drive, average		max.	30	v

B. Viewing section (voltages with respect to viewing gun cathodes k' and k'' unless otherwise specified)

	Final accelerator voltage	V	max.	8000	V
	r mar accelerator voltage	Vg10(1)	min.	5500	V
	Backing electrode voltage,				
	storage operation	Vgo	max.	.5	V
		59	min.	0	V V
	non-storage operation	_V _{g9}	max. min.	50 25	VV
1		09	mm.	20	v
J	Collector voltage	V~	max.	180	V
	concetor vorage	Vg8	min.	120	V
			max.	200	v
	Collimator voltage	Vg7	min.	0	v
			max.	60	v
	First accelerator voltage	Vg2', g2"	min.	40	v
					and a
	Cathode to heater voltage, positive	Vk'f', Vk''f''		125	V
	negative	-Vk'f', -Vk''f''	max.	125	V
	Control grid voltage, positive	V V. "	max.	0	v
	negative	V _{g1} ', V _{g1} " -V _{g1} ', -V _{g1} "	max.	200	v
	nogative	'g1'''g1	in and i		