INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- direct - view storage tube
- internal graticule
- for oscilloscope applications

QUICK REFERENCE DATA

	Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\ell)$	$8,5 \mathrm{kV}$
	Minimum useful scan area		$90 \mathrm{~mm} \times 72 \mathrm{~mm}$
	Deflection coefficient horizontal vertical	$\begin{aligned} & M_{x} \\ & M_{y} \end{aligned}$	9,5 V/div 4,1 V/div
	Writing speed		2,5 div/ $/ \mathrm{s}$
	optical data		
	Screen type persistence, non-store mode persistence, store mode		metal-backed phosphor GH, colour green medium-short variable
	Useful screen area		$\mathrm{min} .90 \mathrm{~mm} \times 72 \mathrm{~mm}$
	Useful scan area		$\mathrm{min} .90 \mathrm{~mm} \times 72 \mathrm{~mm}$
	Spot eccentricity in horizontal and vertical directions		max. 6 mm
	Internal graticule		typ. 95; see Fig. 6
	heating		
	Writing section		
O	Indirect by a.c. or d.c.*		
	Heater voltage	v_{f}	6,3 V
	Heater current	If	240 mA
	Heating time to attain 10% of the cathode current at equilibrium conditions		approx. 5 s
	Viewing section		
	Indirect by d.c.*		
	Heater voltage	$V_{\text {FGf }}$	$12,6 \mathrm{~V}$
	Heater current	${ }^{\text {F FGf }}$	240 mA
	Heating time to attain 10% of the cathode current at equilibrium conditions * Not to be connected in series with other tubes.		

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Faceplate dimensions (final accelerator contact excluded)

Net mas

Mase

Mounting position

The tube can be mounted in any position. It should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress. Avoid any force on the side contacts.

Accessories

Socket (supplied with tube)
Side contact connector (7 required)
Small ball contact connector (5 required)

FOCUSING

DEFLECTION
x-plates
y-plates
Angle between x and y-trace
Angle between x-trace and x-axis
of the internal graticule

type 55566

type 55561 type 402210221590

electrostatic

double electrostati
symmetrical
symmetrical
90 ± 10

OPERATING NOTES

Modes of operation

Non-storage mode
For non-storage operation the front mesh $\mathrm{V}_{\mathrm{g} 9}$ is set to -50 V with respect to FGK .
The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused.
Variable persistence mode
a. Dynamic erasure

Dynamic erasure can be achieved by applying extra erasing pulses of positive polarity to the backing electrode V_{g}. The amplitude of these extra pulses is equal to that of the original erasing pulse, the frequency is 120 Hz and the persistence of the display can be controlled by varying the duty factor.
b. Static erasure (Fig. 9)
f no dynamic erasing pulses are applied the storage time is limited by the potential shift of the storage layer due to landing of positive ions.
In order to erase a stored display, $\mathrm{V}_{\mathrm{g} 9}$ is increased to 150 V for 100 ms and than returned to its original potential for about 500 ms ; after that, an erasing pulse of positive polarity (max. 15 V) and a duration of 600 ms should be applied.
While the erasing pulse amplitude is to be adjusted with zero d.c. level for "just black", the background illumination can be changed - even with a stored signal - by varying the d.c. level for optimum contrast or maximum writing speed
Back ground egality can be optimized by balancing the viewing gun cathodes by means of a potentio meter of $2,2 \mathrm{k} \Omega$, proper collimator adjustment, and by increasing $V_{F G A} . V_{g 7-1}, V_{g 7-2}$ and $V_{g 7-3}$ in positive direction during erasure.
Before first installation, depending on transport conditions, demagnetization of the tube face region may be necessary.

* The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the x-trace with the mechanical x-axis of the screen. The coil has 2000 turns and a maximum resistance of 650Ω. Under typical operating conditions, a maximum of 20 ampere-turns is required for the maximum rotation of 5°. This means the required supply is 10 mA maximum at 8 V maximum

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying $0,5 \mathrm{~mA}$. To protect the tube against excessive surge current during erasure, an RC network as shown in Fig. 10 must be connected in series with the screen terminal lead; the resistance of 15 to $20 \mathrm{M} \Omega$ includes the internal resistance of the H.T. supply.

Fig. 10.
2. This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
3. When putting the tube into operation, the astigmatism control voltage should be adjusted only once for optimum spot size in the screen centre. The control voltage will be within the stated range, provided the conditions of note 2 are adhered to.
4. The collimator electrode voltage $V_{g 7-2}$ and $V_{g 7-3}$ should be adjusted for optimum uniformity of background illumination.
5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $\mathrm{I}_{\mathrm{b}}=10 \mu \mathrm{~A}$ (measured on x -plates).
6. The writing speed is defined as the maximum speed at which a written trace is just visible starting from a background which is just black. The indicated value is guaranteed for the central 75% of the minimum screen area, except the outmost 4 mm of the screen. However, in any corner not more than 4 square divisions fall outside the guaranteed area. The writing speed can be increased, if some background is tolerated. Within the same area, a trace, written with the indicated value of max. write, remains just visible within the indicated storage time of max. write.
The writing speed in max. write, with background, is defined as the maximum speed at which the written trace remains just visible within the indicated storage time.
7. The storage time in just black mode is defined as the time required for the brightness of the unwritten background to rise from zero brightness to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
The storage time in max. write is related to the writing speed.
8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
9. A graticule, consisting of concentric rectangles of $72 \mathrm{~mm} \times 54 \mathrm{~mm}$ and $69,8 \mathrm{~mm} \times 52,5 \mathrm{~mm}$ is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

CAPACITANCES

x_{1} to all other elements except x_{2}
x_{2} to all other elements except x_{1}
y_{1} to all other elements except y_{2}
y_{2} to all other elements except y_{1}
x_{1} to x_{2}
y_{1} to y_{2}
g_{1} to all other elements
k to all other elements
g_{3} to all other elements
97-1 to all other elements 97-2 to all other elements 97-3 to all other elements gg to all other elements g10 to all other elements
FGA to all other elements
FGK' to all other elements
FGK" to all other elements

$\mathrm{C}_{\mathrm{x} 1(\mathrm{x} 2)}$	$5,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 2(\mathrm{x} 1)}$	$5,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1(\mathrm{y} 2)}$	$3,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 2(\mathrm{y} 1)}$	$3,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{x} 1 \mathrm{x} 2}$	$2,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{y} 1 \mathrm{y} 2}$	2 pF
$\mathrm{C}_{\mathrm{g} 1}$	6 pF
C_{k}	$3,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3}$	$4,5 \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 7-1}$	30 pF
$\mathrm{C}_{\mathrm{g} 7-2}$	65 pF
$\mathrm{C}_{\mathrm{g} 7-3}$	60 pF
$\mathrm{C}_{\mathrm{g} 9}$	60 pF
$\mathrm{C}_{\mathrm{g} 10}$	80 pF
$\mathrm{C}_{\mathrm{FGA}}$	15 pF
$\mathrm{C}_{\mathrm{FGK}}$	8 pF
$\mathrm{C}_{\mathrm{FGK}}$	
	8 pF

Fig. 1 Outlines.
(1) Minimum cable length is 420 mm .
(2) Minimum length of connecting leads is 350 mm .
(3) Dimensions of faceplate only. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm .

LIMITING VALUES (Absolute maximum rating system)
Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\mathrm{l})$	max. \min.	$\begin{aligned} & 9000 \\ & 7000 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Geometry control electrode voltage	$V_{\mathrm{g} 6}$	max.	2100	V
Deflection plate shield voltage	$\mathrm{V}_{\mathrm{g} 5}$	max.	2000	V
Astigmatism control electrode voltage	$\mathrm{V}_{\mathrm{g}} 4$	max. min.	$\begin{aligned} & 2100 \\ & 1200 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 3}$	max.	1000	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	max. min.	$\begin{aligned} & 2000 \\ & 1250 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Control grid voltage positive negative	$\begin{aligned} & V_{g 1} \\ & -V_{g 1} \end{aligned}$	max. max.		
Cathode to heater voltage positive negative	$\begin{aligned} & \mathrm{V}_{\mathrm{kf}} \\ & -\mathrm{V}_{\mathrm{kf}} \end{aligned}$	max. max.	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Voltage between astigmatism control electrode and any deflection plate	$\begin{aligned} & V_{g 4 / x} \\ & V_{g 4 / y} \end{aligned}$	max. max.	$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Grid drive, averaged over 1 ms	V_{d}	max.	30	V
Screen dissipation	$W_{\text {l }}$	max.		$\mathrm{mW} / \mathrm{cm}^{2}$

Viewing section (voltages with respect to viewing gun cathode FGK)

Final accelerator voltage	$\mathrm{V}_{\mathrm{g} 10}(\mathrm{l})$	max. min.	$\begin{aligned} & 7500 \\ & 5500 \end{aligned}$
Backing electrode voltage storage operation	$\mathrm{V}_{\mathrm{g} 9}$	max. min.	$\begin{array}{r} +150 \mathrm{~V} \\ -5 \mathrm{~V} \end{array}$
non-storage operation	$-\mathrm{V}_{\mathrm{g}} 9$	max. min.	50
Collector voltage	$V_{\mathrm{g} 8}$	max. min.	$\begin{aligned} & 180 \\ & 120 \end{aligned}$
Collimator voltage	$\mathrm{V}_{\mathrm{g} 7-1}, \mathrm{~V}_{\mathrm{g} 7-2}, \mathrm{~V}_{\mathrm{g} 7-3}$	max. min.	$\begin{array}{r} 200 \\ 0 \end{array}$
First accelerator voltage	$\mathrm{V}_{\mathrm{FGA}}$	max. min.	60 V
Cathode to heater voltage positive negative	$\begin{aligned} & \mathrm{V}_{\mathrm{k}^{\prime} F G f}, \mathrm{~V}_{\mathrm{k}^{\prime \prime}} \mathrm{FGf} \\ & -\mathrm{V}_{\mathrm{k}^{\prime} \mathrm{FG}},-\mathrm{V}_{\mathrm{k}^{\prime \prime} \mathrm{FG}} \end{aligned}$	max. max.	$\begin{aligned} & 125 \\ & 125 \end{aligned}$

Performance
Useful scan horizontal vertical
Deflection coefficient horizontal
vertical

Line width at the centre of the screen
Writing speed in storage operation just black max. write
Storage view time just black
max. write
Deviation of deflection linearity
Geometry distortion
Grid drive for $10 \mu \mathrm{~A}$ beam current
Grid drive for specified writing speed
Total cathode current of both viewing guns at $\mathrm{FGA}=28 \mathrm{~V}$
at $\mathrm{FGA}=50 \mathrm{~V}$
min. $\quad 90 \mathrm{~mm}$
min . $\quad 72 \mathrm{~mm}$
$9,5 \mathrm{~V} / \mathrm{div}$
M_{X} max. $10,5 \mathrm{~V} / \mathrm{div}$
$\mathrm{M}_{\mathrm{y}} \quad 41 \mathrm{~V} / \mathrm{div}$
I.w.
max. $\quad 4,4 \mathrm{~V} / \mathrm{div}$
$0,35 \mathrm{~mm}$
note 5
$\left.\begin{array}{rr}\geqslant & 250 \text { div } / \mathrm{ms} \\ 2,5 \text { div } / \mu \mathrm{s}\end{array}\right\}$ note 6

\geqslant	90 s	note 7

max. 2% note 8
see note 9
approx. 25 V
V_{d} max. 45 V
approx. 1 mA
approx 2 mA

Fig. 2 Bottom view and side-contact arrangement.
Fig. 3 Top view. For note (3) see opposite page.

Fig. 5 Pin arrangement; bottom view

Fig. 6 Internal graticule colour of graticule: black; line width: $0,2 \mathrm{~mm}$; dot diameter: 0,4 mm

INTERNAL GRATICULE ALIGNMENT

The internal graticule is aligned with the faceplate by using the faceplate reference points $A 1, A 2$ and $A 3$, see Fig. 7.
ig. 7 Front view of tube with internal graticule $|\mathrm{a} 1-\mathrm{a} 2| \leqslant 0,3 \mathrm{~mm}$.

TYPICAL OPERATION (for notes see page 10)
Conditions
Writing section (voltages with respect to writing gun cathode k)
Final accelerator voltage $V_{10}(\ell)$
Geometry control electrode voltage
Deflection plate shield voltage
Astigmatism control electrode voltage
$V_{g 6}$
$V_{g} 5$ $V_{g} 4$ V_{g} $\mathrm{V}_{\mathrm{g} 2}$
First accelerator voltage
Cut-off voltage for visual extinction
of focused spot
$-V_{g 1}$

8500 V	note 1
$1500 \pm 100 \mathrm{~V}$	
1500 V	note 2
$1500 \pm 50 \mathrm{~V}$	note 3
400 to 600 V	
1500 V	
45 to 85 V	

Fig. 9 Diagram of non-storage and storage operation.

Viewing section (voltages with respect to viewing gun cathode FGK, Fig. 8)
See Fig. 9.
Note: The d.c. voltage on the first accelerator of the flood guns (FGA) should be equal to the mean x-plate potential

