MONITOR TUBE

The M38-121 is a 38 cm -diagonal rectangular television tube with metal backed screen and integral protection primarily intended for use as a monitor or display tube.

	QUICK REFERENCE DATA		
Deflection angle		110°	
Focusing	electrostatic		
Resolution	min. 650	lines	
Overall length	max. 279,5	mm	

SCREEN

Metal backed phosphor
white
Light transmission of face glass $\quad 50$ \%
Useful diagonal
min. $\quad 350 \mathrm{~mm}$
$\stackrel{\Xi}{0}$ Useful width
min. 290 mm
Useful height
$\min . \quad 226$
mm
HEATING
Indirect by a.c. or d. c. ; parallel or series supply
Heater voltage $\quad \mathrm{V}_{\mathrm{f}} \quad 6,3 \mathrm{~V}$
Heater curren
$\begin{array}{ll}I_{f} & 300\end{array}$
mA
FOCUSING electrostatic
For focusing voltage providing optimum focus at screen centre at a beam current of $100 \mu \mathrm{~A}$ see under "Typical operating conditions"

DEFLECTION magnetic
Diagonal deflection angle
Horizontal deflection angle 93°
Vertical deflection angle

Dimensions in mm

CIRCUIT DESIGN VALUES

Focusing electrode current, positive
negative

Grid No. 2 current, positive
negative
$\mathrm{I}_{\mathrm{g}} \mathrm{I} 4$
g 4
negative

MAXIMUM CIRCUIT VALUE

Resistance between cathode and heater
Impedance between cathode and heater ($\mathrm{f}=50 \mathrm{~Hz}$)
Resistance between grid no. 1 and earth mpedance between cathode and earth ($\mathrm{f}=50 \mathrm{~Hz}$)

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV .

EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating (m), wich must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

JEDEC 126

MECHANICAL DATA (continued)

Mounting position: any

Base
Cavity contact CT8, IEC67-III-2

Accessories
Socket
Final accelerator contact connector
242250106001
type 55563

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis from 0 to $800 \mathrm{~A} / \mathrm{m}$ (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading of the raster.

NOTES TO OUTLINE DRAWING

1) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge, (JEDEC 126) when the gauge is resting on the cone.
${ }^{2}$) End of guaranteed contour. The maximum neck and cone countour is given by the reference line gauge.
${ }^{3}$) The maximum dimension is given by the reference line gauge.
${ }^{4}$) This area must be kept clean.
2) Minimum space to the reserved for mounting lugs.
3) The mounting screws in the cabinet must be situated within a circle with a diameter of $7,5 \mathrm{~mm}$ drawn around the true geometrical positions (corners of a rectangle of $327 \mathrm{~mm} \times 247,7 \mathrm{~mm})$.
4) The maximum displacement of any lug with respect to the plane trough the other three lugs is 2 mm .
${ }^{8}$) The metal rimband must be earthed. Holes of 3 mm diameter in each lug are provided for this purpose.
${ }^{9}$) The bulge at the pliceline seal may increase the indicated maximum value for envelope width, diagonal and height by not more than $6,4 \mathrm{~mm}$, but at any point around the seal the bulge will not protrude more than $3,2 \mathrm{~mm}$ beyond the envelope surface.

CAPACITANCES

Final accelerator to external conductive coating
Final accelerator to metal band
$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 5(\ell) / \mathrm{m}} \quad 450$ to $650 \quad \mathrm{pF}$
$\mathrm{C}_{\mathrm{g} 3, \mathrm{~g} 58 \ell 9 / \mathrm{m}^{\prime} \quad 240 \quad \mathrm{pF}}$

Cathode to all other elements
$\mathrm{C}_{\mathrm{k}} \quad 5 \mathrm{pF}$

Control grid to all other elements
C_{gl}
6 pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage
Focusing electrode voltage
First accelerator voltage
$\left.\begin{array}{lrc}\mathrm{V}_{\mathrm{g} 3, \mathrm{~g} 5(\ell)} & 16 & \mathrm{kV} \\ \mathrm{V}_{\mathrm{g} 4} & 0 \text { to } 400 & \mathrm{~V} \\ \mathrm{l}_{\mathrm{g}}\end{array}\right)$
extinction of a focused raster
V_{gl}
40 to 85 V

RESOLUTION

Resolution at screen centre, measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, a beam current of $100 \mu \mathrm{~A}$, and focusing voltage adjusted for optimum spot size
$\min 650$ line
LIMITING VALUES (Absolute max. rating system)
Voltages are specified with respect to cathode unless otherwise stated.

Final accelerator voltage	$\mathrm{V}_{\mathrm{g}} \mathrm{g}, \mathrm{g} 5(\ell)$	$\begin{array}{ll} \max . & 18 \\ \min . & 13 \end{array}$	kV kV
Focusing electrode voltage	$\mathrm{V}_{\mathrm{g} 4}$	max. 1000	V
	$-\mathrm{V}_{\mathrm{g} 4}$	max. 500	V
First accelerator voltage	$\mathrm{V}_{\mathrm{g} 2}$	$\max .550$ min 350	V
$\begin{aligned} & \text { Control grid voltage, } \text { negative } \\ & \text { positive } \\ & \text { positive peak }\end{aligned}$	$-\mathrm{V}_{\mathrm{gl}}$	max. 150	V
	V_{gl}	max. 0	V
	$\mathrm{V}_{\mathrm{glp}}^{\mathrm{gl}}$	$\max .2$	V
Cathode to heater voltage, $\begin{aligned} & \text { positive } \\ & \text { positive peak } \\ & \text { negative } \\ & \text { negative peak }\end{aligned}$	V_{kf}	max. 250	V
	$\mathrm{V}_{\mathrm{kfp}}$	max. 300	V
	$-\mathrm{V}_{\mathrm{kf}}$	max. 135	V
	$-\mathrm{V}_{\mathrm{kfp}}$	max. 180	V

[^0]
[^0]: ${ }^{1}$) With the small change in focus spot size with variation of focus voltage the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage range of at least -100 to +500 V will be required.

