TUBE MANUAL

EIMAC division of varian SAN CARLOS, CALIFORNIA

DIVISION OF VARIAN 301 Industrial Way San Carlos, California

TABLE OF CONTENTS

GENERAL

Tube Type Numbering	
System	6-1-73
Table of Contents	2-1-76
Index	9-1-75
EIMAC and JEDEC Cross	
Reference List	2-15-75
Power Grid Selection Guide	2-15-75
Varian/Eimac Electron Tube	
and Device Group Sales	
Offices	2-1-76
Distributor Directory	2 1-70

DIODES-RECTIFIERS

2-01C	1-22-60
2-450A	3-1-66
2-2000A	7-1-52
250R	12-15-65
253	7-1-52
575A & 673	4-1-67
869B & 869BL	3-16-64
6894 & 6895	3-16-64
8020	6-1-67

PLANAR TRIODES

2C3	9A																			•	see	72	89
3CX	10	04	45	5.																	see	72	89
7211	17	76	98	3.																	11-	15-	70
7289	3/3	3C	Х	1()(A(15															-1-	
7698	3.																				see		
7815	5/7	78	15	R																		-1-	
7815	A	L/	7	81	15	R	A	L													7		
7815	R				÷		÷.														see		
7815																							
7855	/7	85	55	K																		-1-	
7855	AI	_/	7	85	5	K	A	L												Ç.	3.		
7855																					see		
7855																							
8403																					12		
8533									.'											÷	12-		
8755																						-1-	
8755																					see	87	55
8757																					3.	-3-	70
8847																						-1-	
8847	A																i.				see	884	47
8892													,								9-	-1-	70
8893	,		×.		•	•		•	÷		,										6-	-1-'	70
8906	/8	90	17					•	÷	•	÷				ž	•	i.	•			11-	-1-'	71
8906	AL	-/	Ý.	57	2	A	L		÷	•					e.		÷	•			11-	1-1	71
8907					ł	•	ž		÷												see	890	06
8911		•				•	ŝ.	•				•		٠			į.				2-	1-1	71
8912					•			•								•		•	•		2-	1-7	71
8933		•																			11-1	5-7	72
8940	•	•	•	÷	•		÷														10-1	5-7	75
8941/	Y	69	0					2	;							3		ł			10-1	5-7	75
Y572	AI	_	÷			•		•					ŝ	•		•	x	•	5	see	890	6A	L

TRIODES

3-400Z/8163	8-15-7-
3-500Z	11-1-7
3-1000Z/8164	8-15-74
3024	0-15-74
3C24 3CPX1500A7 3CV1500A7	11-1-5
3CV1500A7	9-1-7
3CV1300A7	6-15-7
3CV30,000A3	3-1-6
3СV30,000Н3	5-1-68
3CW5000A1/8240 &	
3CW5000F1/8241	5-15-71
3CW5000A3/8242	1-11-74
3CW5000F3/8243 see 3	CW5000A3
ЗСW5000H3	4-1-66
3CW10,000H3	
3CW10,000H3	10-15-70
3CW20,000A1	6-1-67
3CW20,000A3	8-1-75
3CW20,000A7	1-1-63
3CW20,000H3	2-1-65
3CW20,000H7	5-15-74
3CW30,000H3	11-1-68
3CW30,000H7	. 2-1-75
2CW40 000112	
3CW40,000H3	8-1-67
3CX400U7/8961	8-1-74
3CX1000A7/8283	3-25-75
3CX1500A7/8877	7-1-75
3CX2500A3/8161	3-1-67
3CX2500F3/8251	3-1-67
3CX2500H3	
3CX3000A7 & 8162/3CX3000F7	2-1-71
3CA3000A/ & 8162/3CA3000F/	10-1-75
3CX3000A7	11-20-70
3CX3000F1/8239	11-1-67
3CX5000H3	4-1-66
3CX10,000A1/8158	11-15-68
3CX10,000A3/8159	5-1-68
3CX10,000A7/8160	2-1-73
ЗСХ10,000НЗ	3-15-66
3CX15,000A3	7-1-69
3CV15 000A7	
3CX15,000A7	4-15-71
3CX15,000H3	4-1-66
3CX20,000A3	4-15-71
3CX20,000A7	7-1-73
3СХ20,000Н3	5-1-71
3W5000F3/8243	10-20-61
35T	2-1-69
35TG	6-1-67
75TH	12-15-65
	4-1-67
100TH	4-1-67
100TL	5-1-52
152TH	11-25-52
152TL	4-1-67
250ТН	6-15-66
250TL	1-1-61
304TH	
	4-1-67
	6-1-67
450TH	12-15-65
450TL	12-15-65
592/3-200A3	6-15-66
1000T	12-15-65
1500T	5-5-70

TRIODES

2000T				•		•	÷		ų,	•					10-15-50
5867A		•				•		•							11-15-64
															10-15-64
															10-15-64
7480 .		•	ų,												11-1-68
8873/8	87	74	/	88	37	5					•				6-3-73
8938 .			•				÷								5-15-73

TETRODES

4-65A/8165	5-1-62
4-125A/4D21	6-1-67
4-250A/5D22	5-5-70
4-400A/8438	7-20-70
4-400C/6775	4-1-71
4-500A	3-10-72
4-1000A/8166	10-30-66
4CN15A	6-1-68
4CPX250K/8590	4-1-70
4CS250R	9-1-70
4CV8000A	3-15-71
4CV20,000A	6-1-68
4CV35,000A	5-15-66
4CV50,000E	5-1-70
4CV50,000J	7-15-71
4CV100,000C/8351	2-1-68
4CV250,000A	3-1-72
4CW800B/F	11-1-73
4CW2000A/8244	6-15-71
4CW10,000A/8661	4-15-63
4CW25,000A	2-1-72
4CW50,000E	9-1-75
4CW50,000J	7-15-71
4CW100,000D	9-1-75
4CW100,000E	9-1-70
4CW250,000A	3-1-71
4CX125C/F	6-1-67
4CX250B/7203 & 4CX250FG/8621	8-1-74
4CX250BC/8957	1-1-74
4CX250K/8245 &	1-1-/4
4CX250M/8246	5-1-68
4CX250R/7580W	6-16-61
4CX300A/8167	8-30-66
4CX300Y/8561	6-15-66
4CX350A/8321 &	0-15-00
4CX350F/8322	6-15-65
4CA350F /8322	
4CX350FJ/8904	9-1-71 3-20-70
	3-20-70
4CX600J/8809 &	0 15 51
4CX600JA/8921	8-15-71
4CX1000A/8168	5-1-70
4CX1000K/8352	8-20-66
4CX1500A	12-1-71
4CX1500B/8660	6-1-67
4CX3000A/8169	1-20-76
4CX5000A/8170	4-15-69

4CX5000J/8909	10-1-71
4CX5000R/8170W	4-15-71
4CX10,000D/8171	1-1-72
4CX10,000J	2-1-72
4CX15,000A/8281	12-15-73
4CX15,000J/8910	10-15-71
4CX35,000C/8349	9-1-75
4W300B/8249	11-1-73
4X150A/7034 & 7609	8-1-74
4X150G/8172	10-15-73
4X500A	1-1-64
6816,6884,7843	11-15-71
7609 see 4X1	50A/7034
8560A	7-15-71
8876	6-15-71
8930	12-1-73
8954	6-1-74
8959	11-1-74
X2159	7-1-73

PENTODES

5-125B/4E27A	8-15-52
5-500A	5-1-68
5CX1500A	11-15-75
5CX3000A	8-1-67
264/8576	6-5-70
290	5-5-70
8295A	1-15-73

PULSE MODULATORS

4PR60C/8252W		÷	•		•				•		6-30-71
4PR65A/8187 .											2-15-63
4PR125A/8247.		÷				,			•		3-15-64
4PR250C/8248.									•		9-1-70
4PR400A/8188.		Ţ,		,				,			9-15-65
4PR1000A/8189					•		•	,	•	X	12-15-65
6C21	•		•				•		•		12-15-65

OTHER PRODUCTS

VS-2, 4 & 6	9-1-75
Preformed Contact	
Finger Stock	6-15-71
HR Heat Dissipating	
Connectors	12-1-65
SK-300A	4-15-69
SK-306, SK-316	8-15-66
SK-400	4-1-56
SK-406, SK-416, SK-426	12-1-73
SK-410	12-1-73
SK-500	3-15-67
SK-506, SK-516	4-15-69
SK-510	3-15-75
SK-600A, SK-610A	11-1-74
SK-606, SK-626, SK-636B, SK-646	11-1-74
SK-607	8-15-71

(Cont'd)

OTHER PRODUCTS

SK-620, SK-620A	7-1-75	SK-810B, SK-806	6-1-67	
SK-630, SK-630A	7-1-75	SK-816, SK-860, SK-870	3-25-75	
SK-640	7-1-75	SK-890B, SK-806	6-1-67	
SK-650, SK-655	1-15-66	SK-900, SK-906	8-15-66	
SK-700. SK-710	10-15-66	SK-1300, SK-1310, SK-1320	3-1-72	
SK-711A, SK-712A	3-15-71	SK-1306, SK-1406	8-15-66	
SK-740	7-15-75	SK-1400A, SK-1470A	10-15-66	
SK-760, SK-770	7-15-75	SK-2200, SK-2210	8-15-72	
SK-800B, SK-806	4-9-64			

301 INDUSTRIAL WAY • SAN CARLOS, CALIF. 94070 PHONE: (415) 592-1221 • CABLE: "EIMAC" SAN CARLOS

15 March 1976

TO EIMAC TUBE MANUAL HOLDERS

The enclosed new or revised data sheets, along with an updated Table of Contents and list of sales offices, are to be inserted in the appropriate section of your EIMAC tube manual, volumes I & II. Please use your Table of Contents as a guide.

VOLUME I	INSERT	REMOVE
Table of Contents	3/15/76	9/01/75
Varian/EIMAC Electron Tube and Device Group Sales Office List	2/01/76	1/15/75
Planar Triodes		
8940	10/15/75	
8941/Y690	10/15/75	
Triodes		
3CPX1500A7	9/01/75	
3CW20,000A3	8/01/75	6/01/66
3CX3000A7 & 8162/3CX3000F7	10/01/75	11/20/70
8963		4/01/75
VOLUME II		
Tetrodes		
4CW50,000E	9/01/75	7/01/70
4CW100,000D	9/01/75	7/01/67
4CX3000A/8169	1/20/76	5/01/67
4CX35,000C/8349	9/01/75	12/01/70

<u>Pentodes</u> 5CX1500A Other Products	<u>INSERT</u> 11/15/75	<u>REMOVE</u> 6/06/70
VS-2, 4 & 6	9/01/75	4/04/70
SK630, SK630A	7/01/75	3/15/67
SK740	7/15/75	8/15/66

William Jan

William I. Orr, Manager Technical Data

WIO/a Enclosures

SK-740 AIR-SYSTEM SOCKET

The EIMAC SK-740 Air-System Socket is recommended for use with those tubes listed at the bottom of the page or other tube types having this special breech-block base. This socket is not intended for use with an Air-Chimney, but is particularly useful in applications where transverse air cooling, heat-sink or immersion cooling is intended. When this socket is used, connection is made to each of the tube electrodes except the anode.

BASE CONNECTIONS

The SK-740 socket consists of five sets of ring contacts: they are from top to bottom: 1.screen-grid, 2.control-grid, 3.cathode, 4.heater, 5.heater. Each set of contacts consist of six separate contacting tabs. The tube elements are connected to their external circuits by two diametrically-opposed solder tabs. The SK-740 has no grounded contacts.

MATERIALS AND FINISHES

The mounting plate of the socket is fabricated of nickel-plated brass. The contact rings and tabs are of beryllium copper, heat-treated after forming, then silver-plated. The rivets and washers are of brass, silver and nickel-plated respectively. The ten contact terminals are solder-dipped to insure firm, dependable solder contact. The insulating wafers and the stop yoke of the socket are molded of a flameproof diallyl meta-phthalate.

INSTALLATION

The SK-740 Air-System Socket is designed for under-chassis mounting and requires a 1.593 inches diameter hole through the chassis deck. Four screw holes are provided for fastening as shown in the outline drawing.

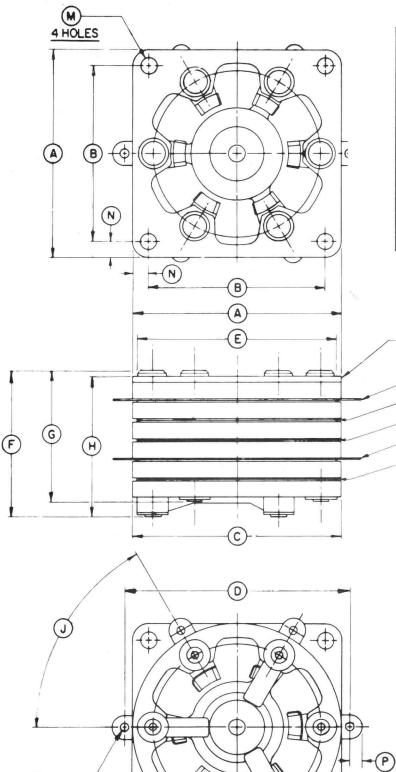
THE SK-740 AIR-SYSTEM SOCKET IS RECOMMENDED FOR USE WITH THE FOLLOWING TUBE TYPES:

4N15A	4CX300A/8167
4CX125C	4CX300Y/8561
4CX125F	

Note: A separate means of directing air is required when using the SK-740 with the 4CX300A and 4CX300Y. For applications using these two tubes, the SK-760 and SK-770 Air-System Sockets are recommended. These contain an integral chimney.

NET WEIGHT (Approximate) 1.5 Oz.; (42.5 gm)

(Revised 7-15-75) © 1963, 1966, 1975 by Varian


Printed in U.S.A.

EIMAC division of varian/301 industrial way/san carlos/california 94070

ID HOLES

K

Ø

8

 \oplus

0

DIMENSIONAL DATA								
DIM	INCHES				MI	LLIMETE	RS	
DIN	MIN.	MAX.	REF.		MIN.	MAX.	REF.	
Α	1.615	1.635			41.02	41.53		
В	1.360	1.390			34.54	35.31		
С	1.615*	1.635*			41.02*	41.53*		
D	1.735	1.765			44.07	44.83		
E	1.485	1.575			37.72	40.00		
F	1.070	1.110			27.18	28.19		
G	0.925	0.965			23.49	24.51		
Н	1.020	1.060			25.91	26.92		
J			60°				60°	
К			3/32R				2.34F	2
L			1/16 *				1.57*	
М	0.134*	0.154*			3.40*	3.91*		
Ν	0.120	0.130			3.05	3.30		
Ρ	0.078	0.109	-		1.98	2.77		

* DIAMETER

MOUNTING PLATE

12345

CONNECTIONS 1. SCREEN GRID 2. CONTROL GRID 3. CATHODE 4. HEATER

5. HEATER

TECHNICAL DATA

SK-2200 SK-2210 AIR SYSTEM SOCKET SK-2216 AIR CHIMNEY

The EIMAC SK-2200 and SK-2210 are air-system sockets recommended for use with the EIMAC 8877/3CX1500A7 triode. A companion chimney is available, which will operate with either socket.

With these sockets, connection is made to each tube element except the anode.

No contacts are grounded on the SK-2200, while the SK-2210 has the grid contacts grounded to the equipment chassis when installed.

INSTALLATION

The SK-2200 and SK-2210 are designed for under-chassis mounting, and require a 3¹/₄ inch hole through the chassis deck. Each socket is held in place by four 6-32 screws.

AIR CHIMNEY

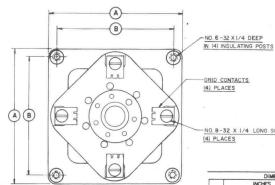
The SK-2216 chimney is made of low-loss teflon. It is held in place with four toe clamps which are supplied with the chimney.

SK-2200

SK-2210

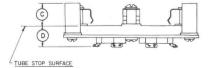
5K-2216

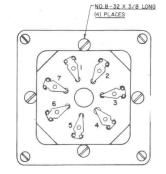
SK-2216


NET WEIGHTS

SK-2200 Socket		.5oz; 128 gm
SK-2210 Socket		0 oz; 113 gm
SK-2216 Chimne	ey) oz; 56.7 gm

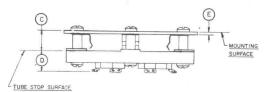
(Effective 3-1-76) © 1971, 1976 by Varian

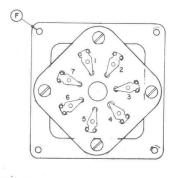

Printed in U.S.A.


SK-2200/SK-2210

NO. 8-32 X 1/4 LONG SCREW (4) PLACES DIMENSIONAL DATA					 _
-NO. 8-32 X 1/4 LONG SCHEW		CES			
	-NO.8-	32 X 1/4	LONG	SCREW	

DIM.		INCHES		M	LLIMETER	rs 🛛
DIM.	MIN.	MAX.	REF	MIN.	MAX.	REF
Α	3.373	3.413		85.67	86.70	
В	2.953.	2.983		75.01	75.77	
С	0.500	0.550		12.70	13.97	
D		0.630			16.00	





2. CONNE	CTIONS:		
1 - H	EATER		
2-0	ATHODE		
3-C	ATHODE		
4-C	ATHODE		
5-H	EATER		
6-C.	ATHODE		
7-C	ATHODE		
3.GRID C	ONTACTS	INSULAT	ED
FROM	GROUND 8	OTHER	
ELEME	NTS.		

SK-2200 Socket

A
G C C C C C C C C C C C C C

SK-2210 Socket

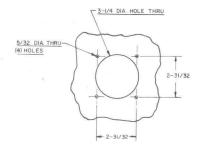
 NOTES:
 Detections are for info.

 DRLY DATE NOT REDURED FOR PROPECTION PURPOSES
 CONNECTION SUPPOSES

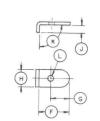
 2 CONNECTION SUPPOSES
 - HEATER 2 - CATHODE
 - CATHODE

 3 - CATHODE
 - CATHODE
 - HEATER 6 - CATHODE

 5 - HEATER 7 - CATHODE
 - CATHODE

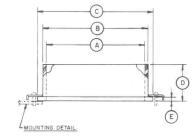

 5 - HEATER 6 - CATHODE
 - CATHODE

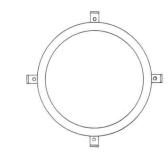
 7 - CATHODE
 - CATHODE

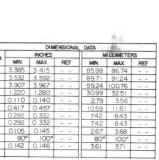

 7 - CATHODE
 - CATHODE

 7 - CATHODE
 - CATHODE

 3 - GRID CONTACTS GROUNDED
 TO MOUNTING PLATE,


CHASSIS CUT OUT FOR MOUNTING & REQUIRED COOLING AIR FLOW.


TOE CLAMP DETAIL (4) SUPPLIED P/N 889901


REF DIMENSIONS ARE FOR INFO. ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

<u>NSPECTION PURPOSES.</u>
 <u>2. MATERIALS:</u>
 <u>0. CHIMNEY:</u>
 <u>TEFLON TFE</u>
 <u>b. TOE_CLAMP:</u>
 <u>BRASS - SILVER_PLATED</u>

SK-2216 Chimney

DIVISION OF VARIAN 301 Industrial Way San Carlos, California

TABLE OF CONTENTS

GENERAL

Tube Type Numbering	
System	6-1-73
Table of Contents	10-1-76
Index	9-1-75
EIMAC and JEDEC Cross	
Reference List	2-15-75
Power Grid Selection Guide	2-15-75
Varian/Eimac Electron Tube	
and Device Group Sales	
Offices	2-1-76
Distributor Directory	

DIODES-RECTIFIERS

2-01C	1-22-60
2-450A	3-1-66
2-2000A	7-1-52
250R	12-15-65
253	7-1-52
575A & 673	4-1-67
869B & 869BL	3-16-64
6894 & 6895	3-16-64
8020	6-1-67

PLANAR TRIODES

2C39A see 7289
3CX100A5 see 7289
7211/7698 11-15-70
7289/3CX100A5 11-1-71
7698 see 7211
7815/7815R 12-1-71
7815AL/7815RAL 7-1-70
7815R see 7815
7815RALsee 7815AL
7855/7855K 8-1-71
7855AL/7855KAL 3-1-72
7855K see 7855
7855KAL see 7855AL
8403
8533 12-1-71
8755/8755A 6-1-71
8755A see 8755
8757 3-3-70
8847/8847A 6-1-70
8847A see 8847
8892 9-1-70
8893 6-1-70
8906/8907 11-1-71
8906AL/Y572AL 11-1-71
8907 see 8906
8911
8912
8933 11-15-72
8940
8941/Y690 10-15-75
Y572AL see 8906AL

TRIODES

3-400Z/8163	8-15-74
3-500Z	11-1-73
3-1000Z/8164	8-15-74
3C24	11-1-51
3CPX1500A7	4-1-76
3CV1500A7	6-15-71
3CV30,000A3	3-1-67
3CV30,000H3	5-1-68
3CW5000A1/8240 &	
3CW5000F1/8241	5-15-71
3CW5000A3/8242	1-11-74
3CW5000A7	7-1-76
3CW5000F3/8243 see 3C	w5000A3
3CW5000F7 see 3C	
3CW5000H3	4-1-66
3CW5000H7	8-1-76
3CW10,000H3	10-15-70
3CW20,000A1	6-1-67
3CW20,000A3	8-1-75
3CW20,000A7	1-1-63
3CW20,000H3.	
	2-1-65
3CW20,000H7	5-15-74
3CW30,000H3	11-1-68
3CW30,000H7	2-1-75
3CW40,000H3	5-1-76
3CX400U7/8961	8-1-74
3CX1000A7/8283	3-25-75
3CX1500A7/8877	7-1-75
3CX2500A3/8161	3-1-67
3CX2500F3/8251	3-1-67
3CX2500H3	2-1-71
3CX3000A1/8238	11-1-67
3CX3000A7 & 8162/3CX3000F7	10-1-75
3CX30000A7	10-1-75
	5-15-76
3CX3000H7 3CX3000F1/8239	11-1-67
3CX5000H3	4-1-66
3CX10,000A1/8158	11-15-68
3CX10,000A3/8159	5-1-68
3CX10,000A7/8160	2-1-73
3CX10,000H3	3-15-66
3CX15,000A3	7-1-69
3CX15,000A7	4-15-71
3CX15,000H3	4-1-66
3CX20,000A3	4-15-71
3CX20,000A7	7-1-73
3CX20,000H3	5-1-71
3W5000F3/8243	10-20-61
35T	2-1-69
35TG	6-1-67
75TH	12-15-65
75TL	4-1-67
100TH	4-1-67
	5-1-52
100TL	
152TH	11-25-52
152TL	4-1-67
250TH	6-15-66
250TL	1-1-61
304TH	4-1-67

TRIODES

304TL			 	 	6-1-67
450TH			 	 	12-15-65
450TL			 	 	12-15-65
592/3-200A3	• •	•	 	 	6-15-66
1000T			 	 	12-15-65
1500T			 	 	5-5-70
2000T			 	 	10-15-50
5867A			 	 	11-15-64
6696A			 	 	10-15-64
6697A			 	 	10-15-64
7480			 	 a e si	11-1-68
8873/8874/8	875		 	 	6-3-73
8938			 	 	5-15-73
8963			 	 	8-1-75

TETRODES

4-65A/8165	5-1-62
4-125A/4D21	6-1-67
4-250A/5D22	5-5-70
4-400A/8438	7-20-70
4-400C/6775	4-1-71
4-500A	3-10-72
4-1000A/8166	10-30-66
4CN15A	6-1-68
4CPX250K/8590	5-1-76
4CS250R	9-1-70
4CV8000A	3-15-71
4CV20,000A	6-1-68
4CV35,000A	5-15-66
4CV50,000E	4-1-76
4CV50,000J	7-15-71
4CV100,000C/8351	2-1-68
4CV250,000A	3-1-72
4CW800B/F	11-1-73
4CW2000A/8244	6-15-71
4CW10,000A/8661	4-15-63
4CW25,000A	2-1-72
4CW50,000E	9-1-75
4CW50,000J	7-15-71
4CW100,000D	9-1-75
4CW100,000E	9-1-70
4CW250,000A	3-1-71
4CX125C/F	6-1-67
4CX250B/7203 & 4CX250FG/8621	8-1-74
4CX250BC/8957	1-1-74
4CX250K/8245 &	
4CX250M/8246	5-1-68
4CX250R/7580W	6-16-61
4CX300A/8167	8-30-66
4CX300Y/8561	6-15-66
4CX350A/8321 &	
4CX350F/8322	6-15-65
4CX350FJ/8904	9-1-71
	3-20-70
4CX600J/8809 &	
4CX600JA/8921	8-15-71

4CX1000A/8168	5-1-70
4CX1000K/8352	8-20-66
4CX1500A	12-1-71
4CX1500B/8660	6-1-67
4CX3000A/8169	1-20-76
4CX5000A/8170	4-15-69
4CX5000J/8909	10-1-71
4CX5000R/8170W	5-1-76
4CX10,000D/8171	1-1-72
4CX10,000J	2-1-72
4CX15,000A/8281	12-15-73
4CX15,000J/8910	10-15-71
4CX35,000C/8349	9-1-75
4W300B/8249	11-1-73
4X150A/7034 & 7609	8-1-74
4X150G/8172	10-15-73
4X500A	1-1-64
6816,6884,7843	11-15-71
7609 see 4X1	50A/7034
8560A	7-15-71
8876	6-15-71
8930	12-1-73
8954	6-1-74
8959	11-1-74
X2159	7-1-73

PENTODES

5-125B/4E27A	8-15-52
5-500A	5-1-68
5CX1500A	11-15-75
5CX3000A	8-1-67
264/8576	6-5-70
290	5-5-70
8295A	1-15-73

PULSE MODULATORS

4PR60C/8252W												6-30-71
4PR65A/8187		•			•		•	•		•	•	2-15-63
4PR125A/8247										•		3-15-64
4PR250C/8248				•				•				9-1-70
4PR400A/8188	•			•	•	•	•	•	•	•		9-15-65
4PR1000A/818	9		•	•	•			•		•		12-15-65
6C21												12-15-65

OTHER PRODUCTS

VS-2, 4 & 6	9-1-75
Preformed Contact	
Finger Stock	6-15-71
HR Heat Dissipating	
Connectors	12-1-65
SK-300A	4-15-69
SK-306, SK-316	3-1-76
SK-400	4-1-56
SK-406, SK-416, SK-426	12-1-73

(Cont'd)

OTHER PRODUCTS

SK-410	12-1-73 3-15-67 4-15-69 3-15-75 11-1-74 11-1-74 8-15-71 7-1-75 7-1-75 7-1-75 5-1-76	SK-711A, SK-712A SK-740 SK-760, SK-770 SK-800B, SK-806 SK-810B, SK-806 SK-810B, SK-806 SK-816, SK-860, SK-870 SK-890B, SK-806 SK-900, SK-906 SK-1300, SK-1310, SK-1320 SK-1306, SK-1470A	3-15-71 7-15-75 4-9-64 6-1-67 3-25-75 6-1-67 8-15-66 3-1-72 8-15-66 10-15-66
		SK-1400A, SK-1470A	10-15-66
SK-700, SK-710	5-1-76	SK-2200, SK-2210, SK-2216	3-1-76

TECHNICAL DATA

YU-148 HIGH-MU TRIODE

The EIMAC YU-148 high mu, forced air cooled, power triode provides relatively high power output as an amplifier, oscillator or modulator at low plate voltages. The tube has a low inductance cylindrical filament stem structure which readily becomes part of a linear filament tank circuit for VHF operation. The grid provides good shielding between the input and output circuits for grounded grid applications and conveniently terminates in a ring between the plate and filament terminals.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten Voltage	7.0 ± 0.35 Volts 78 Amperes 200
Direct Interelectrode Capacitance (Grounded Filament) ²	
Cin	
Cout	0.28 pF
Cgp	
Direct Interelectrode Capacitance (Grounded Grid) ²	
Cin	
Cout	24.5 pF
Cgp	0.28 pF

¹Characteristics and operating values are based upon performance tests. These figures may change without notice as a result of additional data or product refinement. Varian Power Grid & X-Ray Tube Products should be consulted before using this information for final equipment design.

²Capacitance values are for a cold tube as measured in a special shielded fixture, in accordance with Electronic Industries Association Standard RS-191.

(Effective 3/91) 2208

Printed in U.S.A.

power grid & x-ray tube products

1678 South Pioneer Road / Salt Lake City, Utah 84104 / U.S.A. / (801) 972-5000

RADIO-FREQUENCY POWER AMPLIFIER Class C Telegraphy or FM, Cathode Driven

TYPICAL OPERATION AT 108 MHZ

Plate Voltage	5700	6000	Vdc
Grid Voltage	0	-100	Vdc
Plate Current	2.50	2.56	Adc
Grid Current	.33	.48	Adc
Peak RF Cathode Voltage ¹ 215	224	340	Volts
Plate Dissipation	4100	3900	Watts
Useful Output Power ¹	10,000	12,000	Watts
Driving Power ¹	600	800	Watts
Load Impedance	1300	1200	Ohms
Drive Impedance	49	77	Ohms

¹Approximate Values

ABSOLUTE MAXIMUM RATINGS

DC Plate Voltage	 	 		. 7,000 Volts
DC Plate Current	 	 		3.5 Amperes
Plate Dissipation	 	 	* * * * * * * * * * * * * * * * * * * *	. 6,000 Watts
Grid Dissipation .	 	 		225 Watts

MECHANICAL

Maximum Overall Dimensions:

Length
Diameter
Net Weight
Operating Position
Cooling

APPLICATION

MECHANICAL

COOLING - The maximum temperature rating for the anode core and the ceramic/metal seal area of this tube is 250°C, and sufficient forced air cooling must be provided to assure operation at safe tube temperatures. Tube life is usually prolonged if cooling in excess of absolute minimum requirements is provided, for cooler tube temperatures.

Minimum air flow requirements to maintain anode core and ceramic/metal seal areas below 225°C at sea level with an air inlet temperature of 40°C are tabulated for air flow in the base-to-anode and anode-to-base directions. At higher ambient temperatures, frequencies above 40 MHz, or at higher altitudes, a greater quantity of air will be required.

With air flowing in a base-to-anode direction, and with the specified air also flowing past the base section of the tube, no additional base cooling of either type is normally required. With air flowing in an anode-to-base direction, additional cooling air directed into the filament stem structure, between the inner and outer filament terminals, in the amount of 5 cfm minimum, directed by an appropriate air nozzle or pipe is required.

It is suggested that temperatures, especially in the base area of the tube, be monitored in any new installation to ensure proper cooling. Temperatures may be measured with any of the available temperature sensing paint or crayon materials.

Cooling 50 C Ambient

	Ar	node to Base Air Flow	v
	Watt	CFM	In of Water
	4500	250	1.0
	5000	300	1.2
-			
	Ba	ase to Anode Air Flow	V
	Ba Watt	ase to Anode Air Flov CFM	v In of Water
			-

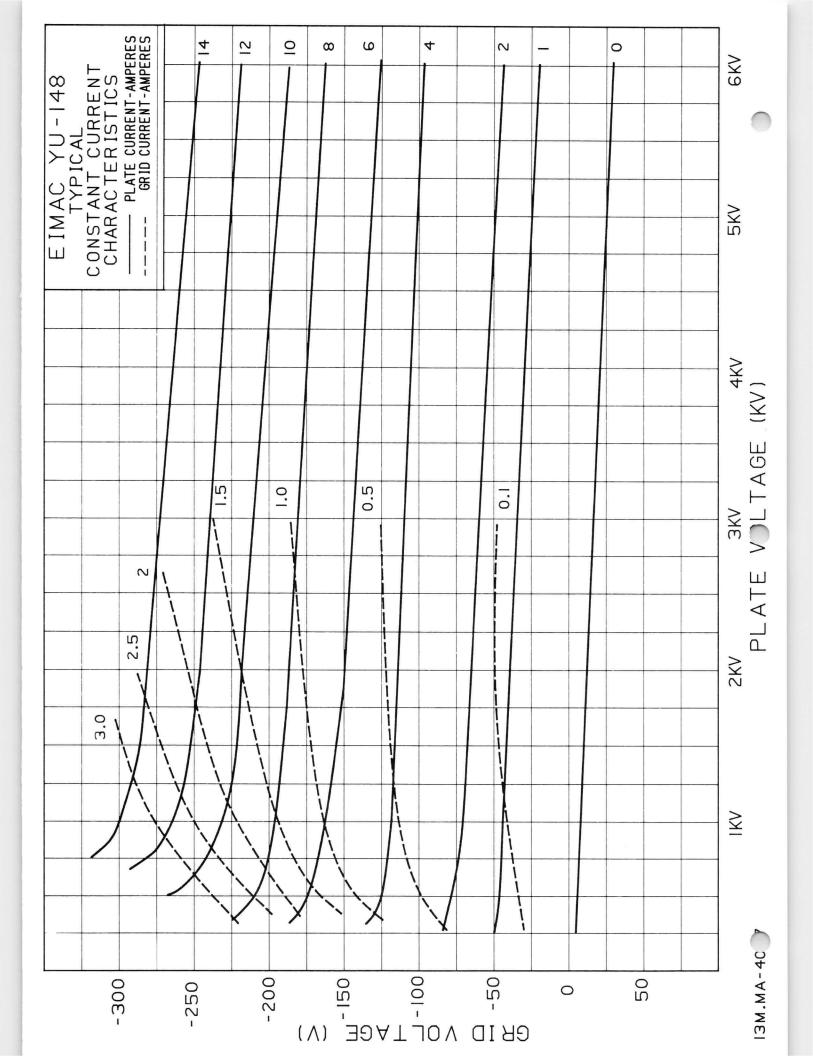
ELECTRICAL

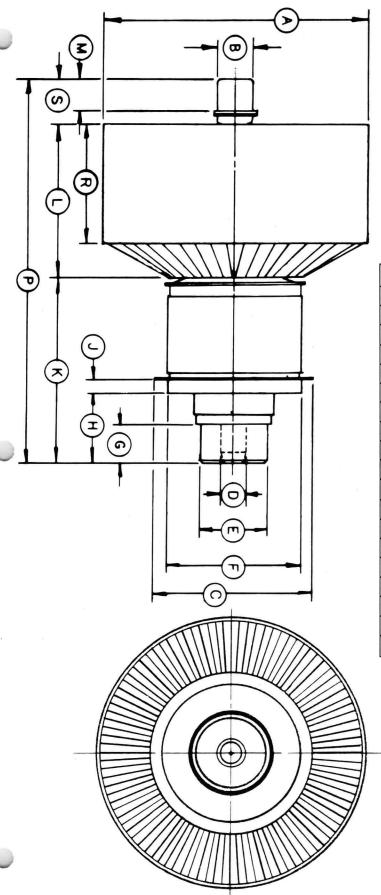
FILAMENT OPERATION - The rated filament voltage, as measured at the filament terminals, should be 7.0 Volts, with maximum allowable variation due to line fluctuations of from 6.65 to 7.35 Volts.

INTERLOCKS - An interlock device should be provided to ensure that cooling air flow is established before application of electrical power, including the heater. The circuit should be so arranged that RF drive cannot be applied in the absence of normal plate voltage.

INPUT CIRCUIT - When operated as a grounded grid rf amplifier, the use of a matching network in the cathode circuit is recommended. For best results with a single ended amplifier, and depending on the application it is suggested the network have a "Q" of at least 5, and higher if possible.

FAULT PROTECTION - It is good practice to protect the tube from internal damage caused by an internal arc which may occur at high anode voltage.

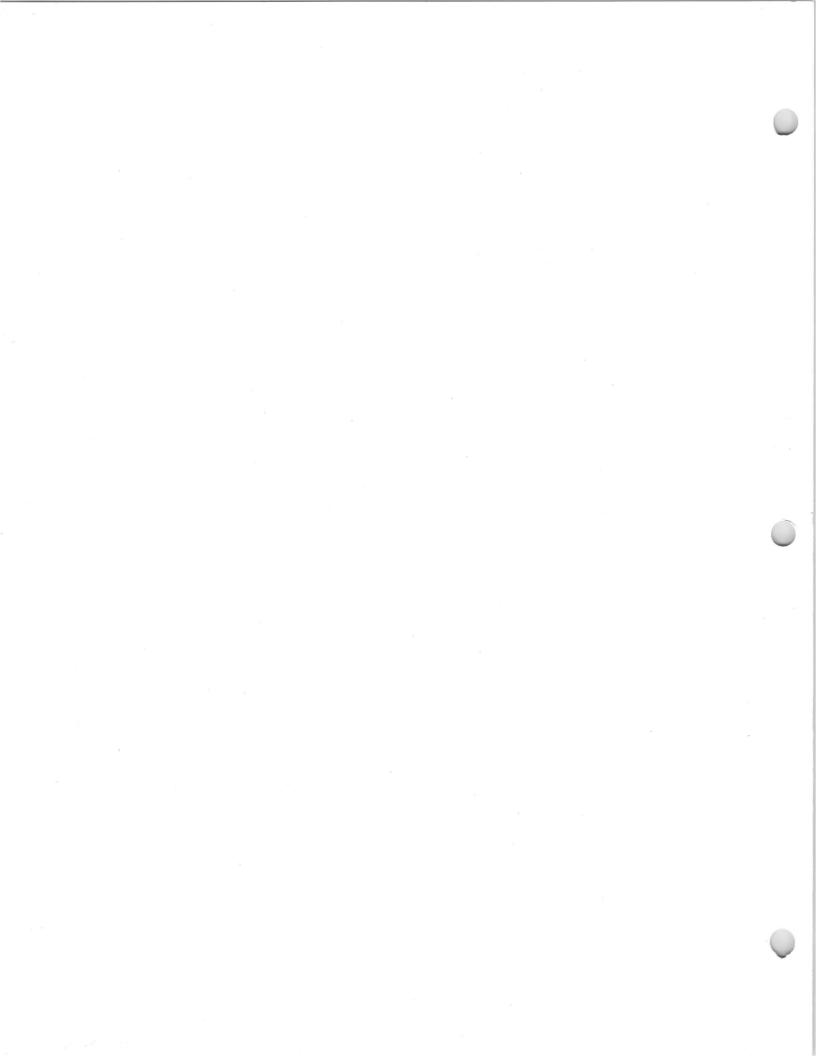

RF RADIATION - Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.


HOT SURFACES - When the tube is used in air and air cooled, external surfaces of the tube may reach temperatures up to 200 degrees C and higher. In addition to the anode, the cathode insulator and cathode/heater surfaces may remain hot for an extended time after the tube is shut off.

To prevent serious burns, take care to avoid any bodily contact with these surfaces both during, and for a reasonable cool down period after, tube operation.

CAUTION - HIGH VOLTAGE - Operating voltage for the YU-148 can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that **HIGH VOLTAGE CAN KILL**.

SPECIAL APPLICATIONS - If it desired to operate this tube under conditions different from those given here write to the Power Grid Tube Marketing Department, Varian Power Grid & X-Ray Tube Products, 1678 South Pioneer Road, Salt Lake City, UT 84104, for information and recommendations.


5

DIMENSIONAL DATA												
		INCHES	MILLIMETERS									
DIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF.						
A	6.000	6.125		152.4	155.58							
В	.781	.843		19.8	21.4							
С		3.625			92.1							
D	.615	.635		15.6	16.1							
Е	1.490	1.510		37.8	38.4							
F	2.990	3.010		75.9	76.4							
G	.812	.937		20.6	23.8							
н	1.375	1.625		34.9	41.3							
J	.375	.437		9.5	11.1							
к	3.875	4.250		98.4	107.9							
L		3.325			84.5							
М	.687	.812		17.5	20.6							
Р	8.000	9.000		203.2	228.6							
R					65.1	65.1						
S	1.000	1.125		25.4	28.6							

DIMENSIONAL DATA

YU-148

general

volume

EIMAC division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

A quick guide to EIMAC products and services offered in this catalog.

Including . . .

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

Important EIMAC extras...

APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.

TECHNICAL DATA

Eimac Tube Type Numbering System

EIMAC tube types are identified by either a non-descriptive, sequentially-assigned 4-digit type number, standardized and registered with the ELECTRONIC INDUSTRIES ASSOCIATION (EIA) for non-duplication throughout the world, or by an EIMAC-originated coded numbering system, designed to convey descriptive information about the tube. Many tube types can be identified with either number, and are branded with both.

In general, the EIMAC type number consists of: a numeral indicating the number of electrodes, one or more letters denoting special characteristics, a numeral representing the plate dissipation rating, and a final letter to distinguish the tube from others which may bear similar or preceding letters and numerals. Triode types carry an additional number to indicate their approximate amplification factor.

To illustrate the system, a typical 1500watt, ceramic, external-anode, forced-air cooled EIMAC triode is broken down as follows:

8877/3CX1500A7

EIA Type Number

> Plate Dissipation (Watts)

Number of Electrodes

- 2 Diode
- 3 Triode
- 4 Tetrode
- 5 Pentode

Description

C-Ceramic Envelope (No Glass)

- L-External Anode, Liquid Convection Cooling
- N-External Anode, Natural Convection Air Cooling P-Primarily for Pulse Applications
- * R Internal Anode, Radiation Cooled
- S External Anode, Conduction Cooled
- V-External Anode, Vapor Cooled
- W-External Anode, Water Cooled
- X-External Anode, Forced-Air Cooled
- * In older types, the dash, as in the case of the 4-250A, carries the meaning of "R" given above.

Amplification Factor 1-0 to 10 2-11 to 20 3-21 to 30 4-31 to 50 5-51 to 100 6-101 to 200 7-201 to 500 8-501 to 1000

Version

Distinguishes tubes which, although alike as to number of electrodes and plate dissipation, are not necessarily interchangeable physically or electrically.

(Effective 6-1-73) 1950, 1967, 1973 Varian

TECHNICAL DATA

TABLE OF CONTENTS

	Publicati Number	on Date
TABLE OF CONTENTS Sales Office Listing		1-76
SUMMARY DATA Selection Guide for Planar Triodes and Diodes Pulse Modulator Ratings of Planar Triodes	2996 23.6.3.1	3-73 7-15-73
DATA SHEETS 7211/7698. 7289/3CX100A5. 7815/7815R. 7815AL/7815RAL 7855/7855K. 7855AL-7855KAL 8403. 8533. 8755/8755A. 8757. 8347/2847A. 892. 893. 8906/8907. 8906AL/Y572AL. 8911. 8912. 8913. 8940. 8940. 8941/Y690. Y-503. Y-518. Y-519. Y-519. Y-540. Y-579. Y-583A/Y583C. Y-594. Y-595. Y-654. APPLICATION NCTES		$\begin{array}{c} 11-15-70\\ 11-1-71\\ 12-1-71\\ 7-1-70\\ 8-1-71\\ 3-1-72\\ 12-1-71\\ 12-1-71\\ 12-1-71\\ 12-1-71\\ 3-3-70\\ 6-1-70\\ 9-1-70\\ 6-1-70\\ 9-1-70\\ 6-1-70\\ 11-1-71\\ 11-1-71\\ 2-1-71\\ 11-15-72\\ 10-15-75\\ 2-15-72\\ 10-15-75\\ 2-15-72\\ 11-15-71\\ 4-1-74\\ 3-1-71\\ 11-15-71\\ 2-1-71\\ 2-1-71\\ 2-1-71\\ 2-1-71\\ 2-1-71\\ 2-1-71\\ 2-1-71\\ 5-30-74 \end{array}$
APPLICATION NOTES Operating Instructions Airline-Quality Planar Triodes Application Notes Planar Triodes Performance Data for Tube Selection	2549 2621A	1-71 9-72 1973
ACCESSORIES		

1-15-76

DIVISION OF VARIAN 301 Industrial Way San Carlos, California

TABLE OF CONTENTS

9-1-75

GENERAL

Tube Type Numbering									
System .`	6-1-73								
Table of Contents	9-1-75								
Index	9-1-75								
EIMAC and JEDEC Cross									
Reference List	2-15-75								
Power Grid Selection Guide	2-15-75								
Varian/Eimac Electron Tube									
and Device Group Sales									
Offices	1-15-75								
Distributor Directory									

DIODES - RECTIFIERS

2-01C	1-22-60
2-450A	3-1-66
2-2000A	7-1-52
250R	12-15-65
253	7-1-52
575A & 673	4-1-67
869B & 869BL	3-16-64
6894 & 6895	3-16-64
8020	

PLANAR TRIODES

2C3	9A			•						•											see	72	89
3CX	10	0/	45	5.							ų,				ų,		ų,				see	72	89
7211	1/7	6	98	3.																	11-	15-	70
7289	3/3	C	Х	10)(A(5				ļ						Ĵ		Ĵ	÷		-1-	
7698	3.																Ĵ		Ĵ	Ĵ.	see		
7815	5/7	8	15	R					÷	ι.												-1-	
7815	AI	L/	7	81	15	R	A	L														-1-	
7815																					see	78	15
7815	R	AL				ų,		,				,								see	e 78:	15A	L
7855																						-1-	71
7855	AI	_/	7	85	55	K	A	L						÷			•				3.	-1-'	72
7855																					see	78	55
7855																					e 785	55A	L
8403																						-1-'	
8533																					12.	-1-'	71
8755	/8	75	55	A	•		•		•				•								6	-1-'	71
8755	A	•		•							•					÷					see	875	55
8757	۰.						•						•								3.	-3-'	70
8847	/8	84	17	A		•		÷								i.					6-	-1-	70
8847	A								•	•				÷		÷		÷	•		see	884	47
8892	1.																			×.	9.	-1-1	70
8893																					6	1-1	70
8906																					11-	-1-2	71
8906	AL	-/	Y	57	72	A	L			•											11-	1-7	71
8907		٠	•																		see	890)6
8911		•		•		•		•	•	•		•	,	•	ž.	•					2-	1-7	71
8912		•	ł	а.				•		•			•			•		•			2-	1-7	71
8933				•																	11-1		
Y572	AI							•		•									S	ee	890	6A	L

TRIODES

3-400Z/8163	8-15-74
3-500Z	11-1-73
3-1000Z/8164	8-15-74
3C24	11-1-51
3CV1500A7	6-15-71
3CV30,000A3	3-1-67
3CV30,000H3	5-1-68
3CW5000A1/8240 &	5-1-08
3CW5000F1/8241	5-15-71
3CW5000A3/8242	
	1-11-74
3CW5000F3/8243 see 30	
3CW5000H3	4-1-66
3CW10,000H3	10-15-70
3CW20,000A1	6-1-67
3CW20,000A3	6-1-66
3CW20,000A7	1-1-63
3CW20,000H3	2-1-65
3CW20,000H7	5-15-74
3CW30,000H3	11-1-68
3CW30,000H7	. 2-1-75
3CW40,000H3	8-1-67
3CX400U7/8961	
3CX40007/8901	8-1-74
3CX1000A7/8283	3-25-75
3CX1500A7/8877	7-1-75
3CX2500A3/8161	3-1-67
3CX2500F3/8251	3-1-67
ЗСХ2500НЗ	2-1-71
3CX3000A1/8238	11-1-67
3CX3000A7	11-20-70
3CX3000F1/8239	11-1-67
3CX3000F7/8162	5-7-70
ЗСХ5000НЗ	4-1-66
3CX10,000A1/8158	11-15-68
3CX10,000A3/8159	5-1-68
3CX10,000A7/8160	2-1-73
3CX10,000H3	3-15-66
3CX15,000A3	7-1-69
3CX15,000A7	4-15-71
3CX15,000H3	4-13-71
3CX20,000A3	4-15-71
3CX20,000A7	7-1-73
3CX20,000H3	5-1-71
3W5000F3/8243	10-20-61
35T	2-1-69
35TG	6-1-67
75ТН	12-15-65
75TL	4-1-67
100TH	4-1-67
100TL	5-1-52
152TH	11-25-52
152TL	4-1-67
250ТН	6-15-66
250TL	1-1-61
304TH	4-1-67
304TL	6-1-67
450TH	12-15-65
450TL	12-15-65
592/3-200A3	
	6-15-66
1000T	12-15-65
1500T	5-5-70

TRIODES

2000T						÷					•		•		•		•	•	•	10-15-50
5867A				÷		÷														11-15-64
6696A		•	•							•	•	•	•	•					•	10-15-64
6697A		•	•			•		ŝ	•				•		•	÷				10-15-64
																				11-1-68
8873/8	87	74	/	88	37	5		÷				i.					•	•		6-3-73
8938 .	•		•			•	•	÷		÷	•		•			÷				5-15-73
8963 .	•	÷	•		•	•	•		•		•		•				•	•		4-1-75

TETRODES

4-65A/8165	5-1-62
4-125A/4D21	6-1-67
4-250A/5D22	5-5-70
4-400A/8438	7-20-70
4-400C/6775	4-1-71
4-500A	3-10-72
4-1000A/8166	10-30-66
4CN15A	6-1-68
4CPX250K/8590	4-1-70
4CS250R	9-1-70
4CV8000A	3-15-71
4CV20,000A	6-1-68
4CV35,000A	5-15-66
4CV50,000E	5-1-70
4CV50,000J	7-15-71
4CV100,000C/8351	
	2-1-68
4CV250,000A	3-1-72
4CW800B/F	11-1-73
4CW2000A/8244	6-15-71
4CW10,000A/8661	4-15-63
4CW25,000A	2-1-72
4CW50,000E	7-1-70
4CW50,000J	7-15-71
4CW100,000D	7-1-67
4CW100,000E	9-1-70
4CW250,000A	3-1-71
4CX125C/F	6-1-67
4CX250B/7203 & 4CX250FG/8621	8-1-74
4CX250BC/8957	1-1-74
4CX250K/8245 &	
4CX250M/8246	5-1-68
4CX250R/7580W	6-16-61
4CX300A/8167	8-30-66
4CX300Y/8561	6-15-66
4CX350A/8321 &	
4CX350F/8322	6-15-65
4CX350FJ/8904	9-1-71
4CX600B & 4CX600F	3-20-70
4CX600J/8809 &	0 20 70
4CX600JA/8921	8-15-71
4CX1000A/8168	5-1-70
4CX1000K/8352	8-20-66
4CX1500A	12-1-71
4CX1500B/8660	6-1-67
	5-1-67
4CX3000A/8169	
4CX5000A/8170	4-15-69

4CX5000J/8909	10-1-71
4CX5000R/8170W	4-15-71
4CX10,000D/8171	1-1-72
4CX10,000J	2-1-72
4CX15,000A/8281	12-15-73
4CX15,000J/8910	10-15-71
4CX35,000C/8349	12-1-70
4W300B/8249	11-1-73
4X150A/7034 & 7609	8-1-74
4X150G/8172	10-15-73
4X500A	1-1-64
6816,6884,7843	11-15-71
7609 see 4X1	50A/7034
8560A	7-15-71
8876	6-15-71
8930	12-1-73
8954	6-1-74
8959	11-1-74
X2159	7-1-73

PENTODES

5-125B/4E27A	8-15-52
5-500A	5-1-68
5CX1500A	6-6-70
5CX3000A	8-1-67
264/8576	6-5-70
290	5-5-70
8295A	1-15-73

PULSE MODULATORS

4PR60C/8252W													
4PR65A/8187 .					÷		ž						2-15-63
4PR125A/8247.			,		÷		,	•		•	÷		3-15-64
4PR250C/8248.								•					9-1-70
4PR400A/8188.	X				ł		÷		ž				9-15-65
4PR1000A/8189			•	•				•		•	÷		12-15-65
6C21		•	•	•		•	ž	•	÷	•		•	12-15-65

OTHER PRODUCTS

VS-2, 4, 5 & 6	4-4-70
Preformed Contact	
Finger Stock	6-15-71
HR Heat Dissipating	
Connectors	12-1-65
SK-300A	4-15-69
SK-306, SK-316	8-15-66
SK-400	4-1-56
SK-406, SK-416, SK-426	12-1-73
SK-410	12-1-73
SK-500	3-15-67
SK-506, SK-516	4-15-69
SK-510	3-15-75
SK-600A, SK-610A	11-1-74
SK-606, SK-626, SK-636B, SK-646	11-1-74
SK-607	8-15-71

(Cont'd)

OTHER PRODUCTS

SK-620, SK-620A	7-1-75	SK-810B, SK-806	6-1-67
SK-630, SK-630A	3-15-67	SK-816, SK-860, SK-870	3-25-75
SK-640	7-1-75	SK-890B, SK-806	6-1-67
SK-650, SK-655		SK-900, SK-906	8-15-66
SK-700, SK-710	10-15-66	SK-1300, SK-1310, SK-1320	3-1-72
SK-711A, SK-712A	3-15-71	SK-1306, SK-1406	8-15-66
SK-740		SK-1400A, SK-1470A	10-15-66
SK-760, SK-770	7-15-75	SK-2200, SK-2210	8-15-72
SK-800B, SK-806	4-9-64	Landaur · Acceptions o a la tra tra tra tra tra tra tra tra tra tr	1997 Burnard II - Arren

DIVISION OF VARIAN 301 Industrial Way San Carlos, California 94070

INDEX

100-11	_				
100TH	Т	3CX10,000A3/8159	Т	4CX600J/8809	TET
100TL	Т	3CX10,000A7/8160	Т	4CX600JA/8921	
152TH	Т	3CX10,000H3	Т	see 4CX600J	TET
152TL	Т	3CX15,000A3	т	4CX1000A/8168	TET
1000T	Т	3CX15,000 A7	т	4CX1000K/8352	TET
1500T	т	3CX15,000H3	Ť	4CX1500A	TET
250R	R	3CX20,000A3	Ť		
250TH	Т		Ť	4CX1500B/8660	TET
	37	3CX20,000 A7		4CX3000A/8169	TET
250TL	Т	3CX20,000H3	Т	4CX5000A/8170	TET
253	R	3W5000F3/8243	Т	4CX5000J/8909	TET
264/8576	PE	450TH	Т	4CX5000R/8170W	TET
290	PE	450TL	Т	4CX10,000D/8171	TET
2000T	Т	4-65A/8165	TET	4CX10,000J	TET
2-01C	D	4-125A/4D21	TET	4CX15,000A/8281	TET
2-450A	R	4-250A/5D22			
2-2000A	R	4 400 Å / 9 400	TET	4CX15,000J/8910	TET
		4-400 A/8438	TET	4CX35,000C/8349	TET
2C39A see 7289	PL	4-400C/6775	TET	4D21 see 4-125A	TET
35⊤	Т	4-500 A	TET	4E27A see 5-125B	PE
35TG	Т	4-1000A/8166	TET	4PR60C/8252W	PM
304TH	Т	4CN15A	TET	4PR65A/8187	PM
304TL	Т	4CPX250K/8590	TET	4PR125A/8247	
3-200A3 see 592	Ť	4CS250R	TET		PM
3-400Z/8163	Ť	40020011		4PR250C/8248	PM
	Ť	4CV800A	TET	4PR400A/8188	PM
3-500Z		4CV20,000A	TET	4PR1000A/8189	PM
3-1000Z/8164	Т	4CV35,000A	TET	4W300B/8249	TET
3C24	Т	4CV50,000E	TET	4X150A/7034 see 7609	TET
3CV 1500 A7	т	4CV50,000J	TET	4X150G/8172	TET
3CV30,000A3	т	4CV100,000C/8351	TET	4X500A	TET
3CV30,000H3	Т	4CV250,000A	TET	575A	R
3CW5000A1/8240	т	4CW800B	TET	592/3-200A3	т
3CW5000A3/8242	т	4CW800F see 4CW800B .	TET		
3CW5000F1/8241	Ť			5867A	Т
		4CW2000A/8244	TET	5-125B/4E27A	PE
3CW5000F3/8243	T	4CW10,000A	TET	5-500A	PE
3CW5000H3	т	4CW25,000A	TET	5CX1500A	PE
3CW10,000H3	т	4CW50,000E	TET	5CX3000A	PE
3CW20,000A1	т	4CW50,000J	TET	5D22 see 4-250A	TET
3CW20,000A3	т	4CW100,000D	TET	673 see 575A	R
3CW20,000A7	т	4CW100,000E	TET	6696A	T
3CW20,000H3	т	4CW250,000A	TET	6697A	Ť
3CW20,000H7	Ť	4CX125C	TET		÷
				6775 see 4-400C	TET
3CW30,000H3	T	4CX125F see 4CX125C .	TET	6816	TET
3CW30,000H7	Т	4CX250B/7203 &		6884 see 6816	TET
3CW40,000H3	т	4CX250FG/8621	TET	6894	R
3CX100A5 see 7289	PL	4CX250BC/8957	TET	6895 see 6894	R
3CX400U7	Т	4CX250K/8245	TET	6C21	PM
3CX1000A7/8283	т	4CX250M/8246	TET	75TH	т
3CX1500A7/8877	т	4CX250R/7580W	TET	75TL	Ť
3CX2500A3/8161	т				
3CX2500F3/8251	Ť	4CX300A/8167	TET	750TL	T
	Ť	4CX300Y/8561	TET	7034 see 4X150A	TET
3CX2500H3		4CX350A/8321	TET	7035 see 4X150A/D	TET
3CX3000A1/8238	т	4CX350F/8322	TET	7203 see 4CX250B	TET
3CX3000A7	Т	4CX350FJ/8904	TET	7204 see 4CX250B/F	TET
3CX3000F1/8239	т	4CX600B	TET		
3CX3000F7/8162	т	4CX600F see 4CX600B .	TET		
3CX5000H3	Т		(B)		
3CX10,000A1/8158	Т				

- D Diode
- PE Pentode

PL - Planar Triode

PM - Pulse Modulator

OP - Other Products

- R Rectifier
- T Triode

TET - Tetrode

	7211	PL	8252W see 4PR60C	PM	SK-400	OP
	7289/3CX100A5	PL	8281 see 4CX15,000A	TET	SK-406	OP
	7480	T	8283 see 3CX1000A7	т	SK-410	OP
2	7580W see 4CX250R	TET	8295A	PE	SK-416 see SK-406	OP
	7609 see 4X150A/7034.	TET	8321 see 4CX350A	TET	SK-426 see SK-406	OP
	7698	PL	8322 see 4CX350A/F	TET	SK-500	OP
	7815/7815R	PL	8349 see 4CX35,000C	TET	SK-506	OP
	7815AL/7815RAL	PL	8351 see 4CV100,000C .	TET	SK-510	OP
	7815R see 7815	PL	8352 see 4CX1000K	TET	SK-516 see SK-506	OP
	7815RAL see 7815AL	PL	8403	PL	SK-600 A	OP
	7843	TET	8438 see 4-400A	TET	SK-606	OP
	7855/7855K		8533	PL	SK-607	OP
		PL		TET		OP
	7855AL/7855KAL	PL	8560A		SK-610 see SK-600A	
	7855K see 7855	PL	8561 see 4CX300Y	TET	SK-620	OP
	7855KAL see 7855AL	PL	8576 see 264	PE	SK-620 A see SK-620	OP
	869B	R	8590 see 4CPX250K	TET	SK-626 see SK-606	OP
	869BL see 869B	R	8660 see 4CX1500B	TET	SK-630	OP
	8020	R	8661 see 4CW10,000A	TET	SK-630A see SK-630	OP
	8158 see 3CX10,000A1	Т	8755	PL	SK-636B see SK-606	OP
	8159 see 3CX10,000A3	Т	8755A see 8755	PL	SK-640	OP
	8160 see 3CX10,000A7	Т	8757	PL	SK-646 see SK-606	OP
	8161 see 3CX2500A3	Т	8809 see 4CX600J	TET	SK-650	OP
	8162 see 3CX3000F7	т	8847	PL	SK-655 see SK-650	OP
	8163 see 3-400Z	т	8847 A see 8847	PL	SK-700	OP
	8164 see 3-1000Z	Т	8873	Т	SK-710 see SK-700	OP
	8165 see 4-65A	TET	8874 see 8873	т	SK-711A	OP
	8166 see 4-1000A	TET	8875 see 8873	т	SK-712A see SK-711A	OP
	8167 see 4CX300A	TET	8876	TET	SK-740	OP
	8168 see 4CX1000A	TET	8877 see 3CX1500A7	т	SK-760	OP
κ.	8169 see 4CX3000A	TET	8892	PL	SK-770 see SK-760	OP
J	8170 see 4CX5000A	TET	8893	PL	SK-800B	OP
	8170W see 4CX5000R	TET	8904 see 4CX350FJ	TET	SK-806 see SK-800B	OP
	8171 see 4CX10,000D	TET	8906	PL	SK-810B	OP
	8172 see 4X150G	TET	8906AL/Y572AL	PL	SK-816	OP
	8173 see 4W20,000A	TET	8907 see 8906	PL	SK-860 see SK-816	OP
	8187 see 4PR65A	PM	8909 see 4CX5000J	TET	SK-870 see SK-816	OP
	8188 see 4PR400A	PM	8910 see 4CX15,000J	TET	SK-890B	OP
	8189 see 4PR1000A	PM	8911	PL	SK-900	OP
	8238 see 3CX3000A1	т	8912	PL	SK-906 see SK-900	OP
	8239 see 3CX3000F1	т	8921 see 4CX600J/JA	TET	SK-1300	OP
	8240 see 3CW5000A1	Ť	8930	TET	SK-1306	OP
	8241 see 3CW5000A1/F1	Ť	8933	PL	SK-1310 see SK-1300	OP
	8242 see 3CW5000A3	Ť	8938	Т		OP
	8244 see 4CW2000A	TET	8954	TET	SK-1320 see SK-1300	
	8245 see 4CX250K	TET	8959	TET	SK-1400A	OP
	8246 see 4CX250K/M	TET	8963	T	SK-1406 see SK-1306	OP
	8247 see 4PR125A	PM	Contact Finger Stock		SK-1470A see SK-1400A.	OP
	8248 see 4PR250C	PM		OP	SK-2200	OP
	8249 see 4W300B	TET	(Preformed)	OP	SK-2210 see SK-2200	OP
		T	HR Heat Dissipating		VS-2, 4, 5 & 6	OP
	8251 see 3CX2500F3	1		OP	X-2159	TET
			SK-300A	OP	Y572AL see 8906AL	PL
			SK-306	OP		
			SK-316 COO SK-306			

SK-316 see SK-306

- D Diode
- PE Pentode
- PL Planar Triode
- PM Pulse Modulator

OP - Other Products

- R Rectifier
- T Triode
- TET Tetrode

OP

EIMAC Division of Varian San Carlos, California

EIMAC and JEDEC CROSS-REFERENCE LIST

FEBRUARY 15, 1975

(Revised 2-15-75) © 1973 Varian Associates

Printed in U.S.A.

EIMAC/JEDEC CROSS-REFERENCE LIST

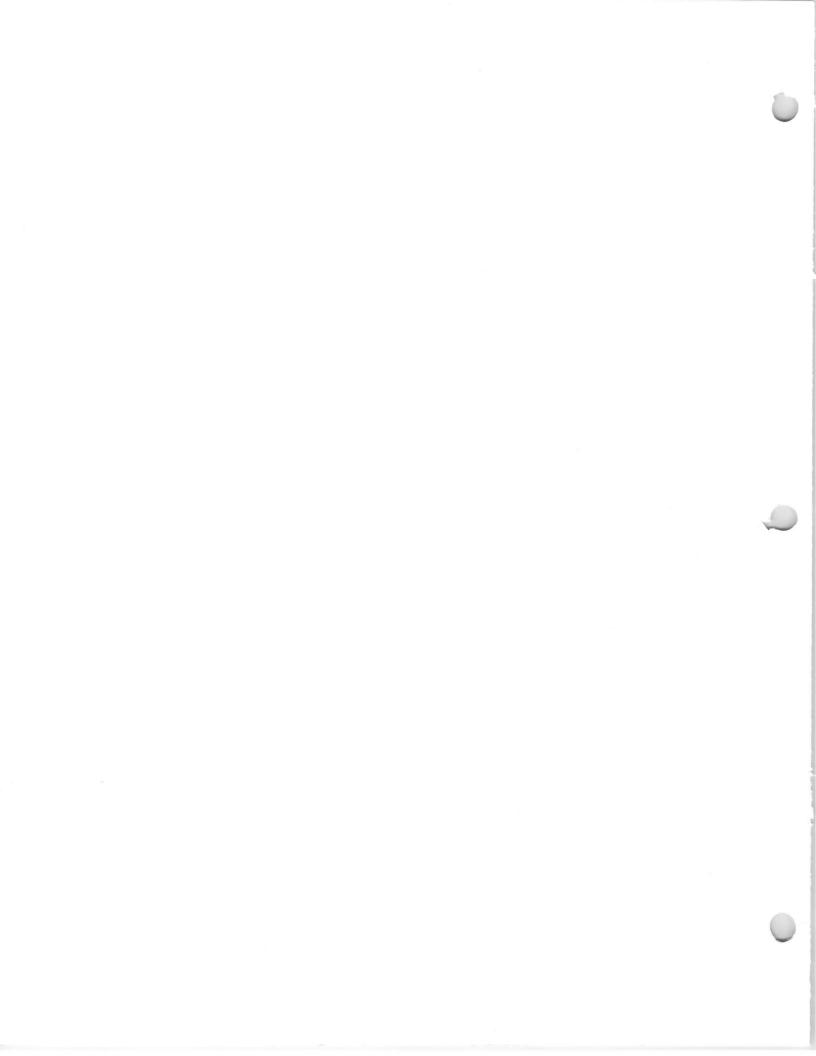
EIMAC to JEDEC

EIMAC No. JEDEC No.	EIMAC No. JEDEC No.	EIMAC No. JEDEC No.	EIMAC No. JEDEC No.
2-01C —	3СХ20,000НЗ —	4PR60B 8252	6884 6884
2-25A —	4-65A	4PR60C 8252W	6894 6894
2-50A —	4-125A 4D21	4PR65A 8187	6895
2-150D	4-250A 5D22	4PR125A 8247	7211
2-240A	4-400A	4PR250C 8248	
2-240A –			7457
2-2000A —	4-400B	4PR400A 8188	7480
2C39A 2C39A	4-400C 6775	4PR1000A8189	7609
2C39WA2C39WA	4-500A —	4PR1000B —	7698 7698
2X1000A —	4-1000A 8166	4W300B 8249	7815AL 7815AL
2×3000F —	4CN15A —	4X150A 7034	7815RAL 7815RAL
3C24 3C24	4CPX250K 8590	4X150G 8172	7815X 7815X
3-200A3 592	4CS250R	4X500A	7815XAL 7815XAL
3-400Z 8163	4CV1500B	5-125B 4E27A	7843
3-500Z —	4CV8000A	5-500A —	7855
3-1000Z 8164	4CV20,000A	5CX1500A	7855AL 7855AL
3CPN10A5 7815	4CV35,000A	5CX3000A	7855K 7855K
3CPX100A5 7815R	4CV50,000E	6C21 6C21	
	10100,0002		7855KAL 7855KAL
3CPX1500A7	4CV50,000J —	25T	8295A 8295A
3CV1500A7	4CV100,000C 8351	35T 35T	8403 8403
3CV30,000A1 —	4CV250,000A —	35TG 35TG	8432 8432
3CV30,000A3 —	4CW800B —	75TH 75TH	8533W8533W
3CV30,000H3 —	4CW800F	75TL 75TL	8560A 8560A
3CV50,000A7	4CW2000A 8244	100R	8560AS 8560AS
3CW5000A1 8240	4CW10,000A 8661	100TH100TH	8745 8745
3CW5000A3 8242	4CW25.000A	100TL100TL	8755 8755
3CW5000F1 8241	4CW50,000E	152TH152TH	8755A 8755A
3CW5000F3 8243	4CW50,000J —	152TL 152TL	8756 8756
3CW5000H3	4CW100,000D	175A —	8757
3CW10,000A3	4CW100,000E	177A —	8847
3CW10,000H3	4CW250,000A	177WA 6549W	8847A 8847A
3CW20,000A1	4CX125C	250R —	8873
3CW20,000A3	4CX125F	250TH250TH	8874
3CW20,000A7	4CX250B 7203	250TL 250TL	8875
3CW20,000H3 —	4CX250BC 8957	253	
3CW20,000H7	4CX250FG 8621	254W	8892 8892
3CW30,000H3	4CX250K 8245	264	8893 8893
3CW30,000H7 —	4CX250M 8246	279 —	8906 8906
3CW40,000H3 —	4CX250R7580W	284	8906AL 8906AL
3CX100A5 7289	4CX300A 8167	290	8906BAL8906BAL
3CX100F5 8250	4CX300Y 8561	294 —	8906X 8906X
3CX400U78961	4CX350A 8321	304TH304TH	8906XAL8906XAL
3CX1000A7 8283	4CX350F 8322	304TL304TL	8907
3CX1500A7 8877	4CX350FJ8904	322 —	8911 8911
3CX2500A3 8161	4CX600B —	450TH450TH	8912 8912
3CX2500F3 8251	4CX600F	450TL 450TL	8930 8930
3CX2500H3 —	4CX600J 8809	750TL750TL	8933
3CX3000A1 8238	4CX600JA 8921	826 826	8938 8938
3CX3000A7	4CX1000A 8168	1000T 1000T	8940 8940
3CX3000F1 8239	4CX1000K 8352	1500T 1500T	8941 8941
3CX3000F7 8162	4CX1500A	2000T 2000T	8942
3CX5000A3	4CX1500B 8660	5867A 5867A	8944
3CX5000H3	4CX3000A 8169	6155 6155	8954 8954
3CX10,000A1 8158	4CX5000A 8170	6156 6156	
3CX10,000A1 8158 3CX10,000A3 8159	4CX5000A 8170 4CX5000J 8909	6549 6549	8959
3CX10,000A3 8159	4CX500058909 4CX5000R8170W	6569	8962 8962
3CX10,000H3			8963
3CX10,000A3	4CX10,000D 8171	6580	
3CX15,000A3	4CX10,000J —	6697A	production of the last list list in the second second
3CX15,000H3	4CX15,000A 8281		8965
3CX20,000A3	4CX15,000J 8910 4CX35,000C 8349		
		6816	
3CX20,000A7 —	4D21A4D21A		

JEDEC/EIMAC CROSS-REFERENCE LIST

JEDEC to EIMAC

7815X7815X 85904CPX250K 7815XAL7815XAL 86214CX250FG
--


DIVISION OF VARIAN 301 Industrial Way San Carlos, California

POWER GRID TUBE SELECTION GUIDE

(Effective 2-15-75) © by Varian

Printed in U.S.A.

Ł

POWER GRID TUBE SELECTION GUIDE

The EIMAC Power Grid Tube Selection Guide is arranged for ease in making type selections by use rather than tube type. The Guide is applications-oriented.

Tube types are listed according to the principle modes of service for which they are rated. Under each mode of service, EIMAC tube types suitable for the application are tabulated in descending order of the most significant tube parameter in the left hand column. For example, in the POWER AMPLI-FIER tabulation, tube types are listed in descending order of typical rf power output; PULSE REGULATOR tubes are listed in descending order of peak current capability. This format places emphasis on tube application and facilitates comparison in terms of the significant ratings of the EIMAC types available for a given application.

After preliminary selection of a tube type (or types) from the Guide, the final choice should be based upon the complete ratings from the EIMAC data sheet for the tube in question and consultation with the EIMAC Application Engineering Department.

RADIO FREQUENCY POWER AMPLIFIER

Peak Env. Power‡	Rated Anode	Frequency* F1 / upper	Inter- Distor Typi	rtion		EIMAC Type	Tube
Typical	Diss.	F1 / useful	3rd	5th	Cooling	Number	Type
(kW)	(kW)	(MHz)	(dB)	(dB)			
1180	1250	30 / 50			water	X-2159	Tetrode
600	650	50 / 100			water	X-2170	Tetrode
230	250	30 / 50	-31	-43	vapor	4CV250,000A	Tetrode
230	250	30 / 50	-31	-43	water	4CW250,000A	Tetrode
168	100	108 / 150			water	4CW100,000E	Tetrode
123	100	30 / 50	-26	-40	vapor	4CV100,000C	Tetrode
105	50	110/220			vapor	3CV50,000A7	Triode ¹
55	35	30 / 50	-30	-40	air	4CX35,000C	Tetrode
45	50	110/200	-46	-60	vapor	4CV50,000J	Tetrode
45	50	110 / 200	-46	-60	water	4CW50,000J	Tetrode
27.5	20	250 / 500			air	8963	Triode ²
27.5	20	110/220	_		air	3CX20,000A7	Triode ¹
17	15	110 / 220	-40	-39	air	3CX15,000A7	Triode ¹
17	20	140 / 220	-40	-39	water	3CW20,000A7	Triode ¹
17	10	140 / 220	-40	-39	air	3CX10.000A7	Triode ¹
14	10	100/220	-30	-36	air	4C×10,000D	Tetrode
12	15	110/220	-41	-41	air	4C×15,000J	Tetrode
10.5	10	100 / 220	-35	-40	air	4C×10,000J	Tetrode
10	5	100 / 220	-30	-38	air	4CX5000A	Tetrode
10	5	100/220	-30	-38	air	4CX5000R	Tetrode
5.8	5 3 5	150 / 220	40	-43	air	5CX3000A	Pentode
5.3	5	30 / -	-26	-40	air	290	Pentode
5.5	3	110/-	-51	-45	air	3CX3000A7	Triode ¹
5.3	3	150 / 220	-32	-36	air	4CX3000A	Tetrode
5.8	3 3	30 /	-26	-41	air	264/8576	Pentode
3.3	5	100 / 220	-41	-44	air	4CX5000J	Tetrode
2.06	1	220 / 400	-31	-39	air	3CX1000A7	Triode ¹

Linear Service

Flate power output, calculated or measured at low frequency.

* F1 is the maximum frequency at which maximum ratings apply. Operation at the upper useful frequency normally involves operation at reduced anode voltage and reduced plate input power.

† Calculated or measured by two-tone method at 2.0 MHz.

1. Grounded grid 2. VHF TV

RADIO FREQUENCY POWER AMPLIFIER-LINEAR, CONTINUED

Peak Env. Power‡	Rated Anode	Frequency* F1/ upper	Inter- Disto Typi	rtion		EIMAC Type T		
Typical	Diss.	F1/ useful	3rd	5th	Cooling	Number	Туре	
(Watts)	(Watts)	(MHz)	(dB)	(dB)				
2050	1500	220 / 400	-38	-44	air	3CX1500A7	Triode	
2030	1500	500 /	-44	-44	air	8938	Triode	
1785	1500	110/220	-33	-42	air	5CX1500A	Pentode	
1160	1000	110 / 220	-43	-47	air	4C×1500B	Tetrode	
1080	1000	110/-	-29	-37	air	3-1000Z	Triode	
940	500	110 /	-40	-45	air	3-500Z	Triode	
645	500	110 /	-33	-41	air	5-500A	Pentode	
590	200	500 / 900	-35	-36	conduction	8873	Triode	
590	400	500 / 900	-35	-36	air	8874	Triode	
590	300	500 / 900	-35	-36	air	8875	Triode	
590	400	110/-	-28	-35	air	3-400Z	Triode	
580	600	30 /	-43	-43	air	4CX600J	Tetrode	
495	400	110/-		_	air	4-400C	Tetrode	
350	350	500 /	-27	-50	air	8930	Tetrode	
295	250	500 /	-25	-30	air	4CX250R	Tetrode	
295	250	500/-	-25	-30	conduction	4CS250R	Tetrode	
263	350	30/220	-30	-35	air	4CX350A	Tetrode	
263	350	30/220	-30	-35	air	4CX350F	Tetrode	
263	350	30/220	-40	-45	air	4CX350FJ	Tetrode	
226	200	500 /			conduction	8560A	Tetrode	

 \ddagger Plate power output, calculated or measured at low frequency.

* F1 is the maximum frequency at which maximum ratings apply. Operation at the upper useful frequency normally involves operation at reduced anode voltage and reduced plate input power.

† Calculated or measured by two-tone method at 2.0 MHz.

1. Grounded grid

RF POWER AMPLIFIER

Class C, CW or FM Service

Plate Pwr. Output Typical*	Rated Plate Diss.	Freq.† F1/ upper useful	Power Gain*	Cooling	EIMAC Type Number	Tube Type
(kW)	(kW)	(MHz)				
1650	1250	30 / 50	×200	water	X-2159	Tetrode
1050	650	50/100	×300	water	X-2170	Tetrode
460	250	30 / 50	×150	vapor	4CV250,000A	Tetrode
460	250	30 / 50	×150	water	4CW250,000A	Tetrode
220	100	108 / 150	×1800	water	4CW100,000E	Tetrode
168	100	30 / 50	×1350	vapor	4CV100,000C	Tetrode
165	100	30 / 50	×140	water	4CW100,000D	Tetrode
137	50	110 / 220	×900	vapor	4CV50,000E	Tetrode
137	50	110/220	×900	water	4CW50,000E	Tetrode
110	35	30 / 50	×425	air	4C×35,000C	Tetrode
80	60	40 / 80	×130	water	6696A	Triode
80	80	40 / 80	×130	vapor	7480	Triode
80	35	40 / 80	×130	air	6697A	Triode
64	20	90/150	×66	air	3CX20,000A3	Triode
64	20	90 / 150	x66	air	3C×20,000H3	Triode
42	25	100 / 150	×37	water	3CW25,000A3	Triode
36.5	15	110 / 225	x166	air	4C×15,000A	Tetrode
30.0	15	100/150	×45	air	3C×15,000A3	Triode
25.0	15	110/160	×50	air	3CX15,000A7	Triode
24.5	10	140 / 200	×6	air	3C×10,000A3	Triode ¹
24.5	20	140 / 200	x6	water	3CW20,000A3	Triode
16	5	100 / 220	×1050	air	4C×5000A	Tetrode

* Power output and power gain are calculated or measured at low frequency.

† FI is the maximum frequency at which maximum ratings apply. Operation at the upper useful frequency normally involves operation at reduced anode voltage and reduced plate input power.

1. Grounded grid

RF FREQUENCY POWER AMPLIFIER - CLASS C, CW or FM, CONTINUED

Plate Pwr. Output Typical*	Rated Plate Diss.	Frequency [†] F1/ ^{upper} useful	Power Gain*	Cooling	EIMAC Type Number	Tube Type
(Watts)	(Watts)	(MHz)		5		
16,000	10,000	100 / 220	×1050	air	4CX10,000D	Tetrode
16,000	10,000	100/220	×1050	water	4CW10,000A	Tetrode
16,000	5000	100 / 220	×1050	air	4CX5000R	Tetrode
11,000	3000	150 / 220	×260	air	4CX3000A	Tetrode
10,000	4000	75 / 150	×73	air	3CX2500A3	Triode
10,000	4000	75 / 150	×73	air	3CX2500F3	Triode
10,000	5000	75 / 150	×73	water	3CW5000A3	Triode
10,000	5000	75 / 150	×73	water	3CW5000F3	Triode
8500	3000	150 / 220	×160	air	5CX3000A	Pentode
3400	1000	110 /	×225	air	4-1000A	Tetrode
3200	1500	110 / 220	x350	air	4CX1500A	Tetrode
3180	1500	110/220	x350	air	5CX1500A	Pentode
2600\$	1500	250 /	×33	air	3CX1500A7	Triode
1500\$\$	1500	500/-	×30	air	8938	Triode
1265	500	110 /	×140	air	4-500A	Pentode
1100	400	110 /	×190	air	4-400C	Tetrode
1000	250	110/-	×190	air	4-250A	Tetrode
840	350	100 / 150	×31	air	5867A	Triode
805	250	60 /	×9	air	6569	Triode
805	500	110/-	×67	air	4-500A	Tetrode
745	400	60 /	×8	air	6580	Triode
680	1500	-/ 900	×10	air	8962	Triode
600	300	110 / 220	×158	air	4C×300Y	Tetrode
500	300	500 /	×177	air	4CX300A	Tetrode
450	350	500 /		air	8930	Tetrode
380	250	500 /	×190	conduction	4CS250R	Tetrode
380	250	500 /	×130	air	4CX250BC	Tetrode
380	250	500 /	×130	air	4CX250FG	Tetrode
380	250	500 / 1500	×130	air	4CX250K	Tetrode
380	250	500 / 1500	×130	air	4CX250M	Tetrode
380	250	500 /	×190	air	4CX250R	Tetrode
380	250	150 / 500	×130	air	4X150A	Tetrode
380	250	150 / 500	×130	air	7609	Tetrode
380	250	500 /	×130	conduction	8560A	Tetrode
375	125	120 /	×150	air	4-125A	Tetrode
320	200	500 /	x35	conduction	8873	Triode
320	400	500 /	×35		8874	
320	300	500 /	x35 x35	air	8875	Triode
270	65	150 /	×160	air		Triode
216	400	150 / - 1000 / -		convection	4-65A	Tetrode
100	115	a manager and an	11.5 ×27 @ 400 MHz	air	3CX400U7	Triode ²
100	115	1215 /	×27 @ 400 MHz	air	6816	Tetrode
100	115	1215 /	x27 @ 400 MHz	air	6884	Tetrode
100	115	1215 / — 1215 / —	x27 @ 400 MHz x27 @ 400 MHz	air conduction	7457 7843	Tetrode
100		re calculated or me	and a second second second second		/043	Tetrode

* Power output and power gain are calculated or measured at low frequency.
 * F1 is the maximum frequency at which maximum ratings apply. Operation at the upper useful frequency normally involves operation at reduced anode voltage and reduced plate input power.
 § Power output shown is measured useful, delivered to load, at 104 MHz.
 § S Useful power output, measured at 430 MHz
 1. Grounded grid
 2. 900 MHz

RF POWER AMPLIFIER

Class C - Plate Modulated Service

Carrier Pwr. Output Typical*	Plate Diss. at Typical Conditions	Frequency† F1 / upper useful	Power Gain*	Cooling	EIMAC Type Number	Tube Type
(kW - W)	(kW - W)	(MHz)				
1375 kW	800 kW	30 / 50	×200	water	X-2159	Tetrode
700 kW	160 kW	50/100	×290	water	X-2170	Tetrode
285 kW	119 kW	30 / 50	×120	vapor	4CV250,000A	Tetrode
285 kW	119 kW	30 / 50	×120	water	4CW250,000A	Tetrode
140 kW	47 kW	30 / 50	×110	vapor	4CV100,000C	Tetrode
140 kW	35 kW	108 / 150	×260	water	4CW100,000E	Tetrode
138 kW	22 kW	30 / 50	×160	water	4CW100,000D	Tetrode
110 kW	22 kW	110 / 220	×160	water	4CW50,000E	Tetrode
110 kW	22 kW	110/220	×160	vapor	4CV50,000E	Tetrode
60 kW	20 kW	40 / 80	×30	water	6696A	Triode
60 kW	20 kW	40 / 80	×30	air	6697A	Triode
60 kW	20 kW	40 / 80	×30	vapor	7480	Triode
55 kW	13 kW	30 / 50	×440	air	4CX35,000C	Tetrode
27.5 kW	7.5 kW	90 / 150	×18	air	3CX20,000A3	Triode
27.5 kW	7.5 kW	90 / 150	×18	air	3CX20,000H3	Triode
23.5 kW	5.8 kW	110 / 225	×155	air	4CX15,000A	Tetrode
23.5 kW	5.8 kW	110 / 225	×155	vapor	4CV35,000A	Tetrode
18.0 kW	5.4 kW	100 / 150	×37	air	3CX15,000A3	Triode
12.4 kW	2.6 kW	140 / 200	×24	air	3CX10,000A3	Triode
8500 W	3500 W	100 / 220	×230	air	4C×10,000D	Tetrode
8500 W	3500 W	100 / 220	×230	air	4CX5000A	Tetrode
8500 W	3500 W	100 / 220	×230	air	4CX5000R	Tetrode
5750 W	1250 W	150 / 220	×190	air	4CX3000A	Tetrode
5300 W	950 W	75 / 150	×45	air	3CX2500A3	Triode
5300 W	950 W	75 / 150	×45	air	3CX2500F3	Triode
2630 W	670 W	110/-	×290	air	4-1000A	Tetrode
2320 W	780 W	110 / 220	×230	air	4CX1500A	Tetrode
1960 W	575 W	110 / 220	×195	air	5CX1500A	Pentode
1765 W	485 W	110/-	×50	air	3-1000Z	Triode
830 W	245 W	110/-	×140	air	4-500A	Tetrode
785 W	280 W	110/-	×110	air	5-500A	Pentode
640 W	185 W	110/-	×25	air	3-500Z	Triode
630 W	195 W	110/-	×190	air	4-400C	Tetrode
510 W	165 W	110/-	×160	air	4-250A	Tetrode
300 W	80 W	120/-	×90	air	4-125A	Tetrode
300 W	200 W	110 / 220	×175	air	4CX300 Y	Tetrode
270 W	280 W	500/-		air	8930	Tetrode
235 W	65 W	500 /	×160	conduction	4CS250R	Tetrode
235 W	65 W	500 /	×135	air	4CX250BC	Tetrode
235 W	65 W	500 /	×135	air	4CX250F	Tetrode
235 W	65 W	500 / 1500	×135	air	4CX250K	Tetrode
235 W	65 W	500 / 1500	×135	air	4CX250M	Tetrode
235 W	65 W	500 /	×160	air	4CX250R	Tetrode
235 W	65 W	500 /	×135	air	4CX300A	Tetrode
235 W	65 W	150 / 500	×135	air	4×150A	Tetrode
235 W	65 W	150 / 500	×135	air	7609	Tetrode
235 W	65 W	500 /	×135	conduction	8560A	Tetrode
210 W	45 W	150/-	x65	convection	4-65A	Tetrode
45 W	45 W	1215 /	×15 @ 400 MHz	air	6884	Tetrode
45 W	45 W	1215 /	×15 @ 400 MHz	air	7457	Tetrode
45 W	45 W	1215 / —	×15 @ 400 MHz	conduction	7843	Tetrode

* Power output and power gain are calculated or measured at low frequency.
 † F1 is the maximum frequency at which maximum ratings apply. Operating at the upper useful frequency normally involves operation at reduced anode voltage and reduced plate input power.

RF POWER AMPLIFIER

Grid Pulsed Service

Peak RF Pwr. Output Typicalβ	Rated Anode Diss.	Frequency† F1 / upper useful	Maximum Anode Voltage	Maximum Anode Currentβ	Cooling	EIMAC Type Number	Tube Type
(kW)	(kW)	(MHz)	(kVdc)	(A)			
3900	1250	30 / 50	30	195	water	X-2159	Tetrode
2000	650	50 / 100	30	100	water	X-2170	Tetrode
1000	100	108 / 150	30	50	water	4CW100,000E	Tetrode
500	50	110 / 220	30	33	vapor	4CV50,000E	Tetrode
500	50	110 / 220	30	33	water	4CW50,000E	Tetrode
160	15	110 / 225	12	20	air	4CX15,000A	Tetrode
80	10	110 / 220	10	13	air	4CX10,000D	Tetrode
80	10	110/220	10	13	air	4CX5000A	Tetrode
80	10	100/220	10	13	air	4CX5000R	Tetrode
35	1.5	- / 500	20	8	air	3CPX1500A7	Triode
34	1.0	110 /	15	3.5	air	4PR1000A	Tetrode
28*	0.25	500 / 1500	7	6.0	air	4CPX250K	Tetrode
28*	0.25	500 / 1500	7	6.0	air	4CX250K	Tetrode
28*	0.25	500 / 1500	7.0	6.0	air	4CX250M	Tetrode
26	1500	500 /	5	8	air	8938	Triode
11	0.40	110/-	10	1.7	air	4PR400A	Tetrode
10‡	0.25	500 / 1500	5.5	0.8	air	4CPX250K	Tetrode
4.0	0.125	120 /	9.0	0.7	air	4PR125A	Tetrode
2.6	0.300	110/220	3.0	1.3	air	4CX300Y	Tetrode
2.0	0.065	150 /	7.5	0.4	convection	4PR65A	Tetrode
1.6	0.20	500/-	3.0	0.8	conduction	8873	Triode
1.6	0.40	500/-	3.0	0.8	air	8874	Triode
1.6	0.30	500 /	3.0	0.8	air	8875	Triode
1.6	0.25	500/-	3.0	0.8	air	4CX250B)	
1.6	0.25	500/-	3.0	0.8	air	4CX250F	Tetrode
1.6	0.25	500 / 1500	3.0	0.8	air	4CX250K)	Tatrada
1.6	0.25	500 / 1500	3.0	0.8	air	4CX250M	Tetrode

 β Average during the pulse. Power output data is anode power (does not include circuit losses), calculated or measured at low frequency.

F1 is the maximum frequency at which maximum ratings apply. Operation at the upper useful frequency normally involves operation at reduced anode voltage and reduced anode power input.

* Anode and screen-grid pulsed

‡ Cathode driven, screen pulsed

OSCILLATOR OR AMPLIFIER

Class	С —	Industrial	Service

Plate Pwr. Output Typical*	Rated Plate Diss.	Filament Heating Power	Frequency [†] F1 / upper useful	Cooling	EIMAC Type Number	Tube Type
(kW)	(KW)	(Watts)	(MHz)			
1800	1000	26640	30 / 60	water	X-2176	Triode
900	500	13320	30 / 60	water	X-2177	Triode
80	60	2665	40 / 80	water	6696A	Triode
80	35	2665	40 / 80	air	6697A	Triode
80	80	2665	40 / 80	vapor	7480	Triode
70	40	1600	90 /	water	3CW40,000H3	Triode
60	20	1600	90 /	air	3CX20,000H3	Triode
42	30	1020	90 /	water	3CW30,000H3	Triode
42	30	1020	100 /	vapor	3CV30,000H3	Triode
41.2	15	1020	90 / —	air	3C×15,000H3	Triode
29	10	742	90 /	air	3C×10,000H3	Triode
28	20	742	90/-	water	3CW20,000H3	Triode
20.6	10	566	90/-	water	3CW10,000H3	Triode
18.6	5	566	90/-	air	3CX5000H3	Triode
10	5	379	75 / 150	water	3CW5000H3	Triode
5	2.5	379	75 / 150	air	3CX2500A3/F3/H3	Triode
1.2	0.3	125	40 / 80	air	304TL	Triode
0.68	0.35	70	100 /	air	5867A	Triode

Calculated or measured at low frequency.
 F1 is the maximum frequency at which maximum ratings apply. Operation at the upper useful frequency normally involves oper-ation at reduced anode voltage and reduced plate input power.

AF POWER AMPLIFIER

OR

MODULATOR SERVICE

AF Pwr. Output Typical* (2 tubes)	Typical* Plate Diss. Per Tube	Class of Service	Driving Power (2 tubes)	Cooling	EIMAC Type Number	Tube Type
(kW - W)	(KW - W)		, , ,	_		
1900 kW	420 kW	AB1	0	water	X-2159	Tetrode
950 kW	210 kW	AB1	0	water	X-2170	Tetrode
660 kW	260 kW	AB1	0	vapor	4CV250,000A	Tetrode
660 kW	260 kW	AB1	0	water	4CW250,000A	Tetrode
246 kW	57 kW	AB1	0	vapor	4CV100,000C	Tetrode
246 kW	57 kW	AB1	0	water	4CW100,000D	Tetrode
200 kW	46 kW	AB1	0	water	4CW100,000E	Tetrode
195 kW	42 kW	AB1	0	water	4CW50,000E	Tetrode
195 kW	42 kW	AB1	0	vapor	4CV50,000E	Tetrode
195 kW	42 kW	AB1	0	vapor	4CV50,000J	Tetrode
195 kW	42 kW	AB1	0	water	4CW50,000J	Tetrode
152 kW	44 kW	AB2	600	water	6696A	Triode
152 kW	44 kW	AB2	600	air	6697A	Triode
152 kW	44 kW	AB2	600	vapor	7480	Triode
70 kW	20 kW	AB1	0	air	4C×35,000C	Tetrode
66 kW	20.5 kW	AB1	0	vapor	4CV35,000A	Tetrode
57 kW	14 kW	AB1	0	water	4CW25,000A	Tetrode
57 kW	14 kW	AB1	0	air	4CX15.000A	Tetrode
31.9 kW	9 kW	AB1	0	air	4C×10,000D	Tetrode
29.1 kW	10 kW	AB1	0	air	3CX10,000A1	Triode
29.1 kW	10 kW	AB1	0	water	3CW20.000A1	Triode
17.5 kW	4.2 kW	AB1	0	air	4CX5000A	Tetrode
17.5 kW	4.2 kW	AB1	0	air	4CX5000R	Tetrode
1.45 kW	4.75 kW	AB1	0	vapor	4CV8000A	Tetrode
13.0 kW	2.5 kW	В	113	water	3CW5000A3	Triode
13.0 kW	2.5 kW	В	113	air	3CX2500A3	Triode
13.0 kW	2.5 kW	В	113	air	3CX2500F3	Triode
13.0 kW	2.5 kW	В	113	water	3CW5000F3	Triode
11.4 kW	3.3 kW	AB1	0	air	4CX3000A	Tetrode
10.0 kW	2.95 kW	AB1	0	water	3CW5000A1	Triode
10.0 kW	2.95 kW	AB1	0	water	3CW5000F1	Triode
10.0 kW	2.95 kW	AB1	0	air	3CX3000A1	Triode
10.0 kW	2.95 kW	AB1	0	air	3CX3000F1	Triode
3.9 kW	900 W	AB2	4.7	air	4-1000A	Tetrode
3.22 kW	920 W	AB1	0	air	5C×1500A	Pentode
3.2 kW	920 W	AB1	0	air	4C×1500A	Tetrode
1.72 kW	500 W	AB1	0	air	4-500A	Tetrode
1.66 kW	458 W	AB1	0	air	5-500A	Pentode
1.75 kW	400 W	AB2	3.5	air	4-400C	Tetrode
1.42 kW	445 W	AB2	25	air	3-500Z	Triode
1.31 kW	340 W	В	26	air	3-400Z	Triode
1.04 kW	190 W	AB2	1.9	air	4-250A	Tetrode
800 W	225 W	AB1	0	air	4C×300A	Tetrode
780 W	350 W	AB1	0	air	8930	Tetrode
600 W	200 W	AB1	0	air	4CX250BC 4CX250F 4X150A 7609	Tetrode
400 W	125 W	AB2	1.0	air	4-125A	Tetrode
270 W	63 W	AB2	1.3	air	4-65A	Tetrode

* Measured in watts, unless otherwise specified.

VOLTAGE OR CURRENT

REGULATOR SERVICE

Maximum Pass Current	Maximum Hold-off Voltage	Minimum Tube Drop	Rated Anode Diss.	Cooling	EIMAC Type Number	Tube Type
(Adc)	(kVdc)	(Vdc)	(kW)			
300	40	3000	1250	water	X-2159	Tetrode
150	40	2500	650	water	X-2170	Tetrode
50	40	4400	250	water	4CW250,000A	Tetrode
35	40	2700	100	water	4CW100,000E	Tetrode
30	40	3300	100	water	4CW100,000D	Tetrode
15	35	3000	50	water	4CW50,000E	Tetrode
15	40	2200	35	air	4C×35,000C	Tetrode
7.5	10	1500	20	water	3CW20,000A1	Triode
7.5	20	1200	20	water	3CW20,000A7	Triode
7	10	1300	12	air	3C×10,000A1	Triode
6	20	800	25	water	4CW25,000A	Tetrode
4	20	500	15	air	3C×15,000A7	Triode
4	15	2000	10	water	4CW10,000A	Tetrode
3	12	1300	5	water	3CW5000A1	Triode
2	12	1000	3	air	3C×3000F1	Triode
2	6	1000	2	water	4CW2000A	Tetrode
1	8	250	1.5	air	3C×1500A7	Triode
1	6	500	1	air	4C×1000A	Tetrode
1	6	500	0.8	water	4CW800B	Tetrode
1	6	500	0.8	water	4CW800F	Tetrode
0.8	4.5	300	0.4	air	8874	Triode
0.8	4.5	300	0.3	air	8875	Triode
0.8	4.5	300	0.2	convection	8873	Triode
0.6	30	500	1	air	4PR1000A	Tetrode
0.6	8	400	0.5	air	3-500Z	Triode
0.2	20	1800	0.4	air	4PR400A	Tetrode
0.2	50	1000	0.25	air	4PR250C	Tetrode
0.1	18	1200	0.125	air	4PR125A	Tetrodè
0.1	15	500	0.065	convection	4PR65A	Tetrode

8

SWITCH TUBE OR

PULSED REGULATOR SERVICE

Peak Anode Current	Maximum Hold-off Voltage	Rated Anode Diss.	Cooling	EIMAC Type Number	Tube Type
(A)	(kVdc)	(kW)			
780	60	1250	water	X-2159	Tetrode
400	60	650	water	X-2170	Tetrode
300	40	250	water	4CW250,000A	Tetrode
50	75	35	air	Y-546	Tetrode
150	75	100	water	Y-647	Tetrode
.50	40	100	water	4CW100,000D	Tetrode
150	75	100	water	Y-676	Tetrode
150	40	100	water	4CW100,000E	Tetrode
150	40	35	air	4CX35,000C	Tetrode
130	25	60	water	6696A	Triode
130	25	35	air	6697A	Triode
100	50	5	air	X-2187	Triode
100	35	50	water	4CW50,000E	Tetrode
100	35	50	vapor	4CV50,000E	Tetrode
70	20	25	water	4CW25,000A	Tetrode
50	20	15	air	4CX15,000A	Tetrode
50	30	15	air	Y-456	Tetrode
50	30	25	water	Y-569	Tetrode
40	15	10	air	4C×10,000D	Tetrode
40	18	5	air	Y-573	Pentode
40	18	3	air	Y-574	Pentode
40	20	6.0	water	Y-633	Tetrode
40	20	20	water	3CW20,000A7	Triode
40	15	5	air	4C×5000A	Tetrode
40	15	5	air	4C×5000R	Tetrode
40	25	10	water	Y-442	Tetrode
25	20	3	air	4CX3000A	Tetrode
25	20	1.5	air	3CPX1500A7	Triode
18	20	0.06	air	4PR60C	Tetrode
15	10	3	air	3CX3000F7	Triode
12	12	1	air	Y-575	Pentode
12	4	0.6	air	4CX600B/F	Tetrode
12	4	0.8	water	4CW800B/F	Tetrode Planar
12	25	0.75	air	8941	Triode
					Planar
12	20	0.75	air	8942	Triode
					Planar
12	6.5	0.75	air	8940	Triode
10	50	1.0	air	8960	Tetrode
10	7	1.0	air	4CX1500A	Tetrode
	30	1.5	air	4PR1000A	Tetrode
8 8	40	1.0	air	Y-364	Tetrode
o 8	7.5 (oil)	1.0	air or oil	8954	Tetrode
		0.6			Planar
6	12	0.15	air	Y-518	Triode
6	7	0.25	air	4CPX250K	Tetrode
					Planar
6	4	0.15	air	Y-519	Triode
				2 12 Mar - 10	Planar
5	12	0.15	air	Y-540	Triode

2. Specially processed 4CW100,000D 5. Specially processed 4CX15,000A 8. Specially processed Type 8576/264 11. Specially processed 8295A

Specially processed 4CX35,000C
 Focused oxide cathode
 Specially processed Type 290
 Specially processed 4CX5000R

Specially processed 4CW100,000E
 Prototype: 4CW25,000A
 Prototype: 4CX5000R
 Specially processed 4PR1000A

Peak Anode Current	Maximum Hold-off Voltage	Rated Anode Diss.	Cooling	EIMAC Type Number	Tube Type
(A)	(kVdc)	(Watts)			
5	10	150	air	8755	Planar Triode
5	4	150	air	8847	Planar Triode
5	3.5	100	air	7211	Planar Triode
5	3.5	150	air	8757	Planar Triode
5	3.5	100	air	8403	Planar Triode
4 4 3	50 20 10	250 400 400	air air air	4PR250C 4PR400A Y-504	Tetrode Tetrode Triode ¹³
3	4.5	100	air	7815RAL	Planar Triode
3	3.5	100	air	7815R	Planar Triode
3	3.5	100	air	7855	Planar Triode
3	3.5	150	air		Planar Triode
2.1	18	125	air	4PR125A	Tetrode
1.5	4.5	100	air	8745	Planar Triode
1.2	15	65	convection	4PR65A	Tetrode

SWITCH TUBE OR PULSED REGULATOR SERVICE, CONTINUED

13. Specially processed 3-400Z

varian sales office locations

U.S. SALES OFFICES

Atlanta

6650 Powers Ferry Rd., N.W. Suite 100 Atlanta, Georgia 30339 TEL: (404) 252-0045

Clearwater Branch

314 South Missouri Suite 205 Clearwater, Florida 33516 TEL: (813) 446-8513

Boston

400 Totten Pond Road Bldg. #1 Waltham, Massachusetts 02154 TEL: (617) 890-4560

Chicago

Executive Plaza Office Building 205 W. Touhy Avenue Park Ridge, Illinois 60068 TEL: (312) 825-6686

Dallas

Richardson Savings & Loan Bldg P.O. Box 689 558 S. Central Expressway Suite 202 Richardson, Texas 75080 TEL: (214) 235-2385

Dayton

10 Southmoor Circle Dayton, Ohio 45429 TEL: (513) 298-7318

Los Angeles

2901 Wilshire Blvd., Suite 102 Santa Monica, Calif. 90403 TEL: (213) 828-5588

New York (Metropolitan) 25 Route 22 Springfield, New Jersey 07081 TEL: (201) 376-6600

Philadelphia 306 Fellowship Road Mount Laurel, New Jersey 08057 TEL: (609) 235-6800

Phoenix 7117 Third Avenue, Suite 106 Scottsdale, Arizona 85251 TEL: (602) 947-5461

San Francisco

4940 El Camino Real Los Altos, California 94022 TEL: (415) 968-7630

Syracuse 6489 Ridings Road Syracuse, New York 13206 TEL: (315) 437-2568

Washington, D.C. 4701 Lydell Road Cheverly, Maryland 20781 TEL: (301) 773-7010

INTERNATIONAL SALES OFFICES

Australia

Varian Pty. Ltd. P.O. Box 304, Crows Nest, N.S.W. 2065 Australia TEL: 411-1277 Varian Pty. Ltd. 679 Springvale Road North Springvale, VICT. 3171 Australia TEL: 560-7133

Benelux Varian Benelux N.V. Maassluisstraat 100

P.O. Box 9158 Amsterdam, Holland TEL: (020) 15 94 10

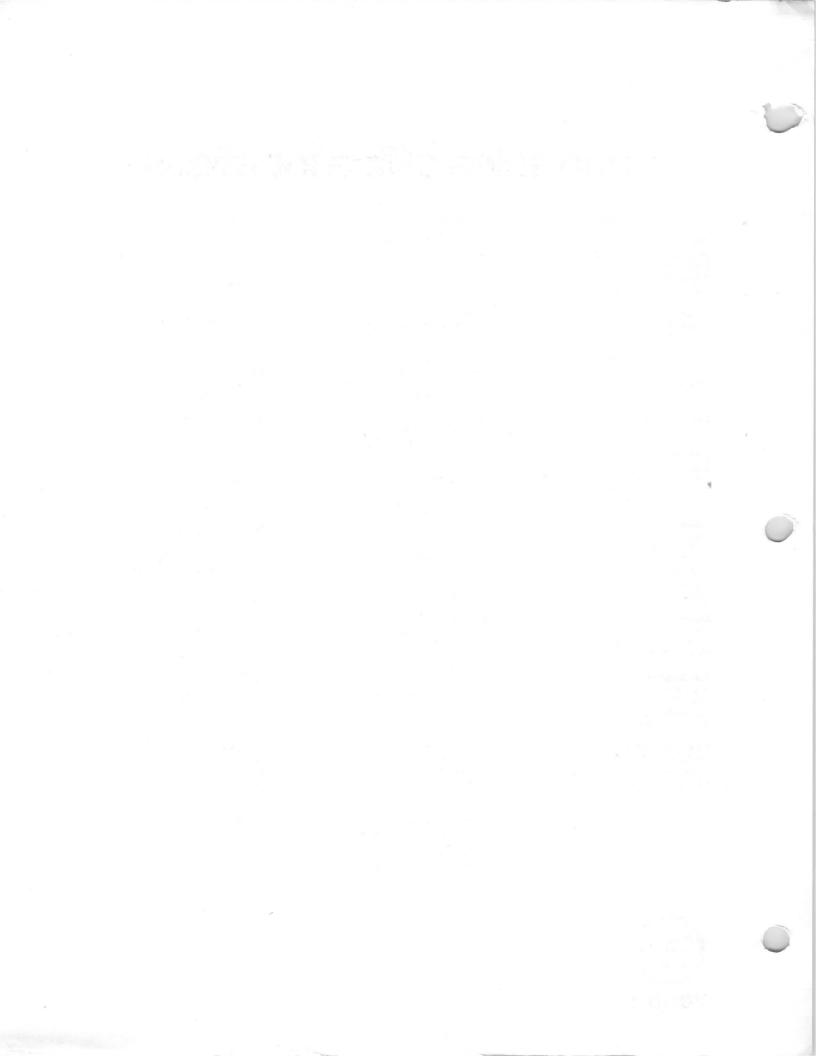
Brazil

Varian Indústria e Comércio Ltda. Avenida DR Cardoso De Melo, 1644 V. Olimpia Caixa Postal 19010-Pinheiros 04548 Sao Paulo, Brazil TEL: 240-1622

Canada Varian Associates of Canada Ltd. 45 River Drive Georgetown, Ontario, Canada TEL: (416) 457-4130

France Varian S.A. Quartier de Courtaboeuf Boite Postale No. 12 91401 Orsay France TEL: 907.78.26

Germany Varian GmbH Allacher Strasse 230E D-8 München 50 TEL: (089) 81 26 093 TWX: 522523


Italy Varian SpA Via Fratelli Varian 1-10040 Leini (Torino) Italy TEL: (011) 26 80 86

Japan Marubun Corporation 1-1, Nihombashi Odemmacho 2-Chome Chuo-Ku, Tokyo, 103 Japan TEL: (03) 662-8151

Scandinavia Varian AB Skytteholmsvagen 7D P.O. Box 1099 S-171 22 Solna 1, Sweden TEL: (08) 82 00 30

Switzerland Varian A.G. Grienbachstrasse 17 Postfach 6300 Zug, Switzerland TEL: (042) 31 66 55

United Kingdom and Ireland EMI-Varian Ltd. Blyth Road Hayes Middlesex England TEL: 01-573-5555

diodes-rectifiers

EIMAC division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

Look in the general section for-

A quick guide to EIMAC products and services offered in this catalog.

Including ...

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

Important EIMAC extras...

APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.

ELECTRICAL

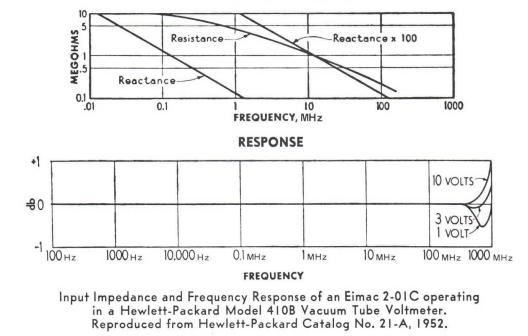
The Eimac 2-01C is a small, closely-spaced, low-capacitance, high-vacuum diode designed for use through ultra-high frequencies. In measurement work, it is well suited to mounting in a probe and will maintain accuracy in the order of ± 1 decibel up to 700 megacycles. It is useful as an indicator at frequencies as high as 3000 megacycles.

The 2-01C has a maximum d-c current rating of 1.0 milliampere and a maximum peak inverse voltage rating of 1000 volts. Cooling is by convection and radiation.

GENERAL CHARACTERISTICS

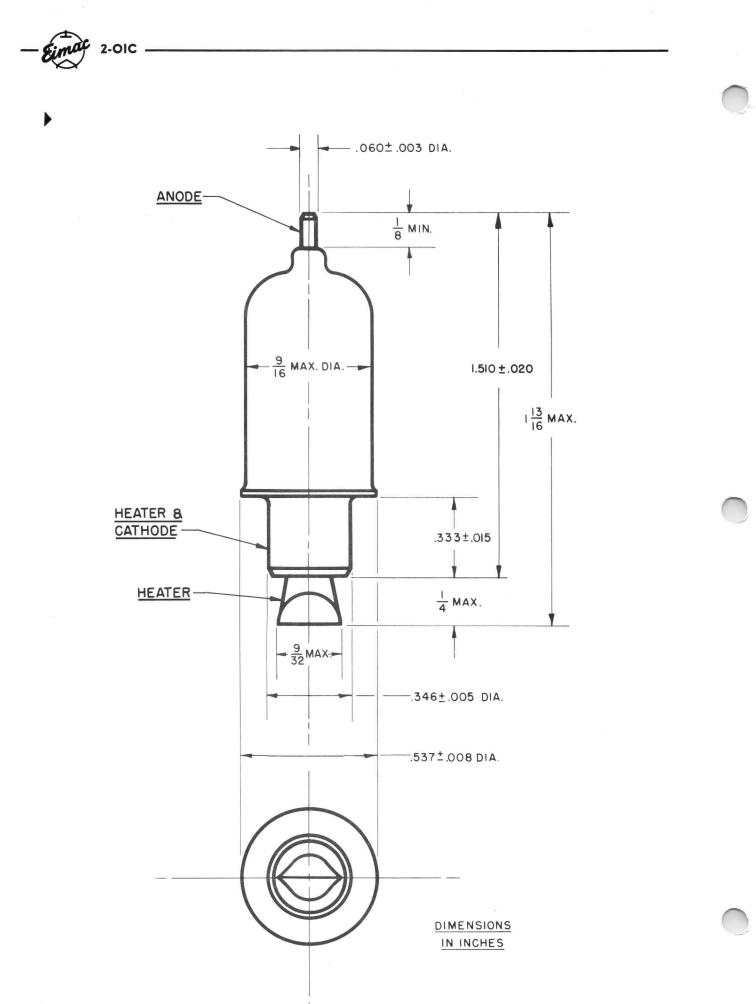
Cathode—Oxide-Coated, Unipotential

	empere			Min.	Nom.	Max.	
Heating Time		-	-	30	60		seconds
Heater Voltage		-	-		5.0		volts
Heater Current		-	-	0.31		0.39	amperes
Direct Interelectrode Ca	oacitance	e -	-	-		0.7	pF
Zero Signal Voltage (110	Megohr	m Loa	ad)	0.6		1.4	volts
Resonant Frequency		-	-	-	2800		MHz
Plate Resistance ($E_{\rm b}$ =12		-	-	-	8000 2	4,000	ohms
MAXIMUM RATINGS							
PEAK INVERSE ANODE	VOLTAG	Ε-	-	-	- 100	0 MA)	K. VOLTS
D-C PLATE CURRENT		-	-	-	- 1.	0 MA	X. MA
PLATE DISSIPATION			-	-	- 0.	1 MAX	. WATT
SEAL TEMPERATURE		-	-	-	- 175°C	MAX	ζ.



Actual Size

MECHANICAL


Length	-	-	-	-	1.813 inches	Net Weight	-	0.2 ounce
Diameter	-	-	-	-	0.563 inches	Shipping Weight (Approx.) -	-	1.0 pound

(Effective 1-22-60) Copyright 1960 by Eitel-McCullough, Inc.

Indicates change from sheet dated 11-14-58

E I M A C Division of Varian

SANCARLOS CALIFORNIA 2-2000A

HIGH-VACUUM RECTIFIER

The Eimac 2-2000A is a high-vacuum diode rectifier intended for use in rectifier units, voltage multipliers, or in special applications, whenever conditions of extreme ambient temperatures, high operating frequency, high peak inverse voltages, or the production of high-frequency transients would prevent the use of gas-filled rectifier tubes.

The 2-2000A has a maximum d-c current rating of 750 milliamperes and a maximum peak inverse voltage rating of 75,000 volts. Cooling is by forced air, convection, and radiation.

A single 2-2000A will deliver 600 milliamperes at 31,500 volts to a capacitor-input filter with 26,500 volts single-phase supply. Four 2-2000A's in a bridge circuit will deliver 1.50 amperes at 47,600 volts to a choke-input filter with 53,000 volts single-phase supply.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thoriated Tungsten Voltage 10.0 volts Current 25.0 amperes MECHANICAL Base -- Special 4-pin Basing Refer to outline drawing Socket Refer to discussion under "Application" Mounting Position Vertical, base down or up - -Cooling - -Forced air, convection, and radiation --Maximum Temperature of Plate Seal -225°C . <u>___</u> Recommended Heat Dissipating Plate Connector -- Eimac HR-8 Maximum Over-all Dimensions: Length 17.8 inches Diameter 8.13 inches Net Weight -3 pounds Shipping Weight (approx.) 13 pounds MAXIMUM RATINGS (Per tube) PEAK INVERSE PLATE VOLTAGE 75,000 MAX. VOLTS PLATE DISSIPATION -1200 MAX. WATTS D-C PLATE CURRENT' -750 MAX. MA PEAK PLATE CURRENT 12 MAX. AMPERES -

¹Averaged over one cycle for each tube. Applies only when the rectifier is coupled to the load by a choke-input filter incorporating the "critical" value (or larger) of input inductance. For maximum d-c current ratings under this and other load conditions see discussion under "Application".

APPLICATION

MECHANICAL

Mounting—The 2-2000A must be mounted vertically with the base either down or up. The lead to the plate terminal of the tube should be flexible.

The special 4-pin base fits an E. F. Johnson Co. No. 124-214 or an equivalent socket. In some circuits, particularly those of the voltage multipliers illustrated in Fig. 2, it may be necessary to mount the socket on stand-off insulators, or on a sheet of insulating material, to provide adequate insulation to ground. **Cooling**—The 2-2000A is cooled by forced air, convection, and radiation. Forced air is required for cooling of the filament seals. If an E. F. Johnson Co. No. 124-214 socket is used, air at a static pressure of 4 inches of water measured at the inlet of the 1/4-inch cooling tube in the socket will provide sufficient base cooling. The base of the tube is provided with a 1-inch diameter hole. If a socket is used with a 1-inch diameter matching hole and the manifold is of the same diameter, a static pressure of less than 0.1 inch of water will be required. Clearance should be provided around the glass envelope adequate

APPLICATION (Continued)

for the free circulation of air. An Eimac HR-8 heat Dissipating Connector or equivalent is required on the plate terminal.

The maximum temperature at the plate seal must not exceed 225°C. A convenient accessory for measuring this temperature is "Tempilaq", a temperature-sensitive lacquer available from the Tempil Corporation, 132 W. 22nd St, New York II, N. Y.

ELECTRICAL

Filament Operation—For maximum tube life, the filament volttage, as measured at the base pins, should be the rated value of 10.0 volts. Variations must be kept within the range from 9.5 to 10.5 volts. In applications which require the diode to deliver high peak currents, it is important to maintain the filament voltage at the rated value. All four socket terminals should be used, putting two in parallel for each filament connection.

CAUTION SHOULD BE OBSERVED WHEN MEASURING RECTIFIER FILAMENT VOLTAGE. THE FILAMENT CIR-CUIT MAY BE AT HIGH POTENTIAL.

The thoriated-tungsten filament of the 2-2000A reaches operating temperature in a fraction of a second after application of voltage. Plate voltage may be applied simultaneously with filament voltage.

Plate Operation—The plate of the 2-2000A operates at dull red color at the maximum plate dissipation rating of 1200 watts. The maximum peak-inverse-voltage rating of 75,000 volts should not be exceeded at any time.

Performance—The accompanying table shows some maximum performance capabilities of the 2-2000A when used as a power-supply rectifier.

		Capacitor-	Input Filter	Choke-In	put Filter
Circuit Type	A-C Input Voltage (volts rms)	D-C Output Voltage (volts)	D-C Output Current` (amperes)	D-C Output Voltage (volts)	D-C Output Current (amperes)
Single- Phase, Half- Wave	26,500	31,500	0.600		22200001
Single- Phase, Full- Wave	26,5001	31,500	1.20	23,800	1.50
Single- Phase, Bridge	53,000	63,000	1.20	47,600	1.50

2-2000A MAXIMUM-PERFORMANCE CAPABILITIES

¹One-half the transformer secondary voltage.

Maximum D-C Current Ratings—Plate dissipation rather than peak current usually limits the d-c current which the 2-2000A is capable of delivering to the load. Because the plate dissipation associated with a given d-c current depends upon the amount of ripple and its wave-shape, circuit conditions will determine the maximum d-c current rating of the tube.

Choke-Input Filter—The maximum d-c current rating of the 2-2000A is 750 milliamperes when the load incorporates a choke-input filter with the "critical" value (or larger) of input inductance (L₁ in Fig. 1):

$$\begin{split} L_{o} &= \frac{R_{eff}}{18.8f} \quad \text{for full-wave single-phase rectifiers,} \\ L_{o} &= \frac{R_{eff}}{75f} \quad \text{for half-wave three-phase rectifiers,} \\ L_{o} &= \frac{R_{eff}}{660f} \quad \text{for full-wave three-phase rectifiers,} \end{split}$$

where: $L_o =$ "critical" value of input inductance (henries), f = supply-line frequency (cycles per second),

 $R_{eff} = \frac{Load \text{ voltage (volts)}}{Load \text{ current (amps)}}.$

Choke-input filters are not normally used with single-phase half-wave rectifiers.

Capacitor-Input Filter_The 2-2000A is particularly suitable for power-supply applications demanding high voltage at low current. Under these conditions capacitor-input filter circuits become desirable. The maximum d-c current rating of the 2-2000A when no input choke is incorporated in the filter depends upon the total series resistance of the capacitor-charging circuit relative to the effective load resistance seen by each tube. The circuit diagrams and tabulation in Fig. 2 are so arranged and labeled that this required series resistance may be found for a wide range of load conditions. This may be done by determining the value of the following quantities:

 E_c is the filter-input d-c voltage. While this is usually the entire load voltage, in the case of voltage multipliers it is the load voltage divided by the multiplication factor.

 I_p is the d-c current per tube. This is the entire load current only in the case of the simple half-wave rectifier or half- or full-wave multiplier. In the case of full-wave center-tapped or bridge rectifiers, I_p is half the load current.

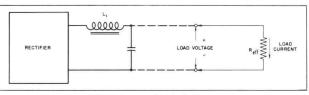
 $R_{\rm c}$ is the total charging-circuit resistance. A certain minimum value of charging-circuit resistance is necessary to limit the peak value of current to which the tubes will be subjected under given load conditions. This required minimum depends upon the d-c current per tube ($I_{\rm p}$), and has been tabulated in Fig. 2 as a percentage of the effective load resistance per tube ($E_{\rm c}/I_{\rm p}$). The total charging-circuit resistance involves the internal resistance of the rectifier tube, $R_{\rm p}$, the added series resistor, $R_{\rm s}$, and the equivalent internal resistance of the a-c voltage supply, $R_{\rm i}$.

 $R_{\rm p}$ is the plate resistance of the 2-2000A, which may be taken as 400 ohms.

R; is the equivalent internal resistance of the supply. This may be taken as the regulation of the high-voltage supply expressed as a decimal multiplied by the load resistance used in measuring this regulation.

 R_{s} is the series resistor which must be inserted in the charging circuit to bring the total charging-circuit resistance up to the required minimum. Its value may be found from the formula associated with each of the circuits of Fig. 2. This resistor must be inserted in such a position in the circuit that it protects all tubes.

Tubes may be operated in parallel to increase the output capability in a given circuit. When two tubes are placed in parallel at each place where one is shown in the circuits of Fig. 2, the plate resistance (R_p) will be half as great and the maximum allowable load current twice as great as indicated.

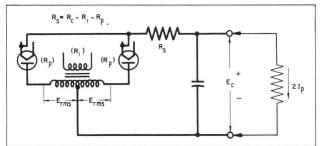

Peak Inverse Voltage—The peak-inverse-voltage rating of the 2-2000A is 75,000 volts. In single-phase power-supply rectifier circuits the peak inverse voltage to be used in design is the peak a-c supply voltage (1.41 times E_{rms} in Fig. 2) in the case of bridge circuits, and twice this value in the case of half- and full-wave rectifiers and voltage multipliers. Peak inverse voltage in three-phase operation depends upon the circuit employed, and will be found listed in the handbooks.

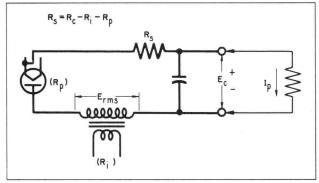
Special Applications— The ratings given for capacitor-input filter circuits assume values of input capacitance large enough to hold the ripple to a low value. In special applications where a larger percent ripple is tolerable, and filter capacitance is low, the 2-2000A is capable of larger d-c output currents.

As a unidirectional conductor in d-c circuits where the current is continuous and the percent ripple is moderate, the maximum current rating of the 2-2000A is 1500 milliamperes.

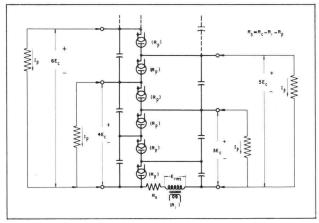
The plate characteristic curve for the 2-2000A serves as a guide to special applications. The maximum plate dissipation rating of 1200 watts, the maximum peak-inverse-voltage rating of 75,000 volts, and the maximum peak plate current of 12 amperes must not be exceeded.

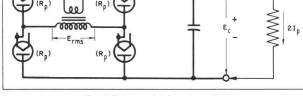
imac 2-2000A -



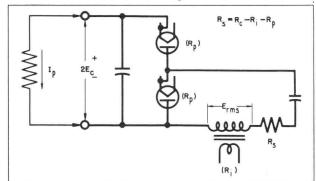

C

 $R_s = R_c - R_i - 2R_p$

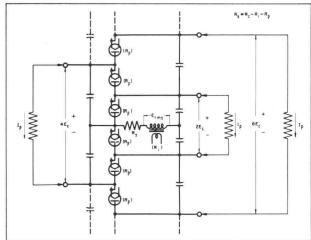

(R;)



c. Half-Wave Rectifier



e. Half-Wave Voltage Multiplier (with common ground when R_s is inserted on the ''high'' side of E_{rms})



ww

b. Full-Wave Bridge Rectifier

d. Half-Wave Voltage Doubler

f. Full-Wave Voltage Multiplier

Eimac 2-20	000A Maximur	m D-C Cui	rrent Ratin	gs for R-C	Filter App	olications
D-C Plate Current (I _p)	550	600	650	700	750	milliamperes per tube
Total Charging- Circuit Resistance (R _c)	1.1	2.1	3.8	7.0	13	percent of Effective Load Resistance per Tube (E _c /1 _P)
A-C Supply Voltage (E _{rms})	0.80	0.84	0.90	1.00	1.16	times Filter-Input D-C Voltage (E _c)
Peak Inverse Voltage (1/2 these values for circuit b.)	2.3	2.4	2.6	2.8	3.3	times Filter-Input D-C Voltage (E _c)

Fig. 2 Eimac 2-2000A basic R-C Circuits (for any one of the indicated loads)

 $R_i = Equivalent$ resistance of voltage source

 $R_p = 400$ ohms (200 ohms for two tubes in parallel)

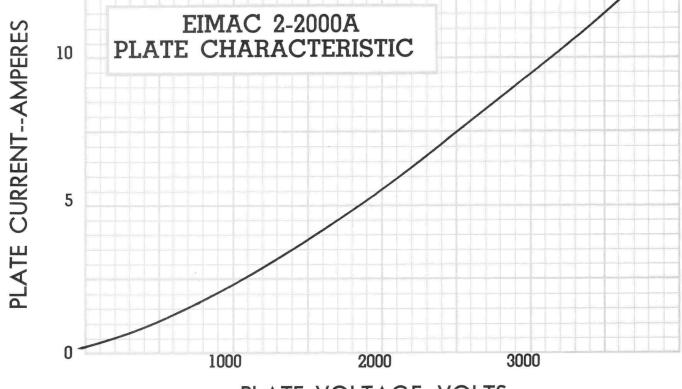


PLATE VOLTAGE--VOLTS

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A 250R HIGH-VACUUM RECTIFIER

The Eimac 250R is a high-vacuum diode rectifier intended for use in rectifier units, voltage multipliers, or in special applications, whenever conditions of extreme ambient temperatures, high operating frequency, high peak inverse voltages, or the production of high-frequency transients would prevent the use of gas-filled rectifier tubes.

The 250R has a maximum d-c current rating of 250 milliamperes and a maximum peak inverse voltage rating of 60,000 volts. Cooling is by convection and radiation.

A single 250R will deliver 160 milliamperes at 24,000 volts to a capacitor-input filter with 21,000 volts single-phase supply. Four 250R's in a bridge circuit will deliver 500 milliamperes at 38,000 volts to a choke-input filter with 42,000 volts single-phase supply.

GENERAL CHARACTERISTICS

ELECTRICAL

Current -

Filament: Thoriated Tungsten Voltage - -

MECHANICAL	
Base 50-watt jumbo 4-p	oin bayonet
Basing Refer to outlin	
Socket Refer to discussion under "A	pplication"
Mounting Position Vertical, base of	down or up
Cooling Convection and	l Radiation
Maximum Temperature of Plate Seal	225°C
Recommended Heat Dissipating Plate Connector Ei	imac HR-6
Maximum Over-all Dimensions:	
Length 10.	.13 inches
Diameter 3.	.82 inches
Net Weight	10 ounces
Shipping Weight (approx.)	3 pounds
MAXIMUM RATINGS (Per tube)	
PEAK INVERSE PLATE VOLTAGE 60,000 MAX. VOLTS	
PLATE DISSIPATION 150 MAX. WATTS	
D-C PLATE CURRENT ¹ 250 MAX. MA	
PEAK PLATE CURRENT 2.5 MAX. AMPERES	

¹Averaged over one cycle for each tube. Applies only when the rectifier is coupled to the load by a choke-input filter incorporating the "critical" value (or larger) of input inductance. For maximum d-c current ratings under this and other load conditions see discussion under "Application"

APPLICATION

MECHANICAL

Mounting—The 250R must be mounted vertically with the base either down or up. The lead to the plate terminal of the tube should be flexible.

The 50-watt jumbo 4-pin bayonet base fits an E. F. Johnson Co. No. 123-211, a National Co. No. XM-50, or an equivalent socket. In some circuits, particularly those of the voltage multipliers illustrated in Fig. 2, it may be necessary to mount the socket on stand-off insulators, or on a sheet of insulating material, to provide adequate insulation to ground.

5.0 volts

10.5 amperes

Cooling—The 250R is cooled by convection and radiation. Clearance should be provided around the glass envelope adequate for the free circulation of air. An Eimac HR-6 Heat Dissipating Connector or equivalent is required on the plate terminal.

The maximum temperature at the plate seal must not exceed

225°C. A convenient accessory for measuring this temperature is "Tempilaq", a temperature-sensitive lacquer available from the Tempil Corporation, 132 W. 22nd St., New York II, N. Y.

ELECTRICAL

Filament Operation-For maximum tube life, the filament voltage, as measured at the base pins, should be the rated value of 5.0 volts. Variations must be kept within the range from 4.75 to 5.25 volts. In applications which require the diode to deliver high peak currents, it is important to maintain the filament voltage at the rated value.

CAUTION SHOULD BE OBSERVED WHEN MEASURING RECTIFIER FILAMENT VOLTAGE. THE FILAMENT CIR-CUIT MAY BE AT HIGH POTENTIAL.

The thoriated-tungsten filament of the 250R reaches operating temperature in a fraction of a second after application of voltage. Plate voltage may be applied simultaneously with filament voltage.

Plate Operation-With low room illumination, the plate of the 250R begins to show color as the maximum plate dissipation rating of 150 watts is approached. The maximum peak inverse voltage rating of 60,000 volts should not be exceeded at any time.

Performance-The accompanying table shows some maximum performance capabilities of the 250R when used as a powersupply rectifier.

STAR MANUNA DEDEORMANIOE OVDARIUTIES

	250R MAXI	MUM-PERFO	RMANCE C.	APABILITIES	
		Capacitor-	Input Filter	Choke-In	put Filter
Circuit Type Single-	A-C Input Voltage (volts rms)	D-C Output Voltage (volts)	D-C Output Current (ma)	D-C Output Voltage (volts)	D-C Output Current (ma)
Phase, Half- Wave	21,000	24,000	160	*****	
Single- Phase, Full- Wave	21,0001	24,000	320	19,000	500
Single- Phase, Bridge	42,000	48,000	320	38,000	500
1One-half th	he transforme	er secondary	voltage.		

One-half the transformer secondary voltage.

Maximum D-C Current Ratings-Plate dissipation rather than peak current usually limits the d-c current which the 250R is capable of delivering to the load. Because the plate dissipation associated with a given d-c current depends upon the amount of ripple and its wave-shape, circuit conditions will determine the maximum d-c current rating of the tube.

Choke-Input Filter-The maximum d-c current rating of the 250R is 250 milliamperes when the load incorporates a choke-input filter with the "critical" value (or larger) of input inductance (L1 in Fig. 1):

$$\begin{split} L_{o} &= \frac{R_{eff}}{18.8f} & \text{for full-wave single-phase rectifiers,} \\ L_{o} &= \frac{R_{eff}}{75f} & \text{for half-wave three-phase rectifiers,} \\ L_{o} &= \frac{R_{eff}}{660f} & \text{for full-wave three-phase rectifiers,} \\ \end{split}$$
 where: $L_{o} &= \text{"critical" value of input inductance (henries)}$

f = supply-line frequency (cycles per second). $R_{eff} = \frac{Load voltage (volts)}{Load voltage}$ Load current (amps)

Choke-input filters are not normally used with single-phase halfwave rectifiers.

Capacitor-Input Filter-The 250R is particularly suitable for power-supply applications demanding high voltage at low current. Under these conditions capacitor-input filter circuits be-

come desirable. The maximum d-c current rating of the 250R when no input choke is incorporated in the filter depends upon the total series resistance of the capacitor-charging circuit relative to the effective load resistance seen by each tube. The circuit diagrams and tabulation in Fig. 2 are so arranged and labeled that this required series resistance may be found for a wide range of load conditions. This may be done by determining the value of the following quantities:

Ec is the filter-input d-c voltage. While this is usually the entire load voltage, in the case of voltage multipliers it is the load voltage divided by the multiplication factor.

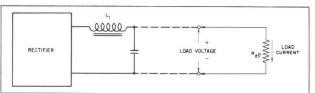
Ip is the d-c current per tube. This is the entire load current only in the case of the simple half-wave rectifier or halfor full-wave multiplier. In the case of full-wave center-tapped or bridge rectifiers, Ip is half the load current.

 R_c is the total charging-circuit resistance. A certain minimum value of charging-circuit resistance is necessary to limit the peak value of current to which the tubes will be subjected under given load conditions. This required minimum depends upon the d-c current per tube (Ip), and has been tabulated in Fig. 2 as a percentage of the effective load resistance per tube (E_c/I_p) . The total charging-circuit resistance involves the internal resistance of the rectifier tube, Rp, the added series resistor, Rs, and the equivalent internal resistance of the a-c voltage supply, R₁.

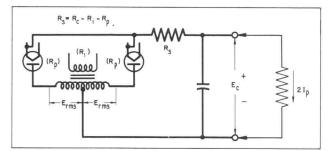
Rp is the plate resistance of the 250R, which may be taken as 750 ohms.

R; is the equivalent internal resistance of the supply. This may be taken as the regulation of the high-voltage supply experssed as a decimal multiplied by the load resistance used in measuring this regulation.

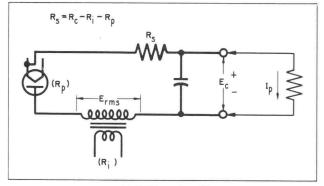
Rs is the series resistor which must be inserted in the charging circuit to bring the total charging-circuit resistance up to the required minimum. Its value may be found from the formula associated with each of the circuits of Fig. 2. This resistor must be inserted in such a position in the circuit that it protects all tubes.

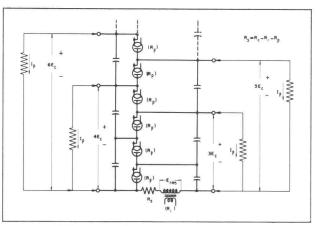

Tubes may be operated in parallel to increase the output capability in a given circuit. When two tubes are placed in parallel at each place where one is shown in the circuits of Fig. 2, the plate resistance (R_p) will be half as great and the maximum allowable load current twice as great as indicated.

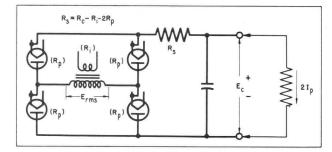
Peak Inverse Voltage-The peak inverse voltage rating of the 250R is 60,000 volts. In single-phase power-supply rectifier circuits the peak inverse voltage to be used in design is the peak a-c supply voltage (1.41 times Erms in Fig. 2) in the case of bridge circuits, and twice this value in the case of half- and full-wave rectifiers and voltage multipliers. Peak inverse voltage in three-phase operation depends upon the circuit employed. and will be found listed in the handbooks.

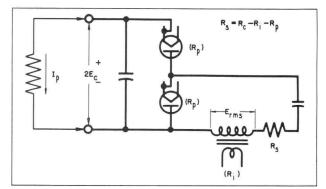

Special Applications-The ratings given for capacitor-input filter circuits assume values of input capacitance large enough to hold the ripple to a low value. In special applications where a larger percent ripple is tolerable, and filter capacitance is low, the 250R is capable of larger d-c output currents.

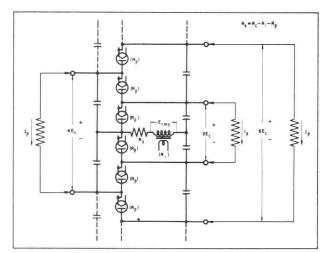
As a unidirectional conductor in d-c circuits where the current is continuous and the percent ripple is moderate, the maximum current rating of the 250R is 400 milliamperes.


The plate characteristic curve for the 250R serves as a quide to special applications. The maximum plate dissipation rating of 150 watts, the maximum peak inverse voltage rating of 60,000 volts, and the maximum peak plate current of 2.5 amperes must not be exceeded.




a. Full-Wave Center-Tapped Rectifier


c. Half-Wave Rectifier


e. Half-Wave Voltage Multiplier (with common ground when Rs is inserted on the "high" side of E_{rms})

b. Full-Wave Bridge Rectifier

d. Half-Wave Voltage Doubler

f. Full-Wave Voltage Multiplier

Eimac	250R Max	kimum D	-C Curre	nt Rating	gs for R-(C Filter A	Applicatio	ons
D-C Plate Current (Ip)	140	150	160	170	180	190	200	milliamperes per tube
Total Charging- Circuit Resistance (R _c)	1.2	1.9	3.0	4.8	7.6	12	19	percent of Effective Load Resistance per Tube (E _c /I _p)
A-C Supply Voltage (E _{rms})	0.80	0.83	0.87	0.93	1.01	1.14	1.33	times Filter-Input D-C Voltage (E _c)
Peak Inverse Voltage (1/2 these values for circuit b.)	2.3	2.4	2.5	2.7	2.9	3.2	3.7	times Filter-Input D-C Voltage (E _c)

Fig. 2 Eimac 250R Basic R-C Circuits (for any one of the indicated loads)

R ; = Equivalent resistance of voltage source

 $R_p = 750$ ohms (375 ohms for two tubes in parallel)

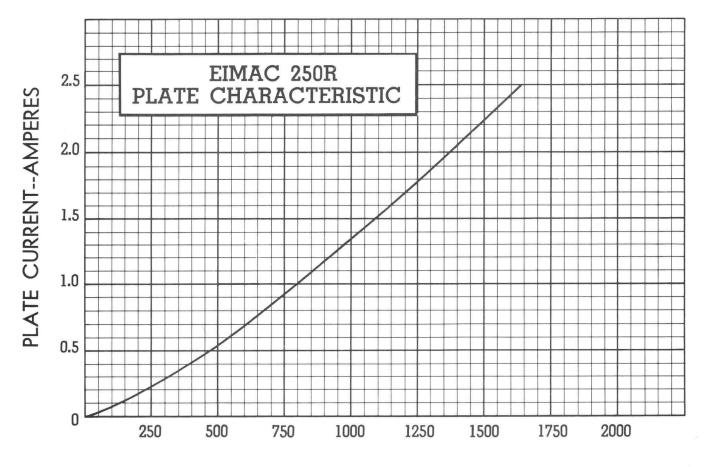
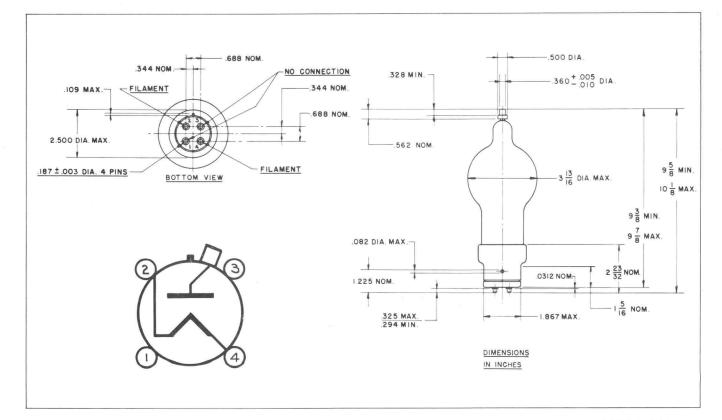



PLATE VOLTAGE--VOLTS

Printed in U.S.A. 1012

MAC **Division of Varian** SAN CARLOS CALIFORNIA

The Eimac 253 is a high-vacuum diode rectifier intended for use in rectifier units, voltage multipliers, or in special applications, whenever conditions of extreme ambient temperatures, high operating frequency, high peak inverse voltages, or the production of high-frequency transients would prevent the use of gas-filled rectifier tubes.

The 253 has a maximum d-c current rating of 350 milliamperes and a maximum peak inverse voltage rating of 15,000 volts. Cooling is by convection and radiation.

A single 253 will deliver 210 milliamperes at 5640 volts to a capacitorinput filter with 5300 volts single-phase supply. Four 253's in a bridge circuit will deliver 700 milliamperes at 9500 volts to a choke-input filter with 10,600 volts single-phase supply.

GENERAL CHARACTERISTICS

ELECTRIC			T												C	
Filamen			Tung	sten							5.0		lts			
	Volta		-	-	-	-	-	-	-							
	Curre	ent	-	-	-	-	-	-	-	-	10.0	ampe	res			
MECHANI	CAL															
Base	-	-	-	1-	-	τ.	-	-	-		-	5	0-watt	jumbo	4-pin k	oayonet
Basing	-	-	-	-	-	-	-	-	-	-	-	-	Re	fer to o	utline a	drawing
Socket	-	-	-	-	-	-	-	-	-	-	Refe	r to d	iscussio	on under	''Appli	cation"
Mountin	g Posi	ition	-	-	-				-	-	-	-	Vert	ical, bas	e dowr	n or up
Cooling	-	-	-	-	-	-	-	-	-		-	-	Cor	vection	and Ra	adiation
Maximu	m Tem	perat	ure of	Plate	Seal	-	-	-	-	-	-	-	-			225°C
Recomm	nended	Heat	Dissi	pating	Plate	e Conr	nector	-	ж.	-	-	-	-	-	Eimad	c HR-8
Maximu	m Ove	r-all [Dimen	sions:												
	Leng	th	-	-	-	-	-	-	-	-	-	-	-	-	8.75	inches
	Diam	eter	-	-	-	-		-	-	-	-	-	-	-	2.50	inches
Net We	ight			-	-	-	Ξ.	-		-	-	-	-		7	ounces
Shipping	Weig	ght (a	ppro	c.)	λ.	-	-	-	-	- 1	-	-	-	-	1	pound
MAXIMUN	I RATI	NGS	(Per '	Tube)												
	PEAK	INVE	RSE	PLATE	VOLT	AGE		-	-	-	13	5.000	MAX.	VOLTS		
		E DIS			_		-	-		-				WATTS		
				RENT	-			-	-	-			MAX.			
				IRREN		-	-	-	-					AMPER	ES	
¹ Averaged over value (or large	r one cyc	le for e	ach tub ctance.	e. Appli For maxi	es only imum d	when the	rectifie t ratings	r is co under	upled to	o the nd oth	load by	a cho	e-input f	lter incorpo	rating the	critical'

value (or larger) of input inductance. For maximum d-c current ratings under this and other load conditions see discussion under "Application".

APPLICATION

MECHANICAL

Mounting-The 253 must be mounted vertically with the base either down or up. The lead to the plate terminal of the tube should be flexible.

The 50-watt jumbo 4-pin bayonet base fits an E. F. Johnson Co. No. 123-211, a National Co. No. XM-50, or an equivalent socket. In some circuits, particularly those of the voltage multipliers illustrated in Fig. 2, it may be necessary to mount the

socket on stand-off insulators, or on a sheet of insulating material, to provide adequate insulation to ground.

Cooling-The 253 is cooled by convection and radiation. Clearance should be provided around the glass envelope adequate for the free circulation of air. An Eimac HR-8 Heat Dissipating Connector or equivalent is required on the plate terminal.

The maximum temperature at the plate seal must not exceed 225°C. A convenient accessory for measuring this tem-

(Effective 7-1-52) © 1952, 1968 by Varian

APPLICATION (Continued)

perature is "Tempilaq", a temperature-sensitive lacquer available from the Tempil Corporation, 132 W. 22nd Street, New York II, N. Y.

ELECTRICAL

Filament Operation—For maximum tube life, the filament voltage, as measured at the base pins, should be the rated value of 5.0 volts. Variations must be kept within the range from 4.75 to 5.25 volts. In applications which require the diode to deliver high peak currents, it is important to maintain the filament voltage at the rated value.

CAUTION SHOULD BE OBSERVED WHEN MEASURING RECTIFIER FILAMENT VOLTAGE. THE FILAMENT CIR-CUIT MAY BE AT HIGH POTENTIAL.

The thoriated-tungsten filament of the 253 reaches operating temperature in a fraction of a second after application of voltage. Plate voltage may be applied simultaneously with filament voltage.

Plate Operation—With low room illumination, the plate of the 253 begins to show color as the maximum plate dissipation rating of 100 watts is approached. The maximum peak inverse voltage rating of 15,000 volts should not be exceeded at any time.

Performance—The accompanying table shows some maximum performance capabilities of the 253 when used as a power-supply rectifier.

	253 MAXI	MUM-PERFO	RMANCE C	APABILITIES				
		Capacitor-	Input Filter	Choke-Input Filter				
Circuit Type	A-C Input Voltage (volts rms)	D-C Output Voltage (volts)	D-C Output Current (ma)	D-C Output Voltage (volts)	D-C Output Current (ma)			
Single- Phase, Half- Wave	5300	5640	210					
Single- Phase, Full- Wave	5300 ¹	5640	420	4750	700			
Single- Phase, Bridge	10,600	11,280	420	9500	700			
10 1.10	the transformer	es connelaru	weltage					

¹One-half the transformer secondary voltage.

Maximum D-C Current Ratings—Plate dissipation rather than peak current usually limits the d-c current which the 253 is capable of delivering to the load. Because the plate dissipation associated with a given d-c current depends upon the amount of ripple and its wave-shape, circuit conditions will determine the maximum d-c current rating of the tube.

Choke-Input Filter-The maximum d-c current rating of the 253 is 350 milliamperes when the load incorporates a choke-input filter with the "critical" value (or larger) of input inductance (L₁ in Fig. 1):

$$\begin{split} L_{o} &= \frac{R_{eff}}{I8.8 f} & \text{for full-wave single-phase rectifiers,} \\ L_{o} &= \frac{R_{eff}}{75 f} & \text{for half-wave three-phase rectifiers,} \\ L_{o} &= \frac{R_{eff}}{660 f} & \text{for full-wave three-phase rectifiers,} \end{split}$$

where: $L_o =$ "critical" value of input inductance (henries), f = supply-line frequency (cycles per second),

 $R_{off} = \frac{\text{Load voltage (volts)}}{\text{R}_{off}}$

Choke-input filters are not normally used with single-phase half-wave rectifiers.

Capacitor-Input Filter—The 253 is particularly suitable for power-supply applications demanding high voltage at low current. Under these conditions capacitor-input filter circuits become desirable. The maximum d-c current rating of the 253 when no input choke is incorporated in the filter depends upon the total series resistance of the capacitor-charging circuit relative to the effective load resistance seen by each tube. The circuit diagrams and tabulation in Fig. 2 are so arranged and labeled that this required series resistance may be found for a wide range of load conditions. This may be done by determining the value of the following quantities:

 $E_{\rm c}$ is the filter-input d-c voltage. While this is usually the entire load voltage, in the case of voltage multipliers it is the load voltage divided by the multiplication factor.

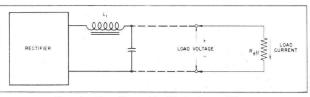
 I_p is the d-c current per tube. This is the entire load current only in the case of the simple half-wave rectifier or halfor full-wave multiplier. In the case of full-wave center-tapped or bridge rectifiers, I_p is half the load current.

 R_c is the total charging-circuit resistance. A certain minimum value of charging-circuit resistance is necessary to limit the peak value of current to which the tubes will be subjected under given load conditions. This required minimum depends upon the d-c current per tube (I_p) , and has been tabulated in Fig. 2 as a percentage of the effective load resistance per tube (E_c/I_p) . The total charging-circuit resistance involves the internal resistance of the rectifier tube, R_p , the added series resistor, R_s , and the equivalent internal resistance of the a-c voltage supply, R_i .

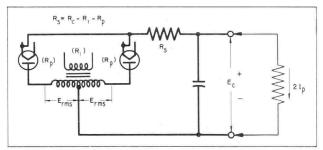
 $R_{\,\rm p}$ is the plate resistance of the 253, which may be taken as 300 ohms.

 $R_{\rm i}$ is the equivalent internal resistance of the supply. This may be taken as the regulation of the high-voltage supply expressed as a decimal multiplied by the load resistance used in measuring this regulation.

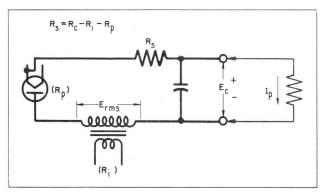
 R_{s} is the series resistor which must be inserted in the charging circuit to bring the total charging-circuit resistance up to the required minimum. Its value may be found from the formula associated with each of the circuits of Fig. 2. This resistor must be inserted in such a position in the circuit that it protects all tubes.

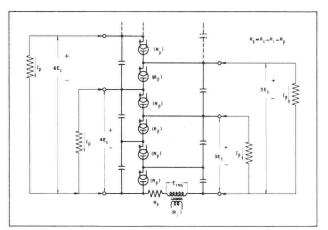

Tubes may be operated in parallel to increase the output capability in a given circuit. When two tubes are placed in parallel at each place where one is shown in the circuits of Fig. 2, the plate resistance (R_p) will be half as great and the maximum allowable load current twice as great as indicated.

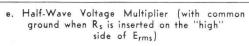
Peak Inverse Voltage—The peak inverse voltage rating of the 253 is 15,000 volts. In single-phase power-supply rectifier circuits the peak inverse voltage to be used in design is the peak a-c supply voltage (1.41 times E_{rms} in Fig. 2) in the case of bridge circuits, and twice this value in the case of half- and full-wave rectifiers and voltage multipliers. Peak inverse voltage in three-phase operation depends upon the circuit employed, and will be found listed in the handbooks.

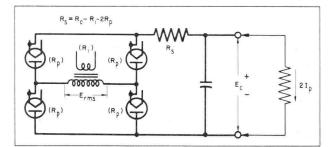

Special Applications-The ratings given for capacitor-input filter circuits assume values of input capacitance large enough to hold the ripple to a low value. In special applications where a larger percent ripple is tolerable, and filter capacitance is low, the 253 is capable of larger d-c output currents.

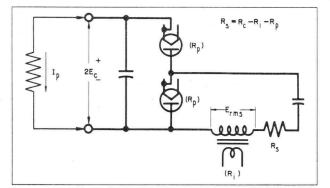
As a unidirectional conductor in d-c circuits where the current is continuous and the percent ripple is moderate, the maximum current rating of the 253 is 500 milliamperes.

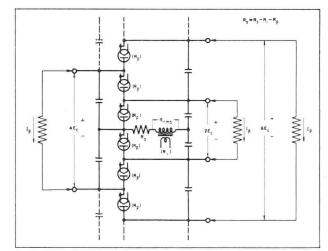

The plate characteristic curve for the 253 serves as a guide to special applications. The maximum plate dissipation rating of 100 watts, the maximum peak inverse voltage rating of 15,000 volts, and the maximum peak plate current of 2.5 amperes must not be exceeded.





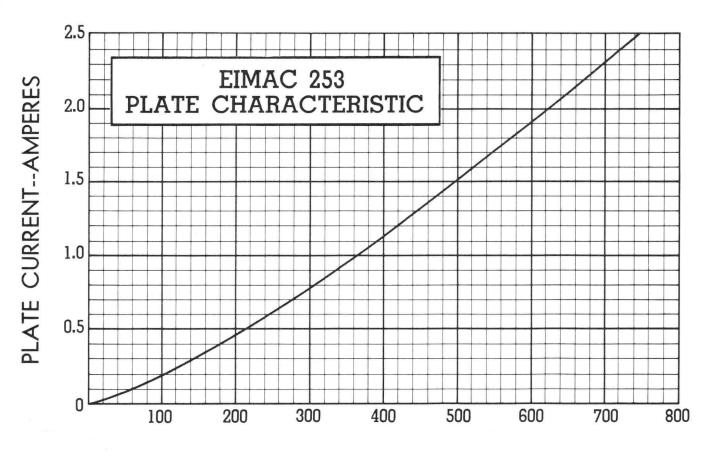

a. Full-Wave Center-Tapped Rectifier


c. Half-Wave Rectifier



b. Full-Wave Bridge Rectifier

d. Half-Wave Voltage Doubler


f. Full-Wave Voltage Multiplier

Eimac 2	53 Maximum	D-C Curre	nt Ratings	for R-C Fi	lter Applic	ations
D-C Plate Current (I _p)	170	190	210	230	250	milliamperes per tube
Total Charging- Circuit Resistance (R _c)	1.1	2.3	5.0	10	27	percent of Effective Load Resistance per Tube (E _c /I _P)
A-C Supply Voltage (E _{rms})	0.80	0.85	0.94	1.08	1.50	times Filter-Input D-C Voltage (E _c)
Peak Inverse Voltage (1/2 these values for circuit b.)	2.3	2.4	2.7	3.1	4.3	times Filter Input D-C Voltage (E _c)

Fig. 2 Eimac 253 Basic R-C Circuits (for any one of the indicated loads)

R i = Equivalent resistance of voltage source

 $R_p = 300$ ohms (150 ohms for two tubes in parallel)

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

575A 673 MERCURY-VAPOR RECTIFIERS

The EIMAC 575A and 673 are half-wave mercury vapor-rectifiers incorporating features which enable them to withstand high peak inverse voltages and to conduct at relatively low applied voltages. The tubes differ only in basing.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Oxide-co	ated											
Voltage	-	-	-	-	-	-	-	-	-	-	5.0	volts
Current	-	-	-	-	-	-	-	-	-	-	9.0 to 11.5	amperes
Filament Heating T	ime	-	-	-	-	-	-	-	-	-	30	seconds
Anode Starting Vol	tage	(a	ppr	ox.)	-	-	-	-	-	-	20	volts

MECHANICAL

Base	-	-	-	-	-	-	575A 673	50 watt, A4-29 Industrial, A4-18
Recommended Socket	-	_	-	-	_	-	575A	E. F. Johnson #123-211
				-	-	-	673	E. F. Johnson #123-206
Maximum Overall Dime	nsic	ons:						
Length	-	-	-	-	-	-		575A 11-1/8 inches
								673 11-7/16 inches
Diameter	-	-	-	-	-	-		2-9/16 inches
Net Weight	_	_	-	_	_	-		12 ounces

MAXIMUM RATINGS (per tube)

	20-60	°C
PEAK INVERSE ANODE VOLTAGE 15	10	kV
PEAK ANODE CURRENT:		
Quadrature Filament Excitation** 10	10	Amps
In-Phase Filament Excitation6	7	Amps
AVERAGE ANODE CURRENT: (Maximum averaging time - 20 seconds)		-
Quadrature Filament Excitation** 2.5	2.5	Amps
In-Phase Filament Excitation 1.5	1.75	Amps
MAXIMUM AC SHORT CIRCUIT CURRENT*** 100	100	Amps

*Condensed Mercury temperature rises approximately 18°C above ambient.

**Quadrature excitation refers to filament voltage $90^{\circ} \pm 30^{\circ}$ out of phase with anode voltage.

*** Max. duration 100 milliseconds.

APPLICATION

MECHANICAL

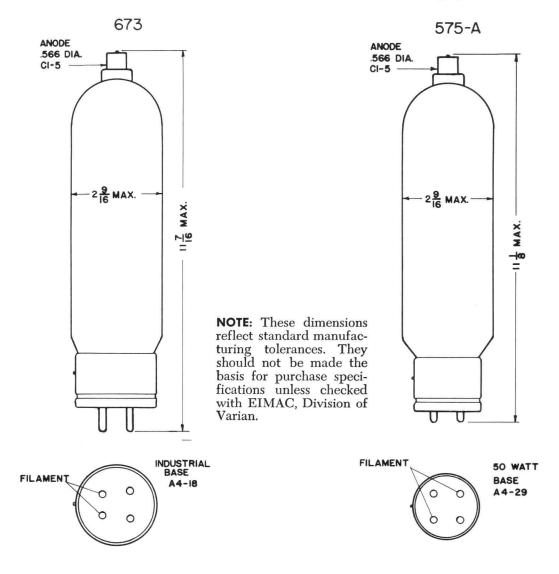
Mounting: The 575A and 673 must be mounted vertically base down. **Cooling:** Provisions should be made for adequate air circulation around the tube. The temperature of the condensed mercury should be kept within the ranges given under "MAXIMUM RATINGS." This temperature should be maintained at $40^{\circ}\pm5^{\circ}$ C for most satisfactory operation of the tube. To measure the condensed-mercury temperature a thermocouple or small thermometer may be attached to the glass near the tube base using a small amount of putty. A condensed-mercury temperature lower than the

(Revised 4-1-67) ⓒ 1964, 1967 by Varian

Printed in U.S.A.

recommended value raises the voltage at which the tube becomes conducting and tends to reduce the life of the filament. A temperature higher than recommended lowers the voltage at which the tube becomes conducting and reduces the peak inverse voltage rating of the tube. The approximate condensed-mercury temperature rise above ambient is 18°C.

ELECTRICAL


Filament Voltage: For maximum tube life, the filament voltage as measured directly at the filament pins, should be held at the rated value of 5.0 volts. Unavoidable variations in filament voltage must be kept within the range of 4.8 to 5.2 volts. A filament voltage less than the minimum recommended value may cause a high tube voltage drop, with consequent bombardment of the filament and eventual loss of emission. A filament voltage higher than the recommended maximum value will also decrease the life of the filament.

Caution should be observed in measuring the filament voltage as the filament circuit may be at a high dc potential.

The filament should be allowed to reach operating temperature before the plate voltage is applied. Under normal conditions, a delay of approximately 30 seconds will be required. The delay time should be increased if there is any evidence of arc-back within the tube.

When it is necessary to use a shield around the tube care must be taken to insure adequate ventilation and maintenance of normal condensed-mercury temperature. When a mercury-vapor rectifier is first installed, the filament should be operated at normal voltage for approximately ten minutes with no plate voltage applied, in order that the mercury may be properly distributed.

Shielding: Electromagnetic and electrostatic fields tend to cause the mercury vapor to break down, are detrimental to tube life and make proper operation difficult. Consequently, the tube should be isolated from such fields as exist around a transmitter or other similar equipment.

TECHNICAL DATA

The EIMAC 869B and 869BL are half-wave mercury-vapor rectifiers incorporating features which enable them to withstand high peak inverse voltages and to conduct at relatively low applied voltages. The 869B and 869BL carry maximum ratings of 20 kV peak inverse voltage, 5 amperes dc and 20 amperes peak cathode current.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament:	Oxide-c	oate	ed															
	Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.0	V
	Current	-	-	-	-	-	-	-	-	-	-	-	-	-	-	17	to 21	Α
Filament	Heating 7	Cime	Э	-	-	-	-	-	-	-	-	-	-	-	-		60	Sec
Anode Sta	arting Vol	tage	e (a	app	rox	.)	-	-	-	-	-	-	-	-	-		30	V

MECHANICAL

Base	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See Drawing
Maximum Overa	11 E	Dim	ens	ion	IS:										0
Length -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14-7/16 in.
Diameter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3 in.
Net Weight -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20 oz.

MAXIMUM RATINGS (Single Tube)

PEAK INVERSE ANODE VOLTAGE	30-60 30-50 10 15	30-40° C 20 MAX KV
PEAK ANODE CURRENT:		
Quadrature Excitation**	20 20	20 MAX AMPS
In-Phase Excitation	10 10	10 MAX AMPS
AVERAGE ANODE CURRENT: (30 second maximum averaging time	e)	
Quadrature Excitation	5.0 5.0	5.0 MAX AMPS
In-Phase Excitation	2.5 2.5	2.5 MAX AMPS
MAXIMUM AC SHORT-CIRCUIT CURRENT***	100 100	100 MAX AMPS
*Condensed Mercury rises approximately 20°C above ambient.		

Quadrature excitation refers to anode current and filament current 90°+30° out of phase. *Maximum duration 100 milliseconds.

Data based on load return to center tap on filament transformer.

APPLICATION

MECHANICAL

Mounting: The 869B and 869BL must be mounted vertically, base down. The 869BL includes 3 inch insulated flexible leads with lugs.

Cooling: Provisions should be made for adequate air circulation around the tube. The temperature of the condensed mercury in the 869B and 869BL should be kept within the ranges given under "MAXIMUM RATINGS." This temperature should be maintained at 40° $\pm 5^{\circ}$ C for most satisfactory operation of the tube. To measure the condensed-mercury temperature a thermocouple or small thermometer may be attached to the glass near the tube base using a small amount of putty. A condensed-mercury temperature lower than the recommended value raises the voltage at which the tube becomes conducting and tends to reduce the life of the filament. A temperature higher

(EFFECTIVE 3-16-64) COPYRIGHT 1964, 1967 BY VARIAN

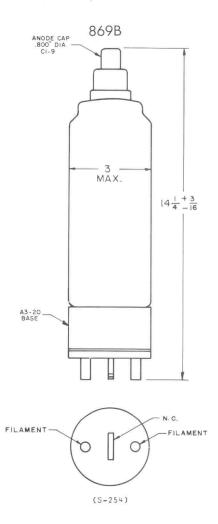
PRINTED IN U.S.A.

than recommended lowers the voltage at which the tube becomes conducting and reduces the peak inverse voltage rating of the tube.

In some installations a blast of air must be directed at the base of the tube to insure adequate cooling.

ELECTRICAL

Filament Voltage: For maximum tube life, the filament voltage as measured directly at the filament pins, should be held at the rated value of 5.0 volts. Unavoidable variations in filament voltage must be kept within the range of 4.8 to 5.2 volts. A filament voltage less than the minimum recommended value may cause a high tube voltage drop, with consequent bombardment of the filament and eventual loss of emission. A filament voltage higher than the recommended maximum value will also decrease the life of the filament.


Caution should be observed in measuring the filament voltage as the filament circuit may be at a high dc potential.

The filament should be allowed to reach operating temperature before the plate voltage is applied Under normal conditions, a delay of approximately 60 seconds will be required. The delay time should be increased if there is any evidence of arc-back within the tube.

When it is necessary to use a shield around the tube care must be taken to insure adequate ventilation and maintenance of normal condensed-mercury temperature. When a mercury-vapor rectifier is first installed, the filament should be operated at normal voltage for approximately ten minutes with no plate voltage applied, in order that the mercury may be properly distributed.

X-Ray Radiation: Above approximately 16,000 peak inverse voltage, a rectifier will produce X-Rays. In most equipment, there is adequate shielding so that this does not constitute a health hazard, however, this should be checked in any new equipment. A standard reference on this subject is "X-Ray Protection, Handbook No. 93," National Bureau of Standards.

Shielding: Electromagnetic and electrostatic fields tend to cause the mercury vapor to break down, are detrimental to tube life and make proper operation difficult. Consequently, the 869B and 869BL should be isolated from such fields as exist around a transmitter or other similar equipment.

NOTE: These dimensions reflect standard manufacturing tolerances. They should not be made the basis for purchase specifications unless checked with EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070.

869BL has 3 inch insulated flexible filament leads with spade terminals for #10 screw instead of pins shown on the 869B outline.

Eimac

EIMAC **Division of Varian** SAN CARLOS

CALIFORNIA

The EIMAC 6894 and 6895 are half-wave mercury-vapor rectifiers especially designed for high voltage power rectifier applications. They are mercury filled for high efficiency, long life and the ability to operate at high peak inverse voltage.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Oxide-coated													
Voltage	ж. ж		-	-	-	-	-	-	-	÷	-	5.0	V
Current		-	-	-	-	-	-	-	9	.0 t	0	11.0	А
Filament Heating Time		-	-	-	-	-	-	-	-		-	30	Sec
Anode Starting Voltage (approx.	.) -		-	-	-	-	-	-	-	-	-	20	V

MECHANICAL

Base - ·	-	-	-	-	-	-	-	-	-	6894 6895	50 watt, A4-29 Industrial A4-18	
Recommend	led S	Soci	ket	×	-	-	-	-	Ξ	6894	E.F. Johnson #123-211	
										6895	E.F. Johnson #123-206	
Maximum O	vera	all E)ime	ens	ion	S:						
Length	1 -	-	-	-	-	-	-	_	-	6894	10-17/32 in.	
										6895	10-13/32 in.	
Diame	ter	-	-	-	-	-	-	-	~		2-9/16 in.	
Net Weight	-	-	-	-	÷	1	-	-	-	,	4 oz.	

MAXIMUM RATINGS (per tube)

(F											
PEAK INVERSE ANODE VOLTAGE											
20° -50°C Condensed Mercury Temperature Range*	-	-	-	-	-	-	-	-	-	- 20 MAX KV	
20° -55°C Condensed Mercury Temperature Range	-	-	-	-	-	-	-	-	-	- 15 MAX KV	
20° -60°C Condensed Mercury Temperature Range	-	-	-	-	-	-	-	-	-	- 10 MAX KV	
PEAK ANODE CURRENT:											
Quadrature Filament Excitation**	-	-	-	-	-	-	-	-	-	11.5 MAX AMPS	
In-Phase Filament Excitation	-	÷	-	-	-	-	-	-	-	8.3 MAX AMPS	
AVERAGE ANODE CURRENT											
Quadrature Filament Excitation	-	-	-	-	-	-	-	-	-	2.5 MAX AMPS	
In-Phase Filament Excitation										1.8 MAX AMPS	
MAXIMUM AC SHORT CIRCUIT CURRENT***	-	-	-	-	-		r = r	-	-	100 MAX AMPS	
*Condensed Mercury Temperature rises approximately 20°	°C a	abo	ve	aml	bie	nt.					

**Quadrature Excitation refers to filament voltage $90^{\circ}+30^{\circ}$ out of phase with anode voltage.

***Max. duration 100 milliseconds.

All data based on load return to center tap of filament transformer.

APPLICATION

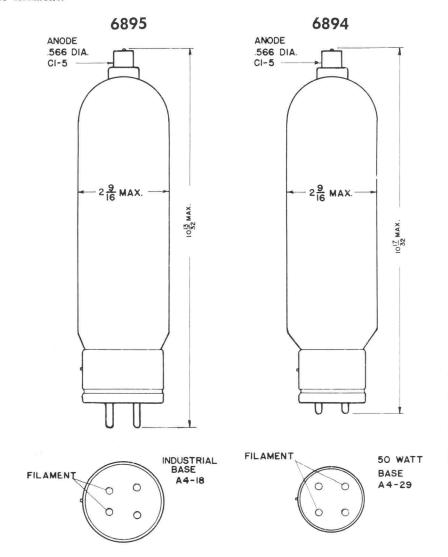
MECHANICAL

Mounting: The 6894 and 6895 must be mounted in their basing and socketry.

Cooling: Provisions should be made for adevertically, base down. These two tubes differ only quate air circulation around the tube. The temperature of the condensed mercury should be kept within

the ranges given under "MAXIMUM RATINGS."

This temperature should be maintained at $40^{\circ} \pm 5^{\circ}$ C for most satisfactory operation of the tube. To measure the condensed-mercury temperature a thermocouple or small thermometer may be attached to the glass near the tube base using a small amount of putty. A condensed-mercury temperature lower than the recommended value raises the voltage at which the tube becomes conducting and tends to reduce the life of the filament. A temperature higher than recommended lowers the voltage at which the tube becomes conducting and reduces the peak inverse voltage rating of the tube.


ELECTRICAL

Filament Voltage: For maximum tube life, the filament voltage as measured directly at the filament pins, should be held at the rated value of 5.0 volts. Unavoidable variations in filament voltage must be kept within the range 4.8 to 5.2 volts. A filament voltage less than the minimum recommended value may cause a high tube voltage drop, with consequent bombardment of the filament and eventual loss of emission. A filament voltage higher than the recommended maximum value will also decrease the life of the filament. Caution should be observed in measuring the filament voltage as the filament circuit may be at a high dc potential.

The filament should be allowed to reach operating temperature before the plate voltage is applied. Under normal conditions, a delay of approximately 30 seconds will be required. The delay time should be increased if there is any evidence of arc-back within the tube.

When it is necessary to use a shield around the tube care must be taken to insure adequate ventilation and maintenance of normal condensed-mercury temperature. When a mercury-vapor rectifier is first installed, the filament should be operated at normal voltage for approximately ten minutes with no plate voltage applied, in order that the mercury may be properly distributed.

Shielding: Electromagnetic and electrostatic fields tend to cause the mercury vapor to break down, are detrimental to tube life and make proper operation difficult. Consequently, the tube should be isolated from such fields as exist around transmitter or other similar equipment.

NOTE: These dimensions reflect standard manufacturing tolerances. They should not be made the basis for purchase specifications checked with unless EIMAC Division of Varian, 301 Industrial Way, San Carlos, Calif. 94070.

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A 8020 HIGH-VACUUM RECTIFIER

The EIMAC 8020 diode is a high-vacuum rectifier intended for use in rectifier units, voltage multipliers, or in special applications, whenever conditions of extreme ambient temperatures, high operating frequency, high peak inverse voltages, or the production of high-frequency transients would prevent the use of gas-filled rectifier tubes.

The 8020 has a maximum dc current rating of 100 milliamperes and a maximum peak inverse voltage rating of 40,000 volts. Cooling is by convection and radiation.

A single 8020 will deliver 80 milliamperes at 17,000 volts to a capacitorinput filter with 14,000 volts single-phase supply. Four 8020's in a bridge circuit will deliver 200 milliamperes at 25,000 volts to a choke-input filter with 28,000 volts single-phase supply.

GENERAL CHARACTERISTICS

Filament:																-				
	Voltage															volts				0 0
	Curren	t -	-				-	-	-				6.5	5	an	nperes				
MECHANICAL																				
Base			-	-	-		-	-	-	-	-	-	-	-	-		Med	lium	1 4-pin	bayonet
Base Basing -			-	-	-		-	-	-	-	-	-	-	-	-		Refer	to to	outline	drawing
Socket -																				
Mounting 1	Position	1	-	-	-		-	-	-	-	-	-	-	-	-	- Ve	ertica	l, ba	ase dov	wn or up
Cooling -			-	-	-		-	-	-	H.	-	-	-	-	-	- C	onve	ctio	n and	radiation
Maximum	Tempe	ratur	e of	Pla	ate	Seal	-	-	-	-	-	-	-	-	-			-		- 225°C
Recommen	ded He	eat D	Dissip	oati	ng	Plat	e Co	onn	ect	or	-	-	-	-	-			-	EIMA	AC HR-8
Maximum	Overall	Dim	ensi	ons	:															
L	ength		-	-	-		-	-	-	-	-	-	5	-	-			-	8.00	inches
	iameter																			inches
Net Weigh	t		-	-	-		-	-	-	-	-	-	-	-	-			-	4	ounces
Shipping V	Veight	(ap	prox	.)	-		-	-	-	-	-	-	-	-	-		-	-	1	pound
MAXIMUM RA																				
Peak Inver																				volts
Plate Dissi	pation	-		-	-	-		-	-	-	-	-	-	-	-				60	watts
DC Plate O																				ma
Peak Plate																				ampere
1 4 1	1	C	1 .	1	A	1.000	1	1	1100	noch	:0	:0 0		ad to	a +h	a load by	a ahal	leo in	put filtor	incorporat

¹ Averaged over one cycle for each tube. Applies only when the rectifier is coupled to the load by a choke-input filter incorporating the "critical" value (or larger) of input inductance. For maximum dc current ratings under this and other load conditions see discussion under "Application."

MECHANICAL

ELECTRICAL

Filement, Theristed Tungeton

APPLICATION

Mounting—The 8020 must be mounted vertically with the base either down or up. The lead to the plate terminal of the tube should be flexible.

The medium 4-pin bayonet base fits an E. F. Johnson Co. No. 122-124, a National Co. No. XC-4 or CIR-4, or an equivalent socket. In some circuits, particularly those of the voltage multipliers illustrated in Fig. 2, it may be necessary to mount the socket on stand-off insulators, or on a sheet of insulating material, to provide adequate insulation to ground. *Cooling*—The 8020 is cooled by convection and radiation. Clearance should be provided around the glass envelope adequate for free circulation of air. An EIMAC HR-8 Heat Dissipating Connector or equivalent is required on the plate terminal.

APPLICATION (Continued)

The maximum temperature at the plate seal must not exceed 225°C. A convenient accessory for measuring this temperature is "Tempilaq," a temperature-sensitive lacquer available from the Tempil Corporation, 132 W. 22nd St., New York 11, N. Y.

ELECTRICAL

<u>Filament Operation</u>—For maximum tube life, the filament voltage, as measured at the base pins, should be the rated value of 5.0 volts. Variations must be kept within the range from 4.75 to 5.25 volts. In applications which require the diode to deliver high peak currents, it is important to maintain the filament voltage at the rated value.

Caution should be observed when measuring rectifier filament voltage. The filament circuit may be at high potential.

The thoriated-tungsten filament of the 8020 reaches operating temperature in a fraction of a second after application of voltage. Plate voltage may be applied simultaneously with filament voltage.

<u>Plate Operation</u>—With low room illumination, the plate of the 8020 begins to show color as the maximum plate dissipation rating of 60 watts is approached. The maximum peak inverse voltage rating of 40,000 volts should not be exceeded at any time.

<u>*Performance*</u>—The accompanying table shows some maximum performance capabilities of the 8020 when used as a power-supply rectifier.

8020	MAXIMUM	PERFOR	RMANCE	CAPABIL	ITIES
Capacitor-Input Filter			Choke-Input Filter		
Туре	AC Input Voltage volts rms)	DC Output Voltage (volts)	DC Output Current (ma)	DC Output Voltage (volts)	DC Output Current (ma)
Single-					
Phase, Half- Wave	14,000	17,000	80		
Single- Phase, Full-					
Wave	14,0001	17,000	160	12,500	200
Single- Phase,					
Bridge	28,000	34,000	160	25,000	200

¹ One-half the transformer secondary voltage.

<u>Maximum DC Current Ratings</u>—Plate dissipation rather than peak current usually limits the dc current which the 8020 is capable of delivering to the load. Because the plate dissipation associated with a given dc current depends upon the amount of ripple and its wave-shape, circuit conditions will determine the maximum dc current rating of the tube.

<u>Choke-Input Filter</u>—The maximum dc current rating of the 8020 is 100 milliamperes when the load incorporates a choke-input filter with the "critical" value (or larger) of input inductance (L in Fig. 1):

$$L_o = \frac{R_{eff}}{18.8f}$$
 for full-wave single-phase rectifiers,

$$L_0 = \frac{R_{eff}}{75f}$$
 for half-wave three-phase rectifiers,

$$L_0 = \frac{R_{eff}}{660f}$$
 for full-wave three-phase rectifiers,

where: $L_0 \equiv$ "critical" value of input inductance (henries), f = supply-line frequency (cycles per second),

$$ff = \frac{\text{Load voltage (volts)}}{\text{Load current (volts)}}$$

Load current (amps)

Choke-input filters are not normally used with single-phase half-wave rectifiers.

<u>Capacitor-Input Filter</u>—The 8020 is particularly suitable for power-supply applications demanding high voltage at low current. Under these conditions capacitor-input filter circuits become desirable. The maximum dc current rating of the 8020 when no input choke is incorporated in the filter depends upon the total series resistance of the capacitor-charging circuit relative to the effective load resistance seen by each tube. The circuit diagrams and tabulation in Fig. 2 are so arranged and labeled that this required series resistance may be found for a wide range of load conditions. This may be done by determining the value of the following quantities:

 $\rm E_{c}$ is the filter-input dc voltage. While this is usually the entire load voltage, in the case of voltage multipliers it is the load voltage divided by the multiplication factor.

 ${\rm I_p}$ is the dc current per tube. This is the entire load current only in the case of the simple half-wave rectifier or half- or full-wave multiplier. In the case of full-wave center-tapped or bridge rectifiers, ${\rm I_p}$ is half the load current.

 $\rm R_c$ is the total charging-circuit resistance. A certain minimum value of charging-circuit resistance is necessary to limit the peak value of current to which the tubes will be subjected under given load conditions. This required minimum depends upon the dc current per tube ($\rm I_p$), and has been tabulated in Fig. 2 as a percentage of the effective load resistance per

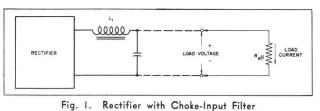
tube $\left(\frac{E_c}{I_p}\right)$. The total charging circuit resistance involves

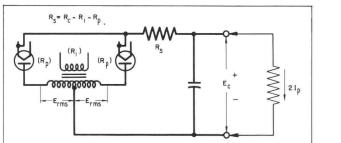
the internal resistance of the rectifier tube, $R_{\tt p}$, the added series resistor, $R_{\tt s},$ and the equivalent internal resistance of the ac voltage supply, $R_{\tt l}.$

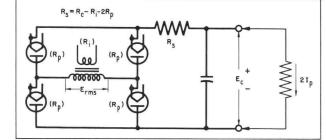
 $R_{\rm p}$ is the plate resistance of the 8020, which may be taken as 1000 ohms.

 R_i is the equivalent internal resistance of the supply. This may be taken as the regulation of the high-voltage supply expressed as a decimal multiplied by the load resistance used in measuring this regulation.

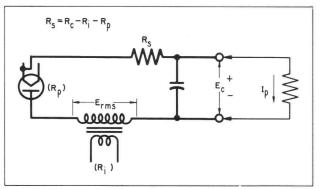
 $R_{\rm s}$ is the series resistor which must be inserted in the charging circuit to bring the total charging-circuit resistance up to the required minimum. Its value may be found from the formula associated with each of the circuits of Fig. 2. This resistor must be inserted in such a position in the circuit that it protects all tubes.

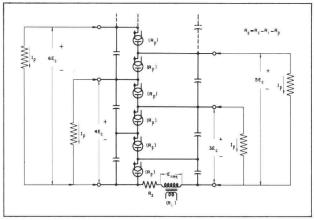

Tubes may be operated in parallel to increase the output capability in a given circuit. When two tubes are placed in parallel at each place where one is shown in the circuits of Fig. 2, the plate resistance ($R_{\,\rm p}$) will be half as great and the maximum allowable load current twice as great as indicated. Peak Inverse Voltage-The peak inverse voltage rating of the 8020 is 40,000 volts. In single-phase power-supply rectifier circuits the peak inverse voltage to be used in design is the peak ac supply voltage (1.41 times $E_{\,\rm rms}\,{\rm in}$ Fig. 2) in the case of bridge circuits, and twice this value in the case of half- or full-wave rectifiers and voltage multipliers. Peak inverse voltage in three-phase operation depends upon the circuit employed, and will be found listed in the handbooks. Special Applications-The ratings given for capacitor-input filter circuits assume values of input capacitance large enough to hold the ripple to a low value. In special applications where a large percent ripple is tolerable and filter capacitance is low, the 8020 is capable of larger dc output currents.

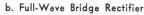

As a unidirectional conductor in dc circuits where the current is continuous and the percent ripple is moderate, the maximum current rating of the 8020 is 200 milliamperes.

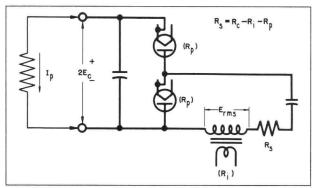

The plate characteristic curve for the 8020 serves as a guide to special applications. The maximum plate dissipation rating of 60 watts, the maximum peak inverse voltage rating of 40,000 volts, and the maximum peak plate current of 1.5 amperes must not be exceeded.

Re

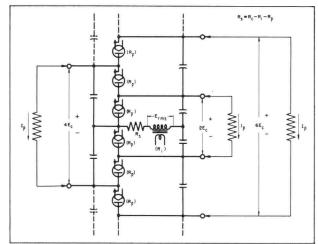

8020



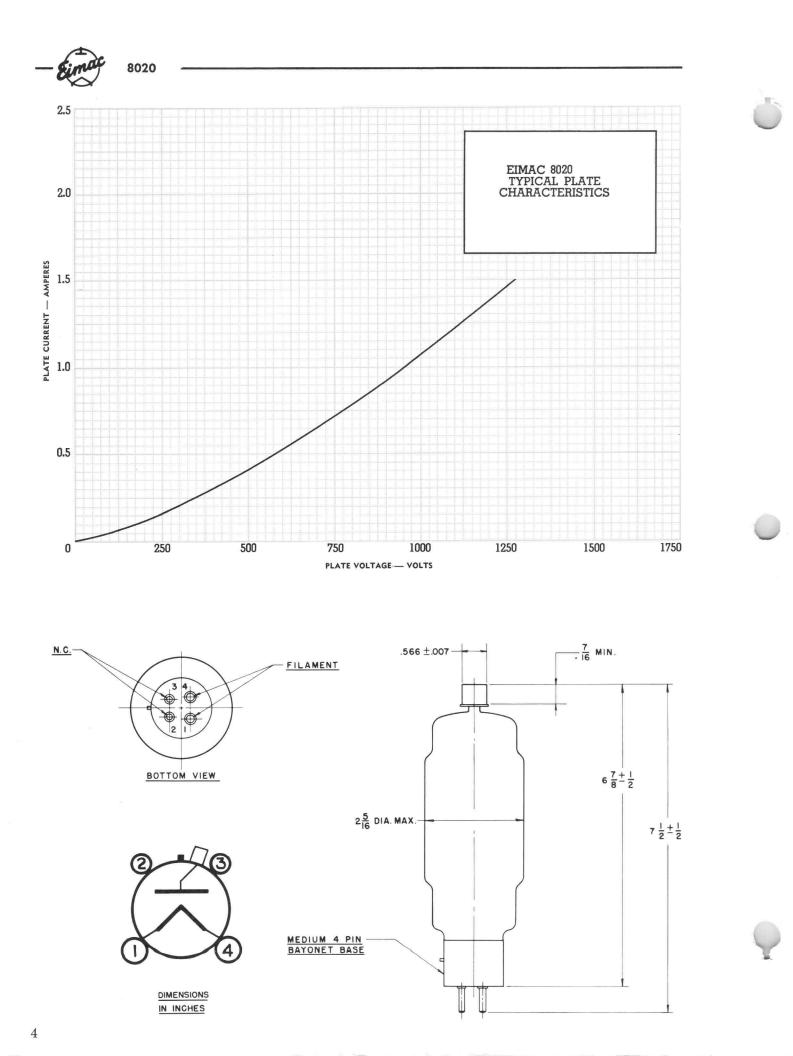

a. Full-Wave Center-Tapped Rectifier



c. Half-Wave Rectifier



e. Half-Wave Voltage Multiplier (with common ground when Rs is inserted on the "high" side of Erms)


d. Half-Wave Voltage Doubler

f. Full-Wave Voltage Multiplier

Eim	nac 8020	Maximum	D-C Cur	rent Rati	ngs for R	-C Filter	Applicatio	ons
D-C Plate Current (I _p)	70	75	80	85	90	95	100	milliamperes per tube
Total Charging- Circuit Resistance (R _c)	0.8	1.2	1.8	3.0	4.7	7.6	12	percent of Effective Load Resistance per Tube $\left(\frac{E_c}{I_p}\right)$
A-C Supply Voltage (Erms)	0.78	0.80	0.83	0.87	0.92	1.01	1.14	times Filter-Input D-C Voltage (E _c)
Peak Inverse Voltage (1/2 these values in circuit ''b''.)	2.2	2.3	2.4	2.5	2.6	2.9	3.2	times Filter-Input D-C Voltage (Ec)

Fig. 2. EIMAC 8020 Basic R-C Circuits (for any one of the indicated loads) $R_1 = Equivalent$ resistance of voltage source $R_p = 1000$ ohms (500 ohms for two tubes in parallel)

planar triodes

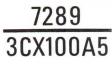
EIMAC division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

Look in the general section for-

A quick guide to EIMAC products and services offered in this catalog.

Including ...


- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

Important EIMAC extras...

APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices. **TECHNICAL DATA**

PLANAR TRIODE

7289 3CX100A5

The EIMAC Type 7289/3CX100A5 is a rugged ceramic/metal planar triode designed for use in CW, grid- or plate-pulsed oscillator, amplifier or frequency multiplier service up to 3 GHz. The tube may also be used in pulse modulator or voltage regulator service. The 7289 is supplied with an air cooled radiator for forced air cooling.

The 7289 features high mu, high transconductance, great mechanical strength and low interelectrode capacitance.

Note: The data for the 7289/3CX100A5 also apply to the 2C39A and 2C39WA in all respects, except that filament voltage for 2C39A is 6.3 volts.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential

Heater: Voltage	6.0 ± 0.3 V
Current, at 6.0 volts	1.0 A
Transconductance (Average):	
$I_{b} = 70 \text{ mA}, E_{b} = 600 \text{ Vdc}$	25 mmhos
Amplification Factor (Average)	100
Direct Interelectrode Capacitance (grounded cathode) ²	
Cin	6.30 pF
Cout	.035 pF
Cgp	2.00 pF
Cut-off bias ³	-25 V max

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Revision 11-1-71) © by Varian

Printed in U.S.A.

7289/3CX100A5

MECHANICAL

Maximum Overall Dimensions

Length			.701 in; 68.60 mm
Diameter		1	264 in; 32.11 mm
Net Weight			
Operating Position			Any
Maximum Operating Temperature:			
Ceramic/Metal Seals	*******		250°C
Anode Core			250°C
Cooling	*******		Forced Air
Terminals			Coaxial, special

ENVIRONMENTAL

Shock, 11 ms, non-operating	60	G
Vibration, operating, all axis, 55 to 500 Hz	10	G
Altitude, max (in suitably designed circuit) 60,0	000	ft.

RANGE VALUES FOR EQUIPMENT DESIGN

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.0 volts	0.90	1.05 A
Cathode Warmup Time	60	sec.
Interelectrode Capacitance ¹ (grounded cathode connection)		
Cin	5.60	7.00 pF
Cout		0.95 pF
Сдр	1.95	2.15 pF

1. Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

CW RF POWER AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	1000	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CAT	HODE	VOLTAGE
Grid negative to cathode	-400	VOLTS
Grid positive to cathode	30	VOLTS
DC PLATE CURRENT	100	MILLIAMPERES
DC GRID CURRENT	50	MILLIAMPERES
AVERAGE PLATE DISSIPATION		
Forced air cooling ¹	100	WATTS
GRID DISSIPATION (Average)	2	WATTS
FREQUENCY	2.5	GHz
1. Using EIMAC radiator PN 0142	24.	

OPERATING CONDITIONS FOR 7289 IN REPRESENTATIVE APPLICATION

GROUNDED GRID CW POWER AMPLIFIER

FrequencyHeater VoltageDC Plate VoltageDC Grid Voltage (approx.)DC Cathode CurrentDC Grid CurrentDrive Power (approx.)Useful CW Power Output	6.0 900 -40 90 25	Vdc Vdc mAdc mAdc W
GROUNDED GRID CW OSCILLATOR		
Frequency	5.0 900 -20	GHz V Vdc MAdc mAdc W

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		
(grid pulsed)	1000	VOLTS
PEAK PULSE PLATE VOLTAGE		
(plate pulsed)	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE	VOLT	AGE
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	250	VOLTS
PULSE PLATE CURRENT	3.0	AMPERES
PULSE GRID CURRENT	1.8	AMPERES
AVERAGE PLATE DISSIPATION		
Forced Air Cooling 1	100	WATTS
GRID DISSIPATION (Average)	2	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION2	3	μs
DUTY FACTOR 2	.0025	

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE 1000	VOLTS
PEAK PLATE VOLTAGE 1200	VOLTS
DC GRID VOLTAGE150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE	VOLTAGE
Grid negative to cathode700	VOLTS
Grid positive to cathode 150	VOLTS
PULSE CATHODE CURRENT 4.8	AMPERES
DC PLATE CURRENT 100	MILLIAMPERES

For general application information please refer

to the Planar Triode Operating Instruction Sheet.

The operating instructions should be consulted

prior to the designing of new requirements around

the above tube type. Plate dissipation of up to

150 watts is possible with the 7289 tube type

when using radiator P/N 158555. If this is re-

Operating Conditions for 7289 in Representative Application.

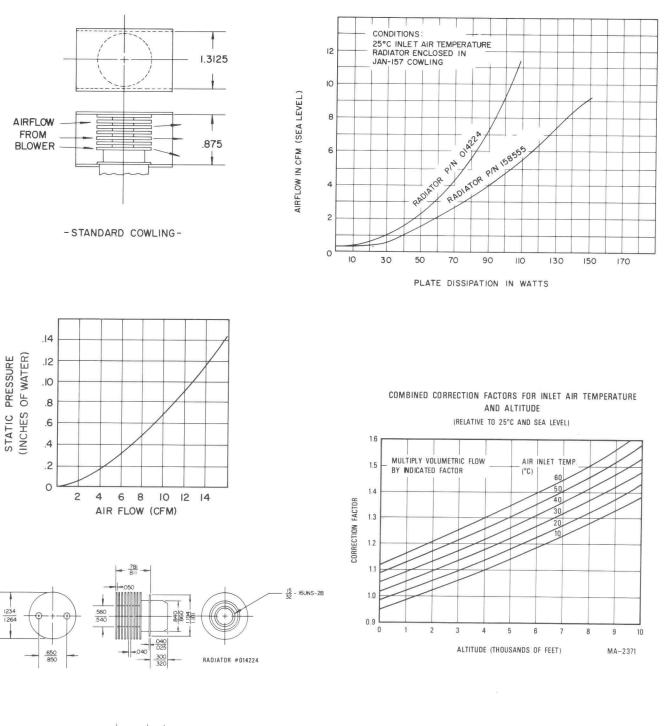
PLATE PULSED OSCILLATOR

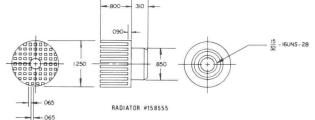
Frequency	3.0	GHz
	5.8	V
	3500	V
Peak Video Plate Current	3.0	а
Peak Video Grid Current	1.8	а
Useful Power output (approx.) 1	600	W
Pulse Duration	3	μs
	0025	

- 1. Using EIMAC radiator PN 014224.
- For applications using longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

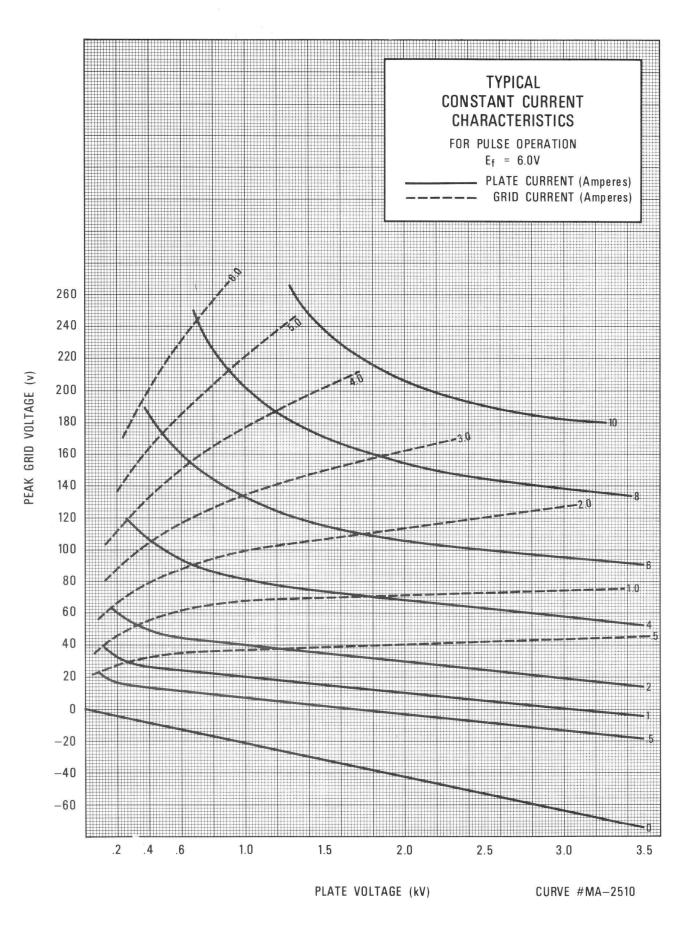
AVERAGE PLATE DISSIPATION

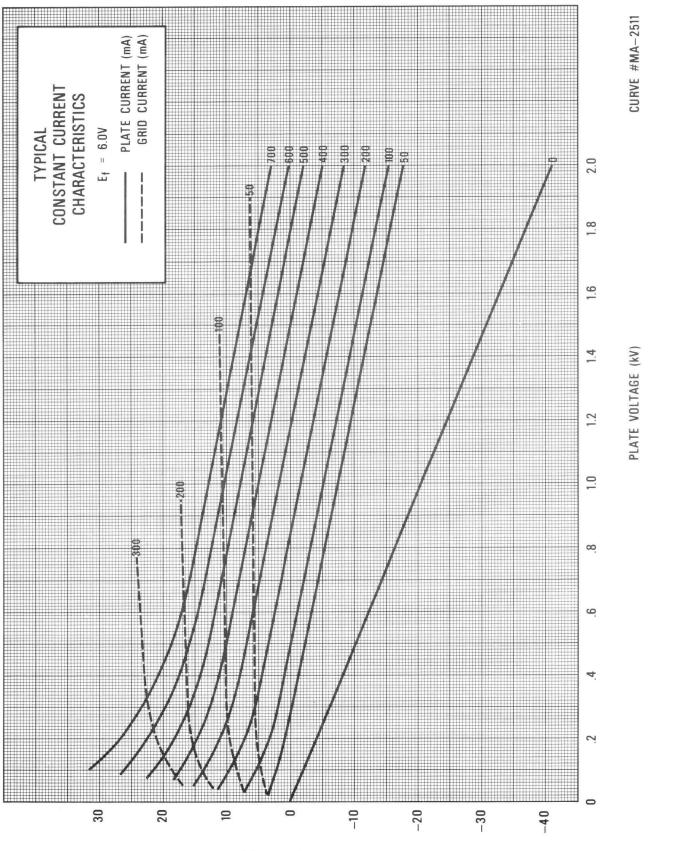
Forced Air Cooling ¹		WATTS
GRID DISSIPATION (Average)	2	WATTS
PULSE DURATION 2	3.0	μs
CUT-OFF Mu	70	
DUTY FACTOR	.0025	

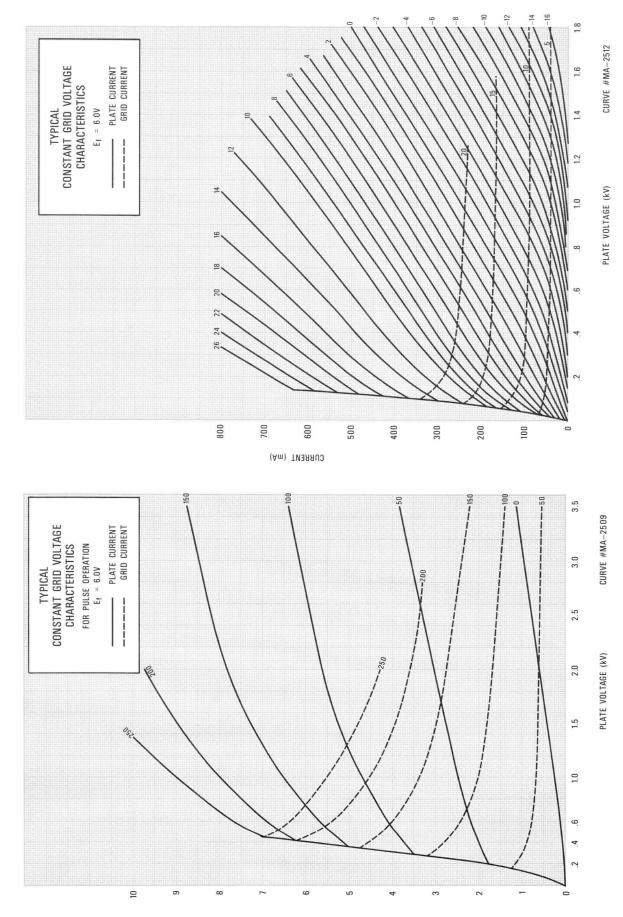

- 1. Using EIMAC radiator PN 014224.
- For applications using longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.


APPLICATION

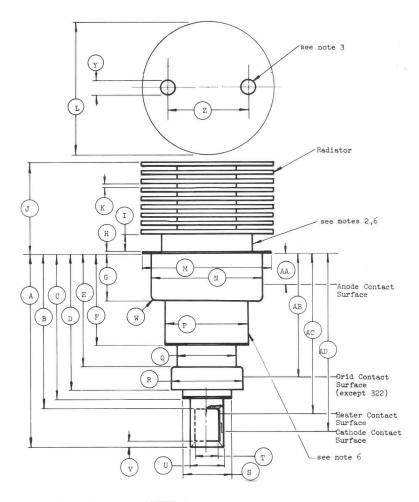
quired the tube order should include reference to the different radiator part number. For unusual and special application consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.


AIRFLOW vs STATIC PRESSURE WITH STANDARD COWLING JAN-157


MAXIMUM PLATE DISSIPATION vs COOLING AIRFLOW



7289/3CX100A5



7289/3CX100A5

(А) ТИЗЯЯИО ЖАЗЯ

ELEC	TRODE CON	TACT	AREA		DIMENSIONAL DATA									
Dim. in	Inches	Dim.	Dim. in	Millim.	Dim.	Dim. in Inches Dim. in Millimeters								
Min.	Max.		Min.	Max.	Min.	Max.	Ref.	Dim.	MIN.	MAX.	Ref.			
.035	.361	AA	.89	9.17	1.815	1.875		A	46.10	47.62				
1.185	1.265	AB	30.10	32.14		1.534		В		38.96				
1.534	1.728	AC	38.96	43.89		1.475		C		37.46				
1.475	1.815	AD	37.47	46.10	1.289	1.329		D	32.74	33.76				
					1.085	1.135		E	27.56	28.83				
					.880	.920		F	22.35	23.37				
					.462	.477		G	11:73	12.12				
						.040		H		1.02				
					.125	.185		I	3.18	4.70				
					.766	.826		J	19.46	20.98				
					.025	.046	×	K	.64	1.17				
					1.234	1.264		L	31.34	32.11				
					1.180	1.195		М	29.97	30.35				
					1.025	1.035		N	26.04	26.29				
					.752	.792		P	19.20	20.12	2			
					.541	.561		Q	13.74	14.25				
					.655	.665		R	16.64	16.89				
						.545		S		.13.84				
					.213	.223		T	5.41	5.66				
					.315	.325		U	8.00	8.26				
						.100		W		2.54				
					.105	.145		Y	2.67	3.68				
					.650	.850		Z	16.51	21.59				
NOTES:						.086		V		2.18				

NOTES:
1. Metric equivalents to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm.
2. This surface shall be used to measure Anode shank temperatire.
3. Holes for extractor thru top fin only.
4. Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

Contact Surface	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode
5. Dias. N,R,T & U shall apply throughout	entire lenght as	defined by dims. AA, AB, AC &

Dias. N,R,T & O Shall apply throughout entire length as defined by dims. AA,AD,AC & AD respectively.
 This surface shall not be used for clamping or locating.
 Electrode Contact dims. are given for socket design purposes & are not intended for inspection purposes.

The EIMAC 7211 and 7698 are rugged ceramic/metal planar triodes designed for use in CW, grid- or platepulsed oscillator, amplifier or frequency multiplier service up to 3 GHz. The tubes may also be used in pulse modulator or voltage regulator service. The 7211 is normally supplied with an air cooled radiator for forced air cooling, while the 7698 is supplied without radiator and is intended for conduction-convection cooling as found in many pulsed type applications. Except for the plate dissipation ratings and outline, the characteristics of both tube types are identical.

The 7211 and 7698 feature high mu, high transconductance, great mechanical strength and low interelec-

7211 7698 trode capacitances, as well as high current capability and increased grid-anode insulator length. Both tubes have an arc-resistant, extended interface cathode, well proven in airline applications,

assuring reliable and long life operation under adverse conditions.

Note: The data for the 7211 also applies to the EIMAC 7698R in all respects.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.3 ± 0.3	V
Current, at 6.3 volts	1.30	Α
Transconductance (Average):		
I _b = 160 mAdc, (200mA/cm ²)	38	mmhos
Amplification Factor (Average)	80	
Direct Interelectrode Capacitance (grounded cathode) ² , without heater voltage:		
Grid-Cathode	8.0	pF
Grid-Plate	2.25	pF
Plate-Cathode (maximum)	0.06	pF
Cut-off Bias ³ (maximum)	-30	V

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 11-15-70) © 1970 by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

MECHANICAL

Maximum Overall Dimensions:

Length
Diameter (7698) 1.195 in; 30.35 mm
Diameter (7211) 1.264 in; 32.11 mm
Net Weight (7698) 1.8 oz; 48 gm
Net Weight (7211) 2.2 oz; 63 gm
Operating Position Any
Maximum Operating Temperature:
Ceramic/Metal Seals
Anode Core
Cooling (7698) Conduction and Convection
Cooling (7211) Forced Air
Terminals
ENVIRONMENTAL
Shock, 11 ms, non-operating
Vibration, operating, all axes 55 to 500 Hz 10 G
Altitude, max (in a suitably designed circuit)

CW RF POWER AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	2500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-		
CATHODE VOLTAGE		
Grid negative to cathode	-400	VOLTS
Grid positive to cathode	30	VOLTS
DC PLATE CURRENT	150	MILLIAMPERES
DC GRID CURRENT	45	MILLIAMPERES
A VERAGE PLATE DISSIPATION		
Conduction and Convection		
$(7698)^{\cdot}$	10	WATTS
Forced Air Cooling ¹ (7211)	100	WATTS
GRID DISSIPATION (Average)	2	WATTS
FREQUENCY	2.5	GHz

OPERATING CONDITIONS FOR 7211 AND 7698 IN REPRESENTATIVE APPLICATION

Grounded Grid CW Power Amplifier

Frequency		•								700	MHz
Heater Voltage						2				6.3	V
DC Plate Voltage									÷	630	Vdc
DC Grid Voltage (approx)			•						÷	-5	Vdc
DC Cathode Current										140	mAdc
DC Grid Current										25	mAdc
Drive Power (approx)					2			•		4	W
Jseful CW Power Output .		•	•	•	•	•	•	•	÷	45	W

Grounded Grid CW Oscillator

Frequency	ī.,						2.5	GHz
Heater Voltage							5.0	V
DC Plate Voltage			 2		2		1000	Vdc
DC Grid Voltage (approx)			 a.			÷.		Vdc
DC Plate Current								mAdc
DC Grid Current							30	mAdc
Useful CW Power Output	τ.	 					30	W

1. Using EIMAC radiator PN 014224.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		
(GRID PULSED)	2500	VOLTS
PEAK PULSE PLATE VOLTAGE		
(PLATE PULSED)	3500	VOLTS
DC GRID VOLTAGE		

INSTANTANEOUS PEAK GRID-

CATHODE VOLTAGE		
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	250	VOLTS
PULSE PLATE CURRENT	5.0	AMPERES
PULSE GRID CURRENT	2.5	AMPERES
A VERAGE PLATE DISSIPATION		
Conduction and Convection (7698).	10	WATTS
Forced Air Cooling ¹ (7211)	100	WATTS
GRID DISSIPATION (Average)	2	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION 2		μs
DUTY FACTOR 2	.0033	and the second se

OPERATING CONDITIONS FOR 7211 AND 7698 IN REPRESENTATIVE APPLICATION

Grid Pulsed Amplifier	
Frequency	GHz
Heater Voltage 6.3	V
DC Plate Voltage 2200	Vdc
	Vdc
Peak Video Plate Current 2.5	а
Peak Video Grid Current 1.0	а
Pulse Drive Power (approx)	W
Useful Power Output (approx)	W
	μs
Duty Factor	

Plate Pulsed Oscillator	
Frequency 3.0	GHz
Heater Voltage 5.8	\vee
Peak Plate Voltage 3500	V
Peak Video Plate Current 4.8	а
Peak Video Grid Current 1.5	а
Useful Power Output (approx)	W
Pulse Duration	μs
Duty Factor	

1. Using Eimac radiator PN 014224.

 For application requiring longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

PULSE MODULATOR OR PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS

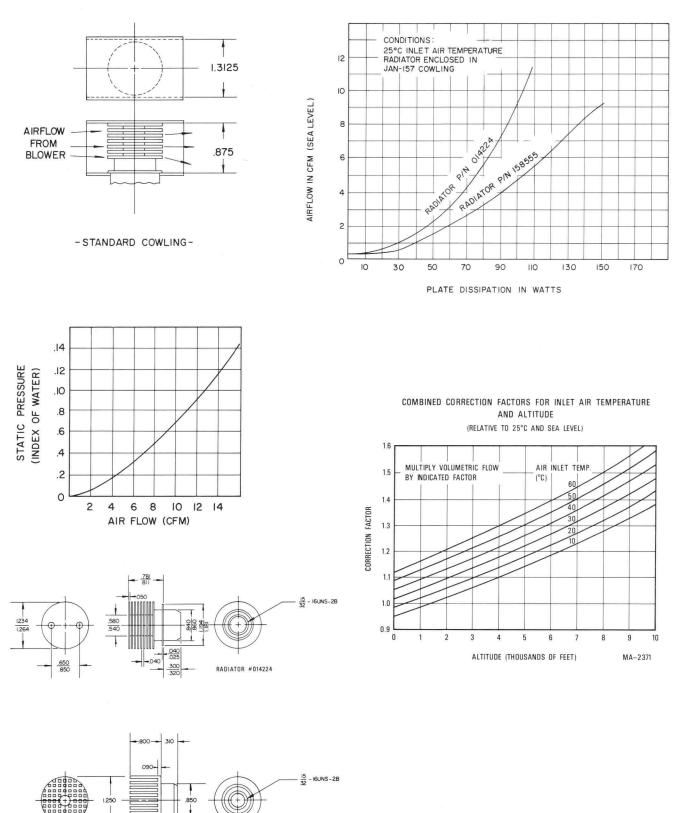
DC PLATE VOLTAGE	2500	VOLTS
PEAK PLATE VOLTAGE	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-		
CATHODE VOLTAGE		
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	150	VOLTS

1. Using EIMAC radiator PN 014224.

 For application requiring long pulse duration and/ or higher dury cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

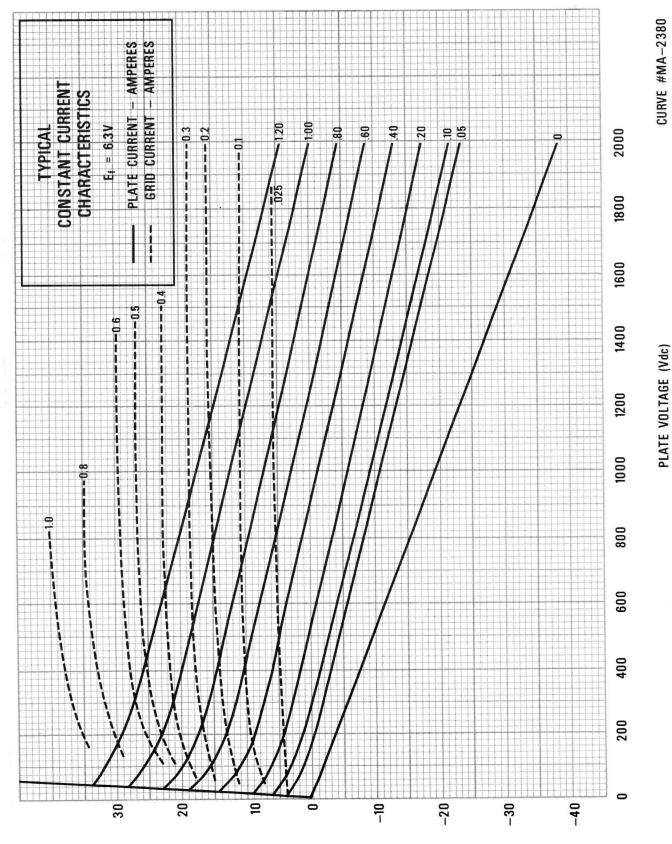
RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater: Current at 6.3 volts	1.20	1.40 A
Cathode Heating Time	60	sec.
Interelectrode Capacitances ¹ (grounded cathode connection)		
Grid-Cathode	7.0	9.0 pF
Plate-Cathode		0.06 pF
Grid-Plate	2.10	2.40 pF


 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

APPLICATION

For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube types. Plate dissipation of up to 150 watts is possible with the 7211/7698 tube type when using radiator P/N 158555. If this is required the tube order should include a reference to the different radiator part number. For unusual and special application consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake, City, Utah.


AIRFLOW vs STATIC PRESSURE WITH STANDARD COWLING JAN-157

MAXIMUM PLATE DISSIPATION vs COOLING AIRFLOW

4

RADIATOR #158555

(V) 30ATJOV QIRO

7211/7698

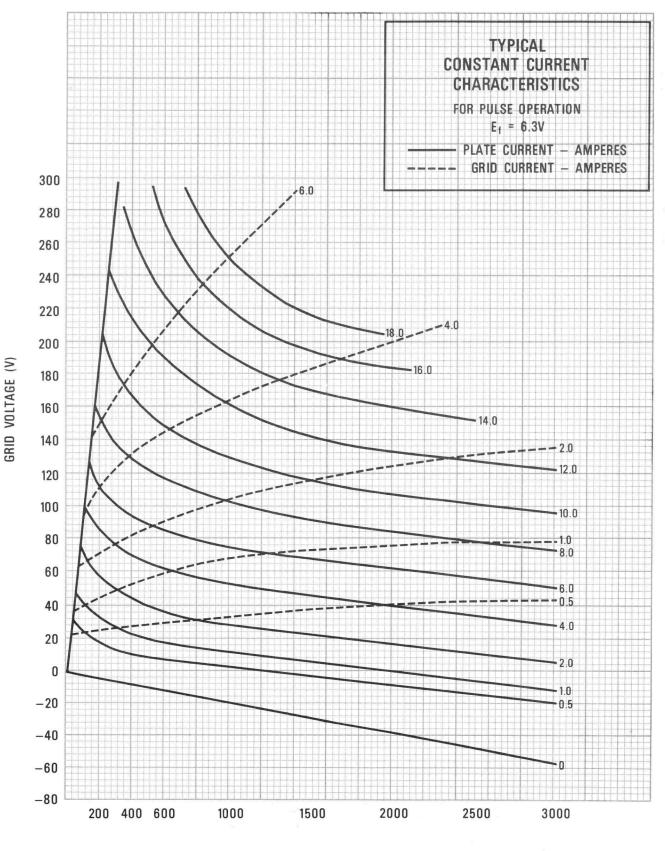
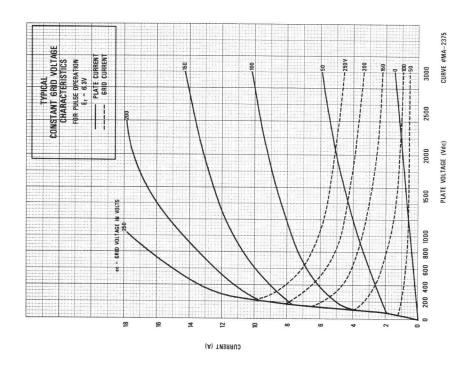
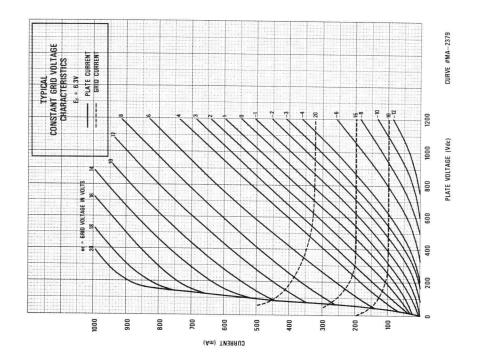
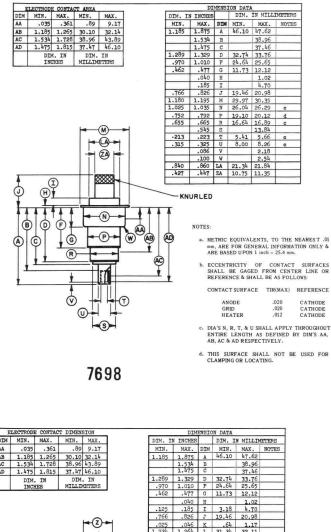
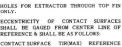





PLATE VOLTAGE (Vdc)

CURVE #MA-2374



ELECTRODE CONTACT DIMENS	SION		DIM	ENSIC	N DATA		
IM MIN. MAX. MIN.	MAX.	DIM. IN	INCHES		DIM. I	N MILLIN	TERS
.035 .361 .89	9.17	MIN.	MAX.	DIM	MIN.	MAX.	NOTES
1.185 1.265 30.10	32.14	1.185	1.875	A	46.10	47.62	
1.534 1.728 38.96	43.89		1.534	В		38.96	
1.475 1.815 37.47	46.10		1.475	C		37.46	
DIM. IN DIM.	IN	1.289	1.329	D	32.74	33.76	
INCHES MILLIM	TERS	.970	1.010	F	24.64	25.65	
		.462	.477	G	11.73	12.12	
			.040	H		1.02	
		.125	.185	I	3.18	4.70	
	~	.766	.826	J	19.46	20.98	
	→ (z) →	.025	.046	K	.64	1.17	
	Ŭ	1.234	1.264	L	31.34	32.11	
		1.180	1.195	М	29.97	30.35	
\odot		1.025	1.035	N	26.04	26.29	e
¥ /		.752	.792	P	19.10	20.12	
		.655	.665	R	16.64	16.89	
T V			.545	S		13.84	
		.213	.223	Т	5.41	5.66	
		.315	.325	U	8,00	8.26	e
			.086	V		2.18	
			.100	W		2.54	
		.105	.145	YZ	2.67	3.68	c
					NOTES	SEE NOTE f, b	c
				METR mm, A	RE GIVE	N FOR GI	TO THE ENERAL 1 1 inch = 2
t		<u> </u>				SHALL I TEMPERA	BE USED
<u>.</u>				ONLY			R THROU
-							CONTACT OM CENT
			1	REFE	RENCE &	SHALL B	E AS FOL
							E AS FOL IR(MAX)

7211

e. DIA'S N, R, T & U SHALL APPLY THROUGHOUT ENTIRE LENGTH AS DEFINED BY DIM'S AA, AB, AC & AD RESPECTIVELY.

f. THIS SURFACE SHALL NOT BE USED FOR CLAMPING OR LOCATING.

TECHNICAL DATA

PLANAR TRIODES

The EIMAC 7815 and 7815R are rugged ceramic/metal planar triodes designed for use in CW, grid- or plate-pulsed oscillator, amplifier or frequency multiplier service up to 3 GHz. The tubes may also be used in pulse modulator or voltage regulator service. The 7815R is normally supplied with an air cooled radiator for forced air cooling, while the 7815 is supplied without radiator and is intended for conduction-convection cooling as found in many pulsed type applications. Except for the plate dissipation ratings and outline, the characteristics of both tube types are identical.

The 7815 and 7815R feature high mu, high transconductance, great mechanical strength and low interelectrode capacitances, as well as high current capability and in-

creased grid-anode insulator length. Both tubes have an arc-resistant, extended interface cathode, well proven in airline applications, assuring reliable and long life operation under adverse conditions.

Note: This data sheet also covers the 3CPN10A5 (same as 7815) and 3CPX100A5 (same as 7815R).

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.0 ± 0.3	V
Current, at 6.0 volts	1.00	A
Transconductance (Average):		
$I_b = 70 \text{ mAdc}, (E_b = 600 \text{ Vdc}) \dots$	25	mmhos
Amplification Factor (Average)	100	
Direct Interelectrode Capacitance (grounded cathode) ² , without heater voltage:		
Cin	6.3	pF
C gp	1.98	pF
Cout	0.035	pF
Cut-off Bias ³ (maximum)	-25	V

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Revised 12-1-71) © by Varian

Printed in U.S.A.

7815/7815R

MECHANICAL

Maximum Overall Dimensions:

Length	n
Diameter (7815) 1.195 in; 30.35 mm	n
Diameter (7815R) 1.264 in; 32.11 mm	n
Net Weight (7815) 1.8 oz; 48 gm	1
Net Weight (7815R) 2.2 oz; 63 gm	1
Operating Position Any	J
Maximum Operating Temperature:	
Ceramic/Metal Seals	7
Anode Core	7
Cooling (7815) Conduction and Convection	1
Cooling (7815R) Forced Ai	r
Terminals Coaxial, special	Ĺ
ENVIRONMENTAL	
Shock, 11 ms, non-operating	i
Vibration, operating, all axes 55 to 500 Hz 10 0	ŗ
Altitude, max (in a suitably designed circuit) 70,000 f	t.

CW RF POWER AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	2500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-		
CATHODE VOLTAGE		
Grid negative to cathode	-400	VOLTS
Grid positive to cathode	30	VOLTS
DC PLATE CURRENT	100	MILLIAMPERES
DC GRID CURRENT	50	MILLIAMPERES
AVERAGE PLATE DISSIPATION		
Conduction and Convection		
(7815)	10	WATTS
Forced Air Cooling (7815R)	100	WATTS
GRID DISSIPATION (Average)	2	WATTS
FREQUENCY	2.5	GHz

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE (GRID PULSED)	2500 VOLTS
PEAK PULSE PLATE VOLTAGE	
(PLATE PULSED)	3500 VOLTS
DC GRID VOLTAGE	-150 VOLTS
INSTANTANEOUS PEAK GRID-	
CATHODE VOLTAGE	
Grid negative to cathode	-700 VOLTS

OPERATING CONDITIONS FOR 7815 AND 7815R IN REPRESENTATIVE APPLICATION

Grounded Grid CW Power Amplifier

Frequency	500	MHz
Heater Voltage	6.0	V
	900	Vdc
	-40	Vdc
DC Cathode Current	90	mAdc
DC Grid Current	25	mAdc
Drive Power (approx)	6	W
Useful CW Power Output	40	W
Grounded Grid CW Oscillator		
	2.5	GHz
Heater Voltage	5.0	V
	900	Vdc
DC Grid Voltage (approx)	-20	Vdc
DC Plate Current	90	mAdc
DC Grid Current	10	mAdc
Useful CW Power Output	17	W
	1000	and the second second
Grid positive to cathode 250	VO	TC

Grid positive to cathode	250	VOLTS
PULSE PLATE CURRENT	3.0	AMPERES
PULSE GRID CURRENT	1.8	AMPERES
AVERAGE PLATE DISSIPATION		
Conduction and Convection (7815) .	10	WATTS
Forced Air Cooling (7815R)	100	WATTS
GRID DISSIPATION (Average)	2	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION 1		μ s
DUTY FACTOR ¹	0033	

OPERATING CONDITIONS FOR 7815 AND 7815R IN REPRESENTATIVE APPLICATION

Grid Pulsed Amplifier

Frequency	1.1	GHz
Heater Voltage	6.0	\vee
DC Plate Voltage	2200	Vdc
DC Grid Voltage	-45	Vdc
Peak Video Plate Current	1.9	а
Peak Video Grid Current	1.1	а
Pulse Drive Power (approx)	400	W
Useful Power Output (approx)	2000	
Pulse Duration	3	μs
Duty Factor	.002	

PULSE MODULATOR OR PULSE AMPLIFIER

ABSOLUTE MAXIMUM RATINGS

SERVICE

DC PLATE VOLTAGE	2500	VOLTS
PEAK PLATE VOLTAGE	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-		
CATHODE VOLTAGE		
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	150	VOLTS
PULSE CATHODE CURRENT		AMPERES
DC PLATE CURRENT	100	MILLIAMPERES

Plate Pulsed Oscillator 3.0 GHz 5.8 V 3500 v Peak Plate Voltage 3.0 a Peak Video Plate Current 1.8 a Peak Video Grid Current..... Useful Power Output (approx) 1600 w 3 µs .0025

 For application requiring longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

AVERAGE PLATE DISSIPATION

Conduction and Convection (7815) 10	WATTS
Forced Air Cooling (7815R) 100	WATTS
	WATTS
PULSE DURATION 1 6	μs
DUTY FACTOR ¹	
CUT-OFF MU 70	

 For application requiring long pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.0 volts	0.90	1.05 A
Cathode Heating Time	60	sec.
Interelectrode Capacitances ¹ (grounded cathode connection)		
Cin	5.60	7.00 pF
Cout		0.035 pF
С др	1.85	2.10 pF

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

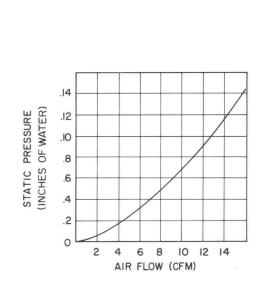
APPLICATION

For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube types. Plate dissipation of up to 150 watts is possible with the 7815/7815R tube type when using radiator P/N 158555. If this is required the tube order should include a reference the different radiator part number. For unusual and special application consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake, City, Utah. AIRFLOW

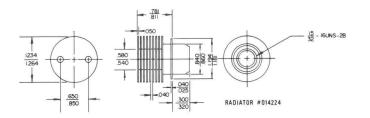
FROM

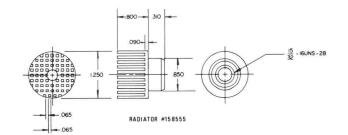
BLOWER

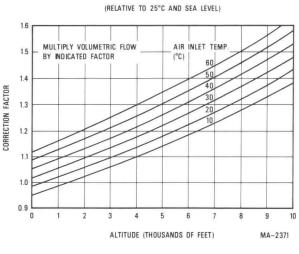
AIRFLOW vs STATIC PRESSURE WITH STANDARD COWLING JAN-157


1.3125

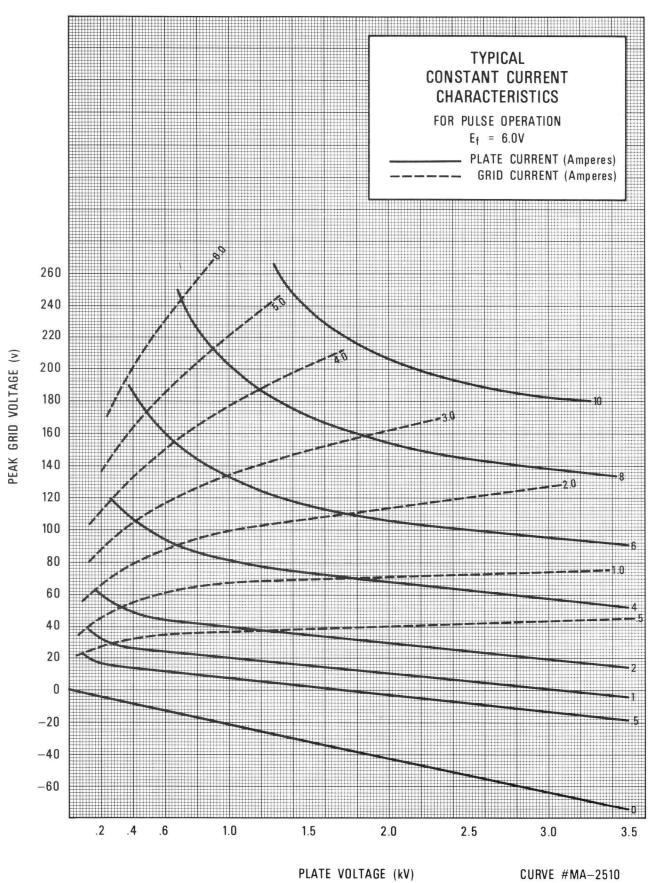
.875

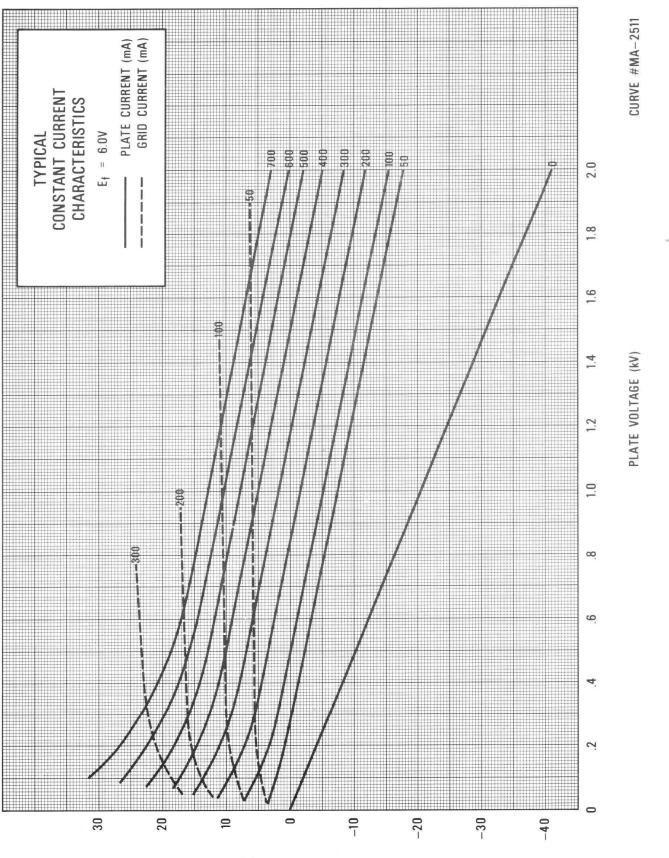

AIRFLOW IN CFM (SEA LEVEL)

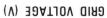

CONDITIONS: ______ 25°C INLET AIR TEMPERATURE RADIATOR ENCLOSED IN JAN-157 COWLING 12 10 8 01222 RADIATOR PIN 158555 6 814 RADIATOR 4 2 0 130 170 10 30 50 70 90 110 150 PLATE DISSIPATION IN WATTS


MAXIMUM PLATE DISSIPATION vs COOLING AIRFLOW

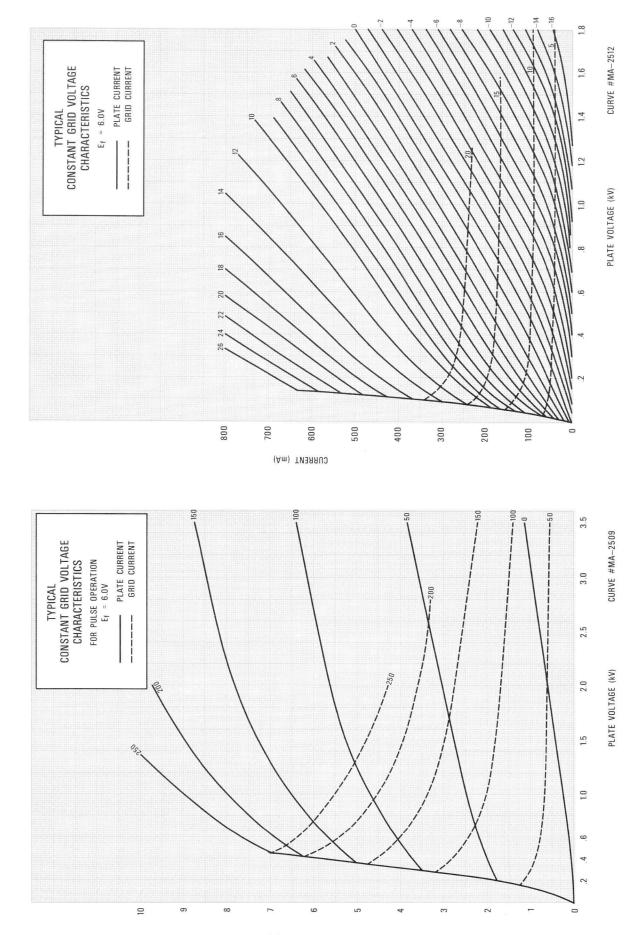
-STANDARD COWLING-

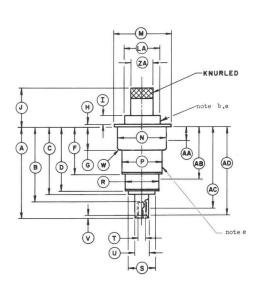





COMBINED CORRECTION FACTORS FOR INLET AIR TEMPERATURE

AND ALTITUDE


7815/7815R



7815/7815R

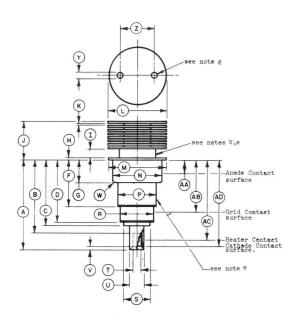
PEAK CURRENT (A)

7815

DIM.	MIN.	MAX.	MIN.	MAX.
AA	.035	.361	.89	9.17
AB	1.185	1.265	30.10	32.14
AC	1.534	1.728	38.96	43.89
AD	1.475	1.815	37.47	46.10
	DIM. INCH		DIM MILLIN	. IN METERS

DIM. IN	I INCHES		DIM. 1	N MILLI	METERS
MIN.	MAX.	DIM.	MIN.	MAX.	NOTES
1.815	1.875	A	46.10	47.62	
	1.534	В		38.96	
	1.475	C		37.46	
1.289	1.329	D	32.74	33.76	
.970	1.010	F	24.64	25.65	
.462	.477	G	11.73	12.12	
	.040	H		1.02	
	.185	I		4.70	
.766	.826	J	19.46	20.98	
1.180	1.195	М	29.97	30.35	
1.025	1.035	N	26.04	26.29	d
.752	.792	P	19.10	20.12	
.655	.665	R	16.64	16.89	d
	.545	S		13.84	
.213	.223	Т	5.41	5.66	đ
.315	.325	U	8.00	8.26	d
	.086	V		2.18	
	.100	W		2.54	
.840	.860	LA	21.34	21.84	
.427	.447	ZA	10.85	11.35	
		27			

NOTES: a. Metric equivalents, to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm.


b. This surface shall be used to measure Anode Shank temperature.

Contact Surface	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode
chall apply throughout	entire contect area as	defined by dims. AA.A

 Dias. N,R,T,U shall apply throughout entire AC,AD respectively. AA,AB.

e. This surface shall not be used for clamping or locating.

f. , Electrode Contact Dims. are given for socket design purposes & are not intended for inspection purposes.

7815R

in Inches Dim. in Millimete Min. Max. Max. Dim. AA .36 . 9.1 1.185

Dim. i:	n Inches	Dim.	in Mil	limeter	s.
Min.	Max	Dim.	MIN.	MAX.	Notes
1.815	1.875	A	46.10	47.62	
	1.534	B		38.96	
	1.475	C		37.46	
1.289	1.329	D	32.74	33.76	
.970	1.010	F	24.64	25.65	
.462	.477	G	11.73	12,12	
	.040	H		1.02	
.125	.185	I	3.18	4.70	
.766	.826	5	19.46	20.98	
.025	.040	K	.64	1.17	
1.234	1.264	5)	31.34	32.11	
1.180	1.195	M	29.97	30.35	
1.025	1.035	N	26.04	26.29	c,d
.752	.792	P	19.20	20.12	
.655	.665	R	16.64	16.89	c,d
	.545	S		13.84	
.213	.223	T	5.41	5.66	c,d
.315	.325	U	8.00	8.26	c,d
	.086	V		2.18	
	.100	W		2.54	
.105	.145	Y	2.67	3.68	
.650	.850	7.	16.51	21.59	

Notes:

a. Metric equivalents to the nearest .01 mm, are given for general information only & are based on 1 inch= 25.4 mm.
 b. This surface shall be used to measure anode shank temp.

c. Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

follows:		
Contact Surface	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode

d. Dias. N.F.T & U shall apply throughout entire length as defined be dims. AA,AB,AC & AD respectively.
 e. This surface shall not be used for clamping or locating.

f. Electrode Contact dims. are given for socket design purposes & are not intended for inspection purposes.

g. Holes for Tube Extractor thru top fin only.

TECHNICAL DATA

The EIMAC 7815AL and 7815RAL are ceramic/metal planar triodes specially processed and tested to assure high reliability in airborne service. Evaluation of these tubes is based upon operating conditions in grid- or plate-pulsed oscillator service (transponder) and in gridor plate-pulsed amplifier service in distance measuring equipment (DME). The testing emphasizes cathode emission capability at reduced heater voltage and high voltage hold-off, both features which are demanded in airline service.

The 7815AL is derived from the 7815/3CPN10A5 and the 7815RAL from the 7815R/3CPX100A5. These new improved tubes also contain the features of the original

7815AL

7815RAL

types, including rugged ceramic/metal construction, low interelectrode capacitance, high transconductance and high mu. The longer grid-anode ceramic insulator of the earlier type is used, making the 7815AL and 7815RAL tubes especially suited for high altitude airborne operation.

In addition to these features, these tubes also incorporate the arc-resistant cathode which assures stable operation under adverse conditions and which minimizes catastrophic failure due to arc-over during circuit malfunction. Both tubes are useable from dc to 3 GHz.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	5.7 (±2%)	V
Current, at 5.7 volts	0.95	А
Transconductance (Average):		
$I_b = 70 \text{ mAdc}, E_b = 600 \text{ Vdc}$	25	mmhos
Amplification Factor (Average)	100	
Direct Interelectrode Capacitance (grounded cathode) ² , without heater voltage:		
Grid-Cathode	6.30	pF
Grid-Plate	1.98	pF
Plate-Cathode(maximum)	0.035	pF

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture.

(Effective 7-1-70) © 1970 by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

MECHANICAL

Maximum Overall Dimensions:

Le	ngth		 	•				•											2.	70	1	in;	6	8.6	0	mm
Dia	ameter (7815A	L)	 			•						×					1		1.	19	5 i	in;	3	0.3	5	mm
Dia	ameter (7815R	AL).	 		 						•						, ;		1.	26	4	in;	3	2.1	1	mm
Net W	eight (7815AI		 	- ×	• •		•			• •						•		•			1,	.8	0 <i>Z</i>	; 48	8	gm
Net W	eight (7815RA	AL)												 ÷							2	.2	02	; 6	3	gm
Opera	ting Position																								A	Any
	um Operating																									5
Ce	ramic/Metal S	Seals .	 		 												,							-	250)∘C
	ode Core																									
	ng(7815AL).																									
	ng (7815RAL)																									
	nals																									

RF POWER AMPLIFIER OR OSCILLATOR

Grid- or Plate-Pulsed

MAXIMUM RATINGS, ABSOLUTE VALUES

DC PLATE VOLTAGE 35 PEAK PULSE PLATE VOLTAGE	500 VOLTS	
PLATE PULSED 45	500 VOLTS	
DC GRID VOLTAGE1	150 VOLTS	
INSTANTANEOUS PEAK GRID-		
CATHODE VOLTAGE		
3	700 VOLTS	
	250 VOLTS	
PULSE PLATE CURRENT	3.0 AMPERE	
PULSE GRID CURRENT	1.8 AMPERE	
DC CATHODE CURRENT 1	125 MILLIAMPERES	S
AVERAGE PLATE DISSIPATION		
Conduction and Convection		
(7815AL)	10 WATTS	
Forced Air Cooling(7815RAL)	45 WATTS	
GRID DISSIPATION (Average)	2 WATTS	
DUTY FACTOR 1	033	
PULSE DURATION 1	6 µs	
FREQUENCY	3 GHz	

1. For longer pulse duration or higher duty cycle, consult the nearest Varian Electron Tube and Device Group Sales Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah, or San Carlos, California.

OPERATING CONDITIONS FOR THE 7815AL and 7815RAL in REPRESENTATIVE APPLICATION. Grid-Pulsed Oscillator

Frequency 1.09 Heater Voltage 5 DC Plate Voltage 200 DC Grid Voltage -7 Peak Plate Current 1 Peak Grid Current 0 Pulse Duration 0 Duty 0.000 Useful Power Output (Approx.) 75	0 Vdc 5 Vdc 1 a 8 a 5 μs 1
Plate-Pulsed Amplifier	
Heater Voltage5.Peak Plate Pulse Voltage200DC Grid Voltage-4Peak Plate Current1.Peak Grid Current1.Pulse Duration3.Duty0.00Driving Power30Useful Power Output (Approx.)180	0 Vdc 5 Vdc 8 a 0 a 5 μs 1 0 w 0 w 8 db

RANGE VALUES FOR EQUIPMENT DESIGN Min. Max. Heater Current at 5.7 volts 0.87 1.02 A Cut-off Bias ¹..... -25 V - - -Grid-Plate Capacitance²..... 1.85 2.10pF Grid-Cathode Capacitance².... 5.60 7.00 pF Plate-Cathode Capacitance 0.035 - - pF

1. Measured with 1 mA plate current and a plate voltage of 1000 Vdc.

2. Capacitance values as measured with a cold tube and in a shielded socket. When the cathode is heated to the proper temperature the grid-cathode capacitance will increase by approximately 1 pF due to thermal expansion of the cathode support.

7815AL/7815RAL

APPLICATION

MECHANICAL

MOUNTING - The important dimensions of the tube are carefully controlled with respect to the reference surface as shown on the outline drawing. The reference surface is intended to serve as a tube stop and the location of the tube in the circuit should therefore be determined by this surface coming in positive contact with a precisely positioned member of the socket or cavity. Adherence to this practice will assure both mechanical and electrical interchangeability of all tubes of a given type. If a non-designated surface is used as a tube stop, faulty positioning of the tube in the cavity and possible incomplete electrical contact can result in improper tuning, reduced power output and damage to the cavity. tube or both. Contact surfaces, with reference to the designated tube stop are shown in the outline drawing. Electrical contact to the cathode, grid, anode and also the heater should be restricted to these designated contact areas.

Dimensions should never be taken from sample tubes. Dimensional changes due to normal variations in undimensioned surfaces may occur within the limits specified on the outline drawing. Use of nondesignated electrical contact surfaces might therefore result in incomplete contact or mechanical interference, causing changes in cavity tuning.

Electrical contact should be made by spring finger collets bearing against the previously described contact areas. If connections are employed which do not provide multiple contacts to the designated contact areas, concentration of RF current will result in loss of output power, especially at higher frequencies. The spring contacts used should exert a firm pressure without gouging the plated contact surface. This latter phenomena can result in loose particles of material which can cause arcing or unstable operation of the cavity.

If the tubes are used in applications which call for severe shock or vibration the tube may be clamped in place by the knob or radiator, exerting pressure only on this part of the tube and against the tube stop. No other portion of the tube should be subject to any clamping force. In particular, electrical contacts which utilize setscrews or rigid clamps should be avoided. Such contact schemes can distort the contact surfaces causing undue stress in the metal-to-ceramic seal area which may result in a vacuum leak. Soldered electrical connections can be made, however great care should be taken during the solder operation to avoid fracture of the seal area due to thermal shock. All contact surfaces should be kept clean to minimize losses.

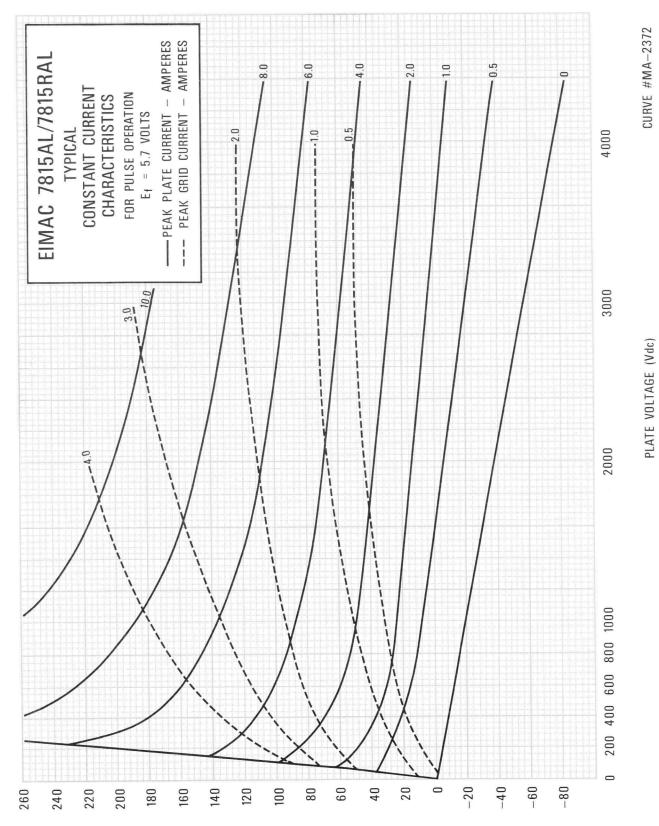
COOLING - The EIMAC planar triodes are designed to operate at envelope and anode temperatures of up to the maximum rated value of 250°C. However, performance and long-term reliability of any component are improved when it is kept as cool as technically feasible. Therefore, it is recommended that sufficient cooling be provided to keep the anode and seal areas well below the specified maximum temperature, where long tube life and high reliability are of great importance.

The maximum plate dissipation of the 7815AL is 10 watts average power. This can be accomplished by conduction, natural convection or forced air convection cooling. The maximum plate dissipation of the 7815RAL in pulse service is 45 watts average and forced air cooling must be employed at that level. When forced air cooling is used, it is recommended that additional airflow, apart from that flowing through the radiator be used to cool the tube envelope and other tube terminals. A certain amount of conduction cooling is usually inherent in the contact finger configuration. It should be noted, however, that spring fingers provide poor heat conduction and measurements have shown a temperature difference as much as 50°C between the contact finger and contact area.

It is suggested that in all new applications the envelope temperature be measured, especially if the tube is used close to the upper temperature limit. The temperature can easily be determined by the use of Tempilaq paint (Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield N.J. 07080) or Temp-Plate stickers (Pydrodyne, Inc., 1001 Colorado, Santa Monica, Calif. 90404)

ELECTRICAL

HEATER VOLTAGE - The rated heater voltage for either tube type is 5.7 volts and should be controlled within $\pm 2\%$ to obtain maximum tube life and to minimize variations in circuit performance.


The rated heater voltage is optimum for most existing airborne applications such as DME and transponder systems. However, there are other applications where a different heater voltage than the nominal should be used to obtain the longest possible tube life. Depending on pulse width, power output and frequency of oscillation used a different heater voltage may be better for long reliable. life. Electron transit time is not necessarily small with respect to the period of oscillation and the amount of driving power diverted will contribute to the cathode heating by electron bombardment.

The proper adjustment of the heater voltage must be made to compensate for this additional heating, which depends on operating frequency and duty cycle employed.

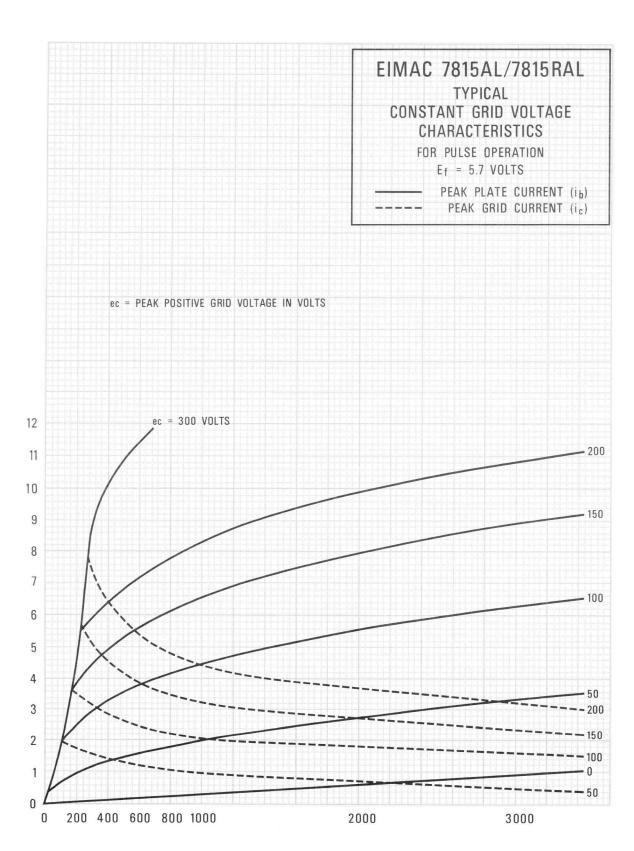
INTERELECTRODE CAPACITANCES - As indicated, the capacitance values are shown for measurements made with no heater voltage. The cathode to grid and cathode to plate capacitance will increase with the application of the heater voltage, due to the thermal expansion of the cathode support. Typically, the increase in the grid to cathode capacitance will be 15%, or more, depending on the heater voltage. Since the heater voltage can vary depending on use, data taken without heater voltage is more useful for control of tube-to-tube uniformity. The grid to anode capacitance is not effected by the application of the heater voltage.

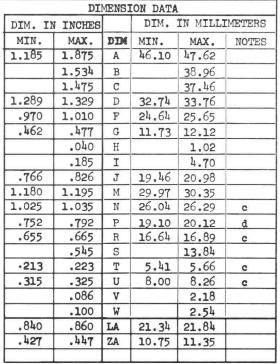
CIRCUIT TUNING - Especially under grid pulse conditions, it is important that the tube does not lose bias or momentarily go into a CW mode. Either of these events may result in tube failure. It is suggested that provision be made for initial circuit tune-up at reduced anode voltage and for extra tube protection when the circuit adjustment is critical. The average grid dissipation capability of these tubes is 2.0 watts. For many applications the limiting factor is often not anode dissipation or cathode emission capability, but grid dissipation. If pulse width control is lost in pulse applications the grid can exceed safe operating temperatures in 50 ms or less. Appropriate circuit protection during tune up is therefore recommended.

CATHODE OPERATION - The 7815AL and 7815RAL contain an arc-resistant cathode. Performance in the field and laboratory indicates these tubes are capable of withstanding some abuse due to high voltage arcs, however, poor circuit adjustment in the field may result in shortened tube life. It is, therefore, suggested that wherever feasible, the plate supply be designed such that its impedance limits the short circuit current to within five to ten times the maximum forward current. For pulse service the peak current should be limited to the values listed. Higher pulse width and duty cycles than given can be obtained with proper derating of the current. For this and special applications it is recommended that the user request additional information pertaining to his special application from the nearest Varian Electron Tube and Devices Field Office, or the Product-Manager, Eimac Division of Varian, Salt Lake City, Utah or San Carlos, California.

(V) 30ATJOV 0180

- 7815AL/7815RAL




PLATE VOLTAGE (V)

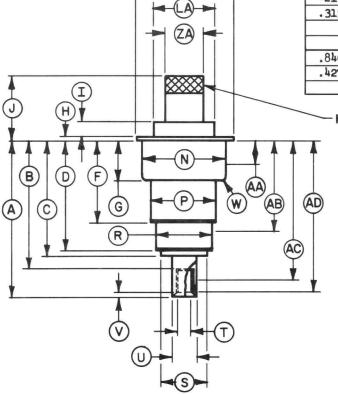
PEAK CURRENT (A)

7815 AL/7 815 RAL -

-7815AL/7815RAL

ELECTRODE CONTACT AREA								
DIM	MIN.	MAX.	MIN.	MAX.				
AA	.035	. 361	.89	9.17				
AB	1.185	1.265	30.10	32.14				
AC	1.534	1.728	38.96	43.89				
AD	1.475	1.815	37.47	46.10				
	DIN	4. IN CHES	DIM. IN MILLIMETERS					

-KNURLED

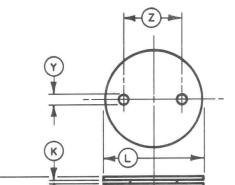

NOTES:

- a. METRIC EQUIVALENTS, TO THE NEAREST .01 mm, ARE FOR GENERAL INFORMATION ONLY & ARE BASED UPON 1 inch = 25.4 mm.
- b. ECCENTRICITY OF CONTACT SURFACES SHALL BE GAGED FROM CENTER LINE OR REFERENCE & SHALL BE AS FOLLOWS:

CONTACT SURFACE TIR(MAX) REFERENCE

ANODE	.020	CATHODE
GRID	.020	CATHODE
HEATER	.012	CATHODE

- c. DIA'S N, R, T, & U SHALL APPLY THROUGHOUT ENTIRE LENGTH AS DEFINED BY DIM'S AA, AB, AC & AD RESPECTIVELY.
- d. THIS SURFACE SHALL NOT BE USED FOR CLAMPING OR LOCATING.



M

E	LECTRODI	E CONTAC	T DIMEN	DIMENSION				
DIM	MIN.	MAX.	MIN.	MAX .				
AA	.035	.361	.89	9.17				
AB	1.185	1.265	30.10	32.14				
AC	1.534	1.728	38.96	43.89				
AD	1.475	1.815	37.47	46.10				
	DIM. INCI		DIM MILLI	. IN METERS				

M

N

P

W

I

G

R

V

D

B

	DIM	ENSIC	N DATA		
DIM. IN	INCHES		DIM. IN MILLIMETERS		
MIN.	MAX.	DIM	MIN.	MAX.	NOTES
1.185	1.875	A	46.10	47.62	
	1.534	B		38.96	
	1.475	C		37.46	
1.289	1.329	D	32.74	33.76	
.970	1.010	F	24.64	25.65	
.462	.477	G	11.73	12.12	
	.040	H		1.02	
.125	.185	I	3.18	4.70	
.766	.826	J	19.46	20.98	
.025	.046	K	.64	1.17	
1.234	1.264	L	31.34	32.11	
1.180	1.195	М	29.97	30.35	
1.025	1.035	N	26.04	26.29	e
.752	.792	P	19.10	20.12	
.655	.665	R	16.64	16.89	
	.545	S		13.84	
.213	.223	T	5.41	5.66	e
.315	.325	U	8.00	8.26	e
	.086	V		2.18	
	.100	W		2.54	
.105	.145	Y	2.67	3.68	С
.650	.850	Ζ	16.51	21.59	

- RADIATOR, SEE NOTE c - SEE NOTES f, b

NOTES:

(AD)

- a. METRIC EQUIVALENTS, TO THE NEAREST .01 mm, ARE GIVEN FOR GENERAL INFORMATION ONLY & ARE BASED ON 1 inch = 25.4 mm.
- b. THIS SURFACE SHALL BE USED TO MEASURE ANODE SHANK TEMPERATURE.
- c. HOLES FOR EXTRACTOR THROUGH TOP FIN ONLY.
- d. ECCENTRICITY OF CONTACT SURFACES SHALL BE GAGED FROM CENTER LINE OF REFERENCE & SHALL BE AS FOLLOWS:

CONTACT SURFACE TIR(MAX) REFERENCE

ANODE	.020	CATHODE
GRID	.020	CATHODE
HEATER	.012	CATHODE

- e. DIA'S N, R, T & U SHALL APPLY THROUGHOUT ENTIRE LENGTH AS DEFINED BY DIM'S AA, AB, AC & AD RESPECTIVELY.
- f. THIS SURFACE SHALL NOT BE USED FOR CLAMPING OR LOCATING.

7815 RAL

HIGH-MU PLANAR TRIODE

7855

The EIMAC 7855 and 7855K are ruggedized high-mu planar triodes of ceramic/metal construction, designed for grid pulsed, plate pulsed and CW operation in amplifiers, oscillators and frequency multipliers from low frequency to 3 GHz. The 7855 is supplied with a radiator for forced air cooling and the 7855K without radiator for conduction and convection cooling. Except for plate dissipation ratings, the characteristics of the two tubes are the same. In addition to the low interelectrode capacitances and high transconductance these tubes exhibit special design features such as a frequency stable anode and an arc resistant cathode to assure stable operation under adverse conditions and to minimize catastrophic failure due to arc over during a circuit malfunction.

GENERAL CHARACTERISTICS¹

7855K

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.0 ± 0.3	V
Current, at 6.0 volts	1.00	А
Transconductance (Average):		
$I_b = 70 \text{ mA}$	25	mmhos
Amplification Factor (Average):	80	
Direct Interelectrode Capacitances (Grounded Cathode) ²		
Cin	6.8	pF
Cout	0.04	pF
Cgp	2.50	pF
Cut-off Bias ³	-30	V max.

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

MECHANICAL

Maximum Overall Dimensions:	
Length	2.39 in; 60.60 mm
Diameter	1.27 in; 32.20 mm
Net Weight (7855)	57 gm
(7855K)	40 gm
Operating Position	Any

(Effective 8-1-71) © by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

7855/7855K

Maximum Operating Temperature:	
Ceramic/Metal Seals 2	250°C
Anode Core	250°C
Cooling (7855)	ed air
(7855K)Conduction, conve	ection
Terminals Coaxial, sp	pecial
ENVIRONMENTAL	

Shock, 11 ms, non-operating	60	G
Vibration, operating, all axes 55 to 500 Hz	10	G
Altitude, max (in a suitably designed circuit)	50,000	ft.

GRID PULSED OR PLATE PULSED AMPLIFIER **OR OSCILLATOR**

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE (grid pulsed)	2500	VOLTS
PEAK PULSE PLATE VOLTAGE		
(plate pulsed)	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID CATHOD	DE VOI	LTAGE
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	250	VOLTS
PULSE PLATE CURRENT	3.0	AMPERES
PULSE GRID CURRENT	1.8	AMPERES
PLATE DISSIPATION (7855)	100	WATTS
(7855K)	10	WATTS
GRID DISSIPATION	2.0	WATTS
FREQUENCY	3.0	GIGAHERTZ
PULSE DURATION ¹		μ sec
DUTY FACTOR ¹	.0033	

PULSE MODULATOR OR PULSE AMPLIFIER SERVICE

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE 2500	VOLTS
PEAK PLATE VOLTAGE	VOLTS
DC GRID VOLTAGE	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOL	
Grid negative to cathode750	
Grid positive to cathode 150	VOLTS
PULSE CATHODE CURRENT 4.8	AMPERES

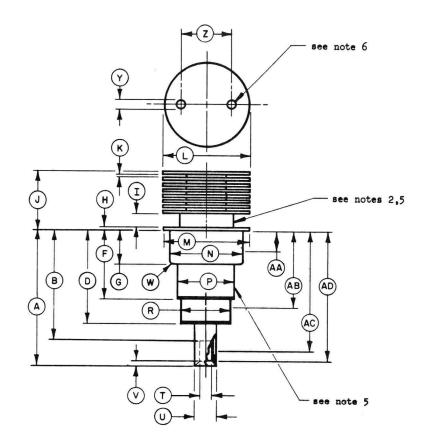
TYPICAL OPERATION Grid Pulsed Oscillator, Representative Application

Plate Voltage 2000	Vdc
Grid Voltage	Vdc
Heater Voltage 5.7	V
Peak Video Plate Current 1.3	а
Peak Video Grid Current 0.8	а
Useful Power Output (approx.) 750	w
Frequency 1.090	GHz
Pulse Duration 0.5	μs
Duty Factor	

DC PLATE CURRENT 100	MILLIAMPERES
PLATE DISSIPATION(7855) 100	WATTS
(7855K) 1(WATTS
GRID DISSIPATION 1.	
PULSE DURATION ¹	βµs
DUTY FACTOR ¹	3
CUT-OFF MU 60)

1. For application requiring longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager Eimac-Division of Varian, Salt Lake City, Utah.

RANGE VALUES FOR EQUIPMENT DESIGN


	Min.	Max.
Heater: Current at 6.0 volts	0.90	1.05 A
Cathode Heating Time	60	sec.
Interelectrode Capacitances ¹ (grounded cathode connection)		
Cin	6.00	7.50 pF
Cout		0.04 pF
Cgp	2.35	2.65 pF

Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the
proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to
thermal expansion of the cathode.

APPLICATION

For operating information refer to EIMAC bulletin #15, "Operating Instruction for Planar Triodes."

ELE	CTRODE C	ONTAC	r dims. (see note	7
Dim. in	Inches	Dim.	Dim. in	Millim.	
Min.	Max.		Min.	Max.]
.035	.361	AA	.89	9.17	1
1.021	1.101	AB	25.93	27.97	
1.219	1.413	AC	30.96	35.89	1
1.160	1.500	AD	29.46	38.10	

DIMENSIONAL DATA					
Dim. in	Inches		Dim. in	Millimeters	5
Min.	Max.	Dim	MIN.	MAX.	
1.500	1.560	A	38.10	39.62	
	1.214	В		30.84	
1.125	1.165	D	28.58	29.59	
.800	.840	F	20.32	21.34	
.462	.477	G	11.73	12.12	
	.040	H		1.02	
.125	.185	I	3.18	4.70	
.766	.826	J	19.46	20.98	
.025	.046	K	.64	1.17	
1.234	1.264	L	31.34	32.11	
1.180	1.195	М	29.97	30.35	
1.025	1.035	N	26.04	26.29	
.752	.792	Р	19.10	20.12	
.655	.665	R	16.64	16.89	
.213	.223	Т	5.41	5.66	
.315	.325	U	8.00	8.26	
	.086	v		2.18	
	.100	W		2.54	
.105	.145	Y	2.67	3.68	
.650	.850	Z	16.51	21.59	

7855

NOTES:

- Metric equivalents, to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm.
- 2. This surface to be used to measure anode shank temperature.
- Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

<u>Contact Surface</u>	TIR Max.	<u>Reference</u>		
Anode	.020	Cathode		
Grid	.020	Cathode		
Heater	.012	Cathode		

- 4. Dias. N,R,T & U shall apply throughout entire lenght as defined by dims. AA,AB,AC,AD respectively.
- 5. This surface shall not be used for clamping or locating.

6. Holes for extractor thru top fin only.

7. Electrode Contact dims. are for socket design purposes & are not intended for inspection purposes.

ы П	m. in Mi Min. .89	Max.	Dim.	Dim. ir	Inches	Dim. in	Tashas	D		
							Dim. in Millimetre			
	.89	AND THE REAL		Min.	Max.	Min.	Max.	Dim.	MIN.	MAX.
Г		9.17	AA	.035	.361	1.500	1.560	A	38.10	39,62
	25.93	27.97	AB	1.021	1.101		1.215	B		30,84
	30.96	35.89	AC	1.219	1.413	1.125	1.165	D	28,58	29.59
	29.46	38.10	AD	1.160	1.500	.800	.840	F	20.32	21.34
-						.462	.477	G	11.73	12.12
							.040	Н		1.02
							.185	I		4.70
						.766	.826	J	19.46	20.98
I	(M)					.025	.046	K	.64	1.17
		-				1.234	1.264	L	31.34	32.11
	H- CA-					1.180	1.195	М	29.97	30.35
			17	urled		1.025	1.035	N	26.04	26.29
	- (ZA)	- /	- KI	uried		.752	.792	P	19.10	20,12
						.655	.665	R	16.64	16,89
						.213	.223	Т	5.41	5.66
						.315	.325	U	8.00	8.26
		4					.086	V		2.18
(H) T				note 2,5			.100	W		2.54
Ť Ť						.840	.860	LA	21.34	21.84
1 1 1 1 1 - 5						.427	.447	ZA	10.85	11.35

7855K

NOTES :

V

(T) U

1

Metric equivalents to the nwarest .01mm, are given for general information only & are based on 1 inch= 25.4 mm.

-see note 5

- 2. This surface shall be used to measure Anode shank temperature.
- 3. Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

LOWB		
Contact Surface	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode

- 4. Dias. N,R,T,U shall apply throughout entire lenght as defined by dims. AA,AB,AC,AD respectively.
- 5. This surface shall not be used for clamping or locating.
 6. Electrode Contact Dims. are intended for socket design only & are not intended for inspection purposes.

4

7855/7855K

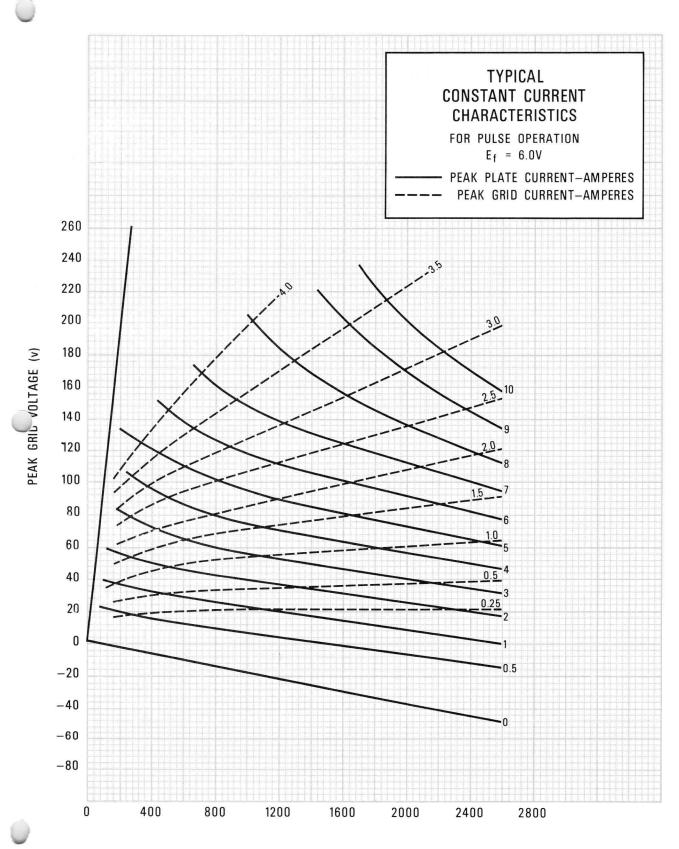


PLATE VOLTAGE (V)

CURVE #MA-2376

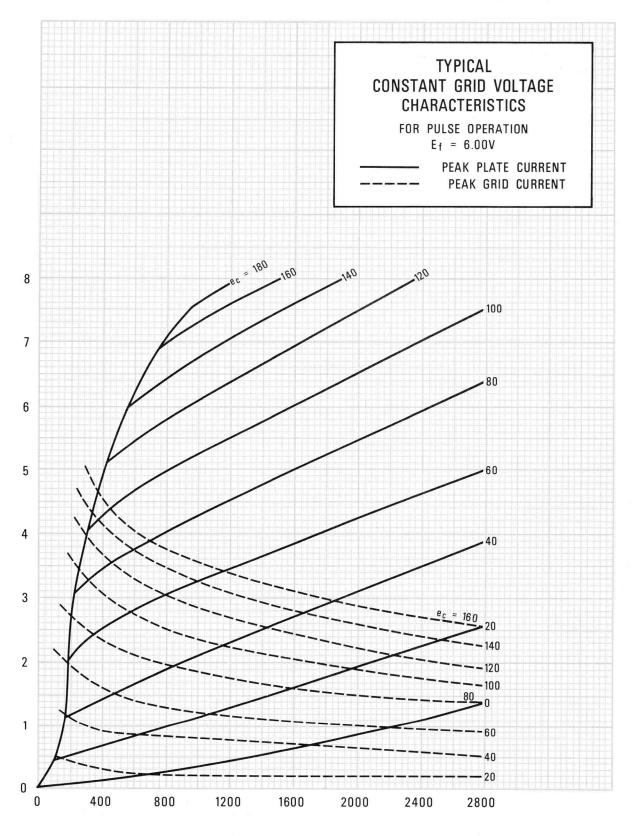
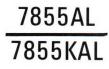



PLATE VOLTAGE (V) CURVE #MA-2377

PEAK CURRENT (a)

PLANAR TRIODE

The EIMAC 7855AL and 7855KAL are ceramic/metal planar triodes specially processed and tested to assure high reliability in airborne service. Evaluation of these tubes is based upon operating conditions found in commercial airborne applications such as transponders. The testing emphasizes cathode emission capability at reduced heater voltage and high voltage hold-off, both features which are demanded in airline service.

The 7855AL is derived from the 7855, the 7855KAL from the 7855K. These new improved tubes also contain features of the original types such as a frequency stable anode, rugged ceramic/metal construction, low interelectrode capacitance, high transconductance and high mu.

In addition to these features, these tubes also incorporate the arc-resistant cathode which assures stable operation under adverse conditions and which minimizes catastrophic failures due to arc-over during circuit malfunction. These tubes are useable from dc to 3 GHz.

The 7855KAL utilizes conduction-convection cooling. The 7855AL is supplied with a radiator for forced-air cooling. Except for the plate dissipation ratings, the two tubes have identical electrical characteristics.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	5.7 \pm 2%	V
Current, at 5.7 volts	0.95	
Transconductance (Average):		
$Ib = 70 \text{ mAdc}, E_b = 600 \text{ Vdc} \dots$	25	mmhos
Amplification Factor (Average)	100	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	6.80	pF
Cout	0.04	pF max.
Cgp	2.50	pF
Cut-off Bias ³	-30	V
Frequency of Maximum Rating:		
Plate or Grid-Pulsed	3000	MHz

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pf due to thermal expansion of the cathode.
- 3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 3-1-72) © by Varian

Printed in U.S.A.

7855AL/7855KAL

MECHANICAL

Maximum Overall Dimensions:	
Length (7855AL) 2.386 in; 60.60 mr	n
(7855KAL) 2.386 in; 60.60 mr	
Diameter (7855AL) 1.264 in; 32.11 mr	n
(7855KAL) 1.195 in; 30.35 mr	
Net Weight (7855AL) 2.01 oz; 57 gn	
(7855KAL) 1.41 oz; 40 gm	a
Operating Position An	v
Maximum Operating Temperature:	5
Ceramic/Metal Seals	2
Anode Core	
Cooling - 7855AL (With Radiator)	
-7855KAL (Without Radiator) Conduction and Convection	
Terminals Coaxial specia	1

RANGE VALUES FOR EQUIPMENT DESIGN Min.	Max.
Heater: Current at 5.7 volts 0.87	1.02 A
Cathode Warmup Time	sec.
Cin 6.00	
Cout	0.40 pF
Cgp	2.65 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

OPERATING CONDITIONS

GRID PULSED OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE (grid pulsed) PEAK PULSE PLATE VOLTAGE	2500	VOLTS
(plate pulsed)	3500	VOLTS
DC GRID VOLTAGE	-15Q	VOLTS
INSTANTANEOUS PEAK GRID-CATHODI	E VOLT	AGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	250	VOLTS
PULSE PLATE CURRENT	3.0	AMPERES
PULSE GRID CURRENT	1.8	AMPERES
AVERAGE PLATE DISSIPATION		
Conduction and convection(7855KAL)	10	WATTS
Forced Air(7855AL) ¹	35	WATTS
GRID DISSIPATION (Average)	2.0	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION ²	6.0	μs
DUTY FACTOR 2	.0033	

1. Using EIMAC radiator PN 158601.

2. For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City,

Duty Factor	0.001	
PLATE PULSED AMPLIFIER		
Frequency	1.1	GHz
Heater Voltage	5.7	V
Peak Plate Voltage	2000	V
Peak Video Plate Current	1.8	а
Peak Video Grid Current	1.0	а
Useful Power Output (approx.)	1800	w
Pulse Duration	3.5	μs
Duty Factor	0.001	
Gain	8	db
Plate Efficiency	50	%

Frequency 1.090 GHz

5.7 V

2000 Vdc

-75 Vdc

1.3 a

0.8 a

750 w

0.5 μs

Heater Voltage....

DC Plate Voltage

DC Grid Voltage

Peak Video Plate Current

Peak Video Grid Current

Useful Power Output (approx.)

APPLICATION

MECHANICAL

MOUNTING - The important dimensions of the tube are carefully controlled with respect to the reference surface as shown on the outline drawing. The reference surface is intended to serve as a tube stop and the location of the tube in the circuit should therefore be determined by this surface coming in positive contact with a precisely positioned member of the socket or cavity. Adherence to this practice will assure both mechanical and electrical interchangeability of all tubes of a given type. If a non-designated surface is used as a tube stop, faulty positioning of the tube in the cavity and possible incomplete electrical contact can result in improper tuning, reduced power output and damage to the cavity, tube or both. Contact surfaces, with reference to the designated tube stop are shown in the outline drawing. Electrical contact to the cathode, grid, anode and also the heater should be restricted to these designated contact areas.

Dimensions should never be taken from sample tubes. Dimensional changes due to normal variations in undimensioned surfaces may occur within the limits specified on the outline drawing. Use of nondesignated electrical contact surfaces might therefore result in incomplete contact or mechanical interference, causing changes in cavity tuning.

Electrical contact should be made by spring finger collets bearing against the previously described contact areas. If connections are employed which do not provide multiple contacts to the designated contact areas, concentration of RF current will result in loss of output power, especially at higher frequencies. The spring contacts used should exert a firm pressure without gouging the plated contact surface. This latter phenomena can result in loose particles of material which can cause arcing or unstable operation of the cavity.

If the tubes are used in applications which call for severe shock or vibration the tube may be clamped in place by the knob or radiator, exerting pressure only on this part of the tube and against the tube stop. No other portion of the tube should be subject to any clamping force. In particular, electrical contacts which utilize setscrews or rigid clamps should be avoided. Such contact schemes can distort the contact surfaces causing undue stress in the metal-to-ceramic seal area which may result in a vacuum leak. Soldered electrical connections can be made, however great care should be taken during the solder operation to avoid fracture of the seal area due to thermal shock. All contact surfaces should be kept clean to minimize losses.

COOLING - The EIMAC planar triodes are designed to operate at envelope and anode temperatures of up to the maximum rated value of 250°C. However, performance and long-term reliability of any component are improved when it is kept as cool as technically feasible. Therefore, it is recommended that sufficient cooling be provided to keep the anode and seal areas well below the specified maximum temperature, where long tube life and high reliability are of great importance.

The maximum plate dissipation of the 7855KAL is 10 watts average power. This can be accomplished by conduction, natural convection or forced air convection cooling. The maximum plate dissipation of the 7855AL in pulse service is 35 watts average and forced air cooling must be employed at that level. When forced air cooling is used, it is recommended that additional airflow, apart from that flowing through the radiator be used to cool the tube envelope and other tube terminals. A certain amount of conduction cooling is usually inherent in the contact finger configuration. It should be noted, however, that spring fingers provide poor heat conduction and measurements have shown a temperature difference as much as 50°C between the contact finger and contact area.

It is suggested that in all new applications the envelope temperature be measured, especially if the tube is used close to the upper temperature limit. The temperature can easily be determined by the use of Tempilaq paint (Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield N.J. 07080) or Temp-Plate stickers (Pydrodyne, Inc., 1001 Colorado, Santa Monica, Calif. 90404).

ELECTRICAL

HEATER VOLTAGE - The rated heater voltage for either tube type is 5.7 volts and should be controlled within $\pm 2\%$ to obtain maximum tube life and to minimize variations in circuit performance. The rated heater voltage is optimum for most existing airborne applications such as DME and transponder systems. However, there are other applications where a different heater voltage than the nominal should be used to obtain the longest possible tube life. Depending on pulse width, power output and frequency of oscillation used a different heater voltage may be better for long reliable life. Electron transit time is not necessarily small with respect to the period of oscillation and the amount of driving power diverted will contribute to the cathode heating by electron bombardment.

The proper adjustment of the heater voltage must be made to compensate for this additional heating, which depends on operating frequency and duty cycle employed.

INTERELECTRODE CAPACITANCES - As indicated, the capacitance values are shown for measurements made with no heater voltage. The cathode to grid and cathode to plate capacitance will increase with the application of the heater voltage, due to the thermal expansion of the cathode support. Typically, the increase in the grid to cathode capacitance will be 15%, or more, depending on the heater voltage. Since the heater voltage can vary depending on use, data taken without heater voltage is more useful for control of tube-to-tube uniformity. The grid to anode capacitance is not effected by the application of the heater voltage.

CIRCUIT TUNING - Especially under grid pulse conditions, it is important that the tube does not lose bias or momentarily go into a CW mode. Either of these events may result in tube failure. It is suggested that provision be made for initial circuit tune-up at reduced anode voltage and for extra tube protection when the circuit adjustment is critical. The average grid dissipation capability of these tubes is 2.0 watts. For many applications the limiting factor is often not anode dissipation or cathode emission capability, but grid dissipation. If pulse width control is lost in pulse applications the grid can exceed safe operating temperatures in 50 ms or less. Appropriate circuit protection during tune up is therefore recommended.

CATHODE OPERATION - The 7855AL and 7855KAL contain an arc-resistant cathode. Performance in the field and laboratory indicates these tubes are capable of withstanding some abuse due to high voltage arcs, however, poor circuit adjustment in the field may result in shortened tube life. It is, therefore, suggested that wherever feasible, the plate supply be designed such that its impedance limits the short circuit current to within five to ten times the maximum forward current. For pulse service the peak current should be limited to the values listed. Higher pulse width and duty cycles than given can be obtained with proper derating of the current. For this and special applications it is recommended that the user request additional information pertaining to his special application from the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

SPECIAL APPLICATION - For further operating information refer to EIMAC bulletin #15 "Operating Instructions for Planar Triodes".

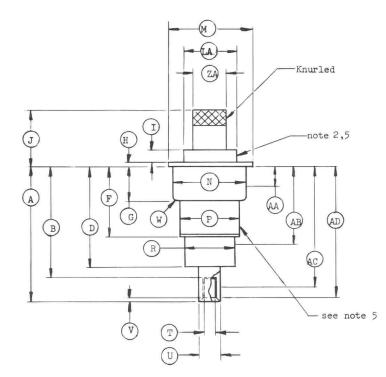
ELEC	CTRODE C	ONTAC	r dims. (see note
Dim. in	Inches	Dim.	Dim. in	Millim.
Min.	Max.		Min.	Max.
.035	.361	AA	.89	9.17
1.021	1.101	AB	25.93	27.97
1.219	1.413	AC	30.96	35.89
1.160	1.500	AD	29.46	38.10

Y Y T T T T T T T T T T T T T T T T T T
Image: Weight of the second
V T see note 5

Dim. in :	Inches		Dim. in Millimeters				
Min.	Max.	Dim	MIN.	MAX.			
1.500	1.560	A	38.10	39.62			
	1.214	В		30.84			
1.125	1.165	D	28.58	29.59			
.800	.840	F	20.32	21.34			
.462	. 477	G	11.73	12.12			
	.040	H		1.02			
.125	.185	I	3.18	4.70			
.766	.826	J	19.46	20.98			
.025	.046	K	.64	1.17			
1.234	1.264	L	31.34	32.11			
1.180	1.195	М	29.97	30.35			
1.025	1.035	N	26.04	26.29			
.752	.792	P	19.10	20.12			
.655	.665	R	16.64	16.89			
.213	.223	Т	5.41	5.66			
.315	.325	U	8.00	8.26			
	.086	V		2.18			
	.100	W		2.54			
.105	.145	Y	2.67	3.68			
.650	.850	Z	16.51	21.59			

Metric equivalents, to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm.

2. This surface to be used to measure anode shank temperature.


3. Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

<u>Contact Surface</u>	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode

- 4. Dias. N,R,T & U shall apply throughout entire lenght as defined by dims. AA,AB,AC,AD respectively.
- Fispectively.
 This surface shall not be used for clamping or locating.
 Holes for extractor thru top fin only.
 Electrode Contact dims. are for socket design purposes & are not intended for inspection purposes.

7855AL/7855KAL

ELECTRODE CONTACT AREA (see note 6)					DIMENSIONAL DATA				
Dim. in Mi	llimeters	Dim.	Dim. ir	Inches	Dim. in	Inches	Di	m. in M	illimetres
Min.	Max.		Min.	Max.	Min.	Max.	Dim.	MIN.	MAX.
.89	9.17	AA	.035	.361	1.500	1.560	A	38.10	39,62
25.93	27.97	AB	1.021	1.101		1.21	B		30,84
30.96	35.89	AC	1.219	1.413	1.125	1.165	D	28,58	29.59
29.46	38.10	AD	1.160	1.500	.800	.840	F	20,32	21.34
					462	h77	G	11.73	12 12

-			1			
_	Dim. in	Inches	D	im. in M	lillimetres	
	Min.	Max.	Dim.	MIN.	MAX.	
	1.500	1.560	A	38.10	39,62	
		1.21	В		30,84	
	1.125	1.165	D	28,58	29.59	
	.800	.840	F	20,32	21.34	
	.462	.477	G	11.73	12.12	
		.040	H		1.02	
		.185	I		4.70	
	.766	.826	J	19,46	20.98	
	.025	.046	K	.64	1.17	
	1.234	1.264	L	31.34	32.11	
	1.180	1.195	М	29.97	30.35	
	1.025	1.035	N	26.04	26.29	
	.752	.792	P	19.10	20,12	
	.655	.665	R	16.64	16.89	
	.213	.223	Т	5.41	5.66	
	.315	.325	U	8.00	8.26	
		.086	V		2.18	
		.100	W		2.54	
	.840	.860	LA	21.34	21.84	
	.427	.447	ZA	10.85	11.35	

NOTES :

- 1. Metric equivalents to the nwarest .01mm, are given for general information only & are based on 1 inch= 25.4 mm.
- 2. This surface shall be used to measure Anode shank temperature.
- 3. Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

Contact Surface	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode
 1	3	1 11 11 10 10

4. Dias. N,R,T,U shall apply throughout entire lenght as defined by dims. AA,AB,AC,AD

respectively. 5. This surface shall not be used for clamping or locating. 6. Electrode Contact Dims. are intended for socket design only & are not intended for inspection purposes.

7855AL/7855KAL

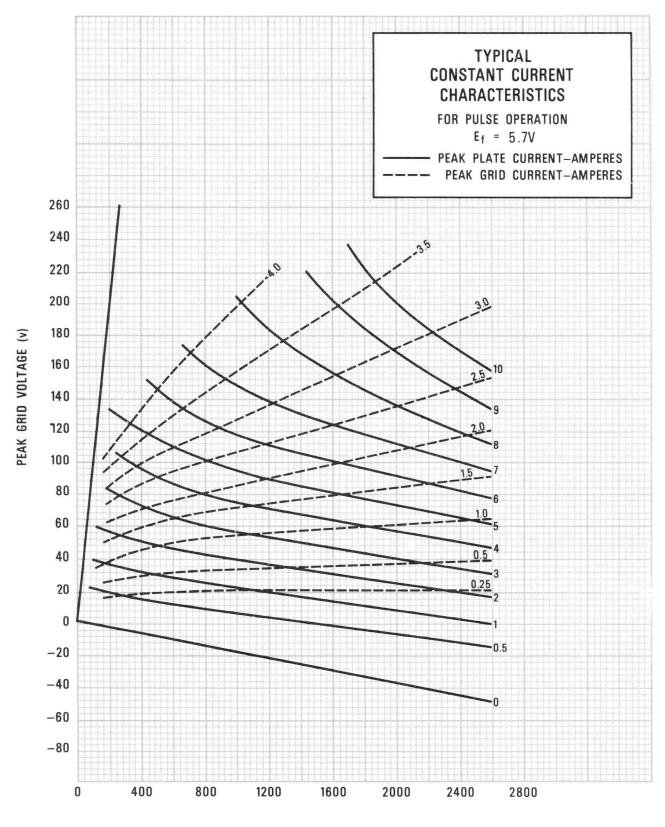


PLATE VOLTAGE (V)

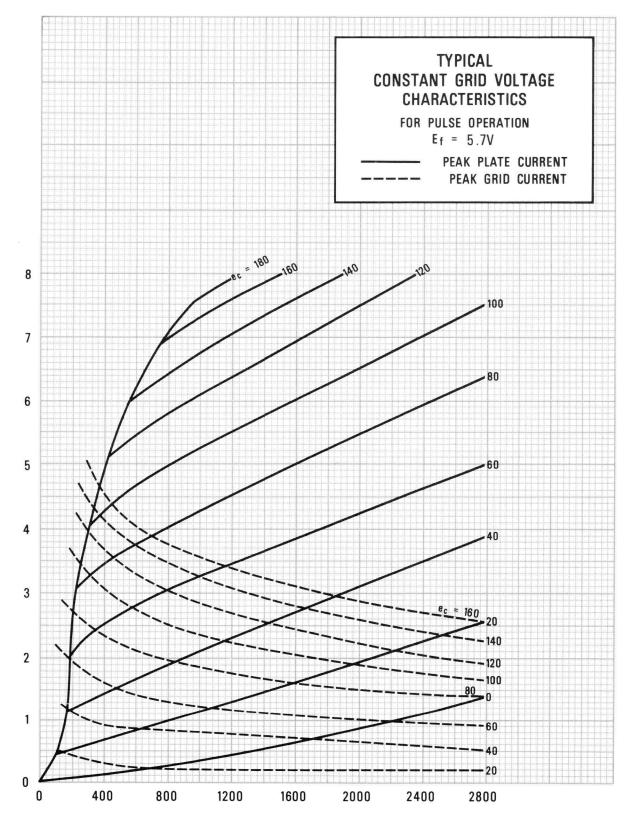


PLATE VOLTAGE (V)

8403

PLANAR TRIODE

The EIMAC Type 8403 is a planar triode featuring frequency stability and an arc resistant cathode of high emission capability assuring stable operation under adverse conditions involving a wide ambient temperature range and varying plate dissipation. This construction, in combination with the proper plate series impedance, reduces to a minimum the possibility of cathode failures due to voltage surges. Other features of this type include high transconductance, high mu, and low interelectrode capacitances coupled with the great mechanical strength of metal/ceramic construction. The cathode is an indirectly heated disc requiring only minimal heater power. The design of the tube permits operation from low frequencies up to 3.0 GHz as a grid-pulsed, plate-pulsed, or CW oscillator, amplifier, or frequency multiplier.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential	
Heater: Voltage	6.3 ± 0.3 V
Current, at 6.3 volts	1.3 A
Transconductance (Average):	
$I_b = 160 \text{ mA} (200 \text{ mA/cm}^2) \dots$	30 mmhos
Amplification Factor (Average):	80
Direct Interelectrode Capacitance (grounded cathode) ²	
Cin	8.0 pF
Cout (maximum)	0.065 pF
Cgp	3.1 pF
Cut-off Bias (maximum) ³	-30 V max
Frequency of Maximum Rating:	
С W	2500 MHz
Plate or Grid-Pulsed	3000 MHz

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 12-1-71) © by Varian

Printed in U.S.A.

8403

MECHANICAL

Maximum Overall Dimensions:

Length	2.386 in; 60.60 mm
Diameter	1.264 in; 32.11 mm
Net Weight	2.04 oz; 58 gm
Operating Position	Any
Maximum Operating Temperature:	
Ceramic/Metal Seals	250°C
Anode Core	250°C
Cooling	Forced Air
Terminals	. Coaxial, special
ENVIRONMENTAL	
Shock, 11 ms, non-operating	60 G
Vibration, operating, all axis	10 G
Altitude	
RANGE VALUES FOR EQUIPMENT DESIGN	
	Min. Max.
Heater: Current at 6.3 volts	
Cathode Warmup Time	60 sec.
Interelectrode Capacitance ¹	
Cin	7.5 9.0 pF
Cout	0.065 pF
Сдр	2.95 3.25 pF

 Capacitance value for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE(grid pulsed)	2500	VOLTS
PEAK PULSE PLATE VOLTAGE		
(plate pulsed)	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE	VOLT	AGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	250	VOLTS
PULSE PLATE CURRENT	5.0	AMPERES
PULSE GRID CURRENT	2.0	AMPERES
AVERAGE PLATE DISSIPATION		
Forced Air Cooling ¹	100	WATTS
GRID DISSIPATION (Average)	2.0	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION ²	6.0	μs
DUTY FACTOR ²	0033	

OPERATING CONDITIONS for 8403 in Representative Application

GRID PULSED OSCILLATOR

Frequency 1.0)9 GHz
Heater Voltage	.3 V
	00 Vdc
	50 Vdc
	.0 a
Peak Video Grid Current 1	.0 a
	w 00
	.5 μs
	05

1. Using EIMAC radiator PN 158601.

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake, City, Utah.

CW RF POWER AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE 2500	VOLTS
DC GRID VOLTAGE150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE	VOLTAGE
Grid negative to cathode400	VOLTS
Grid positive to cathode 30	VOLTS
DC PLATE CURRENT 150	MILLIAMPERES
DC GRID CURRENT 45	MILLIAMPERES
AVERAGE PLATE DISSIPATION	
Forced air cooling ¹	WATTS
GRID DISSIPATION (Average) 2	WATTS
FREQUENCY 2.5	GHz

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

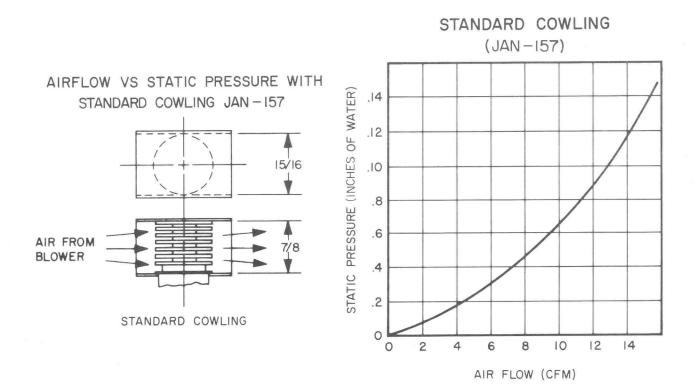
ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	3000	VOLTS
PEAK PLATE VOLTAGE	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CAT	HODE	VOLTAGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	+150	VOLTS
PULSE CATHODE CURRENT	7.5	AMPERES
DC PLATE CURRENT	150	MILLIAMPERES

 $\ensuremath{\mathsf{OPERATING}}$ CONDITIONS for 8403 in Representative Application

GROUNDED GRID CW OSCILLATOR		
Frequency	00	GHz
Heater Voltage	5.0	V
C Plate Voltage	00	Vdc
DC Grid Voltage (Approx.)	20	Vdc
DC Plate Current 1	40	mAdc
DC Grid Current	15	mAdc
	25	W

1. Using EIMAC radiator PN 158601.


AVERAGE PLATE DISSIPATION

Forced Air Cooling 1		
GRID DISSIPATION (average)	1.5	WATTS
PULSE DURATION 2	6.0	μs
CUT-OFF MU	60	
DUTY	0033	

- 1. Using EIMAC radiator PN 158601.
- For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

APPLICATION

For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube type. For unusual and special applications consult the nearest Varian Electron Tube Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

MAXIMUM PLATE DISSIPATION VS COOLING AIRFLOW

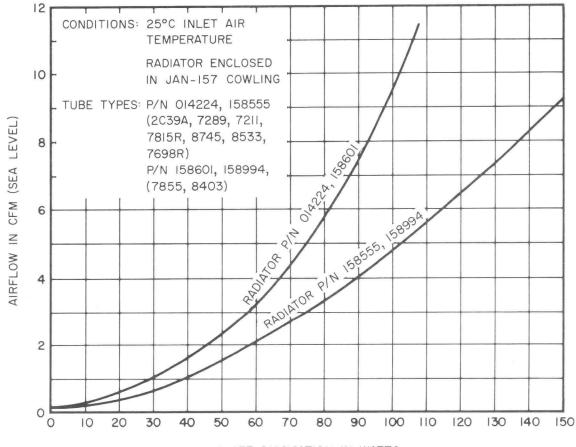
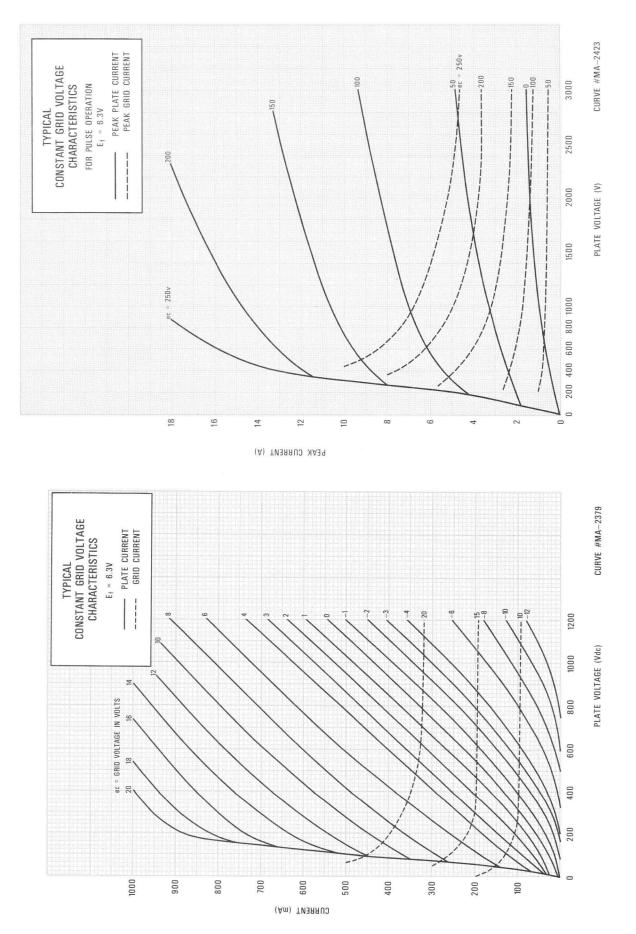
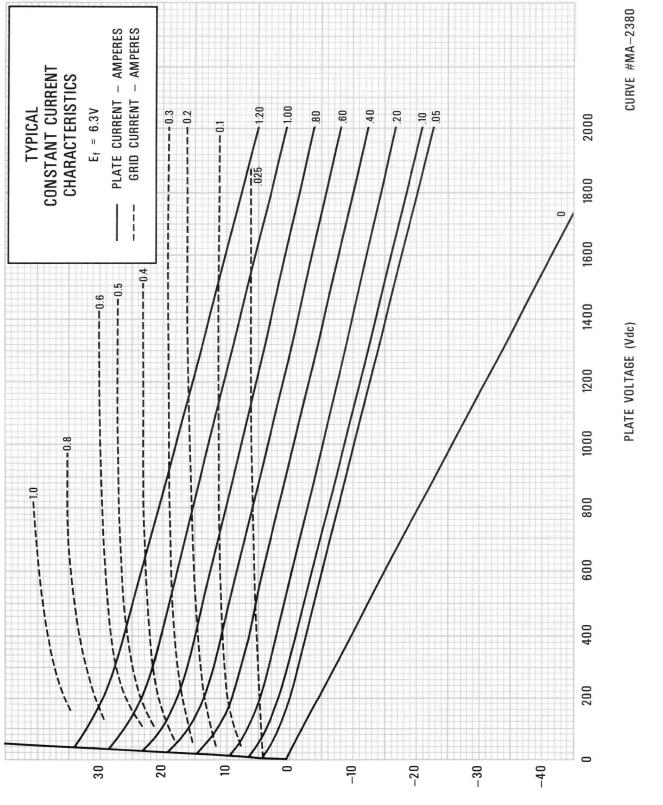
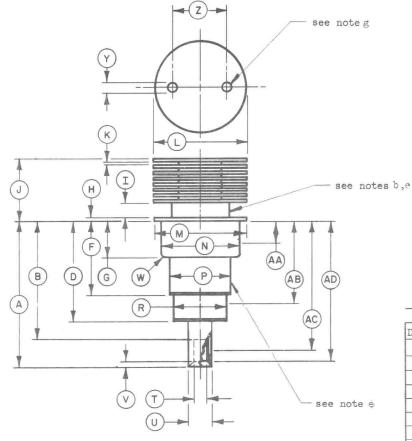




PLATE DISSIPATION IN WATTS



(ν) έδατιον αίβο

PEAK GRID VOLTAGE (V)

PLATE VOLTAGE (V)

CURVE #MA-2422

	DIME	NSIO	NAL DATA	(Note	a)
Dim. in	Inches		Dim. in	Millim	eters
Min.	Max.	Dim	MIN.	MAX.	
1.500	1.560	A	38.10	39.62	
	1.214	В		30.84	
1.125	1.165	D	28.58	29.59	
.800	.840	F	20.32	21.34	
.462	.477	G	11.73	12.12	
	.040	H		1.02	
.125	.185	I	3.18	4.70	
.766	.826	J	19.46	20.98	
.025	.046	K	.64	1.17	
1.234	1.264	L	31.34	32.11	
1.180	1.195	М	29.97	30.35	
1.025	1.035	N	26.04	26.29	
.752	.792	P	19.10	20.12	
.655	.665	R	16.64	16.89	
.213	.223	Т	5.41	5.66	
.315	.325	U	8.00	8.26	
×	.086	V		2.18	
	.100	W		2.54	
.105	.145	Y	2.67	3.68	
.650	.850	Z	16.51	21.59	

Dim. in	Inches	Dim.	Dim. in	Millim.
Min.	Max.		Min.	Max.
.035	.361	AA	.89	9.17
1.021	1.101	AB	25.93	27.97
1.219	1.413	AC	30.96	35.89
1.160	1.500	AD	29.46	38.10

ELECTRODE CONTACT DIMS. (see note a, f)

NOTES:

a.Metric equivalents, to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm.

b.This surface to be used to measure anode shank temperature.

c.Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows:

<u>_TIK_Max.</u>	Kelerence
.020	Cathode
.020	Cathode
.012	Cathode
	.020 .020

d.Dias. N,R,T & U shall apply throughout entire lenght as defined by dims. AA,AB,AC,AD respectively.

e.This surface shall not be used for clamping or locating.

f.Electrode Contact dims. are for socket design purposes & are not intended for inspection purposes.

g. Holes for tube extractor thru top fin only

TECHNICAL DATA

8533

PLANAR TRIODE

The EIMAC Type 8533 is a planar triode designed for use as a grid- or plate-pulsed oscillator, amplifier, frequency multiplier, or switch tube at high plate voltages. The tube will operate from low frequencies up to 3.0 GHz. The extended grid-to-anode insulator and a matrix cathode of the arc resistant extended interface type permit reliable operation up to 8 kVdc in RF applications. Other features of this tube type include high transconductance, high mu, and high current capability coupled with great mechanical strength permitting operation at elevated temperatures. The compact metal and ceramic coaxial construction coupled with low interelectrode capacitances make this tube well suited for operation in line type circuits at lower frequencies as well as in cavity resonators at the higher frequencies. The cathode is an indirectly heated disc requiring only minimal heater power.

GENERAL CHARACTERISTICS¹

EL	ECT	RIC	AL
----	-----	-----	----

6.3 ± 0.3 V
1.3 A
30 mmhos
145
8.0 pF
0.06 pF
1.65 pF
-30 V max.
3000 MHz
3000 MHz

- 1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the
 proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.
- 3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 12-1-71) © by Varian

Printed in U.S.A.

MECHANICAL

Maximum Overall Dimensions:

Length	.701 in;	68.60 mm
Diameter	.264 in;	32.11 mm
Net Weight		63 gm
Operating Position		
Maximum Operating Temperature:		5
Ceramic/Metal Seals		. 250°C
Anode Core		. 250°C
Cooling	F	Forced Air
Terminals	Coaxia	al, special
ENVIRONMENTAL		
Shock: 11 ms, non-operating		60 G
Vibration: Operating, All Axis		10 G
Altitude: max., in suitably designed circuit		60,000 ft.
RANGE VALUES FOR EQUIPMENT DESIGN		
	Min.	Max.
Heater: Current at 6.3 volts	1.20	1.40 A
Cathode Warmup Time	60	sec.
Interelectrode Capacitance ¹ (grounded cathode connection)		
Cin	7.00	9.00 pF
Cout		0.06 pF
Cgp	1.50	1.80 pF

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

	VOLTS
PEAK PULSE PLATE VOLTAGE	
(plate pulsed) 10,000	VOLTS
	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOL	TAGE
Grid negative to cathode750	VOLTS
Grid positive to cathode 150	VOLTS
PULSE PLATE CURRENT 5.0	AMPERES
PULSE GRID CURRENT 2.5	AMPERES

AVERAGE PLATE DISSIPATION

Forced Air Cooling ¹	100	WATTS
	1.5	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION ²	6.0	μs
	0033	

1. Using EIMAC radiator PN 014224.

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	8000	VOLTS
PEAK PLATE VOLTAGE	10,000	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-C	ATHODE	VOLTAGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	150	VOLTS
PULSE CATHODE CURRENT	7.5	AMPERES
DC PLATE CURRENT	150	MILLIAMPERES

AVERAGE PLATE DISSIPATION Forced Air Cooling¹..... 100 WATTS GRID DISSIPATION (Average) PULSE DURATION² 1.5 WATTS 6.0 µs DUTY FACTOR 2 .0033 CUT-OFF MU 90

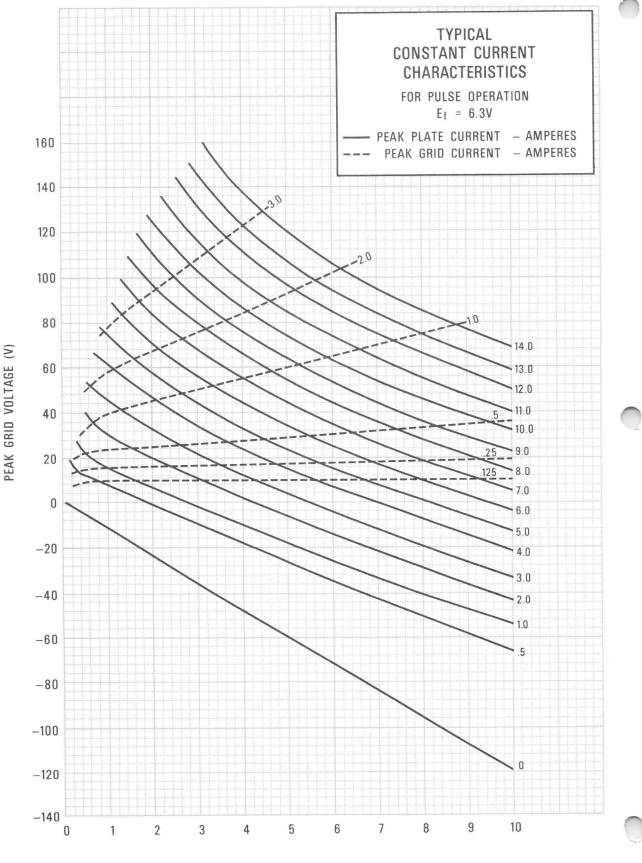
1. Using EIMAC radiator PN 014224.

2. For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

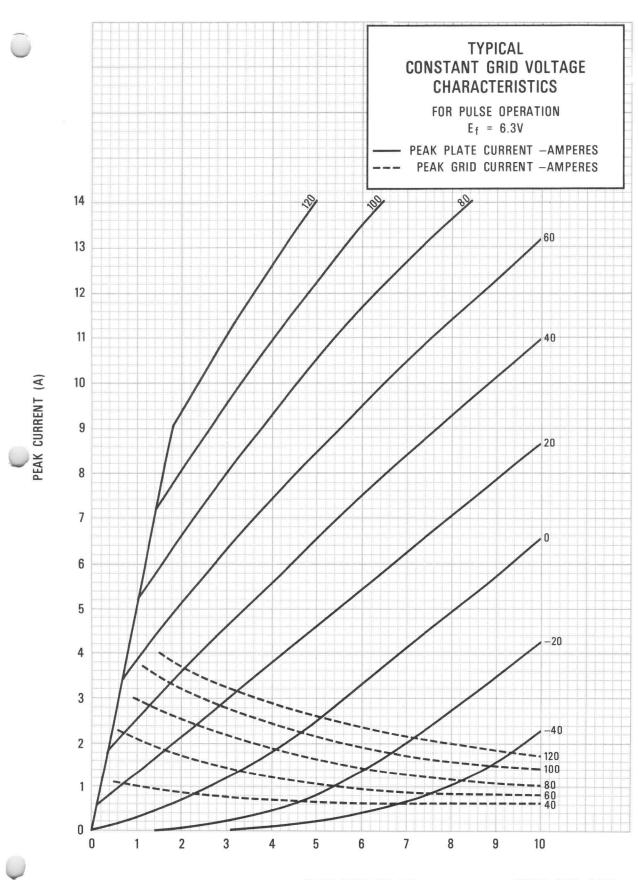
APPLICATION

For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around

the above tube type. For unusual and special applications consult the nearest Varian Electron Tube Field Office, or the Product Manager, EI-MAC Division of Varian, Salt Lake City, Utah.

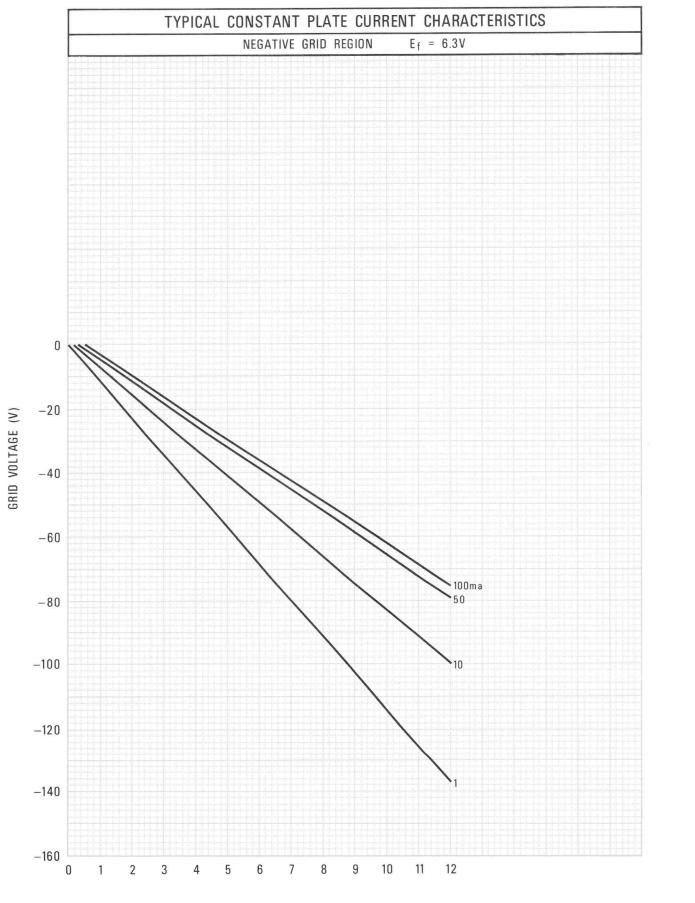

E	LECTRODE	CONTAC	T DIMENS	SION			DIM	ENSIC	N DATA			1
MIC	MIN.	MAX.	MIN.	MAX.]	DIM. IN	INCHES		DIM. I	N MILLIN	TERS	
AA	.035	.361	.89	9.17	1	MIN.	MAX.	DIM	MIN.	MAX.	NOTES	
AB	1.185	1.265	30.10	32.14]	1.815	1.875	A	46.10	47.62		
AC	1.534	1.728	38.96	43.89]		1.534	В		38.96		
AD	1.475	1.815	37.47	46.10]		1.475	C		37.46		
	DIM.	IN	DIM	IN	1	1.289	1.329	D	32.74	33.76		
	INCH	TES	MILLIN	TERS		.970	1.010	F	24.64	25.65		
						.462	.477	G	11.73	12.12		
							.040	H		1.02		
						.125	.185	I	3.18	4.70		
				\sim		.766	.826	J	19.46	20.98		
				►(z)-		.025	.046	К	.64	1.17		
						1.234	1.264	L	31.34	32.11		
		-				1.180	1.195	М	29.97	30.35		
		(Y)	/			1.025	1.035	N	26.04	26.29	e	
		Ť				.752	.792	P	19.10	20.12		
		1			- •	.655	.665	R	16.64	16.89		
		4			TI		.545	S		13.84		
		1				.213	.223	Т	5.41	5.66		
						.315	.325	U	8.00	8.26		
		Ŷ		L)	-		.086	V		2.18		
-				<u> </u>			.100	W		2.54		
4	A	X				.105	.145	Y	2.67	3.68	с	
0	5	m'	U	;	÷	.650	.850	Z	16.51	21.59		
6		Ψ	LE					- RAI	DIATOR.	SEE NOTE	c	
		1							NOTES			
7	в					(AD)	NOTE	S:				
Ċ			R			AC	a.	mm, /	ARE GIVE	N FOR G	TO THE ENERAL I 1 inch = 25	NFOR
1			<u>+</u>			¥ ,	b.			E SHALL TEMPERA	BE USED ATURE.	TO ME
			(V)				с.	HOLE		XTRACTO	OR THROU	JGH T
			-		- O		d.	SHAL	L BE G	AGED FR	CONTACT OM CENT E AS FOL	ER LI
				H(S)	-			CONT	TACT SUR	FACE T	IR(MAX)	REFE

OLLOWS: X) REFERENCE CATHODI


ANODE	.020	CATHODE
GRID	.020	CATHODE
HEATER	.012	CATHODE

e. DIA'S N, R, T & U SHALL APPLY THROUGHOUT ENTIRE LENGTH AS DEFINED BY DIM'S AA, AB, AC & AD RESPECTIVELY.

f. THIS SURFACE SHALL NOT BE USED FOR CLAMPING OR LOCATING.



CURVE #MA-2395

CURVE #MA-2396

8533

CURVE #MA-2397

8755/8755A

HIGH-MU PLANAR TRIODE

The 8755/8755A is a miniature, ceramic/metal, rugged planar triode for advanced airborne and space applications up to 3.0 GHz.

The 8755/8755A may be used as an amplifier, oscillator, or frequency multiplier in the grid- or plate-pulsed mode, as well as a modulator or regulator tube. In addition to low interelectrode capacitances, high transconductance and amplification factor, the 8755/8755A has an anode designed to produce frequency stability, and an arc-resistant cathode, both assuring stable, reliable and long-life operation under adverse conditions.

The 8755/8755A is supplied without radiator and may be conduction, convection, heat sink, or liquid cooled. Radiators for forced-air cooling, permitting an anode dissipation up to 150 watts, can be furnished on separate order.

The 8755/8755A is especially designed for applications where high rf pulse power is required. It can also be readily used in switch tube applications up to 8 kV dc.

The 8755A is identical to the 8755 in all respects except that the 8755A is furnished with a spewing shield. With this, this tube will exhibit longer life in the same applications and should be used where long tube life is of major concern.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential	
Heater: Voltage	6.3 + 0.3 V
Current, at 6.3 volts	1 30 4
Transconductance (Average):	
$I_b = 160 \text{ mA} (200 \text{ mA/cm}^2)$	20
Amplification Factor (Average):	38 mmhos
Direct Interelectrode Capacitances (Grounded Cathode) ²	135
Cgk	
Cok	9.5 pF
Cpk	0.06 pF
Cgp	1.05 pF
Cut-off Bias ³	-20 V max.

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the results of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Revised 6-1-71) © by Varian

Printed in U.S.A.

8755/8755A

MECHANICAL

Maximum Overall Dimensions:

Length	 	1.37 in; 34.75 mm
Diameter	 	0.785 in; 19.94 mm
Net Weight		
Operating Position	 	Any
Maximum Operating Temperature:		
Ceramic/Metal Seals		
Anode Core	 	250°C
Cooling	 Conduction, conver	ction, forced-air ¹ or liquid
Terminals		

1. Using one of the EIMAC radiators shown on the cooling curves.

ENVIRONMENTAL

Shock, 11 ms, non-operating	60	G
Vibration, operating, all axes 55 to 500 Hz	10	G
Altitude, max (in a suitably designed circuit)		ft.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE

(GRID PULSED) 8	3000	VOLTS
PEAK PULSE PLATE VOLTAGE		
(PLATE PULSED) 10	,000	VOLTS
DC GRID VOLTAGE	-200	VOLTS
INSTANTANEOUS PEAK GRID-CATHO	DE V	OLTAGE
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	150	VOLTS
PULSE PLATE CURRENT	5.0	AMPERES
PULSE GRID CURRENT	2.5	AMPERES
PLATE DISSIPATION 1	150	WATTS
GRID DISSIPATION	1.5	WATTS
FREQUENCY	3.0	GIGAHERTZ
PULSE DURATION ²	6	μsec
DUTY FACTOR ²	0033	

PULSE MODULATOR OR PULSE AMPLIFIER SERVICE

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE	8000	VOLTS
PEAK PLATE VOLTAGE	10,000	VOLTS
DC GRID VOLTAGE	-200	VOLTS
INSTANTANEOUS PEAK GRID-C	ATHOD	E VOLTAGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	150	VOLTS
PULSE CATHODE CURRENT	7.5	AMPERES
DC PLATE CURRENT	150	MILLIAMPERES

TYPICAL OPERATION

Grid-Pulsed rf Power Amplifier (1182 MHz)

DC Plate Voltage	1750	Vdc
Peak Plate Current	1.0	
DC Grid Voltage Approx	-20	V
Peak Grid Current	1.7	а
Filament Voltage	5.6	V
Useful Power Output (Approx.)	650	w
Plate Efficiency	37%	
RF Input Power	65	w
Gain	10	db

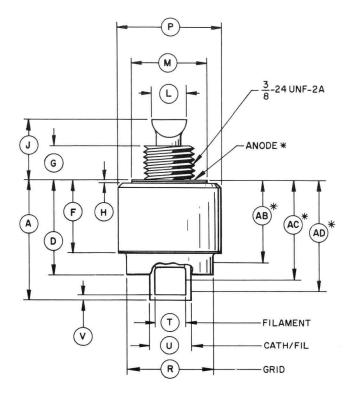
1. Using one of the EIMAC radiators shown on the cooling curves.

 For application requiring longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube and Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

PLATE DISSIPATION.1	WATTS
	WATTS
PULSE DURATION ² 6	μs
DUTY FACTOR ²	
CUT-OFF MU	<i>k</i>

- 1. Using one of the EIMAC radiators shown on the cooling curves.
- For application requiring longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager EIMAC Division of Varian, Salt Lake City, Utah.

8755/8755A

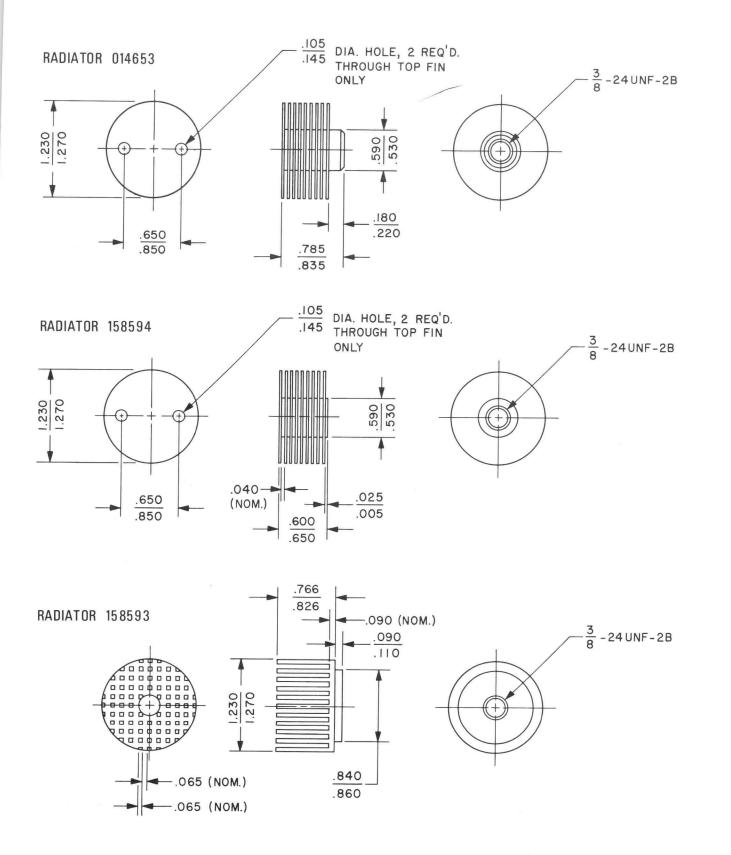

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.3 volts	1.10	1.40 A
Cathode Heating Time	60	sec.
Interelectrode Capacitances ¹ (grounded cathode connection)		
Cgk		10.5 pF
Cpk		0.06 pF
Cgp	0.9	1.2 pF

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

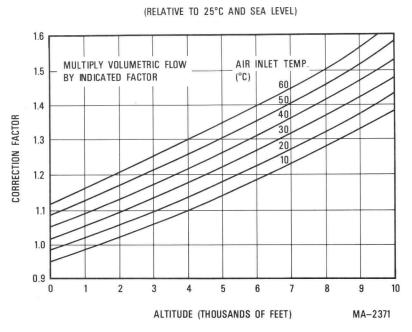
APPLICATION

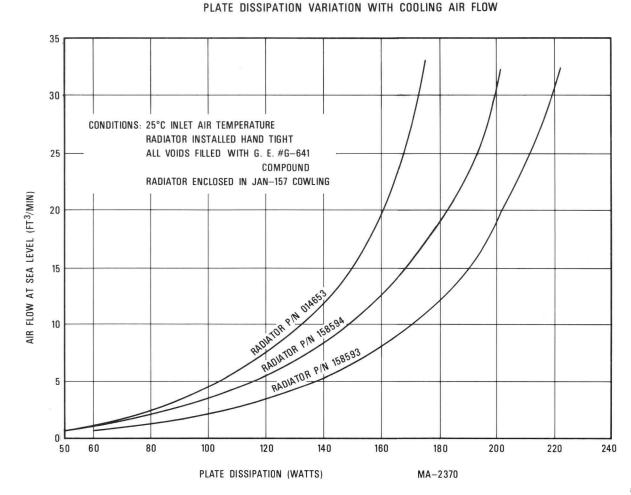
COOLING - The 8755/8755A can be cooled by conduction, convection, forced-air or liquid cooling. The tube is designed to permit hightemperature operation up to the limit indicated. However, if long life is the prime objective, tube terminal and seal temperatures should be kept well below 250°C. If forced-air cooling is provided, auxiliary air flow, apart from the air flowing through the radiator, should be provided to cool the tube envelope and other tube terminals. Some conduction cooling is always provided through the contact terminals. However, these terminals usually exhibit poor heat transfer, often having a temperature gradient across them as high as 50°C. Cooling curves are given for the three radiators which are suitable for use with the 8755/8755A.

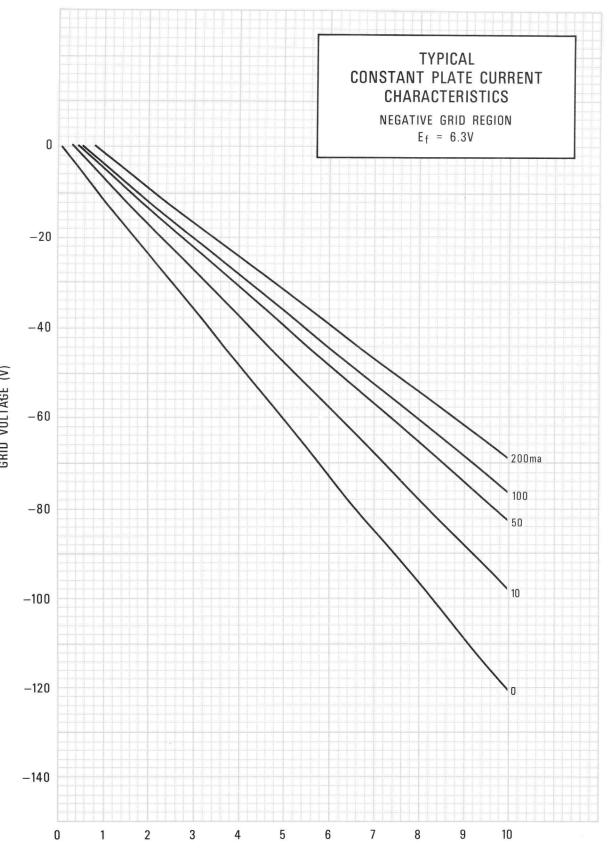

For further details on cooling or other aspects of tube operation, refer to EIMAC bulletin #15, ''Operating Data for Planar Triodes.''


		DIM	ENSIONA	L DATA		
DINA		INCHES		MI	LLIMETER	RS
DIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF.
Α		1.020			25.91	
D	0.740	0.800		18.80	20.32	
F		0.570			14.48	
G	0.150	0.170		3.81	4.32	
н		0.040			1.02	
J		0.350			8.89	
L		0.260		·	6.60	
М	0.545	0.570		13.84	14.48	
Ρ	0.775	0.785		19.69	19.94	
R	0.650	0.670		16.51	17.02	
Т	0.210	0.225		5.33	5.72	
U	0.310	0.330		7.87	8.38	
٧		0.040			1.02	
AB	0.590	0.740		14.99	18.80	
AC	0.760	0.885		19.30	22.48	
AD	0.800	0.975		20.32	24.77	

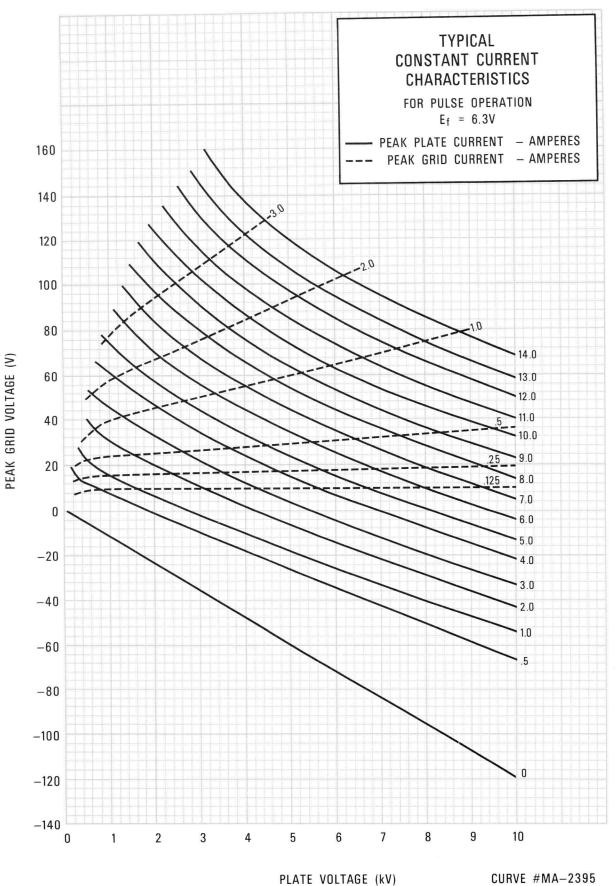
NOTES

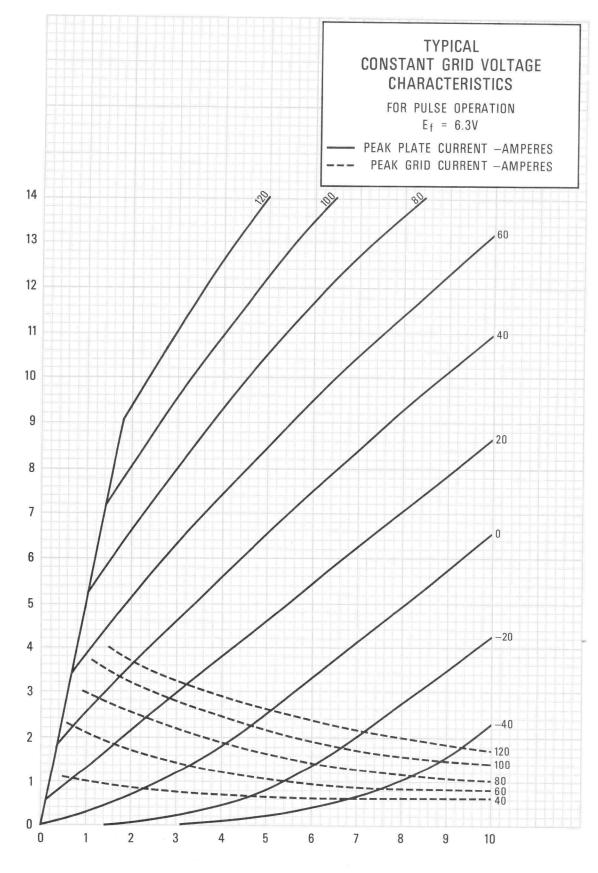

- I. REF. DIMS. ARE FOR INFO. ONLY AND ARE NOT REQ'D. FOR IN-SPECTION PURPOSES.
- 2. (*) CONTACT SURFACE.
- 3. ANODE FLANGE IS ELECTRICAL CONTACT. STUD IS FOR HEAT TRANSFER.


EIMAC RADIATORS



4


COMBINED CORRECTION FACTORS FOR INLET AIR TEMPERATURE AND ALTITUDE



CURVE #MA-2482

GRID VOLTAGE (V)

CURVE #MA-2396

PEAK CURRENT (A)

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

HIGH-MU PLANAR TRIODE

8757

The 8757 is a miniature, frequency-stable, ceramic/metal, rugged planar triode for advanced airborne and space applications up to 3.5 GHz.

The 8757 may be used as an amplifier, oscillator, or frequency multiplier in the CW, grid- or plate-pulsed mode, as well as a modulator or regulator tube. In addition to low interelectrode capacitances, high transconductance and amplification factor, the 8757 has an anode designed to produce exceptional frequency stability and an arc-resistant cathode, both assuring stable, reliable and long-life operation under adverse conditions.

The 8757 is supplied without radiator and may be conduction, convection, heat sink, or liquid cooled. Radiators for forced-air cooling permitting an anode dissipation up to 150 watts, can be furnished on separate order.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential				
Heater: Voltage)	6.3 ± 0.3	V
Current, at 6.3 volts	· · · ·		1.30	Α
Transconductance (Average):				
$I_b = 160 \text{ mA} (200 \text{ mA/cm}^2) \dots \dots$			38	mmhos
Amplification Factor (Average):			75	
Direct Interelectrode Capacitances (Grounded Cathode) ²				
Grid-Cathode			9.0	pF
Plate-Cathode			0.06	pF
Grid-Plate	•••	• • •	1.65	pF
Cut-off Bias ³			30	V max.

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the results of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

MECHANICAL

Maximum Overall Dimensions:

Length	1.30 in; 33.02 mm
Diameter	0.785 in; 19.94 mm
Net Weight	0.56 oz;16 gm
Operating Position	Any

Maximum Operating Temperature:

Ceramic/Metal Seals	250 °C
Anode Core	250 °C
Cooling Conduction, convection, forced-air ¹	or liquid
Terminals Coaxial	, special

1. Using one of the EIMAC radiators shown on the cooling curves.

ENVIRONMENTAL

Shock, 11 ms, non-operating	60	G
Vibration, operating, all axes 55 to 500 Hz	10	G
Altitude, max (in a suitably designed circuit) 70,	,000	ft.

CW RF POWER AMPLIFIER OR OSCILLATOR

MAXIMUM RATINGS/ABSOLUTE VALUES	
DC PLATE VOLTAGE 2500	VOLTS
DC GRID VOLTAGE150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOL	TAGE
Grid negative to cathode400	VOLTS
Grid positive to cathode 30	VOLTS
DC PLATE CURRENT 250	MILLIAMPERES
	MILLIAMPERES
PLATE DISSIPATION ¹ 150	WATTS
	WATTS
FREQUENCY 3.0	GIGAHERTZ

1. Using one of the EIMAC radiators shown on the cooling curves.

2. For application requiring longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube and Devices Field Office, or the Product Manager, Eimac-Division of Varian, Salt Lake City, Utah.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

MAXIMUM RATINGS/ ABSOLUTE VALUES	
DC PLATE VOLTAGE (GRID PULSED) 3000 PEAK PULSE PLATE VOLTAGE	VOLIS
(PLATE PULSED)	VOLTS
DC GRID VOLTAGE	VOLTS
INSTANTANEOUS PEAK GRID CATHODE VOLTAG	δE
GRID NEGATIVE TO CATHODE700	VOLTS
GRID POSITIVE TO CATHODE 175	VOLTS
PULSE PLATE CURRENT 5.0	AMPERES
PULSE GRID CURRENT 2.5	AMPERES
PLATE DISSIPATION ¹ 150	WATTS
GRID DISSIPATION 1.5	WATTS
FREQUENCY 3.5	GIGAHERTZ
PULSE DURATION ²	μsec
DUTY FACTOR ²	-

TYPICAL OPERATION

Grid-Pulsed r-f Power Oscillator (3.5 GHz)

	2500	Vdc
Peak Plate Current	5.0	а
DC Grid Voltage Approx	-70	V
Peak Grid Current	1.7	а
Filament Voltage	6.0	V
Useful Power Output Approx	3000	w
	25%	

PULSE MODULATOR OR PULSE AMPLIFIER SERVICE

MAXIMUM RATINGS/ABSOLUTE VALUES	
DC PLATE VOLTAGE 3000	VOLTS
PEAK PLATE VOLTAGE	VOLTS
DC GRID VOLTAGE150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VO	LTAGE
Grid negative to cathode750	VOLTS
Grid positive to cathode 150	VOLTS
PULSE CATHODE CURRENT 7.5	AMPERES
DC PLATE CURRENT 150	MILLIAMPERES
PLATE DISSIPATION ¹ 150	WATTS
GRID DISSIPATION 1.5	WATTS
PULSE DURATION ²	μs
DUTY FACTOR ²	
CUT-OFF MU	

- 1. Using one of the EIMAC radiators shown on the cooling curves.
- For application requiring longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager Eimac-Division of Varian, Salt Lake City, Utah.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.3 volts	1.20	1.40 A
Cathode Heating Time	60	sec.
Interelectrode Capacitances ¹ (grounded cathode connection)		
Grid-Cathode	8.5	9.5 pF
Plate-Cathode		0.06 pF
Grid-Plate	1.5	1.8 pF

1. Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

APPLICATION

COOLING - The 8757 can be cooled by conduction, convection, forced-air or liquid cooling. The tube is designed to permit high-temperature operation up to the limit indicated. However, if long life is the prime objective, tube terminal and seal temperatures should be kept well below 250°C. If forced-air cooling is provided, auxiliary air flow, apart from the air flowing through the radiator, should be provided to cool the tube envelope and other tube terminals. Some conduction cooling is always provided through the contact terminals. However, these terminals usually exhibit poor heat transfer, often having a temperature gradient across them as high as 50° C. Cooling curves are given for the three radiators which are suitable for use with the 8757.

For operating information refer to EIMAC bulletin #15, "Operating Data for Planar Triodes."

DIMENSIONAL DATA				
DIM.	INCHES		MILLIMETERS	
DIIVI.	MIN.	MAX.	MIN.	MAX.
А		.950		24.13
D	.690	.730	17.53	18.54
F		.500		12.70
G	.150	.170	3.81	4.32
н		.040		1.02
J		.350		8.89
L		.260		6.04
М	.545	.570	13.84	14.48
Ρ	.775	.785	19.69	19.94
R	.650	.670	16.51	17.02
Т	.210	.225	5.33	5.72
U	.310	.330	7.87	8.38
٧		.040		1.02
	(*) C	ONTACT S	SURFACES	
AB	.595 * ±	±.075	15.11*	±1.91
AC	.752* =	±.062	19.10*	±1.57
AD	.817* :	±.087	20.75* ±2.21	

NOTES:

- 1. ANODE FLANGE IS ELECTRICAL CONTACT. STUD IS FOR HEAT TRANSFER.
- 2. (*) DISTANCE FROM REFERENCE SURFACE TO THE CENTER OF CONTACT AREA.
- METRIC EQUIVALENTS ARE TO THE NEAREST .01 mm, ARE GIVEN FOR GENERAL INFORMATION ONLY, AND ARE BASED ON 1 INCH = 25.4 mm.
- 4. CONCENTRICITY BETWEEN GRID TERMINAL AND CATHODE/HEATER TERMINAL RESPECTIVELY TO THE ANODE STUD TO BE 0.020 TIR MAX. MEASUREMENT TO BE MADE WITH EIMAC GAGE JA-21685G WHICH MUST SEAT AGAINST THE ANODE FLANGE.

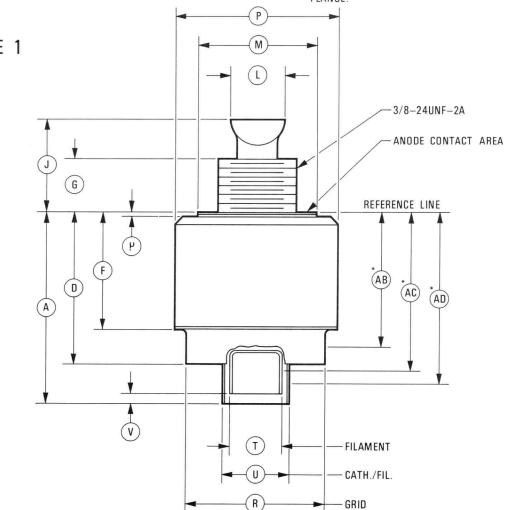
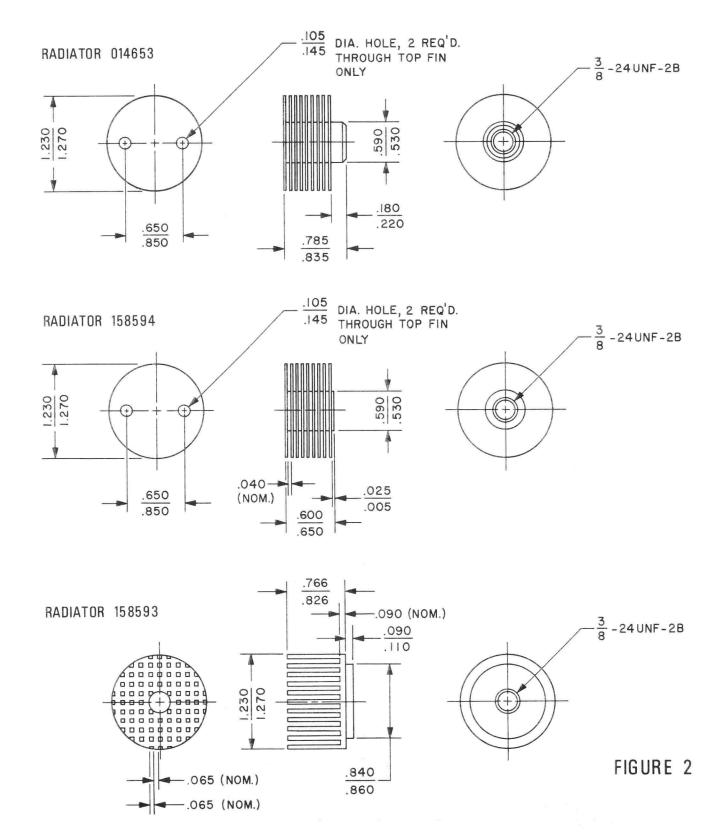
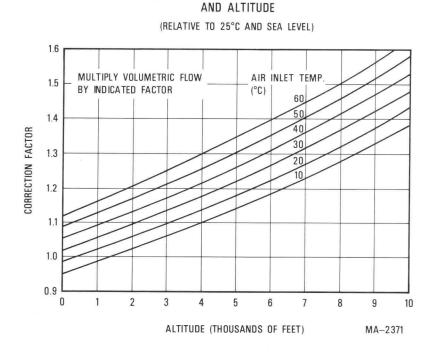
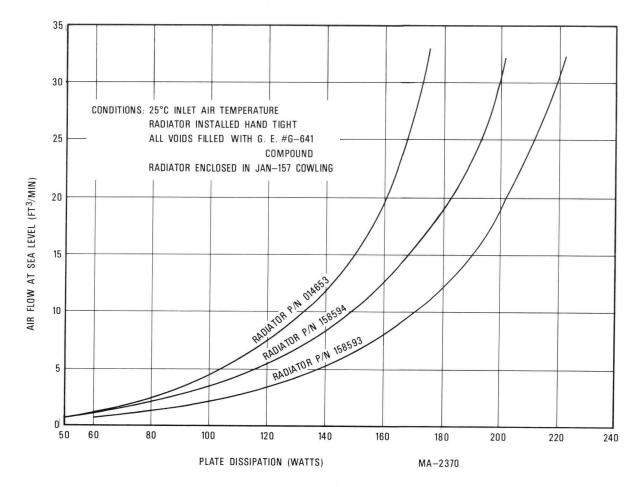
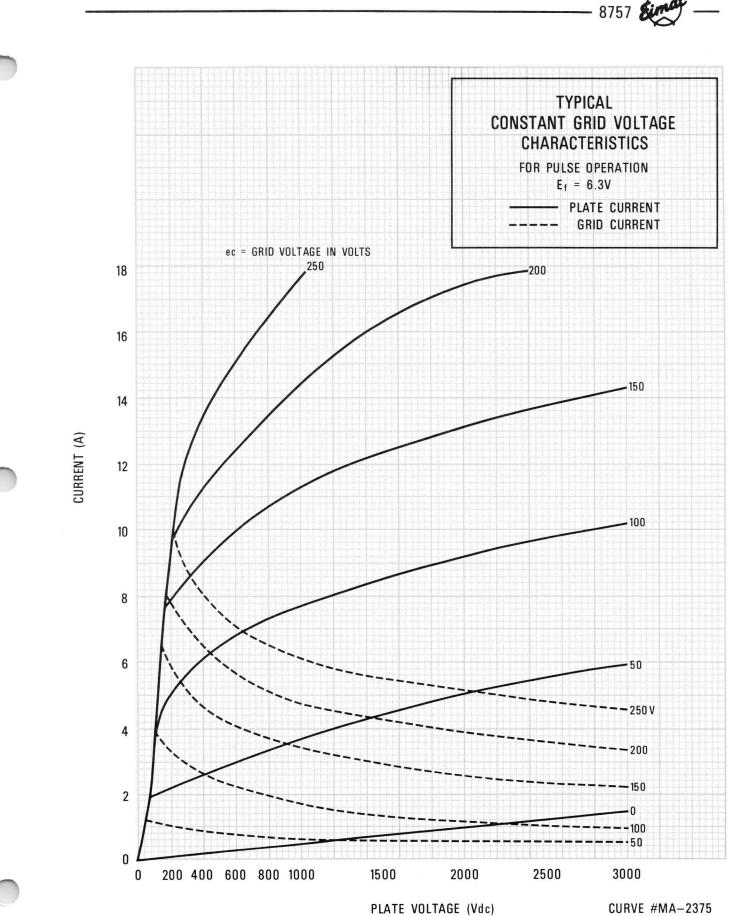


FIGURE 1

EIMAC RADIATORS


FIGURE 3



COMBINED CORRECTION FACTORS FOR INLET AIR TEMPERATURE

FIGURE 4

PLATE DISSIPATION VARIATION WITH COOLING AIR FLOW

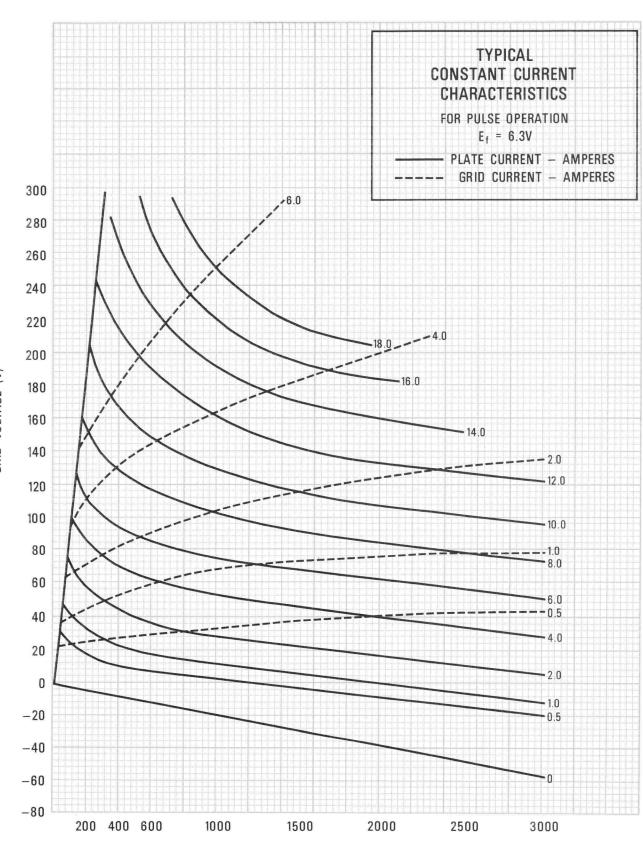
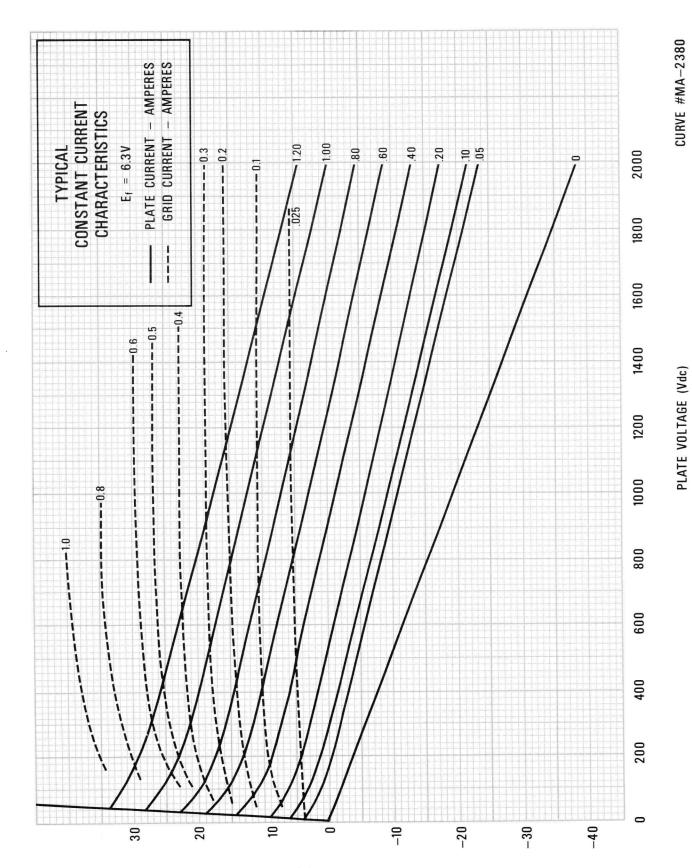



PLATE VOLTAGE (Vdc)

CURVE #MA-2374

GRID VOLTAGE (V)

(V) 30ATJOV 0180

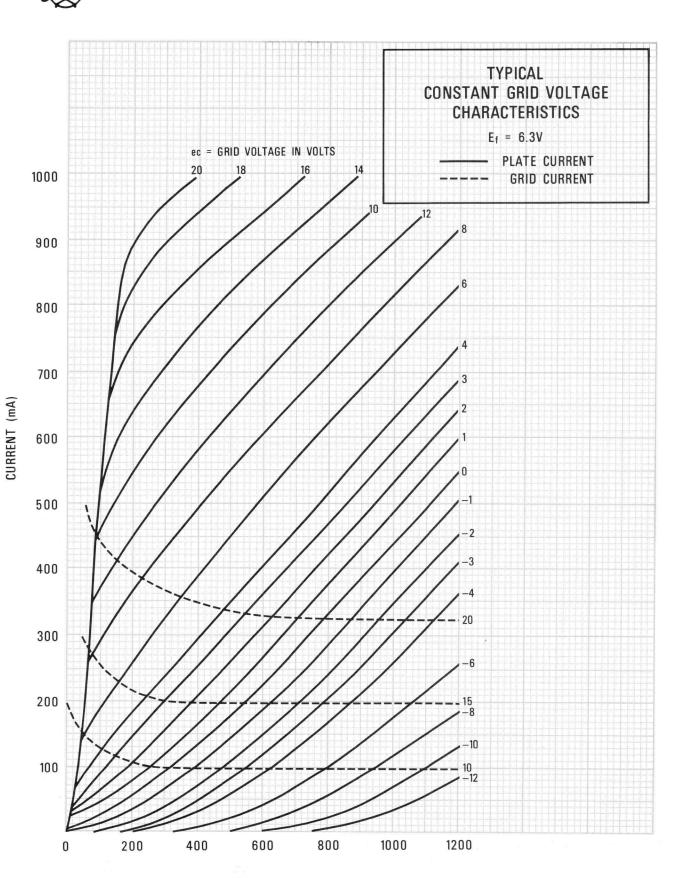
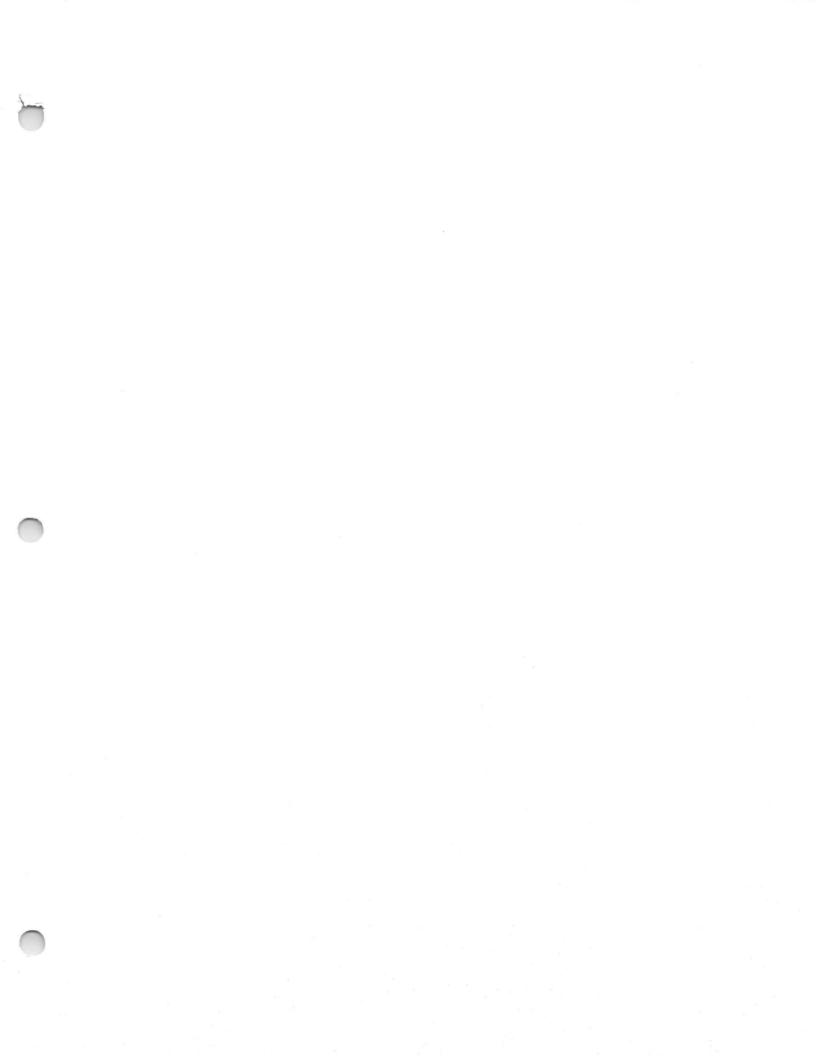
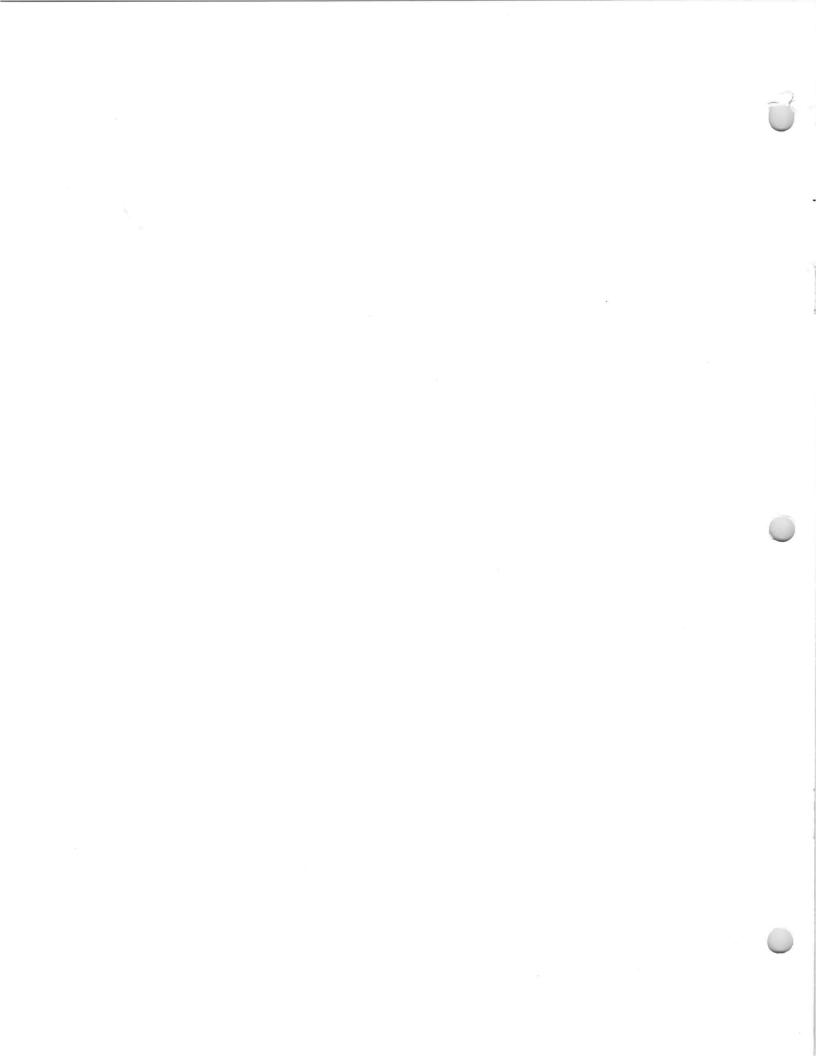
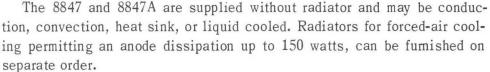




PLATE VOLTAGE (Vdc)

CURVE #MA-2379


<u>8847</u> 8847A

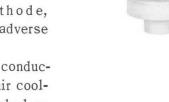
HIGH-MU PLANAR TRIODES

The 8847 and 8847A are miniature, ceramic/metal, rugged planar triodes for advanced airborne and space applications up to 3.5 GHz.

The 8847A is identical to the 8847 in all respects except that the required heater power is reduced by 25%. The tube should be used where input power consumption and heat dissipation are of major concern.

Either tube may be used as an amplifier, oscillator, or frequency multiplier in the CW, grid- or plate-pulsed mode, as well as a modulator or regulator tube. In addition to low interelectrode capacitances, high transconductance and amplification factor, the 8847 and 8847A have an anode designed to enhance frequency stability and an arc-resistant cathode, both assuring stable, reliable and long-life operation under adverse conditions.

GENERAL CHARACTERISTICS¹


ELECTRICAL

Cathode:Oxide Coated, Unipotential		
Heater: Voltage	.3 ± 0.3	V
8847 Current, at 6.3 volts	1.30	A
8847A Current, at 6.0 volts	0.95	А
Transconductance (Average):		
$I_b = 160 \text{ mA} (200 \text{ mA/cm}^2) \dots \dots$	38	mmhos
Amplification Factor (Average):	75	
Direct Interelectrode Capacitances (Grounded Cathode) ²		
Grid-Cathode	9.5	pF
Plate-Cathode	0.06	pF
Grid-Plate	1.40	pF
Cut-off Bias ³	-30	V max.

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment.
- Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.
- 3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 6-1-70) © 1970 by Varian

Printed in U.S.A.

MECHANICAL

Maximum Overall Dimensions: 1.370 in; 34.75 mm Length 0.785 in; 19.94 mm Diameter 0.785 in; 19.94 mm Net Weight 0.56 oz; 16.0 gm Operating Position Any
Maximum Operating Temperature: 250°C Ceramic/Metal Seals 250°C Anode Core 250°C Cooling Conduction, convection, forced-air ¹ or liquid Terminals Coaxial, special

ENVIRONMENTAL

Shock, 11 ms, non-operating	60	G
Vibration, operating, all axes 55 to 500 Hz	10	G
Altitude, max (in suitable designed circuit) 70,	000	ft.

CW RF POWER AMPLIFIER OR OSCILLATOR

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE 2	2500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK		
GRID-CATHODE VOLTAGE		
Grid negative to cathode	-400	VOLTS
Grid positive to cathode	30	VOLTS
DC PLATE CURRENT	250	MILLIAMPERES
DC GRID CURRENT	45	MILLIAMPERES
PLATE DISSIPATION ¹	150	WATTS
GRID DISSIPATION	1.5	WATTS
FREQUENCY	3.0	GIGAHERTZ

- 1. Using one of the EIMAC radiators shown on the cooling curves.
- For application requiring longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube and Devices Field Office, or the Product Manager, Eimac-Division of Varian, Salt Lake City, Utah.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

MAXIMUM RATINGS/ABSOLUTE VALUES DC PLATE VOLTAGE(GRID PULSED) PEAK PULSE PLATE VOLTAGE	3000	VOLTS
(PLATE PULSED)	3500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK		
GRID-CATHODE VOLTAGE		
Grid negative to cathode	-700	VOLTS
Grid positive to cathode	175	VOLTS
PULSE PLATE CURRENT	5.0	AMPERES
PUSLE GRID CURRENT	2.5	AMPERES
PLATE DISSIPATION 1	150	WATTS
GRID DISSIPATION	1.5	WATTS
FREQUENCY	3.5	GIGAHERTZ
PULSE DURATION ²	6	μsec
DUTY FACTOR2	.0033	

REPRESENTATIVE OPERATION Grid-Pulsed rf Power Oscillator (1.6 GHz)

DC Plate Voltage 3000	Vdc
Peak Plate Current 3.0	а
DC Grid Voltage (Approx.)	V
Peak Grid Current 1.0	а
Filament Voltage 6.3	-
Useful Power Output (Approx.)	w
Bandwidth (1db) 40	MHz
Plate Efficiency 33%	

8847/8847A

PULSE MODULATOR OR PULSE AMPLIFIER SERVICE

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE 3500) VOLTS
PEAK PLATE VOLTAGE 4000	VOLTS
DC GRID VOLTAGE) VOLTS
INSTANTANEOUS PEAK	
GRID-CATHODE VOLTAGE	
Grid negative to cathode750) VOLTS
Grid positive to cathode 150) VOLTS
PULSE CATHODE CURRENT 7.5	AMPERES
DC PLATE CURRENT 150) MILLIAMPERES
PLATE DISSIPATION ¹ 150) WATTS
GRID DISSIPATION 1.5	WATTS
PULSE DURATION	δµs
DUTY FACTOR	3
CUT-OFF MU	

- 1. Using one of the EIMAC radiators shown on the cooling curves.
- For application requiring longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager Eimac-Division of Varian, Salt Lake City, Utah.

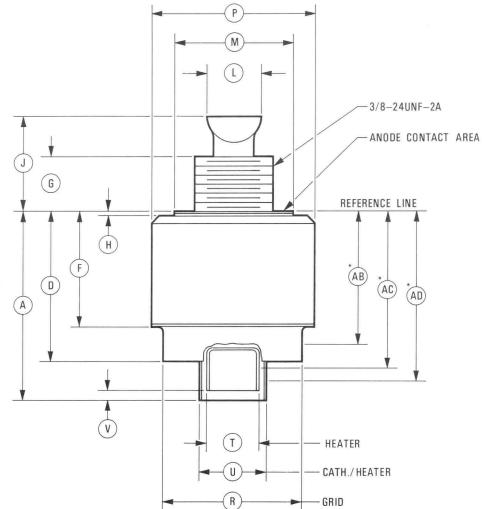
RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater current at 6.3 volts (8847) Heater current at 6.0 volts (8847A)	0.85	1.05 A
Cathode Heating Time Interelectrode Capacitances ¹ (grounded cathode connection)		
Grid-Cathode		0.06 pF
Grid-Plate	1.2	1.6 pF

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

APPLICATION

COOLING - The 8847 and 8847A can be cooled by conduction, convection, forced-air or liquid cooling. The tubes are designed to permit hightemperature operation up to the limit indicated. However, if long life is the prime objective, tube terminal and seal temperatures should be kept well below 250°C. If forced-air cooling is provided, auxiliary air flow, apart from the air flowing through the radiator, should be provided to cool the tube envelope and other tube terminals. Some conduction cooling is always provided through the contact terminals. However, these terminals usually exhibit poor heat transfer, often having a temperature gradient across them as high as 50°C. Cooling curves are given for the three radiators which are suitable for use with the 8847 and 8847A.

For further details on cooling or other aspects of tube operation, refer to the "Application Notes for Planar Triodes" bulletin which can be obtained on request.



		DIM	ENSIONA	L DATA		
DIM. INCHES					MILLIMETERS	
DIN.	MIN.	MAX	REF	MIN.	MAX.	REF
А		1.020			25.91	
D	0.740	0.800		18.80	20.32	
F		0.570			14.48	
G	0.150	0.170		3.81	4.32	
н		0.040			1.02	
J		0.350			8.90	
Ĺ		0.260			6.60	
М	0.545	0.570		13.84	14.48	
Ρ	0.775	0.785		19.69	19.94	
R	0.650	0.670		16.51	17.02	
т	0.210	0.225		5.33	5.72	
U	0.310	0.330		7.87	8.38	
V		0.040			1.07	
AB	0.590	0.740		14.99	18.80	
AC	0.760	0.885		19.30	22.48	
AD	0.800	0.975		20.32	24.77	

NOTES: I. REF. DIMENSIONS ARE FOR INFO. ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

NOTES:

- 1. ANODE FLANGE IS ELECTRICAL CONTACT. STUD IS FOR HEAT TRANSFER.
- 2. (*) DISTANCE FROM REFERENCE SURFACE TO THE CENTER OF CONTACT AREA.
- 3. METRIC EQUIVALENTS ARE TO THE NEAREST .01 mm, ARE GIVEN FOR GENERAL INFORMATION ONLY, AND ARE BASED ON 1 INCH = 25.4 mm.
- 4. CONCENTRICITY BETWEEN GRID TERMINAL AND CATHODE/HEATER TERMINAL RESPECTIVELY TO THE ANODE STUD TO BE 0.020 TIR MAX. MEASUREMENT TO BE MADE WITH EIMAC GAGE JA-21685G WHICH MUST SEAT AGAINST THE ANODE FLANGE.

8847/8847A

EIMAC RADIATORS

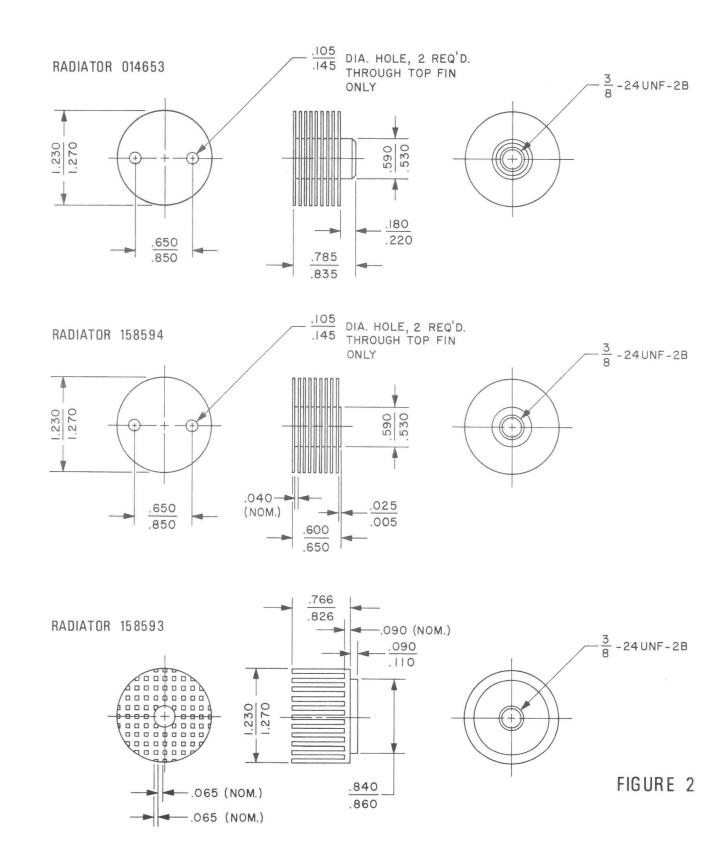


FIGURE 3

COMBINED CORRECTION FACTORS FOR INLET AIR TEMPERATURE AND ALTITUDE

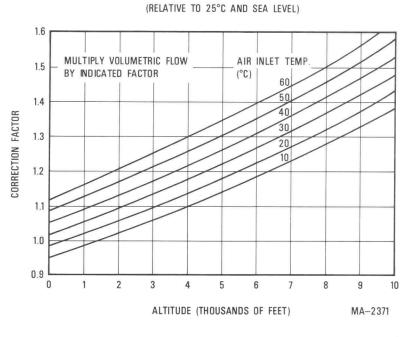
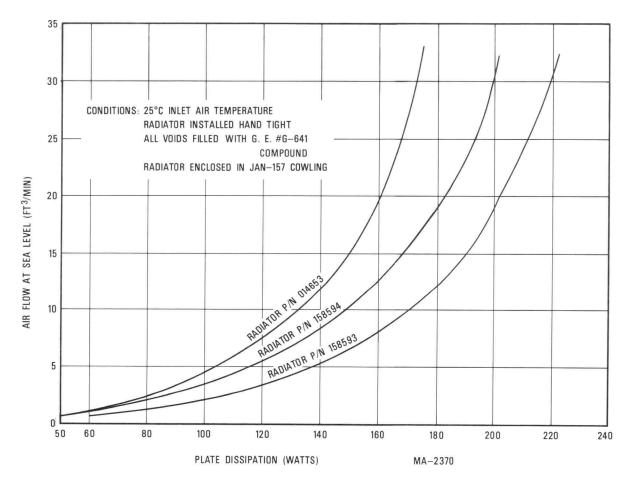



FIGURE 4

TYPICAL CONSTANT GRID VOLTAGE CHARACTERISTICS FOR PULSE OPERATION $E_{f} = 6.3V$ PLATE CURRENT **GRID CURRENT** ec = GRID VOLTAGE IN VOLTS 250 18 200 16 150 14 12 - 100 10 8 6 50 -250 V 4 200 150 2 0 -100 --50 0

PLATE VOLTAGE (Vdc)

2000

2500

1500

200 400 600 800 1000

0

CURVE #MA-2375

3000

- 8847/8847A

CURRENT (A)

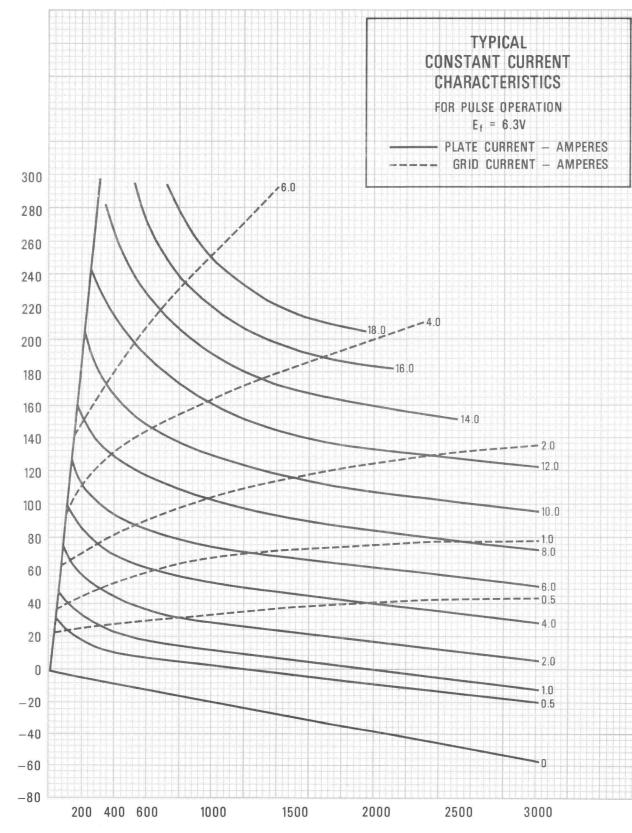
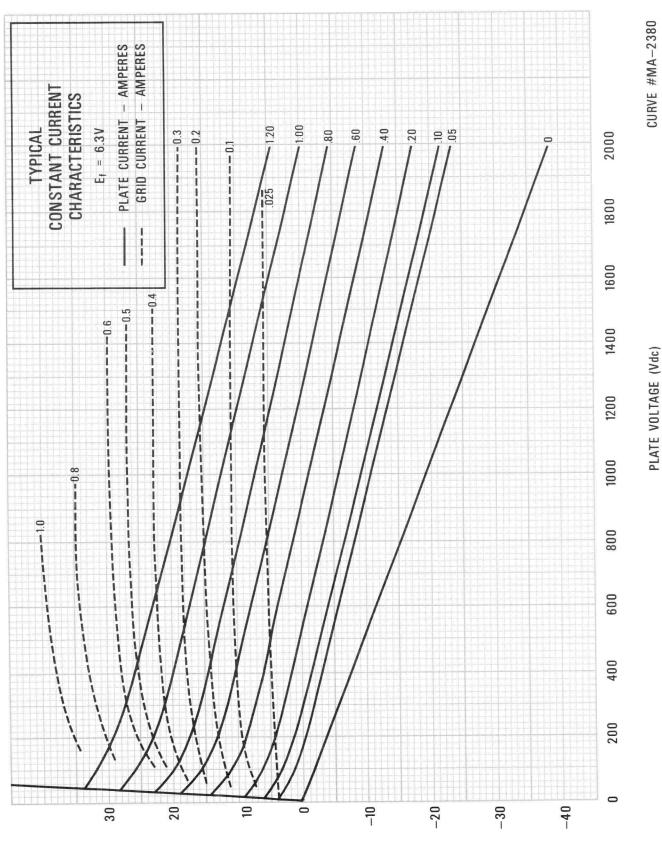



PLATE VOLTAGE (Vdc)

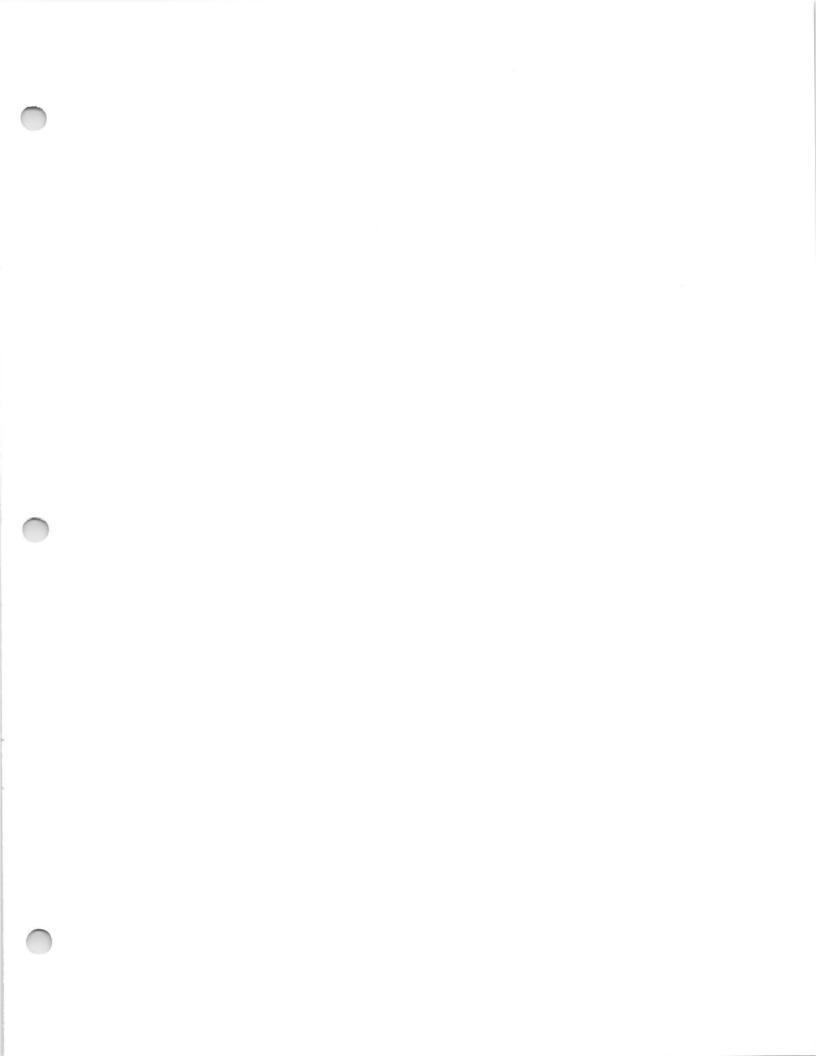
CURVE #MA-2374

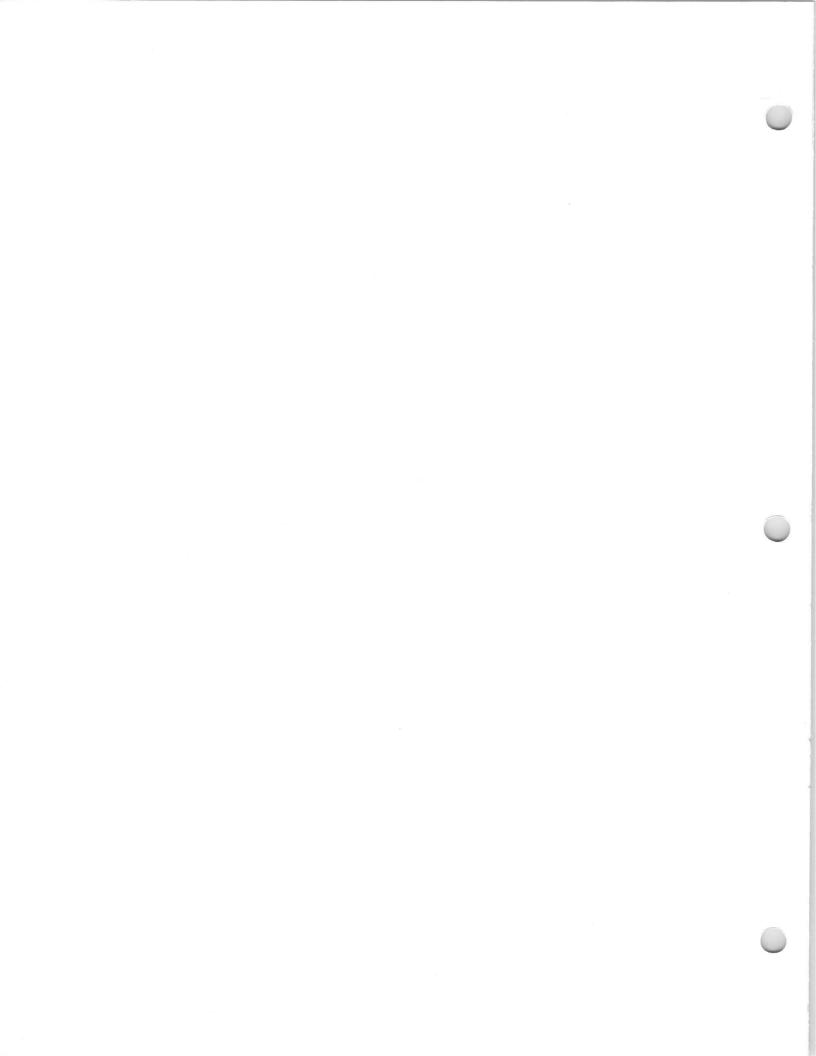
GRID VOLTAGE (V)

8847/8847A

- 8847/8847A

Simo


(V) ΞϿΑΤΙΟΥ ΟΙЯϿ


TYPICAL CONSTANT GRID VOLTAGE **CHARACTERISTICS** $E_f = 6.3V$ ec = GRID VOLTAGE IN VOLTS PLATE CURRENT **GRID CURRENT** ,12 CURRENT (mA) -1 -2 -3 -4 -6 -8 -10 -12

8847/8847A •

PLATE VOLTAGE (Vdc)

CURVE #MA-2379

PRELIMINARY DATA

8892 Planar triode

The 8892 is a compact, rugged ceramic/metal planar triode intended for CW use or as a plate- or grid-pulsed oscillator or amplifier. It features high power output, high plate efficiency and excellent frequency stability under severe environmental conditions. The construction of the 8892 readily lends itself to cavity circuit operation resulting in an extremely compact rf source. The 8892 is capable of providing in excess of 1 kW peak power at 6 GHz.

GENERAL CHARACTERISTICS¹

ELECTRICAL

6.3 (±5%)	V	
0.65	А	
60	sec.	
30	mmhos	
60		
e		
		5.00 pF
		1.60 pF
		0.06 pF
		50 W
		1.5 W
	0.65 60 30 60	60 sec. 30 mmhos 60

 The data presents the nominal design objectives for this product and the characteristics and specifications of this type are subject to change. The device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please contact your nearest Varian Electron Tube and Device Field Office or the Product Manager, Eimac Division of Varian, Salt Lake City, Utah.

2. With forced air cooling or appropriate conduction and/or convection cooling.

MECHANICAL

Maximum Overall Dimensions:

Length 1.059 in; 26.90 mm
Diameter
Net Weight
Operating Position
Maximum Operating Temperature:
Ceramic/Metal Seals
Cooling Conduction and Forced Air

(Effective 9-1-70) © by Varian

Printed in U.S.A.

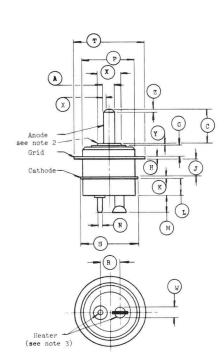
RF OSCILLATOR Class C, Pulsed

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	2.0 kVdc
PEAK PLATE VOLTAGE	2.5 kv
DC PLATE CURRENT	100 mAdc
DC GRID CURRENT	30 mAdc
PEAK PLATE CURRENT	3.0 a
PEAK GRID CURRENT	1.2 a

DC GRID VOLTAGE100	Vdc
PULSE DURATIO N ¹	μs
DUTY FACTOR ¹	
PEAK HEATER-CATHODE VOLTAGE2 ±50	
FREQUENCY 6.0	GHz

1. For applications requiring longer pulse duration and/or higher duty factor, please consult the Product Manager, EIMAC-Division of Varian, Salt Lake City, Utah.


2. The heater is electrically isolated from the cathode.

APPLICATION

The cathode and grid flanges should not be altered in any way such as by machining or filing, since final seal could be damaged. Maximum torque applied to flanges during installation should not exceed 15 inch pounds.

For optimum rf performance, the anode line should make good rf contact on the anode area indicated in the outline drawing.

Soldered connections may be made to the anode stud, grid or cathode flanges, and heater contacts where adequate heat sinking and good soldering practices are followed to minimize the heat applied to the tube and the thermal gradient across the metal to ceramic brazed areas.

		DIM	ENSIONAL	DATA		
DIM.	INCHES			MILLIMETERS		
DIM.	MIN	MAX	REF	MIN.	MAX.	REF
Α	0.122	0.128		3.10	3.25	
С	0.325	0.335		8.26	8.51	
G	0,120	0.130		3.05	3.30	
н	0.025	0.031		0.64	0.79	
J	0.167	0.177		4.24	4.50	
к	0.025	0.031		0.64	0.79	
L	0.170	0.185		4.32	4.70	
M	0.170	0.190		4.32	4.83	
N	0.047	0.053		1.19	1.35	
Ρ	0.535	0.565		13.59	14.35	
R	0.185	0.215		4.70	5.46	
S	0.598	0.608		15.19	15.44	
Т	0.748	0.758		19.00	19.25	
W			0.100			2.54
х	0.250	0.260		6.35	6.60	
Y		0.020			0.51	

Note Ref. Dims. are for info. only & are not req'd. for inspection purposes.

2. For optimum rf performance the Anode line should make rf contact at this point on the

Anode Cup. 3. Heater is electrically isolated from cathode.

TECHNICAL DATA

8893 PLANAR TRIODE

The 8893 is a compact, rugged ceramic/metal planar triode intended for CW use or as a plate- or grid-pulsed oscillator or amplifier. It features high power output, high plate efficiency and excellent frequency stability under severe environmental conditions. The construction of the 8893 readily lends itself to cavity circuit operation resulting in an extremely compact rf source.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential

Heater: Voltage	6.3 (±5%)	V	
Current, at 6.3 volts	1.3	А	
Cathode Heating Time	60	sec.	
Transconductance (Average)	30	mmhos	
Amplification Factor (Average)	60		
Direct Interelectrode Capacitance, without heater voltage			
Grid-Cathode			8.00 pF
Grid-Plate			2.35 pF
Plate-Cathode (maximum)			0.10 pF
Plate Dissipation (maximum) ²			100 W
Grid Dissipation (maximum)			1.5 W

 The data presents the design objectives for this product and the characteristics and specifications of this type are subject to change. The device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please contact your nearest Varian Electron Tube and Device Field Office or the Product Manager, Eimac Division of Varian, Salt Lake City, Utah.

2. With forced air cooling or appropriate conduction and/or convection cooling.

MECHANICAL

Maximum	Overall	Dimensions:
The second second second	O I DAVIAN	

Length 1.074 in; 27.30 mm
Diameter 0.758 in; 19.30 mm
Net Weight 0.35 oz; 10.0 gm
Operating Position Any
Maximum Operating Temperature:
Ceramic/Metal Seals
Cooling Forced Air

(Effective 6-1-70) © by Varian

Printed in U.S.A.

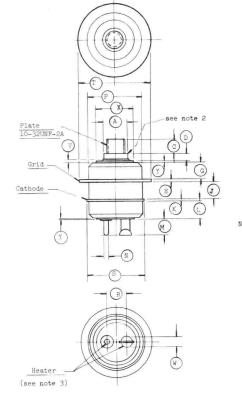
RF OSCILLATOR Class C, Pulsed

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	2.0	kVdc
PEAK PLATE VOLTAGE	3.5	kv
DC PLATE CURRENT	150	mAdc
DC GRID CURRENT	45	mAdc
PEAK PLATE CURRENT	5.0	а
PEAK GRID CURRENT	1.5	а
DC GRID VOLTAGE	-100	Vdc
PULSE DURATION 1	6.0	μs
DUTY FACTOR ¹		
PEAK HEATER-CATHODE VOLTAGE 2	±50	V
FREQUENCY	4.0	GHz

- 1. For applications requiring longer pulse duration and/or higher duty factor, please consult the Product Manager, EIMAC-Division of Varian, Salt Lake City, Utah.
- 2. The heater is electrically isolated from the cathode.

REPRESENTITIVE OPERATION (Grid-Pulsed Oscillator)


Frequency	2.5	GHz
Heater Voltage	6.3	V
Heater Current		
Duty Factor	0.01	maximum
Pulse Width	30	microseconds
		maximum
Peak Plate Voltage	1.5	kv
Peak Plate Current		maximum
Power Output (useful)	1	kw, minimum

APPLICATION

The cathode and grid flanges should not be altered in any way such as by machining or filing, since final seal could be damaged. Maximum torque applied to flanges during installation should not exceed 15 inch pounds.

For optimum rf performance, the anode line should make good rf contact on the anode area indicated in the outline drawing. For further details on cooling or other aspects of tube operation, refer to the "Application Notes for Planar Triodes" bulletin which can be obtained on request.

		DIME	NSIONAL	DATA		
		INCHES		MILLIMETERS		S
DIM.	MIN.	MAX	REF	MIN	MAX.	REF
Α	0.247	0.253	-:	6.27	6.43	
С	0.120	0.160		3.05	4.06	
D	0.070	0.090		1.78	2.29	
G	0.182	0.192		4.62	4.88	
н	0.025	0.031		0.64	0.79	
J	0.170	0.180	100 M	4.32	4.57	-
K	0.025	0.031		0.64	0.79	
L	0.170	0.180		4.32	4.57	-
M	0.170	0.190	-	4.32	4.83	
N	0.047	0.053	-	1.19	1.35	
Ρ	0.635	0.665		16.13	16.89	
R	0.186	0.214		4.72	5.44	
S	0.698	0.708		17.73	17.98	
Т	0.748	0.758		19.00	19.25	
V		0.040			1.02	
W		\sim \sim	0.100			2.54
х	0.545	0.570		13.84	14.48	
Y		0.020			0.51	

Notes: 1.Ref Dims. are for info. only and are not read for insp. purposes.

- 2.For optimum rf performance the Anode line should make rf contact at this point on the Anode Cup.
- Cup. 3.Heater is electrically isolated from cathode.

<u>8906</u> 8907

PLANAR TRIODES

The EIMAC 8906 (formerly Y-572) and 8907 (formerly Y-581) are rugged ceramic/metal planar triodes designed for use as a CW, grid- or plate-pulsed oscillator or frequency multiplier up to 3 GHz, as well as for pulse modulator or voltage regulator service. The 8906 is supplied with a knob intended for conduction-convection cooling and the 8907 is supplied with radiator (P/N 014224) for forced air cooling. Except for the plate dissipation ratings, the characteristics of both tube types are identical.

An outstanding feature of these tubes is the low heater power requirement for such high current capability. Either type can normally be used in place of the 7815, 7815R and 8745 at the same heater voltage where

higher current capability and/or longer life is desired. Replacement of the above tube types with either the 8906 or 8907 is possible in most cases. The tubes can also replace the 7211/7698 (or 7698R) when a 25% lower heater power requirement is desired. In addition, the 8906 and 8907 have the preferred features of the 7815 and 7211 type family: high-Mu, high transconductance, great mechanical strength, low interelectrode capacitance, high current capability and increased grid-to-anode insulator length. The cathode is of the arc resistant extended interface type, well proven in airline type applications, assuring reliable, long-life operation under adverse conditions.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential Heater: Voltage 6.0 ± 0.3 V 1.00 A Current, at 6.0 volts Transconductance (Average): 38 mmhos 80 Amplification Factor (Average) Direct Interelectrode Capacitances (grounded cathode)² 8.00 pF 1.98 pF Grid-Plate.... 0.06 pF Plate-Cathode -30 V max. Cut-off Bias³....

(Revised 11-1-71) © by Varian

Printed in U.S.A.

MECHANICAL

Maximum Overall Dimensions:

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

- 2. Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.
- 3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

CW RF POWER AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE 2500 VOLTS
DC GRID VOLTAGE150 VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOLTAGE
GRID NEGATIVE TO CATHODE400 VOLTS
GRID POSITIVE TO CATHODE 30 VOLTS
DC PLATE CURRENT 150 MILLIAMPERES
DC GRID CURRENT 45 MILLIAMPERES
PLATE DISSIPATION
8906 10 WATTS
8907 100 WATTS
GRID DISSIPATION 1.5 WATTS
FREQUENCY 2.5 GIGAHERTZ

REPRESENTATIVE OPERATION Grounded Grid CW r-f Power Amplifier

DC Plate Voltage DC Cathode Current DC Grid Voltage (Approx.) DC Grid Current Drive Power (Approx.) Useful CW Power Output Heater Voltage Frequency	140 -5 25 4 45 6.0	Vdc mAdc W W V
Grounded Grid CW r-f Oscillator DC Plate Voltage . DC Plate Current . DC Grid Voltage (Approx.) . DC Grid Current (Approx.) . Useful CW Power Output . Heater Voltage . Frequency .	-20 30 30 5.0	mAdc Vdc mAdc W

RF POWER AMPLIFIER OR OSCILLATOR Grid- or Plate-Pulsed

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE (Grid-Pulsed)	3500	VOLTS
PEAK PULSE PLATE VOLTAGE		
(Plate-Pulsed)	4500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CATHO	DE VO	DLTAGE
GRID NEGATIVE TO CATHODE	-700	VOLTS
GRID POSITIVE TO CATHODE	200	VOLTS
PULSE PLATE CURRENT	5.0	AMPERES
PULSE GRID CURRENT	2.5	AMPERES
PLATE DISSIPATION		
8906	10	WATTS
8907	100	WATTS
GRID DISSIPATION	1.5	WATTS
FREQUENCY	3.0	GIGAHERTZ
PULSE DURATION ¹	6	μs
DUTY FACTOR ¹	0033	

REPRESENTATIVE OPERATION Grid-Pulsed r-f Amplifier

DC Plate Voltage	2200 Vdc
Peak Video Plate Current	2.5 a
DC Grid Voltage	-50 Vdc
Peak Video Grid Current	1.0 a
Pulse Drive Power	400 w
Useful Power Output (Approx.)	2500 w
Duty Factor	.002
Pulse Width	3 μs
Heater Voltage	6.0 V
Frequency	1.1 GHz
Plate-Pulsed r-f Oscillator	
Plate-Pulsed r-f Oscillator	
Plate-Pulsed r-f Oscillator Peak Plate Voltage	3500 v
Peak Plate Voltage	3500 v 4.8 a
Peak Plate Voltage Peak Video Plate Current	
Peak Plate Voltage Peak Video Plate Current Peak Video Grid Current	4.8 a
Peak Plate Voltage Peak Video Plate Current	4.8 a 1.5 a
Peak Plate Voltage Peak Video Plate Current Peak Video Grid Current Useful Power Output	4.8 a 1.5 a 3000 w
Peak Plate Voltage	4.8 a 1.5 a 3000 w .0025
Peak Plate Voltage Peak Video Plate Current Peak Video Grid Current Useful Power Output Duty Factor Pulse Width	4.8 a 1.5 a 3000 w .0025 3 μs

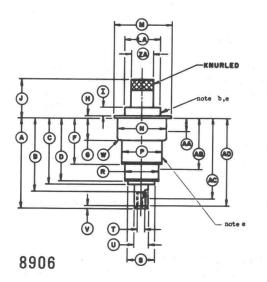
PULSE MODULATOR OR PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	3500	VOLTS
PEAK PLATE VOLTAGE	4500	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE V	OLTA	GE
GRID NEGATIVE TO CATHODE	-750	VOLTS
GRID POSITIVE TO CATHODE	150	VOLTS

I DEDE GATHODE GOTTELTT I I I I	AMPERES MILLIAMPERES
8906	WATTS
8907	WATTS
GRID DISSIPATION 1.5	WATTS
	μs
DUTY FACTOR ¹ 0033	
CUT-OFF MU ¹ 60	

1. For application requiring longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube and Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.


RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.		
Heater: Current at 6.0 volts	0.20	1.05 A		
Cathode Heating Time	60	sec		
Interelectrode Capacitances ¹ (grounded cathode connection)				
Grid-Cathode	7.0	9 .0 pF		
I late-Cathouc		0.06 pF		
Grid-Plate	1.86	2.10 pF		

1. Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

APPLICATION

For general application information please refer to the bulletin "Operating Instructions for Planar Triodes". The operating instructions should be consulted prior to the designing of new requirements around the above tube types. Higher plate dissipation of up to 150 watts is possible with the 8906 and 8907 tube type when using radiator

P/N 158555. If this is required the tube order should call for the tube type Y-602. For unusual and special application consult the nearest Varian Electron Tube and Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

Dim. i	n Inches	Dim	. in Mi	limeter	
Min.	Max	Dim.	MIN.	MAX.	Notes
1.815	1.875		46.10	47.62	
	1.534	B		38.96	
	1.475	C		37.46	
1.289	1.329	D	32.74	33.76	
• 9 70	1.010	F	24.64	25.65	
.462	.477	G	11.73		
	.040	H		1.02	
.125	.185	I	3.18	4.70	
.766	.826	J	19.46	20.98	
.025	.040	K	.64	1.17	
1.234	1.264	L	31.34	32.11	
1.180	1.195	М	29.97	30.35	
1.025	1.035	N	26.04	26.29	c,d
.752	.792	P	19.20	20.12	
.655	.665	R	16.64	16.89	c,d
	.545	S		13.84	
.213	.223	Т	5.41	5.66	c,d
.315	.325	U	8.00	8.26	c,d
	.086	V	1	2,18	
	.100	W		2.54	
.105	.145	Y	2.67	3.68	
.650	.850	Z	16.51	21.59	

NOTES

TED: Metric equivalents, to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm. This surface shall be used to measure Anode Shank temperature.

c. Eccentricity of contact surfaces s	hall be gaged from center	line of reference & shall
be as follows; note 2 shall apply:		
Contact Surface	TTP Max	D

	TTTI LIGHT .	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathoda
Dias. N,R,T,U shall apply throughout entire	contact area as	defined by dime AA AD

AC.AD respectively.

This surface shall not be used for clamping or locating. e.

Electrode Contact Dims. are given for socket design purposes & are not intended fee 4

Ŷ note g K H notes b,e M Anode Contact N surface AA B G W (AB) AD ¢ A Grid Contact surface R 1 (AC Heater Contact Cathode Contact surface. V T ee note e U

+ Z

8907

	DIM. IN INCHES		DIM. IN MILLIMETERS		
MIN.	MAX.	DIM.	MIN.	MAX.	NOTES
1.815	1.875	A	46.10	47.62	
	1.534	B		38.96	
	1.475	C		37.46	
1.289	1.329	D	32.74	33.76	
.970	1.010	F	24.64	25.65	
.462	.477	G	11.73	12.12	
	.040	H		1.02	
	.185	I		4.70	
.766	.826	J	19.46	20.98	
1.180	1.195	M	29.97	30.35	
1.025	1.035	N	26.04	26.29	đ
.752	.792	P	19.10	20.12	
.655	.665	R	16.64	16.89	đ
	.545	S		13.84	
.213	.223	T	5.41	5.66	đ
.315	.325	U	8.00	8.26	đ
	.086	V		2.18	
	.100	W		2.54	_
.840	.860	LA	21.34	21.84	
.427	.447	ZA	10.85	11.35	

DIMENSION DATA (Note a)

ELECTRODE CONTACT AREA (Note a,

Min.

30.10

38.96

Dim. in Millimete

89

Max.

9.17

32.14

43.89

Dim. in Inches

.035

Max

. 36:

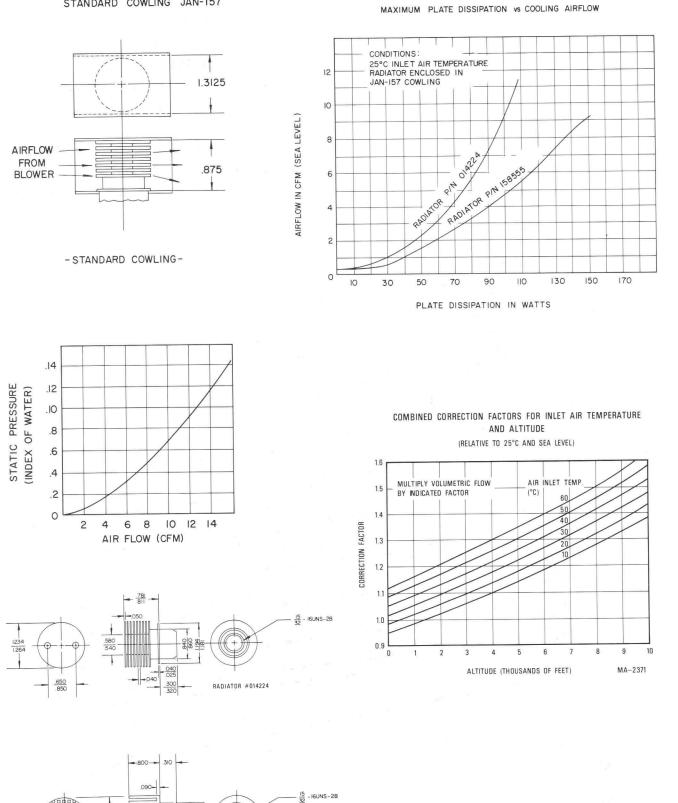
Dim. Min.

AA

s: Metric equivalents to the nearest .01 mm, are based on 1 inch= 25.4 mm. This surface shall be used to measure ano given for general information only &

temp.

Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows: c.


Contact Surface	TIR Max.	Reference
		THE THE THE CE
Anode	.020	Cathode
Grid:	.020	Cathode
Hesten	010	

d. Dias. N.R.T & U shall apply throughout entire lenght as defined be dims. AA,AB,AC & AD respectively. This surface shall not be used for clamping or locating.

.

Electrode Contact dims. are given for socket design purposes & are not intended for inspection purposes.

g. Holes for Tube Extractor thru top fin only.

AIRFLOW vs STATIC PRESSURE WITH STANDARD COWLING JAN-157

850

RADIATOR #158555

-.065

- 065

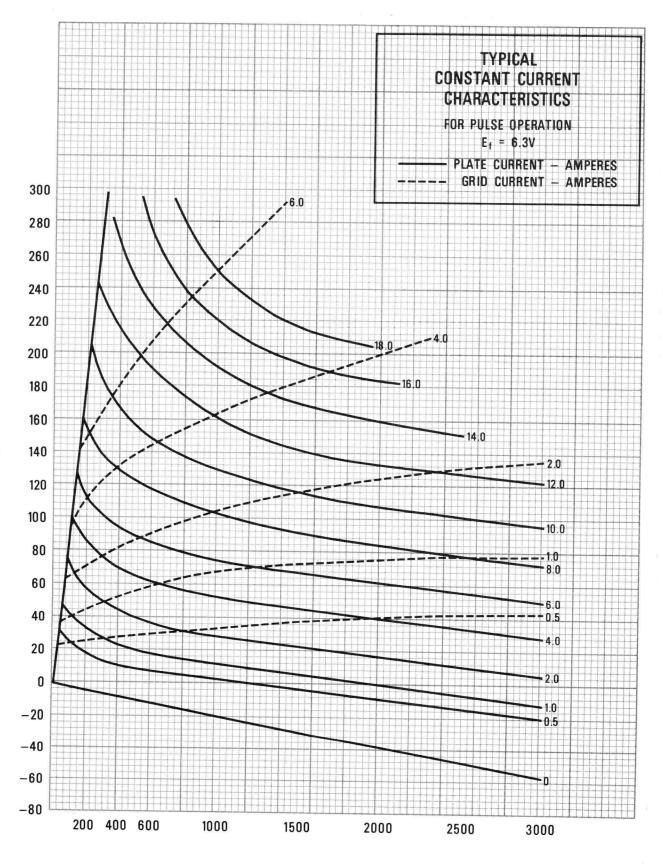
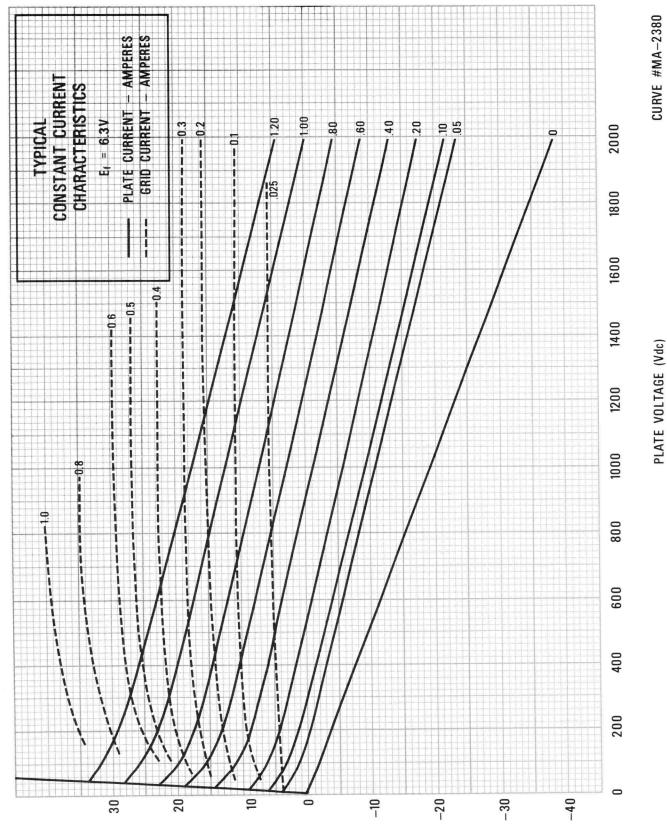
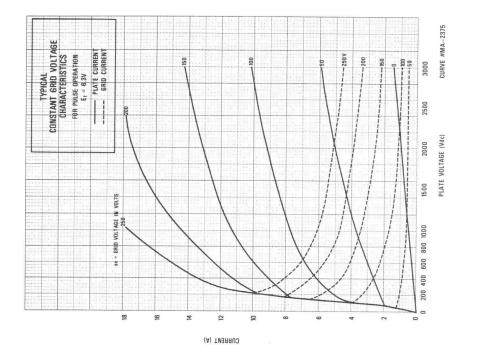
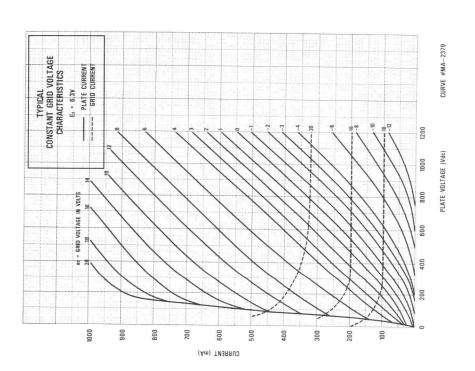



PLATE VOLTAGE (Vdc)


CURVE #MA-2374


GRID VOLTAGE (V)

(V) 30ATJOV 0180

8906/8907

TECHNICAL DATA

8906AL Y572AL

PLANAR TRIODE

The EIMAC 8906AL/Y572AL is a ceramic/metal planar triode specially processed and tested to assure high reliability in airborne service. Evaluation of this tube is based upon operating conditions in grid- or platepulsed oscillator service (transponder) and in grid- or plate-pulsed amplifier service in distance measuring equipment (DME). The testing emphasizes cathode emission capability at reduced heater voltage and high voltage hold-off, both features which are demanded in airline service.

The 8906AL/Y572AL is derived from the 7815AL/7211/7698 family. This new improved tube also contains the features of the original types, including rugged ceramic/metal construction, low interelectrode capacitance, high transconductance and high mu. The longer grid-anode ceramic insulator of the earlier type is used, making the 8906AL/Y572AL especially suited for high altitude airborne operation. The 8906AL/Y572AL has a 60% larger cathode area than the 7815/7815AL thus lowering cathode current loading per unit area yet maintaining as high or higher current capability.

In addition to these features, this tube also incorporates the arc-resistant cathode which assures stable operation under adverse conditions and which minimizes catastrophic failure due to arc-over during circuit malfunction. The tube is useable from dc to 3 GHz.

ELECTRICAL

GENERAL CHARACTERISTICS¹

Cathode:	Oxide	Coated,	Unipotential	

Heater: Voltage	5.7 (±2%)	V				
Current, at 5.7 volts						
Transconductance (Average):						
I_{b} = 100 mAdc, E_{b} = 600 Vdc	30	mmhos				
Amplification Factor (Average)						
Direct Interelectrode Capacitance (grounded cathode) ² , without heater voltage:						
Grid-Cathode	8.00	pF				
Grid-Plate	1.98	pF				
Plate-Cathode (maximum)	0.060	pF				

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture.

(Revised 11-1-71) © by Varian

Printed in U.S.A.

8906AL/Y572AL=

MECHANICAL

aximum Overall Dimensions:	
Length 2.701 in; 68.60 m	m
Diameter 1.195 in; 30.35 m	m
et Weight 1.8 oz; 48 gr	n
perating Position	y
aximum Operating Temperature:	
Ceramic/Metal Seals	С
Anode Core	С
ooling Conduction and Convectio	n
erminals	a 1

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater Current at 5.7 volts	0.87	1.02 A
Cut-off Bias ¹		-25 V
Grid-Plate Capacitance ²	1.85	2.10 pF
Grid-Cathode Capacitance ²	7.00	9.00 pF
Plate-Cathode Capacitance		0.060 pF

1. Measured with 1 mA plate current and a plate voltage of 1000 Vdc.

 Capacitance values as measured with a cold tube and in a shielded socket. When the cathode is heated to the proper temperature the grid-cathode capacitance will increase by approximately 1 pF due to thermal expansion of the cathode support.

RF POWER AMPLIFIER OR OSCILLATOR

Grid- or Plate-Pulsed

MAXIMUM RATINGS, ABSOLUTE VALUES

DC PLATE VOLTAGE	VOLTS
PLATE PULSED	
DC GRID VOLTAGE	VOLTS
INSTANTANEOUS PEAK GRID-	
CATHODE VOLTAGE	
- 5	VOLTS
Grid positive to cathode 250	VOLTS
PULSE PLATE CURRENT 5.0	AMPERE
PULSE GRID CURRENT 2.5	AMPERE
DC CATHODE CURRENT 200	MILLIAMPERES
A VERAGE PLATE DISSIPATION1	
Conduction and Convection 10	WATTS
GRID DISSIPATION (Average) 2	WATTS
DUTY FACTOR2	
PULSE DURATION 2 6	μs
FREQUENCY	GHz

 Higher plate dissipation is permissible when EIMAC radiator (P/N 014224) is used.

 For longer pulse duration or higher duty cycle, consult the nearest Varian Electron Tube and Device Group Sales Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah. OPERATING CONDITIONS FOR THE 8906AL/Y572AL in REPRESENTATIVE APPLICATION. Grid-Pulsed Oscillator

Frequency	1.090 5.7 2000 -75 1.1 0.8 0.5 0.001 850	GHz V Vdc a a μs w
Plate-Pulsed Amplifier		
Frequency	1.1	GHz
Heater Voltage	5.7	V
Peak Plate Pulse Voltage	2000	V
DC Grid Voltage	-45	Vdc
Peak Plate Current	2.0	а
Peak Grid Current	1.0	а
Pulse Duration,	3.5	μs
Duty	0.001	
Driving Power	300	W
Useful Power Output (Approx.)	2000	W
Gain	8	db
Plate Efficiency	50%	

APPLICATION

MECHANICAL

MOUNTING - The important dimensions of the tube are carefully controlled with respect to the reference surface as shown on the outline drawing. The reference surface is intended to serve as a tube stop and the location of the tube in the circuit should therefore be determined by this surface coming in positive contact with a precisely positioned member of the socket or cavity. Adherence to this practice will assure both mechanical and electrical interchangeability of all tubes of a given type. If a non-designated surface is used as a tube stop, faulty positioning of the tube in the cavity and possible imcomplete electrical contact can result in improper tuning, reduced power output and damage to the cavity. tube or both. Contact surfaces, with reference to the designated tube stop are shown in the outline drawing. Electrical contact to the cathode, grid, anode and also the heater should be restricted to these designated contact areas.

Dimensions should never be taken from sample tubes. Dimensional changes due to normal variations in undimensioned surfaces may occur within the limits specified on the outline drawing. Use of nondesignated electrical contact surfaces might therefore result in incomplete contact or mechanical interference, causing changes in cavity tuning.

Electrical contact should be made by spring finger collets bearing against the previously described contact areas. If connections are employed which do not provide multiple contacts to the designated contact areas, concentration of RF current will result in loss of output power, especially at higher frequencies. The spring contacts used should exert a firm pressure without gouging the plated contact surface. This latter phenomena can result in loose particles of material which can cause arcing or unstable operation of the cavity.

If the tubes are used in applications which call for severe shock or vibration the tube may be clamped in place by the knob or radiator, exerting pressure only on this part of the tube and against the tube stop. No other portion of the tube should be subject to any clamping force. In particular, electrical contacts which utilize setscrews or rigid clamps should be avoided. Such contact schemes can distort the contact surfaces causing undue stress in the metal-to-ceramic seal area which may result in a vacuum leak. Soldered electrical connections can be made, however great care should be taken during the solder operation to avoid fracture of the seal area due to thermal shock. All contact surfaces should be kept clean to minimize losses.

COOLING - The EIMAC planar triodes are designed to operate at envelope and anode temperatures of up to the maximum rated value of 250°C. However, performance and long-term reliability of any component are improved when it is kept as cool as technically feasible. Therefore, it is recommended that sufficient cooling be provided to keep the anode and seal areas well below the specified maximum temperature, where long tube life and high reliability are of great importance.

The maximum plate dissipation of the 8906AL/ Y572AL is 10 watts average power. This can be accomplished by conduction, natural convection or forced air convection cooling. The maximum plate dissipation in pulse service is 45 watts average when furnished with EIMAC radiator (P/N 014224) and forced air cooling is employed at that level. When forced air cooling is used, it is recommended that additional airflow, apart from that flowing through the radiator be used to cool the tube envelope and other tube terminals. A certain amount of conduction cooling is usually inherent in the contact finger configuration. It should be noted, however, that spring fingers provide poor heat conduction and measurements

have shown a temperature difference as much as 50°C between the contact finger and contact area.

It is suggested that in all new applications the envelope temperature be measured, especially if the tube is used close to the upper temperature limit. The temperature can easily be determined by the use of Tempilaq paint (Tempil Division, Big Three Industrial Gas & Equipment Co. Hamilton Blvd., So. Plainfield, N.J. 07080. or Temp-Plate stickers (Pydrodyne, Inc., 1001 Colorado St., Santa Monica, California 90404.)

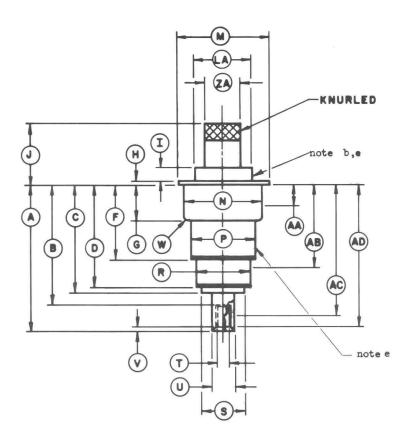
ELECTRICAL

HEATER VOLTAGE - The rated heater voltage for the 8906AL/Y572AL is 5.7 volts and should be controlled within $\pm 2\%$ to obtain maximum tube life and to minimize variations in circuit performance. The rated heater voltage is optimum for most existing airborne applications such as DME

and transponder systems. However, there are other applications where a different heater voltage than the nominal should be used to obtain the longest possible tube life. Depending on pulse width, power output and frequency of oscillation used a different heater voltage may be better for long reliable life. Electron transit time is not necessarily small with respect to the period of oscillation and the amount of driving power diverted will contribute to the cathode heating by electron bombardment.

The proper adjustment of the heater voltage must be made to compensate for this additional heating, which depends on operating frequency and duty cycle employed.

INTERELECTRODE CAPACITANCES - As indicated, the capacitance values are shown for measurements made with no heater voltage. The cathode to grid and cathode to plate capacitance will increase with the application of the heater voltage, due to the thermal expansion of the cathode support. Typically, the increase in the grid to cathode capacitance will be 15%, or more, depending on the heater voltage. Since the heater voltage can vary depending on use, data taken without heater voltage is more useful for control of tube-to-tube uniformity. The grid to anode capacitance is not effected by the application of the heater voltage.


CIRCUIT TUNING - Especially under grid pulse conditions, it is important that the tube does not lose bias or momentarily go into a CW mode. Either of these events may result in tube failure. It is suggested that provision be made for initial circuit tune-up at reduced anode voltage and for extra tube protection when the circuit adjustment is critical. The average grid dissipation capability for this tube is 2.0 watts. For many applications the limiting factor is often not anode dissipation or cathode emission capability, but grid dissipation. If pulse width control is lost in pulse applications the grid can exceed safe operating temperatures in 50 ms or less. Appropriate circuit protection during tune up is therefore recommended.

CATHODE OPERATION - The 8906AL/Y572AL contains an arc-resistant cathode. Performance in the field and laboratory indicates this tube is capable of withstanding some abuse due to high voltage arcs, however, poor circuit adjustment in the field may result in shortened tube life. It is, therefore, suggested that wherever feasible, the plate supply be designed such that its impedance limits the short circuit current to within five to ten times the maximum forward current. For pulse service the peak current should be limited to the values listed. Higher pulse width and duty cycles than given can be obtained with proper derating of the current. For this and special applications it is recommended that the user request additional information pertaining to his special application from the nearest Varian Electron Tube and Devices Field Office, or the Product Manager, Eimac Division of Varian, Salt Lake City, Utah.

For general application information please refer to the Planar Triode Operating Instructions.

8906AL/Y572AL

DIM.	MIN.	MAX.	MIN.	MAX.	
AA	.035	. 361	. 89	9.17	
AB	1.185	1.265	30.10	32.14	
AC	1.534	1.728	38.96	43.89	
AD	1.475	1.815	37.47	46.10	
	DIM. INCH			. IN METERS	

DIMENSION DATA (Note a)						
DIM. IN	INCHES	DIM. IN MILLIMETERS				
MIN. MAX.		DIM.	MIN.	MAX.	NOTES	
1.815	1.875	A	46.10	47.62		
	1.534	В		38.96		
	1.475	C		37.46		
1.289	1.329	D	32.74	33.76		
.970	1.010	F	24.64	25.65		
.462	.477	G	11.73	12.12		
	.040	H		1.02		
	.185	I		4.70		
.766	.826	J	19.46	20.98		
1.180	1.195	М	29.97	30.35		
1.025	1.035	N	26.04	26.29	đ	
.752	.792	P	19.10	20.12		
.655	.665	R	16.64	16.89	đ	
	.545	S		13.84		
.213	.223	T	5.41	5.66	d	
.315	. 325	U	8.00	8.26	d	
.086		v		2.18		
	.100	W		2.54		
.840	.860	LA	21.34	21.84		
.427	.447	ZA	10.85	11.35		

DINENCION DAMA IN ..

NOTES:

a.. Metric equivalents, to the nearest .01 mm, are given for general information only & are based on 1 inch = 25.4 mm.

b. This surface shall be used to measure Anode Shank temperature.

c. Eccentricity of contact surfaces shall be gaged from center line of reference & shall be as follows; note 2 shall apply:

Contact Surface	TIR Max.	Reference
Anode	.020	Cathode
Grid	.020	Cathode
Heater	.012	Cathode

d. Dias. N,R,T,U shall apply throughout entire contact area as defined by dims. AA,AB, AC,AD respectively.

e. This surface shall not be used for clamping or locating.

f. , Electrode Contact Dims. are given for socket design purposes & are not intended for inspection purposes.

8906AL/Y572AL=

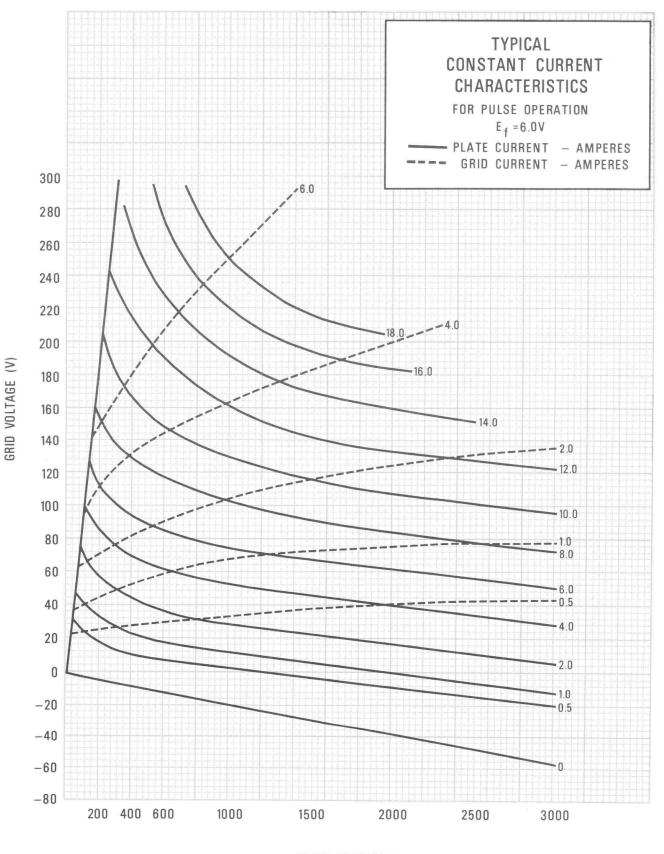
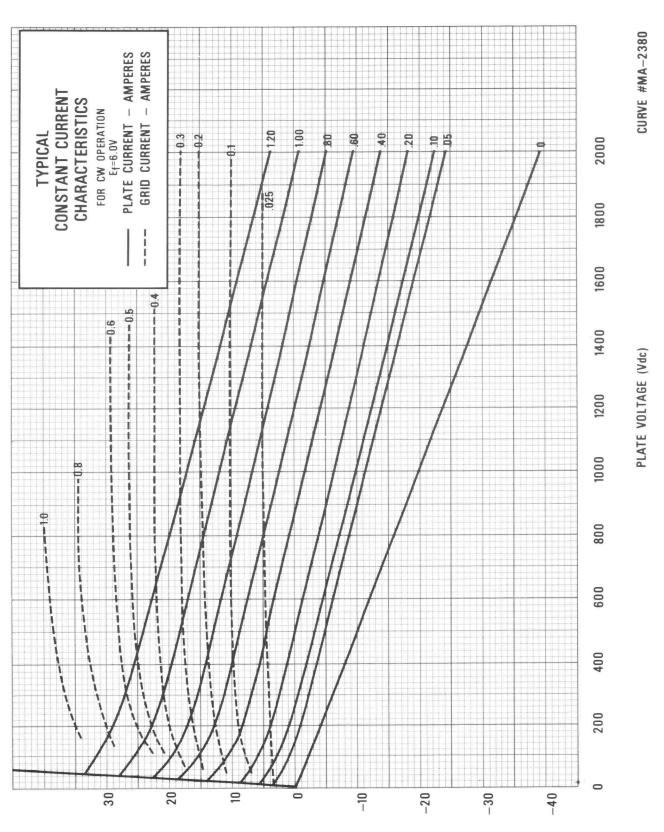


PLATE VOLTAGE (Vdc)

CURVE #MA-2374


TYPICAL CONSTANT GRID VOLTAGE **CHARACTERISTICS** FOR PULSE OPERATION $E_{f} = 6.0V$ PLATE CURRENT **GRID CURRENT** ec = GRID VOLTAGE IN VOLTS 250 18 200 16 150 14 12 - 100 10 8 6 50 250 V 4 200 150 2 0 -100 --50 0 200 400 600 800 1000 0 1500 2000 2500 3000

8906AL/Y572AL

PLATE VOLTAGE (Vdc)

CURVE #MA-2375

CURRENT (A)

8906AL/Y572AL

(V) 30ATJOV 0180

The 8911 (formerly X2153) is a compact, rugged ceramic/metal planar triode intended for CW plate- or grid-pulsed oscillator, amplifier, or frequency multiplier use. It features high power output, high plate dissipation and excellent frequency stability under severe environmental conditions. The construction of the 8911 readily lends itself to cavity circuit operation resulting in an extremely compact rf source. The 8911 is capable of providing in excess of 1 kw peak power at 6 GHz.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential Current, at 6.3 volts 0.65 A Cathode Heating Time 60 sec. Transconductance (Average) 30 mmhos Amplification Factor (Average) 60 Direct Interelectrode Capacitance, without heater voltage Grid-Cathode 5.00 pF Grid-Plate 1.50 pF Plate-Cathode (maximum)..... 0.06 pF Plate Dissipation (maximum)².... 50 W Grid Dissipation (maximum) 1.5 W

- The data presents the nominal design objectives for this product and the characteristics and specifications of this type are subject to change. The device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please contact your nearest Varian Electron Tube and Device Field Office or the Product Manager, Eimac Division of Varian, Salt Lake City, Utah.
- 2. With forced air cooling or appropriate conduction and/or convection cooling.

MECHANICAL

Maximum	Overall	Dimensions:
---------	---------	-------------

Length 0.943 in; 23.95 mm
Diameter
Net Weight
Operating Position Any
Maximum Operating Temperature:
Ceramic/Metal Seals
Cooling Conduction and Forced Air

(Effective 2-1-71) © by Varian

Printed in U.S.A.

PRELIMINARY DATA

RF OSCILLATOR

Class C, Pulsed

ABSOLUTE MAXIMUM RATINGS:

) kVdc
) kv
DC PLATE CURRENT 100) mAdc
) mAdc
) a
PEAK GRID CURRENT 1.2	a

DC GRID VOLTAGE																
PULSE DURATION1			•	÷	÷	2		•			ž.	i.	5	3.0	μs	
DUTY FACTOR ¹														.0025		
PEAK HEATER-CATH	10	DC)E	1	10	DL	T	A	G	Е	2			±50	V	
FREQUENCY			•											6.0	GHz	

1. For applications requiring longer pulse duration and/or higher duty factor, please consult the Product Manager, EIMAC-Division of Varian, Salt Lake City, Utah.

2. The heater is electrically isolated from the cathode.

APPLICATION

The cathode and grid flanges should not be altered in any way such as by machining or filing, since final seal could be damaged. Maximum torque applied to flanges during installation should not exceed 15 inch pounds.

For optimum rf performance, the anode line should make good rf contact on the anode area indicated in the outline drawing.

Soldered connections may be made to the anode stud, grid or cathode flanges, and heater contacts where adequate heat sinking and good soldering practices are followed to minimize the heat applied to the tube and the thermal gradient across the metal to ceramic brazed areas. For operating information refer to EIMAC bulletin #15, "Operating Instructions for Planar Triodes".

(A) (z) (z) Anode see note 2 Grid H K Cathode R Heater W (see note 3) 6

		DIM	ENSIONA	L DATA		
DIM.		INCHES		M	LLIMETER	RS
UIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF
А	0.122	0.128		3.10	3.25	
В	0.200	0.210		5.08	5.33	
С	0.120	0.130		3.05	3.30	
н	0.025	0.031		0.64	0.79	
J	0.167	0.177		4.24	4.50	
к	0.025	0.031		0.64	0.79	
L	0.170	0.185		4.32	4.70	
М	0.170	0.190		4.32	4.83	
N	0.047	0.053		1.19	1.35	
Ρ	0.535	0.565		13.59	14.35	
R	0.185	0.215		4.70	5.46	
S	0.748	0.758		19.00	19.30	
Т	0.598	0.608		15.19	15.44	~ ~
V		0.020			0.51	
W			0.100			2.54
X	0.250	0.260		6.35	6.60	
Ζ			0.030			0.76

Notes:

Ref. dims. are for info. only & are not required for insp. purposes.

 For optimum rf performance the Anode Line should contact the Andde Cup at this point. 3. Heater is electrically

isolated from Cathode

PRELIMINARY DATA

8912

PLANAR TRIODE

TECHNICAL DATA

The 8912 (formerly X2154) is a compact, rugged ceramic/metal planar triode intended for CW plate- or grid-pulsed oscillator, amplifier, or frequency multiplier use. It features high power output, high plate dissipation and excellent frequency stability under severe environmental conditions. The construction of the 8912 readily lends itself to cavity circuit operation resulting in an extremely compact rf source. The 8912 is capable of providing in excess of 1 kw peak power at 6 GHz.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential			
Heater: Voltage	$6.3 \pm 5\%$	V	
Current, at 6.3 volts	0.65	А	
Cathode Heating Time	60	sec.	
Transconductance (Average)	30	mmhos	
Amplification Factor (Average)	85		
Direct Interelectrode Capacitance, without heater voltage			
Grid-Cathode			5.00 pF
Grid-Plate			1.50 pF
Plate-Cathode (maximum)			0.06 pF
Plate Dissipation (maximum) ²			50 W
Grid Dissipation (maximum)			1.5 W

 The data presents the nominal design objectives for this product and the characteristics and specifications of this type are subject to change. The device is now under development and is made available for experimental purposes only. For the most recent information concerning the status of this development, please contact your nearest Varian Electron Tube and Device Field Office or the Product Manager, Eimac Division of Varian, Salt Lake City, Utah.

2. With forced air cooling or appropriate conduction and/or convection cooling.

MECHANICAL

Maximum Overall Dimensions:

Length 1.013 in; 25.73 mm
Diameter
Net Weight 0.25 oz; 7.0 gm
Operating Position
Maximum Operating Temperature:
Ceramic/Metal Seals
Cooling Conduction and Forced Air

(Effective 2-1-71) © by Varian

Printed in U.S.A.

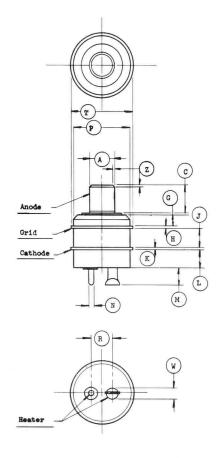
EIMAC division of varian / 301 industrial way / san carlos / california 94070

Actual Size

8912		

RF OSCILLATOR Class C, Pulsed													
ABSOLUTE MAXIMUM R	A	TI	N	G	S	:							
DC PLATE VOLTAGE .	÷				ł,	į,						2.0	kVdc
PEAK PLATE VOLTAGE						e.	•		а.			2.5	kv
DC PLATE CURRENT ·	•				÷		•					100	mAdc
DC GRID CURRENT ·	2	•	•		ŝ		•	•		ž	×.	30	mAdc
PEAK PLATE CURRENT	•	•			•				3.0	8	at	.002	5 DUTY
									1.5	8	at	.01 [DUTY
PEAK GRID CURRENT									1.2	а	at	.002	5 DUTY
									0.7	a	at	.01 [DUTY

DC GRID VOLTAGE		
PULSE DURATION ¹	3.0	μs
DUTY FACTOR ¹	.01	
PEAK HEATER-CATHODE VOLTAGE 2	±50	v
FREQUENCY	6.0	GHz


For applications requiring longer pulse duration and/or higher duty factor, please consult the Product Manager, EIMAC-Division of Varian, Salt Lake City, Utah.

2. The heater is electrically isolated from the cathode.

APPLICATION

The cathode and grid flanges should not be altered in any way such as by machining or filing, since final seal could be damaged. Maximum torque applied to flanges during installation should not exceed 15 inch pounds.

For optimum rf performance, the anode line should make good rf contact on the anode area indicated in the outline drawing. Soldered connections may be made to the anode stud, grid or cathode flanges, and heater contacts where adequate heat sinking and good soldering practices are followed to minimize the heat applied to the tube and the thermal gradient across the metal to ceramic brazed areas. For operating information refer to EIMAC bulletin #15, "Operating Instructions for Planar Triodes".

		DIM	ENSIONA	L DATA						
DIM.		INCHES		MILLIMETERS						
DIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF.				
Α	0.245	0.260		6.22	6.60					
С	0.240	0.255		6.10	6.48					
G	0.120	0.155		3.05	3.93					
н	0.025	0.031		0.64	0.79					
J	0.167	0.177		4.24	4.50					
K	0.025	0.031		0.64	0.79					
L	0.170	0.185		4.32	4.70					
М	0.170	0.190		4.32	4.83					
N	0.047	0.053		1.19	1.35					
Ρ	0.535	0.565		13.59	14.35					
R	0.185	0.215		4.70	5.46					
Т	0.598	0.608		15.19	15.44					
W			0.100			2.54				

Note; 1. Ref. Dims. are for info. only and are not req'd. for inspection purposes.

PLANAR TRIODE

The 8933 is a miniature, ceramic/metal, rugged planar triode for advanced airborne and space applications up to 3.0 GHz.

The 8933 may be used as an amplifier, oscillator, or frequency multiplier in the grid- or plate-pulsed mode as well as a modulator or regulator tube. In addition to low interelectrode capacitance, high transconductance and amplification factor, the 8933 has an arc-resistant cathode, and a spewing shield, assuring stable, reliable, and long-life operation under adverse conditions.

The 8933 is supplied without radiator and may be conduction, convection, heat sink, or liquid cooled. Radiators for forced air cooling permitting an anode dissipation up to 150 watts can be furnished on separate order.

The 8933 is especially designed for applications where high RF pulse power is required. It can also be readily used in switch tube applications up to 8 kV dc.

GENERAL CHARA CTERISTICS¹

ELECTRICAL		
Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.3 ± 0.3	V
Current, at 6.3 volts	1.30	А
Transconductance (Average):		
$I_b = 160 \text{ mA}$	38	mmhos
Amplification Factor (Average):	120	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	9.5	pF
Cout	0.06	pF
Cgp	1.40	pF
Cut-off Bias ³	-30	V max
Frequency of Maximum Rating:		
Plate or Grid-Pulsed	3.0	GHz

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

- Capacitance values are a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.
- 3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

Effective 11-15-72 © by Varian

Printed in U.S.A.

MECHANICAL

Maximum Overall Dimensions:

Length	1.50 in; 38.10 mm
Diameter	.950 in; 24.13 mm
Net Weight	0.7 oz; 19.3 gm
Operating Position	Any
Maximum Operating Temperature:	Ū.
Ceramic/Metal Seals	250 °C
CoolingConduction, convection,	forced air, or liquid

RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater: Current at 6.3 volts	1.20	1.40 A
Cathode Warmup Time	60	sec.
Interelectrode Capacitance ¹ (grounded cathode connection)		
Cin	8.5	11.0 pF
Cout		0.06 pF
Cgp	1.30	1.55 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE(grid pulsed)	8000	VOLTS
PEAK PULSE PLATE VOLTAGE		
(plate pulsed)),000	VOLTS
		VOLTS
INSTANTANEOUS PEAK GRID-CATHODE	VOL	TAGE
	-750	VOLTS
Grid positive to cathode	175	VOLTS
PULSE PLATE CURRENT	5.0	AMPERES
PULSE GRID CURRENT	2.5	AMPERES
AVERAGE PLATE DISSIPATION		
Forced Air Cooling ¹	150	WATTS
GRID DISSIPATION (Average)	1.5	WATTS
FREQUENCY	3.0	GHz
PULSE DURATION 2	6.0	μs
DUTY FACTOR2	0033	1.

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	8000 VOLTS
PEAK PLATE VOLTAGE	10,000 VOLTS
DC GRID VOLTAGE	-150 VOLTS
INSTANTANEOUS PEAK GRID-C.	ATHODE VOLTAGE
Grid negative to cathode	-750 VOLTS
Grid positive to cathode	100 VOLTS
PULSE CATHODE CURRENT	7.5 AMPERES
DC PLATE CURRENT	150 MILLIAMPERES

OPERATING CONDITIONS for 8933 in Representative Application

GRID PULSED AMPLIFIER	Driver 1030	Amp	
Frequency		1030	
Heater Voltage	5.8	5.8	V
DC Plate Voltage	4700	5000	Vdc
DC Grid Voltage	-70	-70	Vdc
Peak Video Plate Current	1.5	3.3	а
Peak Video Grid Current	0.25	1.1	а
Pulse Drive Power(approx.)	300	2000	W
Useful Power Output(approx.).	3250	8000	W
Gain	10.4	6.0	dB
Plate Efficiency	46	48	%

1. Using proper EIMAC radiator.

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

AVERAGE PLATE DISSIPATION

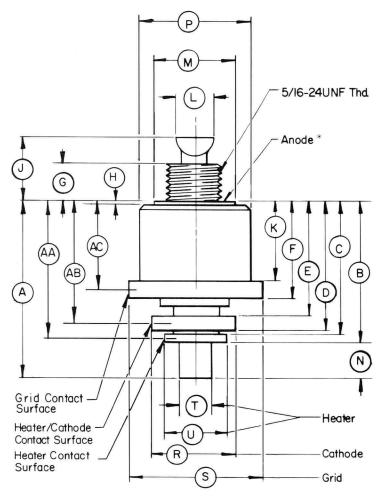
Forced Air Cooling ¹		
GRID DISSIPATION (Average)		
PULSE DURATION ²		
CUT-OFF MU	85	

1. Using proper EIMAC radiator.

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

APPLICATION

For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube type. For unusual and


DIMENSIONAL DATA **NCHES** MIL IMETER DIM MIN MAX. REF MIN. MAX. REF. A - -1.160 29.46 - --В 0.960 - -24.38 С 0.895 22.73 D 0.825 0.875 20.96 22.23 Ε 0.702 0.740 17.83 18.80 F 0.684 0.655 16.64 17.37 G 0.150 0.190 3.81 4.83 Η 0.040 1.02 - -J 0.340 - -8.64 κ 0.537 0.554 13.64 14.07 L 0.260 6.60 M 0.545 0.570 13.84 14.48 N 0.200 5.08 - -19.69 0.775 0.785 19.94 R 0.595 0.607 15.11 15.42 S 0.935 0.950 23.75 24.13 0.235 0.265 5.97 6.73 U 0.440 0.460 11.18 11.68 AA - -- -0.925 23.50 ---AB - -- -0.778 -19.76 AC 0.598 15.19 - -- --

Notes:

- Reference Dimensions are for information only and are not required for inspection purposes.
- B. Anode Flange is for electrical contact; Stud is for heat transfer.
- C.* Total indicated runout (TIR) of Contact Surfaces shall be gaged from centerline of reference & shall be as follows:

CONTACT SURF.	TIR(Max.)	Ref.
Grid	.020	Anode
Heater	.020	Anode
Cathode	.020	Anode

 D. Electrode Contact Dimensions are given for socket design purposes & are not intended for inspection purposes.

special applications consult the nearest Varian Electron Tube Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

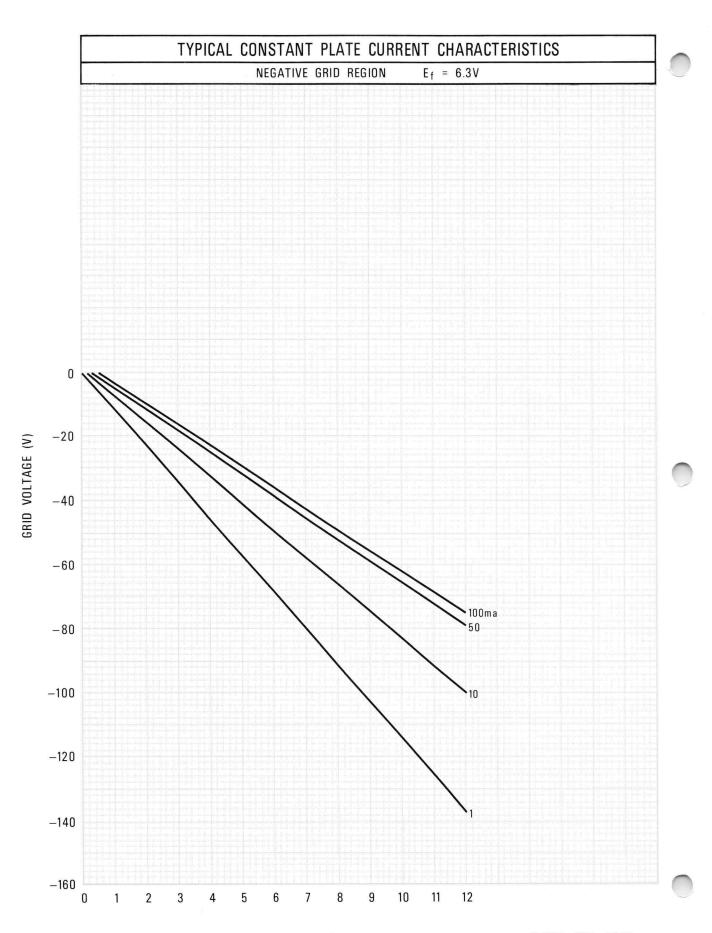


PLATE VOLTAGE (kV)

CURVE #MA-2397

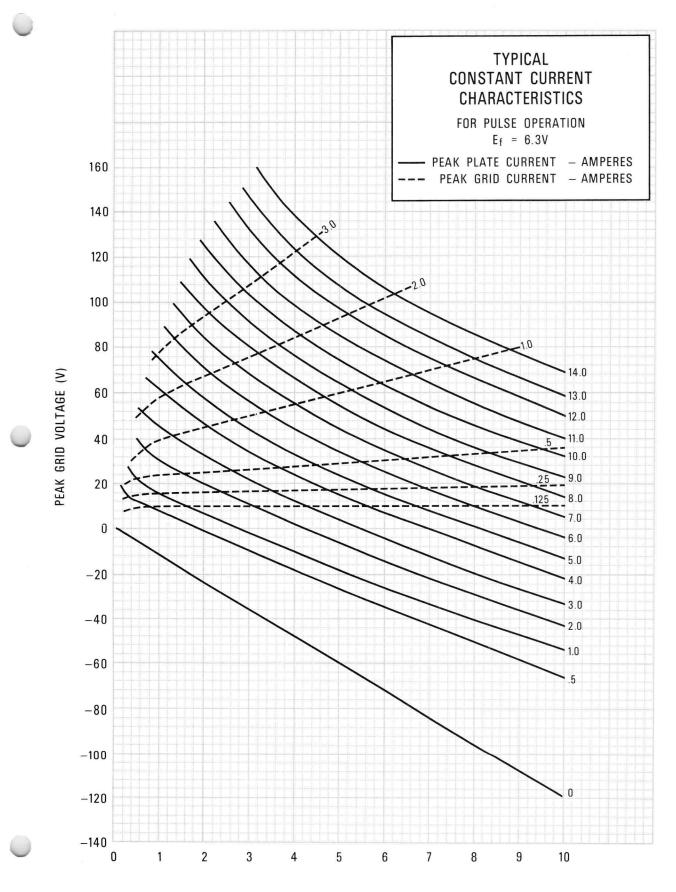


PLATE VOLTAGE (kV)

CURVE #MA-2395

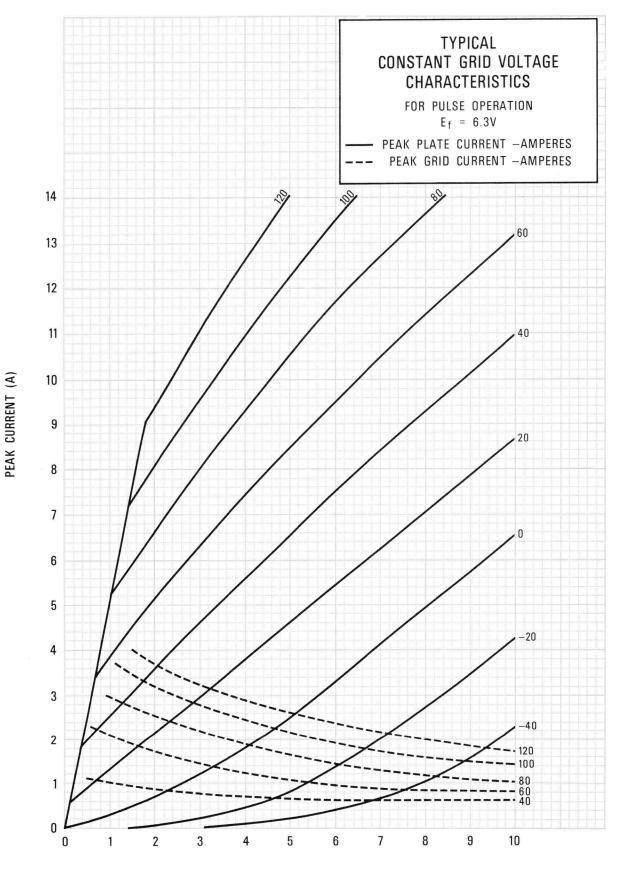


PLATE VOLTAGE (kV)

CURVE #MA-2396

TECHNICAL DATA

8940

PLANAR TRIODE

The 8940 is a planar triode of ceramic/metal construction and rugged design to be used in advanced airborne, ground, and space applications up to 2.5 GH_Z .

The 8940 may be used as an amplifier, oscillator, or frequency multiplier in the CW as well as the grid or plate-pulsed mode, or as a modulator or series regulator tube. In addition to the low interelectrode capacitance, high transconductance and amplification factor, the tube has an arc-resistant cathode and a vaporization shield to assure stable and reliable long life operation under adverse conditions.

The 8940 is normally supplied without a radiator and may be conduction, convection, heatsink, or liquid cooled. Liquid cooling can be done by submersion of the tube in an insulating medium such as FC-75. Radiators for forced-air cooling as well as heat-sink adaptors permitting anode dissipation up to 750 watts are available as separate items.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.3 ± 0.3	V
Current, at 6.3 volts	2.25	А
Transconductance (Average):		
$I_b = 160 \text{ mA}$	100	mmhos
Amplification Factor (Average):	65	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	16.0	pF
Cout	0.11	*
Cgp	3.8	
Cut-off Bias ³		V max
Frequency of Maximum Rating:		
Plate or Grid-Pulsed	2.5	GHz
CW	2.0	GH_Z

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- Capacitance values are a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 2 pF due to thermal expansion of the cathode.
- 3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 10-15-75) © 1975 by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

MECHANICAL

Maximum Overall Dimensions:

Length
Diameter 1.365 in; 34.6 mm
Net Weight 1.96 oz; 56 gm
Operating Position Any
Maximum Operating Temperature:
Ceramic/Metal Seals
Cooling Conduction, convection, forced air, or liquid

RANGE VALUES FOR EQUIPMENT DESIGN

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.3 volts	2.05	2.50 A
Cathode Warmup Time	90	sec.
Interelectrode Capacitance ¹ (grounded cathode connection)		
Cin	13.5	17.0 pF
Cout		
Cgp	3.3	4.2 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE(grid pulsed) 4000	VOLTS
PEAK PULSE PLATE VOLTAGE	
(plate pulsed)	VOLTS
DC GRID VOLTAGE	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOL	TAGE
Grid negative to cathode 500	VOLTS
Grid positive to cathode 200	VOLTS
PULSE PLATE CURRENT 12	AMPERES
PULSE GRID CURRENT 4	AMPERES
AVERAGE PLATE DISSIPATION	
Forced Air Cooling ¹	WATTS
GRID DISSIPATION (Average) 2	WATTS
FREQUENCY 2.5	GHz
PULSE DURATION ² 6	μs
DUTY FACTOR ²	

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE PEAK PLATE VOLTAGE	4000 VOLTS 6500 VOLTS
DC GRID VOLTAGE	-150 VOLTS
INSTANTANEOUS PEAK GRID-CAT	HODE VOLTAGE
Grid negative to cathode	500 VOLTS
Grid positive to cathode	100 VOLTS
PULSE CATHODE CURRENT	16 AMPERES
DC PLATE CURRENT	600 MILLIAMPERES

OPERATING CONDITIONS for 8940 in Respresentative					
Application		1	Grid	Plate	
	Grid P	ulsed	Pulsed	Pulse	d
	Ampl	ifier	OSC	OSC	
Frequency	1.3	1,2	1.03	1.65	GHz
Heater Voltage	6.3	6.3	6.3	6.3	V
DC Plate Voltage	4000	3500	3850	5000	Vdc
DC Grid Voltage	-50	-75	-80		Vdc
Peak Video Plate Current	3.0	3.0	6.0	6.0	а
Peak Video Grid Current	0.7	0.5	1.8	2.0	а
Pulse Drive Power(approx.) 600	600			w
Useful Power Output('')	6000	4000	11,500	10,000	W
Pulse Duration	500	3.5	5.0	5.0	μs
Duty Factor	0.01	0.04	.001	.001	
Bandwidth	75	10			MHz
1. Using EIMAC Radiator Part No. 158096.					
2. For applications using longer pulse duration and/or					
higher duty cycle consult the nearest Varian Elec-					

higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

AVERAGE PLATE DISSIPATION

AVEN GETEXTE DIGOTI ATTON	
Forced Air Cooling ¹	750 WATTS
GRID DISSIPATION (Average)	2.0 WATTS
PULSE DURATION ²	6 µs
CUT-OFF MU	35

1. Using EIMAC Radiator Part No. 158096.

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

Eima:

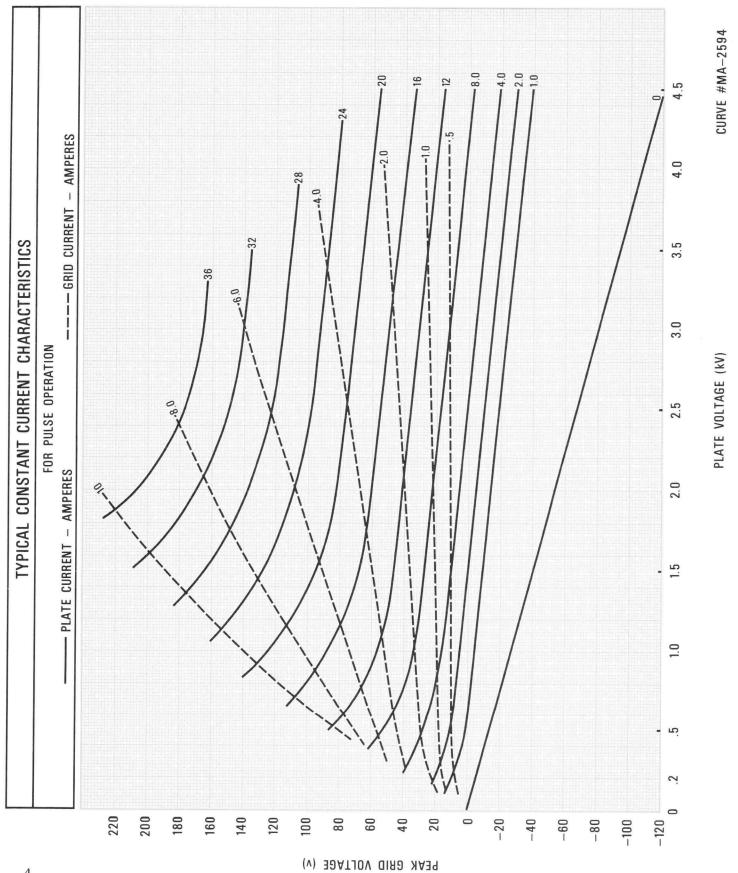
CW RF POWER AMPLIFIER OR OSCILLATOR

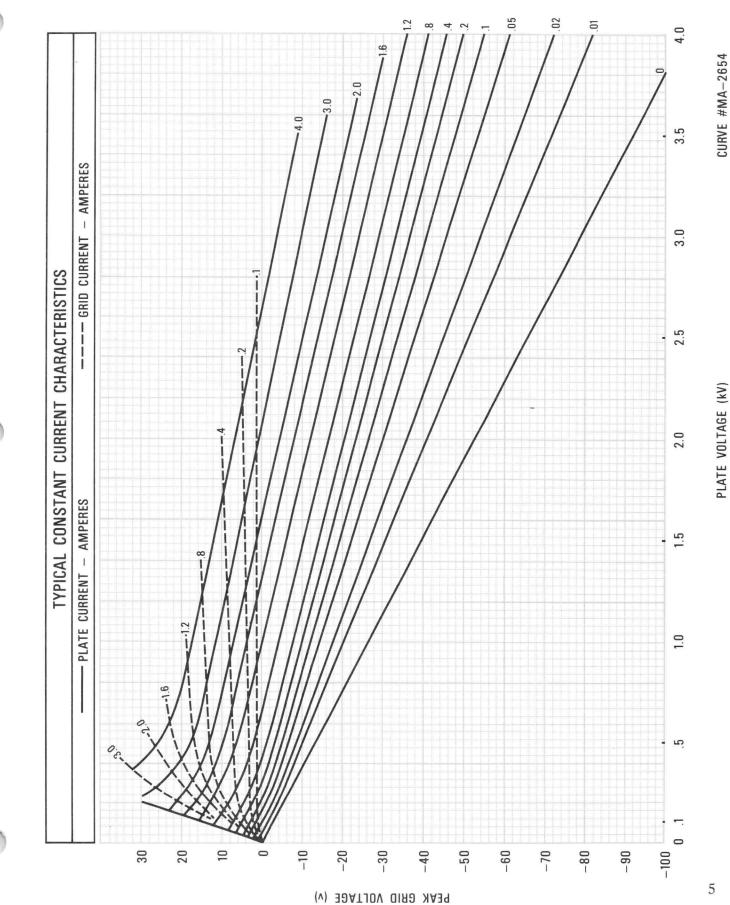
ABSOLUTE MAXIMUM RATINGS:

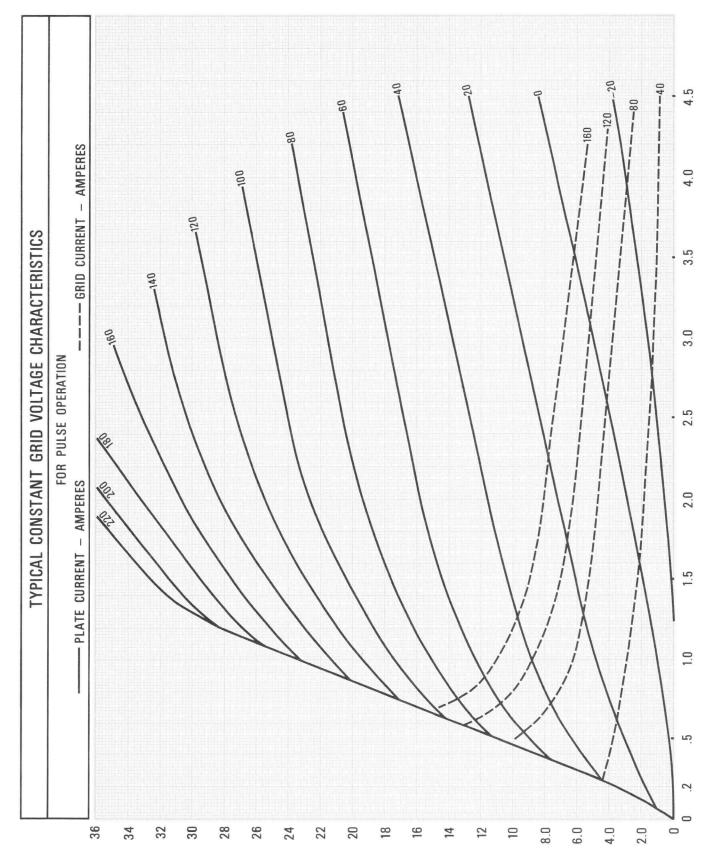
DC PLATE VOLTAGE	4000 VOLTS
DC GRID VOLTAGE	-200 VOLTS
INSTANTANEOUS PEAK GRID-CATHODE	VOLTAGE
Grid negative to cathode	350 VOLTS
Grid positive to cathode	30 VOLTS

DC PLATE CURRENT	0.6	AMPERE
DC GRID CURRENT	0.07	AMPERE
AVERAGE PLATE DISSIPATION		
Forced-Air Cooling ¹	750	WATTS
GRID DISSIPATION (Average)	2.0	WATTS

1. Using EIMAC Radiator Part No. 158096.


APPLICATION


For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube type. For unusual and special applications consult the nearest Varian Electron Tube Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.


The cathode and grid flanges should not be altered in any way such as by machining or filing, since the final seal could be damaged. Maximum torque applied to flanges during installation should not exceed 15 inch pounds.

For optimum RF performance, the anode line should make good contact on the anode area indicated on the outline drawing. Soldered connections may be made to the anode stud, grid or cathode flanges, and heater contacts where adequate heat sinking and good soldering practices are followed to minimize the heat applied to the tube and the thermal gradient across the metal to ceramic brazed areas. If forced air cooling is provided, auxiliary air flow, apart from the air flowing through the radiator, should be provided to cool the tube envelope and other tube terminals. Some conduction cooling is always provided through the contact terminals. However, these terminals usually exhibit poor heat transfer, often having a temperature gradient across them as high as 50°C.

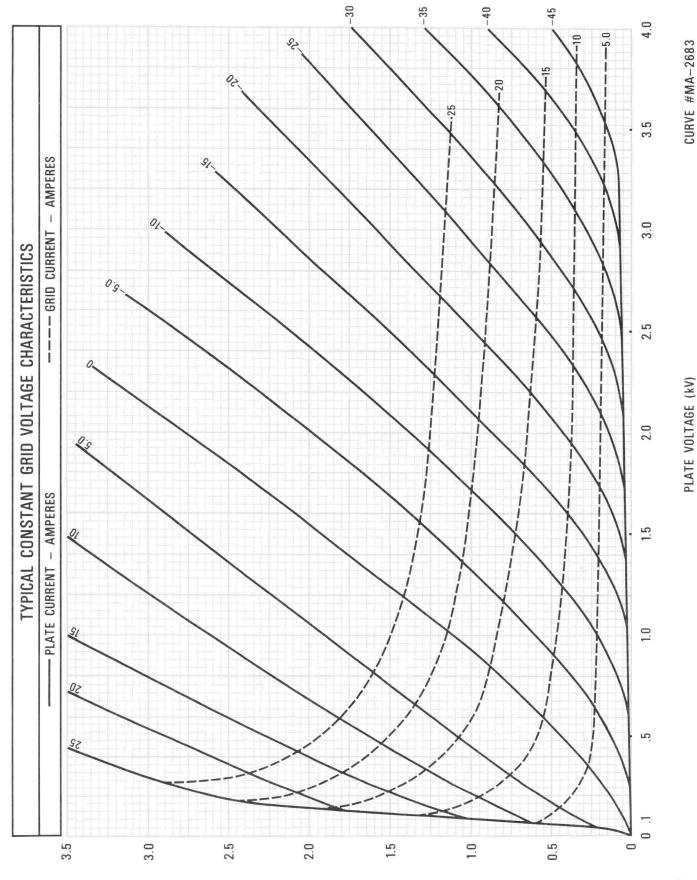
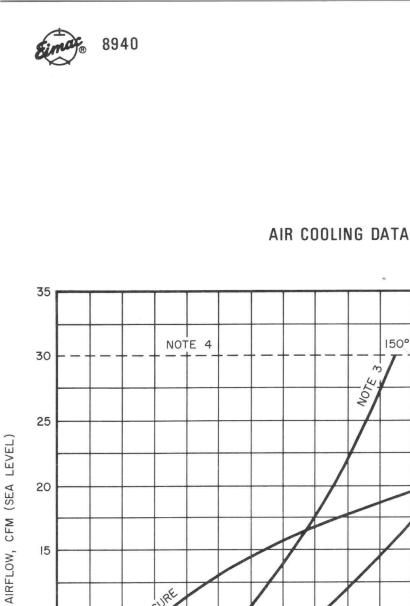
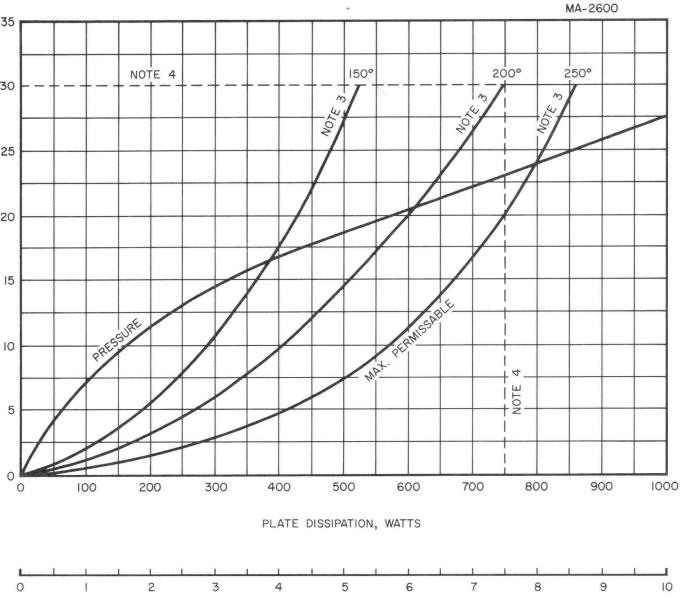
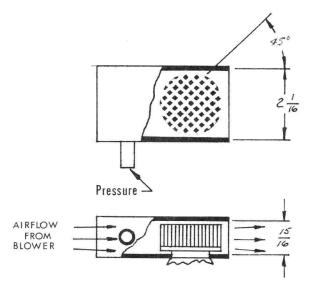

CURVE #MA-2682

PLATE VOLTAGE (kV)


8940

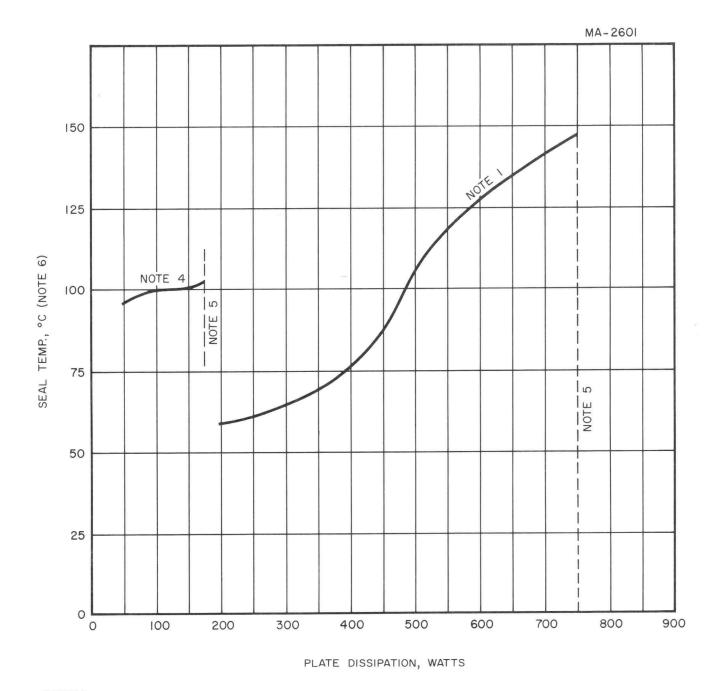

(А) ТИЗЯЯИО

(А) ТИЗЯЯИО

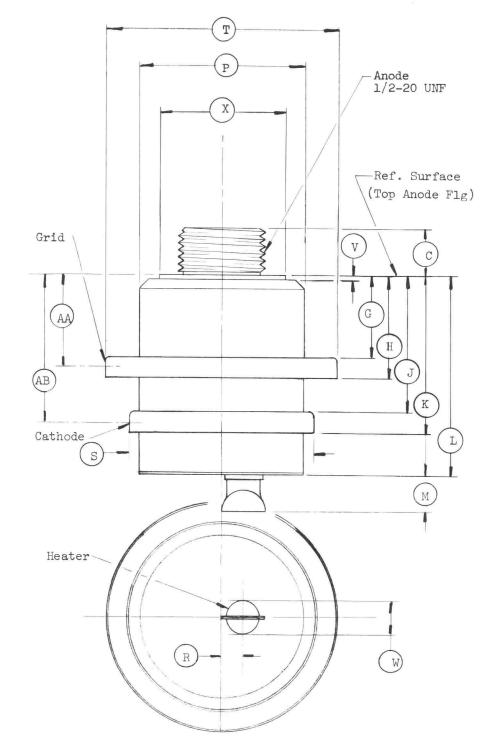


AIR COOLING DATA FOR 8940

PRESSURE DROP, INCHES



- 1. Inlet Air at 20°C
- 2. Use Radiator No. 158096 (Copper-Pin) in Cowling as shown.
- 3. Temp. measured at Anode Cup-Plate Insulator Seal.
- 4. Describes Typical MAX. C₩ Operating Point.


COOLING DATA FOR 8940 IN FC 75 DIELECTRIC COOLANT

NOTES:

- 1. USE RADIATOR 158096 (Copper Pin)
- 2. TUBE AXIS VERTICAL IN LIQUID.
- 3. LIQUID AMBIENT TEMPERATURE 40°C.
- 4. TUBE W/O COOLER STUD COOLING ONLY.
- 5. MAX. CW RATING CONTACT PLANAR MGR. EIMAC, SLC ON INTERMEDIATE OR HIGHER POWERS THAN SHOWN.
- SEAL TEMPERATURE IS MEASURED AT PLATE TO ANODE INSULATOR FLANGE (SEE 'V' ON OUTLINE DWG.)

			ENS	IONA	AL DA				
DIM		INCHES			MILLIMETERS				
UTIVI	MIN.	MAX.	RE	F.	MI	Ν.	MAX.	RE	F.
С	0.500	0.600	~	-	12.	70	15.24	-	-
G	0.385	0.410	-	-	9.	78	10.41	-	-
Н	0.510	0.545		-	12	95	13.84		-
J	0.655	0.710	-	-	16.	64	18.03	-	-
К		0.845	-	-	-	-	21.46	-	-
L	0.930	1.010	-	-	23	.62	25.65	-	-
Μ	0.300	0.375	:	-	7.6	2	9.52	-	-
Ρ	0.940	0.965	-	-	23	88	24.51	-	-
R	0.090	0.110	14	-	2.2	29	2.79	-	-
S	1.065	1.085	-	-	27	05	27.56	-	12
Т	1.345	1.365	-	-	34	.19	34.67	-	-
V		0.035	-	-	-	-	0.89	14	-
W			0.1	90	-	-		4.8	33
Х	0.740	0.770	-	-	18.	80	19.56	-	-
AA	(see note	2,3)	0.4	60	-	-		11.	68
AB	(see note	2,3)	0.7	'50	-	-		19.	05
				_	-			-	_
				-	-			-	
			-	-		-		-	
-									

NOTES:

- Ref. Dims. are for info. only & are not req'd for inspection purposes.
- 2. Contact Surface dims. AA & AB are for cavity design purposes only & are not intemded as inspection criteria
- Contact surfaces are - .030 around dim. indicated.
- 4. TIR of Contact Surfaces are specified in individual Tube Electrical Specs.

Y503

HIGH-MU PLANAR TRIODE

The EIMAC Y503 is a small frequency stable rugged planar triode which has been specially processed and tested to assure the high reliability demanded and required in airborne service. The tube is supplied without radiator for conduction and/or convection or heat sink cooling.

The tube may be used as an amplifier, oscillator, or frequency multiplier in grid or plate pulsed applications. In addition to the low interelectrode capacitances, high transconductance and Mu, the tube exhibits such special design features as a frequency-stable anode and an arc-resistant cathode to assure stable operation under adverse conditions and minimize catastrophic failure due to arcover if it should occur due to circuit malfunction.

The tube is usable from low frequency to 3 GHz.

.

GENERAL CHARACTERISTICS¹

0 . .

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.0 ± 0.3 V	
Current, at 6.0 volts	1.00 A	
Transconductance (Average):		
$I_b = 70 \text{ mA}$	25 mm	nhos
Amplification Factor (Average):	80	
Direct Interelectrode Capacitances (Grounded Cathode) ²		
Cin	6.8 pF	
Cout	0.04 pF	•
Cgp	2.50 pF	•
Cut-off Bias ³	-30 V	max.

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

MECHANICAL

Maximum Overall Dimensions:	
Length	1.810 in; 45.97 mm
Diameter	0.792 in; 20.12 mm

(Effective 5-1-75) © by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

Net Weight	18 om
Operating Position	Any
Maximum Operating Temperature:	· · · · · y
Ceramic/Metal Seals	250°C
Anode Core	
Cooling Conduction, con	
Terminals Coaxial,	special
	opeerar

ENVIRONMENTAL

Shock, 11 ms, non-operating	60	G
Vibration, operating, all axes 55 to 500 Hz	10	G
Altitude, max (in a suitably designed circuit)	50,000	ft.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

MAXIMUM RATINGS/ABSOLUTE VALUES

DC PLATE VOLTAGE (grid pulsed)	2500 VOLTS
PEAK PULSE PLATE VOLTAGE	
(plate pulsed)	3500 VOLTS
DC GRID VOLTAGE	-150 VOLTS
INSTANTANEOUS PEAK GRID CATHOD	DE VOLTAGE
Grid negative to cathode	-700 VOLTS
Grid positive to cathode	250 VOLTS
PULSE PLATE CURRENT	3.0 AMPERES
PULSE GRID CURRENT	1.5 AMPERES
PLATE DISSIPATION (Average)	
Conduction & Convection	10 WATTS *
GRID DISSIPATION	2.0 WATTS
FREQUENCY	3.0 GIGAHERTZ
PULSE DURATION !	6 μ sec
DUTY FACTOR ¹	.0033

TYPICAL OPERATION Grid Pulsed Oscillator, Representative Application

Plate Voltage	Vdc
Grid Voltage	Vdc
Heater Voltage 5.7	V
Peak Video Plate Current 1.3	а
Peak Video Grid Current 0.8	а
Useful Power Output (approx.) 750	W
Frequency 1.090	GHz
Pulse Duration 0.5	μs
Duty Factor	'
1. For application requiring longer pulse duration	and/
or higher duty cycle consult the nearest Va	arian
Electron Tube and Device Field Office, or the	

City, Utah.
* Plate dissipation of up to 100 Watts is permissable with adequate cooling.

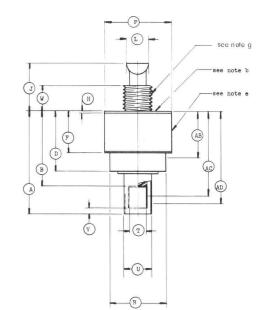
duct Manager EIMAC Division of Varian, Salt Lake

. . .

RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater: Current at 6.0 volts	0.90	1.05 A
Cathode Heating Time	60	sec.
Interelectrode Capacitances ¹ (grounded cathode connection)		
Cin	6.00	7.50 pF
Cout		0.04 pF
Cgp	2.25	2.60 pF

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.


APPLICATION

For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube type. For unusual and special applications consult the nearest Varian Electron Tube Field Office, or Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

The cathode and grid terminals should not be altered such as by machining or filing, since final seal could be damaged. Maximum torque applied to the tube during installation should not exceed 15 inch pounds.

For optimum performance, the anode line should make good rf contact on the anode area.

Soldered connections may be made to the anode stud, grid or cathode terminals, and heater contact where adequate heat sinking and good soldering practices are followed to minimize the heat applied to the tube and the thermal gradient across the metal to ceramic brazed areas.

DIMENSIONAL DATA							
DIM		INCHES			MI	LLIMETE	RS
DIM	MIN.	MAX.	REF.		MIN.	MAX.	REF.
A	1.125	1.210			28.58	30.73	
B		0.865				21.97	
D	0.782	0.822			19.86	20.88	
F	-	0.475				12.07	
Н			0.030				0.762
[0.345	0.375			8.76	9.53	
J		0.600				15.24	
L		0.260	NOTE e			6.60	NOTE e
Ρ	0.752	0.792	NOTE e		19.10	20.12	NOTE e
R	0.655	0.665	NOTE db		16.64	16.89	NOTEd, b
Т	0.213	0.223	NOTE d.b		5.41	5.66	NOTE d,b
U	0.315	0.325	NOTE d,b		8.00	8.26	NOTE d,b
V		0.086				2.18	
EL	ECTRO	DE CON	ITACT A	R	EA DIM	ENSION	S
AB	0.695	0.775	NOTE b		17.65	19.68	NOTE b
AC	0.860	1.046	NOTE b		21.84	26.57	NOTE b
AD	0.800	1.090	NOTE b		20.32	27.69	NOTE b

NOTES:

- a. Metric equivalents to the nearest .01mm are given for general information only & are based on 1 inch = 25.4 mm.
- b. This surface shall be used to measure Anode shank temperature.
- c. The total indicated runout of the Grid contact surface (DIMS AB & R) and Cathode contact surface (DIMS AC & U) will not exceed .020. This measurement is made with the gage (J-21685) screwed on the Anode thread so that the face of the gage makes full contact with the Anode contact surface. Runout is then measured by the O.D. of the gage as the reference surface. The total indicated runout of the Cathode contact surface using the Heater contact surface as the reference will not exceed .012.
- Dias. R, T, U shall apply throughout entire contact area as defined by dims. AB, AC, AD.
- e. This surface shall not be used for clamping or locating.
- F. Electrode Contact Dims, are given for socket design & are not intended for inspection purposes.
- g. Thread 3/8-16 UNC-2A.

Y503

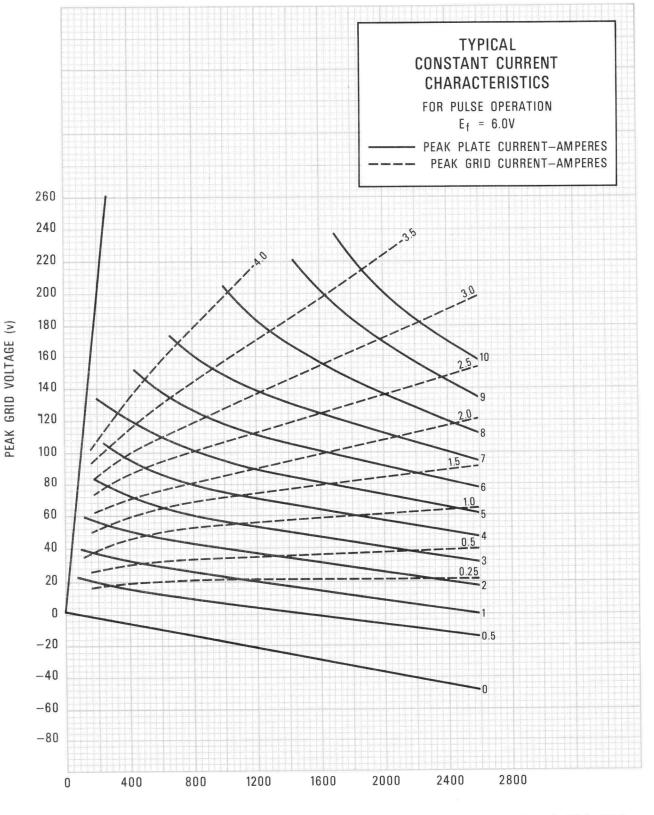


PLATE VOLTAGE (V)

CURVE #MA-2376

Y503

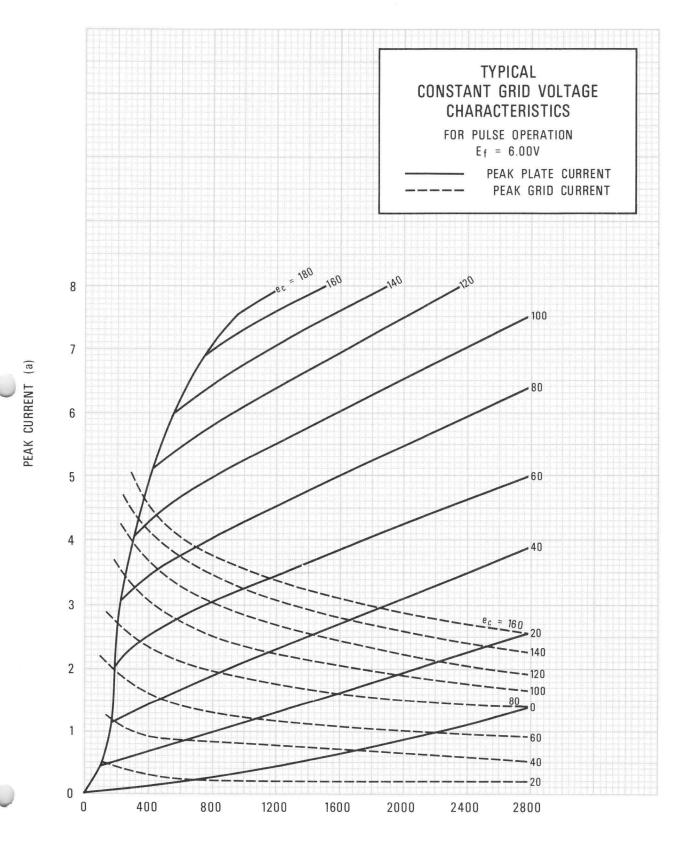


PLATE VOLTAGE (V)

CURVE #MA-2377

Y-540

PLANAR TRIODE

TECHNICAL DATA

The Y-540 is a high voltage planar triode especially designed for switch or series regulator service, for general purpose as well as radar applications. Being essentially a UHF triode, the tube capacitances and inductances are small, which enhances operation in the nanosecond region. Other noteworthy features include an extended grid-anode insulator making 10 kV operation at sea level possible, and a matrix cathode of the arc-resistant, extended interface type. The tube exhibits the standard features of a planar triode, such as high transconductance, high mu, and high cathode current capability, coupled with great mechanical strength, permitting reliable operation at elevated temperatures.

The compact ceramic/metal construction and solder tabs provided on grid, cathode-heater, and heater terminals make this tube especially suited for ECM and other switch applications. The tube is small in size and light-weight. The cathode is an indirectly heated disc requiring minimal heater power. These are all factors of great importance in airborne applications.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	$6.3 \pm 5\%$	V
Current, at 6.3 volts	1.3	
Cathode Heating Time	60	Sec
Transconductance (Average):		
$I_b = 100 \text{ mA}$	30	mmhos
Amplification Factor (Average):	145	
(Cut-off) ³	110	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	9.5	pF
Cout	0.06	•
Cgp		•

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture (Eimac Dwg. #EC-043-919-0002). When the cathode is heated to the proper temperature the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 4-1-74) © 1974 by Varian

Printed in U.S.A.

MECHANICAL

Maximum Overall Dimensions:

Length
Diameter 0.785 in; 19.94 mm
Net Weight 0.56 oz; 16.0 gm
Operating Position Any
Maximum Operating Temperature:
Ceramic/Metal Seals 250°C
Anode Core
Cooling
(Rad. P/N 157254. H.S.P/N SK-3020)

RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater: Current at 6.3 volts	1.20	1.40 A
Cathode Warmup Time	60	sec.
Maximum Inrush Current		10.0 A
Interelectrode Capacitance ¹ (grounded cathode connection)		
Cin		10.5 pF
Cout		0.06 pF
Cgp		1.65 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture (P/N EC-043-919-0002) in accordance with Electronic Industries Association Standard RS-191.

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS

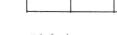
DC PLATE VOLTAGE 10	KILOVOLTS
PEAK PLATE VOLTAGE	KILOVOLTS
DC GRID VOLTAGE	VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOL	TAGE
Grid negative to cathode750	
Grid positive to cathode 150	VOLTS
PULSE CATHODE CURRENT 7.5	AMPERES
DC PLATE CURRENT 150	MILLAMPERES
DC GRID CURRENT 45	MILLAMPERES

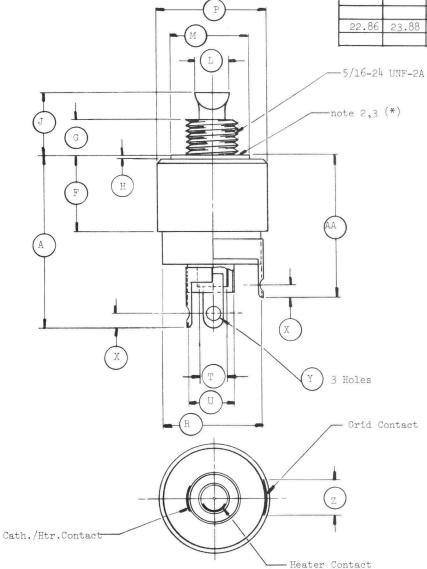
AVERAGE PLATE DISSIPATION		
Conduction and Convection Cooling .	10	WATTS
Forced Air Cooling ¹	150	WATTS
GRID DISSIPATION	1.5	WATTS
PULSE DURATION 2	6.0	μs
CUT-OFF Mu	110	
DUTY 2)033	

1. Only with Radiator #157271 attached with heat conducting grease such as Insulgrease S-641 (G.E.).

 For applications using longer plus duration and/or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

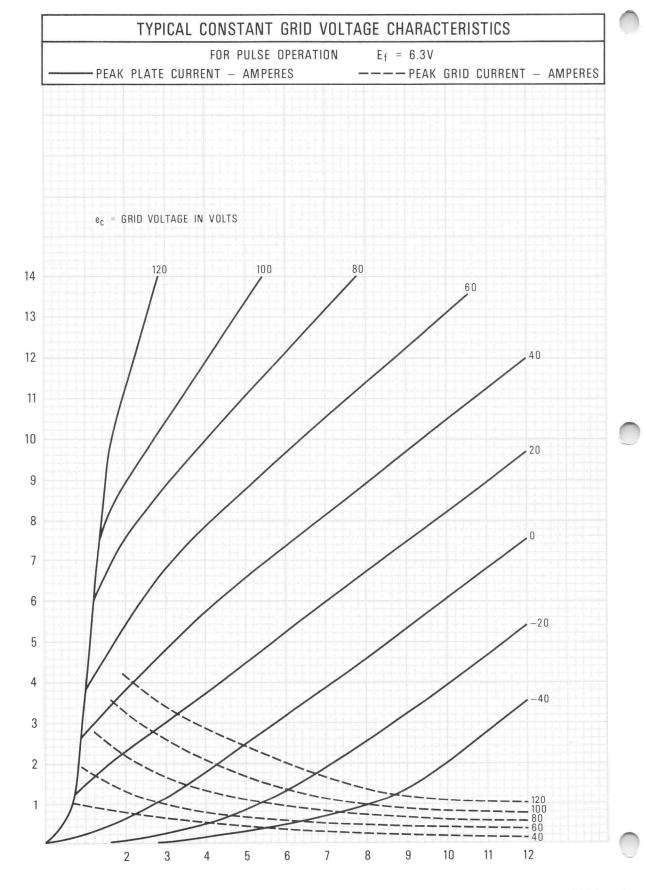
APPLICATION


For general application information please refer to the Planar Triode Operating Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the


1 .

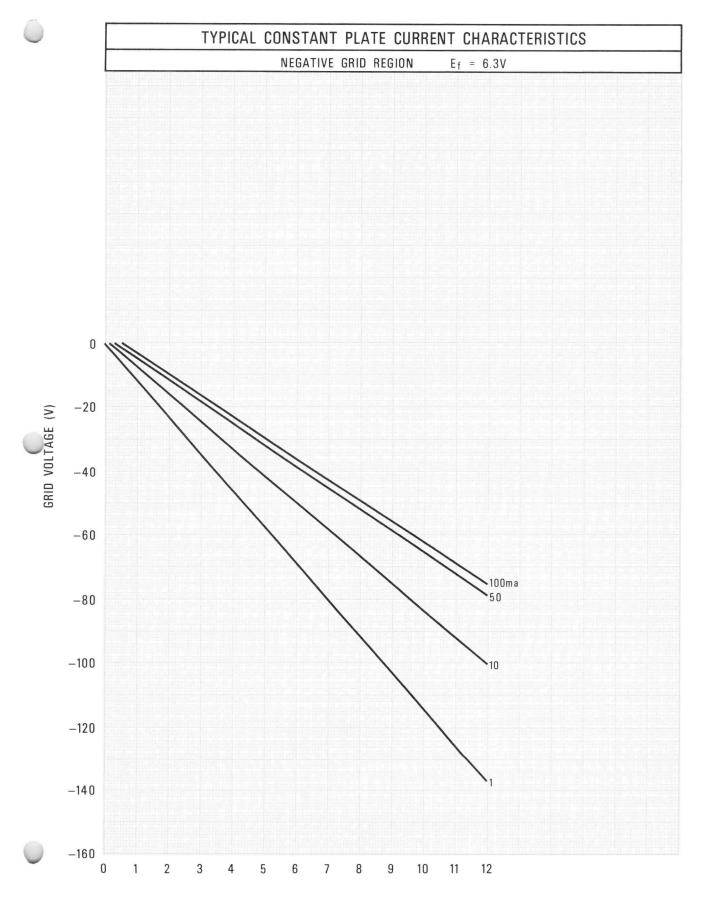
above tube type. For unusual and special applications consult the nearest Varian Electron Tube Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

DIMENSION	IS IN MI	LLIMETER	8	DIMENSIONS	IN INCHES	
MIN.	MAX.	REF.	DIM.	MIN.	MAX.	REF.
28.45	29.46		А	1.120	1.160	
	14.48		F		.570	
6.10	6.86		G	.240	.270	
	1.02		Н		.040	
	10.16		J		.400	
	6.60		L		.260	
13.84	14.48		М	.545	.570	
19.69	19.94		P	.775	.785	
		16.76	R			,660
		5.54	Т			.218
		8,13	U			.320
1.78	2.79		X	.070	.110	
		2.29	Y			.090
6.10	8,18		Z	.240	.322	(flat)
22.86	23.88		AA	.900	.940	

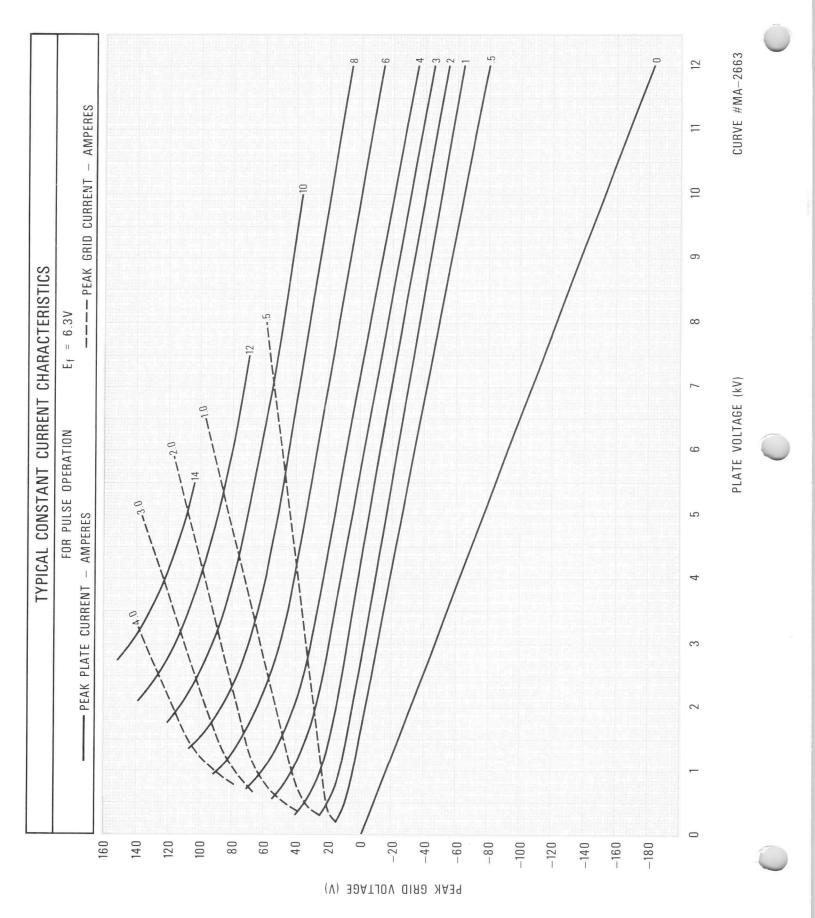


NOTES:

- 1. Ref. dimensions are for information only & are not req'd for inspection purposes. 2. (*) contact surface
- 3. Anode flange is for electrical
- contact. Stud is for heat transfer. 4. Metric equivalents to the nearest mm. are for information only & are based on 1 inch= 25.4mm



PEAK CURRENT (A)


PLATE VOLTAGE (kV)

-2

CURVE #MA-2397

Mag Y-540

Y654

TECHNICAL DATA

PLANAR TRIODE HIGH MU

The Y654 is a miniature ceramic/metal rugged planar triode for advanced airborne, ground, and space applications up to 3.0 GHz.

The Y654 may be used as an amplifier, oscillator, or frequency multiplier in the C-W mode, grid- or plate-pulsed mode, as well as a modulator or regulator tube. In addition to the low interelectrode capacitance, high transconductance and amplification factor the Y654 has an arc-resistant cathode to assure stable, reliable, and long-life operation under adverse conditions, and a specially supported grid structure.

The Y654 is supplied without radiator and may be conduction, convection, heat sink, or liquid cooled. Radiators for forced air cooling, as well as heat sink adaptors, permitting an anode dissipation up to 300 watts, can be furnished on separate order.

ELECTRICAL

GENERAL CHARACTERISTICS¹

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	6.3 ± 0.3	V
Current, at 6.3 volts	1.30	А
Transconductance (Average):		
(200 mA/cm ²)	50	
Amplification Factor (Average)	135	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	9.75	pF
Cout	0.065	pF max.
Cgp	1.05	pF
Cut-off Bias ³	-20	V
Frequency of Maximum Rating:		
C W	2500	MHz
Plate or Grid-Pulsed	3000	MHz

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

MECHANICAL

(Effective 6-30-75) © 1974, 1975 by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

Net Weight 0.56 oz; 16.0 gm
Operating Position
Maximum Operating Temperature:
Ceramic/Metal Seals
Anode Core
Cooling forced air, or liquid
Terminals Coaxial special

ENVIRONMENTAL

Shock, 11 ms, non-operating	60 G
Vibration, operating, all axes 55 to 500 Hz	10 G
Altitude, max (in a suitably designed circuit)	000 ft.

RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater Current at 6.3 volts	1.20	1.40 A
Cathode Warmup Time	60	sec.
Interelectrode Capacitance ¹ (grounded cathode connection)		
Cin	8.5	11.0 pF
Cout		0.065 pF
Cgp	0.90	1.20 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 1 pf due to the thermal expansion of the cathode.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE (grid pulsed) 8000	VOLTS
PEAK PULSE PLATE VOLTAGE	
(plate pulsed) 10,000) VOLTS
DC GRID VOLTAGE20) VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOL	TAGE
Grid negative to cathode75	O VOLTS
Grid positive to cathode) VOLTS
PULSE PLATE CURRENT 6.	O AMPERES
PULSE GRID CURRENT 2.	5 AMPERES
AVERAGE PLATE DISSIPATION	
Forced Air Cooling ¹	0 WATTS
GRID DISSIPATION (Average) 1.	5 WATTS
THEQUENCT	0 GHz
PULSE DURATION ²	0 µs
DUTY FACTOR2	3

OPERATING CONDITIONS IN REPRESENTATIVE APPLICATION

34.

3.5

GRID PULSED AMPLIFIER

Frequency	GHz
Heater Voltage 6.3	\vee
DC Plate Voltage 4000	Vdc
DC Grid Voltage	Vdc
Peak Video Plate Current 1.8	а
Plate Efficiency 35	%
Pulse Drive Power (approx.) 200	W
Useful Power Output (approx.) 2500	W
Gain 11	db
Duty Factor 0.02	

1. Using one of the EIMAC radiators shown on the cooling curves.

 For applications using longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

PULSE MODULATOR AND PULSE AMPLIFIER SERVICE

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	10,000	VOLTS
PEAK PLATE VOLTAGE	12,000	VOLTS
DC GRID VOLTAGE	-150	VOLTS
INSTANTANEOUS PEAK GRID-CA	ATHODE	VOLTAGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	100	VOLTS
PULSE CATHODE CURRENT	9.0	AMPERES
DC PLATE CURRENT	190	MILLIAMPERES

CW RF POWER AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE 7500 VOLTS
DC GRID VOLTAGE200 VOLTS
INSTANTANEOUS PEAK GRID-CATHODE VOLTAGE
Grid negative to cathode400 VOLTS
Grid positive to cathode 30 VOLTS
DC PLATE CURRENT 300 MILLIAMPERES
DC GRID CURRENT 45 MILLIAMPERES

COOLING - The Y654 can be cooled by conduction, convection, forced air, or liquid cooling. The tube is designed to permit high-temperature operation up to the limit indicated. However, if long life is the prime objective, tube terminal and seal temperatures should be kept well below 250° C. If forced air cooling is provided, auxiliary air flow, apart from the air flowing thru the radiator, should be provided to cool the tube envelope and other tube terminals. Some conduction cooling is always provided thru the contact terminals. However, these terminals usually exhibit poor heat transfer, often having a temperature gradient

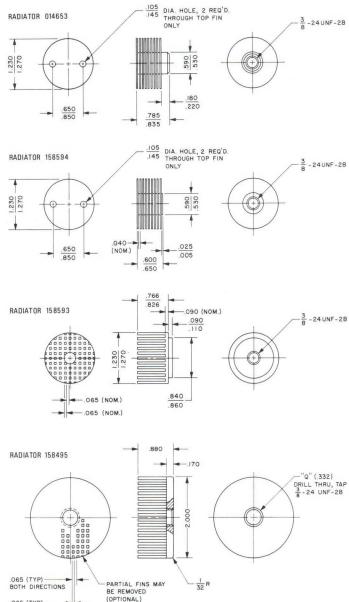
AVERAGE PLATE DISSIPATION

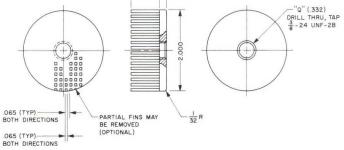
Forced Air Cooling ¹	300	WATTS
GRID DISSIPATION (Average)	1.5	WATTS
PULSE DURATION ²	6.0	μs
CUT-OFF Mu	90	.4

- 1. Using one of the EIMAC radiators shown on the cooling curves.
- For applications using longer pulse duration and/ or higher duty cycle consult the nearest Varian Electron Tube & Devices Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

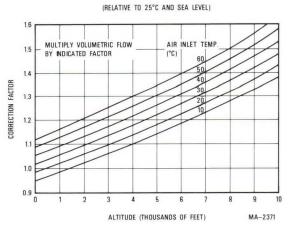
1. Using one of the EIMAC radiators shown on the cooling curves.

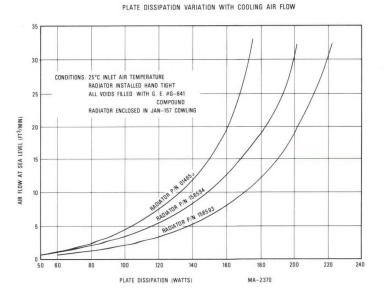
APPLICATION


across them as high as 50° C. Cooling curves are given for four standard radiators which are suitable for use with the Y654. Special cooling designs are available upon request.


For unusual operating conditions contact the nearest Varian Electron Tube and Devices Field Office or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

For general operating information refer to EIMAC bulletin #15, "Operating Data for Planar Triodes."




Y654

COMBINED CORRECTION FACTORS FOR INLET AIR TEMPERATURE AND ALTITUDE

AIRFLOW COWLING FOR EIMAC "PIN" RADIATOR PART #158495

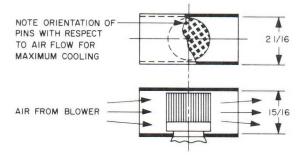
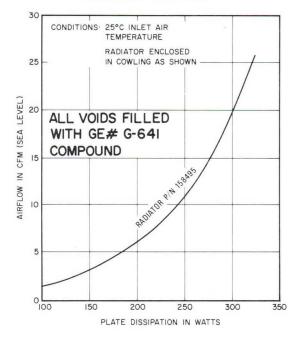
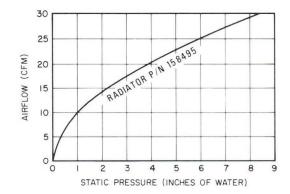
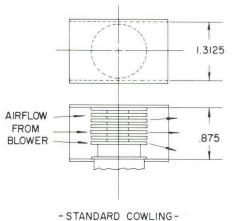
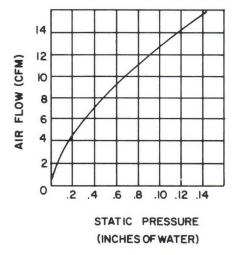
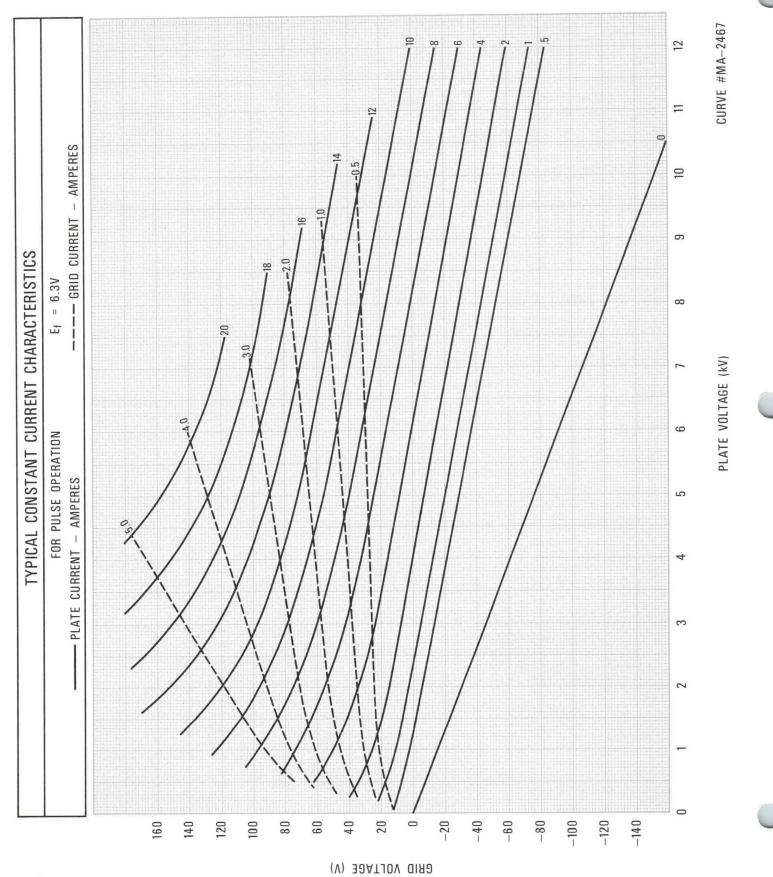
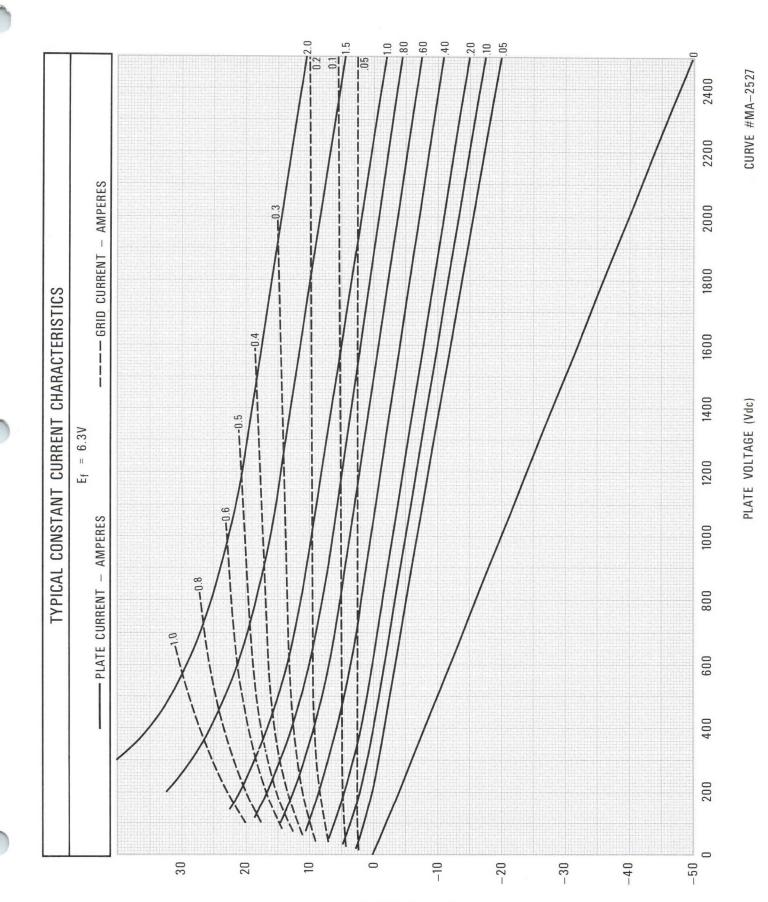





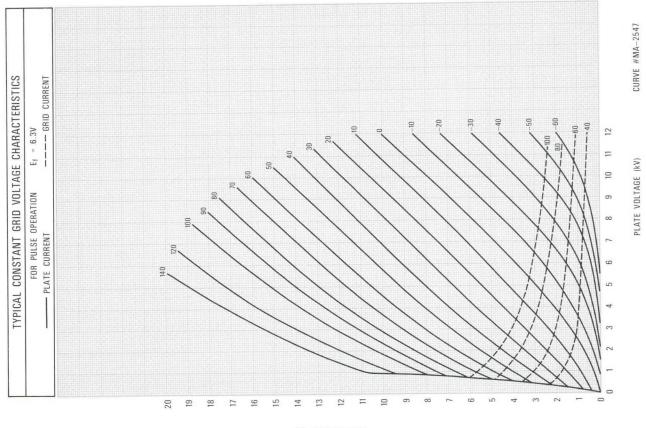
PLATE DISSIPATION VARIATION WITH COOLING AIRFLOW

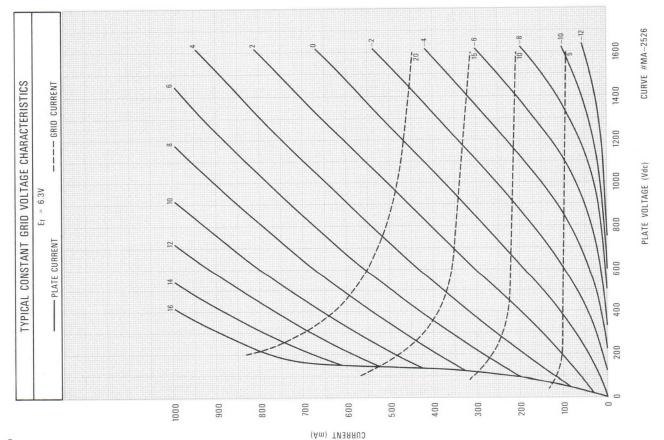





AIRFLOW vs STATIC PRESSURE WITH STANDARD COWLING JAN-157

FOR 014653, 158594, 158593 RADIATORS




(V) 30ATJOV 0190

Y654

(A) TNARRUD XAA9

8941/Y690

TECHNICAL DATA

PLANAR TRIODE

The 8941 is a planar triode of ceramic/metal construction designed for use in airborne, ground and space applications as a grid or plate pulsed oscillator, amplifier, or frequency multiplier at frequencies up to 2.0 GHz. The extended grid to cathode insulator permits reliable operation in some applications to 12 KV¹. The other special features of this tube include high transconductance, high mu and high current capability from an arc-resistant, extended interface matrix cathode.

The tube is normally supplied without radiator and may be conduction, convection, heat sink or liquid cooled such as immersion in an insulating medium (eg. FC-75). Radiators for forced-air cooling as well as heat sink adapters permitting anode dissipations up to 750 watts are available as separate items.

The Y-690 is an 8941 which has been specially processed for series regulator and switch tube service and will operate in some applications to 15 KV¹. Solder tabs are available on special request permitting attachment of flying leads for grid, cathode and heater connections.

GENERAL CHARACTERISTICS¹

ELECTRICAL

0 . .

Cathode: Oxide Coated, Unipotential					
Heater: Voltage	6.3 ± 0.3	V			
Current, at 6.3 volts	2.25	А			
Transconductance (Average):					
$I_{b} = 160 \text{ mA}$	75	mmhos			
Amplification Factor (Average):	200				
Direct Interelectrode Capacitance (grounded cathode) ²					
Cin	14.0	pF			
Cout	0.11	pF			
Cgp	2.5	pF			
Cut-off Bias ³	-20	V max.			
Frequency of Maximum Rating:					
CW	2000	MHz			
Plate or Grid-Pulsed	2000	MHz			

1. Characteristics and operating values are based upon performance tests and environmental conditions. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 2 pF due to thermal expansion of the cathode.

3. Measured with one milliampere plate current and a plate voltage of 1 kVdc.

(Effective 10-15-75) © 1975 by Varian

Printed in U.S.A.

MECHANICAL

Maximum Overall Dimensions:			
Length	2.235 in;	56.77 mn	n
Diameter	1.365 in;	34.60 mn	n
Net Weight	1.96oz;	56 gm	1
Operating Position		Anv	y
Maximum Operating Temperature:			
Ceramic/Metal Seals		250°C	2
Cooling Conduction, convection,			
ENVIRONMENTAL			
Shock: 11 ms, non-operating		60 (G
Vibration: Operating, All Axis			
Altitude; max., in suitably designed circuit		60,000 f	t.

RANGE VALUES FOR EQUIPMENT DESIGN Heater: Current at 6.3 volts	2.05	
Cathode Warmup Time Interelectrode Capacitance ¹ (grounded cathode connection)	90	sec.
Cin		1
Cout		0.11 pF
Cgp	2.0	3.0 pF

 Capacitance values for a cold tube as measured in a special shielded fixture. When the cathode is heated to the proper temperature, the grid-cathode capacitance will increase from the cold value by approximately 2 pF due to thermal expansion of the cathode.

GRID PULSED OR PLATE PULSED AMPLIFIER OR OSCILLATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE (grid pulsed) PEAK PULSE PLATE VOLTAGE	10,000	VOLTS
(plate pulsed)	12,000	
DC GRID VOLTAGE	-350	VOLTS
INSTANTANEOUS PEAK GRID-CATHOI	DE VOLI	TAGE
Grid negative to cathode	-750	VOLTS
Grid positive to cathode	175	VOLTS
PULSE PLATE CURRENT	12	AMPERES
PULSE GRID CURRENT	3.0	AMPERES
AVERAGE PLATE DISSIPATION		
Forced Air Cooling ¹	750	WATTS
GRID DISSIPATION (Average)	2.0	WATTS
FREQUENCY	2.0	GHz
PULSE DURATION 2	6.0	μs
DUTY FACTOR2	.0033	

1. Using EIMAC radiator PN 158096.

Operating Conditions for 8941 in representative

applications:			
Cathode Biased Pulsed Ampl	d, rf	Grid P	ulsed
Pulsed Ampl	ifier ³	Ampl	ifier
Frequency	1850	1090	MHz
Heater Voltage	6.3	6.3	V
DC Plate Voltage	4500	5000	Vdc
DC Grid Voltage	-40	-60	Vdc
Peak Video Plate Current	3.1	4.0	а
Peak Video Grid Current	.6	.75	а
Useful Power Output	4.2	10.0	kw(peak)
Pulse Duration	3.0	3.0	μs
Duty Cycle	0.04	0.001	
Gain	11.5	12.0	dB
Bandwidth	20		MHz

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

3. No gate pulse used.

8941/Y690

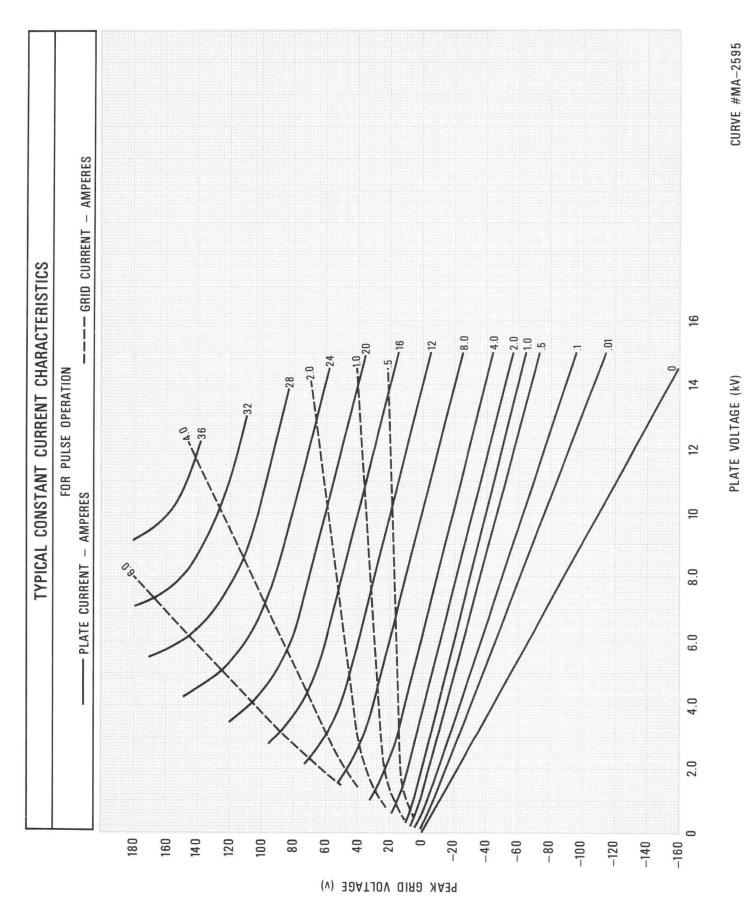
PULSE MODULATOR AND PULSE AMPLIFIER SERVICE (Type Y-690)

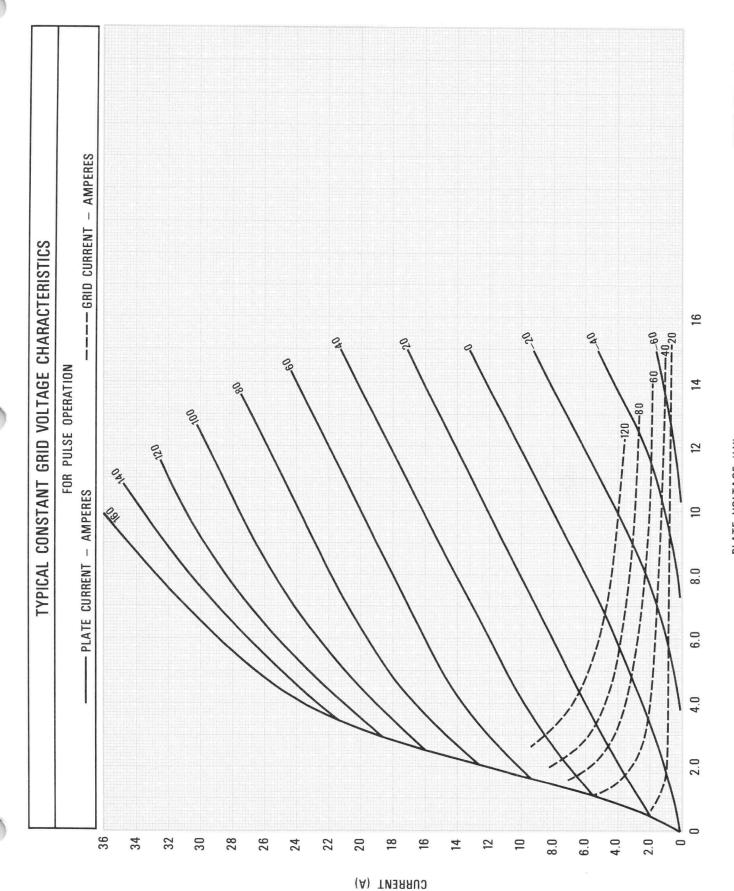
ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	15,000	VOLTS
PEAK PLATE VOLTAGE	18,000	VOLTS
DC GRID VOLTAGE	-350	VOLTS
INSTANTANEOUS PEAK GRID-CA	THODE	VOLTAGE
Grid negative to cathode		VOLTS
Grid positive to cathode	100	VOLTS
PULSE CATHODE CURRENT	16	AMPERES
DC PLATE CURRENT	600	MILLIAMPERES

AVERAGE PLATE DISSIPATION		
Forced Air Cooling 1	750	WATTS
GRID DISSIPATION (Average)	2	WATTS
PULSE DURATION 2	6.0	μs
DUTY FACTOR ²	.0033	
CUT-OFF MU	90	

1. Using EIMAC radiator PN 158096.

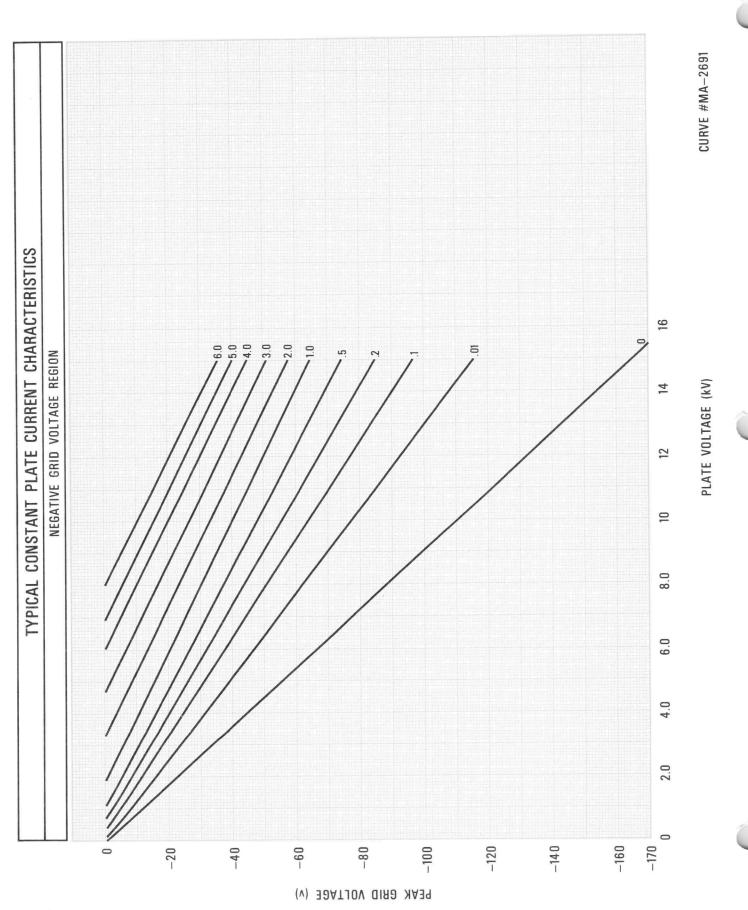

 For applications using longer pulse duration and/or higher duty cycle consult the nearest Varian Electron Tube & Device Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.


APPLICATION

For general application information please refer to the Planar Triode Operazing Instruction Sheet. The operating instructions should be consulted prior to the designing of new requirements around the above tube type. For unusual and special applications consult the nearest Varian Electron Tube Field Office, or the Product Manager, EIMAC Division of Varian, Salt Lake City, Utah.

The cathode and grid flanges should not be altered in any way such as be machining or filing, since the final seal could be damaged. Maximum torque applied to flanges during installation should not exceed 15 inch pounds.

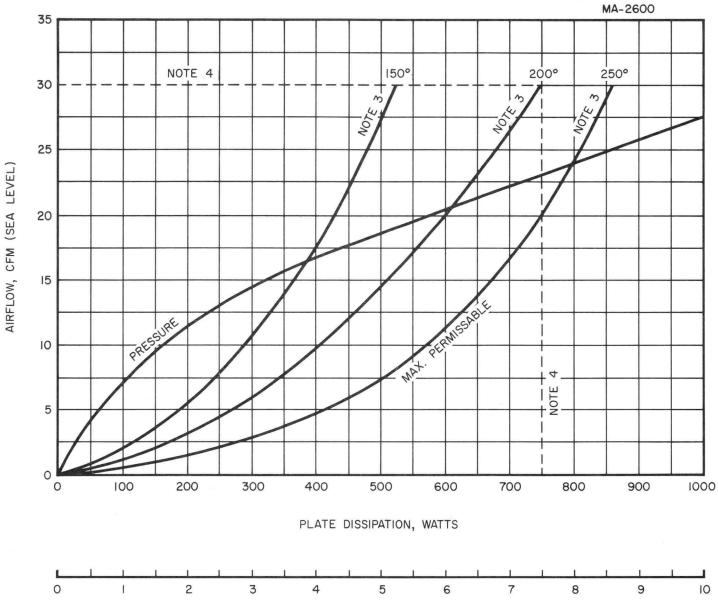
For optimum RF performance, the anode line should make good contact on the anode area indicated on the outline drawing. Soldered connections may be made to the anode stud, grid or cathode flanges, and heater contacts where adequate heat sinking and good soldering practices are followed to minimize the heat applied to the tube and the thermal gradient across the metal to ceramic brazed areas. If forced air cooling is provided, auxiliary air flow, apart from the air flowing through the radiator, should be provided to cool the tube envelope and other tube terminals. Some conduction cooling is always provided through the contact terminals. However, these terminals usually exhibit poor heat transfer, often having a temperature gradient across them as high as 50°C.



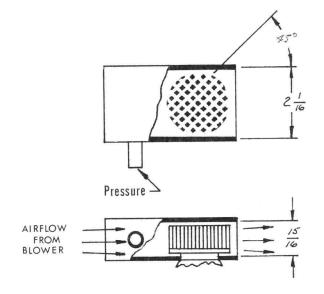
CURVE #MA-2692

PLATE VOLTAGE (KV)

8941/Y690 Eimo



8941/Y690

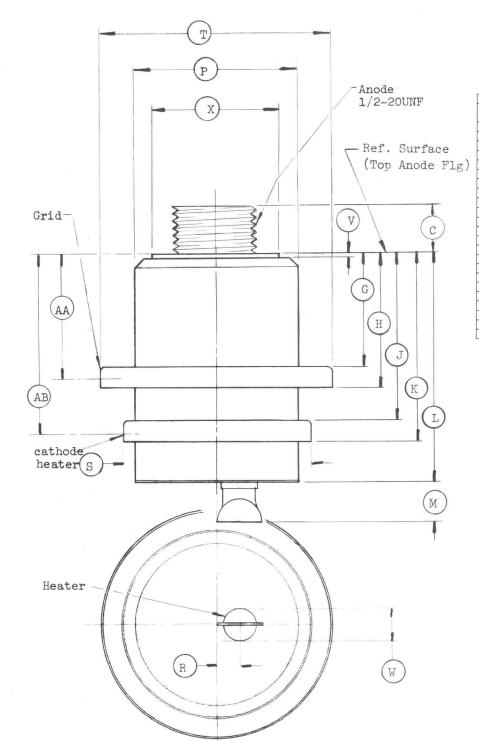


PRESSURE DROP, INCHES

8

- COWLING DETAIL -

- 1. Inlet Air at 20°C
- 2. Use Radiator No. 158096 (Copper-Pin) in Cowling as shown.
- 3. Temp. measured at Anode Cup-Plate Insulator Seal.
- 4. Describes Typical MAX. CW Operating Point.


COOLING DATA FOR 8941 IN FC 75 DIELECTRIC COOLANT

NOTES:

- 1. USE RADIATOR 158096 (Copper Pin)
- 2. TUBE AXIS VERTICAL IN LIQUID.
- 3. LIQUID AMBIENT TEMPERATURE 40°C.
- 4. TUBE W/O COOLER STUD COOLING ONLY.
- 5. MAX. CW RATING CONTACT PLANAR MGR. EIMAC, SLC ON INTERMEDIATE OR HIGHER POWERS THAN SHOWN.
- SEAL TEMPERATURE IS MEASURED AT PLATE TO ANODE INSULATOR FLANGE (SEE 'V' ON OUTLINE DWG.)

			ENSIONA			
DIM	INCHES			MILLIMETERS		
DIN	MIN.	MAX.	REF.	MIN.	MAX.	REF.
С	0.500	0.600		12.70	15.24	
G	0.635	0.660		16.13	16.76	
н	0.760	0.795		19.30	20.19	
J	0.905	0.960		22.99	24.38	
К		1.095			27.81	
L	1.180	1.260	10.10	29.97	32.00	
M	0.300	0.375		7.62	9.52	
P	0.940	0.965		23.88	24.51	
R	0.090	0.110		2.29	2.79	
S	1.065	1.085		27.05	27.56	
T	1.345	1.365		34.16	34.67	
V		0.035			0.89	
W			0.190			4.83
X	0.760	0.815		19.30	20.70	
AA	(see note	2,3)	0.710			18.03
AB	(see note	2,3)	1.000			25.40
-						

NOTES:

- Ref. Dims .are for info only & are not req'd for inspection purposes.
- Contact Surface Dims. AA & AB are for cavity design purposes only & are not intended as inspection criteria
- 3. Contact Surfaces are ± .030 around dim. indicated.
- 4. TIR of Contact Surfaces are specified in individual Tube Electrical Specs.

EIMAC division of Varian

Main office: 301 Industrial Way, San Carlos, CA 94070

Look in the general section for-

A quick guide to EIMAC products and services offered in this catalog.

Including . . .

- Your nearest distributor of modern, fully guaranteed EIMAC electron tubes and accessories.
- Your nearest Varian/EIMAC Field Engineer, who stands ready to give you immediate engineering assistance, information on deliveries and prices, or to provide other information not found in this catalog.
- EIMAC tube type numbering system.
- EIMAC/JEDEC cross-reference list.

Important EIMAC extras...

APPLICATION ENGINEERING. The EIMAC Application Engineering Department is available at all times for consultation. New tube operating techniques are continually being explored, tested and proven by EIMAC engineers, whose combined knowledge and experience are at your service. EIMAC Application Bulletins covering various uses of EIMAC products are available upon request.

FIELD ENGINEERING. Serving as an extension of the Varian/EIMAC Application Engineering Department outside the EIMAC Division plant, the Field Engineers cover the United States, and numerous foreign countries, operating out of offices in major cities. They will help you personally with experimental work, circuits, technique, etc. Engineers from the EIMAC plant are available, too, for field consultation. As EIMAC tubes are world renowned, the same services extend to countries overseas through the Varian/EIMAC export operations and overseas offices.

TECHNICAL DATA

8163 3-400Z

HIGH-MU POWER TRIODE

The EIMAC 8163/3-400Z is a compact power triode intended to be used as a zero-bias Class-B amplifier in audio or radio-frequency applications. Operation with zero grid bias simplifies associated circuitry by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 8163/ 3-400Z in a cathode-driven circuit.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten		
Voltage	5.0	V
Current	14.1	A
Amplification Factor (Average)	200	
Interelectrode Capacitances (Average), ² Grounded-Grid Connection	on:	
Cin	7.1	pF
Cout	4.1	pF
Cpk	0.1	pF
Frequency for Maximum Ratings	110	MHz

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Base 5 Pin Special Basing See Drawing Mounting Position Vertical, base down or up Cooling Radiation and Forced Air Heat-Dissipating Plate Connector Supplied mounted on tube
Recommended Socket
Recommended Chimney EIMAC SK-416
Maximum Operating Temperatures:
Plate Seal
Base Seals
Maximum Over-All Dimensions:
Height 5.375 In; 136.5 mm
Diameter
Net Weight (approximate) 7 Oz; 198 gm

(Effective 8-15-74) © 1961, 1967, 1968, 1974 by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

RADIO FREQUENCY LINEAR AMPLIFIER GROUNDED-GRID, Class B

MAXIMUM RATINGS:

DC PLATE VOLTAGE									VOLTS
DC PLATE CURRENT		•	•		ŝ	÷		0.40	AMPERE
PLATE DISSIPATION								400	WATTS
GRID DISSIPATION				•				20	WATTS

TYPICAL OPERATION (Single-Tone Conditions)

	3000	Vdc
Zero Sig. Plate Current 1	100	mAdc
Max. Sig. Plate Current	333	mAdc
Max. Sig. Grid Current 1	120	mAdc
Driving Impedance	122	Ω
Resonant Load Impedance	4750	Ω
Max. Sig. Driving Power 1	32	W
Peak Envelope Plate Output Power	655	W

TYPICAL OPERATION (Minimum Distortion Products)

Plate Voltage	2000	Vdc
Zero Sig. Plate Current ¹	62	mAdc
Single Tone Plate Current	400	mAdc
Single Tone Grid Current 1	148	mAdc
Two Tone Plate Current	265	mAdc
Two Tone Grid Current ¹	87	mAdc
Driving Impedance	112	Ω
Resonant Load Impedance	2750	Ω
Max. Sig. Driving Power ¹	45	W
Peak Envelope Useful Output Power1	445	W
Intermodulation Distortion Products2	-40	dB

AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class B

MAXIMUM_RATINGS (PER TUBE):

DC PLATE VOLTAGE							4000	VOLTS
DC PLATE CURRENT	•						0.40	AMPERE
PLATE DISSIPATION			ł	ž			400	WATTS
GRID DISSIPATION		•			•		20	WATTS

1. Approximate value.

RADIO FREQUENCY AMPLIFIER OR OSCILLATOR Class C

MAXIMUM RATINGS:

DC PLATE VOLTAGE	•			÷					4000	VOLTS
DC PLATE CURRENT	•				•				0.35	AMPERE
PLATE DISSIPATION	•				•	•	÷	8	400	WATTS
GRID DISSIPATION	•	•	•		•				20	WATTS

1. Approximate value.

TYPICAL OPERATION (Minimum Distortion Products at 1 kW PEP Input)

Plate Voltage	2500	Vdc
Zero Sig. Plate Current ¹	73	mAdc
Single Tone Plate Current	400	mAdc
Single Tone Grid Current ¹	142	mAdc
Two Tone Plate Current	274	mAdc
Two Tone Grid Current1	82	mAdc
Driving Impedance	114	Ω
Resonant Load Impedance	3450	Ω
Peak Envelope Useful Output Power 1.	560	W
Max. Sig. Driving Power 1	44	W
Intermodulation Distortion Products 2.	-35	dB

TYPICAL OPERATION (Minimum Distortion Products with $E_b = 1500 \text{ Vdc}$)

Plata Valtara	1 = 0.0	
Plate Voltage	1500	Vdc
Zero Sig. Plate Current 1	46	mAdc
Single Tone Plate Current	400	mAdc
Single Tone Grid Current 1	163	mAdc
Two Tone Plate Current	265	mAdc
Two Tone Grid Current 1	92	mAdc
Driving Impedance	109	Ω
Resonant Load Impedance	1620	Ω
Peak Envelope Useful Output Power ¹ .	300	W
Max. Sig. Driving Power1	46	W
Intermodulation Distortion Products ² .	-37	dB

1. Approximate value.

2. Approximate value; referenced against one tone of a two equal-tone signal.

TYPICAL OPERATION (Sinusoidal Wave, Two Tubes, Grid Driven)

Plate Voltage	3000	Vdc
Grid Voltage	0	Vdc
Zero Sig. Plate Current ¹	200	mAdc
Max. Sig. Plate Current	666	mAdc
Max. Sig. Grid Current ¹	240	mAdc
Driving Power1	26	W
Peak af Driving Voltage(per tube)1	88	V
Load Resistance, Plate/Plate	9500	Ω
Max. Sig. Plate Output Power 1	1310	W

TYPICAL OPERATION

Plate Voltage			•		÷				3000	Vdc
Plate Current									333	mAdc
Grid Voltage					÷				-75	Vdc
Grid Current ¹										mAdc
Peak rf Grid Voltage1	•	•	•					•	187	V
Grid Driving Power1	•		•			•	•		25	W
Plate Output Power1		•	•	•		•	•	•	730	W

8163/3-400Z

RADIO FREQUENCY AMPLIFIER,

Plate Modulated, Class C

MAXIMUM RATINGS:

DC PLATE VOLTAGE								3000	VOLTS
DC PLATE CURRENT			•	•			•	0.275	AMPERE
PLATE DISSIPATION		÷				÷		270	WATTS
GRID DISSIPATION	÷	ž.		•	•	÷		20	WATTS

1. Drive modulation is required with a high-mu triode.

2. Approximate value.

TYPICAL OPERATION

Plate Voltage	. 3000	Vdc
Plate Current	. 245	mAdc
Grid Voltage		Vdc
Grid Current ²		mAdc
Peak rf Grid Voltage ²		V
Grid Driving Power ²	. 18	W
Plate Output Power2	. 550	W

NOTE: In most cases, "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made. Exceptions are distinguished by a listing of "Useful" output power as opposed to "Plate" output power. Values appearing in these groups have been obtained from existing equipment(s) and the output power is that measured at the load.

RANGE VALUES FOR EQUIPMENT DESIGN:	Min.	Max.	_
Filament Current, at 5.0 volts	13.5	14.7	А
Zero Bias Plate Current (Eb = 3000 Vdc)	80	115	mAdc
Cut-Off Voltage ($E_b = 3000 \text{ Vdc}, I_b = 1.0 \text{ mAdc}$)		-25	Vdc
Interelectrode Capacitance (Grounded Cathode Connection) ¹			
Cin	6.0	9.0	pF
Cout		0.15	pF
Сдр	3.4	4.8	pF
Interelectrode Capacitance (Grounded Grid Connection) ¹			
Cin	6.0	9.0	pF
Cout	3.4	4.8	pF
Cpk		0.15	pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MOUNTING - The 3-400Z must be operated vertically, base up or down. A flexible connecting strap should be provided between the heat dissipating plate connector and the external plate circuit, and the tube should be protected from severe vibration and shock.

The EIMAC SK-410 Air-System Socket is especially recommended for mounting, as the contacting clips are made with considerable flexibility in order to avoid applying undue lateral pressure on the tube pins, to avoid the possibility of damage to the base of the tube. The tube should always be inserted or removed from the socket with a straight-in or straight-out motion, and "rocking" the tube in or out of the socket should be avoided. If a socket other than the EIMAC SK-410 is used, it should be ascertained that the contacts are flexible enough so they do not apply any significant lateral force against the tube base pins, as installed or during insertion or removal, to avoid the possibility of catastrophic damage to the glass tube base.

COOLING - Forced-air cooling is required to maintain the base seals at a temperature below 200° C. When using the EIMAC SK-410 Air-System Socket and SK-416 Chimney, a minimum air flow rate of 13 cubic feet per minute at a static pressure of approximately 0.13 inch of water at sea level is required to provide adequate cooling at an air temperature of 55°C. At higher inlet air

temperatures, higher altitudes, or at frequencies above 30 MHz,the air flow rate must be increased to give equivalent cooling. Cooling air must be supplied to the tube even when the filament alone is on during standby periods.

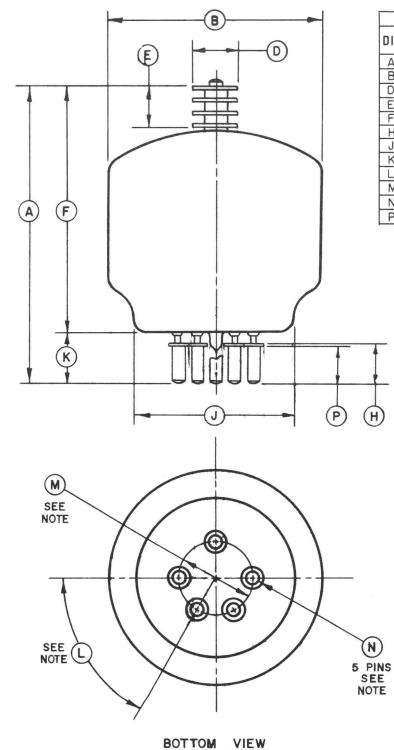
CLASS-C OPERATION - Although specifically designed for class-B service, the 3-400Z may be operated as a class-C power amplifier or oscillator or as a plate-modulated radio-frequency power amplifier. The zero-bias characteristic of the 3-400Z can be used to advantage in class-C amplifiers operating at plate voltages of 3000 volts or below by employing only grid-leak bias. If driving power fails, plate dissipation is then kept to a low value because the tube will be operating at the normal static zero-bias conditions.

FILAMENT OPERATION - The rated filament voltage for the 3-400Z is 5.0 volts. Filament voltage as measured at the socket, must be maintained within the range of 4.75 to 5.25 volts to obtain maximum tube life.

INTERMODULATION DISTORTION - Typical Operating conditions with distortion values included are the result of data taken during actual operation at 2 megahertz. Intermodulation values listed are those measured at the full peak envelope power noted. As the driving signal level is reduced, distortion products remain at the listed value, or better, below original peak envelope power level.

INPUT CIRCUIT - When the 3-400Z is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier it is suggested that the cathode tank circuit operate at a "Q" of five or more.

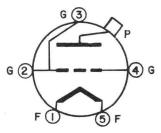
HIGH VOLTAGE - Normal operating voltages used with the 8163/3-400Z are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

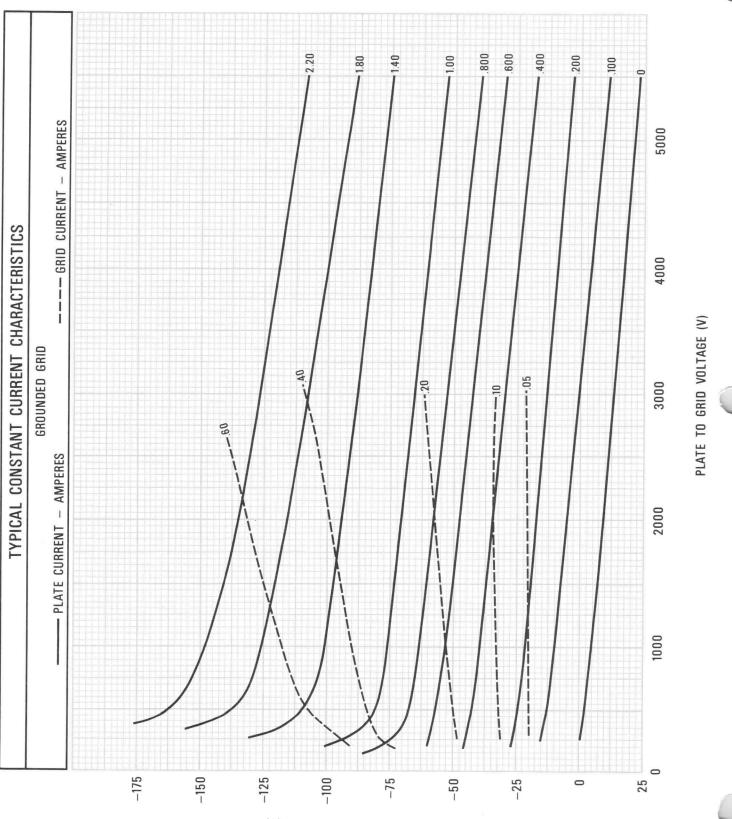

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.

8163/3-400Z

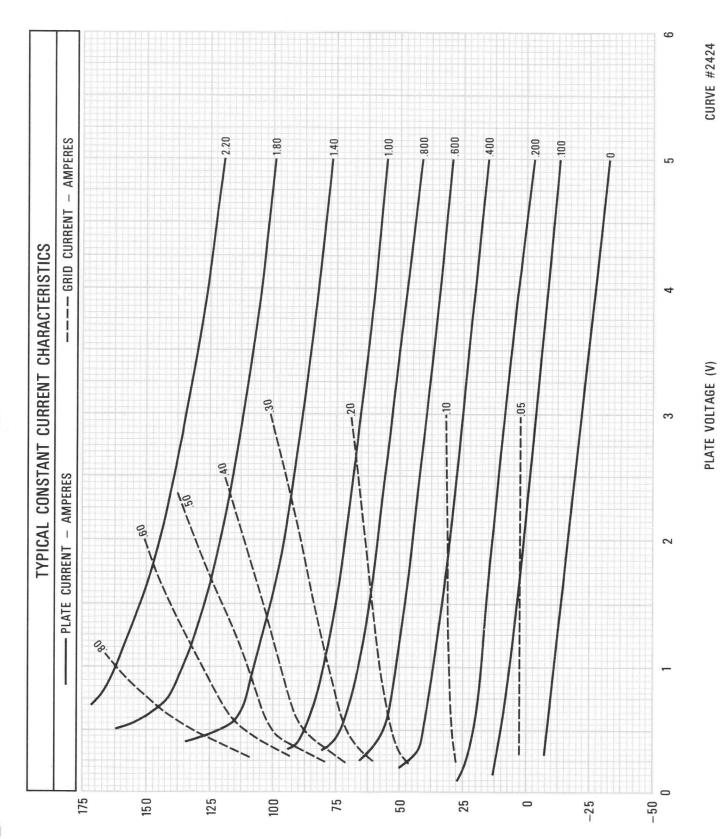




	DIMENSIONAL DATA										
DIM	INCHES					LLIMETE	RS				
	MIN.	MAX.	REF.		MIN.	MAX.	REF.				
А	4.875	5.375			123.8	136.5					
В		3.562				90.47					
D	0.740	0.760			18.80	19.30					
E	0.635	0.665			16.13	16.89					
F	3.937	4.437			100.0	112.7					
Н	0.688	0.813			17.47	20.65					
J		2.500				63.50					
К			0,937				23.80				
L			60°				60°				
Μ			1.250				31.75				
N	0.185	0.191			4.70	4.85					
Ρ	0.625	0.750			15.87	19.05					

NOTES:

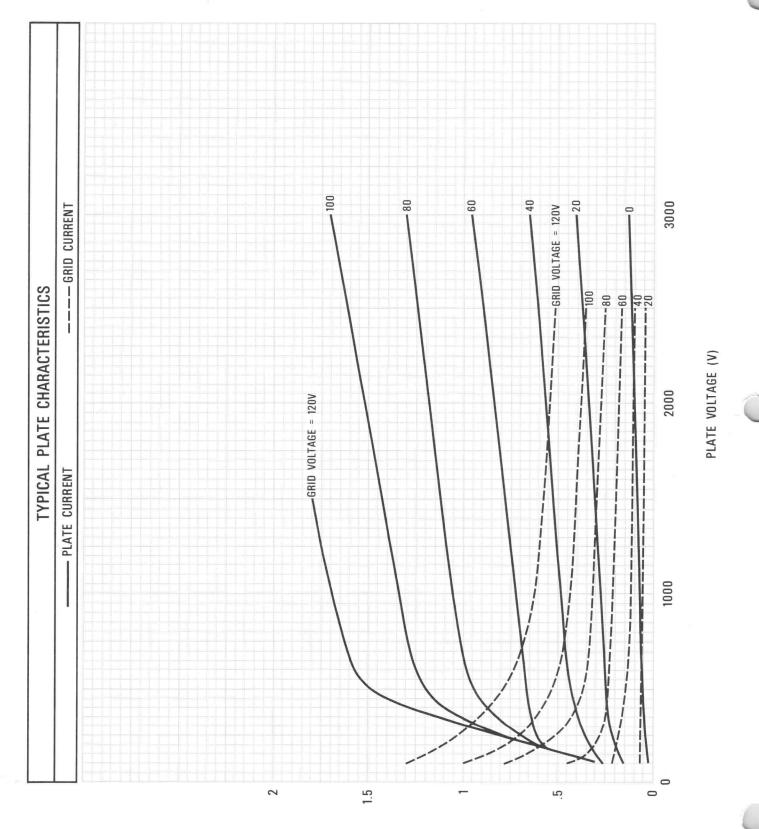
- BASE PINS N ARE SO ALIGNED THAT THEY CAN BE FREELY INSERTED IN-TO A GAGE 1/4'' THICK WITH HOLE DIAMETERS OF 0.204 LOCATED ON THE TRUE CENTERS BY THE GIVEN DIM-ENSIONS L & M.
- REFERENCE DIMENSIONS ARE FOR INFO ONLY AND ARE NOT REQUIRED FOR INSPECTION PURPOSES.



ΓΙΕΑΜΕΝΤ ΤΟ GRID VOLTAGE (V)

6

8163/3-400Z


C

(V) 30ATJOV 0180

7

8163/3-400Z

8163/3-400Z

(А) ТИЗЯЯИО

3-500Z

HIGH-MU POWER TRIODE

The EIMAC 3-500Z is a compact power triode intended to be used as a zero-bias Class-AB₂ amplifier in audio or radio-frequency applications. Operation with zero grid bias simplifies associated circuitry by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 3-500Z in a cathode-driven circuit.

GENERAL CHARACTERISTICS¹

ELECTRICAL

	9711-10
Filament: Thoriated Tungsten	
Voltage	and the first instant
Current, at 5.0 volts 14.2 A	
Amplification Factor (Average)	TITT
Direct Interelectrode Capacitances (grounded filament) ²	
Input	查丁语 丁查
Output 0.07 pF	Û a 🛛 a Û
Feedback 4.7 pF	Ū.
Direct Interelectrode Capacitances (grounded grid) ²	
Input	8.3 pF
Output	4.7 pF
Feedback	0.07 pF
Frequency of Maximum Rating:	
CW	110 MHz
1 Characteristics and operating values are based upon performance tests. These figures ma	w change without notice

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. In Shielded Fixture.

MECHANICAL

Maximum Overall Dimensions:
Length 6.00 in; 152.40 mm
Diameter
Net Weight 7.0 oz; 198.5 gm
Operating Position
Maximum Operating Temperature:
Plate Seal
Base Seals
Cooling Radiation and forced air
Base 5 Pin Special

(Revised 11-1-73) © 1968, 1970, 1973 by Varian

Printed in U.S.A.

3-500Z

Recommended Socket		
Recommended Heat-Dissipating Connector:		
Plate	• • • • •	HR-6

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN

Class AB₂

MAXIMUM RATINGS:

DC PLATE VOLTAGE				•	•				•		4000	VOLTS
DC PLATE CURRENT	÷			•		ż				÷	0.4	AMPERE
PLATE DISSIPATION			•	•	•	•	•	•	•	•	500	WATTS
GRID DISSIPATION .		•	٠	•	•		٠	•	•		20	WATTS

TYPICAL OPERATION (Frequencies to 110 MHz) Class AB2, Peak Envelope or Modulation Crest Conditions

Plate Voltage Cathode Voltage ¹	1500 0	2000 0		3000 +10	3500 +15	
Zero Signal Plate Current ²	65	95	130	62	53	mAdc
Single-Tone Plate Current, CW 3/4	400	400	400	400	400	mAdc
Two-Tone Plate Current	260	270	280	268	262	mAdć
Single-Tone Grid Current ²	130	130	120	108	108	mAdc

RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR GRID DRIVEN, CATHODE DRIVEN

Class AB₂ and C Telegraphy or FM (Key-Down Conditions)

MAXIMUM RATINGS:

DC PLATE VOLTAGE															
DC PLATE CURRENT			•	•	•	•	•	•	•		•			0.35	AMPERE
PLATE DISSIPATION	•	•	•	•		•	•	•	•			•	•	500	WATTS
GRID DISSIPATION	•	•	•			•	•	•	•	÷	•	•	•	20	WATTS

PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

MAXIMUM RATINGS:

DC PLATE VOLTAGE						•						3000	VOLTS
DC PLATE CURRENT													
PLATE DISSIPATION	١.	•	•	•			•	•	•	•		330	WATTS
GRID DISSIPATION2	÷		•	•	•	•	•	•	•	•	÷	20	WATTS

1. Corresponds to 500 watts at 100% sine-wave modulation.

2. Average, with or without modulation.

Two-Tone Grid						
Current ²	80	80	70	60	58	mAdc
Single-Tone Power						
Input	600	800	1000	1200	1400	W
Useful Output Power,						
CW or PEP	330	500	600	740	890	W
Resonant Load						
Impedance	1600	2750	3450	4200	5000	Ω
Intermodulation Disto	rtion F	roduc	ts5			
3rd Order			-33	-40	-40	db
5th Order				-46	-45	db

- 1. Zener diode positive bias used at plate potentials of 3 kV and above.
- 2. Approximate value.
- 3. Currents listed correspond to SSB, or "two-tone" average current at peak of signal envelope.
- Single-tone current for 3500 Vdc operation may reach this value during short periods of circuit adjustment only.
- 5. Intermodulation distortion products are referenced against one tone of a two equal tone signal.

TYPICAL OPERATION (Frequencies to 110 MHz)											
Grid Driven Cathode Driven											
Plate Voltage3000Grid Voltage0Plate Current350Grid Current115Peak rf (Cathode) (Grid)1050Voltage30Plate Input Power1050Plate Dissipation330Useful Output Power720Resonant Load Impedance4200	3500 -75 300 115 187 22 1050 200 850 5700	3000 0 333 108 215 87 1000 250 750 4800	3500 -75 350 118 215 98 1225 305 920 5500	Vdc Vdc mAdc mAdc V W W W W W W W Ω							

TYPICAL OPERATION (Frequencies to 30 MHz)

Plate Voltage	3000 Vdc -100 Vdc
Grid Voltage	
Plate Current	275 mAdc
Grid Current ¹	120 mAdc
Peak rf Grid Voltage ¹	200 v
Calculated Driving Power	25 W
Plate Input Power	825 W
Plate Dissipation	185 W
Plate Output Power	640 W

1. Approximate value.

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB2, Grid Driven (Sinusoidal Wave)

MAXIMUM RATINGS (Per Tube):

DC PLATE VOLTAGE	1.				•		•			4000	VOLTS
DC PLATE CURRENT						•				0.4	AMPERE
PLATE DISSIPATION										500	WATTS
GRID DISSIPATION	•	•	•			•	•		•	20	WATTS

- 1. See zero-bias operation in Application Section.
- 2. Approximate value.
- 3. Per Tube.
- 4. Nominal drive power is one-half peak power.

TYPICAL OPERATION (Two Tubes)

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves or actual measurment. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Filament: Current at 5.0 volts	13.5	14.7 A
Interelectrode Capacitances1 (grounded filament connection)		
Input	6.5	10.0 pF
Output		0.18 pF
Feedback	4.2	5.2 pF
Interelectrode Capacitances1 (grounded grid connection)		
Input	6.5	10.0 pF
Output	4.2	5.2 pF
Feedback		0.18 pF
Zero Signal Plate Current:		
$(E_c = 0Vdc, E_b = 2500 Vdc) \dots$	90	180 mAdc
1. In Shielded Fixture.		

APPLICATION

MECHANICAL

MOUNTING - The 3-500Z must be operated vertically, base up or down. A flexible connecting strap should be provided between the heat dissipating plate connector and the external plate circuit. The tube must be protected from severe vibration and shock.

SOCKET - The EIMAC SK-410 air system socket and SK-406 chimney are recommended for

use with the 3-500Z. When a socket other than the SK-410 is used, provisions must be made for equivalent cooling of the base, the envelope, and the plate lead.

If a socket other than the EIMAC SK-410 is employed, the user must assure himself that lateral pressure is not applied to the tube pins and base seal. Otherwise damage to the tube may result.

3.

CAUTION-GLASS IMPLOSION - The EIMAC 3-500Z is pumped to a very high vacuum, which is contained by a glass envelope. When handling a glass tube, remember that glass is a relatively fragile material, and accidental breakage can result at any time. Breakage will result in flying glass fragments, so safety glasses, heavy clothing, and leather gloves are recommended for protection.

COOLING - Forced-air cooling is required to maintain the base seals at a temperature below 200° C, and the plate seal at a temperature below 225° C. Air-flow requirements to maintain the above maximum temperatures are tabulated below. (For operation below 30 MHz)

Base-	to-Anode Air Flo	ow
Anode	Air	Pressure
Dissipation	Flow	Drop
(Watts)	(CFM)	(inches-WC)
300	6.6	.023
400	10.3	.052
500	13.0	.082

The anode of the 3-500Z operates at a visibly red color at its maximum rated dissipation of 500 watts.

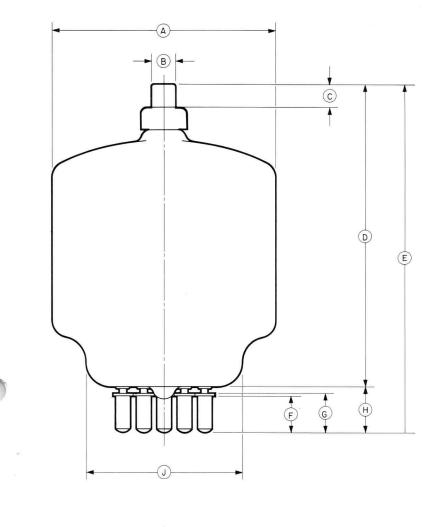
In all cases, air flow rates in excess of the minimum requirements will prolong tube life. NOTE: Two 3-500Z tubes in a single amplifier, chassis mounted, may be adequately cooled by use of a fan so mounted as to pressurize the space below the sockets. Fans suitable for use at or near sea level are Pamotor Model 2000, or Model 6500. The Rotron "Spartan" fan (3200 rpm) is also suitable, as is a #3, 3-inch squirrel cage blower (3100 rpm).

In all cases, the only criteria of proper cooling is the temperature of the tube seals. Tube temperatures may be measured with the aid of temperature sensitive paint, spray, or crayon. Suitable products are manufactured by the Tempil Division, Big Three Industrial Gas & Equipment Co., Hamilton Blvd., So. Plainfield, N.J. 07080.

ZERO-BIAS OPERATION - Operation at zerobias is not recommended with plate voltages over 3000 since plate dissipation may be exceeded. A zener diode placing positive bias on the cathode or other constant voltage source may be used to reduce zero signal plate current at plate potentials over 2500 volts. CLASS-C OPERATION - Although specifically designed for linear amplifier service, the 3-500Z may be operated as a class-C power amplifier or oscillator or as a plate-modulated radio-frequency power amplifier. The zero-bias characteristic of the 3-500Z can be used to advantage in class-C amplifiers operating at plate voltages of 3000 volts or below by employing only grid-resistor bias. If driving power fails, plate dissipation is then kept to a low value because the tube will be operating at the normal static zero-bias conditions.

ELECTRICAL

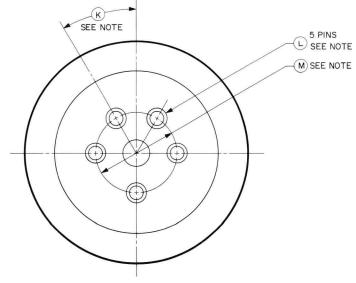
FILAMENT OPERATION - The rated filament voltage for the 3-500Z is 5.0 volts. Filament voltage, as measured at the socket, must be maintained within the range of 4.75 to 5.25 volts to obtain maximum tube life.

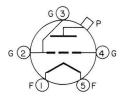

CAUTION-HIGH VOLTAGE - Operating voltage for the 3-500Z can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

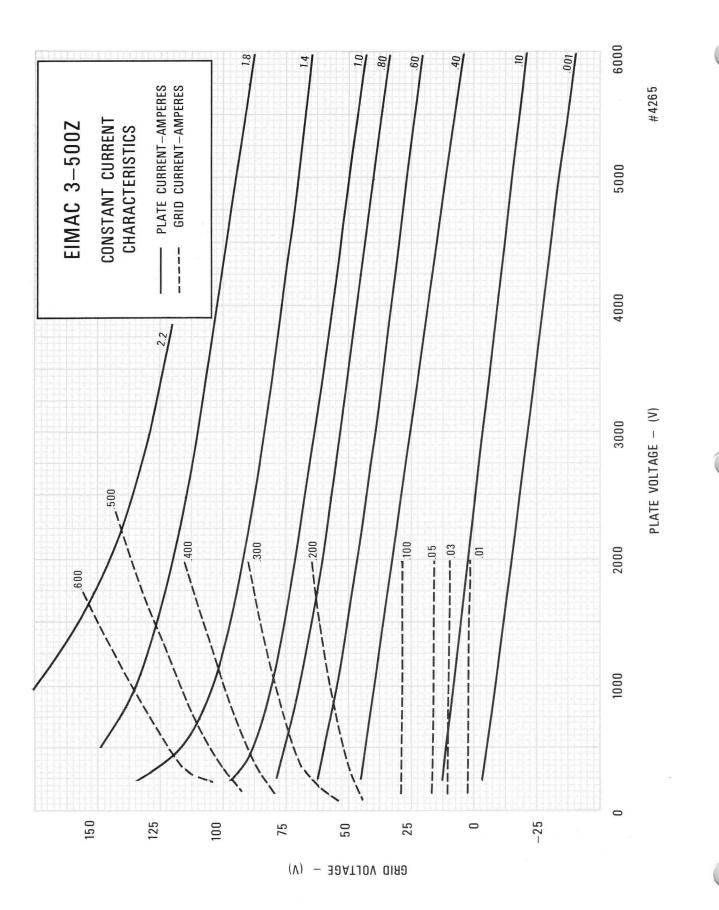
INTERMODULATION DISTORTION - Typical operating conditions with distortion values included are the result of data taken during actual operation at 2 megahertz. Intermodulation values listed are those measured at the full peak envelope power noted.

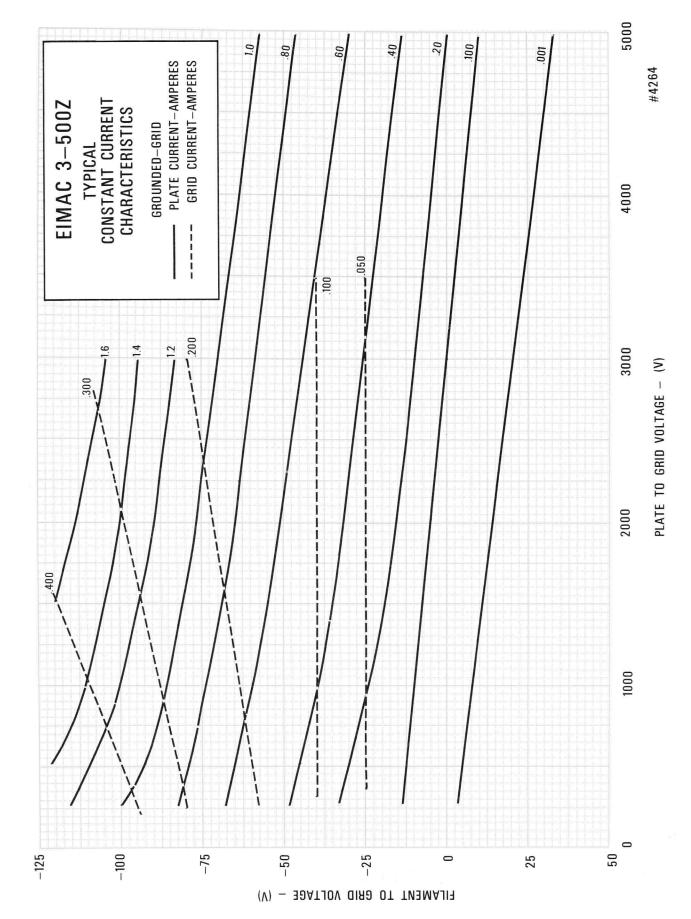
INPUT CIRCUIT - When the 3-500Z is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier it is suggested that the cathode tank circuit operate at a Q of two or more.

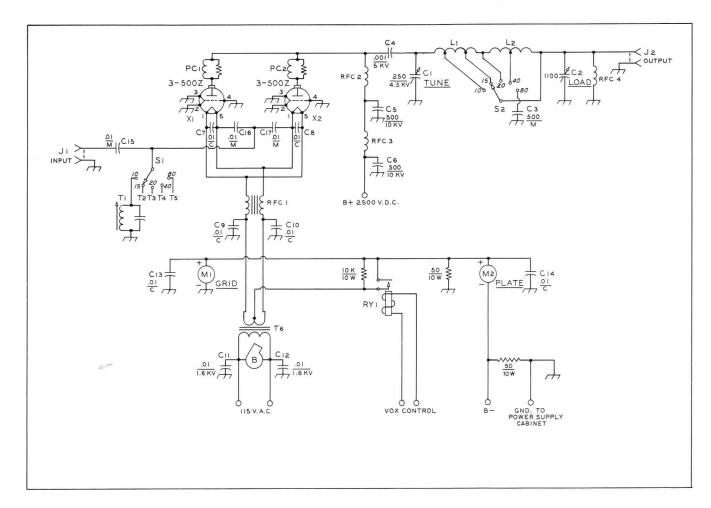
SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Crid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendation.


3-500Z OUTLINE DRAWING AND PIN CONNECTIONS




		DI	ENSION	AL DATA		
DIM		INCHES		MIL	LIMETER	S
DIN	MIN.	MAX.	REF.	MIN.	MAX.	REF.
Α		3.438			87.33	
В	0.350	0.365		8.87	9.27	
С	0.328	0.359		8.33	9.12	
D			4.844			123.04
Ε	5.500	6.000		139.70	152.40	
F	0.625	0.750		15.87	19.05	
G	0.688	0.812		17.48	20.62	
Н			0.906			23.01
J	i i	2.500D			63.50	
К	-		30°TYP			30°TYP
L	0.185D	0.19ID		4.70	4.85	
М			1.250D			31.75D


NOTE


BASE PINS (L)THEY CAN BE FREELY INSERTED INTO A GAUGE $\mathbb{M}^{\mathbb{H}}$ THICK WITH HOLE DIA'S OF .204 LOCATED ON TRUE CENTERS BY THE GIVEN DIMENSIONS $(K) \otimes (M)$.

TYPICAL CATHODE DRIVEN (GROUNDED GRID) AMPLIFIER CIRCUIT FOR TWO 3-500Z TUBES

- C-1 -- 250 pF, 4.5 kV (Johnson 154-16).
- C-2--1100 pF, 3 section. Jackson Bros. LE-3-4595-380. (M. Swedgal, 258 Broadway, N.Y. 10007).
- C-3--500 pF, 2.5 kV mica. Sangamo H-5347.
- C-4--.001 µF, 5 kV. Centralab 858S-1000.
- C-5, C-6 500 pF, 10 kV, TV "door knob" capacitor.
- C-7 thru C-10--.01 μF, 600V ceramic capacitor (Centralab DD-103).
- C-11, C-12--.01 μ F, 1.6 kV ceramic capacitor (Centralab DD16-103).
- C-13, C-14--.01 pF, 600V ceramic capacitor (Centralab DD-103).
- C-15 thru C-17--.01 μF 1 kV mica capacitor (Sangamo H-2210).
- M-1 -- 500 mAdc.

M-2--1000 mAdc.

- RFC-1--50 μH. 14 bifilar turns #10 AWG enamelled wire wound on ferrite core, 5 inches long, ½ inch diameter. (Indiana General CF-503. Newark Electronics Co. catalog number 59F-1521). Notch core with file and break to length.
- RFC-2--100 μH, 1 Adc. 112 turns #26 AWG, spacewound wire diameter on 1'' diam., 6'' long ceramic form (Centralab X-3022H insulator). Series resonant with terminals shorted to 24.5 MHz.

- RFC-3--1.7 μH, 1 Adc. 20 turns #26 AWG wound on 100K, 2W resistor (J.W. Miller RFC-144). RY-1--VOX operated SPST relay. Energized when transmit.
- PC-1, PC-2 Three 100 ohm, 2W carbon resistors in parallel. Three turns #14 AWG, ¼'' diam., ¾'' long in parallel with resistors. (Equivalent: Ohmite P-300 reduced to 3 turns).
- J-1, J-2--Coaxial receptacle. UG-58A/U, for type N connector.
- T-6--3 v at 30 amp. Chicago-Stancor P-4648. X-1, X-2--EIMAC SK-410 socket and EIMAC
- SK-406 chimney. B-Blower--13 cubic feet at 0.2 inch back pressure. Use #3 impeller at 3100 rpm. (Ripley 8472, Dayton 1C-180 or Redmond AK-2H-01AX).

CATHODE CIRCUIT COMPONENTS:

- T-1 (10 meters)--0.15 μH. 4 turns #14 AWG on ½-inch form, ½-inch long. Parallel capacitance: 200 pF, 1 kV silver mica capacitor. Resonant at 28.7 MHz.
- T-2 (15 meters)--0.15 $\mu\rm H,$ same as T-1. Resonant at 21.3 MHz with 470 pF, 1 kV silver mica capacitor.
- T-3 (20 meters)--0.31 $\mu H.$ 6 turns #14 AWG on ½-inch form, ½-inch long, slug tuned (National XR-50). Resonant at 14.2 MHz with 470 pF, 1 kV silver mica capacitor.
- T-4 (40 meters) -- 0.31 µH, same as T-3. Reson-

ant at 7.2 MHz with 940 pF. (Two 470 pF, 1 kV silver mica capacitors in parallel). T-5 (80 meters)--1.3 µH. 13 turns #18 AWG on

1-5 (80 meters)--1.5 µn. 15 utrus #18 AwG on ½-inch diameter form, ½-inch long, slug tuned (National XR-50). Resonant at 3.8 MHz with 940 pF, same as T-4.

PLATE CIRCUIT COMPONENTS (for plate potential of 2500 Vdc), R $_{L}$ = 1725 $\Omega :$

The 10, 15 and 20 meter inductor (L1) may be 10½ turns #8 AWG copper wire (or 3/16" tubing) 2" diam., 3" long. Ten meter tap is 5¼ turns from plate end; 15 meter tap is 7¼ turns from plate end. The 40-80 meter coil (L2) may be 16 turns #10 AWG, 2½" diam., 4" long. Forty meter tap is 8 turns from junction with coil L-1.

S-2--Single pole ceramic switch, high voltage, 30° index. Radio Switch Corp. Model 86-A.

- NOTE: For additional data on plate circuit design, write for Amateur Service Bulletin #30, "Pi and Pi-L Networks for Linear Amplifier Service"
- NOTE: B- of power supply is floating and grounded only through plate meter M2 and the 50 ohm safety resistor. Cabinet of power supply should be grounded to amplifier cabinet as safety measure.

TECHNICAL DATA

HIGH-MU POWER TRIODE

The EIMAC 8164/3-1000Z is a compact power triode intended to be used as a zero-bias Class-B amplifier in audio or radiofrequency applications. Operation with zero grid bias simplifies associated circuitry by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 8164/3-1000Z in a cathode driven circuit.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten			11411
Voltage	7.5 ± 0.37	V	nAnAn
Current	20	A	սիշիս
Amplification Factor (Average)	200		
Interelectrode Capacitance (Grounded Cathode) ²			
Cin		• •	 17.0 pF
Cout			 0.2 pF
Cgp		••	 7.5 pF
Interelectrode Capacitance (Grounded Grid) 2			
Cin		• •	 17.0 pF
Cout		• •	 7.5 pF
Cpk			 0.2 pF
Frequency of Maximum Rating (CW)		• • •	 110 MHz

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Base
Mounting Position Vertical, base down or up
Cooling Radiation and Forced Air
Recommended Heat-Dissipating Plate Connector EIMAC HR-8
Recommended Air-System Socket EIMAC SK-510
Recommended Air-System Chimney EIMAC SK-516 Maximum Operating Temperatures:
Plate Seal
Base Seals
(Effective 8-15-74) © 1962, 1964, 1967, 1968, 1974 by Varian Printed in U.S.A.

Maximum Overall Dimensions:

Height	7.875 In; 200.02 mm
Diameter	
Net Weight	1.2 lb; 0.55 kg

RADIO FREQUENCY POWER AMPLIFIER

Class C, Grid Driven

MAXIMUM RATINGS:

DC PLATE VOLTAGE	,					÷				ł	6000	VOLTS
DC PLATE CURRENT	÷	e.					•	•	ŝ		700	MA
GRID DISSIPATION			•	•	ž	÷			•	ž	50	WATTS
PLATE DISSIPATION								•			1000	WATTS

PLATE MODULATED RF AMPLIFIER Class C

MAXIMUM RATINGS:

DC PLATE VOLTAGE			÷					4500	VOLTS
DC PLATE CURRENT			ž	5			i,		MA
GRID DISSIPATION									WATTS
PLATE DISSIPATION	•		3		•	•	•	670	WATTS

Drive modulation is required with a high-mu triode.
 Approximate value.

RADIO-FREQUENCY LINEAR AMPLIFIER

Class B, Zero Bias, Cathode Driven

MAXIMUM RATINGS:

DC PLATE VOLTAGE	i.						•	6000	VOLTS
DC PLATE CURRENT								800	MA
GRID DISSIPATION			•					50	WATTS
PLATE DISSIPATION	ł	i,			÷			1000	WATTS

1. Approximate value.

2. Referenced against one tone of a two-equal tone signal.

AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class B

MAXIMUM RATINGS (per tube):

DC PLATE VOLTAGE					ų,			÷.	6000	VOLTS
DC PLATE CURRENT									800	MA
PLATE DISSIPATION	,								1000	WATTS
GRID DISSIPATION		•	•			•	1		50	WATTS

1. Approximate Value. Adjust to provide stated zerosignal plate current.

2. Approximate value.

TYPICAL OPERATION

Plate Voltage	3000, 4500	6000 Vdc
Grid Voltage	-30' -75	-100 Vdc
Plate Current	700 700	700 mAdc
Grid Current ² Peak RF Grid Voltage ²	230 240	250 mAdc
Peak RF Grid Voltage ²	107 200	230 v
Grid Driving Power ²	27 48	57 W
Output Power 2	1300 2250	3200 W

 Operating bias may be wholly derived from grid current flowing through 130 ohm, 25 watt resistor.
 Approximate value.

TYPICAL OPERATION 1

Plate Voltage					÷						÷	÷	÷			×.	4500	Vdc
Grid Voltage				ż	×												-100	Vdc
Plate Current																	100 100 100	mAdc
Grid Current ²			•						•	ŝ							170	mAdc
Drive Power 2					ž		•		•			j,	•		•		35	W
Output Power (Ca	arı	ri	er)	2	•	•	•				•	•			1765	W

TYPICAL OPERATION

Plate Voltage	2500	3000	Vdc
Zero-Signal Plate Current ¹	162	240	mAdc
Max. Signal Plate Current	800	670	mAdc
Max. Signal Grid Current ¹	260	220	mAdc
Max. Signal Drive Power1	100	47	W
Plate Load Impedance	1760	2650	ohms
Nominal Cathode Impedance	65	67	ohms
Plate Output Power1	1050	1080	W
Intermodulation Distortion2			
Products: 3rd Order	-32	-29	dB
5th Order	-39	-37	dB

TYPICAL OPERATION (Sinusoidal Wave, Two Tubes, Grid Driven)

Plate Voltage	3000	5000	Vdc
Grid Voltage ¹	0	-13	Vdc
Zero-Signal Plate Current	350	200	mAdc
Max. Signal Plate Current	1450	1000	mAdc
Max, Signal Grid Current ²	485	310	mAdc
Driving Power ²	48	28	W
Peak AF Driving Voltage ²	100	90	V
Load Resistance Plate to Plate	3940	10,200	ohms
Max. Sig. Plate Output Power ²	2540	3560	W

8164/3-1000Z

RANGE VALUES FOR EQUIPMENT DESIGN:

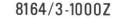
RANGE VALUES FOR EQUIPMENT DESIGN:	Min.	Max.	
Filament Current, at 7.5 volts	20.0	22.7	А
Zero Bias Plate Current (Eb = 3000 Vdc)	160	260	mAdc
Cut-Off Voltage (Eb = 3000 Vdc; Ib = 1.0 mAdc)		-24.0	Vdc
Interelectrode Capacitance (Grounded Cathode Connection) ¹			
Cin	15.0	19.0	pF
Cout		0.30	pF
Сдр	6.0	9.0	pF
Interelectrode Capacitance (Grounded Grid Connection) ¹			
Cin	15.0	19.0	рF
Cout	6.0	9.0	pF
Cpk		0.30	pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MOUNTING - The 3-1000Z must be operated vertically, base up or base down. A flexible connecting strap should be provided between the EIMAC HR-8 Heat Dissipating Connector on the plate terminal and the external plate circuit. The tube must be protected from severe vibration and shock. The EIMAC SK-510 socket or equivalent must be employed to prevent excess lateral pressure on base pins and seal of the tube.

COOLING - Forced-air cooling is required to maintain the base seals at a temperature below 200°C, and the plate seal at a temperature below 225°C. When using the EIMAC SK-510 Air-System Socket and SK-516 Chimney, a minimum air flow rate of 25 cubic feet per minute at a static pressure of approximately 0.43 inch of water, as measured at the socket at sea level, is required to provide adequate cooling at an inlet air temperature of 50°C. Above 30 megahertz the required air flow is increased to 35 cubic feet per minute at a static pressure of approximately 0.8 inch of water, as measured at the SK-510 socket. Cooling air must be supplied to the tube even when the filament alone is on during standby periods.


When a socket other than the SK-510 is used, provisions must be made for equivalent cooling of the base, the envelope, and the plate seal. In all cases air flow rates in excess of the minimum requirements will prolong tube life.

FILAMENT OPERATION - The rated filament voltage for the 3-1000Z is 7.5 volts. Filament voltage, as measured at the socket, must be maintained within the range of 7.13 to 7.87 volts to obtain maximum tube life. Operation at reduced voltage decreases emission capability, but increases life expectancy.

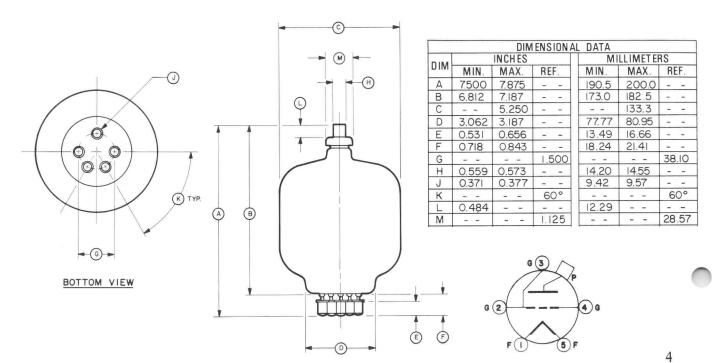
INTERMODULATION DISTORTION - Typical Operating Conditions and Intermodulation Distortion Product values are derived from measurements made at 2 MHz and are referred to one tone of a two-tone test signal. As the driving signal is reduced below full peak envelope power, distortion products remain at, or better than, the indicated value.

CLASS C OPERATION - Although designed for Class B service, the 3-1000Z may be operated as a Class-C power amplifier or oscillator, or as a plate-modulated rf amplifier. The zero-bias characteristics can be used to advantage in Class C amplifiers by employing only grid 'heak bias. If driving power fails, plate dissipation is kept to a low level since the tube will operate at normal, static zero-bias conditions.

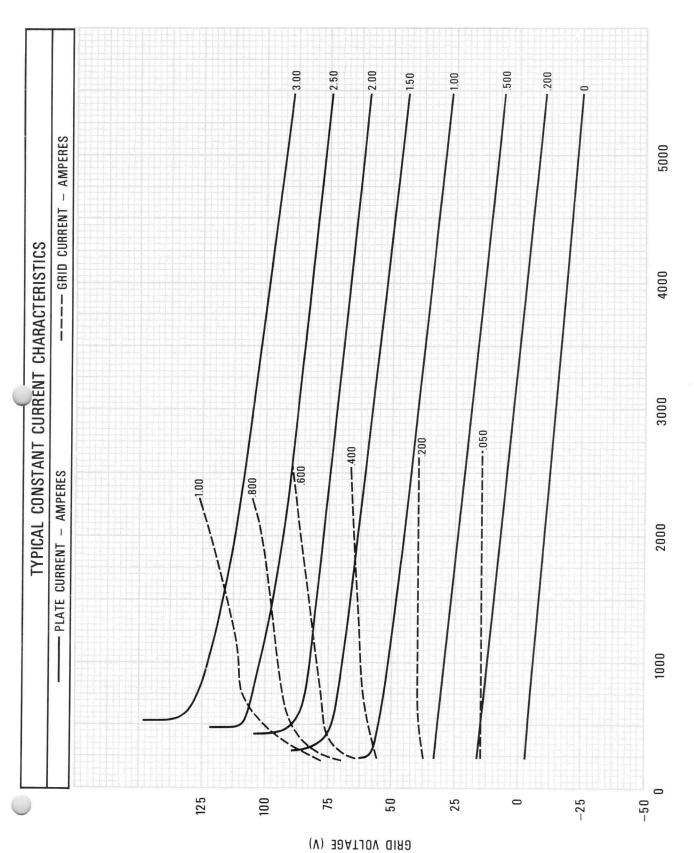
ZERO-BIAS OPERATION - Operating at zerobias is not recommended with plate voltages over 3500 volts since plate dissipation may be exceeded. Similarly, the safety of zero-bias opera-

tion as mentioned above under "Class-C Operation" is not available at plate voltages above 3500 volts. Straight Class-C or Class-B operation is, of course, permissible up to 6000 volts where other ratings are not exceeded.

INPUT CIRCUIT - When the 3-1000Z is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier it is suggested that the cathode tank circuit operate at a "Q" of five or more.

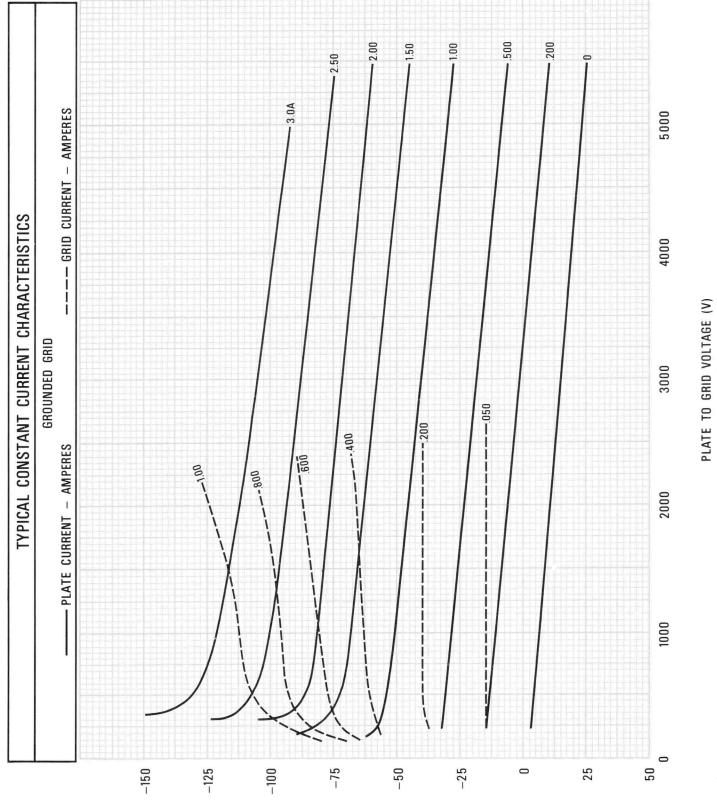

HIGH VOLTAGE - Normal operating voltages used with the 3-1000Z are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications; such as stray capacitance to the chassis, capacitance added by the socket used,


stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.



🏂 8164/3-1000Z

5

(V) 30ΑΤΙΟΥ ΟΙΑΘ ΟΤ ΤΝΘΜΑΙΑ

MA **Division of Varian**

SAN CARLOS CALIFORNIA MEDIUM-MU TRIODE MODULATOR OSCILLATOR AMPLIFIER

The Eimac 3C24 is a medium-mu, power triode intended for use as an amplifier, oscillator or modulator. It has a maximum plate dissipation rating of 25 watts and can be operated at its maximum ratings at frequencies up to 60 megacycles.

The 3C24 is cooled by radiation from the plate and by air circulation around the envelope. The plate operates at a visible red color at maximum rated dissipation.

This tube is identical to the 25T except that the grid terminal is located at the side of the envelope instead of the base.

GENERAL CHARACTERISTICS

ELECTRICAL Filament: Thoriated tungsten Voltage - -- 6.3 volts Current - - -- 3.0 amperes Amplification Factor (Average) - - -- - 24 Direct Interelectrode Capacitances (Average) Grid-Plate - - - -1.6 μμf Grid-Filament - - - - -1.7 μμf Plate-Filament - - - - -0.2 μμf . 2500 µmhos Transconductance ($i_b = 25 \text{ ma.}, E_b = 1000 \text{ v.}$) - -- 60 Mc. Frequency for Maximum Ratings - - -MECHANICAL Base - - - - -. UX Small 4-pin Basing - Fits E. F. Johnson Co. No. 122-224, National Co. No. XC-4 or CIR-4, or equivalent socket Mounting - - - - - - - - - - - Vertical, base down or up --. Convection and Radiation Recommended Heat Dissipating Connector: Plate - - - -

HR-I HR-I

4.38 inches

1.44 inches

-

		, iaio								
		Grid	-	-	-	-	-	-	-	
M	aximum	Over-all	Dim	ensio	ns:					
		Length	-	-	-	-	-	-	r.	
		Diameter	r i	-		-	~	1.5	-	
Ne	t Weig	ht -	-			-	-	-	-	

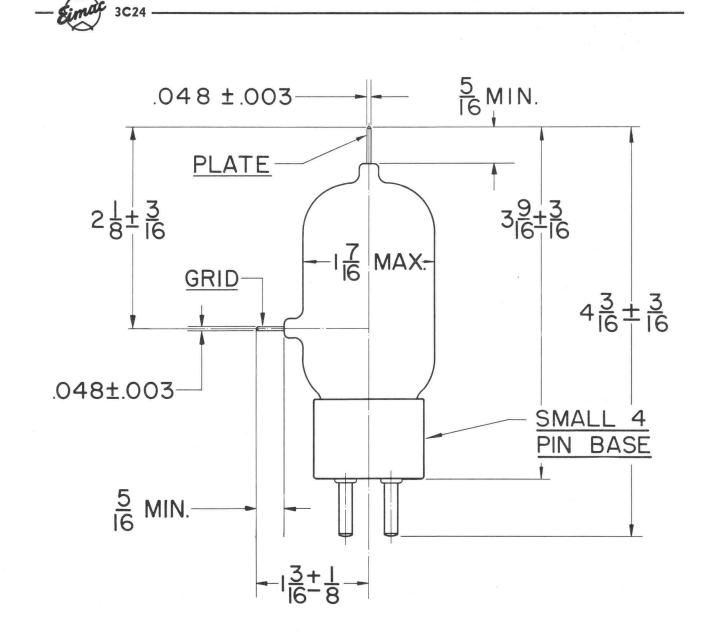
Shipping Weight (Average) - - - -AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR

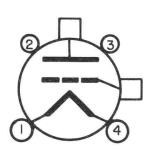
Class-B and AB MAXIMUM RATINGS, PER TUBE D.C. PLATE VOLTAGE

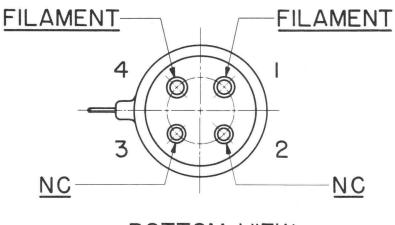
D-C	PLATE	VOLTA	GE			-	-	÷	2000	MAX.	VOLTS
MAX	SIGNA	L D-C	PLATE	CU	RRE	NT			75	MAX.	MA.
PLAT	E DISSI	PATION	4 -	•		-	~	÷	25	MAX.	WATTS
GRID	DISSI	ATION	•	8		-	~		7	MAX.	WATTS

PLATE MODULATED RADIO FREQUENCY AMPLIFIER

Class-C Telephony (Carrier conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE - - - - 1600 MAX. VOLTS D-C PLATE CURRENT . . . 60 MAX. MA. . . PLATE DISSIPATION --. 17 MAX. WATTS GRID DISSIPATION - - -. . 7 MAX. WATTS


RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

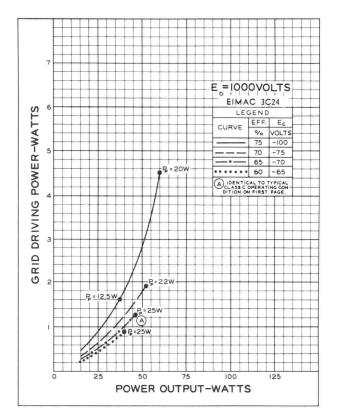

Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE - - - - 2000 MAX. VOLTS D-C PLATE CURRENT - - - - 75 MAX. MA. 25 MAX. WATTS PLATE DISSIPATION - -• • --GRID DISSIPATION . . 7 MAX. WATTS 2 -. -

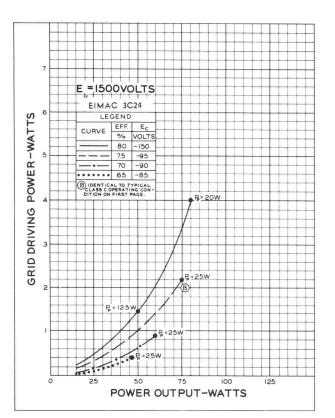

(Effective 11-1-51) ©	1951,	1968	by	Varian
--------------------	-----	-------	------	----	--------

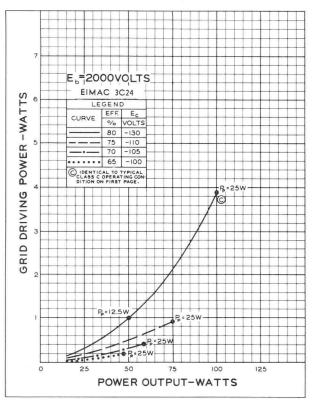
-	-	-	-	-	-	-	-	-	-	- 1.5	ounces
~	-	÷	-		•		-		-	- 1.0	pound
TYPI	CAL	OPERA	TION.	CLA	SS A	B 2					
							wise	specified			
			ie -					750	1000	1250	Volts
			e (app			-		-20	30	-42	Volts
			Plate					43	32	24	Ma.
Max-	Signal	D-C	Plate	Curi	rent	-		127	127	130	Ma.
Effec	tive l	oad.	Plate-1	o-Pla	te	-		12,000	17,000	21,400	Ohms
Peak	A-F	Grid I	nput V	oltag	e (pe	r tube)	110	120	135	Volts
			Drivin					5.5	6.0	6.8	
			inal Dr								
(appro	x.)					-	2.8	3.0	3.4	Watts
			Power					60	85	112	
*Adj	ust to	give	stated	zero-	signal	plat	e cur	rent.			
TYPI	CAL	PERA	TION								

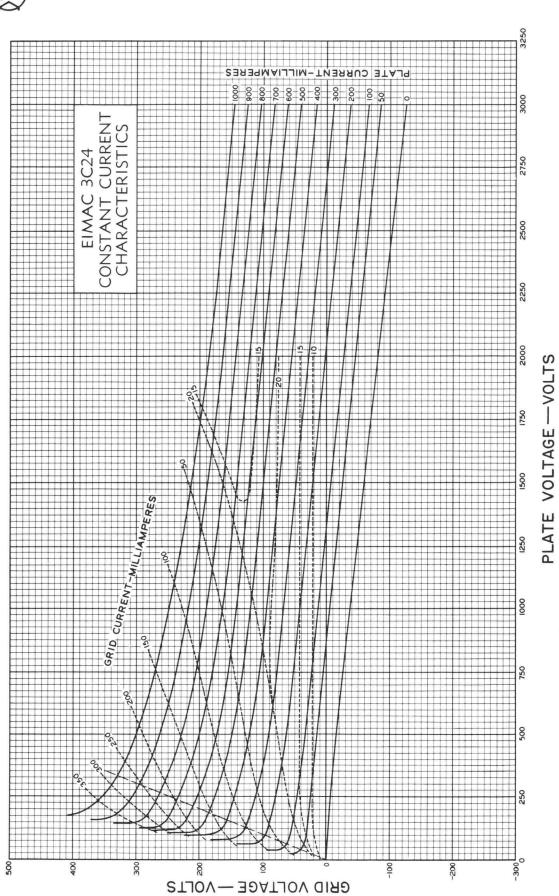
D-C Plate Voltage	-	-				1000	1250	1600	Volts
D-C Plate Current			-			60	60	53	Ma.
D-C Grid Voltage		~				-120	-140	-170	Volts
D-C Grid Current				-		14	13	11	Ma.
Peak R-F Grid Input	Volt	age		-		235	255	280	Volts
Driving Power -	-	-	-	-	-	3.3	3.3	3.1	Watts
Grid Dissipation		-	-		-	1.6	1.5	1.2	Watts
		-		-		60	75	85	Watts
Plate Dissipation	-	-	-		-	13	15	17	Watts
Plate Power Output	-	2	-	-		47	60	68	Watts
The above figure allow for variations	in c	ow	actu t los	al m sses.	neasured	tube	performance	and	do not
TYPICAL OPERATIO	N								2011.2
	10	-		-		1000	1500	2000	Volts
	-	•	-	-	-	72	67	63	Ma.
D-C Grid Voltage	-	÷	-	-	2	-70	95	-130	Volts
D-C Grid Current		-	-		20 C	9	13	18	Ma.
Peak R-F Grid Input	Volt	age	-	-		170	195	245	Volts
Driving Power -			-			1.3	2.2	4.0	Watts
Grid Dissipation		-		194		.9	1.3	2.1	Watts
Plate Power Input		-	-			72	100	125	Watts
Plate Dissipation	-		-	3		25	25	25	Watts
Plate Power Output	-	-		-	-	47	75	100	Watts
The above figur allow for variations i	es sh n cir	ow	actu losse	al n es.	neasured	tube	performance	e and	do not

BOTTOM VIEW




DRIVING POWER vs. POWER OUTPUT


•


The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 1000, 1500 and 2000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by P_p .

Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 1000, 1500, and 2000 volts respectively.

C24

3CV1500A7

TECHNICAL DATA

HIGH-MU POWER TRIODE

The 3CV1500A7 is an integral-boiler, ceramic/metal, vapor cooled zerobias triode, intended for Class AB2 linear amplifier service in either grid driven or cathode driven configuration. Except for the anode dissipation rating, the 3CV1500A7 is electrically identical to the EIMAC 8283/3CX-1000A7.

The 3CV1500A7 is especially recommended when the ambient noise level must be reduced to a minimum, since high-pressure/high-volume forced-air cooling is not required.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated-tungsten Mesh		1
Voltage 5.0 ± 0.25 V		0
Current, at 5.0 volts		
Amplification Factor (average)200		
Direct Interelectrode Capacitances (grounded filament) ²		
Cin	32.0	pF
Cout	0.15	pF
Cgp	14.0	pF
Direct Interelectrode Capacitances (grounded grid) ²		
Cin	32.0	pF
Cout	14.0	pF
Cpk	0.15	pF
Frequency of Maximum Rating:		
CW	220	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as a result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube, as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Maximum Overall Dimensions:

Length
Diameter 3.355 in; 85.2 mm
Net Weight 2.38 lb; 1.08 kg
Operating Position Vertical, base down
Maximum Operating Temperature:
Ceramic/metal seals 250°C
Cooling Vapor and Forced Air
Base Special Breechlock
Recommended Socket EIMAC SK-861

(Effective 6-15-71) © by Varian

Printed in U.S.A.

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN Class AB₂

MAXIMUM RATINGS:

DC PLATE VOLTAGE		•		•		•	•	•			3500	VOLTS
DC PLATE CURRENT			,		•					•	1.0	AMPERE
PLATE DISSIPATION						÷		ŝ			1500	WATTS
GRID DISSIPATION											45	WATTS

1. Adjust to specified zero-signal dc plate current.

- The intermodulation distortion products are referenced against one tone of a two equal tone signal.
- 3. Approximate values.

AUDIO FREQUENCY POWER AMPLIFIER OR

MODULATOR Class AB2, Grid Driven(Sinusoidal Wave)

MAXIMUM RATINGS (Per Tube)

DC PLATE VOLTAGE							3500	VOLTS
DC PLATE CURRENT				•			1.0	AMPERE
PLATE DISSIPATION							1500	WATTS
GRID DISSIPATION							45	WATTS

1. See zero-bias operation in Application Section.

2. Approximate value.

3. Per Tube.

4. Nominal drive power is one-half peak power.

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB2 Peak Envelope or Modulation Crest Conditions

Plate Voltage	2000	2500	3500	Vdc
Grid Voltage ¹	0	0	-12	Vdc
Zero-Signal Plate Current	238	305	129	mAdc
Single Tone Plate Current	875	800	857	mAdc
Two-Tone Plate Current	600	585	590	mAdc
Single-Tone Grid Current 3	230	205	225	mAdc
Two-Tone Grid Current ³	130	120	120	mAdc
Peak rf Drive Voltage ³	80	74	110	V
Peak Driving Power	80	60	100	w
Plate Dissipation	800	830	940	W
Useful Output Power	940	1170	2060	W
Resonant Load Impedance	1100	1670	2300	Ω
Intermodulation Distortion Produc	cts2			
3rd Order	-29	-31	-31	db
5th Order	-37	-40	-39	db

TYPICAL OPERATION (Two Tubes)

Plate Voltage	2000	2500	Vdc
Grid Voltage	0	0	Vdc
Zero-Signal Plate Current	400	500	mAdc
Max. Signal Plate Current	2.0	2.0	Adc
Max. Signal Grid Current ²	590	480	mAdc
Peak af Grid Voltage ³	95	90	V
Peak Driving Power ⁴	25	44	w
Plate Input Power	4000	5000	W
Max. Signal Plate Dissipation	1650	1900	W
Plate Output Power	2350	3100	W
Load Resistance (plate to plate)	1900	2580	Ω

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.
Heater: Current at 5.0 volts	28.0	33.0 A
Cathode Warmup Time	5	sec.
Interelectrode Capacitance ¹ (grounded grid connection)		
Cin	29.0	35.0 pF
Cout	12.0	16.0 pF
Cpk		0.2 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MECHANICAL

MOUNTING - The 3CV1500A7 must be mounted with its axis vertical, base down, with sufficient clearance for an insulated makeup water line to connect to the side of the integral anode boiler and an outlet steam line to attach to the top of the boiler. The use of the EIMAC socket SK-861 is recommended.

COOLING - Cooling is accomplished by the presence of distilled water at a controlled level in the integral anode boiler. The energy dissipated by the anode causes the water to boil at the anode surface, to be converted into steam and carried away to a condenser. This boiling action keeps the anode surface at approximately 100°C.

The water in the boiler must be maintained at the correct level, as shown on the outline drawing for the tube. This is normally accomplished with a special control unit, mounted with the correct relationship to the tube so as to maintain the water level in the tube boiler at the specified level. A condenser unit is used to convert the steam back to water, which is then returned to reservoir/control-box/boiler system.

Forced-air cooling of the tube base is required, with 15 cfm minimum directed across and through the socket and base of the tube. Air flow should be applied simultaneously with the application of electrode voltages, including the filament, and may be removed simultaneously with the removal of filament voltage.

ELECTRICAL

FILAMENT - Rated filament voltage for the 3CV1500A7 is 5.0 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain optimum performance and maximum tube life. In no case should it be allowed to deviate from 5.0 volts by more than plus or minus five per cent.

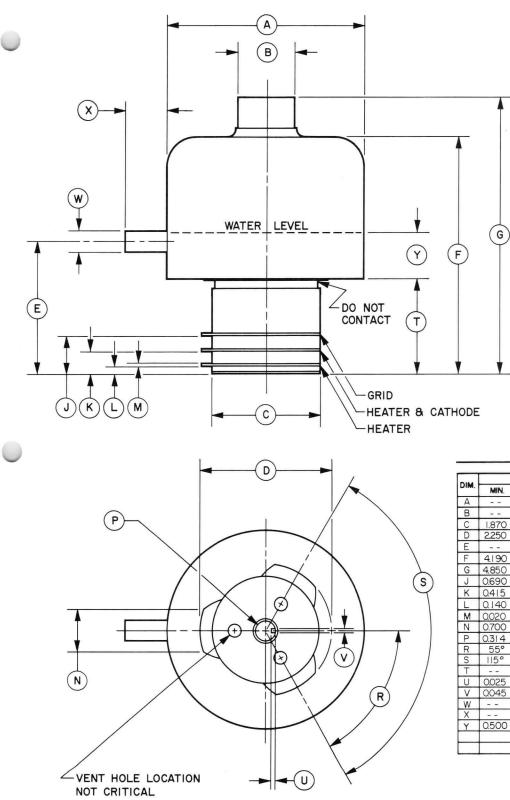
INPUT CIRCUIT - When the 3CV1500A7 is operated as grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended to obtain greatest linearity and power output. For best results with a single-ended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of five or more.

CLASS-C OPERATION - Although designed for Class-AB2 service, the 3CV1500A7 may be operated as a Class-C power amplifier or oscillator, or as a plate-modulated rf amplifier. The zero-bias characteristic can be used to advantage in Class-C amplifiers by employing only grid leak bias. If driving power fails, plate dissipation is kept to a low level since the tube will operate at normal, static zero-bias conditions.

ZERO-BIAS OPERATION - Operating at zerobias is not recommended with plate voltages over 2500 volts since plate dissipation may be exceeded. Similarly, the safety of zero-bias operation as mentioned above under "Class-C Operation" is not available at plate voltages above 2500 volts. Straight Class-C or Class-AB2 operation is, of course, permissible up to 3500 volts where other ratings are not exceeded. Higher plate voltage may be used with the proper bias.

PLATE DISSIPATION - The plate dissipation of 1500 watts attainable through vapor cooling provides a large margin of safety in most applications. The rating may be exceeded during tuning for brief periods.

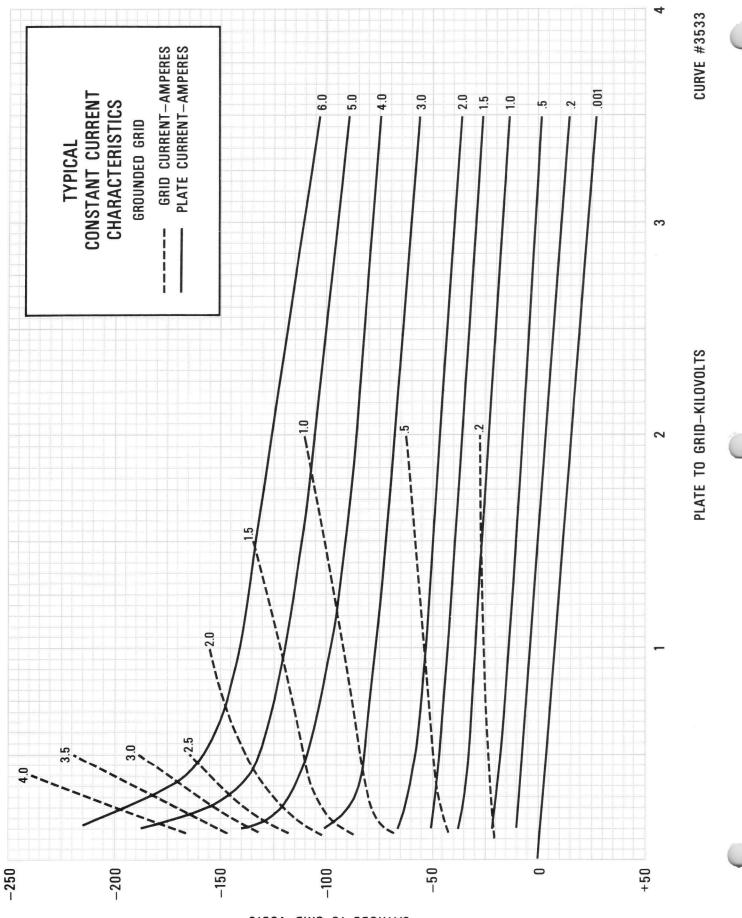
Since the tube anode is usually at high potential to ground, water and steam connections to the anode are made through insulating tubing. These insulating sections should be long enough so that column resistance is above 100,000 ohms per 1000 supply volts. It is essential that high purity water be used to minimize power loss and corrosion of metal fittings. Good distilled or deionized water will have a resistance of 1 to 2 megohms per cm3. Water should be discarded if resistivity falls to 50,000 ohms cm3.


HIGH VOLTAGE - Normal operating voltages used with the 3CV1500A7 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL. RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield

all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.


SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations. 3CV1500A7

		INCHES		MILLIMETERS								
IM.	MIN.	MAX.	REF	MIN.	MAX.	REF						
Α			3.355			85.22						
В			1.000			25.40						
B C D E	1.870	1.900		47.50	48.26							
D	2250	2.300		57.15	58.42							
E			2.400			60.96						
F	4.190	4.315		106.43	109.60							
G	4.850	5.110		123.19	129.79							
J	0.690	0.710		17.53	18.03							
K	0.415	0.435		10.54	11.05							
L	0.140	0.165		3.57	4.19							
M	0.020	0.030		0.50	0.76							
N	0.700	0.800		17.78	20.32							
Ρ	0.314	0.316		7.98	8.03							
R	55°	65°		55°	65°							
S T	115°	125°		115°	125°							
Т			1.720			43.69						
U	0.025	0.048		0.64	1.22							
V	0.045	0.070		1.14	1.78							
W			0.375			9.53						
Х			0.750			19.05						
Y	0.500	1.000										

INSPECTION PURPOSES.

3CV1500A7

CATHODE TO GRID-VOLTS

6

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

3CV30,000A3

MEDIUM-MU VAPOR-COOLED POWER TRIODE

The EIMAC 3CV30,000A3 is a vapor-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating service. Its vapor-cooled anode is conservatively rated at 30 kilowatts of plate dissipation when mounted in an EIMAC BR-200 boiler.

Full input of 60 kilowatts is permissible up to 100 megahertz. Large reserve emission is available from its one kilowatt filament and the grid structure is rated at one ampere making this tube an excellent choice for severe applications.

It is also recommended as a grounded grid FM amplifier, a conventional plate-modulated amplifier or as a linear amplifier in new equipment designs.

GENERAL CHARACTERISTICS

														-			-
Filament: Thoriated-T	ungs	sten				Min	•	Nom.	Max.								
Voltage	-	-	-	-	-			6.3		volt							-
Current	-	-	-	-	-	152	2		172	amp	peres						
Amplification Factor	-	-	-	-	-			20									
Interelectrode Capacita	ance	s, G	roun	ded	Cath	node:											
Grid-Filament	-	-	-	-	-	48			58	\mathbf{pF}							
Plate-Filament	-	-	-	-	-	1.2			1.5	pF							
Grid-Plate -	-	-	-	-	-	30			38	\mathbf{pF}							
Frequency for Maximu	m R	ating	gs	-	-	-	-	-		-	-	-	-	-	-	100 MHz	ĺ.
MECHANICAL																	
Base	-	-	-	-	-	-	-	-		-	-	-	-	-	-	Coaxial	
Recommended Socket	-	-	-	-	-	-	-	-		Ξ.	-	-	-	EIN	IAC	SK-1310	ĺ.
Recommended Boiler	-	-	-	-	-	-	-	-		-	-	-	-	EI	MAG	C BR-200	
Operating Position	-	-	-	-	-	-	-	-		-	-	=	-	Ver	tical	, base up	ſ
Cooling	-	-	-	-	-	Ξ.	-	-		-	-	-	Vaj	por a	nd F	Forced air	
Maximum Operating	Гет	perat	ures	:													
Anode Flange	- '	-	-	-	-	-	-	-		-	-	-	-	-	-	200°C	
Ceramic-to-metal	Seal	ls	-	-	- 1	-	-	-		-	-	-	-	-	-	250°C	,
Maximum Dimensions	5:																
Height		-	-	-	-	-	-	-		-	-	-	-	-	8.7	75 inches	5
Diameter -	-	-	-	-	-	-	-	-		-	-	-	-	-	7	.5 inches	5
Net Weight	-	-	-	-	-	-	-	-		-	-	-	-	-	1	8 pounds	5
0																	

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Power Supply)

MAXIMUM RATINGS

ELECTRICAL

DC PLATE VOLTAGE	-	-	-	-	-	10,000	VOLTS
DC PLATE CURRENT		-	-	-	-	6.0	AMPS
DC GRID CURRENT -	-	-	-	-	-	1.0	AMP
PLATE INPUT POWER	-		-	-	-	60	KW
PLATE DISSIPATION	-	-	-	-	-	30	KW

TYPICAL OPERATION

DC Plate Voltage	-	-	-	-	7000	10,000	volts
DC Plate Current	-	-	-	-	6.0	6.0	amps
DC Grid Voltage	-	-	-	-	600		volts
DC Grid Current	-	-	-	-	.66		amps
Peak Positive Grid	Volt	age	-	-	440	360	volts
Driving Power -	÷.	-	-	-	660		watts
Plate Input Power	-	-	-	-	42	60	kW
Plate Dissipation	-	-	-	-	12	18	kW
Plate Output Powe		-	-	-	30	42	kW
Approximate Load		edan	ce	~	600	750	ohms

NOY							
-							
RADIO-FREQUENC PLATE-MODULATE Class-C		ow	/ER	AM	PLIFIER		TYPICAL OPERATION DC Plate Voltage 5000 7000 volts
MAXIMUM RATINGS							DC Grid Voltage 600 820 volts
DC PLATE VOLTAGE	_				- 7000	VOLTS	DC Plate Current 5.0 5.0 amps
DC PLATE CURRENT	-	-	-	-		AMPS	DC Grid Current 600 600 mA
PLATE DISSIPATION	- 1		-	-		KW	Driving Power 600 750 watts
GRID DISSIPATION	-	-	-	-	- 500	WATTS	Plate Output Power 17.8 27.5 kW
RADIO-FREQUENC LINEAR AMPLIFIEI Class-AB ₂ <u>MAXIMUM RATINGS</u> DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION	-		-	-		VOLTS AMPS KW	TYPICAL OPERATIONDC Plate Voltage 700010,000 voltsDC Grid Voltage* 250-400 voltsZero-Sig Plate Current 2.02.0 ampsMax-Sig DC Plate Current 6.06.0 ampsMax-Sig DC Grid Current 375333 mAPeak RF Grid Voltage 530700 voltsDriving Power 200240 wattsPlate Output Power 26.441 kW
GRID DISSIPATION		-	-	÷.	- 500		*Adjust to give specified zero-signal dc plate current.
ORID DISSIFATION	-	-	1	-	- 500	11/110	Valuar to Bine abcourse zero albuer de plate content.

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses has been made.

APPLICATION

ELECTRICAL

Filament—The rated filament voltage for the 3CV30,000A3 is 6.3 volts. Filament voltage, as measured at the socket, must be maintained at 6.3 volts plus or minus five percent for maximum tube life and consistent performance.

3CV30,000A3

Control Grid Operation — The grid current rating is one ampere dc. This value should not be exceeded for more than very short periods such as during tuning and over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.4 to 0.6 amperes grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 500 watts.

Plate Operation — The maximum plate input power rating is 60 kilowatts at 10,000 volts and 6.0 amperes dc. This rating applies for Class C amplifier or oscillator service and for Class AB applications. When used as a plate modulated rf amplifier, input is reduced to 7000 volts at 5.0 amperes dc. Maximum input may be exceeded for short periods during tuning without exceeding plate dissipation ratings.

Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

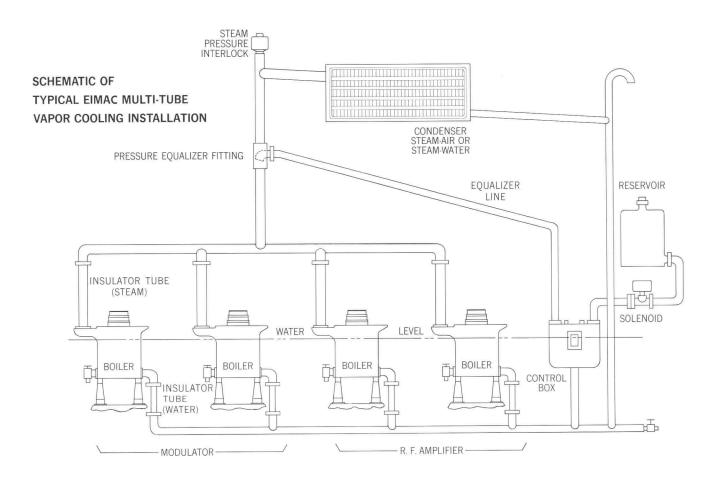
Special Application—If it is desired to operate this tube under conditions widely different from these given here, write to Power Grid Tube Marketing Department, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.

MECHANICAL

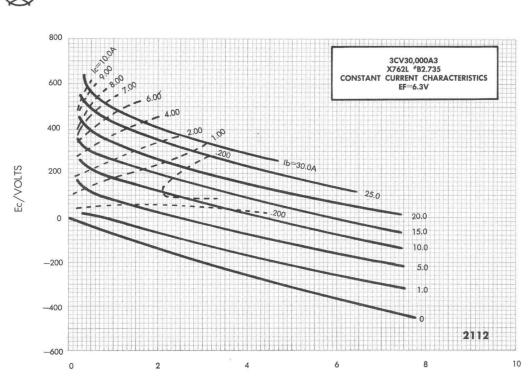
Mounting — The 3CV30,000A3 must be mounted vertically, base up in an EIMAC BR-200 boiler. It is very important that the boiler tube assembly be mounted vertically, the water be maintained at the suggested level, and that the flange of the tube makes a vapor-tight seal against the rubber "O" ring and boiler.

Sockets—The EIMAC SK-1310 socket is available for use with the 3CV30,000A3. Filament and grid connection are made to this socket.

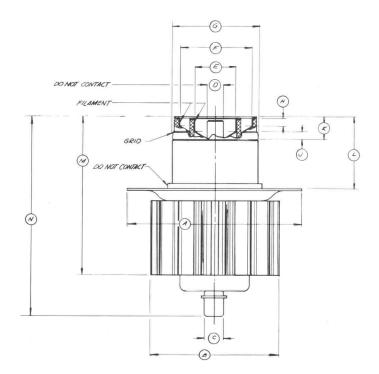
Cooling — Cooling is accomplished by immersion of the anode in a distilled water-filled BR-200 boiler. The energy dissipated at the anode causes the water to boil and be converted into steam. Steam is carried away by convection to the condenser where it is cooled and condenses into water. Condensate is then returned to the boiler.

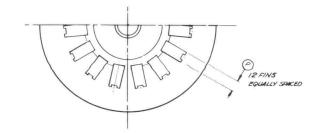

The boiling action maintains the anode surface temperature at approximately 100° C. In a properly designed system (such as the 3CV30, 000A3 and BR-200) it unlikely that anode surface temperature will ever exceed 125° C — well below the rated maximum for the tube — even

at full plate dissipation levels.


The water in the boiler must be maintained at a constant level, just below the top of the anode fins. This level is marked on the boiler. A recommended system for assuring constant water level is shown in the system diagram below. This system incorporates an EIMAC CB-202 Control Box to sense water level and a small reservoir to supply make-up water on demand. In the event of a drop in system water level, a switch is closed in the control box, energizing a solenoid water valve in the line from the reservoir. When the make-up water brings the system back to the proper level, the switch is opened, de-energizing the solenoid valve. A second switch in the CB-202 Control Box senses a lower, danger level and can be used to actuate an alarm or shut down the system.

For reliable operation, it is essential that the Control Box be mounted so that the level sensed is the actual level in the boiler.


Separate cooling of the tube base is required and is accomplished by directing 100 CFM of cooling air into the base structure from the top of the socket.


3

SCV30,000A3

DIMENSIONS IN INCHES									
DIMENSIONAL DATA									
REF.	MIN.	MAX.	NOM.						
A			7.750						
8			5.8/2						
C	.855	.895							
0	.720	.760							
Ε	1.896	1.936							
F	3.133	3.173							
G	3,792	3,832							
H	./88								
\checkmark	./88								
K	.986	1.050							
Z			3.062						
M	6.920	6.990							
N	8.250	8.750							
P			.510						

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

3CV30,000H3

MEDIUM-MU VAPOR-COOLED POWER TRIODE

The EIMAC 3CV30,000H3 is a vapor-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating service. Its vaporcooled anode is conservatively rated at 30 kilowatts of plate dissipation when mounted in an EIMAC BR-200 boiler.

Full input of 60 kilowatts is permissible up to 100 megahertz. Large reserve emission is available from its one kilowatt filament and the grid structure is rated at one ampere making this tube an excellent choice for severe applications.

It is also recommended as an audio amplifier, a conventional plate-modulated amplifier or as a linear amplifier in new equipment designs.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thoriated-Tur	ngste	n								Min.	Nom.	Max.	
Voltage		-	-	-	-	-	-	-			6.3		V
Current		-	-	-	-	-	-	-		152		172	Α
Amplification Factor			-	-	-	-	-	-			20		
Interelectrode Capacitan	nces,	Gro	oun	ded	Ca	atho	ode						
Grid-Filament		-	-	-	-	-	-	-		48		58	pF
Plate-Filament		-	-	-	-	-	-	-		1.2		1.5	pF
Grid-Plate -		-	-	-	-	-	-	-		30		38	pF
Frequency for Maximum	Ratin	ıgs	-	-	-	-	-	-	-			- 100) MHz

MECHANICAL

Filament Connections - ·																					lexible Leads Ferminal Ring
Recommended Boiler -																					IMAC BR-200
Operating Position	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ver	ical, Base up
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Vapor a	nd Forced air
Maximum Operating Tempera	ature	es:																			
Ceramic-to-metal Se	als	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ile e s	- 250°C
Maximum Dimensions: -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		See Outline
Net Weight	-	-	÷	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-		· 18 pounds

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Power Supply)

MAXIMUM RATINGS

DC PLATE VOLTAGE									
DC PLATE CURRENT									
DC GRID CURRENT -									
PLATE INPUT POWER	-	-	-	-	~	-	60	KW	
PLATE DISSIPATION	-	Ξ.	Ξ.	-	-	-	30	КW	

TYP	ICAL	OPERATION
DC	Diata	Valtage

DC Plate Voltage	-	-	-	-	-	-	7000	10,000	volts
DC Plate Current	-	-	÷ .	\mathbf{x}_{i}	-	-	6.0	6.0	amps
DC Grid Voltage	-	-	-	-	-	-	-600	-800	volts
DC Grid Current	-	-	-	-	-	-	.66	.315	amps
Peak Positive Grid	d V	olt	age	-	-	-	440	360	volts
Driving Power -			-	-	-	-	660	365	watts
Plate Input Power	-	-		-	-	-	42	60	kW
Plate Dissipation	-	-	-	-	-	-	12	18	kW
Plate Output Powe	er	-	-	•	-	-	30	42	kW
Approximate Load	Im	peo	dan	се	-		600	750	ohms

10 000

3CV30,000H3

RADIO-FREQUENCY POWER AMPLIFIER

PLATE-MODULATED

Class-C

	DC Plate Voltage -	 -	-	5000	7000	volts
MAXIMUM RATINGS	DC Grid Voltage -	 -	-	-600	-820	volts
DC PLATE VOLTAGE	7000 VOLTS DC Plate Current -		-	5.0	5.0	amps
DC PLATE CURRENT	5.0 AMPS DC Grid Current -	 -	-	600	600	mA
PLATE DISSIPATION				600	750	watts
GRID DISSIPATION	500 WATTS Plate Output Power	 -	-	17.8	27.5	КW

AUDIO AMPLIFIER

OR MODULATOR

Class-AB₂

MAXIMUM RATINGS

DC PLATE VOLTAGE	-	-	-	-	-	-	10,000	VOLTS
DC PLATE CURRENT	-	-	-	-	-	-	6.0	AMPS
PLATE DISSIPATION	-	-	-	-	-	-	30	KW
GRID DISSIPATION -	-	-	-	-	-	-	500	WATTS

TYPICAL OPERATION (two tubes)

TYPICAL OPERATION

DC Plate Voltage	-		6000	9600	volts
DC Grid Voltage*	-		-280	-480	volts
Zero-Sig Plate Current -	-	-	.5	.25	amps
Max-Sig DC Plate Current	-	-	4.2	3.1	amps
Max-Sig DC Grid Current	-	~	145	42	mΑ
Peak Driving Voltage			480	590	volts
Drive Power		-	140	50	watts
Plate-to-Plate Load Resista	anc	e -	1300	2740	ohms
Power Output	-	-	31	36	kW

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses has been made.

APPLICATION

ELECTRICAL

Filament The rated filament voltage for the 3CV30,000H3 is 6.3 volts. Filament voltage, as measured at the socket, must be maintained at 6.3 volts plus or minus five percent for maximum tube life and consistent performance.

Control Grid Operation The grid current rating is one ampere dc. This value should not be exceeded for more than very short periods such as during tuning and over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.4 to 0.6 amperes grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 500 watts.

Plate Operation The maximum plate input power rating is 60 kilowatts at 10,000 volts and 6.0 amperes dc. This rating applies for Class C amplifier or oscillator service and for Class AB applications. When used as a plate modulated rf amplifier, input is reduced to 7000 volts at 5.0 amperes dc. Maximum input may be exceeded for short periods during tuning without exceeding plate dissipation ratings.

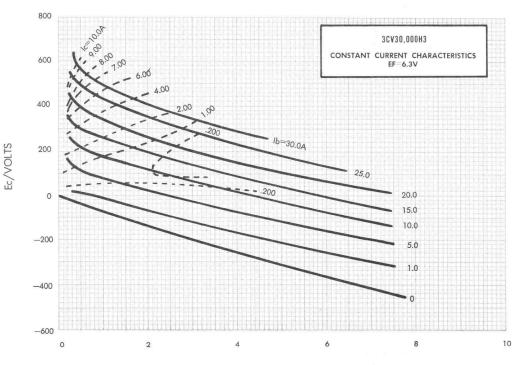
Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition, current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

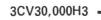
Special Application If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.

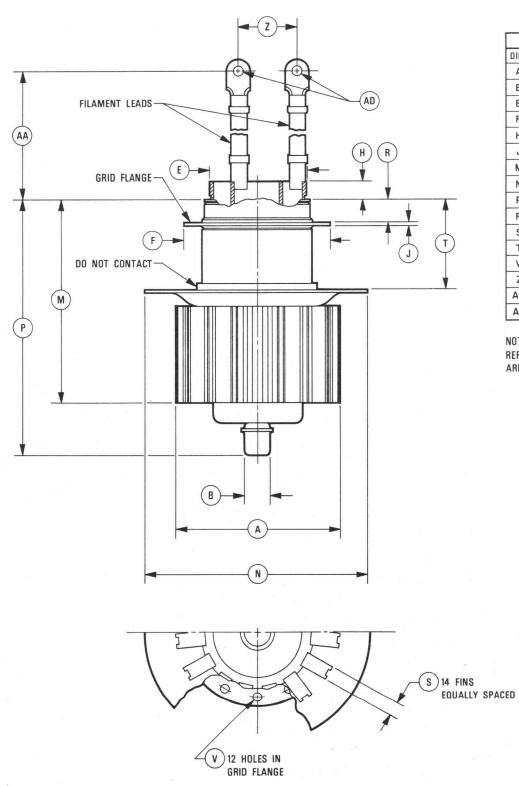
3CV30,000H3

MECHANICAL


Mounting The 3CV30,000H3 must be mounted vertically, base up in an EIMAC BR-200 boiler. It is very important that the boiler tube assembly be mounted vertically, the water be maintained at the suggested level, and that the flange of the tube makes a vapor-tight seal against the rubber "O" ring and boiler.

Cooling Cooling is accomplished by immersion of the anode in a distilled water-filled BR-200 boiler. The energy dissipated at the anode causes the water to boil and be converted into steam. Steam is carried away by convection to the condenser where it is cooled and condenses into water. Condensate is then returned to the boiler.


The boiling action maintains the anode surface temperature at approximately 100°C. In a properly designed system (such as the 3CV30,000H3 and BR-200) it is unlikely that anode surface temperature will ever exceed 125°C — well below the rated maximum for the tube — even at full plate dissipation levels. The water in the boiler must be maintained at a constant level, just below the top of the anode fins. This level is marked on the boiler. A recommended system for assuring constant water level is shown in the system diagram below. This system incorporates an EIMAC CB-202 Control Box to sense water level and a small reservoir to supply make-up water on demand. In the event of a drop in system water level, a switch is closed in the control box, energizing a solenoid water valve in the line from the reservoir. When the make-up water brings the system back to the proper level, the switch is opened, de-energizing the solenoid valve. A second switch in the CB-202 Control Box senses a lower, danger level and can be used to actuate an alarm or shut down the system.


For reliable operation, it is essential that the Control Box be mounted so that the level sensed is the actual level in the boiler.

Separate cooling of the tube base is required and is accomplished by directing 100 CFM of cooling air into the base structure from the top of the socket.

Eb/KILOVOLTS

	DIMENSIO	NS IN INCH	ES
	DIMENS	IONAL DAT	Α
DIM.	MIN.	MAX.	REF.
Α			5.812
в	.855	.895	
E	3.230	3.270	
F	5.030	5.090	
н	.530	.700	
J			.125
М	6.643	6.775	
N			7.750
Ρ	8.400	8.625	
R	.700	.860	
S			.510
Т			2.806
V			.265
Z			2.000
AA	8.500	9.000	
AD			.390

NOTE:

REF. DIMS. ARE FOR INFO. ONLY & ARE NOT REQ'D. FOR INSP. PURPOSES.

2

8240 3CW5000A1 8241 3CW5000F1 LOW-MU WATER-COOLED TRIODES

The EIMAC 8240/3CW5000A1 and 8241/ 3CW5000F1 are low-mu water-cooled power triodes intended for use as audio amplifiers or modulators. Their maximum rated plate dissipation is 5000 watts. The two types are identical except for the addition of flexible leads for the grid and filament terminals on the 8241/3CW5000F1.

Two of these tubes, in Class AB1 audio service, will deliver more than 10 kilowatts maximum-signal plate output power at 6000 plate volts without drawing grid current.

These two types are electrically identical to the air-cooled EIMAC 8238/3CX3000A1 except for the plate dissipation rating.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten
Voltage 7.5 ± 0.37 V
Current, at 7.5 volts
8240/3CW5000A1 51.5 A
8241/3CW5000F1 50.5 A
Transconductance (Average)

 I_b = 1.0 Adc, E_b = 3000 Vdc . 11,000 μ mhos Amplification Factor (Average) 4.9

1. Characterisitcs and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Div. of Varian should be consulted before using this information for final equipment design.

MECHANICAL

Maximum Overall Dimensions:
Length (excluding leads on 8241/3CW5000F1) 12.625 in; 321 mm
Diameter 3.255 in;86.2 mm
Net Weight (Approximate)
Operating Position has down or up
Maximum Operating Temperature:
Ceramic/Metal Seals or Envelope
Cooling:
Seals and Envelope Forced Air
Plate
BaseSee Outline Drawings

(Effective 5-15-71) © by Varian

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR	TYPICAL OPERATION (Class AB ₁ , Sinusoidal Wave, Two Tubes)	
Class AB1, Grid Driven (Sinusoidal Wave)	Plate Voltage 4000 5000 6000 Vdc Grid Voltage1 -860 -1080 -1300 Vdc	
ABSOLUTE MAXIMUM RATINGS (per tube)	Zero-Signal Plate Current	ż
DC PLATE VOLTAGE 6000 VOLTS DC PLATE CURRENT 2.5 AMPER PLATE DISSIPATION 5000 WATTS GRID DISSIPATION 50 WATTS		
 Approximate value; adjust to give stated ze signal plate current. 	Max. Signal Plate Dissipation ² 3000 3000 3000 W ro- Max. Signal Plate	
2. Per tube.	Output Power 6000 8000 10,000 W Load Resistance (plate to plate) 2160 3320 4560 Ω	

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Filament: Current at 7.5 volts (8240/3CW5000A1)	49.0	54.0 A
(8241/3CW5000F1)	48.0	53.0 A
Amplification Factor	4.3	5.6

APPLICATION

MECHANICAL

MOUNTING - The 3CW 5000A1 and 3CW 5000F1 must be mounted vertically, base down or up at the convenience of the circuit designer. The filament connections to the 3CW5000A1 should be made through spring collets. These are available from EIMAC with the following part numbers: 149575 Inner line collet; 149576

Outer line collet

Reasonable care should be taken that these collets do not impart undue strain to the terminals or the base of the tube.

COOLING - With an anode dissipation of 5000 watts and with an incoming water temperature of 50°C maximum, 7.7 gpm of cooling water must be supplied to the anode cooling jacket. Outlet water temperature from the cooling jacket should never exceed 70°C, and water pressure on the jacket should not exceed 60 psi. The pressure drop across the anode cooling jacket itself, with a water flow of 7.7 gpm, will be approximately 6 psi.

The grid-terminal contact surface and adjacent ceramic must be cooled by forced air, with guantity, velocity, and direction adjusted to limit the maximum seal temperature to less than 250°C.

The filament stem structure also requires forced-air cooling. A minimum of 6 cfm should be directed into the space between the inner and outer filament contacting surfaces.

Both air and water flow must be supplied before or simultaneously with the application of electrode voltages, including the filament, and may be removed simultaneously with them. Where long life and consistent performance are factors, cooling in excess of minimum requirements is normally beneficial.

ELECTRICAL

FILAMENT OPERATION - The filament voltage, as measured at the filament terminals, should be 7.5 volts, with maximum allowable variations due to line fluctuations of from 7.12 to 7.87 volts. *HIGH VOLTAGE* - The 3CW5000A1 and 3CW-5000F1 operate at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for highvoltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers when access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here write to the Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA. 94070, for information and recommendations.

8240/3CW5000A1 - 8241/3CW5000F1

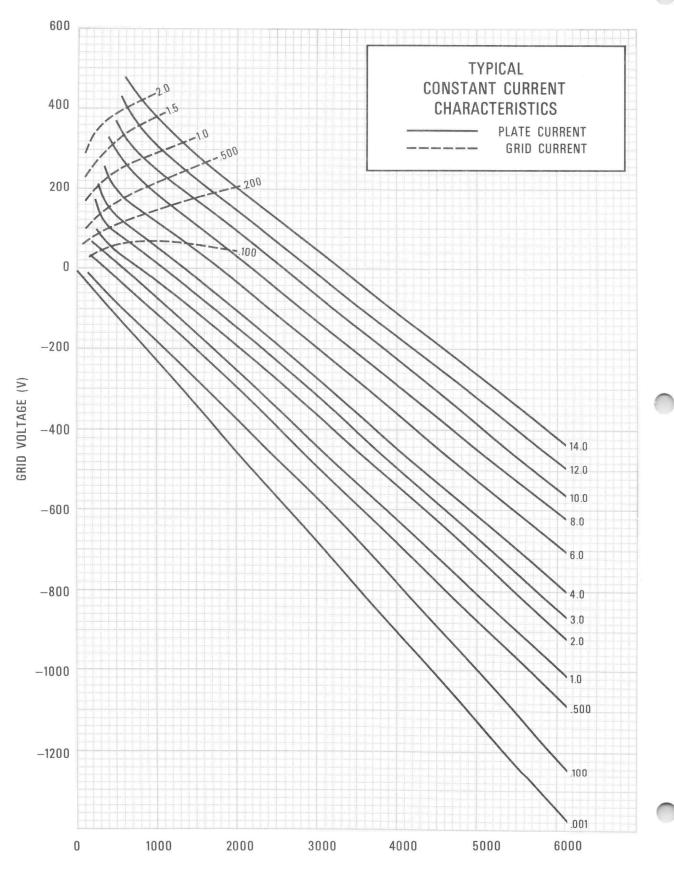
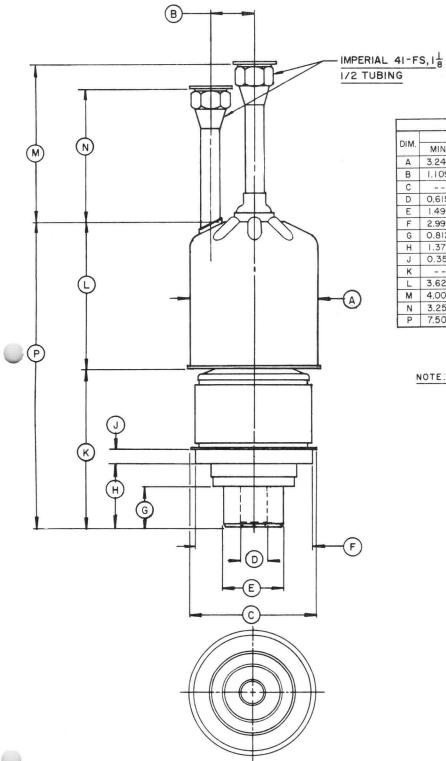
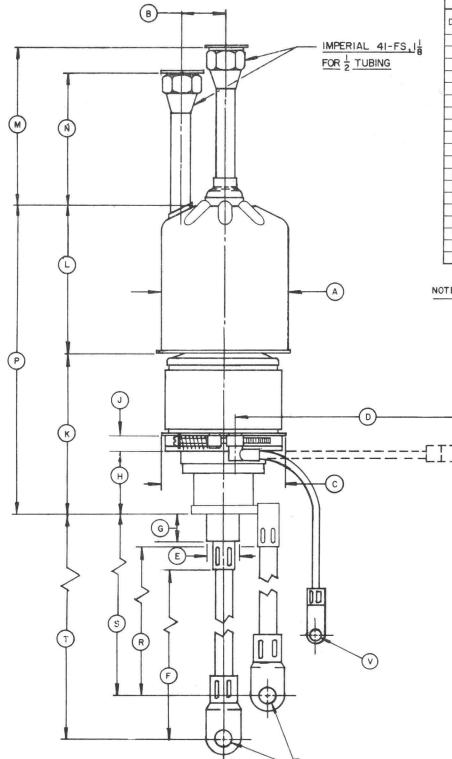




PLATE VOLTAGE (V)

		DIN	ENSIONAL	_ DATA	11			
		INCHES		MILLIMETERS				
DIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF.		
A	3.245	3.255		82.42	82.68			
В	1.109	1.141		28.17	28.98			
С		3.625			92.08			
D	0.615	0.635		15.62	16.13			
E	1.490	1.510		37.85	38.35			
F	2.990	3.010		75.95	76.45			
G	0.812	0.938		20.62	23.83			
н	1.375	1.625		34.93	41.28			
J	0.359	0.422		9.12	10.72			
к			3.599			91.41		
L	3.625	3.875		92.08	98.43			
М	4.000	4.500		101.60	114.30			
N	3.250	3.750		82.55	95.25			
Ρ	7.500	8.125		190.50	206.38			

NOTE	REF.	DIMS	ARE	FOR	INFO
	ONLY	AND	NOT	REQ.	FOR
	INSPE	CTION	PU	RPOSE	S.

U

		DIN	ENSIONA	L DATA				
DIM.		INCHES		M	MILLIMETERS			
DINI.	MIN.	MAX.	REF.	MIN.	MAX.	REF.		
Α	3.245	3.255		82.42	82.68			
В	1.109	1.141		28.17	28.98			
С		3.625			92.08			
D	6.375	6.625		161.93	168.28			
Е	0.859	0.890		21.82	22.61			
F	7.000	7.500		177.80	190.50			
G	0.812	0.938	~ ~	20.62	23.83			
н	1.375	1.625		34.93	41.28			
J	0.359	0.422		9.12	10.72			
К			3.599			91.41		
L	3.625	3.875		92.08	98.43			
М	4.000	4.500		101.60	114.30			
Ν	3.250	3.750		82.55	95.25			
Ρ	7.500	8.125		190.50	206.38			
R	7.000	7.500		177.80	190.50	- (=)		
S	7.937	8.437		201.60	214.30			
Т	8.937	9.437		226.99	239.70			
U	0.385	0.395		9.78	10.03	-		
V	0.194	0.200		4.93	5.08			

NOTE: REF. DIMS ARE FOR INFO ONLY AND NOT REQ. FOR INSPECTION PURPOSES. TECHNICAL DATA

3CW5000H3 INDUSTRIAL MEDIUM-MU WATER-COOLED POWER TRIODE

The EIMAC 3CW5000H3 is a water-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its water-cooled anode is conservatively rated at 5 kilowatts of plate dissipation with low water flow and pressure drop.

Input of 12.5 kilowatts is permissible up to 75 megahertz. Plentiful reserve emission is available from its 375 watt filament. The grid structure is rated at 150 watts making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thoriated-Tungsten							Min.		Nom.	M	ax.				
Volt	age	-	-	-	-	-			7.5			Vo	olts		
Curi	rent	-	-	-	-	-	48			53	3	an	nps		
Amplifica	tion	Facto	or -	-	-	-			20						
Interelectrode Capacitances, Grounded Cathode Connection:															
Grid	-Fila	ment	-	-	-	-	29.2			40	0.2	μμ	ιf		
Plate-Filament -			t -	-	-	-	0.60)			1.20	μμ	ıf		
Grid	-Plate	e -	-	-	-		17.8			24	1.2	μμ	ıf		
Frequency for Maximum Ratings -										75	75		MHz		
MECHANICAL															
Base	-	-	-	-	-	-		-		-	-	-	-	-	-
Operating Position								-		-	-	-	-	Ve	rtical
Cooling	-	-	-	-	-	-		-		-	-	-	-	-	Wat

 Base
 See Outline

 Operating Position
 See Outline

 Cooling
 See Outline

 Maximum Operating Temperatures
 250°C

 Maximum Dimensions:
 250°C

 Maximum Dimensions:
 250°C

 Maximum Dimensions:
 250°C

 Net Weight
 250°C

 Net Weight
 See Outline

 Net Weight
 <td

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

(Effective 4-1-66) © 1966 Varian

Printed in U.S.A.

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Power Supply)

PLATE DISSIPATION (NOMINAL) -

MAXIMUM RATINGS: DC PLATE VOLTAGE -

DC PLATE CURRENT -

DC GRID VOLTAGE -

DC GRID CURRENT -

PLATE INPUT POWER

TYPICAL OPERATION*

DC Plate Voltage	-	-	-	-	4000	6000 volts
DC Plate Current		-	-	-	2.5	2.08 amps
DC Grid Voltage	$\mathbf{r} = \mathbf{r}$	-	-	- 1		-500 volts
DC Grid Current	-	-	-	-	.245	.180 amps
Peak Positive Grid	Vo	ltage	-	-	280	265 volts
Driving Power -	-	-	-	-	142	136 watts
Plate Input Power	-	-	-	-	10,000	12,500 kW
Plate Dissipation	- 1	-	-1	-	2,500	2,500 kW
Plate Output Powe	r	-	-	-	7,500	10,000 kW
Approximate Load		pedan	ce	-	910	1,625 ohms
*Loaded Condition						

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses has been made.

6000 volts

-1000 volts

2.5 amps

0.4 amp

12.5 kW 5 kW

APPLICATION

Filament

The rated filament voltage for the 3CW5000H3 is 7.5 volts. Filament voltage, as measured at the tube, must be maintained at 7.5 volts plus or minus five percent for maximum tube life and consistent performance.

ELECTRICAL

Control Grid Operation

The grid current rating is 0.4 ampere dc. This value should not be exceeded for more than very short periods such as during tuning. Overcurrent protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.275 amperes grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 150 watts.

Plate Operation

Maximum plate voltage rating of 6000 volts and maximum plate current of 2.5 amperes dc should not be applied simultaneously as rated plate dissipation may be exceeded. The 12.5 kilowatts input rating applies for Class C amplifier or oscillator service with no modulation.

Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

High Frequency Operation

The 3CW5000H3 is usable to 110 MHz. At this frequency, plate voltage must be reduced to 4000 volts in Class C service.

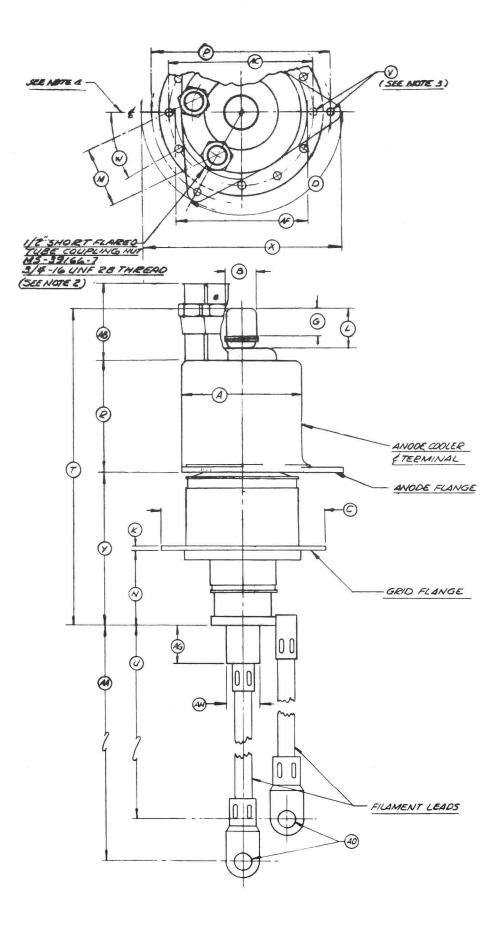
MECHANICAL

Mounting The 3CW5000H3 must be mounted vertically, either base up or down. A grid contact flange is provided for bolting to a strap or a grid deck. Heavy flexible leads are provided for applying the filament voltage.

Cooling

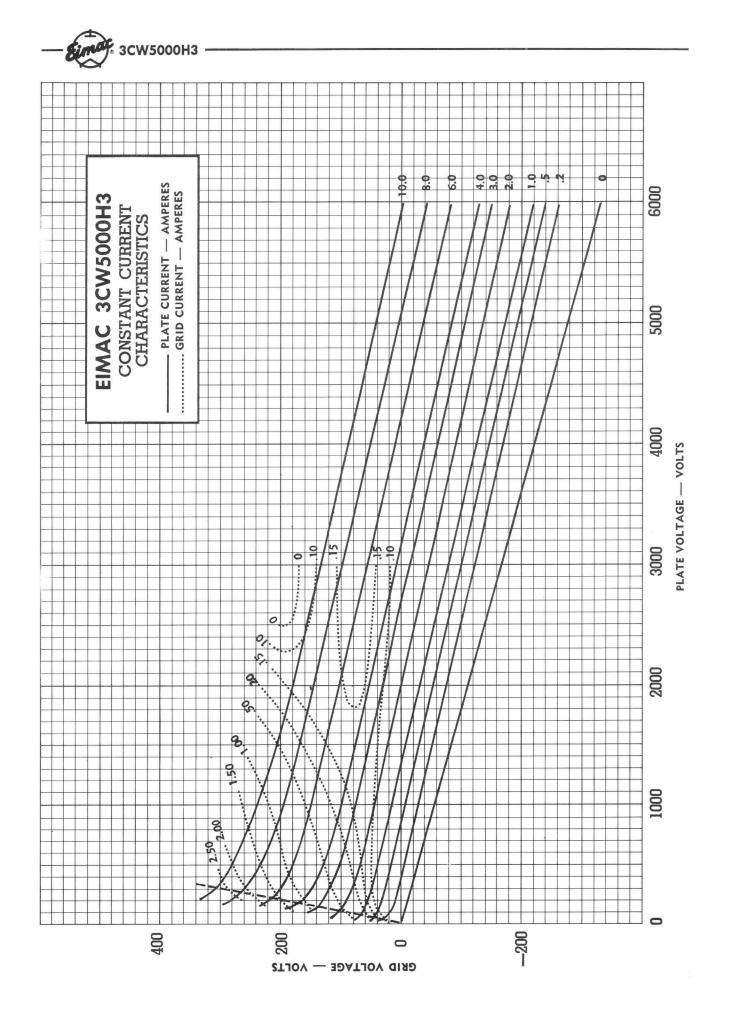
Anode cooling is accomplished by circulating water through the integral anode-water jacket.

The table below lists the minimum water flow requirement for adequate anode cooling at various plate dissipation levels. In all cases, the outlet water temperature must not exceed 70°C nor should inlet water pressure exceed 60 psi. This table is based upon 15°C temperature rise inlet to outlet water.


MINIMUM V	VATER-COOLING RE	EQUIREMENT
Plate Dissipation (kW)	Water Flow (gpm)	Pressure Drop (psi)
3.0	0.65	0.27
5.0	1.10	0.70
7.0	1.75	1.75

Additional stem cooling air must be provided. 13 CFM of air directed against the center filament contact ring $\frac{1}{2}$ " below the outer filament contact ring by a $1\frac{1}{2}$ " I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling.

Special Application


If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California for information and recommendations.

	DIMENSION	IN INCHE	3
	DIMENSK	ONAL DAT	rA .
Dim.	MIN.	MAX.	REF
A	3.300	3.400	
8	.780	.843	
C	4.230	4.250	
0	118°	1220	
G	.687	.812	
K			.125
4	1.000	1.125	1 22
M			1.500
N	1.703	1.953	
P	4.615	4.635	
R	2.625	2.875	
T	8.000	9.000	
U	7.937	8.437	
V			.250
W	290	3/°	
X	5.330	5,420	
Y	3.875	.4.250	
M	8.937	9.437	
AB			2.000
AC	3.855	3.885	
AD			.390
AF			3.625
AG	.812	.937	
AH	.859	.890	

NOTE: I. REF. DIM. ARE FOR INFO ONLY & ARE NOT REQ'D FOR INSR PURPOSES. 2. EITHER FITTING CAN BE USED AS INLET OR OUTLET. 3. 3HOLES IN ANODE FLANGE, IZ HOLES IN GRID FLANGE. 4. MTG. FLANGE, FIL. LEDS \$ WATER FITTINGS ARE TO BE ORIENTED AS 3HOWN.

8242 3CW5000A3 8243 3CW5000F3 MEDIUM-MU WATER-COOLED POWER TRIODES

The EIMAC 8242/3CW5000A3 and 8243/ 3CW5000F3 are medium-mu water-cooled power triodes intended for use in amplifier, oscillator, or modulator service. Their maximum rated anode dissipation is 5000 watts. The two types are identical except for the addition of flexible leads for the grid and filament terminals of the 8243/3CW5000F3.

These tubes are water-cooled versions of the air-cooled 8161/3CX2500A3 and 8251/3CX2500F3.

The water-cooled tubes are recommended for industrial applications or installations where reserve anode dissipation is required.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Voltage 7.5 V Current @ 7.5 V(3CW5000A3) 51.5 A (3CW5000F3) 50.5 A Amplification Factor (Average) 22 Transconductance (Average) 20,000 μ mhos (Eb = 3000 Vdc; Ib = 830 mAdc) Direct Interelectrode Capacitances (Cathode grounded) ² Cin 35 pF Cout 0.9 pF Cgp 20 pF Frequency of Maximum Ratings (CW) 75 MHz 3CW5000F3 F1 3CW5000F3 F1	Filament: Thori	ated-tungsten	E	
$(3CW5000F3) \dots 50.5 A$ Amplification Factor (Average) \dots 22 Transconductance (Average) \dots 20,000 µmhos $(E_b = 3000 \text{ Vdc}; I_b = 830 \text{ mAdc})$ Direct Interelectrode Capacitances (Cathode grounded) ² $Cin \dots 35 \text{ pF}$ $Cout \dots 35 \text{ pF}$ $Cgp \dots 20 \text{ pF}$ Frequency of Maximum Ratings (CW) $3CW5000A3 \text{ F1} \dots 75 \text{ MHz}$ $F2 \dots 110 \text{ MHz}$	Voltage	7.5 V		
Amplification Factor (Average)22Transconductance (Average)20,000 μ mhos(Eb = 3000 Vdc; Ib = 830 mAdc)Direct Interelectrode Capacitances (Cathode grounded) ² Cin35 pFCout0.9 pFCgp20 pFFrequency of Maximum Ratings (CW)3CW5000A3F1F2110 MHz	Current @ 7.5 V	(3CW5000A3)		
Transconductance (Average) $20,000 \mu$ mhos(Eb = 3000 Vdc; Ib = 830 mAdc)Direct Interelectrode Capacitances (Cathode grounded) ² CinCoutCoutCgpCip20 pFFrequency of Maximum Ratings (CW)3CW5000A3 F1F2To MHzTo MHzF2		(3CW5000F3)		
(Eb = 3000 Vdc; Ib = 830 mAdc) Direct Interelectrode Capacitances (Cathode grounded) ² Cin 35 pF Cout 0.9 pF Cgp 20 pF Frequency of Maximum Ratings (CW) 75 MHz SCW5000A3 F1 75 MHz F2 110 MHz	Amplification Fa	ictor (Average)	-	
Direct Interelectrode Capacitances (Cathode grounded) ² Cin	Transconductanc	e (Average)		
Cin 35 pF Cout 0.9 pF Cgp 20 pF Frequency of Maximum Ratings (CW) 3CW5000A3 F1 F2 75 MHz F2 110 MHz	$(E_b = 3000 V c$	$Ic; I_b = 830 \text{ mAdc})$		
Cout 0.9 pF Cgp 20 pF Frequency of Maximum Ratings (CW) 3CW5000A3 F1 F2 110 MHz	Direct Interelect	rode Capacitances (Cathode grounded) ²		
Cgp 20 pF Frequency of Maximum Ratings (CW) 3CW5000A3 F1 75 MHz F2 110 MHz	Cin		35 p	F
Frequency of Maximum Ratings (CW)3CW5000A3F1F2110MHz	Cout		0.9 p	ьF
3CW5000A3 F1	Cgp		20 p	νF
F2 110 MHz	Frequency of Ma	ximum Ratings (CW)		
	3CW5000A3	F1	75 M	ΛHz
3CW5000F3 F1 30 MHz		F2	110 M	ЛНz
	3CW5000F3	F1	30 M	ЛНz

- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture, in accordance with Electronic Industries Association Standard RS-191.

(Revised 1-11-74) © 1962, 1964, 1967, 1974 by Varian

Printed in U.S.A.

8242/3CW5000A3 and 8243/3CW5000F3

MECHANICAL

Maximum Overall Dimensions:			
Length (excluding leads on 3CW5000F3) 12	2.56 In;	31.9 C	Cm
	3.63 In;		
	4.8 1b;		
3CW5000F3		2.5 k	0
Operating Position (both types) Axis Vertical, H			
Maximum Operating Temperatures:			P
Ceramic/Metal Seals or Envelope		. 250°	C
3CW5000F3 Filament Lead/Tube Base junctions		150°	C
Cooling: Anode	quivale	nt Liqu	id
Envelope, Seals, Base Areas	F	orced A	Air
Base: 3CW5000A3	Specia	l Coaxi	ial
3CW5000F3 Special wi	th Flyi	ng Lead	đs
RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.	
Filament: Current @ 7.5 volts (3CW5000A3)	49.0	54.0 A	Ą
(3CW5000F3)	48.0	53.0 A	A
Interelectrode Capacitance (Grounded cathode) ¹			
Cin	29.2.	40.2 p	νF
Cout	0.60	1.20 p	F
Cgp	16.8	23.2 p	νF

1. Capacitance values are for a cold tube as measured in a special shielded fixture, in accordance with Electronic Industries Association standard RS-191.

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. This current variation causes no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RADIO FREQUENCY POWER AMPLIFIER OR

OSCILLATOR Class C Telegraphy or FM - Grid Driven

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	(ι	ıp	t	0	F	1)	•			÷	6000	VOLTS
DC PLATE VOLTAGE	(F	=1	t	0	F	2)					4000	VOLTS
DC PLATE CURRENT					÷							2.5	AMPERES
PLATE DISSIPATION													
GRID DISSIPATION	·							•	•	•		150	WATTS

1. Approximate value.

2. Approximate; useful power delivered to the load will be lower because of circuit losses.

TYPICAL OPERATION (Frequencies to 30 MHz)

Plate Voltage .										4000	5000	6000	Vdc
Plate Current .		٠	÷			•		•		2.5	2.5	2.1	Adc
Grid Voltage .				÷		•	•	•	÷	-300	-450	-500	Vdc
										245	265	180	mAdc
Peak rf Grid Vol										580	750	765	V
Driving Power 1.										142	197	136	W
Grid Dissipation										68	78	46	W
Plate Power Inpu	It									10	12.5	12.5	kW
Plate Dissipatio	n	•				•	•	•		2.5	2.5	2.5	kΨ
Plate Power Outp	DU	t	2.	2	•		•	×	÷	7.5	10	10	kW

19

26

PLATE MODULATED RADIO FREQUENCY AMPLIFIER Class C Telephony - Carrier Conditions

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	(up	to	F	=1)	ŝ		5	•	5000	VOLTS
DC PLATE VOLTAGE	(F1	to	F	2)	÷.	ų,			3500	VOLTS
DC PLATE CURRENT	• •	ι.		۰.		÷		5	5	2.0	AMPERES
PLATE DISSIPATION							÷	į.		3350	WATTS
GRID DISSIPATION					•	÷	÷	÷	•	150	WATTS

1. Approximate value.

2. Approximate; useful power delivered to the load will be lower because of circuit losses.

TYPICAL OPERATION (Frequencies to 30 MHz)

F

Plate Voltage	4000	4500	5000	Vdc
Plate Current	1.67	1.55	1.45	Adc
Total Bias Voltage	-450	-500	-550	Vdc
Fixed Bias Voltage	-230	-325	-410	Vdc
Grid Resistor	1500	1500	1400	Ω
Grid Current	150	120	100	mAdc
Peak rf Grid Voltage1	680	720	760	V
Driving Power 1	102	86	76	W
Grid Dissipation ¹	35	26	21	W
Plate Dissipation 1	1.67	1.67	1.67	kW
Plate Power Output 2	5.0	5.3	5.6	kW

AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR Class AB

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE									6000	VOLTS
DC PLATE CURRENT				÷	•			x	2.5	AMPERES
PLATE DISSIPATION			ž		•	•			5000	WATTS
GRID DISSIPATION	•	•			•		ž		150	WATTS

1. Approx. Adjust for specified zero-signal plate current. 2. Approximate.

TYPICAL OPERATION (Two Tubes)

Plate Voltage	4000	5000	5000	6000	Vdc
Grid Voltage ¹	-145	-190	-190	-240	Vdc
Zero Signal Plate Current	0.6	0.5	0.5	0.4	Adc
Max. Signal Plate Current	2.70	2.26	3.2	3.0	Adc
Effective Load,					
plate-to-plate	3300	5000	3600	4650	Ω
Peak af Grid Voltage					
(per tube) ²	285	310	360	390	v
Max. Signal Peak					
Driving Power ²	134	118	230	225	W
Max. Signal Nom.					
Driving Power ²	67	59	115	113	W
Max. Signal Plate					
Output Power 2	7.4	8.0	11.0	13.0	kW

APPLICATION

MECHANICAL

MOUNTING-The 3CW5000A3 and 3CW5000F3 must be mounted vertically, base down or up at the convenience of the circuit designer. The filament connections to the 3CW5000A3 should be made through spring collets. These are available from EIMAC with the following part numbers:

> Inner line collet: 149575

149576 Outer line collet

Reasonable care should be taken that these collets do not impart undue strain to the terminals or the base of the tube.

COOLING-With an anode dissipation of 5000 watts and with an incoming water temperature of 50°C maximum, 7.7 gpm of cooling water must be supplied to the anode cooling jacket. Outlet water temperature from the cooling jacket should never exceed 70°C, and water pressure on the jacket should not exceed 60 psi. The pressure drop across the anode cooling jacket itself, with a water flow of 7.7 gpm, will be approximately 6 psi. The gridterminal contact surface and adjacent ceramic must be cooled by forced air, with quantity, velocity, and

direction adjusted to limit the maximum seal temperature to less than 250°C.

The filament stem structure also requires forced-air cooling. A minimum of 6 cfm should be directed into the space between the inner and outer filament contacting surfaces.

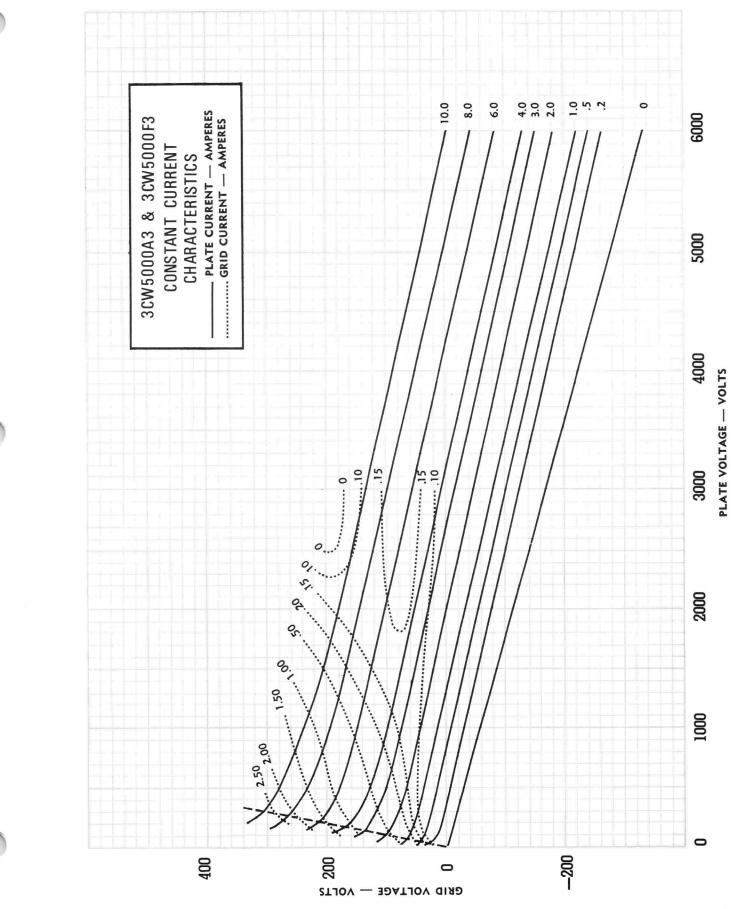
Both air and water flow must be supplied before or simultaneously with the application of electrode voltages, including the filament, and may be removed simultaneously with them. Where long life and consistent performance are factors, cooling in excess of minimum requirements is normally beneficial.

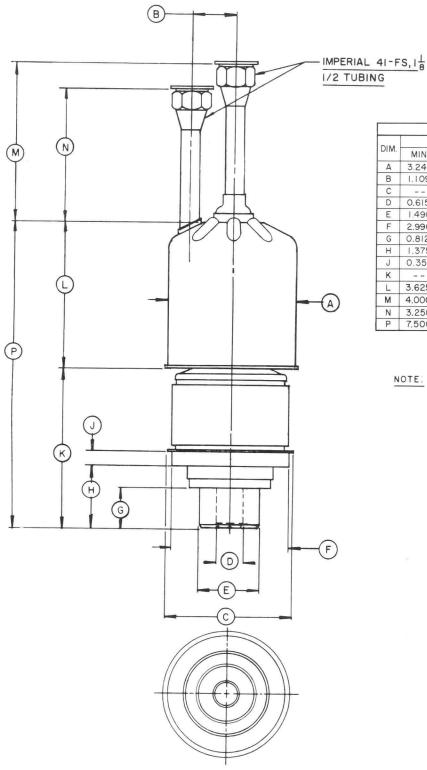
ELECTRICAL

FILAMENT OPERATION - The filament voltage, as measured at the filament terminals, should be 7.5 volts, with maximum allowable variations due to line fluctuations of from 7.12 to 7.87 volts.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

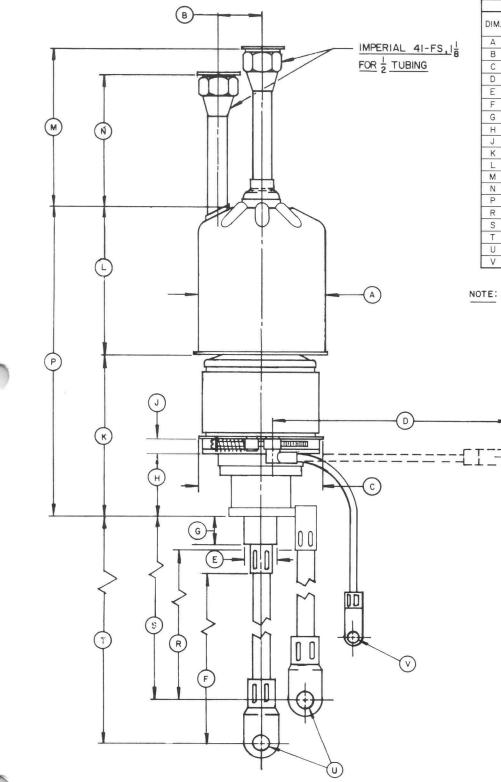
Many EIMAC power tubes, such as these, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry--the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

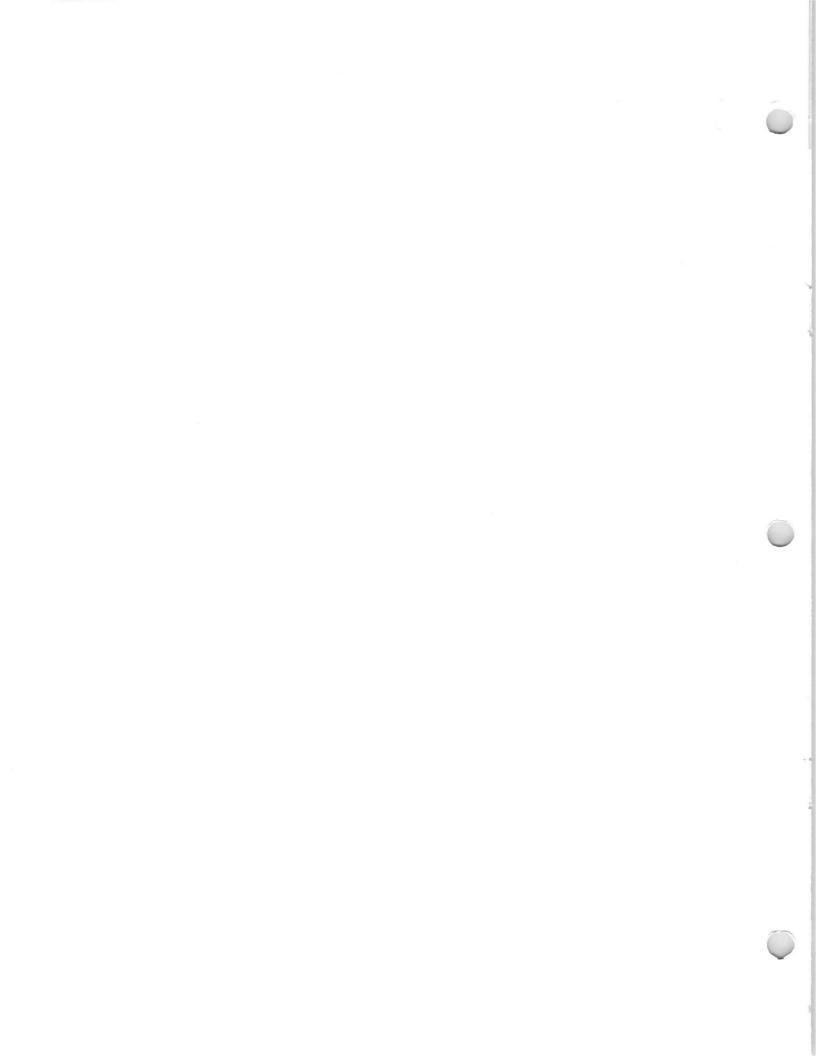

HIGH VOLTAGE - Normal operating voltages used with these tubes are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used. stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.


8242/3CW5000A3 and 8243/3CW5000F3 Eimage


		DIN	IENSIONA	L DATA		
DIM		INCHES		M	ILLIMETE	RS
DIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF.
А	3.245	3.255		82.42	82.68	
В	1.109	1.141		28.17	28.98	
С		3.625			92.08	
D	0.615	0.635		15.62	16.13	
Е	1.490	1.510		37.85	38.35	
F	2.990	3.010		75.95	76.45	
G	0.812	0.938		20.62	23.83	
н	1.375	1.625		34.93	41.28	
J	0.359	0.422		9.12	10.72	
К			3.599			91.41
L	3.625	3.875		92.08	98.43	
М	4.000	4.500		101.60	114.30	
N	3.250	3.750		82.55	95.25	
Ρ	7.500	8.125		190.50	206.38	

NOTE	REF	DIMS	ARE	FOR	INFO
	ONLY	AND	NOT	REQ.	FOR
	INSPE	CTION	PU	RPOSE	S.

		DIN	ENSIONA	L DATA		
DIM.	INCHES			M	ILLIMETER	RS
DIN.	MIN.	MAX.	REF.	MIN.	MAX.	REF.
А	3.245	3.255		82.42	82.68	
В	1.109	1.141		28.17	28.98	
С		3.625			92.08	
D	6.375	6.625		161.93	168.28	
Е	0.859	0.890		21.82	22.61	
F	7.000	7.500		177.80	190.50	
G	0.812	0.938		20.62	23.83	
Н	1.375	1.625		34.93	41.28	
J	0.359	0.422		9.12	10.72	
К			3.599			91.41
L	3.625	3.875		92.08	98.43	
М	4.000	4.500		101.60	114.30	
N	3.250	3.750		82.55	95.25	
Ρ	7.500	8.125		190.50	206.38	
R	7.000	7.500		177.80	190.50	
S	7.937	8.437		201.60	214.30	
Т	8.937	9.437		226.99	239.70	
U	0.385	0.395		9.78	10.03	
V	0.194	0.200		4.93	5.08	

REF. DIMS ARE FOR INFO ONLY AND NOT REQ. FOR INSPECTION PURPOSES.

TECHNICAL DATA

3CW10,000H3 INDUSTRIAL MEDIUM-MU

> WATER-COOLED POWER TRIODE

The EIMAC 3CW10,000H3 is a water-cooled, ceramic/metal power triode designed primarily for use in industrial radio-frequency heating services. Its water-cooled anode is conservatively rated at 10 kilowatts of plate dissipation with low water flow and pressure drop.

Input of 30 kilowatts is permissible up to 90 Megahertz. Plentiful reserve emission is available from its 560 watt filament. The grid structure is rated at 150 watts making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten7.5 ± 0.37VVoltage		0
Direct Interelectrode Capacitance (grounded cathode) ²		
Input	53.0	pF
Output	1.5	pF
Feedback	25.0	pF
Frequency of Maximum Rating:		
C W	90	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture.

MECHANICAL

Maximum Overall Dimensions:
Length (excluding leads) 10.450 in; 265.43 mm
Diameter 5.090 in; 129.29 mm
Net Weight 10 1b; 4.54 kg
Operating Position
Maximum Operating Temperature:
Ceramic/Metal Seals 250 °C
Cooling Water and Forced Air
Base See Outline

(Revised 10-15-70) © 1966, 1970 by Varian

Printed in U.S.A.

RADIO FREQUENCY INDUSTRIAL OSCILLATOR Class C (Filtered DC Power Supply)

(Key-Down Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		÷,						÷	10,000	VOLTS
DC GRID VOLTAGE				•	•	•		÷	-1000	VOLTS
DC PLATE CURRENT		•		•	•				3.0	AMPERES
DC GRID CURRENT .		•	ł						0.5	AMPERE
PLATE INPUT POWER									30,000	WATTS
PLATE DISSIPATION		÷		•	•		•		10,000	WATTS

TYPICAL OPERATION (Frequencies to 90 MHz)²

Plate Voltage	 	7000	9000 Vdc	
Grid Voltage	 	-700	-900 Vdc	
Plate Current	 	2.88	2.90 Adc	
Grid Current ¹	 	0.18	0.18 Adc	
Peak rf Grid Voltage ¹	 	250	250 v	
Calculated Driving Power .	 	170	215 W	
Plate Input Power	 	20.15	26.10 kW	
Plate Dissipation	 	5.15	5.50 kW	
Plate Output Power	 	15.0	20.6 kW	
Resonant Load Impedance .	 	1120	1470 Ω	

1. Approximate value.

2. Loaded Conditions

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves or actual measurment. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN

	Min.	Max.	,
Filament: Current at 7.5 volts	72	77	A
Interelectrode Capacitances ¹ (grounded filament connection)			
Input	46.0	56.0	pF
Output	1.35	1.65	pF
Feedback	22.0	28.0	pF

1. Capacitance values are for a cold tube as measured in a shielded fixture.

MECHANICAL

MOUNTING - The 3CW10,000H3 must be mounted vertically, either base up or down. A grid contact flange is provided for bolting to a strap or a grid deck. Heavy flexible leads are provided for applying the filament voltage.

COOLING - Anode cooling is accomplished by circulating water through the integral anode-water jacket.

The table below lists minimum water flow requirement for adequate anode cooling at various plate dissipation levels. In all cases, the outlet water temperature must not exceed 70° C

APPLICATION

nor should inlet water pressure exceed 60 psi. This table is based upon $15^{\circ}C$ temperature rise of water from inlet to outlet.

MINIMUM WA'	TER-COOLING	REQUIREMENT
Plate	Water	Pressure
Dissipation	Flow	Drop
(kW)	(gpm)	(psi)
8	3.2	5.5
10	4.4	8.1
12	5.8	13.4

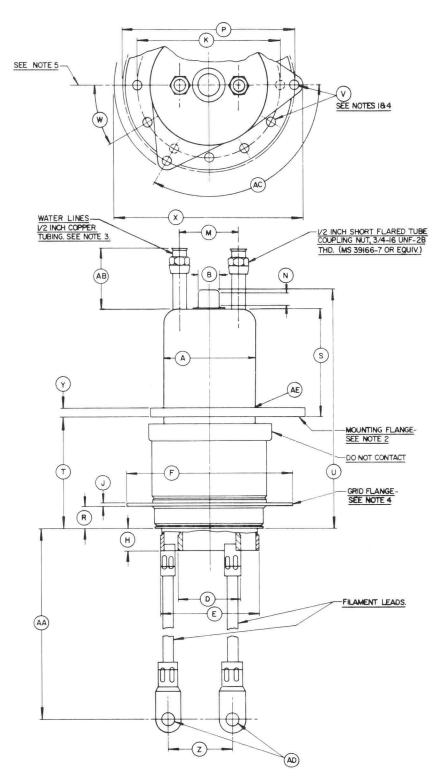
Additional stem cooling air must be provided. 8 CFM of air directed against the center filament contact ring $\frac{1}{2}$ inch below the outer filament contact ring by a $\frac{1}{2}$ inch I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling.

ELECTRICAL

FILAMENT - The rated filament voltage for the 3CW10,000H3 is 7.5 volts. Filament voltage, as measured at the tube, must be maintained at 7.5 volts plus or minus five percent for maximum tube life and consistent performance.

GRID OPERATION - The grid current rating is 0.5 ampere dc. This value should not be exceeded for more than very short periods such as during tuning. Over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.25 ampere grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 150 watts.

PLATE OPERATION - Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.


HIGH VOLTAGE - The 3CW10,000H3 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RAY RADIATION - The 3CW10,000H3, operating at its maximum rated voltage and current, as an industrial oscillator is a potential X-ray hazard. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to changes in leakage paths or emission characteristics as they are affected by high voltage. Only limited shielding is afforded by the tube envelope. Additional X-ray shielding must be provided on all sides of the tube to provide adequate protection to operating personnel throughout the tube's life. X-ray caution signs or labels must be permanently attached to equipment using this tube directing operating personnel never to operate this device without X-ray shielding in place.

RADIO FREQUENCY RADIATION - Exposure of the human body to rf radiation becomes increasingly more hazardous as the power level and/or frequency are increased. Exposure to high-power rf radiation must be strictly prevented at any frequency.

Equipment must be designed to fully safeguard all personnel from these hazards. Labels and caution notices must be provided on equipment and in manuals clearly warming of these hazards.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

DIMENSIONAL DATA

		DIM	IENSIONAL	DAIA							
DIM.		INCHES		MILLIMETERS							
UIM.	MIN.	MAX.	REF.	MIN.	MAX.	REF					
Α	2.830	3.030		71.88	76.96						
В	0.860	0.890		21.84	22.61						
D			1.875			47.63					
E		(=)=	3.250			82.55					
F	5.030	5.090		127.76	129.29						
н	0.530	0.700		13.46	17.78						
J			0.125			3.18					
к	4.425	4.445		112.40	112.90						
М			1.900			48.26					
N	0.375			9.53							
Ρ	5.990	6.010		152.15	152.65						
R	0.700	0.860		17.78	21.84						
S	~ -		3.350			85.09					
Т	4.000	4.150		101.60	105.41						
U	8.000	8.400		203.20	213.36						
V			0.265			6,73					
W	29°	31°		29°	3I°						
Х	6.700	6.800		170.18	172.72						
Y			0.250			6.35					
Z			2.000			50.80					
AA	8.500	9.000		215.90	228.60						
AB			2.250			57.15					
AC	118°	122°	-	118°	122°						
AD			0.390			9.91					
AE			0.062R			1.57R					

NOTES

I. REF DIMS. ARE FOR INFO. ONLY 8 ARE NOT FOR INSPECTION PURPOSES.

- 2. 3 MOUNTING HOLES IN MTG.

- 2. 3 MOUNTING HOLES IN MTG. FLANGE. 3. EITHER FITTING CAN BE USED AS INLET OR OUTLET. 4. 12 HOLES IN GRID FLANGE. 5. MTG. FLANGE, FIL. LEADS B. WATER FITTING ARE TO BE ORIENTED AS SHOWN.

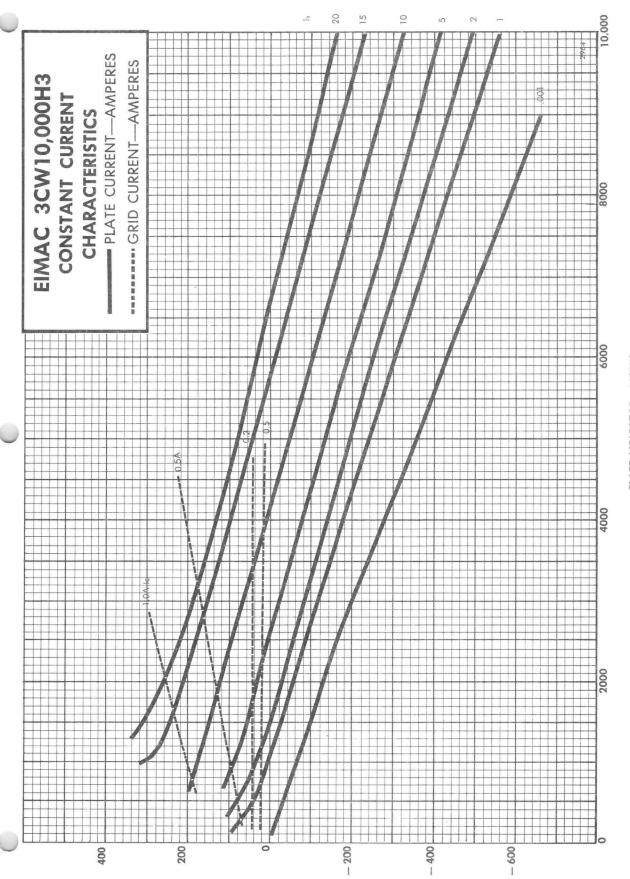
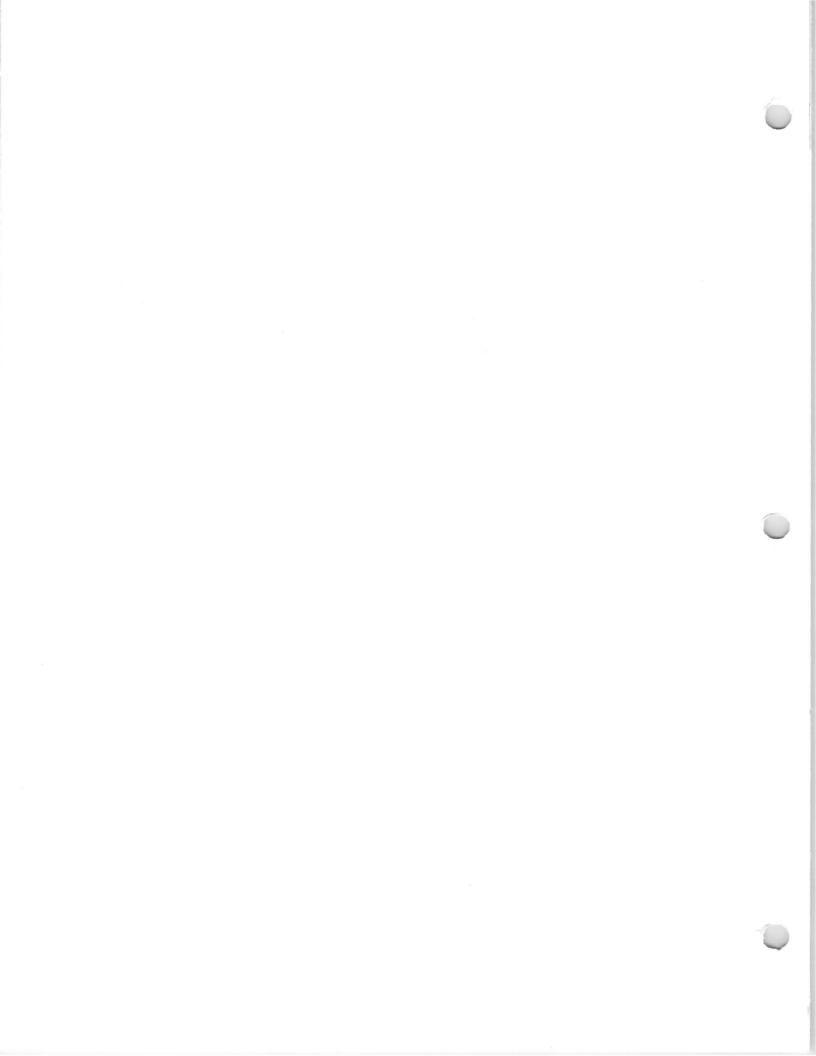



PLATE VOLTATGE - VOLTS

GRID VOLTAGE - VOLTS

TECHNICAL DATA

WATER-COOLED LOW-MU POWER TRIODE

The EIMAC 3CW20,000A1 is a ceramic/metal power triode intended primarily for use as an audio amplifier or modulator. This tube is also recommended for voltage-regulator applications where high current capability and low tube drop are important. Up to 20 kilowatts of plate power can be dissipated on its water-cooled anode. Except for plate dissipation, the tube is electrically identical to the 8158/3CX10,000A1.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated-tungsten	
Voltage	
Current, at 7.5 volts 100 A	-
Amplification Factor (average)6.2	
Direct Interelectrode Capacitances (grounded cathode) ²	д
Cin 51.0 pF	
Cout 4.1 pF	
Cgp 28.5 pF	
Transconductance ($I_b = 2.0$ Adc, $E_b = 3000$ Vdc)	20,000 μ mhos
Frequency of Maximum Rating (CW)	110 MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Maximum Overall Dimensions: 11.22 In: 28.49 cm Diameter..... 4.66 In; 11.83 cm Net Weight 12 lbs; 5.5 kg Maximum Operating Temperature: Envelope & Ceramic/Metal Seals 250°C Cooling Water and Forced Air Base Coaxial Recommended Socket.... EIMAC SK-1300

(Effective 9-1-74) © 1963, 1967, 1964 by Varian

Printed in U.S.A.

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR Class AB1

MAXIMUM BATINGS (Per Tube):

MAXIMUM RATINGS (Per Tube):	Plate Voltage	7000
DC PLATE VOLTAGE 7000 VOLTS	Grid Voltage ¹	-1300 .
DC PLATE CURRENT 5.0 AMPERES	Zero-Sig Plate Current Max-Sig Plate Current	1.5 5.8
PLATE DISSIPATION 20,000 WATTS	Load Res. Plate-to-Plate	2460
GRID DISSIPATION 100 WATTS	Peak af Drive Voltage 2	
1. Adjust for Zero-Signal plate current.	(per tube)	1300
2. Approximate value.	Max-Sig Driving Power	0
Effective grid circuit resistance must not exceed	Max-Sig Plate Output Power	24.4
20.000 ohms.	Total Harmonic Distortion ²	2.9

7000 VOLTS

ing table on P. 3.

20,000 WATTS

100 WATTS

Effe 20,000 ohms.

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR Class A

DC PLATE CURRENT See Class A derat-

MAXIMUM RATINGS:

TYPICAL OPERATION

TYPICAL OPERATION, Two Tubes

Sinusoidal Wave

Plate Voltage						2500	Vdc
Grid Voltage 1						-290	Vdc
Plate Current	i.	÷	5	۰.		4.0	Adc
Peak af Dri ving Voltage 2		÷	5			290	V
Load Resistance		÷				212	Ω
Max. Sig. Plate Output Power2						1800	W
Second Harmonic Distortion ²						6.75	%

7000 Vdc -1300 Vdc

1.5 Adc

7.0 Adc

0 W

29.1 kW

3.6 %

1720 Ω

1300 v

1. Adjust for specified dc plate current. 2. Approximate value.

VOLTAGE R	EGULATOR	SERVICE
-----------	----------	---------

DC PLATE VOLTAGE

PLATE DISSIPATION

GRID DISSIPATION

Class A

MAXIMUM RATINGS:

DC PLATE VOLTAGE 10,000 VOLTS See Class A derat-DC PLATE CURRENT ing table on P. 3. PLATE DISSIPATION 12,000 WATTS GRID DISSIPATION 100 WATTS

TYPICAL OPERATION

Plate Voltage (Tube drop) 5000 Vdc 0-2.0 Adc

(These values are chosen according to the Class A derating table on Page 3).

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the grid voltage to obtain the specified plate current at the specified bias, and plate voltages, is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Filament: Current at 7.5 volts	94.0	104.0 A
Amplification Factor	4.8	6.8
Interelectrode Capacitances (grounded cathode connection) ¹		
Cin	45.0	57.0 pF
Cout	3.6	4.5 pF
Cgp	25.0	32.0 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATIONS

MECHANICAL

MOUNTING - The 3CW20,000A1 must be operated vertically, anode down or up, and should be protected from shock and vibration. The EIMAC SK-1300 socket is available and recommended for simultaneously holding the tube in position and making all base contacts.

COOLING - The anode of the 3CW20,000A1 is cooled by circulating water through the integral water jacket. The cooling table shows minimum water-flow rates at various plate dissipation levels and assumes a temperature rise for the water of 10° C. Inlet water temperature should never exceed 55°C and outlet water temperature should never exceed 70°C. Where a liquid coolant other than water is used, the difference in cooling characteristics should be carefully considered and taken into account. Maximum system pressure should not exceed 50 psi.

Minimum Cooling Water-Flow Requirements												
Dissipation	Water Flow	Press. Drop										
(watts)	(gpm)	Approx. psi										
10,000	11	11.5										
15,000	12	13.5										
20,000	14	17.0										

A major factor effecting long life of watercooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K Ω/cm^3 , and preferably above 250 K Ω/cm^3 . A relative water resistance check can be made by continuously measuring the leakage current which will bypass a short section of insulating hose column if metal nipples or fittings are used as electrodes.

Forced-air cooling of the base is also required, with 30 to 50 cfm of air at 50° C maximum directed up into and around the base of the tube to cool the filament and grid contact areas. Both anode and base cooling should be applied before or simultaneously with electrode voltages, including the filament, and should normally be maintained for a short period of time after all voltages are removed to allow for tube cooldown.

ELECTRICAL

VOLTAGE REGULATOR OR CLASS A SER-VICE - Maximum dc plate curren and voltage are restricted according to the following table:

CLASS A DERATING TABLE											
DC Plate Voltage	Max.DC Plate Current										
(Volts)	(mA)										
0 - 2400	5000										
3000	4000										
4000	3000										
5000	2000										
6000	1500										
7000	1000										
8000	700										
9000	500										

FILAMENT OPERATION - Filament voltage should be measured at the socket with a one percent accuracy, rms responding meter. The peak emission capability of the tube at rated filament voltage is normally many times that required for for communication or regulator service, and a small decrease in filament temperature due to a reduction in filament voltage can increase the life of the tube by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect the equipment operation. This is done by measuring some important parameter of performance, such as plate current or power output, while filament voltage is slowly reduced. At some point in filament voltage there will be a noticeable reduction in plate current or power output, and operation must be at a filament volt-

age slightly higher than the point at which performance appeared to deteriorate. This point should be periodically checked to maintain proper operation, and line or filament voltage regulation must be such that this procedure for operating at slightly reduced voltage is feasible.

STANDBY OPERATION - Both anode and base cooling must be applied whenever filament power is applied even though no other voltages are present, since sixty to eighty percent of the filament power appears as heat at the anode. In the absence of cooling, temperatures will rise to levels which are detrimental to long life, and if the anode coolant lines are obstructed the cooling jacket may rupture from generated steam pressure.

HIGH VOLTAGE - Normal operating voltages used with the 3CW20,000A1 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as the 3CW-20,000A1, are specifically designed to generate or amplify radio frequency power. There may be a

relatively strong rf field in the general proximity of the power tube and its associated circuitry---the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube

capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to the Application Engineering Dept., Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070 for information and recommendations.

-

-

-

-

-

-

-

-

-

-

-

MILLIMETERS

105.56

118.26

97.33

- -

44.45

127.64

MAX. REF

-

--

-

-

--

_ _

MIN.

103.99

116.69

96.32

4.78

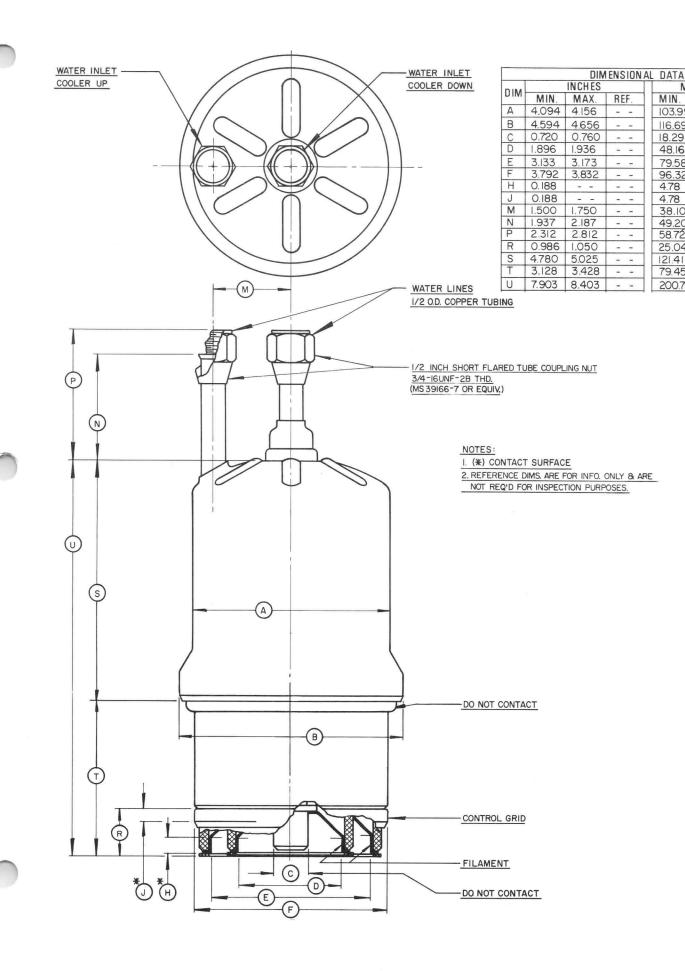
4.78

38.10

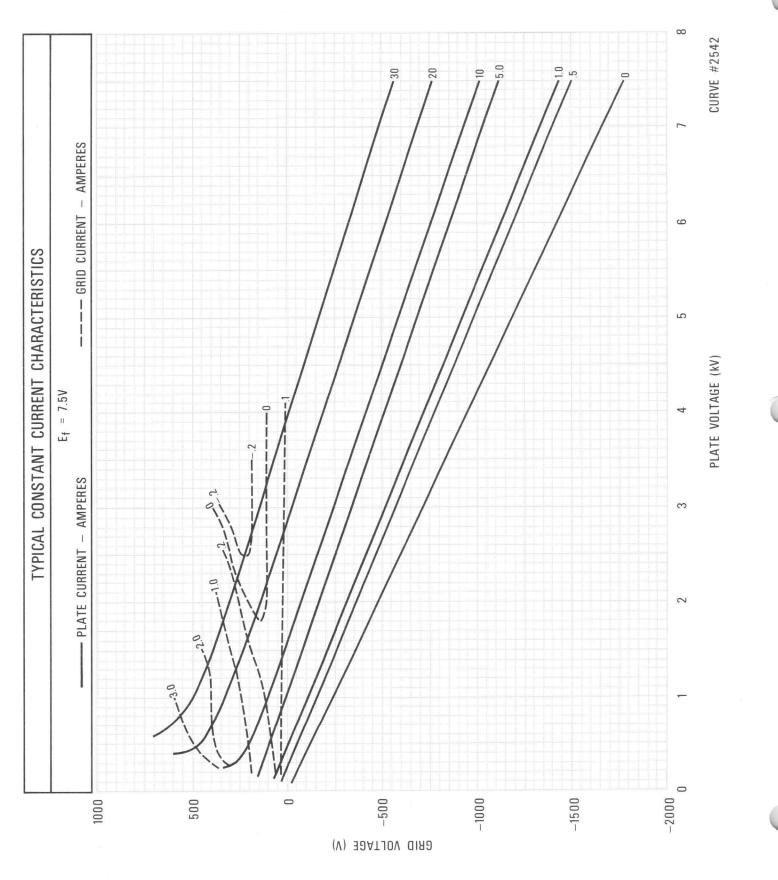
121.41

18.29 19.30

48.16 49.17

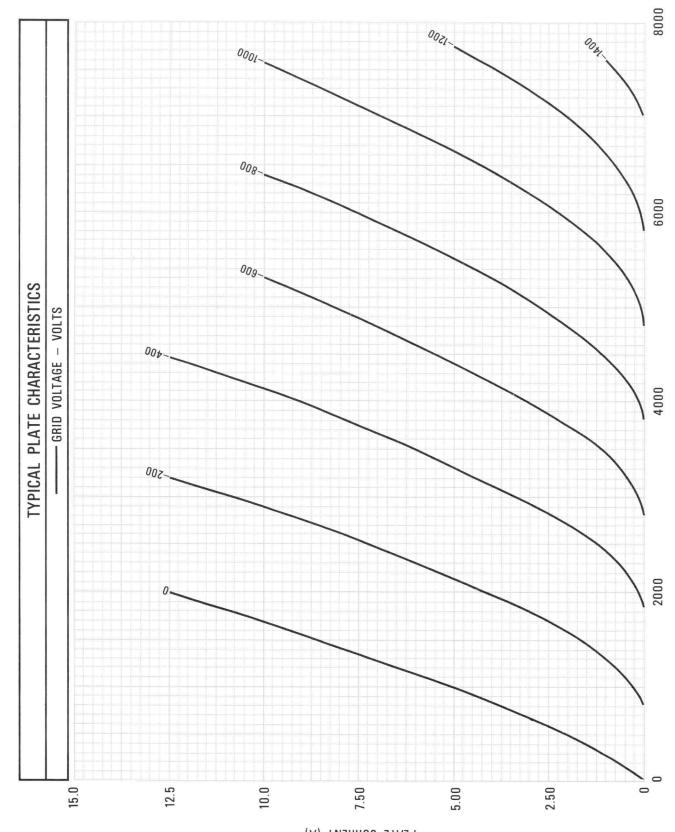

79.58 80.59

49.20 55.55 58.72 71.42


25.04 26.67

79.45 87.07

200.74 213.44



5

6

(A) TNARRUJ ATAJA

PLATE VOLTAGE (V)

TECHNICAL DATA

3CW20,000A3

WATER-COOLED MEDIUM-MU POWER TRIODE

The EIMAC 3CW20,000A3 is a ceramic/metal power triode intended primarily for use as a power oscillator in industrial-heating applications. It is also recommended for use as a grounded-grid FM amplifier, as a conventional plate-modulated amplifier, or as a linear amplifier.

The anode dissipation rating is 20,000 watts with water cooling.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten	
Voltage 7.5 ± 0.4	V
Current, at 7.5 V 100	А
Amplification Factor (Average)20	
Direct Interelectrode Capacitances ²	
Cin 53	pF
Cout 1.35	pF
Cgp	pF
Frequency of Maximum Ratings (CW) 140	MHz

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Base Special, Coaxial
Recommended Air System Socket EIMAC SK-1300
Operating Position Vertical, base up or down
Cooling Water and Forced Air
Maximum Operating Temperature:
Envelope and Ceramic/Metal Seals 250°C
Maximum Overall Dimensions:
Length 10.21 in; 259.3 mm
Diameter 4.65 in; 118.1 mm
Net Weight 12 lbs; 5.5 kg

(Effective 8-1-75) © 1963, 1966, 1975 by Varian

Printed in U.S.A.

RADIO-FREQUENCY POWER AMPLIFIER

Class C

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE						÷	5500	VOLTS
DC PLATE CURRENT							3.0	AMPERES
PLATE DISSIPATION	•				•		13.5	KILOWATTS
GRID DISSIPATION								WATTS

RADIO-FREQUENCY LINEAR AMPLIFIER

Grounded-Grid, Class AB2

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		ż				X	7000	VOLTS
DC PLATE CURRENT	•	ŝ	ż	•	•	ŗ.	5.0	AMPERES
PLATE DISSIPATION							20	KILOWATTS
GRID DISSIPATION		ł	ł				250	WATTS

1. Adjust to give specified zero-signal dc plate current.

RADIO-FREQUENCY INDUSTRIAL OSCILLATOR Class C

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE						ž,	7000	VOLTS
DC PLATE CURRENT					•		4.0	AMPERES
PLATE DISSIPATION							20	KILOWATTS
GRID DISSIPATION		÷	÷				250	WATTS

RADIO-FREQUENCY POWER AMPLIFIER Grounded-Grid, Class C

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE									7000	VOLTS
DC PLATE CURRENT	÷	÷			•	ŝ	÷	÷	4.0	AMPERES
PLATE DISSIPATION									20	KILOWATTS
GRID DISSIPATION		•	•	•	•	•	•	÷	250	WATTS

TYPICAL OPERATION

DC Plate Voltage										4000	5000	Vdc
DC Grid Voltage								•		-480	-600	Vdc
DC Plate Current		•								3.0	3.0	Adc
DC Grid Current		•	•		÷	i.	÷			660	550	mAdc
Driving Power	•	•	•	•	÷		÷	•	•	530	515	W
Plate Output Powe	r		•					•		9.7	12.4	kW

TYPICAL OPERATION

6000	7000	Vdc
-270	-325	Vdc
500	500	mAdc
4.0	4.0	Adc
300	250	mAdc
540	585	v
1900	2050	W
18	20	kW
	-270 500 4.0 300 540 1900	-270 -325 500 500 4.0 4.0 300 250 540 585 1900 2050

TYPICAL OPERATION, Optimum Load

DC Plate Voltage		•					•		y.	6000	7000	Vdc
DC Grid Voltage										-575	-670	Vdc
DC Plate Current								÷		4.0	4.0	Adc
DC Grid Current										610	670	mAdc
Plate Input Power		•		•	•					24	28	kW
Plate Output Powe	er				•	•				18.9	22.4	kW

TYPICAL OPERATION

DC Plate Voltage									6000	7000	Vdc
DC Grid Voltage								÷	-535	-625	Vdc
DC Plate Current		÷	į.						4.0	4.0	Adc
DC Grid Current									545	530	mAdc
Driving Power	•			•		•			3700	4100	W
Plate Output Power					r		•		20.5	24.5	kW

NOTE: TYPICAL OPERATION data are obtained by calculation from published characteristic curves or actual measurement. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Filament Current at 7.5 Volts	94.0	104.0 A
Interelectrode Capacitance (grounded cathode connection) ¹		
Cin	48.0	58.0 pF
Cout	1.2	1.5 pF
Cgp	30.0	38.0 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MECHANICAL

MOUNTING - The 3CW20,000A3 must be operated vertically, anode down or up, and should be protected from shock and vibration.

COOLING - The anode of the 3CW20,000A3 is cooled by circulating water through the integral anode water jacket. The cooling table shows minimum water-flow rates at various plate dissipation levels and assumes a temperature rise for the water of 10° C. Inlet water temperature should never exceed 55°C and outlet water temperature should never exceed 70°C. Where a liquid coolant other than water is used, the difference in cooling characteristics should be carefully considered and taken into account. Maximum system pressure must not exceed 50 psi.

Minimum Cool	ing Water-Flow	Requirements
Plate	Water	Pressure
Dissipation	Flow	Drop
(kW)	(gpm)	Approx. psi
10	11.0	11.5
15	12.0	13.5
20	14.0	17.0

A major factor effecting long life of watercooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K Ω/cm^3 , and preferably above 250 K Ω/cm^3 . A relative water resistance check can be made continuously by measuring the leakage current which will bypass a short section of insulating hose column if metal nipples or fittings are used as electrodes.

Forced-air cooling of the base is also required, with 30 to 50 cfm of air at 50°C maximum directed up into and around the base of the tube to cool the grid and filament contact areas. Both anode and base cooling should be applied before or simultaneously with electrode voltages, including the filament, and should normally be maintained for a short period of time after all voltages are removed to allow for tube cooldown.

ELECTRICAL

FILAMENT OPERATION - Filament voltage should be measured at the terminals with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 3CW20.000A3 is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 3CW20,000A3 by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance such as plate current, power output. or an increase in distortion. Operation must be at a filament voltage slightly higher than the point at which performance appears to deteriorate.

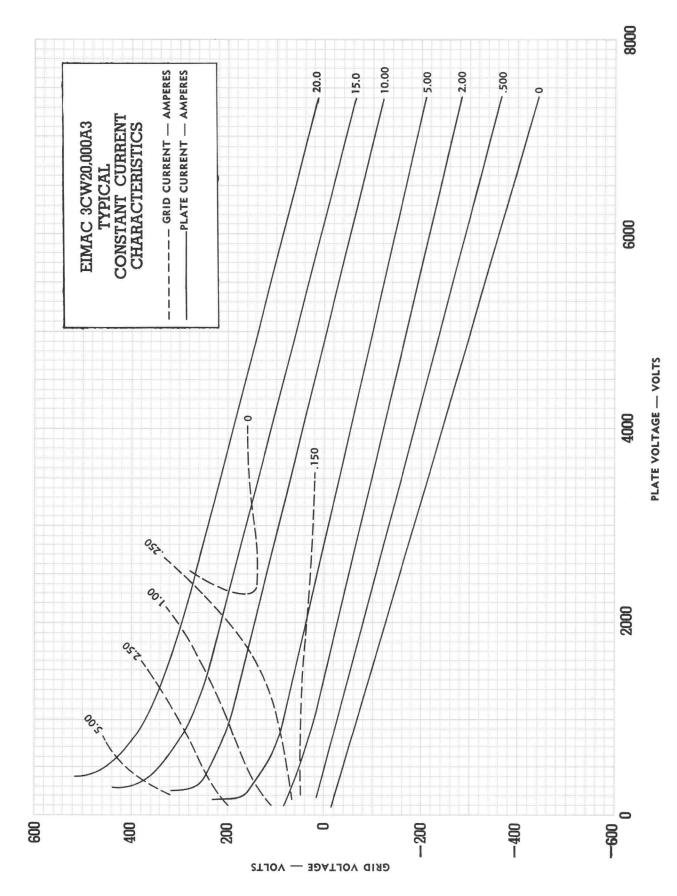
INPUT CIRCUIT - When the 3CW20,000A3 is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of two or more.

STANDBY OPERATION - Coolant must be circulated through the anode water jacket whenever filament power is applied even though no other voltages are present. Sixty to eighty percent of the filament power appears as heat in the anode. In the absence of coolant flow, temperatures will rise to levels which are detrimental to long life. If the coolant lines are obstructed the coolant jacket may rupture from the generated steam pressure.

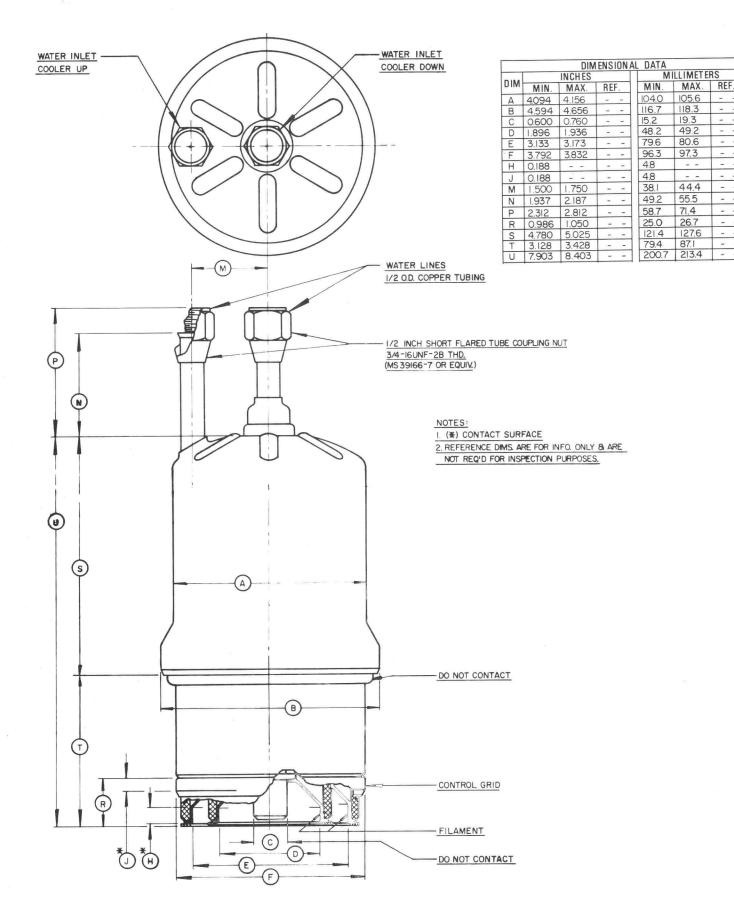
HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design. RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 3CW-20,000A3, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry--- the more power invloved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

FAULT PROTECTION - In addition to normal plate over-current interlock and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from oc-casional plate arcing at high anode voltage.


In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with each tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, we strongly recommend use of some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc.

SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

4

5

-

-

-

TECHNICAL DATA

3CW20,000A7

WATER-COOLED HIGH-MU POWER TRIODE

The Eimac 3CW20,000A7 is a ceramic and metal power triode intended to be used as a zero-bias Class-B amplifier in audio or radio-frequency applications. Operation with zero grid bias offers circuit simplicity by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 3CW20,000A7.

The 3CW20,000A7 is electrically identical to the air-cooled 3CX10,000A7 except for its 20kW plate dissipation rating.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament:	Thoriated-	Tuna	sten									Min.	Nom.	Max	ι.					
	Voltage	-		-	-	-	-	-	-	-	-		7.5		volts					
	Current	-	-	-		-	-	-	-	-		94		104	amperes					
Amplificat	ion Factor	-	-	-	-	-	-	-	-	-	-		200							
Direct Int	erelectrode	Cap	pacita	ances:															Min.	Max.
	Grid-Filam	ent	-	-	-	-	-	-	-		-		-	-		-	-	-	50.0	62.0 uuf
	Grid-Plate	-	-	-	-	-	-	-	-		-	-	-	-		-	-	-	32.0	40.0 uuf
	Plate-Filam	ent		-			-	-	-	-	-	-	-	-			-	-		0.3 uuf
Frequency	for Maxim	um F	Rating	gs -			-	•	-		-	-				-	-	-		140 Mc
MECHAN	NICAL																			Coaxia
Base -		-	-	-	-	-	-	-	-	-	-		-			•	-			
	nded Socket		-	-	-	-	-	-	-	-	-	-			• •	-	-			c SK-1300
Operating		-	-	-	-	-	-	-	-				-	-					10	or dowr
	• •	-	-	•	-	-	-	-	-	-	-	•	-	-	• •	-	-	Wat	er and h	Forced ai
Maximum	Operating	Tem	perat	ures:																
	Anode C	ore	-		-	•	-	-	-	-	-	-	-	-		-	-	-	• •	250° C
	Ceramic-te	o-Me	tal S	Seals	-	•	-	-	-	-	-	-	-	-	• •	-		1.1	• •	250° C
Maximum	Dimensions	:																		· · · · · · · · · · · · · · · · · · ·
	Height		-	-	-	-	-		-	-	-	-	-	-			-		- 1	1.4 inches
	Diameter	-		-		-	-	-	-	-	-		-	-	-	-				4.7 inches
Net Wei	ght -		-	-	-	-	-	-	-	-	-	-	-	-		-	- 2	· _	•	12 pounds

RADIO-FREQUENCY LINEAR AMPLIFIER

Grounded Grid, Class-B

MAXIMUM RATINGS

DC PLATE VOLTAGE	-				7000	MAX	VOLTS
DC PLATE CURRENTS			-				AMPS
			-				
PLATE DISSIPATION	-	-	•	-		MAX.	
GRID DISSIPATION	-	-	-	-	500	MAX.	WATTS

DC Plate Voltage 7000 7000 volts Zero-Sig DC Plate Current* -- 1 0.60 0.60 amps -Max-Sig DC Plate Current -3.72 5.00 amps -0.71 1.00 amp Max-Sig DC Grid Current --. 35 32 ohms Driving Impedance - -1020 745 ohm; Resonant Load Impedance -885 1540 watts Max-Sig Driving Power Peak Envelope Plate 24,200 watts 17,700 Output Power -. 15.7 times Power Gain 20.0

TYPICAL OPERATION, Single-Tone Conditions

*Approximate Values

(Effective 1-1-63) @ Copyright 1963 by Eitel-McCullough, Inc.

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-B, Grid Driven

MAXIMUM RATINGS (Per Tube)

DC PLATE VOLTAGE	-		-	•	7000	MAX. VOLTS
DC PLATE CURRENT		-	-	-	5.0	MAX. AMPS
PLATE DISSIPATION	-	-	-	-	20	MAX. KW
GRID DISSIPATION			÷	-	500	MAX. WATTS
*Approximate Values						

TYPICAL OPERATION, Two Tubes, Sinusoidal Wave

DC Plate Voltage -	-	-		5000	7000 volts
DC Grid Voltage -			•	0	0 volts
Zero-Sig DC Plate Curren	†*	-	÷	1.2	1.2 amps
Max-Sig DC Plate Current	-	-	-	10.0	10.0 amps
Max-Sig DC Grid Current	-	-	•	1.2	2.1 amps
Driving Power	-	-	-	290	560 watts
Peak AF Driving Voltage (Per	Tube)	-	240	310 volts
Load Resistance, Plate-to-	Plate	-	-	1030	1520 ohms
Max-Sig Plate Output Pow	ver		•	31,000	47,700 watts

RADIO-FREQUENCY LINEAR AMPLIFIER

Carrier Conditions, Grounded-Grid, Class-B2

MAXIMUM RATINGS							
DC PLATE VOLTAGE	-	-		×	7000	MAX.	VOLTS
DC PLATE CURRENT	-	-		-	5.0	MAX.	AMPS
PLATE DISSIPATION		-		-	20	MAX. I	κw
GRID DISSIPATION		-	-	-	500	MAX. Y	WATTS

TYPICAL OPERATION

DC Plate Voltage -	-	-	-	-	-	-	7000	volts
DC Grid Voltage -	-		-	-	-		0	volts
Zero-Sig DC Plate Cur	rent*	-	-	-	-	-	0.6	amp
DC Plate Current -	-	-	-	-	-	-	2.4	amps
DC Grid Current -	-	-	-	÷	-	•	0.25	amp
Driving Impedancet	-	-	-	-	-	•	32	ohms
Peak Driving Voltage†	×		-	-	-	-	310	volts
Driving Power -	-	-	-	-	-	-	330	watts
Plate Output Power						-	5650	watts

*Approximate Values †Modulation Crest Conditions

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR, Class-C

MAXIMUM RATINGS						
DC PLATE VOLTAGE	-	-	-	-	7000	MAX.VOLTS
DC PLATE CURRENT		-	-	-	4.0	MAX. AMPS
PLATE DISSIPATION	-	-	-		20	MAX. KW
GRID DISSIPATION		-		-	500	MAX. WATTS

PLATE-MODULATED RADIO-FREQUENCY POWER AMPLIFIER, Class-C

MAXIMUM RATINGS						
DC PLATE VOLTAGE	-	-	-	-	5500 MAX. VOLTS	
DC PLATE CURRENT	-	-			3.0 MAX. AMPS	
PLATE DISSIPATION	-	-	-	-	13.5 MAX. KW	
GRID DISSIPATION	-			-	500 MAX. WATTS	

†Corresponds to 20 kW at 100% sine-wave modulation

TYPICAL OPERATION

DC Plate Voltage -	-	~	-	- 5000	7000 volts
DC Plate Current -	-			- 4.0	4.0 amps
DC Grid Voltage -	-	-	-	210	-230 volts
DC Grid Current -		-	-	- 840	775 mA
Peak RF Grid Voltage	-	-	-	- 510	555 volts
Grid Driving Power -				- 420	530 watts
Plate Output Power -	-	-		- 14	21.3 kW

TYPICAL OPERATION

DC Plate Voltage -	-					-	5000 volts
DC Plate Current -	-	-	-	-	-	-	3.0 amps
DC Grid Voltage -	-	-	-	-	-	-	-200 volts
DC Grid Current -	-	-	-	-	-	-	775 mA
Peak RF Grid Voltage		-	-	-	-	-	490 volts
Grid Driving Power		-	-	-	-	-	380 watts
Plate Output Power		-	-				11.9 kW

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made. Adjustment of the rf grid drive to obtain the specified zero-signal plate current at the specified bias and plate voltage is assumed.

3CW20,000A7 Simac -

APPLICATION

MECHANICAL

Mounting—The 3CW20,000A7 must be operated vertically, base down or up. The tube must be protected from severe vibration and shock.

Socket—The SK-1300 socket is available for use with the 3CW20,000A7. Base cooling is accomplished by directing approximately 30 cfm of air at a static pressure of 0.1 inch through the socket and over the base seals.

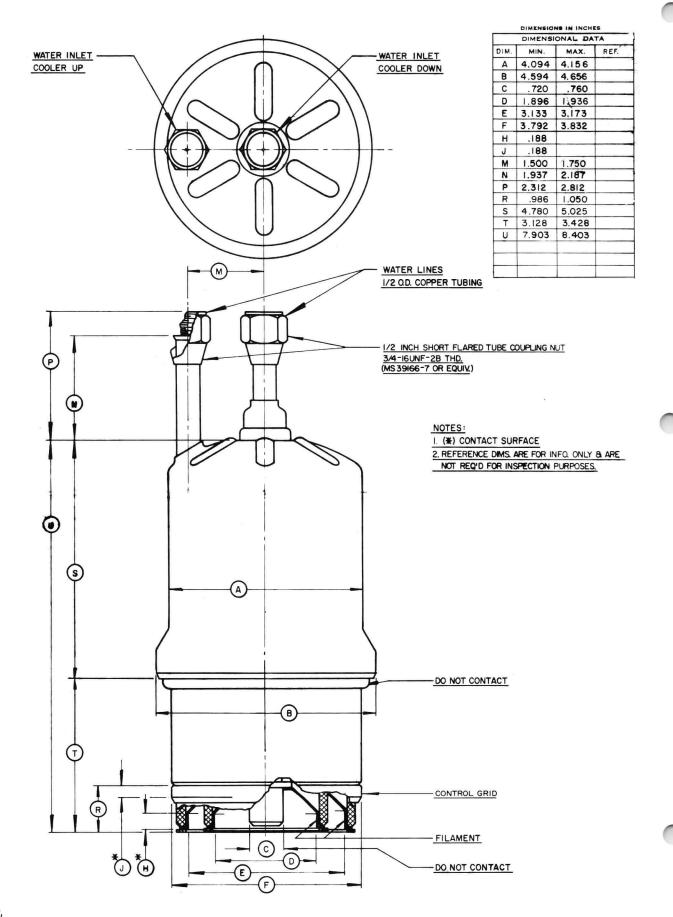
Cooling—The anode of the 3CW20,000A7 is cooled by circulating water through the integral anode-water jacket. The table below lists minimum water-flow rates at various plate dissipation levels

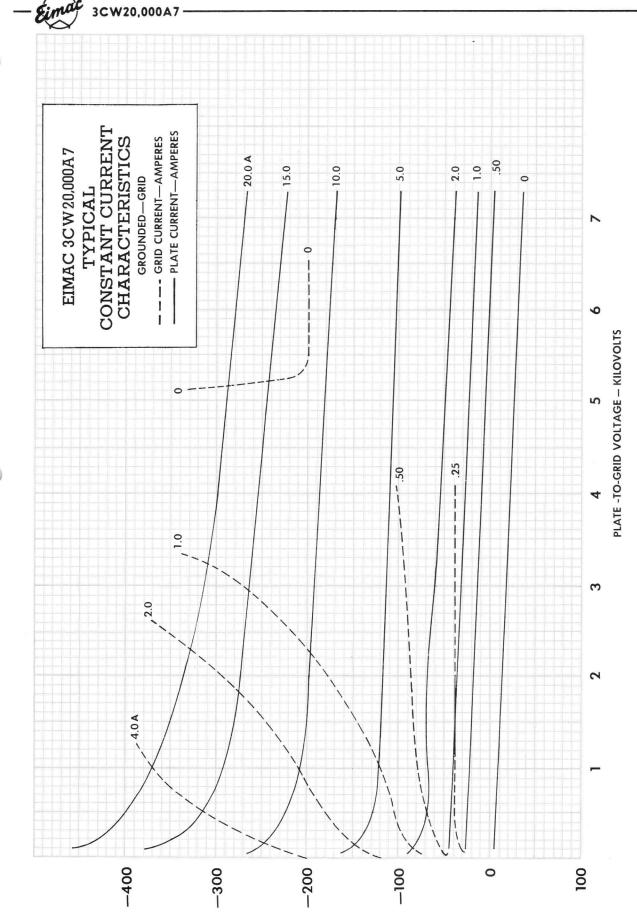
Minimum Co	oling Water-Flow F	Requirements
Plate Dissipation (kW))	Water Flow (gpm)	Pressure Drop (psi)
10	6.3	4.9
15	9.0	9.2
20	12.0	15.0

*Since power dissipated by the filament represents 750 watts and grid dissipation can reach 500 watts, 1250 watts has been added to anode dissipation in preparing this tabulation.

The cooling table assumes that the maximum outletwater temperature will be below 70°C to preclude "spot" boiling. Further, inlet-water temperature must not exceed 60°C. In all cases, maximum system water pressure must not exceed 50 pounds per square inch. Water flow and air flow must be started before applying any voltages to the tube and may be stopped simultaneously with the removal of tube voltages. Suitable flow and temperature interlocks should be provided to protect the tube from inadequate flow rates.

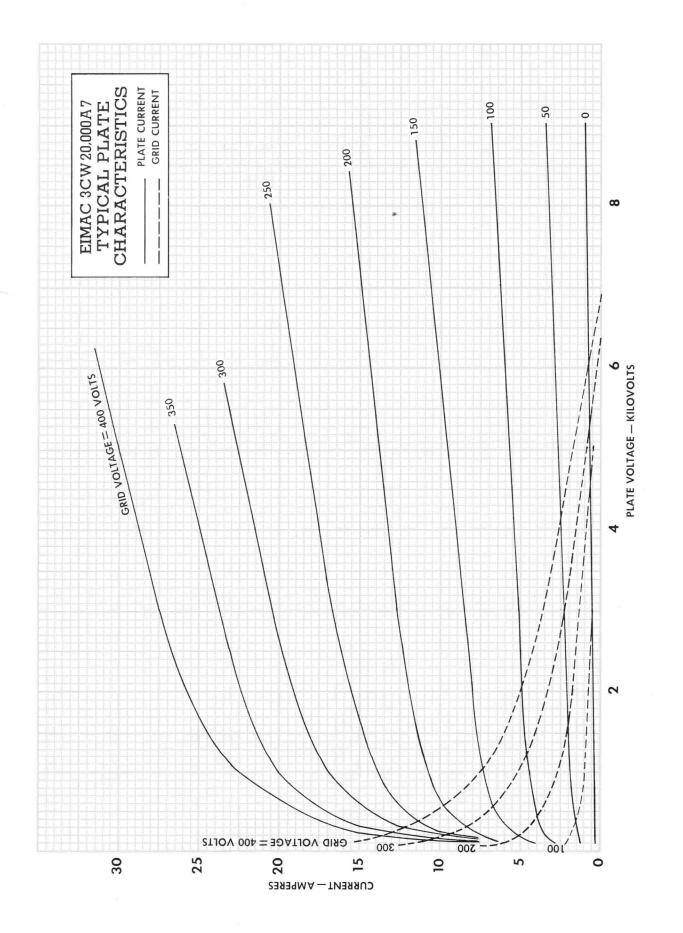
ELECTRICAL


Filament—The rated filament voltage for the 3CW20,-000A7 is 7.5 volts Filament voltage, as measured at the socket, should be maintained at this value for consistent performance and maximum tube life. In no case should it be allowed to vary from 7.5 volts by more than plus or minus five percent.


Input Circuit—When the 3CW20,000A7 is operated as a grounded-grid rf amplifier, the use of a resonant tank line in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a single-ended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of two or more.

Class-C Operation—Although designed specifically for Class-B service, the 3CW20,000A7 may be operated as a Class-C amplifier or oscillator or as a plate-modulated radio-frequency amplifier. The zero-bias characteristic can be used to advantage in Class-C amplifiers by employing only grid leak bias. If driving power should fail, plate dissipation is then kept to a low value because the tube will be operating at normal, static, zero-bias conditions.

Special Applications—If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California, for information and recommendations.



FILAMENT-TO-GRID VOLTAGE - VOLTS

5

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

The Eimac 3CW20,000H3 is a water-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its water-cooled anode is conservatively rated at 20 kilowatts of plate dissipation with low water flow and pressure drop.

Input of 40 kilowatts is permissable up to 90 megacycles. Plentiful reserve emission is available from its 750 watt filament. The grid structure is rated at 250 watts, making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS

Filament: Thoria	ited-T	ungst	en		Min.	Nom.	Max.	
Voltage		-	-	1-1		7.5		volts
Current		-	-	-	94		104	amps
Amplification Fa	ctor -	-	-	-		20		
Interelectrode Ca	pacit	ances	, Gro	ound	ed Catho	de:		
Grid-Filame	nt -	-	-	-	48		58	$\mu\mu { m f}$
Plate-Filame	ent -	-	-	-	1.2		1.5	$5 \mu \mu f$
Grid-Plate		-	-	-	30		38	$\mu\mu { m f}$
Frequency for M	axim	um Ra	ating	(S -			- 90	Mc

MECHANICAL

ELECTRICAL

Base		-	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-	-	-	-	See	Outline
Oper	rating	g Pos	sitior	ı	-	-	-	-	-	-	-	-	-	-	-	-	Ver	rtical	, bas	e up o	or down
Cool	ing	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Wat	er ai	nd Fo	rced Air
Max	imun Cera	_		-	-	-			-	-	-	-	_	_	-	-	-	-	-	-	250°C
Max	imun	n Dii	mens	sions	5:																
	Heig	ht	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
	Dian	neter	C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
Net	Weig	ht	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	12	pounds

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Power Supply)

MAXIMUM RATINGS:						
DC PLATE VOLTAGE	-	-	-	-	- 12,000 VOL	TS
DC PLATE CURRENT	-	-	-	-	- 4.0 AMP	S
DC GRID VOLTAGE	-	-	-	-	1000 VOL	TS
DC GRID CURRENT	-	-	-	-	- 0.6 AMP)
PLATE INPUT POWER	.÷	-	-	-	- 40 KW	
PLATE DISSIPATION						
(NOMINAL)	-	-	-	-	- 20 KW	

TYPICAL OPERATION*

DC Plate Voltage	-	-	-	-	7000	10,000 volts
DC Plate Current	-	-	-	-	4.0	4.0 amps
DC Grid Voltage	-	-	-	-	670	-800 volts
DC Grid Current	-	-	-	-	.275	.315 amps
Peak Positive Grid	Volt	age	-	-	340	340 volts
Driving Power -	-	-	-	-	260	340 watts
Plate Input Power	-	-	-	-	28	40 kW
Plate Dissipation	-1	-1	-	-	9	12 kW
Plate Output Power		-	-	-	19	28 kW
Approximate Load	Impe	danc	e	-	720	1270 ohms
*Loaded Conditions						

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made.

APPLICATION

ELECTRICAL

The rated filament voltage for the 3CW20,-000H3 is 7.5 volts. Filament voltage, as measured at the tube, should be maintained at this value for consistent performance and maximum tube life. In no case should it be allowed to vary from 7.5 volts by more than plus or minus five percent.

Control Grid Operation

Filament

The grid current rating is 0.6 ampere dc. This value should not be exceeded for more than very short periods such as during tuning and overcurrent protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.2 to 0.4 amp grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 250 watts.

Plate Operation

Maximum plate voltage rating of 12,000 volts and maximum plate current of 4.0 amps should not be applied simultaneously as rated plate dissipation may be exceeded. The 40 kilowatts input rating applies for Class C amplifier or oscillator service with no modulation.

Plate over-current protection should be provided to remove plate voltage quickly in the event of an over-load or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

High Frequency Operation

The 3CW20,000H3 is usable to 140 Mc. At this frequency, plate voltage must be reduced to 7000 volts in Class C service.

MECHANICAL

Mounting

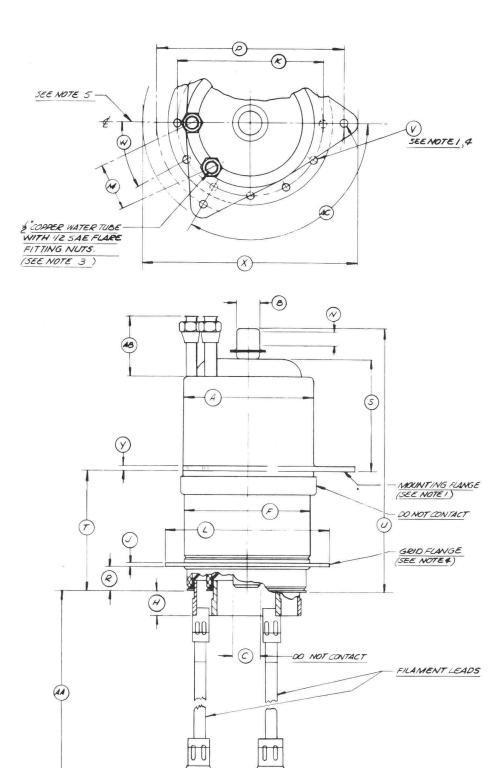
The 3CW20,000H3 must be mounted vertically, either base up or down.

Cooling

The anode of the 3CW20,000H3 is cooled by circulating water through the integral anodewater jacket. The table below lists minimum water-flow rates at various plate dissipation levels. The table is based upon a water temperature rise of 20°C.

MINIMUM COOLING WATER-FLOW REQUIREMENTS									
Plate Dissipation (kW)	Water Flow (gpm)	Pressure Drop (psi)							
10	2	2.5							
15	3	3.0							
20	4	3.5							
25	5	4.0							

Since power dissipated by the filament represents 750 watts and grid dissipation can reach 250 watts, 1000 watts has been added to anode dissipation in preparing this tabulation.


The cooling table assumes that the maximum outlet-water temperature will be below 70°C to preclude "spot" boiling.

Additional forced-air cooling of the tube's base is also required to maintain ceramic-tometal seal temperatures below the 250°C maximum. Approximately 40 cfm of cooling air directed into the base structure will generally satisfy this requirement.

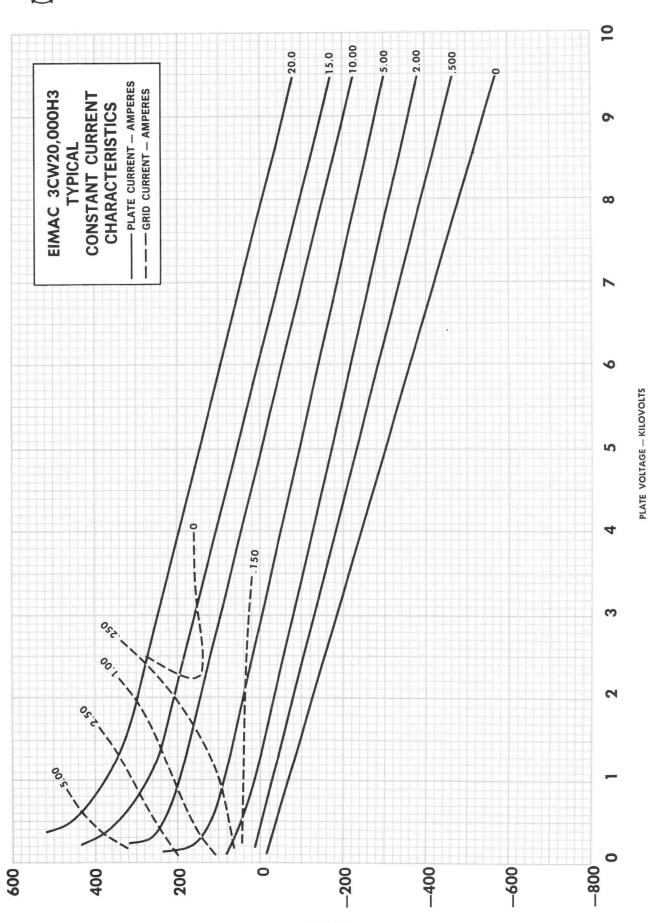
Special Application

If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Div., Eimac Division of Varian, 301 Industrial Way, San Carlos, Calif. for information and recommendations.

- зсw20,000нз 💋

Q

AD


Ð

-Z)

	DIMENSIO	NS IN INCH	LS
	DIMENSI	ONAL DA	TA
DIM .	MIN.	MAX.	REP
A	4.050	4.250	
8	.860	.890	
CF	.720	.760	
F	3.792	3.832	
H	.530	.700	
J	1.00		.125
K	4.425	4.445	
2	5.030	5.090	
M			1.500
N	.375		
P	5.990	6.010	
R	.800	.860	
5	3.300	3.500	
T	3,950	4.100	
U	8.250	8.750	
V			.250
W	290	3/°	
X			6.750
Y	1		.250
Ζ			2.000
AA	8.500	9.000	
AB			2.000
AC	118°	1220	
AD			.390

NOTES:

I. <u>3 MOUNTING HOLES IN</u> <u>MTG FLANGE</u>. 2. REF: DIMS. ARE FORINFO. ONLY AND ARE NOT REOD FOR INSP. PURPOSES. 3. EITHER FITTING CAN BE USED AS INLEY OR OUTLET. 4.12 HOLES IN GRID FLANGE 5. MTG. FLANGE, FIL. LEADS & WATER FITTINGS ARE TO BE ORIENTED AS SHOWN.

3CW20,000H3

GRID VOLTAGE - VOLTS

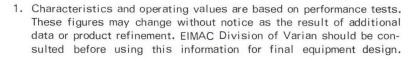
-

TECHNICAL DATA

3CW20,000H7

WATER-COOLED HIGH-MU POWER TRIODE

The EIMAC 3CW20,000H7 is a ceramic/metal power triode intended for use as a dc voltage or current regulator, or in high-voltage switch tube or pulsed regulator service.


In addition, since the tube is identical to the EIMAC 3CW20,000A7 except for the anode and grid flanges and the addition of the filament flying leads, the tube is useful as a zero-bias Class B amplifier in audio or rf applications. Operation with zero grid bias offers circuit simplicity by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the tube.

The anode dissipation rating is 20,000 watts with water cooling.

GENERAL CHARACTERISTICS¹

ELECTRICAL

7.5 ± 0.4	V
100	А
200	
59	pF
0.2	pF
36	pF
110	MHz
	59 0.2 36

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Base	Special, with grid contact flange & filament flying leads
Operating Position	Vertical, Anode up or down
Cooling	Water or equivalent liquid & forced air

(Effective 5-15-74) © by Varian

Printed in U.S.A.

Maximum Overall Dimensions: Length (including filament leads)	20.7 in; 52.2 cm
Maximum Operating Temperature:	6.75 in; 17.1 cm
Envelope & Ceramic/Metal Seals Net Weight (Approximate)	
	10.6 lbs: 4.8 kg
DC VOLTAGE OR CURRENT REGULATOR	
ABSOLUTE MAXIMUM RATINGS:	
DC PLATE VOLTAGE 20 KILOVOLTS DC PLATE CURRENT 7.5 AMPERES	PLATE DISSIPATION 20 KILOWATTS GRID DISSIPATION 500 WATTS
SWITCH TUBE OR PULSED REGULATOR	
ABSOLUTE MAXIMUM RATINGS:	
DC PLATE VOLTAGE 20 KILOVOLTS PULSE PLATE CURRENT 40 AMPERES	PLATE DISSIPATION
RADIO FREQUENCY LINEAR AMPLIFIER Grounded Grid, Class B	TYPICAL OPERATION, Single-Tone Conditions
ABSOLUTE MAXIMUM RATINGS:	Plate Voltage70007000VdcZero-Signal Plate Current0.600.60AdcMax. Signal Plate Current3.725.00Adc
DC PLATE VOLTAGE7000 VOLTSDC PLATE CURRENT5.0 AMPERESPLATE DISSIPATION20 KILOWATTSGRID DISSIPATION500 WATTS	$\begin{array}{llllllllllllllllllllllllllllllllllll$
1. Approximate value.	Output Power 17.7 24.2 kW Power Gain 1 20.0 15.7 times
AUDIO FREQUENCY AMPLIFIER OR MODULATOR Class B, Grid Driven	TYPICAL OPERATION Two Tubes, Sinusoidal Wave
ABSOLUTE MAXIMUM RATINGS:	Plate Voltage
DC PLATE VOLTAGE7000 VOLTSDC PLATE CURRENT5.0 AMPERESPLATE DISSIPATION20 KILOWATTSGRID DISSIPATION500 WATTS	Zero-Signal Plate Current10.81.2AdcMax. Signal Plate Current10.010.0AdcMax. Signal Grid Current11.22.1AdcDriving Power 1290560WPeak Audio Driving 1100100
1. Approximate value.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
RADIO FREQUENCY LINEAR AMPLIFIER (AM DOUBLE SIDEBAND)	TYPICAL OPERATION
Carrier Conditions, Grounded-Grid Class B	Plate Voltage
ABSOLUTE MAXIMUM RATINGS:	Zero-Signal Plate Current 1 0.6 Adc Plate Current
DC PLATE VOLTAGE7000 VOLTSDC PLATE CURRENT5.0 AMPERESPLATE DISSIPATION20 KILOWATTSGRID DISSIPATION500 WATTS	Grid Current1 0.25 AdcDriving Impedance232 Ω Peak Driving Voltage2310 v
 Approximate value. Modulation Crest Conditions. 	Driving Power 1

3CW20,000H7

5000

7000 Vdc

RADIO FREQUENCY POWER AMPLIFIER **OR OSCILLATOR** Class C

ADCOLLITE MAAVIMI IM DATINICC.		o			
ABSOLUTE MAXIMUM RATINGS:		Plate Current	4.0	4.0	Adc
PLATE VOLTAGE	7000 VOLTS	Grid Voltage	-210	-230	Vdc
PLATE CURRENT	4.0 AMPERES	Grid Current ¹	840	775	mAdc
PLATE DISSIPATION	20 KILOWAT	TS Peak rf Grid Voltage	510	555	V
GRID DISSIPATION	500 WATTS	Grid Driving Power	420	530	W
		Plate Output Power ¹	14	21.3	kW

TYPICAL OPERATION

Plate Voltage

1. Approximate value.

RANGE VALUES FOR EQUIPMENT DESIGN Min. Max. Filament Current @ 7.5 Volts 104.0 A 94.0 Interelectrode Capacitance¹ (grounded cathode connection) Cin 53.0 65.0 pF 0.30 pF 32.0 40.0 pF Interelectrode Capacitance¹ (grounded grid connection) 53.0 65.0 pF Cout 32.0 40.0 pF 0.30 pF - - -

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MECHANICAL

MOUNTING - The 3CW20,000H7 must be operated vertically, anode down or up, and should be protected from shock and vibration. The anode mounting flange provides a convenient mounting means, and the grid is also provided with a flange for mating with a simple contact assembly. Both filament connections are made with flying leads approximately nine inches long with heavy lugs attached at the ends.

COOLING - The anode of the 3CW20,000H7 is cooled by circulating water through the integral anode water jacket. The cooling table shows minimum water-flow rates at various plate dissipation levels and assumes a temperature rise for the water of 10°C. Inlet water temperature should never exceed 55°C and outlet water temperature should never exceed 70°C. Where a liquid coolant other than water is used, the difference in cooling characteristics should be carefully considered and taken into account. Maximum system pressure must not exceed 50 psi.

Minimum Cooling Water-Flow Requirements								
Plate	Water	Pressure						
Dissipation	Flow	Drop						
(kW)	(gpm)	Approx. psi						
10	11.0	11.5						
15	12.0	13.5						
20	14.0	17.0						

A major factor effecting long life of watercooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K Ω / cm³, and preferably above 250 K Ω /cm³. A relative water resistance check can be made continuously by

measuring the leakage current which will bypass a short section of insulating hose column if metal nipples or fittings are used as electrodes.

Forced-air cooling of the base is also required, with 30 to 50 cfm of air at 50° C maximum directed up into and around the base of the tube to cool the grid and filament contact areas.

Both anode and base cooling should be applied before or simultaneously with electrode voltages, including the filament, and should normally be maintained for a short period of time after all voltages are removed to allow for tube cooldown.

ELECTRICAL

FILAMENT OPERATION - Filament voltage should be measured at the terminals with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 3CW20,000H7 is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 3CW20,000H7 by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance such as plate current, power output, or an increase in distortion. Operation must be at a filament voltage slightly higher than the point at which performance appears to deteriorate.

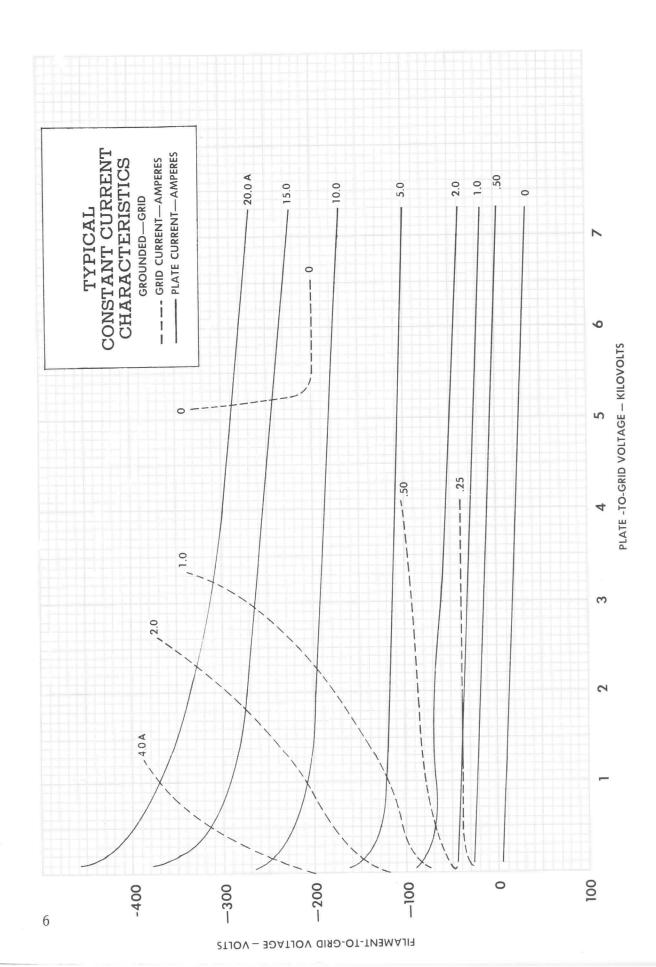
INPUT CIRCUIT - When the 3CW20,000H7 is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of two or more.

CLASS-C OPERATION - Although designed specifically for Class-B service, the 3CW20,000H7 may be operated as a Class-C amplifier or oscillator or as a plate-modulated radio-frequency amplifier. The zero-bias characteristic can be used to advantage in Class-C amplifiers by employing only grid leak bias. If driving power should fail, plate dissipation is then kept to a low value because the tube will be operating at normal, static, zero-bias conditions. STANDBY OPERATION - Coolant must be circulated through the anode water jacket whenever filament power is applied even though no other voltages are present. Sixty to eighty percent of the filament power appears as heat in the anode. In the absence of coolant flow, temperatures will rise to levels which are detrimental to long life. If the coolant lines are obstructed the coolant jacket may rupture from the generated steam pressure.

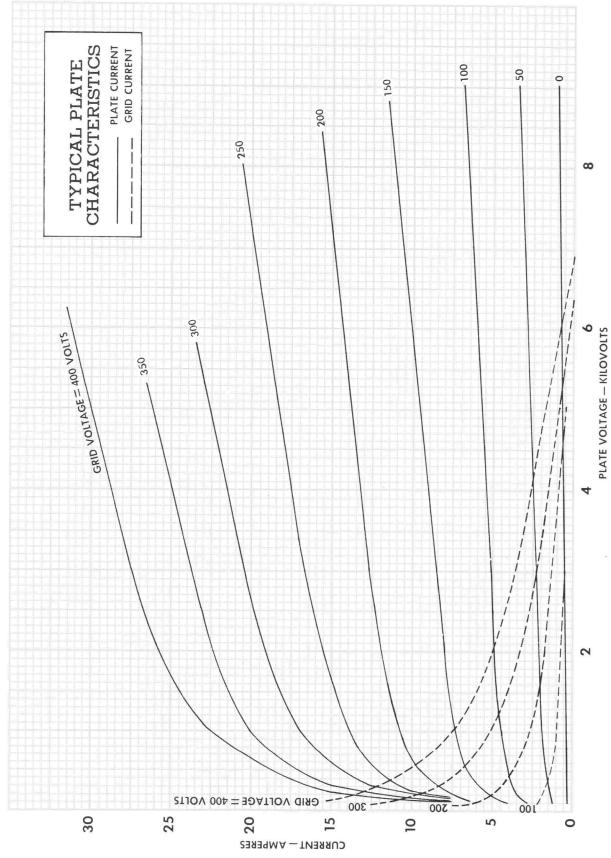
HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

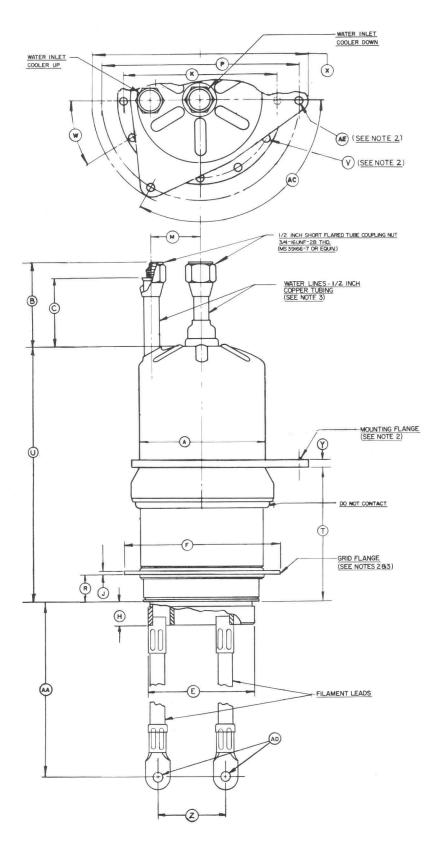

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as the 3CW-20,000H7, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry--- the more power invloved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.


FAULT PROTECTION - In addition to normal plate over-current interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltage.

In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with each tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, we strongly recommend use of some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc.

SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations. 3CW20,000H7



3CW20,000H7

7

		DIM	ENSION	AL	DATA		
DIA		INCHES			MI	LLIMETER	RS
DIM	MIN.	MAX.	REF.		MIN.	MAX.	REF.
A	4.094	4.156			103.99	105.56	
В	2.312	2.812			56.72	71.42	
С	1.937	2.187			49.20	55.55	
E	3.230	3.270			82.04	83.06	
F	5.030	5.090			127.76	129.29	
Н	0.530	0.700			13.46	17.78	
J			0.125				3.18
K	4.425	4.445			112.40	112.90	
M	1.500	1.750			38.10	44.45	
Ρ	5.957	6.025			151.31	153.04	
R	0.700	0.860			17.78	21.84	
Т	4.350	4.450			110.49	113.03	
U	7.903	8.403			200.74	213.44	
V			0.250				6.35
W	29°	310			29°	31°	
X			6.750		L		171.45
Y			0.250				6.35
Ζ			2.000				50.80
AA	8.500	9.000			215.90	228.60	
AC	118°	122°			118°	122°	
AD	-		0.390				9.91
AE			0.265				6.73

NOTES:

- 1. REFERENCE DIMENSIONS ARE FOR INFO ONLY AND ARE NOT REQ'D FOR INSPEC-TION PURPOSES.
- 2. 3 MTG. HOLES IN MTG FLANGE AND 12 IN THE GRID FLANGE.
- 3. GRID FLANGE, WATER FITTINGS, AND FIL. LEADS ORIENTED AS SHOWN.

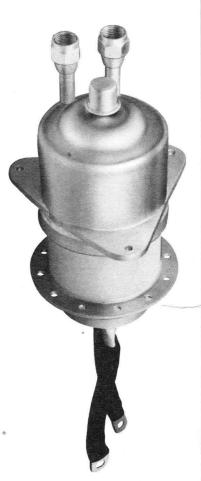
E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

The Eimac 3CW30,000H3 is a water-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its water-cooled anode is conservatively rated at 30 kilowatts of plate dissipation with low water flow and pressure drop.

Input of 60 kilowatts is permissable up to 90 megahertz. Plentiful reserve emission is available from its one kilowatt filament. The grid structure is rated at 500 watts making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS

ELECTRICAL									
Filament: Thoria	ted-T	ungs	ten		Min.	Nom.		Max.	
Voltage -	-	-	-	-		6.3			V
Current -		-	-	-	152		8	172	А
Amplification Fac	etor -	-		-		20			
Interelectrode Ca	pacit	ances	s, Gro	ound	ed Catho	de: "			
Grid-Filamer	nt -	-	-	-	48			58	pF
Plate-Filame	nt -	-	-	-	1.2			1.5	pF
Grid-Plate -		-	-	-	30			38	pF
Frequency for Ma	axim	um R	ating	gs -			-	90	MHz


MECHANICAL

FIECTRICAL

Base				-		-	-				-	See Outline
Operating Position		-		-		-	-		- V	ertical	, bas	e up or down
Cooling		-		-		·	-			Wat	er ai	nd Forced Air
Maximum Operating Temperatures: Ceramic-to-Metal Seals 250°C												
Maximum Dimensions Height Diameter -	s: 	-		-		-	-	-			-	See Outline See Outline
Net Weight		-				-	-	-			-	12 pounds

(Effective 11-1-68) © 1965, 1968 by Varian

Printed in U.S.A.

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Pov	wer	Supp	ly)			DC Plate Voltage -	a B	-	7000	10,000 volts
MAYIMUM DATING						DC Plate Current -				6.0 amps
MAXIMUM RATINGS:						DC Grid Voltage -		-	600	—800 volts
DC PLATE VOLTAGE	-	-	-	-	- 12,000 VOLTS	DC Grid Current -		-	.66	.315 amps
DC PLATE CURRENT	-	-	-	-	- 6.0 AMPS	Peak Positive Grid Volta	age -	-	440	360 volts
DC GRID VOLTAGE		-				Driving Power		-	660	365 watts
						Plate Input Power -		-	42	60 kW
DC GRID CURRENT	-	-	-	-	- 1.0 AMP	Plate Dissipation -		-	12	18 kW
PLATE INPUT POWER	10	-	-	-	- 60 KW	Plate Output Power		-	30	42 kW
PLATE DISSIPATION						Approximate Load Imped	dance		600	750 ohms
	-	-	-	-	- 30 KW	*Loaded Conditions				

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses has been made.

APPLICATION

Filament

The rated filament voltage for the 3CW30,-000H3 is 6.3 volts. Filament voltage, as measured at the tube, must be maintained at 6.3 volts plus or minus five percent for maximum tube life and consistent performance.

ELECTRICAL

Control Grid Operation

The grid current rating is one ampere dc. This value should not be exceeded for more than very short periods such as during tuning and overcurrent protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.4 to 0.6 amperes grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 500 watts.

Plate Operation

Maximum plate voltage rating of 12,000 volts and maximum plate current of 6.0 amperes dc should not be applied simultaneously as rated plate dissipation may be exceeded. The 60 kilowatts input rating applies for Class C amplifier or oscillator service with no modulation.

Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

High Frequency Operation

The 3CW30,000H3 is usable to 140 MHz. At this frequency, plate voltage must be reduced to 7000 volts in Class C service.

MECHANICAL

Mounting

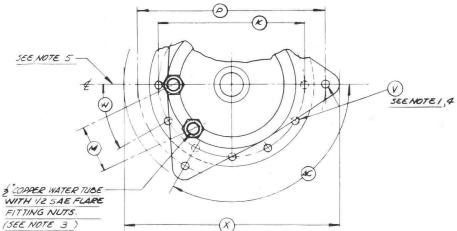
TYPICAL OPERATION*

The 3CW30,000H3 must be mounted vertically, either base up or down.

Cooling

Anode cooling is accomplished by circulating water through the integral anode-water jacket.

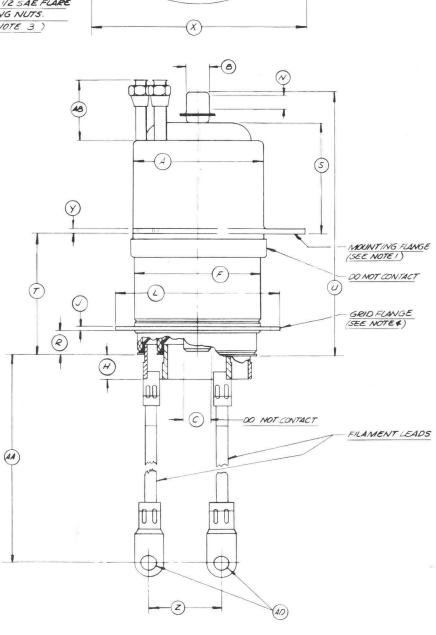
The table below lists the minimum water flow requirement for adequate anode cooling at various plate dissipation levels. In all cases, the outlet water temperature must not exceed 70°C nor should inlet water pressure exceed 60 psi. This table is based upon 20°C temperature rise.


MINIMUM WATER-COOLING REQUIREMENT											
Plate Dissipation (kW)	Water Flow (gpm)	Pressure Drop (psi)									
20	4	3.5									
25	5	4.0									
30	6	4.5									
35	7	5.0									

Additional forced-air cooling of the tube's base is also required to maintain ceramic-tometal seal temperatures below the 250°C maximum. Approximately 50 cfm of cooling air directed into the base structure will generally satisfy this requirement.

Special Application

If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Div., EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif. for information and recommendations.



		IS IN INCHE	
	DIMENSI	ONAL DAT	TA
DIM.	MIN.	MAX.	REF.
A	4.050	4.250	
8	.860	.890	
BCF	.720	.760	
	3.792	3.832	
H	.530	.700	
J			.125
K	4.425	4.445	
L	5.030	5.090	
M			1.500
N	.375		
P	5.990	6.010	
R	.800	.860	
5	3.300	3.500	
T	3.950	4.100	
U	8.250	8.750	
V			.250
W	290	31°	
X			6.750
Y			.250
Ζ			2.000
AA	8.500	9.000	
AB			2.000
AC	118°	1220	
AD			.390

NOTES:

1. 3 MOUNTING HOLES IN MTG FLANGE. 2. REF. DIMS. ARE FORINFO. ONLY AND ARE NOT REGTO FOR INSP. PURPOSES. 3. EITHER FITTING GAN BE USED AS INLET OR OUTLET. 4. 12 HOLES IN GRID FLANGE 5. MTG. FLANGE, FIL. LEADS & WATER FITTINGS ARE TO BE ORIENTED AS SHOWN.

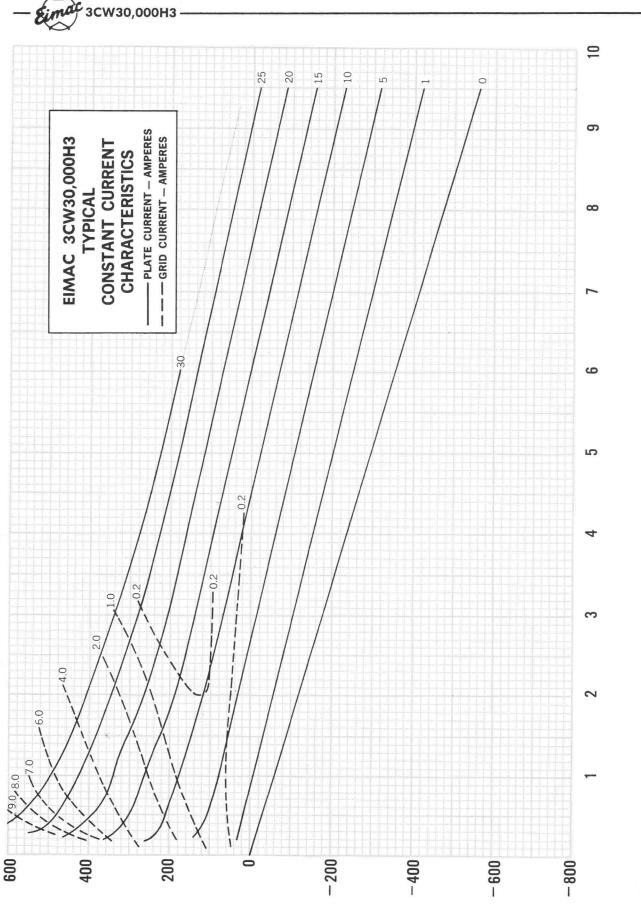


PLATE VOLTAGE - KILOVOLTS

GRID VOLTAGE - VOLTS

TECHNICAL DATA

HIGH-MU WATER-COOLED POWER TRIODE

The EIMAC 3CW30,000H7 is a ceramic/metal water-cooled high-mu power triode intended for use as a Class C power amplifier or for zero-bias Class B or AB linear amplifier service, and also intended for use as a dc voltage or current regulator, or in high-voltage switch tube or pulsed regulator service.

Internally the tube is identical to the 3CX15,000A7, and except for anode dissipation capability, all ratings are the same.

Class B amplifier operation with zero grid bias offers circuit simplicity by eliminating the bias supply. In addition, grounded grid operation is attractive since a power gain as high as twenty times can be obtained.

The anode power dissipation rating is 30,000 watts with water cooling. No socket is required for the tube because of the mounting flanges attached to the anode and grid and the flexible filament leads on the base.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten		
Voltage	6.3 ± 0.3	V
Current, at 6.3 volts	160	А
Amplification Factor (Average):	200	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	61	pF
Cout	0.2	pF
Cgp	36	pF
Direct Interelectrode Capacitance (grounded grid) ²		
Cin	61	pF
Cout	36	pF
Cpk	0.2	pF
Frequency of Maximum Rating:		
CW		

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

(Effective 2-1-75) © by Varian

Printed In U.S.A.

110 MHz

MECHANICAL

Base Spec	cial, with grid contact flange & filament flying leads
Operating Position	Vertical, Anode up or down
Cooling	Water or equivalent liquid & forced air
Maximum Overall Dimensions:	
Length (including filament leads)	20.5 in; 52.1 cm
Diameter (anode mounting flange pitch circ	cle) 6.75 in; 17.1 cm
Maximum Operating Temperature:	
Envelope & Ceramic/Metal Seals	250°C
Net Weight (Approximate)	10.6 lbs; 4.8 kg

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN

Class AB

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE								•		8000	VOLTS
DC PLATE CURRENT	•			•		•			•	6.0	AMPERES
PLATE DISSIPATION	•	•	•				•			30,000	WATTS
GRID DISSIPATION		•	•		÷	÷				500	WATTS

1. Approximate values

2. Adjust to obtain specified value.

RADIO FREQUENCY POWER AMPLIFIER OR

OSCILLATOR Class C Telegraphy or FM Grid Driven

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE			•				•	8000	VOLTS
DC GRID VOLTAGE			•	•				-500	VOLTS
DC PLATE CURRENT					÷			5.0	AMPERES
PLATE DISSIPATION						•		30,000	WATTS
GRID DISSIPATION								500	WATTS
1. Approximate valu	e.								

DC VOLTAGE OR CURRENT REGULATOR SWITCH TUBE OR PULSED REGULATOR

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	8 KILOVOLTS
	0 VOLTS
	6 AMPERES
PULSE PLATE CURRENT	0 AMPERES

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB2

Plate Voltage	7000	7000	Vdc
Grid Voltage	0	0	Vdc
Zero-Signal Plate Current ¹	.6	.6	Adc
Single-Tone Plate Current ²	5.92	5.0	Adc
Single-Tone Grid Current ¹	1.22	1.0	Adc
Driving Power ¹	1750	1540	W
Plate Dissipation	13.4	10.8	kW
Single-Tone Plate Output Power	29.6	24.2	kW
Resonant Load Impedance	693	745	Ω
Drive Impedance	27	32	Ω

TYPICAL OPERATION (Frequencies to 30 MHz)

Plate Voltage	7000	Vdc
Grid Voltage	-230	Vdc
Plate Current	4.0	Adc
Grid Current ¹	775	mAdc
Peak rf Grid Voltage ¹	555	V
Calculated Driving Power 1	430	W
Plate Input Power	28	kW
Plate Dissipation	6.7	kW
Plate Output Power	21.3	kW
Resonant Load Impedance	963	Ω

DUTY, PULSE SERVICE						
PLATE DISSIPATION ²						KILOWATTS
GRID DISSIPATION 2					500	WATTS

- 1. Steady-state value in voltage or current regulator service.
- With duty in excess of approximately 0.1 excessive element heating may occur during the pulse and consequent element dissipation derating may be required.

Min.

Max.

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN

		max.							
Heater: Current at 6.3 volts Cathode Warmup Time		168 A sec.							
Interelectrode Capacitances (grounded grid) ¹	5.0	sec.							
Cin	55.0	67.0 pF							
Cout	32.0	40.0 pF							
Cpk		0.3 pF							
Interelectrode Capacitances (grounded cathode) ¹									
Cin	55.0	67.0 pF							
Cout		0.3 pF							
Cgp	32.0	40.0 pF							

1. Capacitances values are for a cold tube as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS 491.

APPLICATION

MECHANICAL

MOUNTING - The 3CW30,000H7 must be operated vertically, anode down or up, and should be protected from shock and vibration. The anode mounting flange provides a convenient mounting means, and the grid is also provided with a flange for mating with a simple contact assembly. Both filament connections are made with flying leads approximately nine inches long with heavy lugs attached at the ends.

COOLING - The anode of the 3CW30,000H7 is cooled by circulating water through the integral anode water jacket. The cooling table shows minimum water-flow rates at various plate dissipation levels and assumes an inlet water temperature of 50° C with the anode mounted either up or down. Care should be taken to use the correct cooling water connector for inlet water, which is dependent on the tube orientation (base up or down), and these are shown on the tube outline drawing. Where a liquid coolant other than water is used, the difference in cooling characteristics should be carefully considered and taken into account. Maximum system pressure must not exceed 50 psi.

Minimum Coo	ling Water-Flow	w Requirements				
Plate	Water	Pressure				
Dissipation	Flow	Drop				
(kW)	(gpm)	Approx. psi.				
15	12	13.5				
20	13	15.0				
30	14	17.0				

A major factor effecting long life of watercooled tubes is the condition of the cooling water. If the cooling water is ionized, deposits of copper oxide will form on the internal parts of the water jacket and can cause localized heating of the anode and eventual failure of the tube.

A simple method of determining the condition of the water is to measure the resistance across a known volume. The resistance of the water should be maintained above 50 K Ω /cm , and preferably above 250 K Ω /cm . A relative water resistance check can be made continuously by measuring the leakage current which will bypass a short section of insulating hose column if metal nipples or fittings are used as electrodes.

Forced-air cooling of the base is also required, with a minimum of 50 cfm of air at 50°C maximum directed up into and around the base of the tube to cool the grid and filament contact areas.

Both anode and base cooling should be applied before or simultaneously with electrode voltages, including the filament, and should normally be maintained for a short period of time after all voltages are removed to allow for tube cooldown.

ELECTRICAL

FILAMENT OPERATION - Filament voltage should be measured at the terminals with a 1 percent rms responding meter. The peak emission at rated filament voltage of the EIMAC 3CW30,000H7 is normally many times the peak emission required for communication service. A small decrease in filament temperature due to reduction of filament voltage can increase the life of the 3CW30,000H7 by a substantial percentage. It is good practice to determine the nominal filament voltage for a particular application that will not adversely affect equipment operation. This is done by measuring some important parameter of performance such as plate current, power output, or an increase in distortion. Operation must be at a filament voltage slightly higher than the point at which performance appears to deteriorate. For pulsed regulator or switch tube service full nominal filament voltage is recommended.

INPUT CIRCUIT - When the 3CW30,000H7 is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of 5 or more. CLASS-C OPERATION - Although designed specifically for Class-B service, the 3CW30,000H7 may be operated as a Class-C amplifier or oscillator or as a plate-modulated radiofrequency amplifier. The zero-bias characteristic can be used to advantage in Class-C amplifiers by employing only grid leak bias. If driving power should fail, plate dissipation is then kept to a low value because the tube will be operating at normal, static, zero-bias conditions.

STANDBY OPERATION - Coolant must be circulated through the anode water jacket whenever filament power is applied even though no other voltages are present. Sixty to eighty percent of the filament power appears as heat in the anode. In the absence of coolant flow, temperatures will rise to levels which are detrimental to long life. If the coolant lines are obstructed the coolant jacket may rupture from the generated steam pressure.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. This tube, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are effected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these

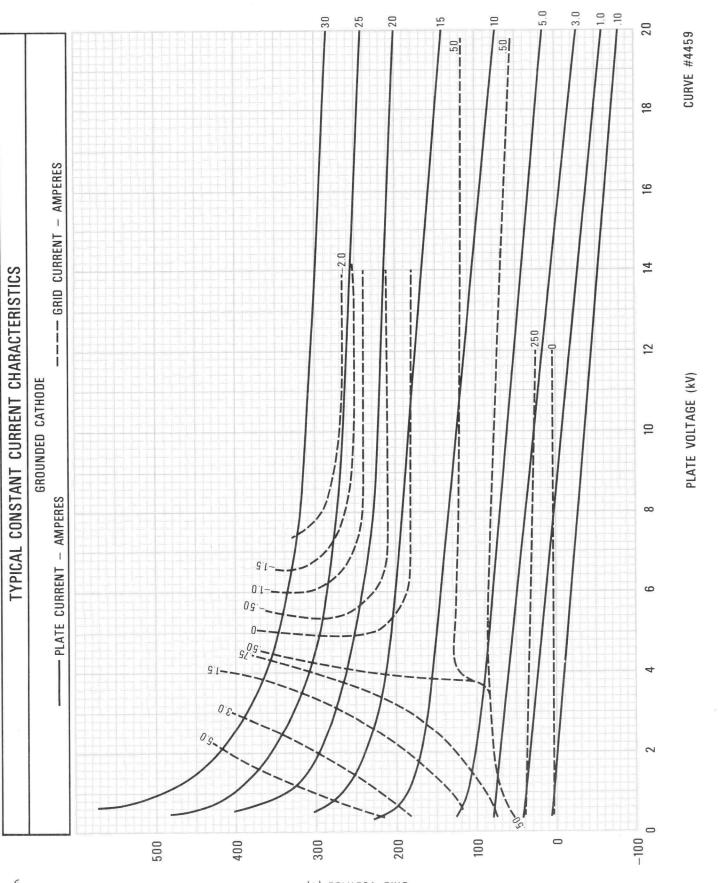
voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.

Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchange-

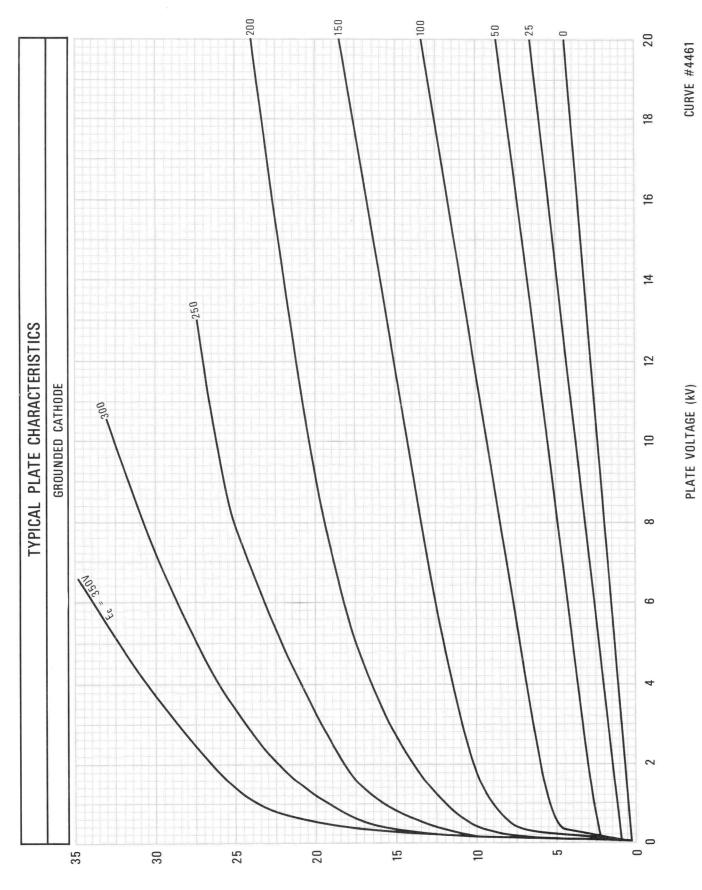
ability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design. RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


Many EIMAC power tubes, such as the 3CW-30,000H7, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry--the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

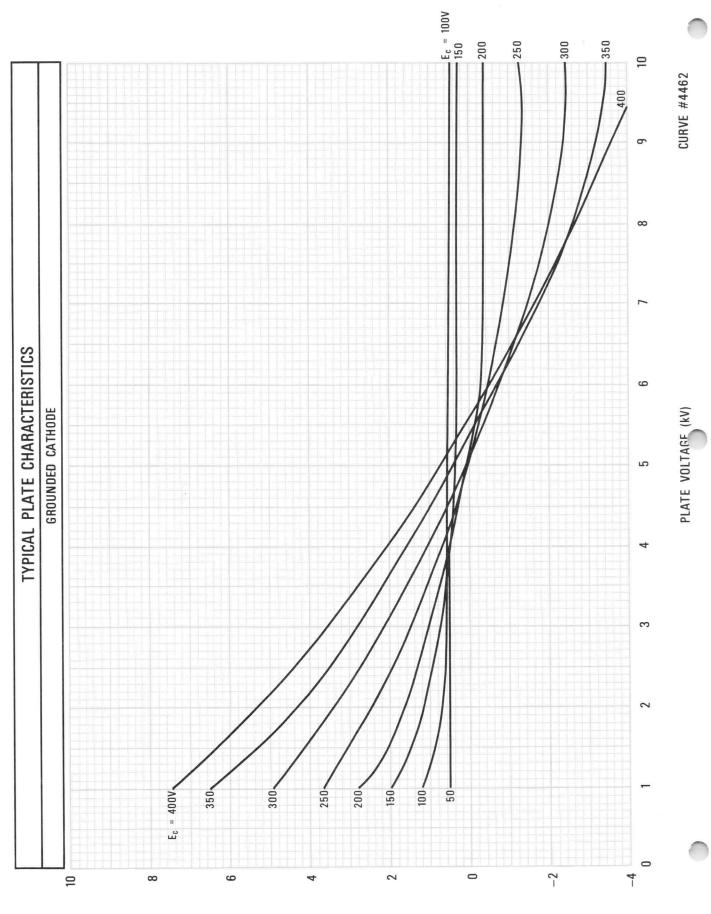
FAULT PROTECTION - In addition to normal plate over-current interlock, screen current interlock, and coolant flow interlock, it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high anode voltage.

In all cases some protective resistance, 5 ohms to 25 ohms, should be used in series with each tube anode to absorb power supply stored energy in case a plate arc should occur. If power supply stored energy exceeds 750 watt seconds, we strongly recommend use of some form of electronic crowbar which will discharge power supply capacitors in a few microseconds following indication of start of a plate arc.


SPECIAL APPLICATION - Where it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

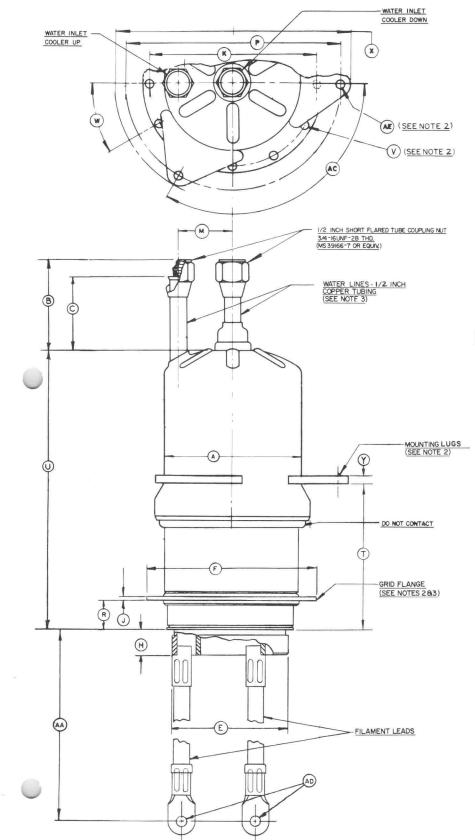
(V) 30ATJOV 0180

6



0

(А) ТИЗЯЯИЗ ЭТАЈЯ


7

(А) ТИЗЯЯИЗ СІЯЭ

Z

		DIN	ENSION	AL	DATA			
DIM		INCHES			MI	LLIMETE	RS	
DIIM	MIN.	MAX.	REF.		MIN.	MAX.	RE	F.
А	4.094	4.156			103.99	105.56	-	-
В	2.312	2.812			56.72	71.42	-	-
С	1.937	2.187			49.20	55.55	-	-
Ε	3.230	3.270			82.04	83.06	-	-
F	5.030	5.090			127.76	129.29	-	-
Н	0.530	0.700			13.46	17.78		-
J			0.125	[3.	8
К	4.425	4.445			112.40	112.90		-
M	1.500	1.750			38.10	44.45	-	-
Ρ	5.957	6.025			151.31	153.04	-	-
R	0.700	0.860		[17.78	21.84	-	-
Т	4.350	4.450			110.49	113.03	-	-
U	7.903	8.403			200.74	213.44	-	÷
V			0.250				6.	35
W	29°	31°		[29°	3I°	-	-
X			6.750				171	.45
Y			0.250	[6.3	35
Z			2.000	[50	.80
AA	8.500	9.000		[215.90	228.60	-	-
AC	118°	122°			118°	122°	-	-
AD			0.390				9.9	ЭІ
AE			0.265				6.	
				ſ				

NOTES: L REF DIMS ARE FOR INFO ONLY AND ARE NOT REDD FOR INSPECTION PURPOSE 3 MTG: HOLES IN MTG LUGS B /2 IN THE GRID FLANGE 3 GRID FLANGE, WATER FITTINGS, 3 P.FL. LASS ORIENTED AS SHOWN.

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

WATER-COOLED POWER TRIODE

The EIMAC 3CW40,000H3 is a water-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its water-cooled anode is conservatively rated at 40 kilowatts of plate dissipation with low waterflow and pressure drop.

Input of 80 kilowatts is permissible up to 90 megahertz. Plentiful reserve emission is available from its 1500 watt filament. The grid structure is rated at 750 watts, making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thoriated-7	Min.	Nom.	Max.						
Voltage	-	-	-	-	-		10		volts
Current	=	-	-	-	-	152		168	amps
Amplification Factor		-	-	-	-		20		
Interelectrode Capacit	anc	es, Gr	our	ided	Cath	ode:			
Grid-Filament	-	÷ .	-	-	-	65		75	\mathbf{pF}
Plate-Filament	-	-	-	-	-	2.0		2.6	\mathbf{pF}
Grid Plate -	-	-	-	-	-	38		48	\mathbf{pF}
Frequency for Maxim	um	Ratin	gs	-	-			90	MHz

MECHANICAL

Base	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	See	Outline
Oper	ating	Pos	ition		-	-	-	-	-	-	-	-	-	-	-	-	Ver	tical	l, bas	se up	or down
Cool	ing	-	-	-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	Wate	er ar	nd Fo	rced Air
Max	imun	ı Op	erati	ng T	ſemŗ	perat	ures	5:													
	Cera	mic-	to-M	etal	Seal	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	250°C
Max	imun	ı Dir	nens	sions	5:																
	Heig	ht	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
	Dian	neter		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		See	Outline
Net	Weig	ht	-	×.	-	-	-	-	-	_ 1	-	-	-	-	-	-	-	-	-	14	pounds

Printed in U.S.A.

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Power Supply)

MAXIMUM RATINGS

DC PLATE VOLTAGE	-	-	-	-	12,000	VOLTS
DC PLATE CURRENT	-	-	-	-	9.0	AMPS
DC GRID VOLTAGE	-	-	-	Ξ	-1200	VOLTS
DC GRID CURRENT	-	-	-	-	1.2	AMPS
PLATE INPUT POWER	-	-	-	-	100	KW
PLATE DISSIPATION	-	-	-	-	40	KW

TYPICAL OPERATION*

DC Plate Voltage	-	~	-	7000	10,000	volts
DC Plate Current	-	-	-	7.7	9.0	amps
DC Grid Voltage	-	-	-	-700	-850	volts
DC Grid Current	-	-	-	.53		amps
Peak Positive Grid V	/olta	age	-	440	550	volts
Driving Power -	-	-	-	600		watts
Plate Input Power	-	-	-	54		kW
Plate Dissipation	-	-	-	16		kW
Plate Output Power	-	-	-	37.7		kW
Approximate Load Ir	npe	dance	е-	408	526	ohms
*Loaded Conditions						

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made.

APPLICATION

ELECTRICAL

Filament — The rated filament voltage for the 3CW40,000H3 is 10.0 volts. Filament voltage, as measured at the tube, should be maintained at this value for consistent performance and maximum tube life. In no case should it be allowed to vary from 10.0 volts by more than plus or minus five percent.

Control Grid Operation — The grid current rating is 1.2 ampere dc. This value should not be exceeded for more than very short periods such as during tuning and over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.3 to 0.6 amp grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 750 watts.

Plate Operation — Maximum plate voltage rating of 12,000 volts and maximum plate current of 9.0 amps should not be applied simultaneously as rated plate dissipation may be exceeded. The 100 kilowatts input rating applies for Class-C amplifier or oscillator service with no modulation.

Plate over-current protection should be provided to remove plate voltage quickly in the event of an over-load or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

High Frequency Operation — The 3CW40,-000H3 is usable to 120 MHz. At this frequency, plate voltage must be reduced to 7000 volts in Class-C service.

MECHANICAL

Mounting — The 3CW40,000H3 must be mounted vertically, either base up or down.

Cooling — The anode of the 3CW40,000H3is cooled by circulating water through the integral anode-water jacket. The table below lists minimum water-flow rates at various plate dissipation levels. The table is based on a water temperature rise of 15°C.

MINIMUM COOLING WATER-FLOW REQUIREMENTS									
Plate Dissipation (kW)	Water Flow (gpm)	Pressure Drop (psi)							
20	5.25	4.0							
30	7.6	6.5							
40	10.2	13.0							
50	12.6	21.0							

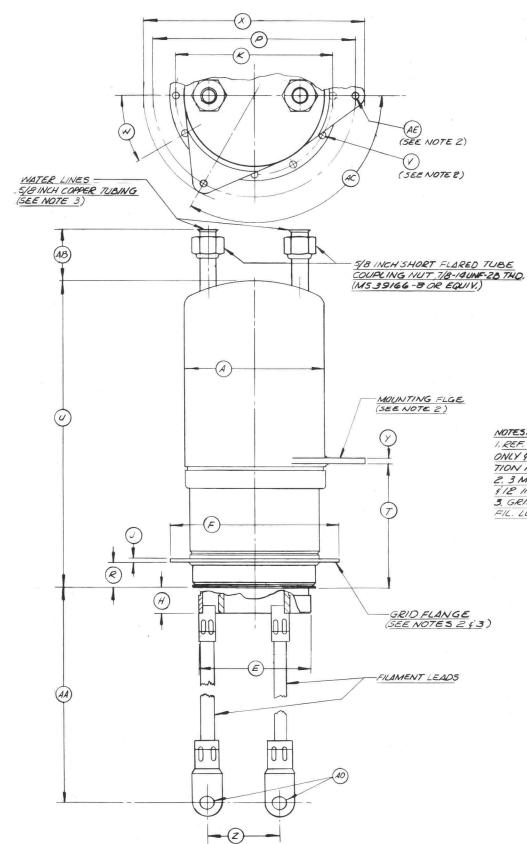
Since power dissipated by the filament represents 1500 watts and grid dissipation can reach 750 watts, 2250 watts has been added to anode dissipation in preparing this tabulation.

The cooling table assumes that the maximum outlet-water temperature will be below 70°C to preclude "spot" boiling.

Additional stem cooling air must be provided. 20 CFM of air directed against the center filament contact ring $\frac{1}{2}$ " below the outer filament contact ring by a 11/2" I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling for maximum frequency of 30 MHz, 50 °C ambient, and 5000 ft. altitude.

Special Application — If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

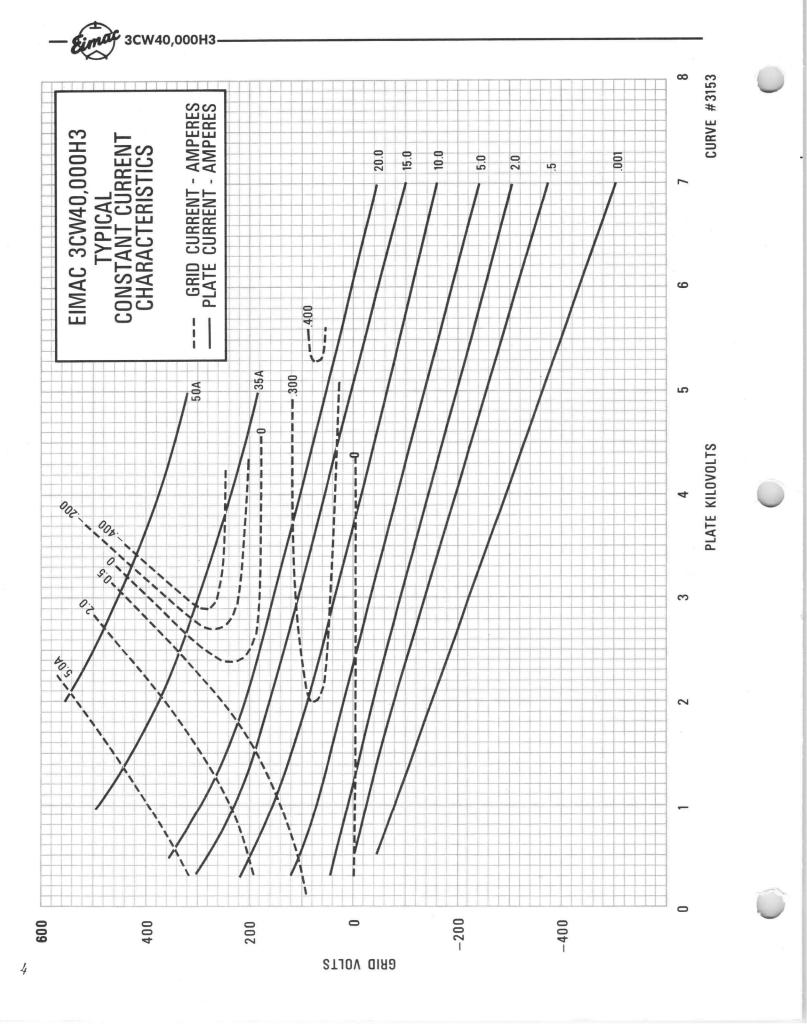
MIN


Dist

DIMENSIONS IN INCHES

DIMENSIONAL DATA

MAY


DEE

Des	MIN.	MAX.	REF
	4250	4.375	-
E	3.230	3.270	
F	5.030	5.090	1
8	.530	.700	
J			- 325
K	4.425	4.445	
142			
M			2.750
P	5.850	5.900	
R	.700	.860	
Т	4.050	4.160	
U	9.800	0.050	
٧			.250
W	29°	31°	
X			6.750
Y			.250
Ζ			2.000
AA	8.500	9.000	
AB			2.625
AC	118.	1220	
AD			.390
AE			.312

NOTES: I. REF. DIMS. ARE FOR INFORMATION ONLY & ARE NOT REQ'D FOR INSPEC-TION PURPOSES.

2. 3 MTG. HOLES IN MTG. FLANGE \$12 IN THE GRID FLANGE 3. GRID FLGE WATER FITTINGS É. FIL. LEADS ORIENTED AS SHOWN.

3CX400U7

TECHNICAL DATA

HIGH-MU UHF TRANSMITTING TRIODE

The EIMAC 3CX400U7 is designed for use above 200 MHz as a CW, pulse, or linear rf amplifier, particularly in the 806 to 950 MHz portion of the spectrum allocated to land mobile services.

The 3CX400U7 is a high-mu triode designed with beam-forming cathode and control grid geometry, of all metal/ceramic construction, and an external anode rated for 400 watts of dissipation with forced-air cooling.

The combination of an amplification factor of over 200 and minimum current interception by the control grid provides good power gain in cathode-driven (grounded grid) amplifiers. Coaxial terminals and continuous cone-shaped conductors for the grid and cathode allow the lowest possible inductance between these tube elements and the cavity. The heater terminals are separate from the cathode.

200 watts of useful CW rf power may be obtained with better than 33% efficiency, and better than 10 dB of gain. At frequencies near 900 MHz the amplifier circuit may be essentially a quarter-wave radial or rectangular resonator for the anode, and a three-quarter wave coaxial line section between ground and cathode. The amplifier is described in this data sheet. Terminal collets are available and are listed.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide-Coated, Unipotential		
Heater Voltage, Nominal (see derating table for UHF use)	6.3 ± 0.3	V
Heater Current, at 6.3 volts	3.0	А
Cathode-Heater Potential, Maximum	± 150	V
Transconductance, average (I _b = 250 mAdc)	29,000	μ mhos
Amplification Factor, average	240	
Direct Interelectrode Capacitances (grid grounded) ²		
Cin	18.4	pF
Cout	6.1	pF
Cpk	0.07	pF
Ck-htr	6.0	pF
Frequency of Maximum Rating:		
CW	1000	MHz

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

(Effective 8-1-74) © 1974 by Varian

Printed in U.S.A.

MECHANICAL

Maximum Operating Temperature: Ceramic/Metal Seals and Anode Core Cooling	
Base Recommended Contact Collets:	Tube Element EIMAC Part No.
	Inner Heater008290Outer Heater008291Cathode008292Grid882931Anode154418
Maximum Overall Dimensions: Length	2.08 in; 52.83 mm
RADIO FREQUENCY POWER AMPLIFIER CLASS C TELEGRAPHY OR FM	TYPICAL OPERATION, Cathode Driven, 850 MHz
MAXIMUM RATINGS:DC PLATE VOLTAGE1500 VOLTSDC GRID VOLTAGE-100 VOLTSDC PLATE CURRENT0.400 AMPEREPLATE DISSIPATION400 WATTSGRID DISSIPATION5 WATTS	Plate Voltage1500VdcPlate Current400mAdcGrid Current-5mAdcMeasured Driving Power13.0WUseful Output Power225WEfficiency37%Power Gain12dB
RANGE VALUES FOR EQUIPMENT DESIGN	Min. Max.
Heater Current, at 6.3 volts	

outhout withing time i i i i i i i i i i i i i i i i i i	00	DUU
Interelectrode Capacitances (grid grounded) ¹		
Cin	16.0	21.0 pF
Cout	5.0	7.0 pF
Cpk		0.1 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MOUNTING & SOCKETING - Part numbers of available EIMAC collets are listed under ME-CHANICAL. These collets may be soft-soldered to the appropriate UHF line or cavity elements. The collets provide low-inductance connections between tube and circuitry and serve to draw off a portion of the heat released during normal operation.

HEATER-CATHODE OPERATION - The nominal heater voltage for the 3CX400U7 is 6.3 volts. For CW operation at frequencies above 300 MHz the heater voltage should be reduced as the cathode receives additional heat from rf charging currents and a transit-time effect. The following table gives approximate values of heater voltage recommended versus operating frequency for CW

power levels at, or near, the typical operating conditions shown on Page 2. It is recommended that a mechanical relay, or other type of switching device, be provided so that near-nominal heater voltage will be provided during warmup and standby periods, and then dropped to the recommended level when rf drive is applied to the amplifier.

Frequency (MHz)	Heater Volts
300 or lower	6.3
300 to 400	6.1
400 to 500	5.7
500 to 600	5.3
600 to 700	4.9
700 to 800	4.5
800 to 900	4.0
900 to 1000	3.6

The heater voltage should be operated at nominal voltage of 6.3 volts for a minimum of 60 seconds before application of plate voltage or rf driving voltage.

INTERLOCKS - An interlock device should be provided to insure that cooling air flow is established before application of electrical power, including the heater. The circuit should be so arranged that rf drive cannot be applied in the absence of normal plate voltage.

COOLING - Forced-air cooling of the tube is required, with 11.5 cfm of air directed through the anode cooler when operating at full rated (400 W) dissipation. The pressure drop across the anode cooler only at this flow rate is approximately 0.2 inch of water, and these figures are based on an incoming air temperature of 50°C and a maximum tube anode temperature of 225°, at sea level, and with air flowing in a base-to-anode direction. When air is flowing in this direction, and the base contacting arrangement does not restrict flow in and around the base seals, additional base cooling provisions may not be required, but the designer is cautioned to verify whether base cooling is adequate before a circuit design is finalized, by means of temperaturesensitive paints which are available for this purpose, or other equivalent means.

Depending on the circuit or cavity design, allowance must also be made for other losses in the air system, in order to always assure sufficient flow for tube cooling. The designer is also cautioned that it is not good practice to operate at, or very close to, the absolute maximum temperature ratings for the metal/ceramic seals. Where long life and consistent performance are factors, cooling in excess of the minimum requirements outlined is normally beneficial.

UHF CAVITY AMPLIFIER - Included in this data sheet is an exploded view of a typical cavity amplifier of simple construction requiring little precise machine work. The dimensions shown are for an amplifier to be operated near 900 MHz. The typical operating conditions for 850 MHz, shown on Page 2, were obtained with this cavity.

The output circuit is essentially a quarterwave rectangular cavity forming the tuned circuit between anode and grid. Output coupling is magnetic. A loop is formed by a post F which terminates at one end in the center conductor of the coaxial fitting, and at the other end it is solidly in contact with the opposite plate (or wall) of the cavity.

The input circuit, while simple mechanically, is not as easily visualized as an electrical circuit. Starting with the small inner conductor A, this is a heater conductor and rf choke. The next tube, B, is the second heater conductor and rf choke. The third tube, C, is the cathode line which may be considered as a broadly tuned three-quarter wave line. The next diameter of tubing, D, is a sleeve tuned to an electrical three-quarter wave-length by an adjustable capacity probe, E. The sleeve is excited by the input capacity probe, F. Current flows on the inside as well as on the outside wall of the three-quarter wave sleeve, thereby coupling energy to the cathode line. Sleeve D is electrically three-quarter wavelength because there is approximately a loaded quarter wavelength within the vacuum tube itself, E.

Suitable cowling (not shown) should be provided to introduce cooling air through three short tubes on each side of the output cavity for anode cooling. The air then exhausts through the anode cooling fins of the 3CX400U7. The three short tubes on each side of the cavity are dimensioned to serve as waveguide- above- cutoff frequency filters in the air openings.

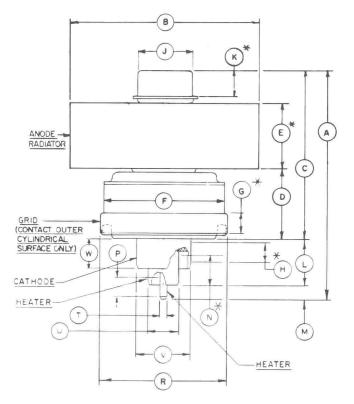
HIGH VOLTAGE - Normal operating voltages used with the 3CX400U7 are deadly, and the equipment must be designed properly and opera-

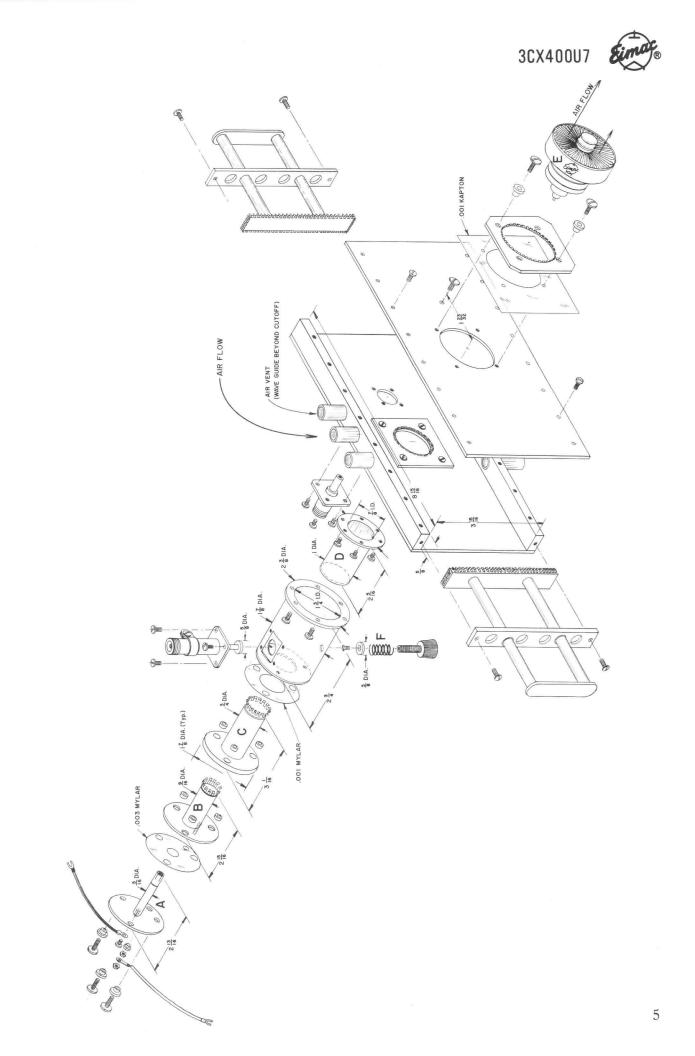
ting precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

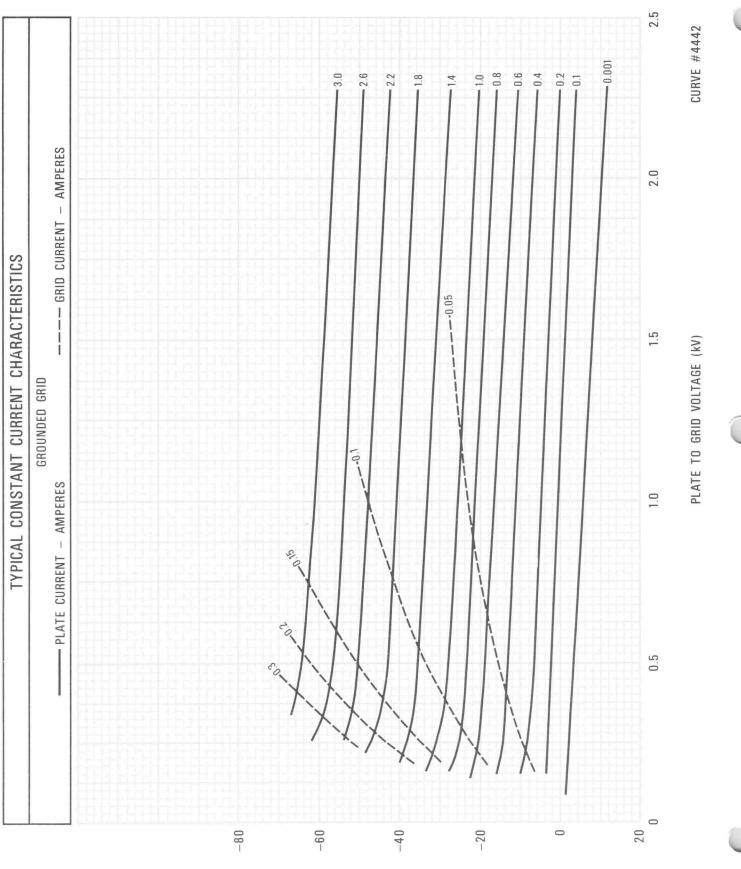
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield

all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

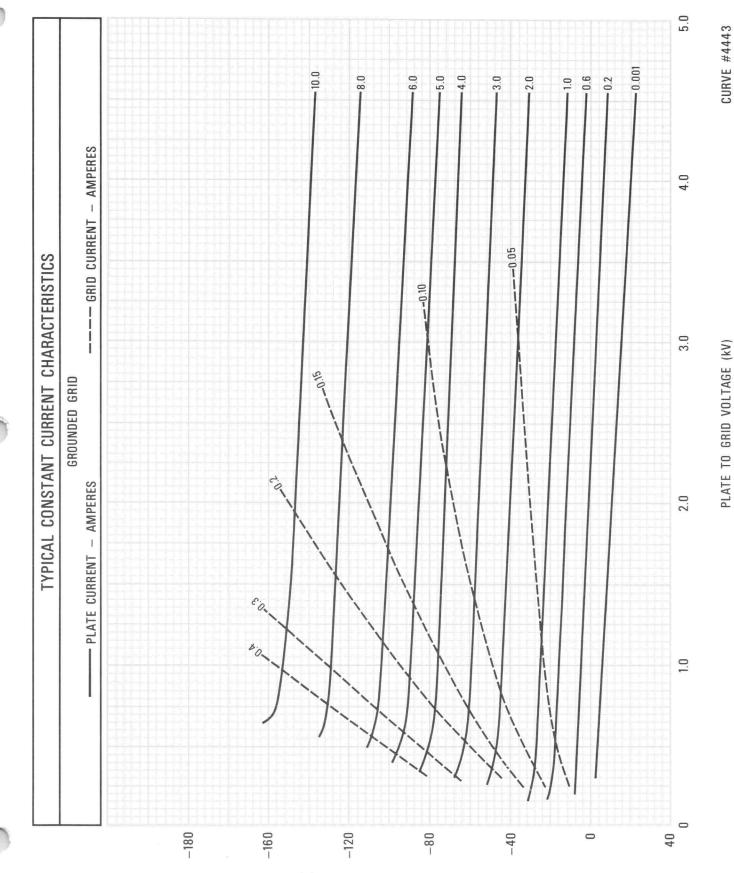

SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.


			ENSIONA			
DIM	INCHES			MILLIMETERS		
DIM	MIN.	MAX.	REF.	MIN.	MAX.	REF.
Α			2.510			63.75
В	2.050	2.080		52.07	52.83	
С	1.810	1.910		45.97	48.51	
D	0.750	0.810		19.05	20.57	
E	0.710	0.790		18.03	20.07	
F	(H) H	1.406			35.71	
G	0.187			4.75		
Н	0.200			5.08		
J	0.559	0.573		14.20	14.55	
К	0.240			6.10		
L			0.500			12.70
Μ			0.150			3.81
N	0.330			8.38		
Ρ	0.230			5.84		
R	1.417	1.433		35.99	36.40	
Т	0.091	0.095		2.31	2.41	
U	0.318	0.325		8.08	8.25	
V	0.588	0.597		14.93	15.16	
W			0.325			8.25
				1		


NOTES:

1. REF DIMENSIONS ARE FOR INFO ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

2. (*) CONTACT SURFACE



(V) ΞϿΑΤΙΟΥ ΟΙΑΘ ΟΤ ΞΟΟΗΤΑΟ

3CX400U7

(V) ΞϿΑΤΙΟΥ ΟΙΑϿ ΟΤ ΞΟΟΗΤΑΟ

7

3CX400U7

3CX800A7 HIGH - MU POWER TRIODE

The EIMAC 3CX800A7 is a compact power triode intended for use as a cathode-driven Class AB2 or Class B amplifier in rf applications including the VHF band. As a linear amplifier, high power gain may be obtained without sacrifice of low intermodulation distortion characteristics. Low grid interception and high amplification factor combine to make the 3CX800A7 drive power low for a tube of this power capacity. A single 3CX800A7 will deliver 750 watts PEP and 750 watts key-down CW output power to 350 MHz. The 3CX800A7 is useful to 600 MHz. (For typical cavity operation see page 10) A pulse rated version (3CPX800A7) is also available.

The anode is forced-air cooled for 800 watts of dissipation.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater Voltage		
Heater Current, at 13.5 volts	1.5	A
Cathode-Heater Potential (maximum)	+ 150	٧
Minimum Warmup Time (before application of rf drive and high voltage) \ldots \ldots \ldots	- 3	Min
Amplification Factor (approximate)	200	
Direct Interelectrode Capacitance (grid grounded)		
Cin	26.0	рF
Cout	6.1	рF
Срк	0.05	рF
Highest Frequency for Maximum Ratings	350	MHz

- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Maximum Overall Dimensions	
Length	• 2.52 in; 64.01 mm
Diameter	• 2.53 in; 64.26 mm
Net Weight	• 11.5 oz; 326 gm
Operating Position	• Any
Cooling	• Forced Air
Maximum Operating Temperature:	
Ceramic/Metal Seals or Anode Core	• 250°C
Base Large Wafer Elevenar 11-Pin	with Ring (EIA No. E11-81)
Recommended Socket	• EIMAC SK-1900
Recommended Air Chimney	
Available Chimney Clamp for SK-1906 (needed if mounting is not vertical, anode	up) EIMAC SK-1916
Available Grid Collet with grounding flange to fit SK-1900 (for VHF operation)	• EIMAC P/N 720359
Available Grid Bypass Capacitor Ring (1100 pF @ 1000 DCWV)	• EIMAC SK-655
Available Anode Connector Clip	. EIMAC ACC-1

VA5131 (Effective August 1989, Supersedes April 1987)

Printed in U.S.A.

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN Class AB2

ABSOLUTE MAXIMUM RATINGS (to 350 MHz):

DC PLATE VOLTAGE #		•			•			•	2250	VOLTS
DC PLATE CURRENT .	•	•	•	•	•	•	•		0.6	AMPERE
PLATE DISSIPATION	•	•		•	•	•			800	WATTS
GRID CURRENT		•			•	•	•	•	0.06	AMPERE
GRID DISSIPATION .				•	•		•		4.0	WATTS

- * Approximate value.
- ** Ref. against 1 tone of a 2-equal-tone signal.
- # Plate voltage may rise to 2500 volts maximum under no-signal conditions to account for power supply regulation.
- ## Measured at the load.
- § Value will be lower with voice modulation for the same PEP level.

TYPICAL OPERATION - Measured Data (to 150 MHz) Class AB2 Cathode Driven

CW/CCD

	CW/SSB	
Plate Voltage	2200	Vdc
Cathode Bias Voltage	+8.2	Vdc
Zero-Signal Plate Current * 🔹 🔹	15	mAdc
CW Plate Current	500	mAdc
CW Power Input	1100	W
Peak Envelope Power Input 🛛 🔹 🔹	1100	w
Two-Tone Plate Current §	313	mAdc
CW Grid Current * • • • • • • • •	36	mAdc
Two-Tone Grid Current * §	16	mAdc
Peak rf Cathode Voltage *	64	v
Peak Driving Power *	23	w
Useful Power Output ##	750	W
Useful Power Output, PEP ##	750	W
Cathode Input Impedance	54	Ohms
Resonant Load Impedance	2700	Ohms
Intermodulation Distortion **		
3rd Order Products	-36	dB
5th Order Products	-32	dB

PULSE MODULATOR OR REGULATOR

ABSOLUTE MAXIMUM RATINGS: (See Figure 2 PULSE DERATING CHART for pulse durations over 100 microseconds)

DC PLATE VOLTAGE3500VOLTSAVERAGE PLATE DISSIPATION800WATTSPEAK PLATE CURRENT (average during pulse)8AMPERESAVERAGE PLATE CURRENT0.6AMPEREAVERAGE GRID CURRENT0.06AMPEREGRID DISSIPATION (average)4WATTS

TYPICAL OPERATION values are obtained by actual measurement or by calculation from published characteristic curves. Adjustment of the rf drive voltage to obtain the specified plate current at the specified bias and plate voltage is assumed. If this procedure is followed, there will be little variation in output power when the tube is replaced, even though there may be some variation in grid current. The grid current which occurs when the desired plate current is obtained is incidental and may vary from tube to tube. This current variation causes no performance degradation providing the circuit maintains the correct grid/cathode voltage in the presence of the current variation.

APPLICATION

MECHANICAL

MOUNTING & SOCKETING - The tube may be mounted in any position. If it is to be operated in an inverted (anode down) or horizontal position the SK-1916 clamp assembly should be used for reliable retention. The SK-1906 chimney is provided with four 4-40 tapped holes at one end for chassis mounting and four more 4-40 tapped holes at the other end for optional SK-1916 mounting. The combination of the SK-1906 with the optional SK-1916 clamp makes a rigid mounting assembly for the 3CX800A7. Outline drawings of the SK-1906 air chimney and the clamp assembly are shown in Fig.1.

COOLING - Forced-air cooling must be provided to maintain the anode core and seal temperatues at a safe operating temperature. Cooling data are shown for incoming cooling air at 25°C and 50°C, and represent the minimum requirements to limit tube temperatures to 225°C. The pressure drop figures are approximate and are for the mounting-plate (shown in Fig. 1), socket, tube and chimney combination as would be the case with pressurizedcompartment mounting, where air is required to pass through the chassis slots and the anode cooler to the outside of the cabinet.

Cooling Air at 25°C

	SEA	LEVEL	500	0 FEET
Anode	Flow	Press.	Flow	Press.
Diss.	Rate	Drop	Rate	Drop
W	cfm	In,Water	cfm	In.Water
400	6	0.09	7	0.10
600	11	0.20	14	0.23
800	19	0.50	23	0.57

Cooling Air at 50°C

	SE/	A LEVEL	500	00 FEET
Anode Diss. W	Flow Rate cfm	Press. Drop In.Water	Flow Rate cfm	Press. Drop In.Water
400	8	0.10	10 19	0.12
800	27	0.31 0.79	33	0.35 0.88

Some air from the pressurized compartment passes by the socket for base cooling. This mounting technique is effective in the HF region but rf leakage through the slots may cause amplifier instability or regeneration in the VHF region. Screening the holes or use of "wave-guide-beyondcutoff" (honeycomb) air vents may be required in the VHF region.

Cooling must be applied before or simultaneously with electrode voltages, including the heater, and may be removed simultaneously with them. In all cases temperature of the anode and the ceramic/ metal seals is the limiting factor, and the designer is encouraged to use temperature-sensitive paint or other temperature sensing devices in connection with any equipment design before the layout is finalized. It should also be noted that it is not good practice to operate at, or close to, the absolute maximum temperature rating for the metal/ceramic seals. Where long life and consistent performance are factors cooling in excess of minimum requirements is normally beneficial.

ELECTRICAL

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

HEATER/CATHODE OPERATION - The rated heater voltage for the 3CX800A7 is 13.5 volts, as measured at the base of the tube, and variations should be restricted to plus or minus 0.6 volt for long life and consistent performance.

CATHODE WARMUP TIME - In normal service it is recommended the heater voltage be applied for a minimum of three minutes before anode voltage and rf drive voltage are applied, to allow for proper conditioning of the cathode surface.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly. The equipment must be designed properly, and operating precautions must be followed. Design all equipment so that no one can

come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

INPUT CIRCUIT - When this tube is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended to obtain greatest linearity and power output. For best results with a single-ended amplifier it is suggested that the cathode tank circuit operate at a "Q" of two or more.

GRID AND PLATE CURRENT LIMITATIONS - Note that grid current is a function of drive power and amplifier loading and can vary widely during tuning and loading. Under no circumstances should grid current exceed 60 mAdc during tuning or operation of the tube.

The maximum plate current rating is 600 mAdc. Drive level should be restricted during tuning periods so this rating is not exceeded. For monitoring purposes, peak meter readings on voice (taking into account inertia of the meter) will be approximately 200 mAdc. Under no circumstances is the plate current meter reading to exceed the maximum plate current rating of 600 mAdc.

INTERMODULATION DISTORTION - Typical Operating Conditions, with distortion values included, are the result of data taken during actual operation at 2 MHz. Intermodulation values listed are those measured at the full peak-envelope power noted and are referenced against one tone of a two-equaltone signal.

FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an arc, especially in cases where large amounts of power supply stored energy are involved. Some means of protection is advised in all cases, and it is recommended that a series resistor be used in the lead from the power supply to the anode circuit to limit peak current and help dissipate the energy in the event of a tube or circuit arc. A resistance of 50 ohms, with at least a 25W rating, in the positive plate power supply lead will help protect the tube in the event of an arc. VHF OPERATION - The base pin connections to the grid may be used at frequencies to 30 MHz. Above 30 MHz the available contact collets or grid bypass capacitor assembly (see Page 1) are recommended. VHF driving power will be greater than the typical values shown on page 2 because of higher circuit losses.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of a specially-constructed test fixture which shields all external tube leads or contacts from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time. The capacitance values shown in the technical data are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in his application. Measurements should be taken with the mounting which represents the approximate final layout if capacitance values

RADIO-FREQUENCY RADIATION - Exposure to strong rf fields should be avoided, especially at frequencies above 300 MHz, where energy absorption by the human body is significant. The human eye is particularly sensitive. Prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter (Occupational Safety & Health Administration (OSHA) standard). It is generally accepted that exposure to "high levels" of rf radiation can result in severe injury, including blindness. CARDIAC PACEMEAKERS MAY BE EFFECTED.

are highly significant in the design.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC, attn: Product Manager, 301 Industrial Way, San Carlos, CA 94070 U.S.A.

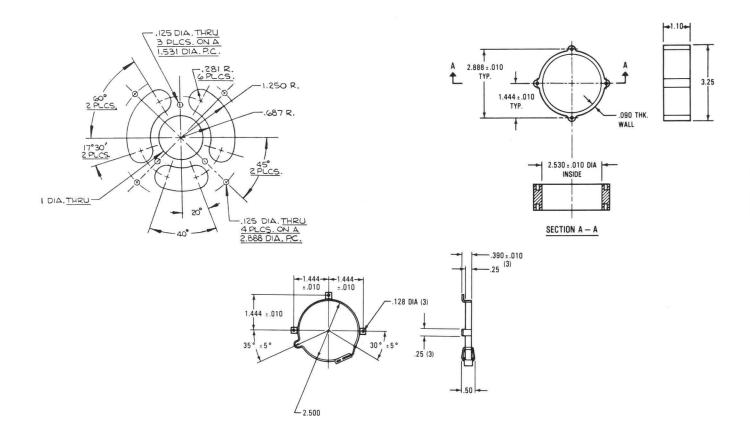
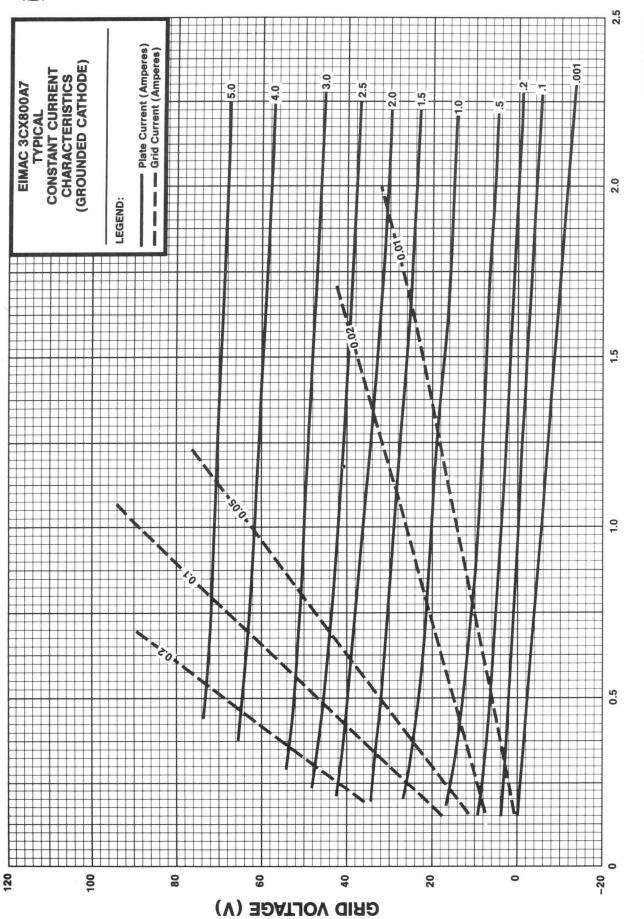


Figure 1 - Mounting Plate, Chimney SK-1906 and Clamp SK-1916, for SK-1900 Socket Assembly

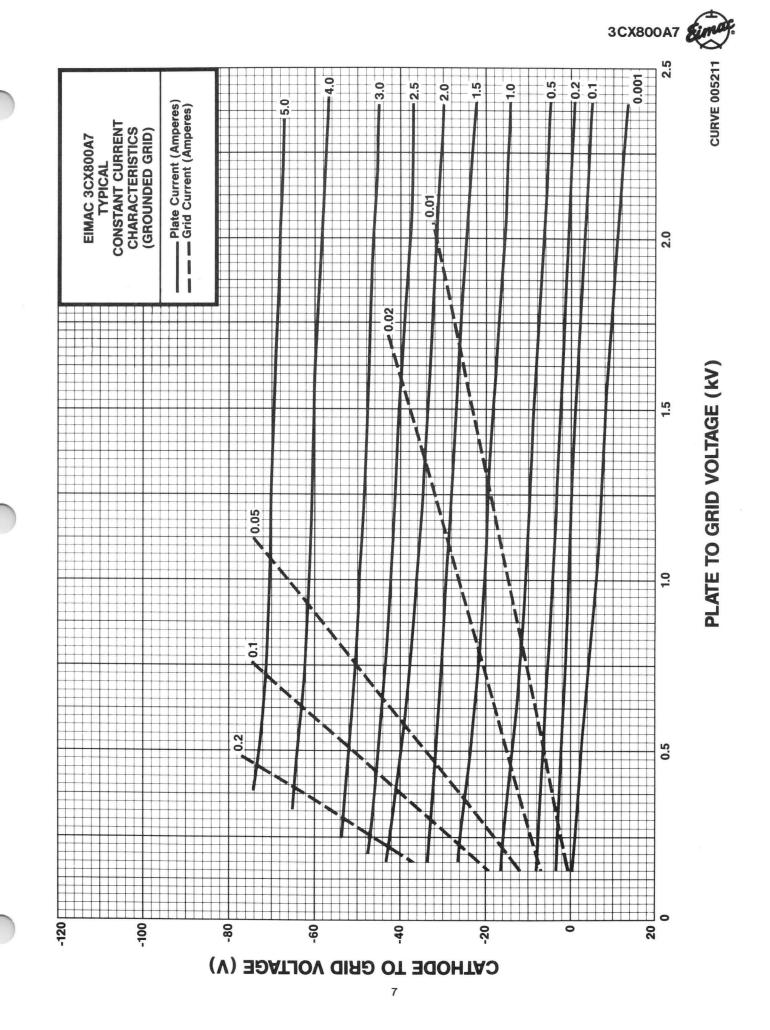

OPERATING HAZARDS

PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIP-MENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.
- c. RF RADIATION Exposure to strong rf fields
- should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- d. HOT SURFACES Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian ELMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.



6

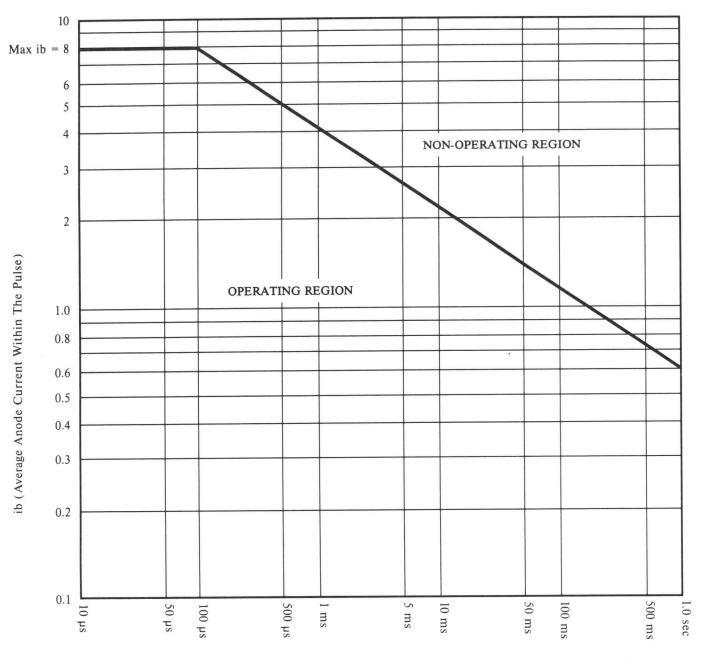
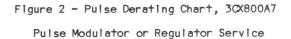
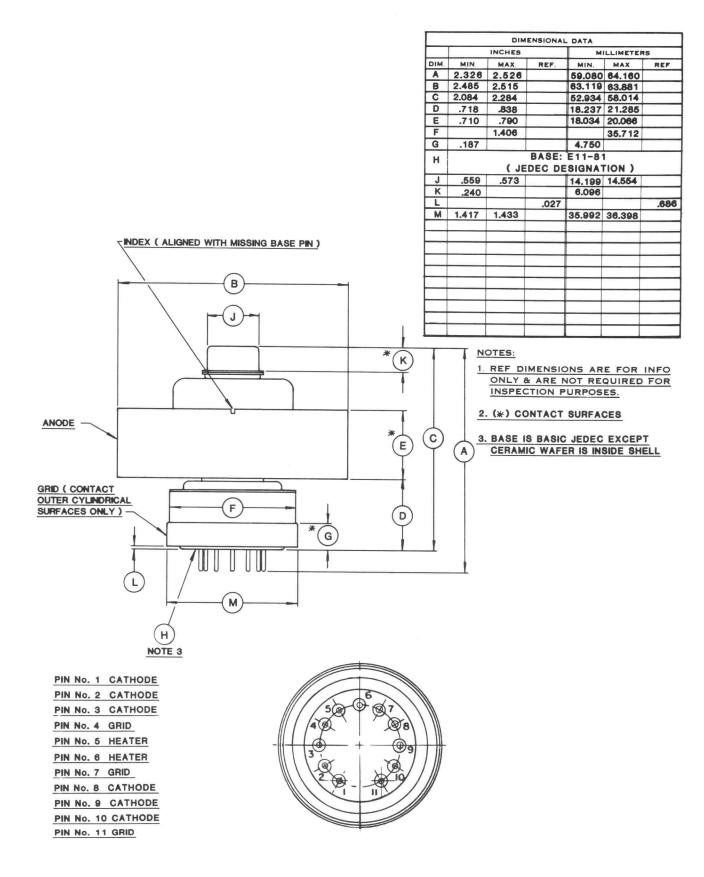

5 3CX800A7

PLATE VOLTAGE (kV)


CURVE 005202


PULSE DURATION

Pulse anode current (ib) capability is dependent on pulse duration (tp) and duty factor (Du). Maximum ib for a given tp is shown; maximum Du may then be derived from the relationship:

 $0.6 = ib\sqrt{Du}$

EIMAC UHF CAVITY AMPLIFIERS

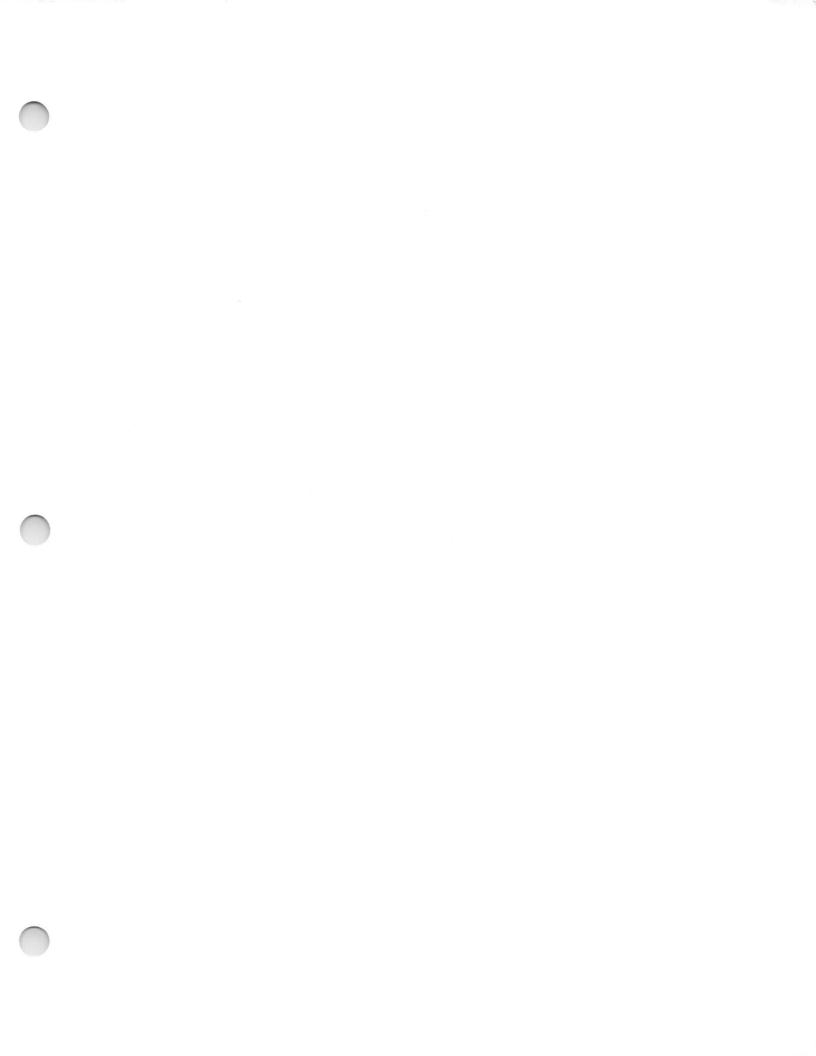
EIMAC UHF CV-2400 series cavity amplifiers cover the range of 180 to 530 MHz. They are useful for communications service in the CW or FM mode. The designs incorporate the 3CX800A7 high-mu power triode for CW applications or the 3CPX800A7 in pulse applications.

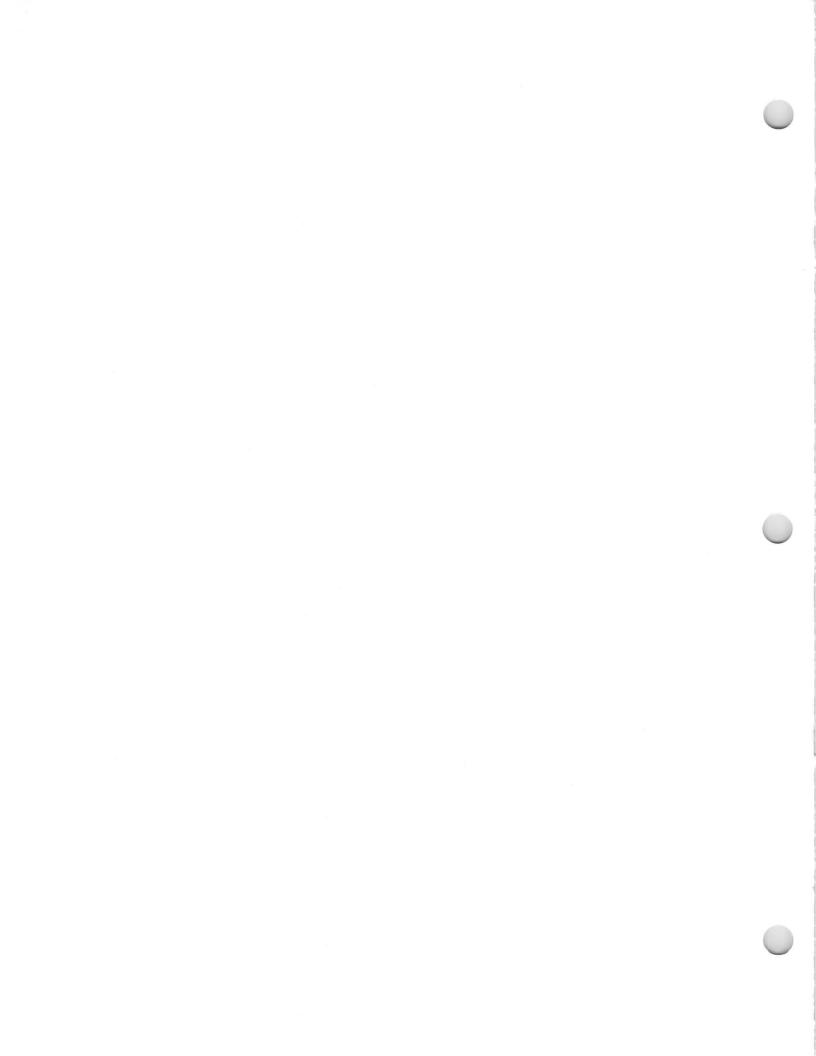
Detailed information is shown for the CV-2401. Similar cavities available for other frequency ranges are listed.

CV-2407	•	•	•	•	•	180-200	MHz
CV-2403		•	•		•	280-300	MHz
CV-2405	•	•				330-370	MHz
CV-2402						375-420	MHz
CV-2406						450-470	MHz
CV-2404						470-530	MHz
CV-2408		•		•		585-615	MHz

Similar cavites can be adapted to specific requirements, including pulsed applications.

CV-2401 400 W POWER OUTPUT 390-450 MHZ


The CV-2401 is designed for use in the 390-450 MHz frequency range. It is designed for FM, CW or SSB linear amplifier service.


The amplifier tube is the EIMAC 3CX800A7, a high-mu triode designed with beam-forming cathode and control grid geometry. The tube is cathode driven for good linearity and high stage gain.

The triode design eliminates many cavity and equipment design complications associated with tetrode cavities.

CHARACTERISTICS

Tuning Range	Ty Forced ly moun	800A7 ype N ype N d Air ts to										
Overall Dimensions (nominal):												
Height	in; 12.	.7 cm										
	in: 21,	.6 cm										
	in: 20.	.9 cm										
	1bs; 6	-										
Ner wergin, approx. (Tube nor instartee) .	,,	, o ng										
TYPICAL OPERATION (450 MHZ)												
Heater Voltage	13.5	Vac										
Heater Current *	1.5	Aac										
Anode Voltage	1800	Vdc										
Grid Bias Voltage	-8.0	Vdc										
Anode Current	0.48	Adc										
Grid Current *	10	mAdc										
Driving Power *	15	W										
Useful Power Output * #	400	W										
	14.2	dB										
Power Gain *												
Efficiency	46	%										

TECHNICAL DATA

8283 3CX1000A7

HIGH-MU POWER TRIODE

3CX100

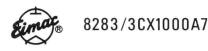
The EIMAC 8283/3CX1000A7 is a ceramic-metal zero-bias triode intended for Class-AB2 linear amplifier service in either grid-driven or cathode-driven configuration. It is recommended for use as a grid driven, push-pull audio amplifier or modulator and as a cathode driven linear amplifier through the VHF-TV bands.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated-Tungsten Mesh	
Voltage 5.0 ± 0.25 V	
Current, at 5.0 volts	
Amplification Factor (Average) 200	
Direct Interelectrode Capacitance (Grounded Cathode) ²	
Cin	
Cgp 14.0 pF	
Cout 0.15 pF	
Direct Interelectrode Capacitance (Grounded Grid) ²	
Cin	. 32.0 pF
Cpk	. 0.15 pF
Cout	. 14.0 pF
Frequency of Maximum Ratings	. 220 MHz

- Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or produce refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.


MECHANICAL

Maximum Overall Dimensions:

Length
Diameter 3.38 in; 85.8 mm
Net Weight
Operating Position Vertical, base up or down
Cooling Forced Air
Base Special Breechlock
Recommended Air-System Socket EIMAC SK-860 or SK-870
Recommended Air Chimney EIMAC SK-816
Maximum Temperature, Anode Core & Ceramic/Metal Seals 250°C

(Effective 3-25-75) © 1963, 1968, 1975 by Varian

Printed in U.S.A.

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB₂ Grid Driven

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE							•			3500	VOLTS
DC PLATE CURRENT										1.0	AMPERE
PLATE DISSIPATION		•	•	•	÷	•	•	÷	÷	1000	WATTS
GRID DISSIPATION		•	•				•			45	WATTS

RADIO-FREQUENCY LINEAR AMPLIFIER

Class-AB2, Grounded-Grid

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	ŝ	ž							3500	VOLTS
DC PLATE CURRENT										AMPERE
PLATE DISSIPATION		÷				÷		•	1500	WATTS
GRID DISSIPATION	ŝ	÷	٠	•	•		•		45	WATTS

TYPICAL OPERATION

Plate Voltage	2000	2500	3500	Vdc
Grid Voltage ¹	0	0	-12	Vdc
Zero-Signal Plate Current	238	305	129	mAdc
Single-Tone Plate Current	875	800	857	mAdc
Two-Tone Plate Current	600	585	590	mAdc

RADIO-FREQUENCY AMPLIFIER OR OSCILLATOR - Class C.

ABSOLUTE MAXIMUM RATINGS:

•									3500	VOLTS
			ł		į,	•			-100	VOLTS
									0.7	AMPERE
								×.	1000	WATTS
•	•	•	÷	ż		•	•		45	WATTS
	· · · ·	· · · · · · ·	· · · · ·	• • • • • • • • • • • •	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · ·	

RANGE VALUES FOR EQUIPMENT DESIGN

Min. Max. Filament Current, at 5.0 volts 28.0 33.0 A Zero Bias Plate Current, with E_b = 2500 Vdc 250 350 mA Cut-off Grid Voltage ($E_b = 2500 \text{ Vdc}$; $I_b = 1.0 \text{ mA}$) -25 V - - -Interelectrode Capacitances (Grounded Cathode) 1 29.0 35.0 pF - - -0.2 pF 12.0 16.0 pF Interelectrode Capacitances (Grounded Grid)¹

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

TYPICAL OPERATION, (Two tubes)

Plate Voltage Grid Voltage Zero-Signal Plate Current Max-Signal Plate Current Max-Signal Grid Current Peak AF driving Voltage	2000 0 400 2.0 590	2500 0 500 2.0 480	Vdc
(per tube)	95	90	V
Driving Power	25	44	W
Load Resistance (plate-to-plate) Max-Signal Plate Output Power	1900 2350	2580 3100	Ω w
Single-Tone Grid Current 230 Two-Tone Grid Current 130		225 120	mAdc mAdc

Two-Tone Grid Current	130	120	120	mAdc	
Peak RF Driving Voltage	80	74	110	V	
Driving Power	80	60	100	W	
Peak Envelope Power Output	940	1170	2060	W	
Resonant Load Impedance	1100	1670	2300	Ω	
RF Driving Impedance	40	45	60	Ω	
Third Order IM Distortion 2.	-29	-31	-31	dB	
Fifth Order IM Distortion 2	-37	-40	-39	dB	

- 1. The bias voltage in this set of typical operating conditions was obtained by means of a -12 volt 50 watt Zener diode in the negative return to the center-tap of the filament transformer.
- 2. The intermodulation distortion products are referenced against one tone of a two equal tone signal.

PLATE MODULATED RADIO-FREQUENCY AMPLIFIER - Class C.

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE											2000	VOLTS
DC GRID VOLTAGE			•			ż	,			•	• -100	VOLTS
DC PLATE CURRENT		•	•						•		0.55	AMPERE
PLATE DISSIPATION						÷					670	WATTS
GRID DISSIPATION	ł		•	•	•			•	•	•	45	WATTS

APPLICATION

MOUNTING & *SOCKETING* - The 3CX1000A7 must be operated with its axis vertical, base up or down. The EIMAC SK-860 and SK-870 airsystem sockets are available for use with the tube. The SK-870 has its grid contacts grounded to the socket frame. No contacts are grounded with the SK-860. The EIMAC SK-816 air-chimney is also available to direct cooling air from the socket through the anode cooling fins.

COOLING - The maximum temperature rating for the external surfaces and the anode core of the 3CX1000A7 is 250°C. Tube life is prolonged if these areas are maintained at somewhat lower temperatures. The table lists air-flow requirements to maintain tube temperatures below 225°C with 50°C inlet air and base-to-anode air flow.

	SEA LEVEL	T
Plate Diss. (watts)	Air Flow (cfm)	Press. Drop (In. H2O)
600	12	0.12
800	16	0.19
1000	20.5	0.30
1500	33	0.65
	10,000 FEET	
600	18	0.18
800	24	0.28
1000	31	0.45
1500	50	0.97

FILAMENT - Rated filament voltage for the 3CX1000A7 is 5.0 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain optimum performance and maximum tube life. In no case should it be allowed to deviate from 5.0 volts by more than plus or minus five per cent.

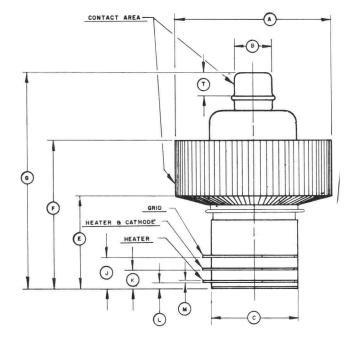
INPUT CIRCUIT - When the 3CX1000A7 is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended to obtain greatest linearity and power output. For best results with a single-ended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of five or more.

CLASS-C OPERATION - Although designed for Class-AB₂ service, the 3CX1000A7 may be operated as a Class-C power amplifier or oscillator, or as a plate-modulated rf amplifier. The zerobias characteristic can be used to advantage in Class-C amplifiers by employing only grid leak bias, provided the anode voltage is not over 2500 Vdc. If driving power fails under these circumstances, plate dissipation will be kept within the maximum rating since the tube will operate at normal static zero-bias conditions.

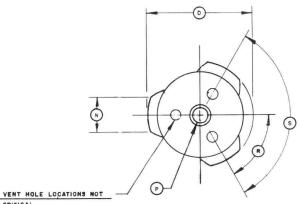
For Class C operation with anode voltage in excess of 2500 Vdc additional protective bias voltage is required.

INTERLOCKS - An interlock device should be provided to insure that cooling air is established before application of electrical power, including the filament voltage. The circuit should be so arranged that rf drive cannot be applied in the absence of normal anode voltage.

HIGH VOLTAGE - The 3CX1000A7 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

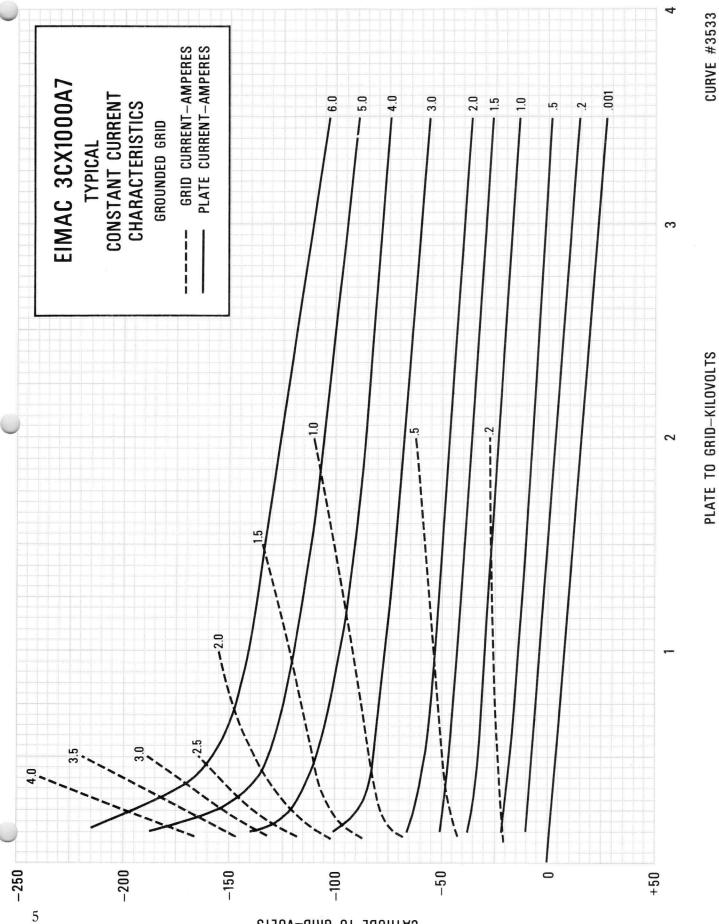

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between the tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Indus-

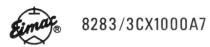
8283/3CX1000A7


tries Association Standard RS-191. This requires the use of specially constructed test fixtures with effectively shield all external tube terminals or leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191. The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

		DIM	ENSION	AL	DATA			
DIM		INCHES			MI	LLIMETE	RS	
	MIN.	MAX.	REF.		MIN.	MAX.	REF.	
Α	3.325	3.375			84.45	85.72		
В	0.807	0.817			20.50	20.75		
С	1.870	1.900			47.50	48.26		
D	2.250	2.300			57.15	58.42		
E	2.000	2.194		1	50.80	55.73		
F	3.175	3.375		1	80.64	85.72		
G	4.600	4.800		1	116.8	121.9		
J	0.690	0.710		1	17.53	18.03		
К	0.415	0.435		1	10.54	11.04		
L	0.140	0.165		1	3.56	4.19		
Μ	0.020	0.030		1	0.508	0.762		
N	0.700	0.800			17.78	20.32		
Ρ	0.314	0.316			7.97	8.03		
R	55°	65°			55°	65°		
S	115°	125°			115°	125°		
Т	0.470	0.530			11.94	13.46		


NOTE: REFERENCE DIMENSIONS ARE FOR INFOR-MATION ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.


CRITICAL

8283/3CX1000A7

CATHODE TO GRID-VOLTS

TECHNICAL DATA

3CX10,000U7 HIGH-MU VHF TRANSMITTING TRIODE

The EIMAC 3CX10,000U7 is a ceramic/metal high-mu power triode designed especially for use in the VHF and UHF spectrum as a cathode-driven Class AB rf amplifier or Class C power amplifier, and for pulsed rf amplifier service. It is forced-air cooled, with an anode dissipation rating of 10,000 watts. Cavity amplifier assemblies are available for the tube from EIMAC.

The 3CX10,000U7 makes use of a beam-forming cathode and control grid geometry to produce high gain, low grid interception, and outstanding intermodulation performance in linear amplifier service. These attributes make the tube well suited for cathode-driven circuitry, which reduces equipment complexity.

The tube has coaxial terminals for which contact collets are available from EIMAC.

GENERAL CHARACTERISTICS

ELECTRICAL

Cathode: Oxide-coated Unipotential

Heater Voltage	15.0 + 0.5 13.5 300	A
Amplification Factor (average)	200	
CinCoutCoutCoutCoutCout	86.5 23.2 0.25	pF
Frequency of Maximum Rating: CW	260 500	MHz MHz

- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. VARIAN EIMAC should be consulted before using this information for final equipment design.
- 2. Before high voltage and rf drive voltage are applied.
- Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

359150 (Effective 1 Sept 82; supersedes 1 Jan 81) VA4533 Printed in U.S.A.

VARIAN EIMAC / 301 Industrial Way / San Carlos, CA 94070 / USA

Cooling Forced Air Base Special Coaxial Recommended Contact Collets: TUBE ELEMENT EIMAC P/N EIMAC P/N TUBE ELEMENT 720638 Heater Grid 720636 720635 Heater-Cathode 720637 Anode RANGE VALUES FOR EQUIPMENT DESIGN Min. Max. Units Heater Current, @ 15.0 Volts 12.5 14.5 Aac 300 Sec ----Interelectrode Capacitance (grounded grid) 83.0 90.0 pF 22.7 23.7 pF Cpk 0.5 pF ----Interelectrode Capacitance (grounded cathode) pF 83.0 90.0 Cout pF ____ 0.5 22.7 23.7 pF 1 Values are for a cold tube as measured in a special shielded fixture in accordance with Electronics Industries Association Standard RS-191. RADIO FREQUENCY POWER AMPLIFIER CATHODE DRIVEN Class AB Television Service ABSOLUTE MAXIMUM RATINGS: DC PLATE VOLTAGE 6500 VOLTS PLATE DISSIPATION KILOWATTS 10 DC PLATE CURRENT 4.0 AMPERES GRID DISSIPATION 100 WATTS TV TRANSLATOR SERVICE: Measurements made in EIMAC cavities under CW conditions. f (MHz) Gain (dB) + 1 dB BW (MHz) Channel LOW BAND: EIMAC 4 15.3 6.26 Typical data taken at 2.5 kW single-69 tone output @ Eb = 4800 Vdc, Cavity CV-2240 Ibo = 1.9 Adc, Ib = 2.4 AdcHIGH BAND: EIMAC 6.27 Typical data taken at 2.5 kW single-201 16.7 11 Cavity CV-2250 tone output @ Eb = 4800 Vdc, E2 227.75 16.8 7.08 Ibo = 1.9 Adc, Ib = 2.25 Adc Three-tone test under CCIR loading: Video -8 dB (below 2.5 kW peak output) Sound -7 dB

Color -17 dB

Third order intermodulation products: -52 dB or better

3CX10.000U7

3CX10,000U7

HIGH BAND TV VISUAL SERVICE

Measurements made in EIMAC CV-: (CW Conditions)	2240 Gaviry		Measurements m (CW Conditions		v-2200 G	aviiy	
f = 79 MHz BW = 6 MHz Min.	+ 0.25 dB		f_ = 177 MHz	BW = 6 MHz Mi	n. + 0.2	5 dB	
o BW = 7 MHz Min。	+ 1.0 dB		0	BW = 7 MHz Mi			
Plate Voltage 🛛 🗤 🗤 🔹	5.0 5.5	kVdc	Plate Voltage		5.0	5.5	kVdc
Zero Signal Plate Current	1.0 1.0	Adc	Zero Signal Pl	ate Current	1.0	1.0	Adc
ax.Signal Plate Current . 3	.72 3.60	Adc	Max.Signal Pla	te Current .	4.0	3.6	Adc
Cathode Voltage (bias) **	+25 +29	Vdc	Cathode Voltag	e (bias) **	+25	+29	Vdc
Grid Current *	53 39	mAdc	Grid Current *		41	16	mAdc
Driving Power *	398 389	W	Driving Power	* • • • • •	407	407	W
Jseful Power Output 😱 😱	10 10	кW	Useful Power C	output	10	10	кW
	3.2 50.5	%	Efficiency * .		50.0	50.5	%
Gain * 1	4.0 14.1	dB	Gain *		13.9	13.9	dB
* May vary with particular in	stallation						
	usted to pr	oduce speci	fied Zero Signal	(idling) Plat	e Curren		
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI		oduce speci	TYPICAL OPERAT	(idling) Plat	es to 30) MHz)	Modu-
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS		oduce speci	TYPICAL OPERAT Class AB, Cath	ION (Frequenci	es to 30 ak Envel) MHz) ope or	
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS	ER	LOVOLTS	TYPICAL OPERAT Class AB, Cath lation Crest C	ION (Frequenci Node Driven, Pe	es to 30 ak Envel ta Measu) MHz) ope or	
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE	ЕR 6.5 КІ		TYPICAL OPERAT Class AB, Cath lation Crest C	ION (Frequenci ode Driven, Pe Conditions; Da	es to 30 ak Envel ta Measu) MHz) ope or red at	2.0 MHz
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT	ER 6.5 KI 4.0 AM	LOVOLTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage	TON (Frequenci node Driven, Pe Conditions; Da	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0	2.0 MHz kVdc
<pre>** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION</pre>	ER 6.5 KI 4.0 AM 10 KI	LOVOLTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl	TON (Frequenci node Driven, Pe Conditions; Da	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9	2.0 MHz kVdc Vdc
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION	ER 6.5 KI 4.0 AM 10 KI	LOVOLTS IPERES LOWATTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl	TION (Frequenci node Driven, Pe Conditions; Da ne (bias) ** ate Current	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9 0.5	2.0 MH kVdc Vdc Adc
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION	ER 6.5 KI 4.0 AM 10 KI	LOVOLTS IPERES LOWATTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate	TION (Frequenci node Driven, Pe Conditions; Da le (bias) ** ate Current ate Current	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9 0.5 2.58	2.0 MH: kVdc Vdc Adc Adc
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION	ER 6.5 KI 4.0 AM 10 KI	LOVOLTS IPERES LOWATTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr	TION (Frequenci node Driven, Pe Conditions; Da e (bias) ** ate Current ate Current current	es to 30 ak Envel ta Measu	0 MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7	2.0 MH kVdc Vdc Adc Adc Adc
<pre>** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION</pre>	ER 6.5 KI 4.0 AM 10 KI	LOVOLTS IPERES LOWATTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr	TION (Frequenci node Driven, Pe Conditions; Da e (bias) ** ate Current ate Current e Current id Current *	es to 30 ak Envel ta Measu	0 MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7 15	2.0 MH kVdc Vdc Adc Adc Adc Adc mAdc
<pre>** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION</pre>	ER 6.5 KI 4.0 AM 10 KI 100 WA	LOVOLTS IPERES LOWATTS ITTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr Two-Tone Grid Peak rf Drivin	TION (Frequenci node Driven, Pe Conditions; Da e (bias) ** ate Current ate Current current id Current * Current *	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7 15 9.5	2.0 MH kVdc Vdc Adc Adc Adc Madc
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION GRID DISSIPATION	ER 6.5 KI 4.0 AM 10 KI 100 WA	LOVOLTS IPERES LOWATTS ITTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr Two-Tone Grid Peak rf Drivin Driving Power	TION (Frequenci node Driven, Pe Conditions; Da de (bias) ** ate Current ate Current current d Current * Current * Current *	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7 15 9.5 120	2.0 MHz kVdc Vdc Adc Adc Adc Madc v
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION GRID DISSIPATION	ER 6.5 KI 4.0 AM 10 KI 100 WA	LOVOLTS IPERES LOWATTS ITTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr Two-Tone Grid Peak rf Drivin Driving Power Single-Tone Us	TION (Frequenci node Driven, Pe Conditions; Da e (bias) ** ate Current ate Current current current * Current * Current *	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7 15 9.5 120 240	2.0 MH: kVdc Vdc Adc Adc Adc mAdc Madc V W
<pre>** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION GRID DISSIPATION # May vary with particular in ** Adjust for specified Zero-S # Measured at the load.</pre>	ER 6.5 KI 4.0 AM 10 KI 100 WA stallation. ignal Plate	LOVOLTS PERES LOWATTS ATTS	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr Two-Tone Grid Peak rf Drivin Driving Power Single-Tone Us Resonant Load	TION (Frequenci node Driven, Pe Conditions; Da e (bias) ** ate Current ate Current current Current * . Current * . Gy Voltage * * seful Power Out	es to 30 ak Envel ta Measu) MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7 15 9.5 120 240 10	2.0 MH: kVdc Vdc Adc Adc Adc mAdc Madc V W kW
** Cathode bias voltage is adj RADIO FREQUENCY LINEAR AMPLIFI CATHODE DRIVEN - Class AB ABSOLUTE MAXIMUM RATINGS DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION GRID DISSIPATION	ER 6.5 KI 4.0 AM 10 KI 100 WA stallation. ignal Plate ion product	LOVOLTS IPERES LOWATTS ITTS Current. IS are	TYPICAL OPERAT Class AB, Cath lation Crest C Plate Voltage Cathode Voltag Zero-Signal Pl Single-Tone Pl Two-Tone Plate Single-Tone Gr Two-Tone Grid Peak rf Drivin Driving Power Single-Tone Us Resonant Load Intermodulatic	TION (Frequenci node Driven, Pe Conditions; Da e (bias) ** ate Current ate Current current * Current * Current * G Voltage * * *	es to 30 ak Envel ta Measu #) MHz) ope or red at 6.0 +42.9 0.5 2.58 1.7 15 9.5 120 240 10	2.0 MHz kVdc Vdc Adc Adc Adc mAdc Madc v W kW

LOW BAND TV VISUAL SERVICE

TYPICAL OPERATION values are obtained by measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias and plate voltage is assumed. If this procedure is followed, there will be little variation in ouput power when the tube is replaced, even though there may be some variation in grid current. The grid current which occurs when the desired plate current is obtained is incidental and may vary from tube to tube. This current variation causes no performance degradation providing the circuit maintains the correct voltage in the presence of the current variation.

MECHANICAL

MOUNTING & SOCKETING - The 3CX10,000U7 must be operated vertically, base up or down, and should be protected from shock and vibration. Collets are available from EIMAC (see page 2) for use in contacing the heater, heater-cathode, grid and anode terminals of the tube.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250 Deg.C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below this rated maximum.

The cooling data shown is for cooling air at 50°C with air flowing in a base-to-anode direction, and represents minimum anode cooling requirements. The pressure drop values shown are approximate and do not allow for any system losses, such as ducting or filters. (CFM = cubic feet per minute; CMM = cubic meters per minute)

Altitude: Sea Level

Plate	Flow	Press _. Drop	Flow	Press,Drop
Diss.	Rate	In. Water	Rate	Millibars
Watts	CFM		CMM	
2000	117	0.18	3.3	0.70
4000	117	0.19	3.3	0.74
6000	190	0.39	5.4	1.64
8000	318	0.84	9.0	3.97
10000	462	1.52	13.1	7.75

Altitude: 5000 Feet, 1524 Meters

Pla	te F	low	Press.Drop	Flow	Press.Drop
Dis	s. R	ate	In. Water	Rate	Millibars
Wat	ts C	FM		CMM	
20	00 1	41	0.21	4.0	0.84
400	00 1	41	0.23	4.0	0.89
60	00 2	29	0.47	6.5	1.97
800	00 3	83	1.01	10.9	4.79
100	00 5	58	1.83	15.8	9.35
Altitude	e: 1	0000	Feet, 3048	Meters	
Pla	te F	low	Press.Drop	Flow	Press.Drop
Diss	5. R	late	In. Water	Rate	Millibars
Wat	ts C	FM		CMM	
20	00 1	70	0.26	4.8	1.01
40	00 1	70	0.28	4.8	1.07
60	00 2	76	0.57	7.8	2.38
80	00 4	62	1.22	13.1	5.77
100	00 6	72	2.21	19.0	11.28

It is considered good engineering practice to design for a maximum anode core temperature of 225 °C, and temperature-sensitive paints are available for checking base and seal temperatures before any design is finalized. It is also considered good practice to allow for variables such as dirty air filters, rf seal heating, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time.

The pressure drop in a typical installation will be higher because of system losses. Typical data for a VHF cavity assembly is shown in the EIMAC Technical Data for the CV-2240 and CV-2250 cavities, which are available on request.

Forced air cooling of the base is also required, with air directed past the seal areas. Special attention may be required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated in the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air.

Air flow must be applied before or simultaneously with the application of power, including the tube heater, and should normally be maintained for a short period of time after all power is removed to allow for tube cooldown.

ELECTRICAL

HEATER-CATHODE OPERATION - The rated heater voltage for the 3CX10,000U7 is 15.0 volts and should be maintained within plus or minus 0.5 volt when good life and consistent performance are factors. Voltage should be measured with a knownaccurate (preferably plus or minus one percent) rms-responding voltmeter.

Heater voltage should be applied for five minutes (minimum) before high voltage is applied to the tube and any operation is attempted, to allow for cathode warmup to full temperature.

ABSOLUTE MAXIMUM RATINGS - The values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the abso-

3CX10,000U7

lute values will never be exceeded under any usual conditions of supply voltage variation in the equipment. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

INPUT CIRCUIT - When this tube is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a single-ended amplifier it is suggested that the cathode tank circuit operate at a "Q" of five or more.

INTERMODULATION DISTORTION - Typical Operating Conditions, with distortion values included, are the result of data taken during actual operation at 2 MHz. Intermodulation values listed are those measured at the full peak envelope power noted and are referenced against one tone of a two-equaltone signal.

UHF OPERATION - This tube is useful in the UHF region. High cathode emission makes it especially useful in pulse applications. Operation at UHF under CW conditions should be conducted with heavy plate loading and the lowest driving power consistent with satisfactory performance. It is often preferable to operate at a sacrifice in efficiency to obtain increased tube life.

FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an internal arc, especially in those cases where large amounts of stored energy or follow-on current are involved. Some means of protection is advised in all cases, and it is recommended that a series resistor be used in the anode circuit to limit peak current and help dissipate the energy in the event of a tube or circuit arc. A resistance of 10 ohms in the positive plate power supply lead, together with a protective spark gap such as the Siemens #B1-C145 connected between the cathode and grid will help protect the tube in the event of an internal arc. A maximum of four (4) joules total energy may be permitted to dissipate into a grid-to-cathode arc. Amounts in excess of this will permanently damage the cathode or the grid structure. Additional information is found in EIMAC Application Bulletin #17 "FAULT PROTECTION". Copies are available on request.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for highvoltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields, especially at frequencies above 300 MHz, where energy absorption by the human body is significant. The human eye is particularly sensitive. Prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter (Occupational Safety & Health Administration (OSHA) standard). It is generally accepted that exposure to "high levels" of rf radiation can result in severe bodily injury, including blindness. CARDIAC PACEMEAKERS MAY BE AFFECTED.

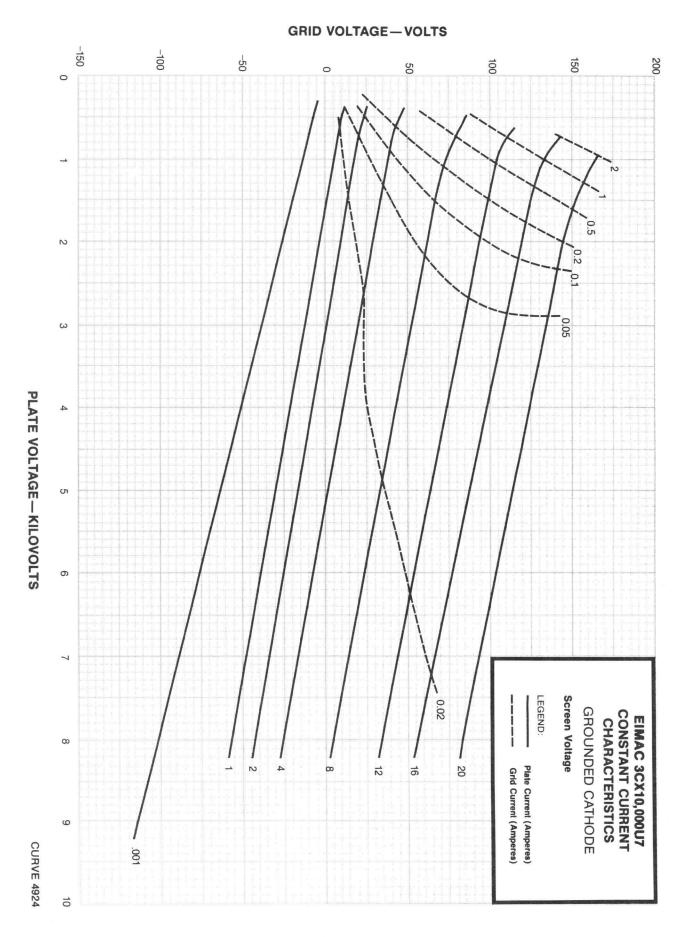
INTERELECTRODE CAPACITANCE - The interelectrode capacitance of a tube in a typical circuit is influenced by many variables, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of a specially constructed test fixture which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. The capacitance values shown in the manufacturer technical data are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal appliction. Measurements should be taken with the mounting which represent approximate final layout if capacitance values are highly significant in the design.

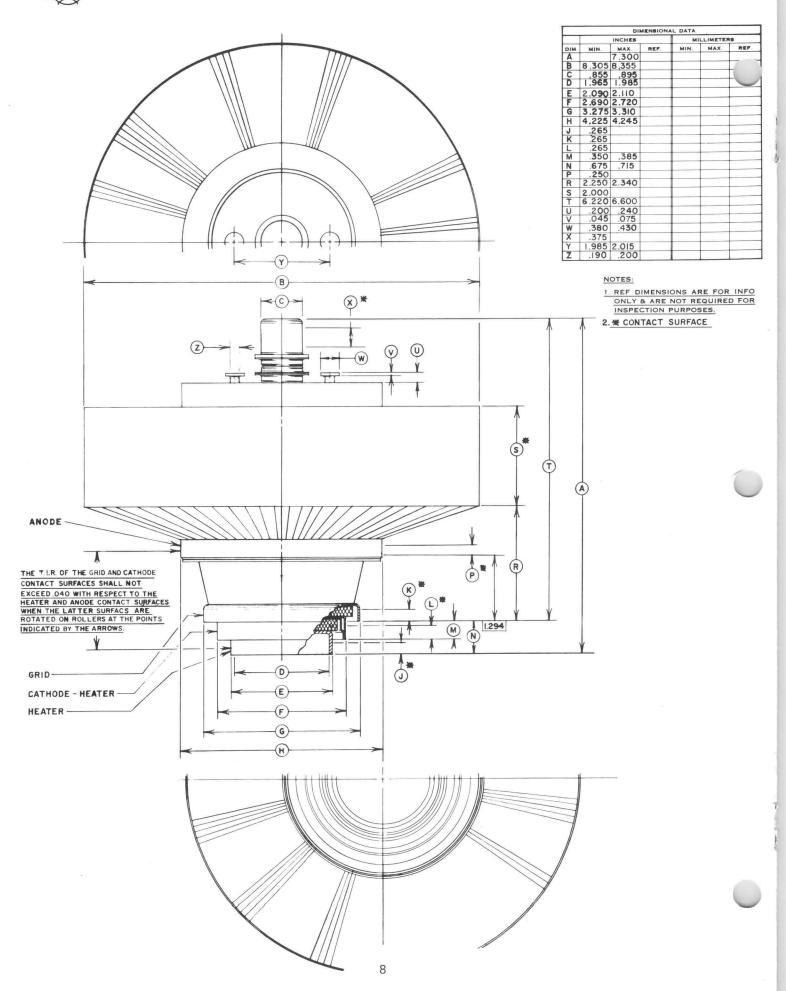
SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to VARIAN EIMAC; attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

OPERATING HAZARDS

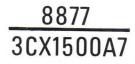
PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIP-MENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.


The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies
- c. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred Degrees C and cause serious burns if touched for several minutes after all power is remove.


Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: VARIAN EIMAC, Power Grid Tube Division, 301 Industrial Way, San Carlos CA 94070.

3CX10,000U7



TECHNICAL DATA

HIGH-MU POWER TRIODE

The EIMAC 8877/3CX1500A7 is a rugged ceramic/metal power triode designed for use as a cathode driven Class AB2 or Class B amplifier, in audio or rf applications including the UHF band, or as a cathode driven plate modulated Class C rf amplifier. As a linear amplifier, high power gain may be obtained without sacrifice of low intermodulation characteristics.

Low grid interception and high amplification factor combine to make the 8877/3CX1500A7 drive power requirements exceptionally low for a tube of this power capacity.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential		
Heater: Voltage	5.0 ± 0.25	V
Current, at 5.0 volts	10.5	А
Transconductance (Average):		
$I_{b} = 1.0 \text{ Adc}$	55,000	μ mhos
Amplification Factor (Average)	200	
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	38.5	pF
Cout	0.1	pF
Cgp	10	pF
Direct Interelectrode Capacitance (grounded grid) ²		
Cin	38.5	pF
Cout	10	pF
Cpk	0.1	pF
Ck-htr	9.7	pF
Frequency of Maximum Rating:		
CW	250	MH_Z

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

(Revised 7-1-75) © 1970, 1971, 1973, 1975 by Varian

Printed in U.S.A.

8877/3CX1500A7

MECHANICAL

Maximum Overall Dimensions:

Length
Diameter 3.38 in; 85.85 mm
Net Weight
Operating Position Any
Maximum Operating Temperature:
Ceramic/Metal Seals, Anode Core 250°C
Cooling Forced Air
Base Special 7-pin
Recommended Air System Socket
(Grounded Grid) SK-2210
(Grounded Cathode) SK-2200
Recommended Air Chimney
(Teflon) SK 2216

RANGE VALUES FOR EQUIPMENT DESIGN

	<u>M1n.</u>	Max.
Heater: Current at 5.0 volts	9.5	11.5 A
Cathode Warmup Time	90	sec
Interelectrode Capacitance (grounded grid circuit) ¹		
Cin	36.0	41.0 pF
Cout	9.2	11.2 pF
Cpk		0.2 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN Class AB₂

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE		•	•	÷	÷	•	•		ŝ		4000	VOLTS
DC PLATE CURRENT	•			ŝ	ž				ŝ		1.0	AMPERE
PLATE DISSIPATION			•								1500	WATTS
GRID DISSIPATION	•	•	•			•	•	•		÷	25	WATTS

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB2 Cathode Driven, Peak Envelope or Modulation Crest Conditions

Plate Voltage	2700	3500	Vdc
Cathode Voltage ¹	+8.2	+8.2	Vdc
Zero-Signal Plate Current ³	92	182	mAdc
Single-Tone Plate Current	740	1000	mAdc
Two-Tone Plate Current	480	675	mAdc
Single-Tone Grid Current ³	40	74	mAdc
Two-Tone Grid Current 3	16	25	mAdc
Peak rf Cathode Voltage 3	68	81	v
Peak Driving Power ³	40	64	w

Single-Tone Useful Output Power3 1085	2075	W
Resonant Load Impedance	2000	Ω
Intermodulation Distortion Products 2		
3rd Order	-38	dB
5th Order	-41	dB

34.

3.6

1. Positive cathode bias provided by zener diode.

- The intermodulation distortion products are referenced against one tone of a two equal tone signal.
 Approximate values
- 3. Approximate values.

TYPICAL OPERATION (220 MHz) Class AB₂ Cathode Driven

Plate Voltage							•.	2500	Vdc
Cathode Voltage 1		•	•			•		+8.2	Vdc
Plate Current		•						1000	mAdc
Grid Current ²	ç.							10	mAdc
Useful Output Power 2.	•				•	•		1520	W
Driving Power ²		•		÷		•		57	W
Power Gain ²			•			•	•	14	dB

1. Positive cathode bias provided by zener diode.

2. Approximate value.

RADIO FREQUENCY POWER AMPLIFIER

Class B Telegraphy or FM (Continuous Operating Conditions)

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE	 4000 VOLTS
DC PLATE CURRENT	 1.0 AMPERE
PLATE DISSIPATION	 1500 WATTS
GRID DISSIPATION	 25 WATTS

RADIO FREQUENCY POWER AMPLIFIER

Class C - Cathode Driven, Plate Modulated

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE								•	3200	VOLTS
DC PLATE CURRENT		•		•	•				0.8	AMPERE
PLATE DISSIPATION		÷				÷	,	•	1000	WATTS
GRID DISSIPATION									25	WATTS

TYPICAL OPERATION (88-108 MHz) Measured Values Class B, Cathode Driven

Plate Voltage	2000	2500	3000	4000	Vdc
Cathode Voltage1, 2	+9	+12	+15	+20	Vdc
Plate Current	1.0	1.0	1.0	1.0	Adc
Grid Current ²	60	58	42	25	mAdc
Driving Power ²	64	54	65	78	W
Useful Power Output	31330	1670	1960	2600	W
Efficiency ⁴	66.5	66.7	65.5	65.2	
Power Gain 4	13.2	14.2	14.8	15.3	dB
1. For measured case	se, ic	lling	anode	currer	nt was

- set for 10 mAdc.
- 2. Approximate.
- 3. Approximate, delivered to the load.

4. For the measured case; may vary from tube to tube.

TYPICAL OPERATION Carrier Conditions, Frequencies to 30 MHz, Cathode Driven

Plate Voltage Cathode Voltage 1	2400	Vdc
Cathode Voltage ¹	+22	Vdc
Plate Current	600	mAdc
	45	mAdc
Plate Load Resistance	2000	Ω
Driving Power 3	41	W
Plate Output Power	1000	W
Power Gain	14	dB

 Bias may be obtained from a fixed supply of 15.8 volts in series with a 9.5 ohm resistor. The resistor & supply should be bypassed for audio frequencies.

 Approximate, and driver must be modulated approximately 83%.

APPLICATION

MECHANICAL

MOUNTING - The 8877/3CX1500A7 may be mounted in any position.

SOCKET - The grid of the 8877/3CX1500A7 terminates in the cylindrical grid ring about the base of the tube. This may be contacted by multiple clips or flexible finger stock. Connections to the heater and cathode are made via the 7-pin base.

COOLING - The maximum temperature limit for external tube surfaces and the anode core is 250°C. Tube life is prolonged if these areas are maintained at lower temperatures. For full 1500 watt anode dissipation 38.0 cfm of air is required at a back pressure of 0.60 inches to hold tube temperature below 225°C with 50°C ambient temperature at sea level. At frequencies higher than 30 MHz, or at high altitudes, the air quantity must be increased.

Base-to-Anode Air Flow (sea level)								
Air Flow (CFM)	Pressure Drop In./H 0							
7.5 22.5 35.0	0.10 0.20 0.41							
node Air Flow	(10,000 ft.)							
Air Flow (CFM)	Pressure Drop In./H 0							
11.0 32.5	0.15 0.29 0.60							
	Air Flow (CFM) 7.5 22.5 35.0 node Air Flow Air Flow (CFM) 11.0							

Note: 1) Tube mounted in SK-2200 Socket with SK-2216 Chimnev.

 An allowance of 25 watts has been made for grid dissipation and 50 watts for filament power.

^{2.} Approximate.

8877/3CX1500A7

ELECTRICAL

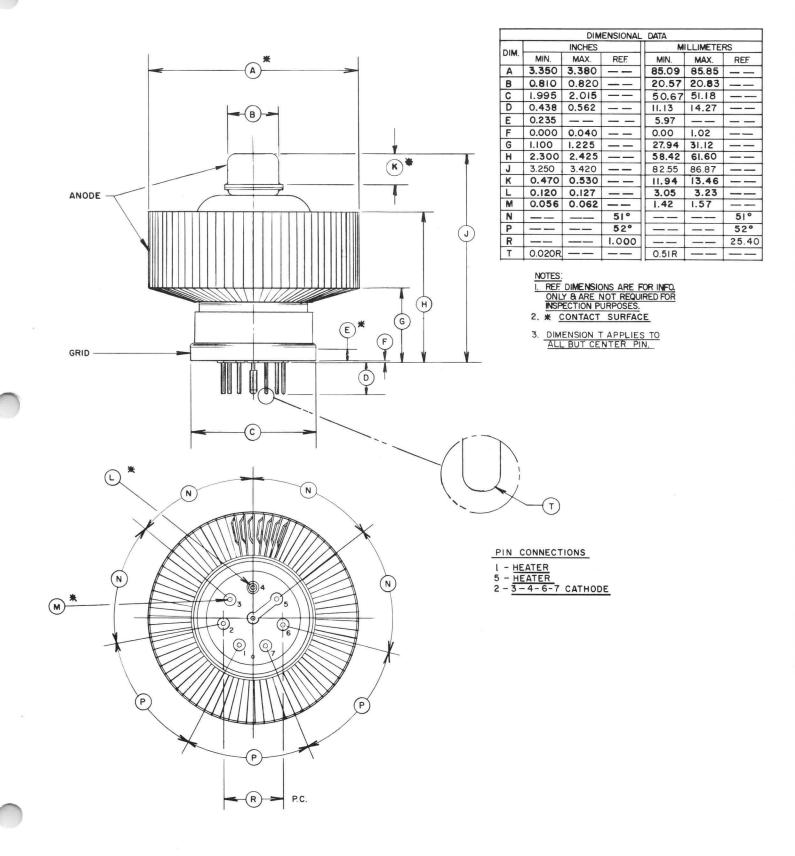
FILAMENT OPERATION - Rated filament voltage for the 8877/3CX1500A7 is 5.0 volts. Filament voltage, as measured at the socket optimum performance and maximum tube life. In no case should it be allowed to deviate from 5.0 volts by more than plus or minus five per cent.

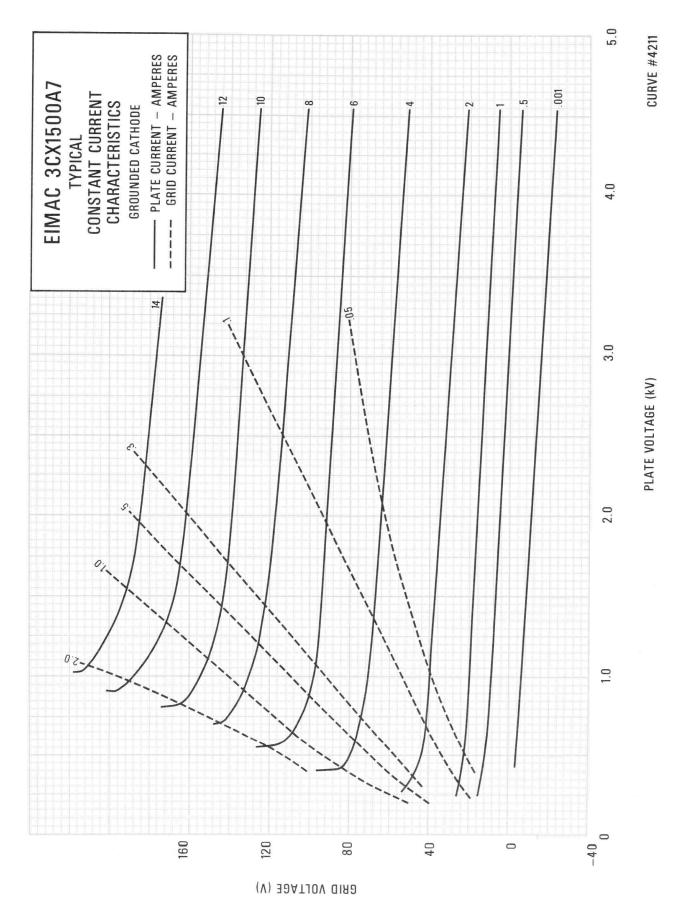
INPUT CIRCUIT - When the 8877/3CX1500A7 is operated as a cathode driven rf amplifier, the use of a resonant circuit in the cathode is recommended. For best results with a single-ended amplifier it is suggested that the cathode tank circuit operate at a Q of two or more.

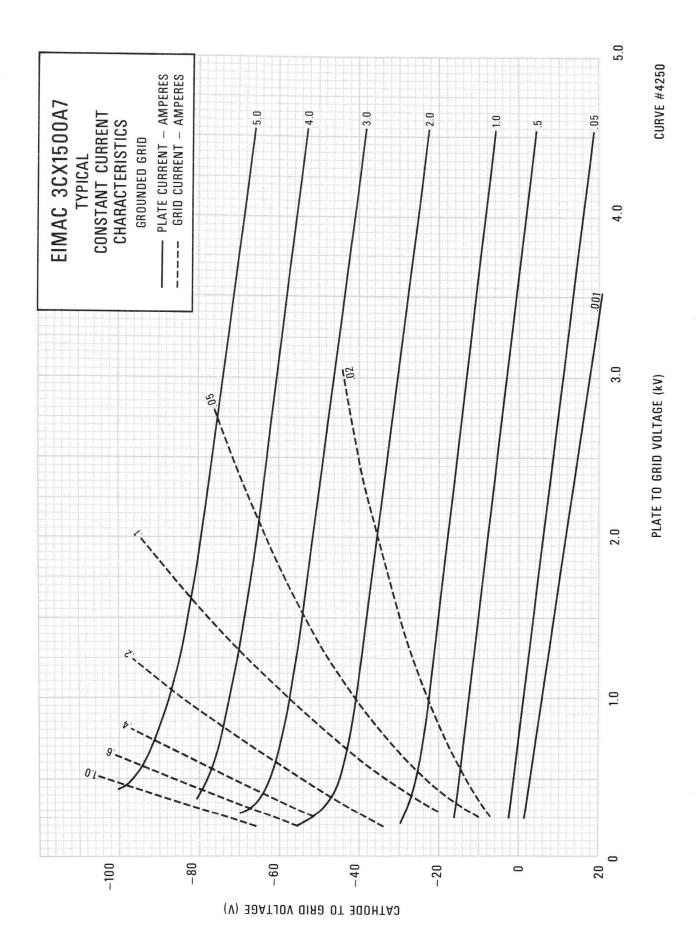
ZERO-BIAS OPERATION - Operation at zerobias is not recommended with plate potentials over 3000 volts, since plate dissipation may be exceeded. Higher plate voltage may be used with the proper protective bias.

HIGH VOLTAGE - The 3CX1500A7 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies,


and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.


The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

8877/3CX1500A7

8877/3CX1500A7

TECHNICAL DATA

ELECTRICAL

3CX2500A3

The EIMAC 3CX2500A3 is an all ceramic and metal, medium-mu, forced-air cooled, external anode transmitting triode with a maximum plate dissipation rating of 2500 watts. Relatively high power output as an amplifier, oscillator, or modulator may be obtained from this tube at low plate voltages. The 3CX2500A3 is an exact replacement for the EIMAC 3X2500A3 and is suggested for use where higher ambient temperatures are to be expected or greater reliability is required. The all ceramic and metal construction allows a greater margin of safety with respect to tube operating temperatures while permitting higher processing temperatures to insure longer life.

The tube has a rugged, low-inductance cylindrical filament-stem structure, which readily becomes part of a linear filament tank circuit for VHF operation. The grid provides thorough shielding between the input and output circuits for grounded-grid applications and is conveniently terminated in a ring between the plate and filament terminals. The 3CX2500A3 may be installed or removed without the aid of tools.

GENERAL CHARACTERISTICS

ELECTRICAL																	-			
Filament: The	oriat	ted T	ung	sten					Min.	Nor		Max.							Constant of	
Voltage	-	-	-	-	-	-	-	-		7.5	5		volts				1	-		
Current			-	-	-	-	-		49			53	amp	eres	5		J	-		
Amplification			-	-	-	-	-	-	19			26								
Direct Interel		ode (Capa	citar	ices								_							
Grid-Plat		-				-	-	-	16.8			23.2								
Grid-Fila					-	7	-	-	29.2			40.2								
Plate-Fil:					-	-	-		0.6			1.2	pF							
Tranconducta	ince	(Ib=	-830	ma.	, Eb	=30	00 v.	.) -		20,0	00		umh							-
Highest Frequ	ienc	y for	: Ma	ximu	ım F	latin	gs	-				75	MHz							
MECHANICAL																				
Base -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	drawing	
Mounting	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Ve	rtical,	ba	se dov	vn or up	
Cooling -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Fo	rced Air	
Maximum Ar	node	Core	e an	d Sea	al Te	empe	eratu	res	-	-	-	-	-	-	-	-	-	-	250°C	
Maximum Ov	ver-a	ll Di	men	sion	S:															
Length	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.6	inches	
Diameter	r	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.16	inches	

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Shipping Weight (Average)

Conventional Neutralized Amplifier, (Frequencies below 75 MHz.) Class-C FM or Telegraphy (Key-down conditions, per tube) MAXIMUM RATINGS

	-		
DC PLATE VOLTAGE	-	6000	VOLTS
DC PLATE CURRENT	-	2.5	AMPS
PLATE DISSIPATION	-	2500	WATTS
GRID DISSIPATION	-	150	WATTS

TYPICAL OPERATION (Frequencies below 75 MHz per tube)

THICKE OF LIGHTION	a (11)	-400	incit		10 11	1011	mil por ic	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
DC Plate Voltage	-	-	-	-	-	-	4000	5000	6000	volts
DC Plate Current	-	-	-	-	-	-	2.5	2.5	2.08	amps
DC Grid Voltage	-	-	-	-	-	-		-450		volts
DC Grid Current*	-	-	-	-	-	-	245	265	180	ma
Peak RF Grid Input	Volt	age*		-	-	-	580	750		volts
Driving Power*	-	-	-	-	-	-	142	197	136	watts
Grid Dissipation*	-	-	-	-	-	-	68	78		watts
Plate Power Input	-	-	-	-	-	-	10,000	12,500	12,500	watts
Plate Dissipation	-	-	-	-	-	-	2500	2500	2500	
Plate Power Output		-	-	-	-	-	7500	10,000	10,000	watts
*Approximate values.										

(Revised 3-1-67) © 1967 Varian

17 pounds

- Simar 3CX2500A3	
PLATE-MODULATED RADIO- FREQUENCY AMPLIFIER Conventional Neutralized Amplifier, (Frequencies below 75 MHz.) Class-C Telephony (Carrier conditions, per tube) MAXIMUM RATINGS DC PLATE VOLTAGE - 5000 VOLTS DC PLATE VOLTAGE - 5000 VOLTS DC PLATE CURRENT - 2.0 AMPS PLATE DISSIPATION - 1670 VOLTS GRID DISSIPATION - 150 WATTS	TYPICAL OPERATION (Frequencies below 75 MHz per tube) DC Plate Voltage - - - 4000 4500 5000 volts DC Plate Current - - - - 1.67 1.47 1.25 amps DC Grid Voltage - - - - - 500 -550 volts DC Grid Current* - - - 180 140 150 ma Peak RF Grid Input Voltage* - - 685 715 760 volts Driving Power* - - - 125 100 115 watts Grid Dissipation* - - - - 6670 6615 6250 watts Plate Power Input - - - 1670 1315 950 watts Plate Power Output - - - 5000 5300 5300 watts
AUDIO-FREQUENCY POWER AMPLIFIER OR MODULATOR Class-AB or B MAXIMUM RATINGS DC PLATE VOLTAGE - 6000 VOLTS DC PLATE CURRENT - 2.5 AMPS PLATE DISSIPATION - 2500 WATTS GRID DISSIPATION - 150 WATTS	TYPICAL OPERATION (Sinusoidal wave, two tubes unless noted)DC Plate Voltage400050006000voltsDC Grid Voltage1150190240voltsZero-Signal DC Plate Current0.60.50.4ampsMax-Signal DC Plate Current4.03.23.0ampsEffective Load, Plate to Plate220036004650ohmsPeak AF Grid Input Voltage (per tube)*-340360390voltsMax-Signal Peak Driving Power*170115113wattsMax-Signal Plate Output Power11,00013,000watts*Approximate values.*Approximate values.*Approximate values.

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION," POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC DIVISION OF VARIAN, FOR INFORMATION AND RECOMMENDATIONS.

APPLICATION

Cooling—Forced-air cooling must be provided to hold the ceramic-to-metal seals and anode core temperature below the maximum rating of 250°C. At ambient temperatures above 50°C, at higher altitudes and at operating temperatures above 30 MHz, additional air flow must be provided. Sea level and 10,000 foot altitude air-flow requirements to maintain seal temperatures below 200°C in 50°C ambient air are tabulated below (for operation below 30 MHz).

	Anode-to-Base Air Flow ¹										
Sea Level 10,000 Feet											
Anode Dissipation Watts	Air Flow CFM	Pressure Drop Inches Water	Air Flow CFM	Pressure Drop Inches Water							
$\begin{array}{c} 1500 \\ 2500 \end{array}$	33 66	.6 1.25	48 96	.9 1.82							

	Base-t	o-Anode Ai	r Flow	
	Sea	a Level	10,0	00 Feet
Anode Dissipation Watts	Air Flow CFM	Pressure Drop Inches Water	Air Flow CFM	Pressure Drop Inches Water
$\begin{array}{c} 1500 \\ 2500 \end{array}$	32 57	.6 1.0	47 83	.9 1.5

*Since the power dissipated by the filament represents about 400 watts and since grid dissipation can, under some conditions represent another 150 watts, allowance has been made in preparing this tabulation for an additional 550 watts.

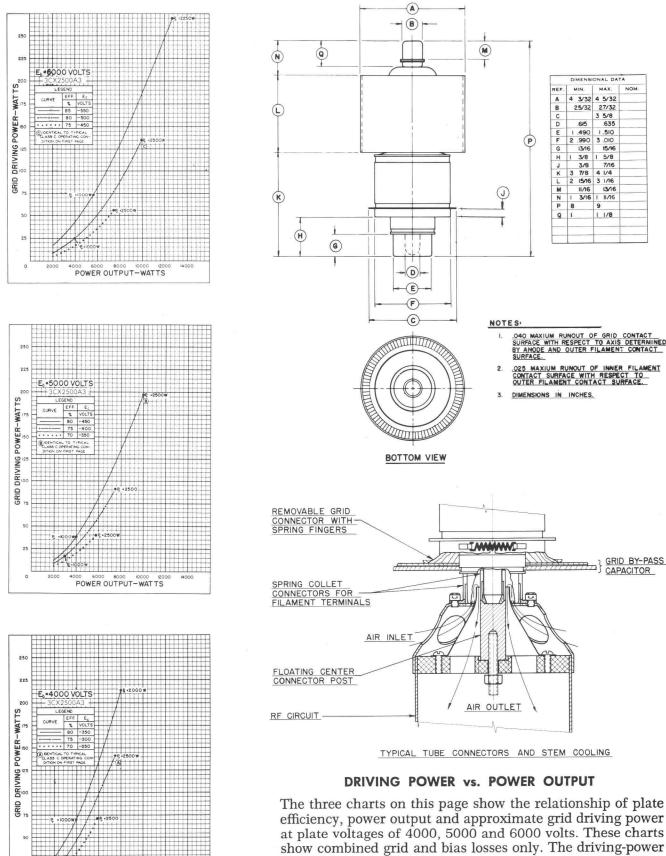
¹ When air is supplied in the anode-to-base direction, a minimum of 3 cfm must be directed into the filament-stem structure between the inner and outer filament terminals to maintain the base seals below 250°C. No separate air is required with base-to-anode airflow.

Simultaneous removal of all power and air (as in the case of a power failure) will not

ordinarily injure the tube, but it is recommended that cooling airflow continue for at least three minutes after filament power has been removed.

Filament Voltage — The filament voltage, as measured directly at the tube, should be 7.5 volts with maximum allowable variations due to line fluctuation of from 7.12 to 7.87 volts.

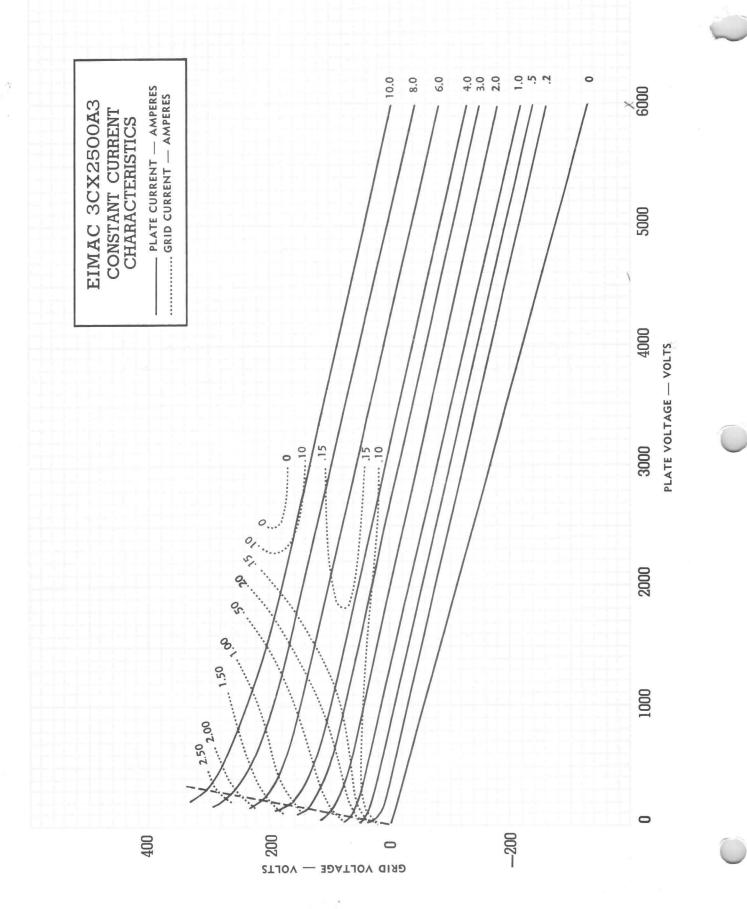
Bias Voltage — There is little advantage in using bias voltages in excess of those given under "TYPICAL OPERATION" except in certain very specialized applications. Where bias is obtained from a grid resistor, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation.


Plate Voltage — The plate-supply voltage for the 3CX2500A3 should not exceed 6000 volts. In most cases there is little advantage in using plate-supply voltages higher than those given under "TYPICAL OPERATION" for the power output desired.

Grid Dissipation — The power dissipated by the grid of the 3CX2500A3 must never exceed 150 watts. Grid dissipation is the product of dc current and peak positive grid voltage.

In equipment in which the plate loading varies widely, such as oscillators used for radiofrequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any condition of loading.

InVHF operation, particularly above 75 MHz the dc grid current must not exceed 200 ma under any conditions of plate loading. With lightly loaded conditions the grid driving power should be reduced so that the grid current does not exceed one-tenth of the plate current.



POWER OUTPUT-WATTS

and power-output figures do not include circuit losses. The plate dissipation in watts is indicated by Pp. Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 4000, 5000 and 6000 volts respectively. 3

Eimac

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

The EIMAC 3CX2500F3 is an all ceramic and metal, medium-mu, forced-air cooled, external anode transmitting triode with a maximum plate dissipation rating of 2500 watts. Relatively high power output as an amplifier, oscillator, or modulator may be obtained from this tube at low plate voltages. The 3CX2500F3 is an exact replacement for the EIMAC 3X2500F3 and is suggested for use where higher ambient temperatures are to be expected or greater reliability is required. The all ceramic and metal construction allows a greater margin of safety with respect to tube operating temperatures while permitting higher processing temperatures to insure longer life.

The tube is equipped with flexible filament and grid leads which simplify socketing and equipment design for industrial and communication frequencies below 30 megahertz.

GENERAL CHARACTERISTICS

ELECTRICAL

								-	
Filament: Thoriated T	ungste	en			1	Min.	Nom.	Max.	
Voltage		-	-	-	-		7.5		volts
Current		-	-	-	-	48		53	amperes
Amplification Factor		-	-	-	-	19		26	
Direct Interelectrode C	apaci	tances							
Grid-Plate -		-	-	-	-	16.8		23.2	
Grid-Filament		-	-	-	-	29.2		40.2	\mathbf{pF}
Plate-Filament		-	-	-		0.6		1.2	\mathbf{pF}
Tranconductance (Ib=	830 n	1a., Eb	=30	00 v.) -		20,000		umhos
Highest Frequency for	Maxi	mum I	Ratir	ngs	-			30	MHz
MECHANICAL									

See outline drawing Base Vertical, base down or up Mounting -250°C Maximum Anode Core and Seal Temperatures Forced Air Cooling - - - - --Maximum Over-all Dimensions: 8.6 inches Length (Does not include filament connectors) 4.16 inches Diameter ----9.5 inches Length of filament Connectors (Approximate) Net Weight -7.5 pounds -17 pounds Shipping Weight (Approximate)

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Conventional Neutralized Amplifier, Class-C FM or Telegraphy (Key-down Conditions) MAXIMUM RATINGS

DC PLATE VOLTAGE	-	6000	VOLTS
DC PLATE CURRENT	-	2.5	AMPS
PLATE DISSIPATION	-	2500	WATTS
GRID DISSIPATION	-	150	WATTS

TYPICAL OPERATION (Frequencies below 30 MHz)

DC Plate Voltage	-	-	-	-	-	-	4000	5000	6000	
DC Plate Current	÷.	-	÷.		-	-	2.5	2.5	2.08	amps
DC Grid Voltage	-	-1		- 1	-1	-				volts
DC Grid Current	- 1	-	-1	-	-	-	245	265	180	ma
Peak RF Grid Input	Volt	age*		-	-	-1	580	750	765	volts
Driving Power*	-	-	-	-	-	2-1	142	197	136	watts
Grid Dissipation*	-	-	-	-	-	-	68	78	46	watts
Plate Input Power	-	-	-	-	-	-	10,000	12,500	12,500	watts
Plate Dissipation	-	-	-	-	-	-	2500	2500	2500	watts
Plate Output Power	-	-	-	-	-	-	7500	10,000	10,000	watts
*Approximate values.										

PLATE-MODULATED RADIO-FREQUENCY AMPLIFIER

Conventional Neutralized Am Class-C Telephony (Carrier Con

2.0

150

MAXIMUM RATINGS DC PLATE VOLTAGE - 5500 DC PLATE CURRENT -

PLATE DISSIPATION - 1670 GRID DISSIPATION -

TYPICAL OPERATION (Frequencies below 30 MHz)

)	DC Plate Voltage	-	-	-	-	-	-	4000	4500	5000	volts
•	DC Plate Current	-	-	-	-	-	-	1.67	1.47	1.25	amps
nplifier,	DC Grid Voltage	-	-	-	-	-		-450			volts
nditions)	DC Grid Current*	-	-	-	-	-	17	180	140	150	ma
	Peak RF Grid Input	Volt	age	k	-	-	-	685	715	760	volts
	Driving Power*	-	-	-	1	\sim	14	125	100	115	watts
VOLTO	Grid Dissipation*	-	-	-	-	100		43	30	32	watts
VOLTS	Plate Input Power	-	-	-	-	-		6670	6615	6250	watts
AMPS	Plate Dissipation	-		-	100			1670	1315	950	watts
VOLTS	Plate Output Power	-	-	-	100	(-1)		5000	5300	5300	watts
WATTS	*Approximate values.										

	TYPICAL OPERATION (Sinusoidal wave, two tubes unless noted)
AUDIO EDECUENIOV DOMES	DC Plate Voltage 4000 5000 6000 volts
AUDIO-FREQUENCY POWER	DC Grid Voltage ¹ 150 190 240 volts
AMPLIFIER OR MODULATOR	Zero-Signal DC Plate Current 0.6 0.5 0.4 amps
	Max-Signal DC Plate Current 4.0 3.2 3.0 amps
Class-AB or B	Effective Load, Plate to Plate 2200 3600 4650 ohms
MAXIMUM RATINGS	Peak AF Grid Input Voltage (per tube)* - 340 360 390 volts
MAXIMUM KATINOS	Max-Signal Peak Driving Power* 340 230 225 watts
DC PLATE VOLTAGE - 6000 VOLTS	Max-Signal Nominal Driving Power* 170 115 113 watts
DC PLATE CURRENT - 2.5 AMPS	Max-Signal Plate Output Power 11,000 11,000 13,000 watts
PLATE DISSIPATION - 2500 WATTS	*Approximate values.
GRID DISSIPATION - 150 WATTS	Adjust to give listed zero-signal plate current.
GRID DISSIFATION - 150 WATTS	-Wolnor to Rive Hoten zelo-siRius huste content.

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION," POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC DIVISION OF VARIAN, FOR INFORMATION AND RECOMMENDATIONS.

APPLICATION

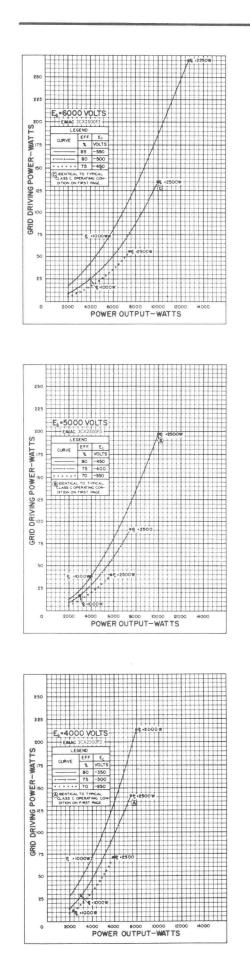
Cooling—Forced-air cooling must be provided to hold the ceramic-to-metal seals and anode core temperature below the maximum rating of 250°C. At ambient temperatures above 50°C, at higher altitudes and at operating temperatures above 30 MHz, additional air flow must be provided. Sea level and 10,000 foot altitude air-flow requirements to maintain seal temperatures below 200°C in 50°C ambient air are tabulated below (for operation below 30 MHz).

	Anode	e-to-Base Ai	r Flow ¹		
	Se	a Level	10,000 Feet		
Anode Dissipation Watts	Air Flow CFM	Pressure Drop Inches Water	Air Flow CFM	Pressure Drop Inches Water	
1500 2500	33 66	.6 1.25	48 96	.9 1.82	

Base-to-Anode Air Flow										
Sea Level 10,000 Feet										
Anode Dissipation Watts	Air Flow CFM	Air Flow CFM	Pressure Drop Inches Water							
1500 2500	32 57	.6 1.0	47 83	.9 1.5						

*Since the power dissipated by the filament represents about 400 watts and since grid dissipation can, under some conditions represent another 150 watts, allowance has been made in preparing this tabulation for an additional 550 watts.

¹ When air is supplied in the anode-to-base direction, a minimum of 3 cfm must be directed into the filament-stem structure between the inner and outer filament terminals to maintain the base seals below 250°C. No separate air is required with base-to-anode airflow.


Filament Voltage — The filament voltage, as measured directly at the tube, should be 7.5 volts with maximum allowable variations due to line fluctuation of from 7.12 to 7.87 volts. Tube life may be extended by operation at the lower end of this range.

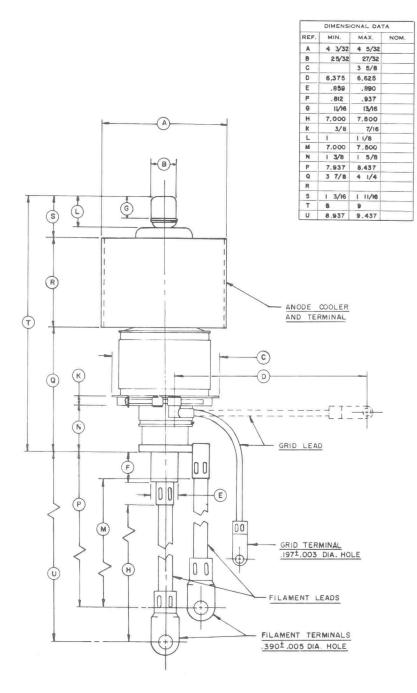
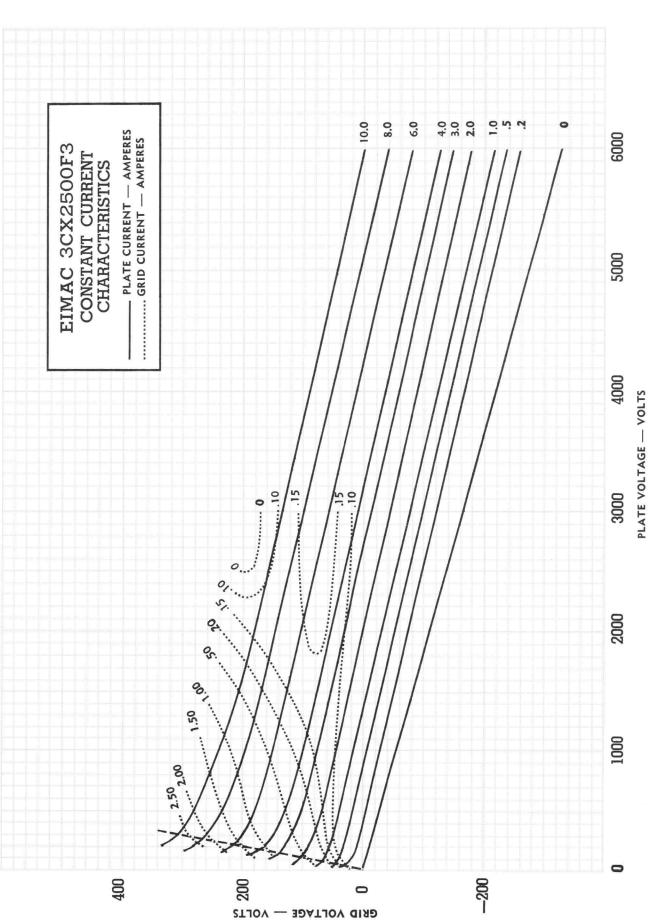

Bias Voltage — There is little advantage in using bias voltages in excess of those given under "TYPICAL OPERATION" except in certain very specialized applications. Where bias is obtained from a grid resistor, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation.

Plate Voltage — The plate-supply voltage for the 3CX2500F3 should not exceed 6000 volts. In most cases there is little advantage in using plate-supply voltages higher than those given under "TYPICAL OPERATION" for the power output desired.

Grid Dissipation — The power dissipated by the grid of the 3CX2500F3 must never exceed 150 watts. Grid dissipation is the product of dc current and peak positive grid voltage.

In equipment in which the plate loading varies widely, such as oscillators used for radiofrequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any condition of loading. With lightly loaded conditions the grid driving power should be reduced so that the grid current does not exceed one-tenth of the plate current.



3CX2500F3

DRIVING POWER vs. POWER OUTPUT

The three charts on this page show the relationship of plate efficiency, power output and approximate grid driving power at plate voltages of 4000, 5000 and 6000 volts. These charts show combined grid and bias losses only. The driving-power and power-output figures do not include circuit losses. The plate dissipation in watts is indicated by Pp. Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 4,000, 5000 and 6000 volts respectively.

4

Simar

3CX2500F3

Eimac

MEDIUM-MU AIR-COOLED POWER TRIODE

3CX2500H3

The EIMAC 3CX2500H3 is a ceramic/metal, forced air cooled, external anode power triode designed primarily for use in industrial radio-frequency heating services. Its anode is conservatively rated at 2.5 kilowatts of plate dissipation with low air flow and pressure drop.

Input of 12.5 kilowatts is permissable up to 75 megahertz. Plentiful reserve emission is available from its 390 watt filament. The grid structure is rated at 150 watts making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten		
Voltage 7.5 ± 0.37 V	Simat 3C)	(2500H3
Current, at 7.5 volts		
Amplification Factor (Average)20	1	t
Direct Interelectrode Capacitance (grounded cathode) ²	0	1
Input	35.0	pF
Output	0.9	pF
Feedback	20.0	pF
Frequency of Maximum Rating:		
CW	75	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture.

MECHANICAL

Maximum Overall Dimensions:
Length (excluding leads) 9.000 in; 228.60 mm
Diameter 4.250 in; 107.95 mm
Net Weight 6.51b; 14.3 kg
Operating Position Vertical, base up or down
Maximum Operating Temperature:
Ceramic/Metal Seals 250°C
Cooling Forced Air
Base See Outline

(Effective 2-1-71) © by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

RADIO FREQUENCY INDUSTRIAL OSCILLATOR Class C (Filtered DC Power Supply)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	•	÷		•	•	•				•	6000	VOLTS
DC GRID VOLTAGE .				•							-1000	VOLTS
DC PLATE CURRENT	÷	ÿ,	÷	•							2.5	AMPERES
PLATE DISSIPATION	ŝ			•	•	•	÷	÷	ż		2500	WATTS
PLATE INPUT POWER											12.5	kW
DC GRID CURRENT .				•	•						0.4	AMPERE

Plate Voltage	4000	6000	Vdc
Grid Voltage	-300	-500	Vdc
Plate Current	2.50	2.08	Adc
Grid Current ¹ 0.	.245	0.180	mAdc
Peak rf Grid Voltage ¹	280	265	V
	142	136	W
	10.0	12.5	kW
Plate Dissipation	2.5	2.5	W
Plate Output Power	7.5	10.0	W
Resonant Load Impedance	910	1625	Ω
1. Approximate value.			

TYPICAL OPERATION (Frequencies to 75 MHz)²

2. Loaded Conditions

NOTE: TYPICAL OPERATION data are obtained from direct measurement or by calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, screen and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid and screen current. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. In the case of Class C Service, if grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

Min. Max. Filament: Current at 7.5 volts 48 53 A Interelectrode Capacitance¹(grounded filament connection) 29.2 40.2 pF Output 0.6 1.2 pF Feedback 16.8 23.2 pF

1. Capacitance values are for a cold tube as measured in a shielded fixture.

APPLICATION

MECHANICAL

MOUNTING - The 3CX2500H3 must be mounted vertically either base up or down. A mounting flange is provided on the grid terminal to allow bolting the tube to a grid deck or a strap. Filament voltage is applied through two heavy flexible leads.

COOLING - Forced-air cooling must be provided to hold the ceramic/metal seals and anode core temperature below the maximum rating of 250° C. At ambient temperatures above 50° C, at higher altitudes and at operating temperatures above 30 MHz, additional air flow must be pro-

vided. Sea level and 5000 foot altitude air flow requirements to maintain seal temperatures below 200°C in 50°C ambient air are tabulated below (for operation below 30 MHz).

Anode-to-Base Air Flow										
	S	ea Level	5000 Feet							
Anode Dissi- pation watts	Air Flow CFM	Pressure Drop Inches Water	Air Flow Pressure Dro CFM Inches Water							
1500 2500	33 66	0.6 1.25	40 79	0.74 1.49						

Base-to-Anode Air Flow										
	S	Sea Level	5000 Feet							
Anode Dissi- pation watts		Pressure Drop Inches Water	Air Flow CFM	Pressure Drop Inches Water						
1500 2500	32 57	0.6 1.0	39 68	0.74 1.23						

*Since the power dissipated by the filament represents about 400 watts and since grid dissipation can, under some conditions represent another 150 watts, allowance has been made in preparing this tabulation for an additional 500 watts.

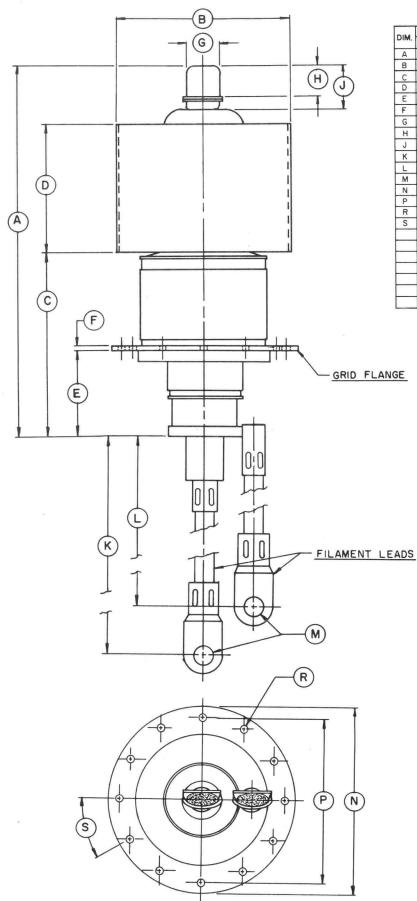
Additional stem cooling air must be provided. 14 CFM of air directed against the center rod $\frac{1}{2}$ " below the outer filament contact ring by a $\frac{1}{2}$ " I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling.

ELECTRICAL

FILAMENT - The rated filament voltage for the 3CX2500H3 is 7.5 volts. Filament voltage, as measured at the tube, must be maintained at 7.5 volts plus or minus five percent for maximum tube life and consistent performance.

GRID OPERATION - The grid current rating is 0.4 ampere dc. This value should not be exceeded for more than very short periods such as during tuning. Over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.275 ampere grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 150 watts.

PLATE OPERATION - Maximum plate voltage rating of 6000 volts and maximum plate current of 2.5 amperes dc should not be applied simultaneously as rated plate dissipation may be exceeded. The 12.5 kilowatts input rating applies for Class C amplifier or oscillator service with no modulation.


Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

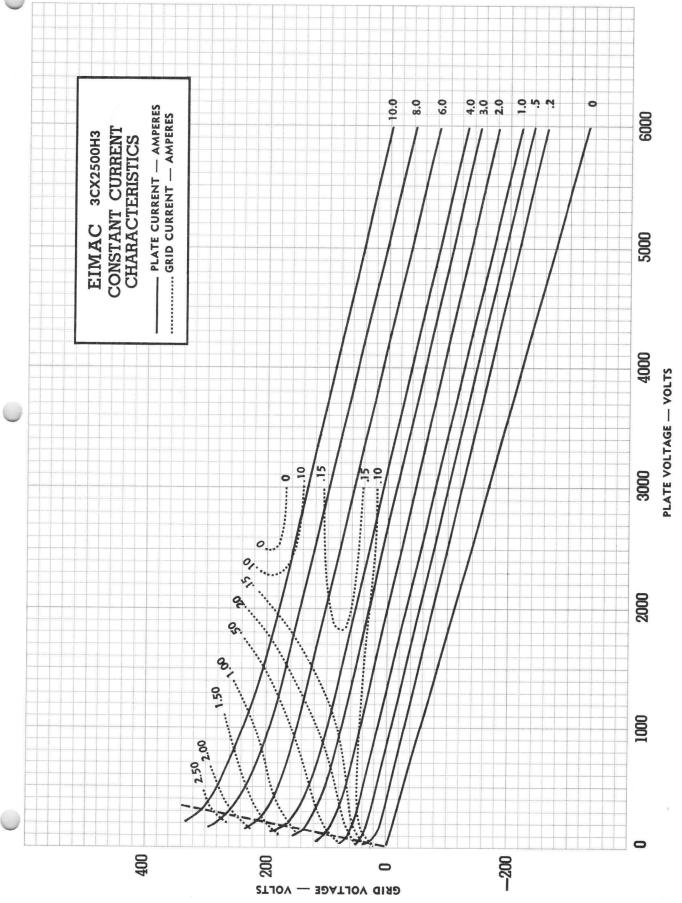
Spark gaps from plate to ground should be used to prevent voltages from flashing across the tube envelope during any fault conditions.

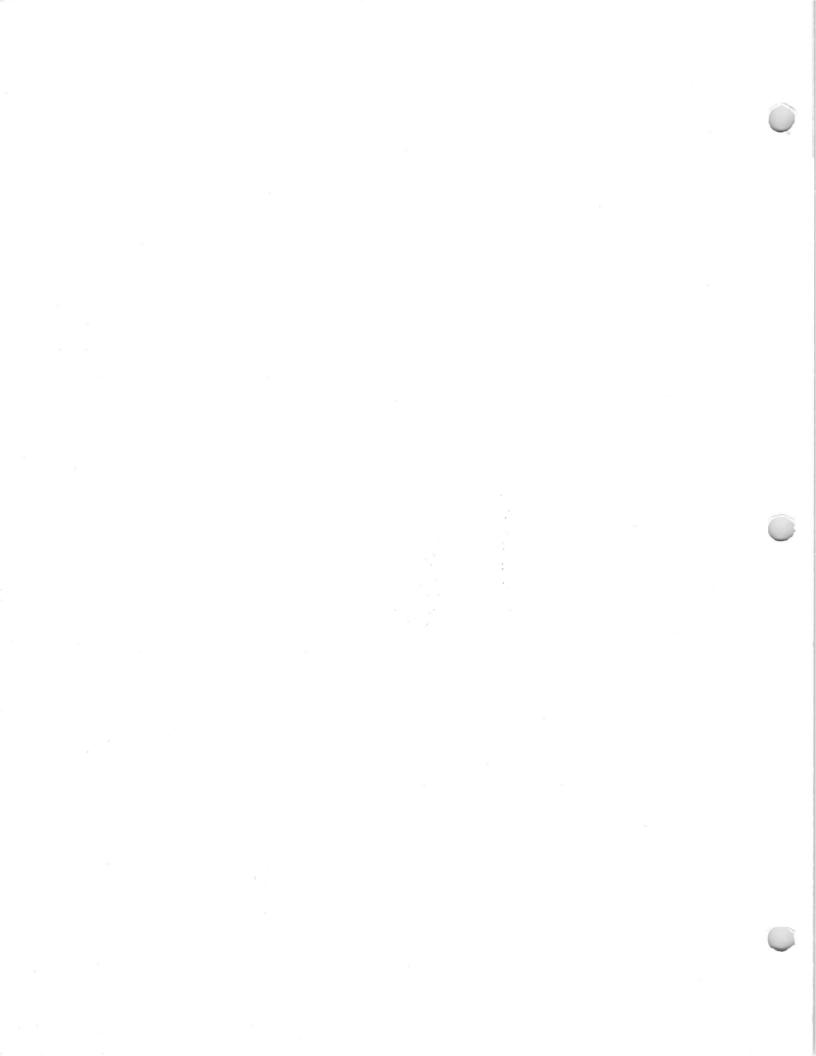
HIGH FREQUENCY OPERATION - The 3CX-2500H3 is usable to 110 MHz. At this frequency, plate voltage must be reduced to 4000 volts in Class C service.

HIGH VOLTAGE - The 3CX2500H3 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

	INCHES	1		ILLIMETE	
MIN.	MAX.	REF	MIN.	MAX.	REF
8.000	9.000		203.20	228.60	
4.093	4.156		103.96	105.56	
3.875	4250		98.43	107.95	
2.937	3.062		74.60	77.77	
1.703	1.953		4326	49.61	
		0.125			3.18
0.781	0.843		19.84	21.41	
0.687	0.812		17.45	20.62	
1.000	1.125		25.40	28.58	
8.937	9.437		227.00	239.70	
7.937	8.437		201.60	214.30	
(H) (H)		0.390			9.91
4.230	4.250		107.44	107.95	
3.855	3.885		97.92	98.68	
		0.250			6.35
29°	31°		29°	31°	
	8.000 4.093 3.875 2.937 1.703 0.781 0.687 1.000 8.937 7.937 4.230 3.855 	B.000 9.000 4.093 4.156 3.875 4250 2.937 3.062 1.703 1.953 0.781 0.843 0.687 0.812 1.000 1.125 8.937 9.437 7.937 8.437 4.230 4250 3.865 3.885	B.000 9000 4.093 4.156 3.875 4.250 2.937 3.062 1.703 1.953 0.125 0.781 0.843 0.687 0.812 1.000 1.125 8.937 9.437 7.937 8.437 - 0.390 4.230 4250 3.855 3.885	B.000 9000 - 20320 4.093 4.156 - 10396 3.875 4250 - 9843 2.937 3.062 - 74.60 1.703 1.953 - 4326 - - 0.125 - 0.781 0.843 - 1984 0.687 0.812 - 17.45 1.000 1.125 - 2540 8.937 9.437 - 227.00 7.937 8.437 - 20160 - - - 0.390 - 4.230 4250 - 107.44 3.855 3.885 - 97.92 - - - 0.250 -	B.000 9.000 - 20320 228.60 4.093 4.156 - 10396 105.56 3.875 4.250 - 98.43 107.95 2.937 3.062 - 74.60 77.77 1.703 1.953 - 43.26 49.61 - - 0.125 - - - 0.781 0.843 - 19.84 21.41 0.687 0.812 - 17.45 20.62 1.000 1.125 - 2540 28.58 8.937 9.437 - 227.00 239.70 7.937 8.437 - 201.60 21.430 - - 0.390 - - - 4.230 4.250 - 107.44 107.95 3.855 3.885 - 97.92 98.68


DIMENSIONAL DATA


NOTES:

I. REFERENCE DIMENSIONS ARE FOR INFORMATION ONLY AND ARE NOT REQUIRED FOR INSPECTION PURPOSES.

- 2. THERE ARE 12 HOLES IN GRID FLANGE.
- 3. GRID FLANGE AND FILAMENT LEADS ARE TO BE ORIENTED AS SHOWN

3CX2500H3

TECHNICAL DATA

3CX3000A1

The Eimac 8238/3CX3000A1 is a low-mu forced-air cooled power triode intended for use as an audio amplifier or modulator. The maximum rated plate dissipation is 3000 watts.

Available high plate current under Class AB_1 operating conditions permits high power gain with a minimum of distortion.

The ceramic envelope is rugged and permits high temperature processing leading to reliable service.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thor	iated	Tur	ıgst	en				Min.	Nom.	Max.	
Voltage -	-	-	-	-	-	-	-		7.5		V
Current -	-	-	-	-	-	-	-	49		54	A
Amplification F							-	4.3		5.6	
Direct Interelec	trode	Caj	paci	itance	es (.	Ave	rage)			
Grid-Plate -	-	-	-	-	-	-	-		17		pF
Grid-Filament		-	-	-	-	-	-		29		pF
Plate-Filamen		-		-	-	-	-		2.5		pF
Transconductan	ce	b = 1	1.0	Α, Ε	$_{\rm h} = 3$	000	V)		11,000		umhos

MECHANICAL

Base							-										ine drawing
Mounting Position		-	-	-	-	-	-	-	-	-	-	-	Ve	rtica	l, b	ase	down or up
Cooling			-	-	-	-	-	-	-	-	-	-	-	-	-	-	Forced Air
Maximum Temperatu	res:																
Grid and Filament	Se	als	-				-			-	-	-	-	-	-	-	$250^{\circ}\mathrm{C}$
Anode Cooler Core	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$250^{\circ}\mathrm{C}$
Maximum Diameter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4.16 in.
Maximum Height	-						-							-		-	8.59 in.
Net Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6.25 lbs.
Shipping Weight -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	16 lbs.

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class-AB₁

MAXIMUM RATINGS (Per tube)

DC PLATE VOLTAGE	6000	VOLTS
DC PLATE CURRENT	2.5	AMPERES
PLATE DISSIPATION	3000	WATTS
GRID DISSIPATION	50	WATTS

*Adjust to stated Zero-Signal DC Plate Current. Can be expected to vary $\pm 15\%$. Effective grid-current resistance must not exceed 200,000 ohms.

TYPICAL OPERATION (Sinusoidal wave, two tubes)

Class AB₁

,			
DC Plate Voltage	4.0	5.5	kV
DC Grid Voltage (Approx)* -	-750	-1070	Volts
Zero-Signal DC Plate Current	500	500	mA
Max-Signal DC Plate Current	2.75	2.2	Amps
Effective Load, Plate-to-Plate	2120	4000	Ohms
Peak AF Grid Input Voltage			
(per tube)	750	1070	Volts
Max-Signal Driving Power	0	0	Watts
Max-Signal Plate Input			
Power	11.0	13.1	kW
Max-Signal Plate Dissipation			
(per tube)	2.75	2.55	kW
Max-Signal Plate Output			
Power	5.5	8.25	kW

Printed in U.S.A.

APPLICATION

MECHANICAL

Mounting: The 3CX3000A1 must be mounted vertically with its base up or down at the convenience of the designer. The filament connections should be made through spring collets and care must be taken not to impart strain to the terminals or base assembly.

The tube must be protected from severe shock and vibration during shipment and operation.

Cooling: Sufficient forced air cooling must be provided to maintain seal and anode core temperature at 250°C or below. Air-flow must be started when filament power is applied and it is advisable to continue air-cooling for two minutes after all voltages are removed.

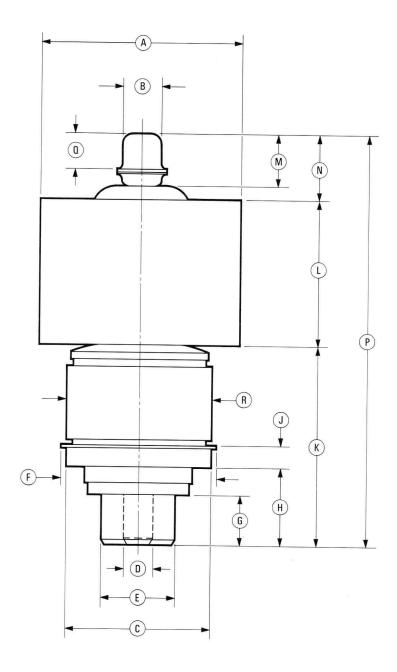
The table below lists minimum air-flow requirements to maintain tube temperatures below 250° C with air flowing in both the base-to-anode and anode-to-base directions. This tabulation presumes air at 50° C and sea level. A separate supply of approximately 3 cubic feet per minute, directed into the filament structure is also required to maintain rated filament seal temperatures. This is best accomplished using a small diameter insulating tubing directed into the stem, between the filament seals.

	MINIMUM COOLING AIR-FLOW REQUIREMENTS									
	BASE-TO-	ANODE-TO-BASE FLOW								
Plate Dissipation (Watts)	AIR-FLOW (CFM)	PRESSURE DROP (inches of water)	AIR-FLOW (CFM)	PRESSURE DROP (inches of water)						
1000 2000 3000	$32 \\ 67.5 \\ 106$	$0.49 \\ 1.52 \\ 3.15$	39 85 138	$0.65 \\ 2.16 \\ 4.55$						

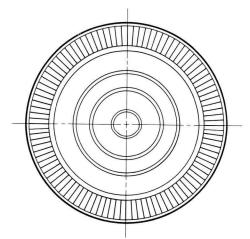
NOTE:

An extra 450 watts have been added to these plate dissipation figures in preparing this tabulation, to compensate for grid and filament dissipation.

For operation at high altitudes or higher ambient temperatures, these quantities should be increased. In all cases it is suggested that actual temperatures be measured to insure adequate cooling.


ELECTRICAL

Filament: The rated filament voltage for the 3CX3000A1 is 7.5 volts and should not be exceeded by more than five percent if maximum tube life is to be realized. Reduction of filament voltage to about 7.2 volts will actually enhance tube life and provision should be made for this adjustment where the lower emission can be tolerated.


Grid Operation: The grid dissipation rating of the 3CX3000A1 is 50 watts. This is the product of the peak positive grid voltage and average dc grid current. When tubes are used in parallel in amplifier or modulator service, provision should be made for individual adjustment of bias voltage, in order to match the tubes.

Special Applications: If it is desired to operate the tube under conditions widely different from those given here, write to Eimac Division of Varian Assoc., 301 Industrial Way, San Carlos, California, for information and recommendations.

	DIMENSI	ONS IN INC	HES
	DIMENS	IONAL D	ATA
REF.	MIN.	MAX.	NOM
Α	4 3/32	4 5/32	
В	25/32	27/32	
С	2.990	3.010	
D	.615	.635	
Е	1.490	1.510	
F		3 5/8	
G	13/16	15/16	
н	3/8	15/8	
J	25/64	27/64	
к	3 7/8	4 1/4	
L	2 15/16	3 1/16	
М	I	1 1/8	
Ν	1 3/16	111/16	
Ρ	8	9	
Q	11/16	13/16	
R	2.998	3.002	

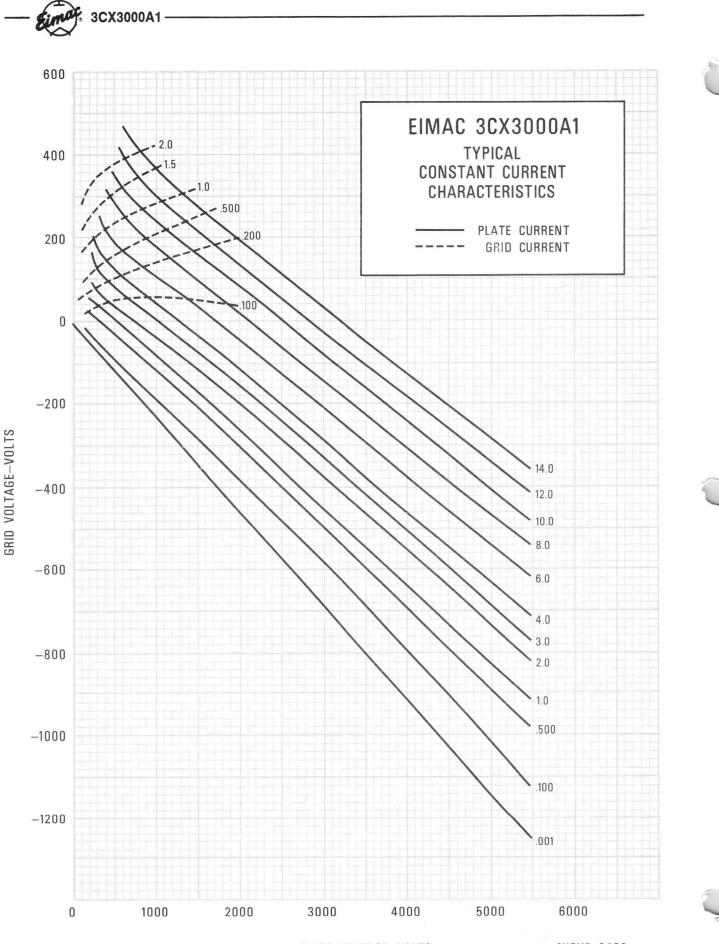


PLATE VOLTAGE-VOLTS

CURVE 3452

Eimac

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

8239 3CX3000F1 LOW-MU TRIODE

3CX3000F1

The Eimac 8239/3CX3000F1 is a low-mu forced-air cooled power triode intended for use as an audio amplifier or modulator. The maximum rated plate dissipation is 3000 watts.

Two 3CX3000F1s in class-AB₁ audio service will deliver up to 10 kilowatts maximum-signal plate output power at 6000 plate volts without drawing grid current.

The 3CX3000F1 is provided with "flying leads" for filament and grid connections.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Th	oriat	ed '	Γung	gster	1			1	Min.	Nom.	Max.	
Voltage	•	-	-	-	-	-	Ξ.	-		7.5		V
Current	-	-	-	-	×	-	-	-	48		53	Α
Amplification	Fac	tor	-		-	-	-	-	4.3		5.6	
Direct Interel	lectro	ode	Capa	acita	nces	(A	vera	ge)				
Grid-Plate	4	-	-	-	-	-		-		17		\mathbf{pF}
Grid-Filam		-	-	-	-	-	-	-		29		\mathbf{pF}
Plate-Filam			-	-	-	-	-			2.5		pF
Transconduct	ance	$(I_b$	= 1.	0A,	$E_{b} =$	= 300	0V)			11,000		umhos

Base	-	-	-	-	-	-	-	-	-	-	-	- S	e o	utlii	ne drawing
Mounting Position		-	-	-	-	-	-	-	-	-	Ver	tical	, ba	se d	lown or up
Cooling		-	10	-	-	-	-	-	(-1)	-	-	-	Ξ.	- 1	Forced Air
Maximum Temperatures:															
Grid and Filament Seals	-	-		-	-	-	-		-		(-)	-	-	-	$250^{\circ}\mathrm{C}$
Anode Cooler Core	-											-	-	÷.	$250^{\circ}\mathrm{C}$
Maximum Diameter	-	-	-	-	-	-	-	-	-	-	-		-		4.16 in.
	-										-	-	-	-	7.5 lbs.
Shipping Weight	-	-		-	-	-	-	-		-	F	-	-	-	17 lbs.

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class-AB₁

MAXIMUM RATINGS (Per tube)

DC PLATE VOLTAGE	6000	VOLTS
DC PLATE CURRENT	2.5	AMPERES
PLATE DISSIPATION	3000	WATTS
GRID DISSIPATION	50	WATTS

*Adjust to stated Zero-Signal DC Plate Current. Can be expected to vary \pm 15%. Effective grid-current resistance must not exceed 200,000 ohms.

(Effective 11-1-67) © 1967 by Varian

TYPICAL OPERATION (Sinusoidal wave, two tubes)

Class AB₁

DC Plate Voltage DC Grid Voltage (Approx)* -	4.0_{750}	5.5 -1070	kV Volts
Zero-Signal DC Plate Current	500	500	mA
Max-Signal DC Plate Current	2.75	2.2	Amps
211000110 20000, 21000 00 21000	2120	4000	Ohms
Peak AF Grid Input Voltage			
(per tube)	750	1070	Volts
Max-Signal Driving Power	0	0	Watts
Max-Signal Plate Input			
1 0 11 01	11.0	13.1	kW
Max-Signal Plate Dissipation	0.55	0 55	1 337
(P)	2.75	2.55	kW
Max-Signal Plate Output	~ ~	0.05	1 337
Power	5.5	8.25	kW
	Pri	nted in	U.S.A.

APPLICATION

MECHANICAL

Mounting: The 3CX3000F1 must be mounted vertically with its base up or down at the convenience of the designer. The base is fitted with heavy filament leads to facilitate connections. These leads should be arranged to prevent mechanical stress on the filament structure. The grid is also fitted with a flying lead.

The tube must be protected from severe shock and vibration during shipment and operation.

Cooling: Sufficient forced air cooling must be provided to maintain seal temperature at 250°C or below. Air-flow must be started when filament power is applied and it is advisable to continue air-cooling for two minutes after all voltages are removed.

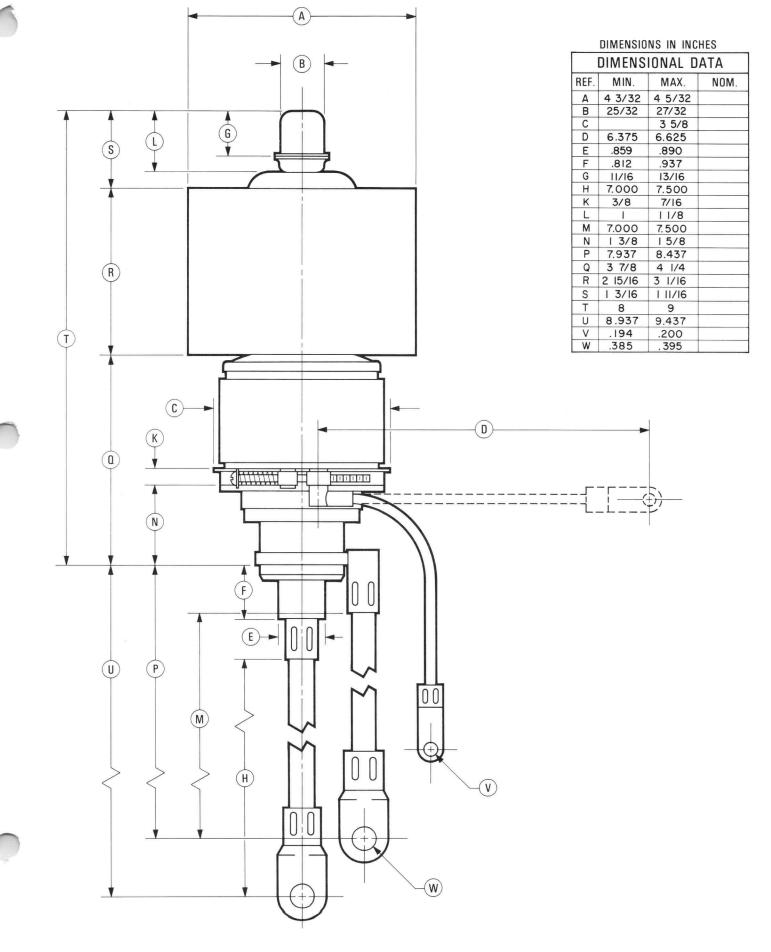
The table below lists minimum air-flow requirements to maintain tube temperatures below 250° C with air flowing in both the base-to-anode and anode-to-base directions. This tabulation presumes air at 50° C and sea level. A separate supply of approximately 3 cubic feet per minute, directed into the filament structure is also required to maintain rated filament seal temperatures. This is best accomplished using a small diameter insulating tubing directed into the stem, between the filament seals.

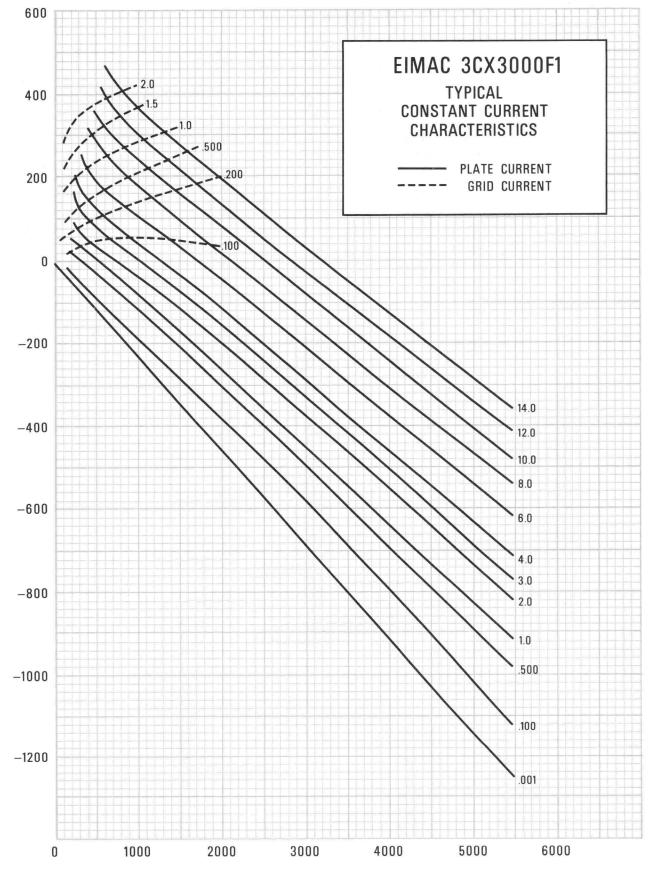
	MINIMUM COOLING AIR-FLOW REQUIREMENTS										
	BASE-TO-A	ANODE-TO-BASE FLOW									
Plate Dissipation (Watts)	AIR-FLOW (CFM)	PRESSURE DROP (inches of water)	AIR-FLOW (CFM)	PRESSURE DROP (inches of water)							
1000 2000 3000	32 67.5 106	0.49 1.52 3.15	3 9 85 138	$0.65 \\ 2.16 \\ 4.55$							

NOTE:

An extra 450 watts have been added to these plate dissipation figures in preparing this tabulation, to compensate for grid and filament dissipation.

For operation at high altitudes or higher ambient temperatures, these quantities should be increased. In all cases it is suggested that actual temperatures be measured to insure adequate cooling.


ELECTRICAL


Filament: The rated filament voltage for the 3CX3000F1 is 7.5 volts and should not be exceeded by more than five percent if maximum tube life is to be realized. Reduction of filament voltage to about 7.2 volts will actually enhance tube life and provision should be made for this adjustment where the lower emission can be tolerated.

Grid Operation: The grid dissipation rating of the 3CX3000F1 is 50 watts. This is the product of the peak positive grid voltage and average dc grid current. When tubes are used in parallel in amplifier or modulator service, provision should be made for individual adjustment of bias voltage, in order to match the tubes.

Special Applications: If it is desired to operate the tube under conditions widely different from those given here, write to Eimac Division of Varian Assoc., 301 Industrial Way, San Carlos, California, for information and recommendations.

3CX3000F1

GRID VOLTAGE-VOLTS

PLATE VOLTAGE-VOLTS

CURVE 3452

3CX3000A7 8162 3CX3000F7 HIGH-MU AIR COOLED POWER TRIODES

The EIMAC 3CX3000A7 high-mu forced-air cooled power triode provides relatively high power output as an amplifier, oscillator, or modulator at low plate voltages. The tube has a low inductance cylindrical filament-stem structure which readily becomes part of a linear filament tank circuit for VHF operation. The grid provides good shielding between the input and output circuits for grounded-grid applications and conveniently terminates in a ring between the plate and filament terminals.

Operation with zero grid bias in many applications offers circuit simplicity by eliminating the bias supply. Grounded-grid operation is attractive, since a power gain of over 20 times can be obtained.

The 8162/3CX3000F7 tube is identical except for the addition of flexible leads on the base for grid and filament connections which can simplify socketing in low-frequency applications.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated-tungsten	7.5	V
Voltage		
Current @ 7.5 V (3CX3000A7)	51.5	
(3CX3000F7)	50.5	A
Amplification Factor (Average)	160	
Direct Interelectrode Capacitances (grounded filament) ²	20.0	F
Cin	38.0	-
Cout	0.6	pF
Cout	24.0	pF
Cgp		F -
Direct Interelectrode Capacitances (grounded grid) ²		
Cin	38.0	pF
Cout	24.0	pF
Cout	0.6	nF
Cok	0.0	PI

- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- Capacitance values are for a cold tube as measured in a special shielded fixture, in accordance with Electronic Industries Association Standard RS-191.

(Revised 10-1-75) © 1967, 1970, 1975 by Varian

Printed in U.S.A.

Frequency of Maximum Rating: 3CX3000A7 3CX3000F7	110 MHz 30 MHz
MECHANICAL	
Net Weight: (3CX3000A7) (Approx.) (3CX3000F7) (Approx.) Cooling Base (3CX3000A7)	18.437 in; 468.30 mm 4.156 in; 105.56 mm Vertical, base up or down 6.2 lb; 2.8 kg 7.0 lb; 3.2 kg Forced Air Special Coaxial Special with Flying Leads 250°C
RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN Class AB ₂	TYPICAL OPERATION (Frequencies to 30 MHz) Class AB ₂ , Peak Envelope or Modulation Crest Conditions
ABSOLUTE MAXIMUM RATINGS: DC PLATE VOLTAGE	$\begin{array}{llllllllllllllllllllllllllllllllllll$
RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB 2	TYPICAL OPERATION (Frequencies to 30 MHz) Class AB_2 , Grid Driven, Carrier Conditions
ABSOLUTE MAXIMUM RATINGS: DC PLATE VOLTAGE	$\begin{array}{llllllllllllllllllllllllllllllllllll$
RADIO FREQUENCY POWER AMPLIFIER Class C Telegraphy or FM, Cathode Driven (Key-Down Conditions) ABSOLUTE MAXIMUM RATINGS: DC PLATE VOLTAGE DC PLATE CURRENT LATE CURRENT LATE DISSIPATION	TYPICAL OPERATION (Frequencies to 110 MHz for 3CX3000A7, to 30 MHz for 3CX3000F7) Plate Voltage 3500 4800 Vdc Grid Voltage -50 -60 Vdc Plate Current 1.30 1.54 Adc Grid Current ¹ 0.42 0.48 Adc Peak rf Cathode Voltage ¹ 220 267 v Calculated Driving Power ¹ 310 435 W Plate Dissipation 985 1480 W Useful Output Power ² 3300 5500 W 1. Approximate value. 100

DC PLATE VOLTAGE	•	•		÷		•			z	•	5000	VOLTS
DC PLATE CURRENT	•	•	•		÷	•	•	÷	÷		2.5	AMPERES
PLATE DISSIPATION	•	•				•	•				4000	WATTS
GRID DISSIPATION .		•	•		x			•			225	WATTS

2

Approximate value.
 Output circuit and filter loss of 10% assumed.

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB₂, Grid Driven (Sinusoidal Wave)

ABSOLUTE MAXIMUM RATINGS (per tube)

DC PLATE VOLTAGE			•		i,	5	5000	VOLTS
DC PLATE CURRENT		•					2.5	AMPERES
PLATE DISSIPATION							4000	WATTS
GRID DISSIPATION							225	WATTS

1. Approximate value.

2. Per tube.

TYPICAL OPERATION (Two Tubes)

Plate Voltage 4000	Vdc
Zero-Signal Plate Current ¹	Adc
Max. Signal Plate Current 3.58	Adc
Max. Signal Grid Current ¹	Adc
Peak af Grid Voltage ²	V
Peak Driving Power ³ 115	W
Max. Signal Plate Dissipation 1850	W
Plate Output Power 10,500	W
Load Resistance (plate to plate) 2720	Ω

3. Nominal drive power is one-half peak power.

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Filament: Current @ 7.5 volts (3CX3000A7)	49.0 48.0	54.0 A 53.0 A
Interelectrode Capacitances ¹ (grounded filament connection)		
Cin	30.0	45.0 pF
Cout		1.0 pF
Cgp	20.0	28.0 pF
Interelectrode Capacitances ¹ (grounded grid connection)		
Cin	30.0	45.0 pF
Cout	20.0	28.0 pF
Cout		1.0 pF
Cpk	0.36	0.52 A
Zero Bias Plate Current (E _b = 5000 volts)	000000000000000000000000000000000000000	
Cut-off Bias ($E_b = 5000$ volts, $I_b = 1.0$ mAdc)		-43.0 V

1. Capacitance values are for a cold tube as measured in a shielded fixture.

APPLICATION

MECHANICAL

MOUNTING - The 3CX3000A7 and 3CX3000F7 must be mounted vertically, base down or up at the convenience of the circuit designer. The filament connections to the 3CX3000A7 should be made through spring collets. These are available from EIMAC with the following part numbers: 149575 Inner line collet

149576 Outer line collet

Reasonable care should be taken that these collets do not impart undue strain to the terminals or the base of the tube. *COOLING* - The maximum temperature rating for the anode core and the ceramic/metal seal areas of either tube is 250°C, and sufficient forced-air cooling must be provided to assure operation at safe tube temperatures. Tube life is usually prolonged if cooling in excess of absolute minimum requirements is provided for cooler tube temperatures.

The filament leads of the 3CX3000F7 are attached to the tube with soft solder, and care must therefore be taken to supply sufficient

cooling to this area of the tube to maintain temperatures below 150°C to avoid melting or loosening of these leads.

Minimum air flow requirements to maintain anode core and ceramic/metal seal areas below 225° C at sea level with an inlet-air temperature of 50°C are tabulated for air-flow in the base-toanode and anode-to-base directions. At higher ambient temperatures, frequencies above 30 MHz, or at higher altitudes, a greater quantity of air will be required.

With air flowing in a base-to-anode direction, and with the specified air also flowing past the base section of the tube, no additional base cooling of either type is normally required. With air flowing in an anode-to-base direction, both types require additional cooling air directed into the filament stem structure, between the inner and outer filament terminals, in the amount of 5 cfm minimum, directed by an appropriate air nozzle or pipe.

It is suggested that temperatures, especially in the base area of the tube, be monitored in any new installation to insure proper cooling. Temperatures may be measured with any of the available temperature-sensing paint or crayon materials.

	Base	-to-Anode Ai	r Flow	
	Sea Level		10,000 Feet	
Anode	Air Flow	Pressure	Air Flow	Pressure
Dissipa-	CFM	Drop Inches	CFM	Drop Inches
tion watts		water	0.1.11	water
2000	49	0.31	71	0.45
3000	85	0.72	124	1.40
4000	127	1.40	185	2.55
Anode-to-Base Air Flow				
2000	54	0.37	79	0,68
3000	106	1.1	155	1.90
4000	178	2.50	260	4.50

ELECTRICAL

FILAMENT OPERATION - The filament voltage, as measured at the filament terminals, should be 7.5 volts, with maximum allowable variations due to line fluctuations of from 7.12 to 7.87 volts.

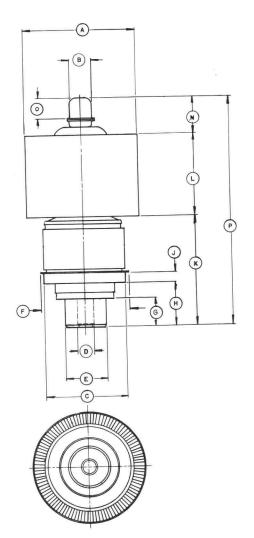
INTERLOCKS - An interlock device should be provided to insure that cooling air flow is established before application of electrical power, including the heater. The circuit should be so arranged that rf drive cannot be applied in the absence of normal plate voltage. *INPUT CIRCUIT* - When operated as a groundedgrid rf amplifier, the use of a matching network in the cathode circuit is recommended. For best results with a single-ended amplifier, and depending on the application, it is suggested the network have a "Q" of at least 2, and higher if possible.

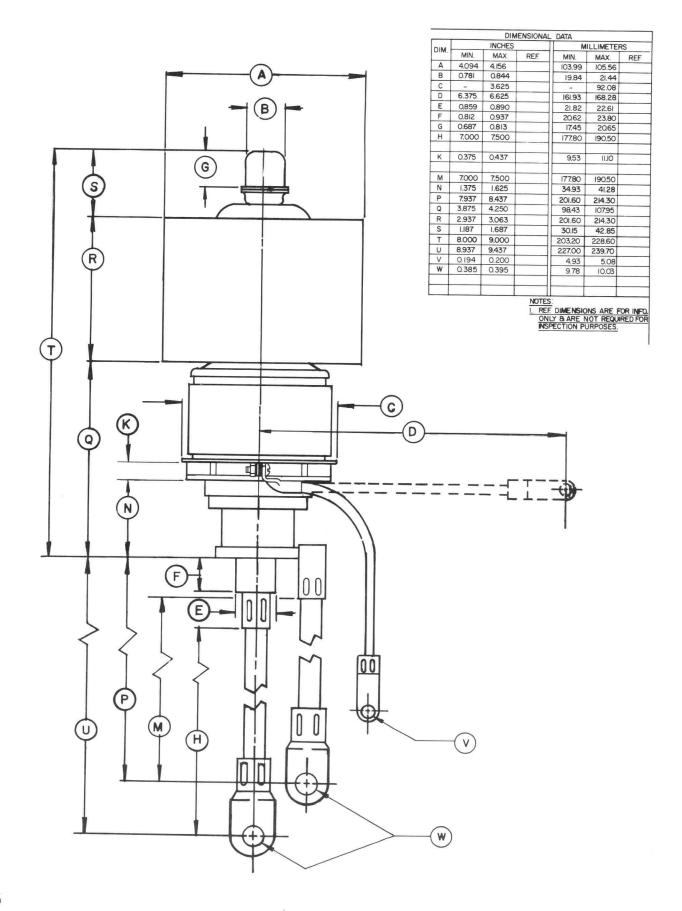
RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as these, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry--the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

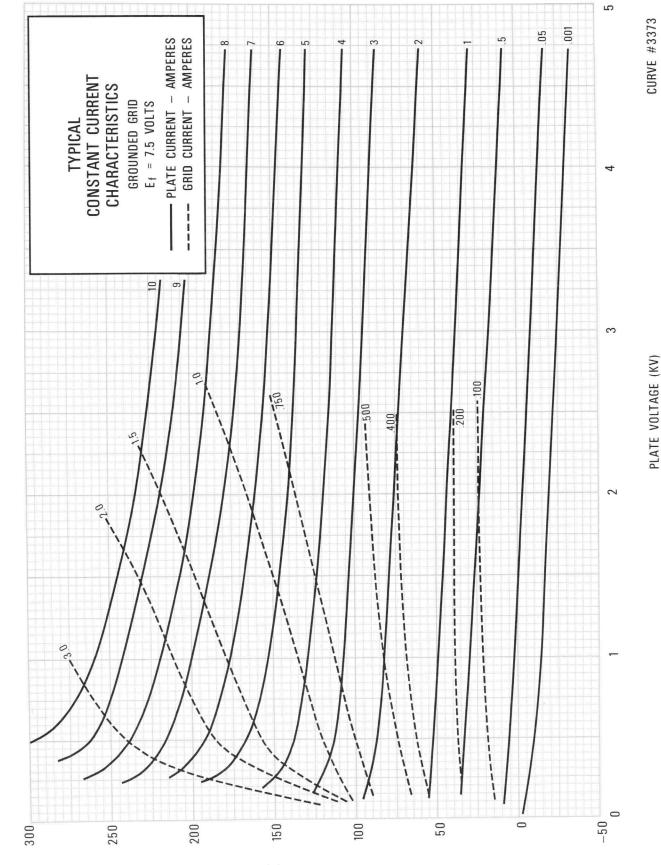
FAULT PROTECTION - In addition to normal cooling airflow interlock and plate over-current interlock it is good practice to protect the tube from internal damage which could result from occasional plate arcing at high plate voltage.

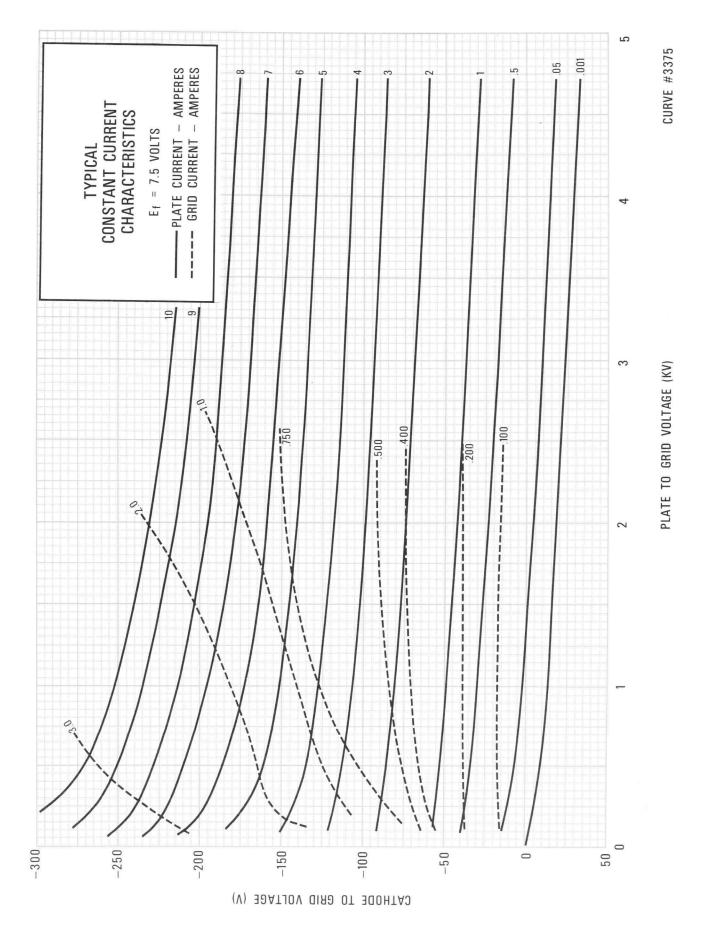
In all cases some protective resistance, at least 10 ohms, should be used in series with the tube anode to absorb power supply stored energy in case a plate arc should occur.


HIGH VOLTAGE - Normal operating voltages used with these tubes are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.


SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.


		INCHES		M	ILLIMETER	RS
MIN.	MIN.	MAX.	REF	MIN.	MAX.	REF
A	4.094	4.156		103.99	105.56	
в	0.781	0.844		19.83	21.44	
С	2.990	3.010	2.2	75.95	76.45	
D	0.615	0.635		15.62	16.13	
Ε	1.490	1.510		37.85	38.35	-
F		3.625			92.08	
G	0.813	0.937		20.65	23.80	
н	1.375	1.625		34.92	41.28	-
J	0.391	0.422		9.93	10.72	
K	3.875	4250		98.43	107.95	
L	2937	3.063		74.60	77.80	12.12
N	1.187	1.687		30.15	42.85	
P	8.000	9.000		203.20	228.60	
Q	0.687	0.813		17.45	20.65	
				ES EF DIMENS INLY & ARE ISPECTION	NOT REG	UIRED

(V) 30ATJOV QIA0

TECHNICAL DATA

3CX5000A7 HIGH-MU POWER TRIODE

The EIMAC 3CX5000A7 is a ceramic/metal high-mu power triode designed especially for use as a cathode-driven Class AB rf amplifier or Class C power amplifier. It is forced-air cooled, with an anode dissipation rating of 5000 watts.

The 3CX5000A7 makes use of a beam-forming cathode and control grid geometry to produce high gain, low grid interception, and outstanding intermodulation performance in linear amplifier service. These attributes make the tube well suited for cathodedriven circuitry, which reduces equipment cost and complexity

driven circuitry, which reduces equipment cost and complexity. The tube does not require a socket. It is designed to be bolted directly to the chassis by the grid flange. Cathode and heater connections are also made by bolting directly to the amplifier circuitry. This feature further reduces equipment cost and complexity.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide-coated Unipotential

Heater Voltage	10.0 + 0.5	٧
Heater Current, at 10.0 Volts	-17.5	A
Heater Current, at 10.0 Volts	5	Min
Amplification Factor	200	
Maximum Frequency For Full Ratings	110	MHz
Maximum Frequency For Full Ratings		
Cin	56.5	nF
Cout	0.42	
Cap	34.0	1 · · ·
	34.0	pr
Cgp		
Cin	56.5	pF
Cout	34.0	pF
Cpk	0.42	n F
	0.12	F .

1. Characteristics and operating values are estimated. These figures may change without notice as the result of additional data or product refinement. Varian EIMAC should be consulted before using this information for final equipment design.

2. Before high voltage and rf drive voltage are applied.

 Capacitance values are for a cold tube as measured in accordance with EIA Standard RS-191 except no special shielding is used.

MECHANICAL

Overall Dimensions:	
Length	8.25 In: 20.96 mm
Diameter	4.94 In; 12.55 mm
Cooling	Forced Air
Net Weight (approximate)	9.5 1b: 4.3 kg
Recommended Air-System Chimney	EIMAC SK-306
Base Designed for Direct	Chassis Mounting

RADIO FREQUENCY POWER AMPLIFIER	Typical Performance, to 30	MHz (mea	isured da	ita)	
CATHODE DRIVEN - Class AB Service ABSOLUTE MAXIMUM RATINGS: DC PLATE VOLTAGE 6500 VOLTS DC PLATE CURRENT 2.5 AMPERES PLATE DISSIPATION 5.0 KILOWATTS GRID DISSIPATION 50 WATTS * Will vary from tube to tube # Delivered to the load § Referenced aginst 1 tone of a 2-equal-tone signal	Plate Voltage Zero Sig.Plate Current . Max.Sig.Plate Current . Cathode Bias * Grid Current * Driving Power * Useful Power Output # . Power Gain * Cathode Input Impedance Resonant Load Impedance Intermod. Distortion * § 3rd Order Products . 5th Order Products .	4.0 0.4 1.25 +9.0 50 120 3000 14.0 33 1800 -37 -45	5.0 0.4 1.45 +11.0 35 160 4000 14.0 33 1800 -35 -45	,	W dB Ohms Ohms dB

358690(Effective Sept 1984) VA4741 Printed in U.S.A.

MECHANICAL

APPLICATION

MOUNTING - The 3CX5000A7 may be mounted in any
position and should be protected from shock and
vibration. The tube is designed to be bolted
directly to the chassis in equipment designed for
dc and rf grounded grid circuit configuration. The
mounting may be insulated for other circuitry. A
flange with threaded holes is provided for a low-
inductance cathode connection. Similar provisions
are made for the heater connections.

COOLING - The maximum temperature rating for the external surfaces of the tube is 250 Deg.C, and sufficient forced-air cooling must be used in all applications to keep the temperature of the anode (at the base of the cooling fins) and the temperature of the ceramic/metal seals comfortably below this rated maximum.

Cooling data shown is for air flow in a base-toanode direction, and represents minimum anode cooling requirements. Pressure drop values are approximate.

Inlet Air Temperature = 25°C

<u>Sea Level</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	<u>Watts</u>	CFM	<u>In.Water</u>
	2000	29	0.1
	3000	63	0.3
	4000	114	0.8
	5000	209	2.2
<u>5000 Feet</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	<u>Watts</u>	<u>CFM</u>	<u>In.Water</u>
	2000	35	0.1
	3000	77	0.3
	4000	138	0.9
	5000	218	2.0
<u>10,000 Feet</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	<u>Watts</u>	<u>CFM</u>	<u>In.Water</u>
	2000	43	0.1
	3000	93	0.4
	4000	167	1.0
	5000	264	2.3
Inlet Air Temperatur	e = 35°C		
<u>Sea Level</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	<u>Watts</u>	<u>CFM</u>	<u>In.Water</u>
	2000	33	0.1
	3000	73	0.3
	4000	131	0.9
	5000	181	1.7
<u>5000 Feet</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	Watts	CFM	<u>In.Water</u>
	2000	40	0.1
	3000	88	0.4
	4000	159	1.1
	5000	253	2.5

<u>10,000 Feet</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	<u>Watts</u>	CFM	<u>In.Water</u>
	2000	48	0.1
	3000	107	0.4
	4000	192	1.3
	5000	306	3.0
Inlet Air Temperatu	re = 50°C		
Sea Level	Plate	Flow	Press.
	Diss.	Rate	Drop
	Watts	CFM	In.Water
	2000	41	0.1
	3000	92	0.5
	4000	165	1.3
	5000	262	3.1
5000 Feet	Plate	Flow	Press.
	Diss.	Rate	Drop
	Watts	CFM	In.Water
	2000	50	0.1
	3000	111	0.5
	4000	200	1.6
	5000	317	3.7
<u>10,000 Feet</u>	Plate	Flow	Press.
	Diss.	Rate	Drop
	Watts	CFM	In.Water
	2000	60	0.2
	3000	134	0.6
	4000	242	1.8
	5000	384	4.3
It is considered go	od engine	ering prac	ctice to de-

It is considered good engineering practice to design for a maximum anode core temperature of 225 °C, and temperature-sensitive paints are available for checking base and seal temperatures before any design is finalized. It is also considered good practice to allow for variables such as dirty air filters, rf seal heating, and the fact that the anode cooling fins may not be clean if the tube has been in service for some length of time.

Forced air cooling of the base is also required, with air directed past the seal areas. Special attention may be required in cooling the center of the stem (base), by means of special directors or some other provision. An air interlock system should be incorporated in the design to automatically remove all voltages from the tube in case of even partial failure of the tube cooling air. Air flow must be applied before or simultaneously

with the application of power, including the tube heater, and should normally be maintained for a short period of time after all power is removed.

ELECTRICAL

HEATER-CATHODE OPERATION - The rated heater voltage for the 3CX5000A7 is 10.0 volts and should be maintained within plus or minus 0.5 volt when good life and consistent performance are factors. Voltage should be measured with a known-accurate (preferably plus or minus one percent) rmsresponding voltmeter.

Heater voltage should be applied for five minutes

(minimum) before high voltage is applied to the tube and any operation is attempted, to allow for cathode warmup to full temperature.

ABSOLUTE MAXIMUM RATINGS - Values shown for each type of service are based on the "absolute system" and are not to be exceeded under any service conditions. These ratings are limiting values outside which the serviceability of the tube may be impaired. In order not to exceed absolute ratings the equipment designer has the responsibility of determining an average design value for each rating below the absolute value of that rating by a safety factor so that the absolute values will never be exceeded under any usual conditions of supply-voltage variation, load variation, or manufacturing variation in the equipment itself. It does not necessarily follow that combinations of absolute maximum ratings can be attained simultaneously.

INPUT CIRCUIT - When this tube is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a single-ended amplifier it is suggested that the cathode tank circuit operate at a "Q" of five or more.

FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an internal arc, especially in those cases where large amounts of stored energy or follow-on current are involved. Some means of protection is advised in all cases, and it is recommended that a series resistor be used in the anode circuit to limit peak current and help dissipate the energy in the event of a tube or circuit arc. A resistance of 10 ohms in the positive plate power supply lead, together with a protective spark gap such as the Siemens #B1-C145 connected between the cathode and grid will help protect the tube in the event of an internal arc. A maximum of 4 joules total energy may be permitted to dissipate into a gridto-cathode arc. Amounts in excess of this will permanently damage the cathode or grid structure.

HIGH VOLTAGE - Normal operating voltages used with this tube are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for highvoltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

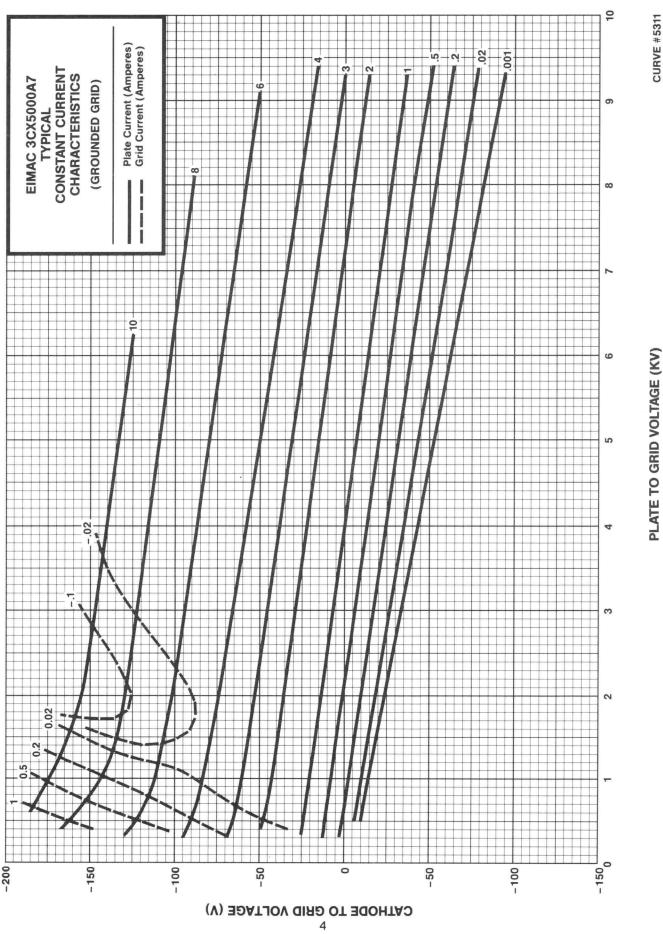
RADIO-FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 300 MHz most of the energy will pass completely through the human body with little attenuation or heating affect. Public health agencies are concerned with the hazard even at these frequencies. OSHA (Occupational Safety and Health Administration) recommends that prolonged exposure to rf radiation should be limited to 10 milliwatts per square centimeter.

SPECIAL APPLICATIONS - When it is desired to operate this tube under conditions widely different from those listed here, write to Varian EIMAC; attn: Product Manager; 301 Industrial Way; San Carlos, CA 94070 U.S.A.

OPERATING HAZARDS

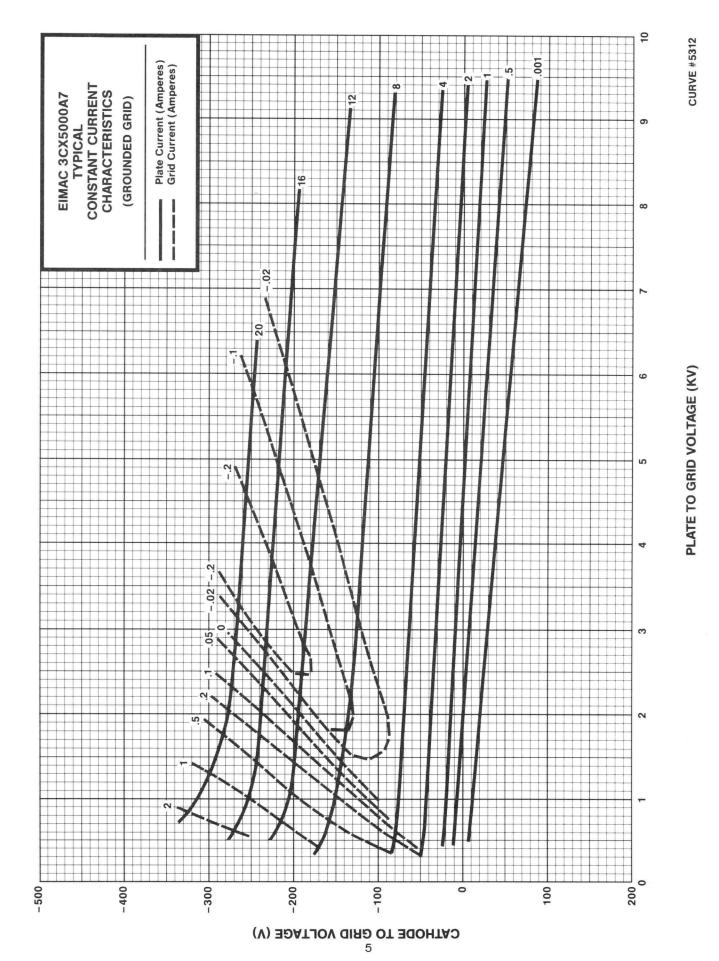
PROPER USE AND SAFE OPERATING PRACTICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANUFACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIP-MENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY INJURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of this tube may involve the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

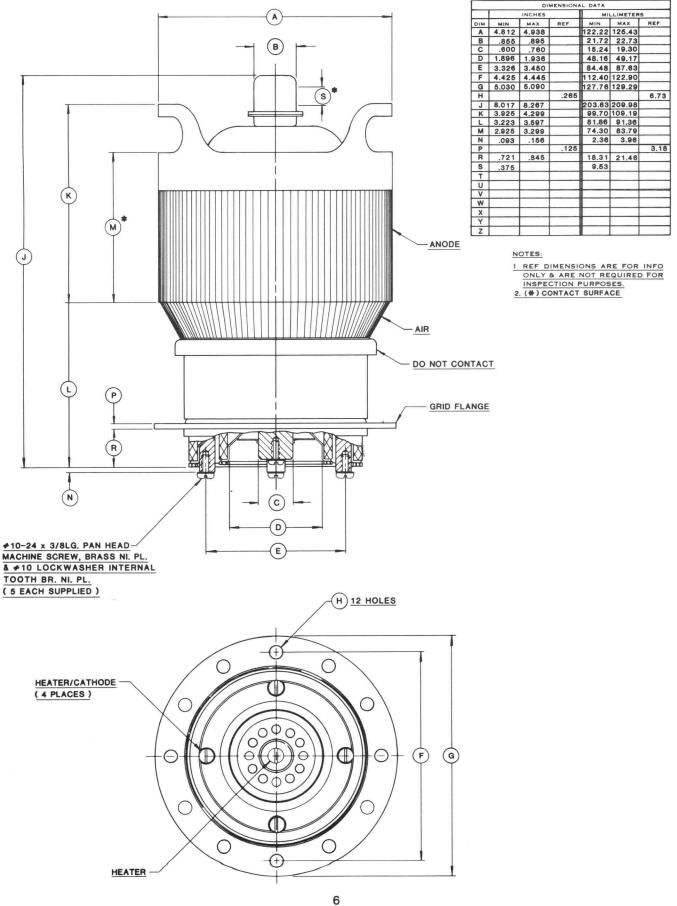

- a. HIGH VOLTAGE Normal operating voltages can be deadly. Remember that HIGH VOLTAGE CAN KILL.
- b. LOW-VOLTAGE HIGH-CURRENT CIRCUITS Personal jewelry, such as rings, should not be worn when working with filament contacts or connectors as a short circuit can produce very high current and melting, resulting in severe burns.

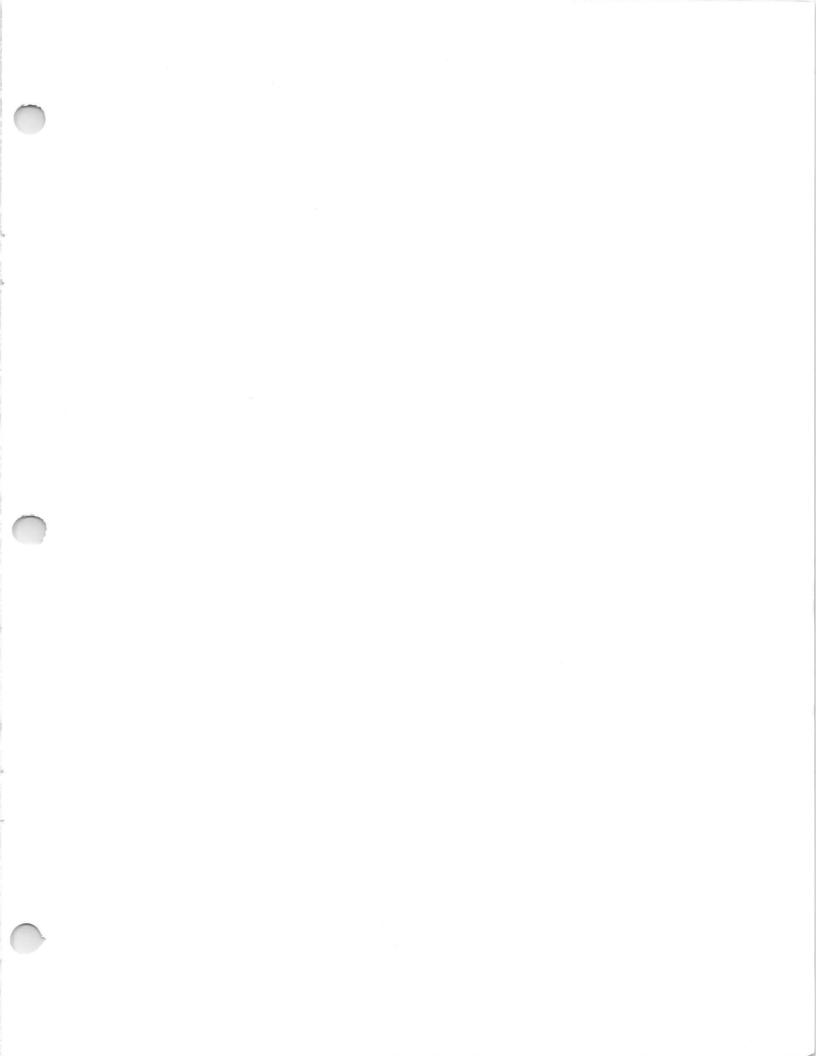
c. RF RADIATION - Avoid exposure to strong rf

fields even at relatively low frequencies. The danger is more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE EFFECTED.


d. HOT SURFACES - Surfaces of tubes can reach temperatures of several hundred °C and cause serious burns if touched for several minutes after all power is removed.

Please review the detailed operating hazards sheet enclosed with each tube, or request a copy from: Varian EIMAC, Power Grid Application Engineering, 301 Industrial Way, San Carlos CA 94070.


mar 3CX5000A7


PLATE TO GRID VOLTAGE (KV)

EIMAC

A Division of Varian Associates

3CX5000H3 INDUSTRIAL MEDIUM-MU AIR-COOLED POWER TRIODE

The EIMAC 3CX5000H3 is an air-cooled ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its air-cooled anode is conservatively rated at 5 kilowatts maximum plate dissipation with low pressure drop.

Input of 25 kilowatts is permissible up to 90 megahertz. Plentiful reserve emission is available from its 560 watt filament. The grid structure is rated at 150 watts making this tube an excellent choice for severe application.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thor	iated	l-Tu	ngst	en		Min.	Nom.	Max.	
Voltage	-	-	-	-	-		7.5		Volts
Current	-	-	-	-	-	73		78	amps
Amplification F	acto	r -	-	-	-		20		
Interelectrode C	apa	citar	ices,	Gro	und	ed Catho	de Connect	ion:	
Input -	-	-	-	-	-			53	$\mu\mu{ m f}$
Output	-	-	-	-	-			1.5	$\mu\mu{ m f}$
Grid-Plate	-	-	-	-	-			25	$\mu\mu{ m f}$
Frequency for M	Iaxi	mun	n Ra	ting	s -			90	MHz

MECHANICAL

Base -		-	-	Ξ.	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
Operating	Positio	n	-	-	-	-	-	-	-	-	-	-	-	-	Vei	tical	l, bas	se up	or down
Cooling -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	For	rced Air
Maximum	Opera	ting	Tem	pera	ture	s -	-	-	-	-	-	-	-	-	-	-	-	-	250°C
Maximum	Dimer	ision	S:																
Heigh	t -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
Diame	eter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
Net Weigh	t-	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-	10	Pounds

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

RF INDUSTRIAL OSCILLATOR

TYPICAL	OPERATION*
DC DI-te	Valtaria

Class-C (Filtered DC Pow	er S	unnl	V)			DC Plate Voltage	-	-		-	1000	9000 Volts	
		oppi	¥ /			DC Plate Current	-	-	-		2.65	2.52 Amps	
MAXIMUM RATINGS:						DC Grid Voltage	-	-	-	-	700	—900 Volts	
MAXIMUM RATINGS:						DC Grid Current	-	-	-		0.192	0.184 Amps	
DC PLATE VOLTAGE -	-	1	-	-	10,000 Volts	Peak Positive Grid						230 Volts	
DC PLATE CURRENT -	-	-	-	-	3.0 Amps	Driving Power -						208 Watts	
DC GRID VOLTAGE -					the second secon	Plate Input Power						22.7 kW	
						Plate Dissipation	-	-	-		4.1	4.1 kW	
DC GRID CURRENT -	-	-	~	-	0.5 Amp	Plate Output Powe	r	-	-	-	14.45	18.6 kW	
PLATE INPUT POWER	-	-	-	-	25 kW	Approximate Load	Imp	edan	ce		1245	1725 Ohms	
PLATE DISSIPATION -	-	-	-	-	5 kW	*Loaded Conditions							

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses has been made.

APPLICATION

Filament

The rated filament voltage for the 3CX5000H3 is 7.5 volts. Filament voltage, as measured at the tube, must be maintained at 7.5 volts plus or minus five percent for maximum tube life and consistent performance.

ELECTRICAL

Control Grid Operation

The grid current rating is 0.5 ampere dc. This value should not be exceeded for more than very short periods such as during tuning. Overcurrent protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.25 amperes grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 150 watts.

Plate Operation

Plate over-current protection should be provided to remove plate voltage quickly in the event of an overload or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

MECHANICAL

Mounting

The 3CX5000H3 must be mounted vertically, either base up or down. A grid contact flange is provided for bolting to a strap or a grid deck. Heavy flexible leads are provided for applying the filament voltage.

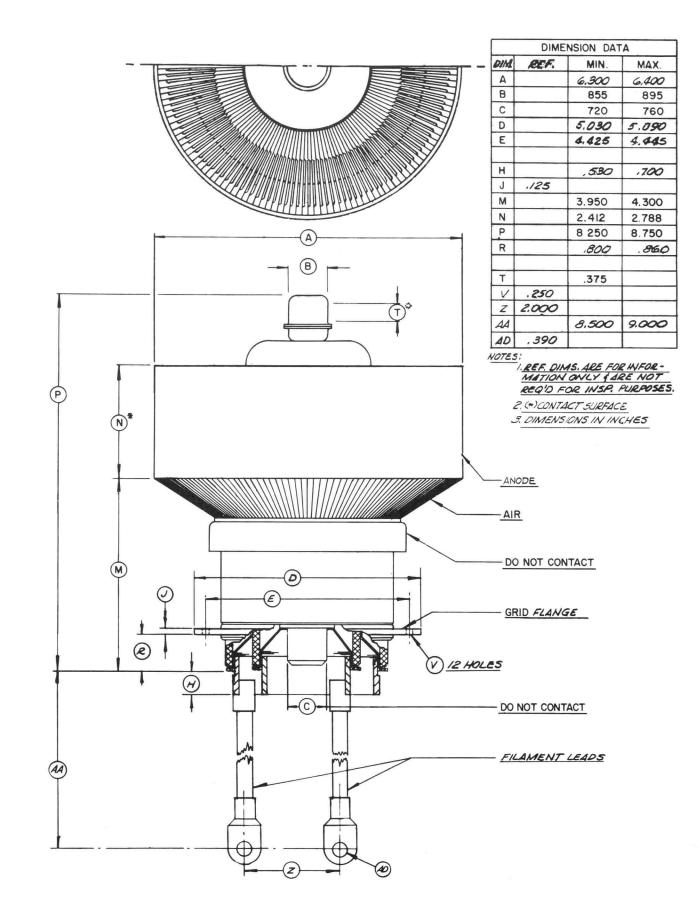
Cooling

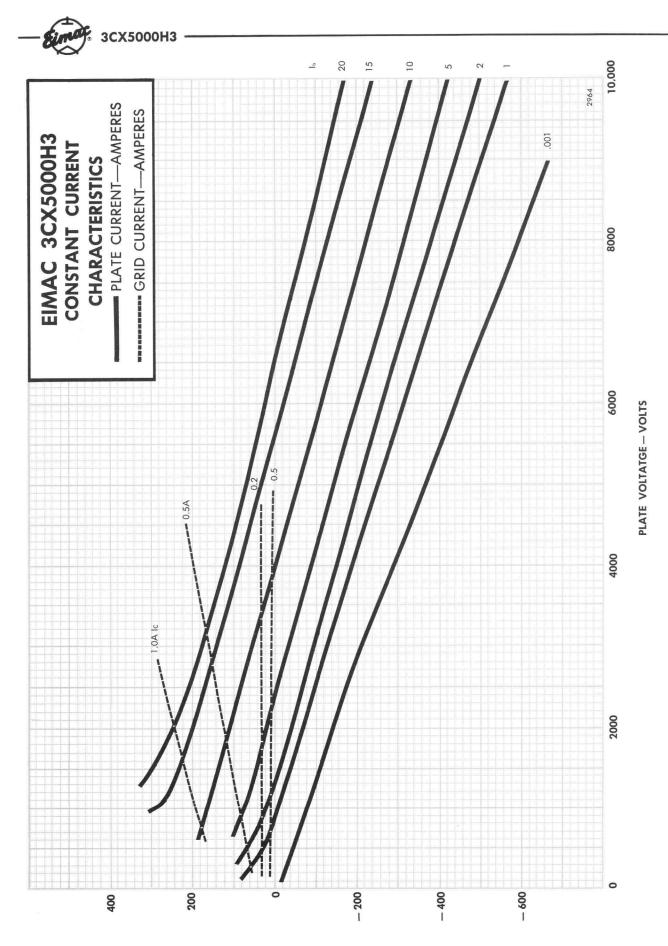
The maximum temperature rating for the external surfaces of the 3CX5000H3 is 250°C. Sufficient forced-air cooling must be provided to keep the temperature of the anode core and the temperature of the ceramic-metal seals below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated for frequencies below 30 MHz.

7000

0000 Valta

MINIMUM AIR FLOW REQUIREMENTS (Anode-to-Base Air Flow)											
Sea Level 5000 Feet											
Plate** Dissipation watts	Air Flow CFM	Pres su re Drop inches water	Air Flow CFM	Pressure Drop inches water							
4000 5000 6000	98 152 236	0.24 0.49 1.00	118 182 283	0.29 0.59 1.2							


**Since the power dissipated by the filament is about 560 watts and since grid dissipation can, under some circumstances, represent another 150 watts, allowance has been made in preparing this tabulation for an additional 710 watts dissipation.


Additional stem cooling air must be provided. 8 CFM of air directed against the center filament contact ring $\frac{1}{2}$ " below the outer filament contact ring by an $1\frac{1}{2}$ " I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling for 50°C ambient, 5000 ft. altitude, and 30 MHz or less.

Special Applications

If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

GRID VOLTAGE - VOLTS

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

The Eimac 8158/3CX10,000A1 is a ceramic and metal power triode intended primarily for use as an audio amplifier or modulator. This tube is also recommended for voltage-regulator applications where high current capability and low tube drop are important. Up to 12 kilowatts of plate power can be dissipated on its air-cooled anode. A water-cooled version, the 3CW20,000A1, is available with a 20 kw dissipation rating.

CHARACTERISTICS

ELECTRICAL

Filament: The															Min.	Nom.	Max.	
Voltage												٠	٠			7.5		V
Current		÷	ŕ •			÷							÷.		94		104	A
Amplification											•				5.5		7.0	
Interelectrode	С	ap	ac	ita	nc	es	::											
Grid-Fila	me	ent									×				45		57	pF
Output															3.4		4.2	pF
Grid-Plate	е	÷				÷						•			25		32	
Transconducta	and	ce	(It) =	2	.0	ar	nps	S,	Eb	=	3	000) v	olts)	20,000		umhos

MECHANICAL

Base	
Recommended Socket	
Recommended Chimney	 Eimac SK-1306
Operating Position	 Vertical, base up or down
Cooling	 Forced air
Maximum Operating Temperatures:	
Anode Core	 250 °C
Ceramic-to-Metal Seals	
Maximum Dimensions:	
	 8.75 in
Diameter	
Net Weight	
	 · · · · · · 12 108

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR CLASS-AB:

MAXIMUM RATINGS (Per Tube)

DC Plate Voltage					7000	volts
DC Plate Current					5.0	amps
Plate Dissipation			÷		12	kW
Grid Dissipation					100	watts

*Adjust for zero-signal plate current

**At max-signal without negative feedback

Effective grid circuit resistance must not exceed 200,000 ohms

TYPICAL OPERATION, Two Tubes, Sinusoidal Wave

DC Plate Voltage 7000	7000	volts
DC Grid Voltage*1300	-1300	volts
Zero-Sig DC Plate Current . 1.5	1.5	amps
Max-Sig DC Plate Current 5.8	7.0	amps
Load Resistance,		
Plate-to-Plate 2460	1720	ohms
Peak AF Grid Driving Voltage		
(Per Tube) 1300	1300	volts
Max-Sig Driving Power 0	0	watts
Max-Sig Plate		
Output Power	29,100	watts
Total Harmonic Distortion** . 2.9	3.6	percent

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-A

MAXIMUM RATINGS DC Plate Voltage . .

TYPICAL OPERATION

DC Plate Voltage 7000 volts	DC Plate Voltage	2500	volts
DC Plate Current See Class-A derating	DC Grid Voltage *	-290	volts
table on Page 3	DC Plate Current	4.0	amps
Plate Dissipation	Peak AF Grid Driving Voltage	290	volts
	Load Resistance	2120	ohms
*Adjust to give listed zero-signal DC plate current	Plate Output Power	1800	watts

VOLTAGE REGULATOR SERVICE Class-A	TYPICAL OPERATION
MAXIMUM RATINGS DC Plate Voltage 10,000 volts DC Plate Current See Class-A derating table on Page 3	DC Plate Voltage (tube drop) 0-5000 volts DC Plate Current 0-5 amps
Plate Dissipation12,000wattsGrid Dissipation100watts	(These values are chosen according to Class-A derating table on Page 3)

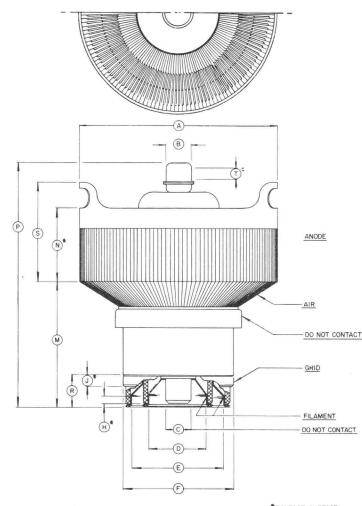
Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses, either input or output, has been made.

APPLICATION

Cooling – The maximum temperature rating for the external surfaces of the 3CX10, 000A1 is 250°C. Sufficient forced-air cooling must be provided to keep the temperature of the anode core and the temperature of the ceramic-metal seals below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated. The use of these air-flow rates through the recommended socket/chimney and tube combination in the baseto-anode direction provides effective cooling of the tube.

Plate**	SEA	A LEVEL	10,0	DOO FEET
Dissipation	Air Flow	Pressure Drop	Air Flow	Pressure Drop
(Watts)	(CFM)	(Inches of Water)	(CFM)	(Inches of Water)
4000	85	0.18	125	0.25
6000	145	0.38	210	0.55
8000	215	0.68	315	0.99
10,000	295	1.08	430	1.60
12,000	390	1.62	565	2.35

**Since the power dissipated by the filament is about 750 watts and since grid dissipation can, under some circumstances, represent another 100 watts, allowance has been made in preparing this tabulation for an additional 850 watts dissipation.


. 3CX10,000A1

APPLICATION

Voltage-Regulator Service — Maximum DC plate current and voltage are restricted according to the following table.

CLASS-A DE	RATING TABLE
DC Plate Voltage	Max. DC Plate Current
(Volts)	(mA)
0 - 2400	5000
3000	4000
4000	3000
5000	2000
6000	1500
7000	1000
8000	700
9000	500
10,000	350

Filament Operation—The rated filament voltage for the 3CX10,000A1 is 7.5 volts. Filament voltage, as measured at the socket, should not be allowed to deviate from the rated value by more than plus or minus five percent.



Cooling-The maximum temperature rating for the external surfaces of the 3CX10,000A1 is 250°C. Sufficient forced-air cooling must be provided to maintain the temperature of the ceramic-metal seals and anode core below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated. The use of these air-flow rates provides effective cooling of the tube. When air-flow is in the anode-to-base direction, special care must be taken to insure adequate cooling of the filament stem structure. A separate supply of air may have to be directed into the area between the filament contact areas to maintain safe seal temperatures.

Special Applications-If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, Calif., for information and recommendations.

	DIME	NSION DAT	A
REF.	NOM.	MIN.	MAX.
Α		6.928	7.050
В		.855	.895
С		.720	.760
D		1.896	1.936
Ε		3 133	3.173
F		3.792	3.832
Н		. 188	
J		. 188	
Μ		3.950	4.300
Ν		2.412	2.788
Ρ		8.250	8.750
R		.986	1.050
S		3.412	3.788
Т		.375	

* CONTACT SURFACE ALL DIMENSIONS IN INCHES

E MAC Division of Varian SAN CARLOS CALIFORNIA

8159 3CX10,000A3

> MEDIUM-MU **POWER TRIODE**

The EIMAC 3CX10,000A3 is a ceramic and metal power triode intended primarily for use as a power oscillator in industrial-heating applications. It is also recommended for use as a grounded-grid FM amplifier, as a conventional plate-modulated amplifier, or as a linear amplifier.

GENERAL CHARACTERISTICS

ELECTRIC	AL															Min. N	Iom	. 1	Max.		
Filament:	Thoriated-	Tu	ng	ste	n																
	Voltage	-	-	-	-	-	-	-	-	-	-	-	-	-	-		7.	5		V	
	Current	-	-	-	-	-	-	-	-	-	-	-		-	-	94			104	А	
Amplifica	tion Factor	-	-	-	-	-	-	-	-	-	-	-	-	-	-		2	20			
Interelect	rode Capaci																				
	Input -						-									48				pF	
	Output -															1.2			1.5	pF	
	Feedback	-	-	-	-	-	-	-	-	-	-	-	-	-	-	30			38	pF	
Frequency	y for Maximu	um	Ra	atin	gs	-	-	-	-	-	-	-	-		×		-	-	-		-

140 MHz

MECHANICAL

ELECTRICAL

Base	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		Coaxial
Recommended Socket	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	E	CIM.	AC	SK-1300
Recommended Chimney	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	F	CIM	AC	SK-1306
Operating Position -																								
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Fo	orced air
Maximum Operating Ter	npe	rat	ure	s:																				
Anode Core																								
Ceramic-to-M	leta	1 S	Seal	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	250°C
Maximum Dimensions:																								
Height	-	-	\mathbf{x}	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.5 in
Diameter -																								
Net Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	12 lb

R-F INDUSTRIAL OSCILLATOR CLASS-C

TYPICAL OPERATION, Optimum Load

				D-C Plate Voltage	-	-		-		6000	7000	volts
				D-C Grid Voltage	-	-	-	-	•	-575	-670	volts
-	-	7000	VOLTS	D-C Plate Current		•	×	-	-	4.0	4.0	amps
-	-	4.0	AMPS	D-C Grid Current	-	•	-	-	-	610	670	mA
-	-	10	KW	Plate Input Power	-	-	-	-	-	24	28	kW
-	-	250	WATTS	Plate Output Power	-	-	-	-	-	18.9	22.4	kW
	-		4.0 10	7000 VOLTS 4.0 AMPS 10 KW 250 WATTS	D-C Grid Voltage - 7000 VOLTS D-C Plate Current - 4.0 AMPS D-C Grid Current - 10 KW Plate Input Power	D-C Grid Voltage - - 7000 VOLTS D-C Plate Current - - 4.0 AMPS D-C Grid Current - - 10 KW Plate Input Power -	D-C Grid Voltage 7000 VOLTS D-C Plate Current 4.0 AMPS D-C Grid Current 10 KW Plate Input Power	D-C Grid Voltage 7000 VOLTS D-C Plate Current 4.0 AMPS D-C Grid Current 10 KW Plate Input Power	D-C Grid Voltage 7000 VOLTS D-C Plate Current 4.0 AMPS D-C Grid Current - 10 KW Plate Input Power	D-C Grid Voltage 7000 VOLTS D-C Plate Current 4.0 AMPS D-C Grid Current 10 KW Plate Input Power	D-C Grid Voltage - 10 W Plate Input Power - - - 2 2	- 4.0 AMPS D-C Grid Current - - 610 670 - 10 KW Plate Input Power - - 24 28

R-F POWER AMPLIFIER GROUNDED-GRID, CLASS-C

TYPICAL OPERATION

						D-C Plate Voltage	-	-	-	-	-	6000	7000	volts
MAXIMUM RATINGS						D-C Grid Voltage	•	-	•	-	-	-535	-625	volts
D-C PLATE VOLTAGE	-	-	-	7000	VOLTS	D-C Plate Current		-	×	-	-	4.0	4.0	amps
D-C PLATE CURRENT	-	-	-	4.0	AMPS	D-C Grid Current	-	-	-	-	-	545	530	mA
PLATE DISSIPATION	-	-	-	10	KW	Driving Power	-	-	-	-	-	3700	4100	watts
GRID DISSIPATION -	-	-	-	250	WATTS	Plate Output Power	-	-	-	-	-	20.5	24.5	kW

(Effective 5-1-68) (c) 1961, 1964, 1968 by Varian

3CX 10,000A3

R-F POWER AMPLIFIER PLATE-MODULATED, CLASS-C

MAXIMUM RATINGS					
D-C PLATE VOLTAGE	-	-	-	5500	VOLTS
D-C PLATE CURRENT	-	-	-	3.0	AMPS
PLATE DISSIPATION	-	-	-	6.5	KW
GRID DISSIPATION -	-	-	-	250	WATTS

TYPICAL OPERATION

D-C Plate Voltage		-		-	-	4000	5000	volts
D-C Grid Voltage			-	-	-	-480	-600	volts
D-C Plate Current	-	-	-		-	3.0	3.0	amps
D-C Grid Current	-		-	-	-	660	550	mA
Driving Power	-		-	-	-	530	515	watts
Plate Output Power	-	-		-	w	9.7	12.4	kW

R-F LINEAR AMPLIFIER GROUNDED-GRID, CLASS-AB2

PLATE DISSIPATION -

GRID DISSIPATION - -

MAXIMUM RATINGS D-C PLATE VOLTAGE - - - 7000 VOLTS D-C PLATE CURRENT --5.0 AMPS

TYPICAL OPERATION

D-C Plate Voltage	-	-		6000	7000	volts
Zero-Sig Grid Voltage* -	-	1	-	-270	-325	volts
Max-Sig D-C Plate Current	~		-	4.0	4.0	amps
Max-Sig D-C Grid Current	-	-	-	300	250	mΑ
Driving Power				1900	2050	watts
Plate Output Power		-	-	18	20	kW

*Adjust to give 500 milliamperes zero-signal d-c plate current.

-

--

-

KW

250 WATTS

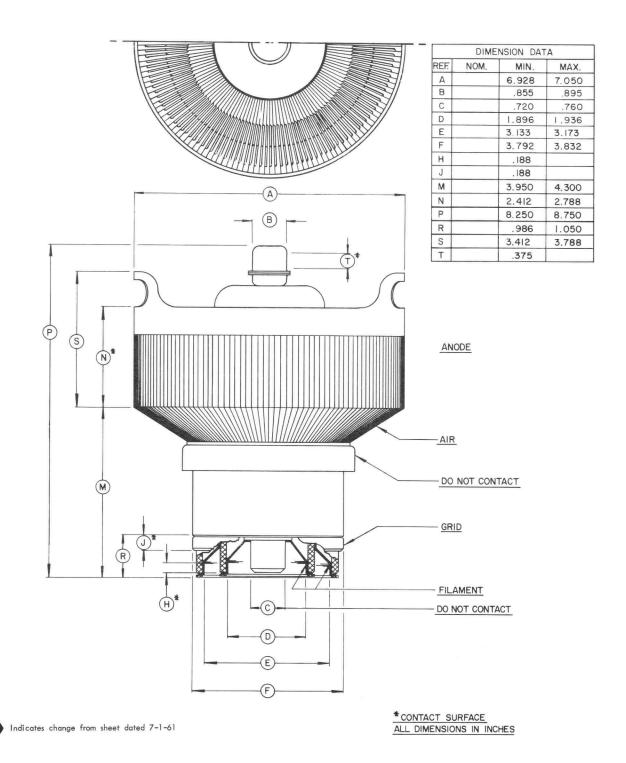
12

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristics curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made.

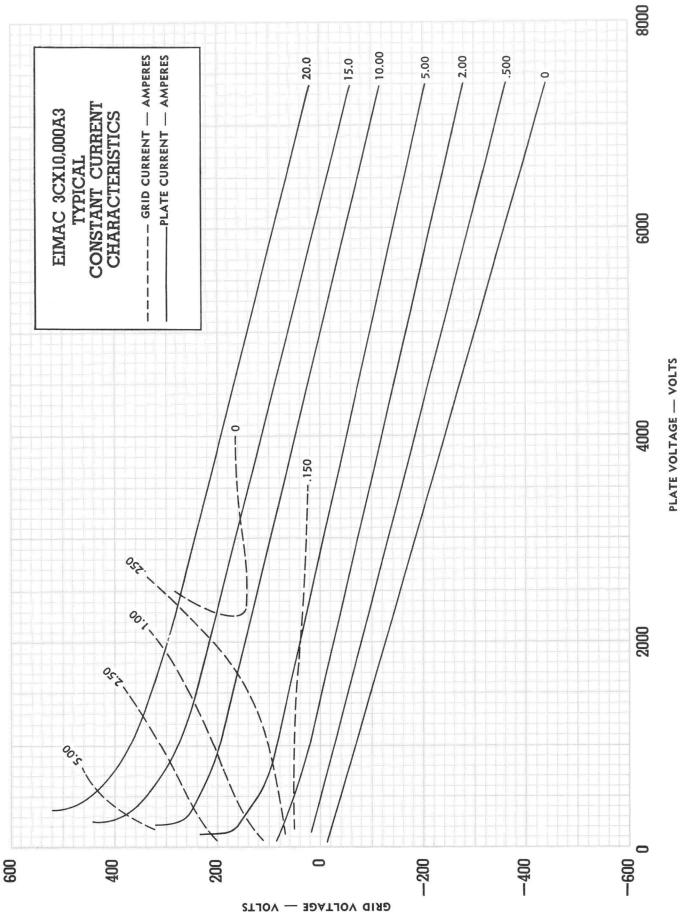
APPLICATION

Cooling -The maximum temperature rating for the external surfaces of the 3CX10,000A3 is 250°C. Sufficient forced-air cooling must be provided to keep the ture of 50°C are tabulated. The use of these air-flow temperature of the anode core and the temperature of rates through the recommended socket/chimney and the ceramic-metal seals below 250°C. Tube life is tube combination in the base-to-anode direction prousually prolonged if these areas are maintained at vides effective cooling of the tube. temperatures below this maximum rating. Minimum

air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air tempera-


	Sea	Level	10,000 Feet						
Plate** Dissipation (Watts)	Air Flow (CFM)	Pressure Drop (Inches of Water)	Air Flow (CFM)	Pressure Drop (Inches of Water)					
4000	110	.25	160	.36					
6000	180	.53	260	.78					
8000	270	.95	390	1.4					
10,000	373	1.55	545	2.25					
12,000	448	2.00	650	2.9					

**Since the power dissipated by the filament is about 750 watts and since grid dissipation can, under some circumstances, represent another 250 watts, allowance has been made in preparing this tabulation for an additional 1000 watts dissipation.



Filament Operation - The rated filament voltage Special Applications for the 3CX10,000A3 is 7.5 volts. Filament voltage, this tube under conditions widely different from those as measured at the socket, should be maintained at given here, write to Power Grid Tube Marketing, this value to obtain maximum tube life. In no case EIMAC Division of Varian, 301 Industrial Way, San should it be allowed to deviate from the rated value Carlos, California 94070, for information and recomby more than five percent.

If it is desired to operate mendations.

TECHNICAL DATA

8160 3CX10,000A7

HIGH-MU POWER TRIODE

The EIMAC 8160/3CX10,000A7 is a ceramic and metal power triode intended to be used as a zero-bias Class-B amplifier in audio or radiofrequency applications. Operation with zero grid bias offers circuit simplicity by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 8160/3CX10,000A7.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated-Tungsten		
Voltage	7.5	V
Current	100	А
Amplification Factor (Nominal)	200	
Direct Interelectrode Capacitances: ²		
Grid-Filament	59.0	pF
Grid-Plate	36.0	pF
Plate-Filament	0.2	pF
Frequency for Maximum Ratings	160	MHz

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Base Coaxial
Recommended Air-System Socket EIMAC SK-1300
Recommended Air Chimney EIMAC SK-1306
Operating Position
Cooling Forced air
Maximum Operating Temperatures:
Anode Core
Ceramic/Metal Seals 250 °C
Maximum Dimensions:
Height
Diameter
Net Weight 12 lbs; 5.45 kg

(Revised 2-1-73) © 1963, 1967, 1973 by Varian

Printed in U.S.A.

EIMAC division of varian / 301 industrial way / san carlos / california 94070

8160/3CX10,000A7

RADIO-FREQUENCY LINEAR AMPLIFIER

Grounded Grid, Class-B

MAXIMUM RATINGS

DC PLATE VOLTAGE	8000	VOLTS
DC PLATE CURRENT	5.0	AMPERES
PLATE DISSIPATION	12	KILOWATTS
GRID DISSIPATION	500	WATTS

1. Approximate value.

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class B, Grid Driven

MAXIMUM RATINGS (Per Tube)

DC PLATE VOLTAGE	ž,	÷				i,		8000	VOLTS
DC PLATE CURRENT								5.0	AMPERES
PLATE DISSIPATION		,				÷		12	KILOWATTS
GRID DISSIPATION .	÷	i.	•	•	•	,	k,	500	WATTS

1. Approximate value.

RADIO-FREQUENCY LINEAR AMPLIFIER Carrier Conditions, Grounded-Grid

MAXIMUM RATINGS

DC PLATE VOLTAGE				5				8000	VOLTS
DC PLATE CURRENT		÷		•				5.0	AMPERES
PLATE DISSIPATION			•				•	12	KILOWATTS
GRID DISSIPATION .			•	•	•			500	WATTS

1. Approximate value.

2. Modulation Crest Conditions

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class-C, Grounded-Grid

MAXIMUM RATINGS

DC PLATE VOLTAGE	80	000 VOLTS
DC PLATE CURRENT		4.0 AMPERES
PLATE DISSIPATION		10 KILOWATTS
GRID DISSIPATION	E	500 WATTS

PLATE-MODULATED RF POWER AMPLIFIER

MAXIMUM RATINGS

DC PLATE VOLTAGE				•		6500	VOLTS
DC PLATE CURRENT	•		•	•		3.0	AMPERES
PLATE DISSIPATION						6.5	KILOWATTS
GRID DISSIPATION	÷		•	•	•	500	WATTS

1. Approximate value.

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

TYPICAL OPERATION, Single-Tone Conditions

DC Plate Voltage	7000	7000	V
Zero-Signal DC Plate Current ¹	0.60	0.60 /	A
Max-Signal DC Plate Current	3.72	5.00	Ą
Max-Signal DC Grid Current	0.71	1.00 /	Д
Driving Impedance	35	32 🖇	Ω
Resonant Load Impedance	1020	745 (Ω
Max-Signal Driving Power	885	1540 \	N
Peak Envelope Plate Output Power.	17.7	24.2	kW
Power Gain	13	12 0	dB

TYPICAL OPERATION, Two Tubes, Sinusoidal Wave

TYPICAL OPERATION

DC Plate Voltage 7000 DC Grid Voltage 0	
Zero-Signal DC Plate Current ¹ 0.60	А
DC Plate Current 2.40	А
DC Grid Current 0.25	А
Driving Impedance ²	Ω
Peak Driving Voltage?	V
Driving Power	W
Plate Output Power 5650	W

TYPICAL OPERATION

DC Plate Voltage DC Plate Current		•			•	•					•			7600 3.68	-
DC Grid Voltage					•	•							•	-110	V
DC Grid Current Peak RF Cathode Voltage														775 400	
Cathode Driving Power 1. Plate Output Power									÷			•	•	1510	
Thate Output Tower	•	•	•	•	•	•	•	•	•	•	•	•		22.0	

1. Approximate value.

TYPICAL OPERATION

DC Plate Voltage	•								÷									5000	V
DC Plate Current																		3.0	А
DC Grid Voltage											•				i,			-200	
DC Grid Current	÷	ł.			•		•	÷	÷		•	•	•			•		775	mΑ
Peak RF Grid Volta	ag	е		•	•						•		•			•	•	490	
Grid Driving Power	r	1	•	•	•	•					•					•	•	380	W
Plate Output Power	r	ż	•	•	•	•	•			•	•	•	•	•	÷			11.9	kW

MOUNTING - The 3CX10,000A7 must be operated vertically base up or down. The tube must be protected from severe vibration and shock.

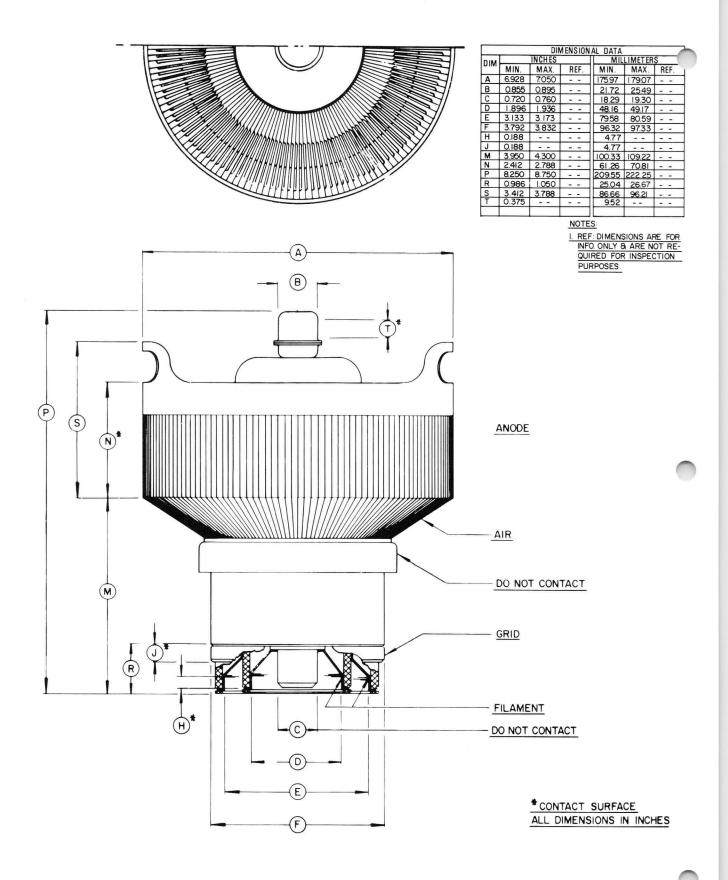
COOLING - The maximum temperature rating for the external surfaces of the 3CX10,000A7 is $250^{\circ}C$. Sufficient forced-air cooling must be provided to keep the temperature of the anode core and the temperature of the ceramic/metal seals below $250^{\circ}C$. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below $225^{\circ}C$ with an inlet-air temperature of $50^{\circ}C$ are tabulated below. The use of these air-flow rates through the recommended socket/chimney and tube combination in the base-to-anode direction provides effective cooling of the tube.

Plate **	SEA	LEVEL	10,000 FEET						
Dissipation (Watts)	Air Flow (CFM)	Pressure Drop(Inches of Water)	Air Flow (CFM)	Pressure Drop(Inches of Water)					
4000 6000 8000 10,000 12,000	105 178 253 345 483	.24 .50 .90 1.4 2.25	154 275 370 500 710	.35 .80 1.45 2.30 3.40					

** Since the power dissipated by the filament is about 750 watts and since grid dissipation can, under some circumstances, represent another 500 watts, allowance has been made in preparing this tabulation for an additional 1250 watts dissipation.

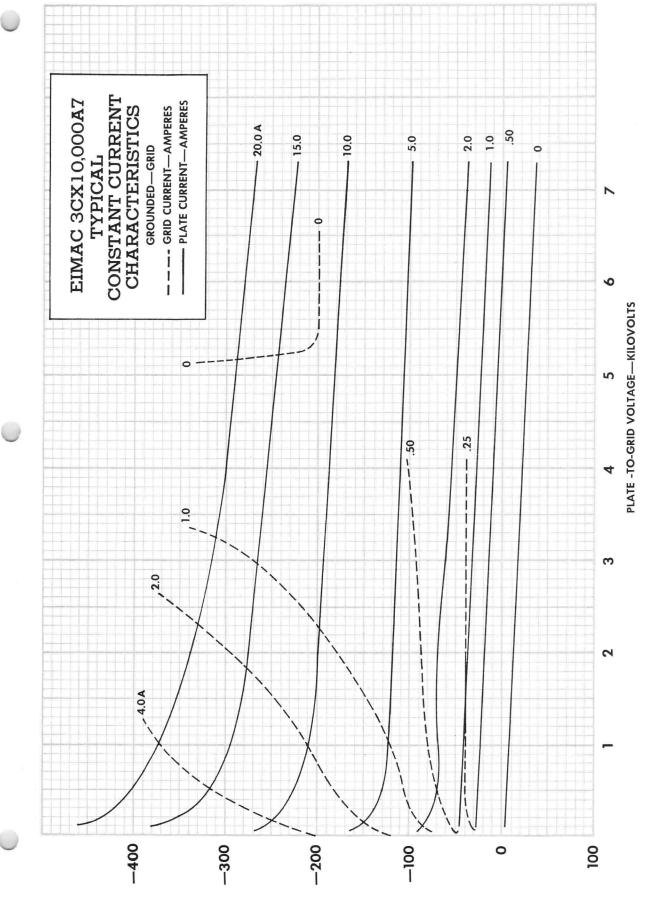
INPUT CIRCUIT - When the 3CX10,000A7 is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier it is suggested that the cathode tank circuit operate at a "Q" of two of more.

CLASS-C OPERATION - Although specifically designed for class-B service, the 3CX10,000A7 may be operated as a class-C power amplifier or oscillator or as a plate-modulated radio-frequency power amplifier.

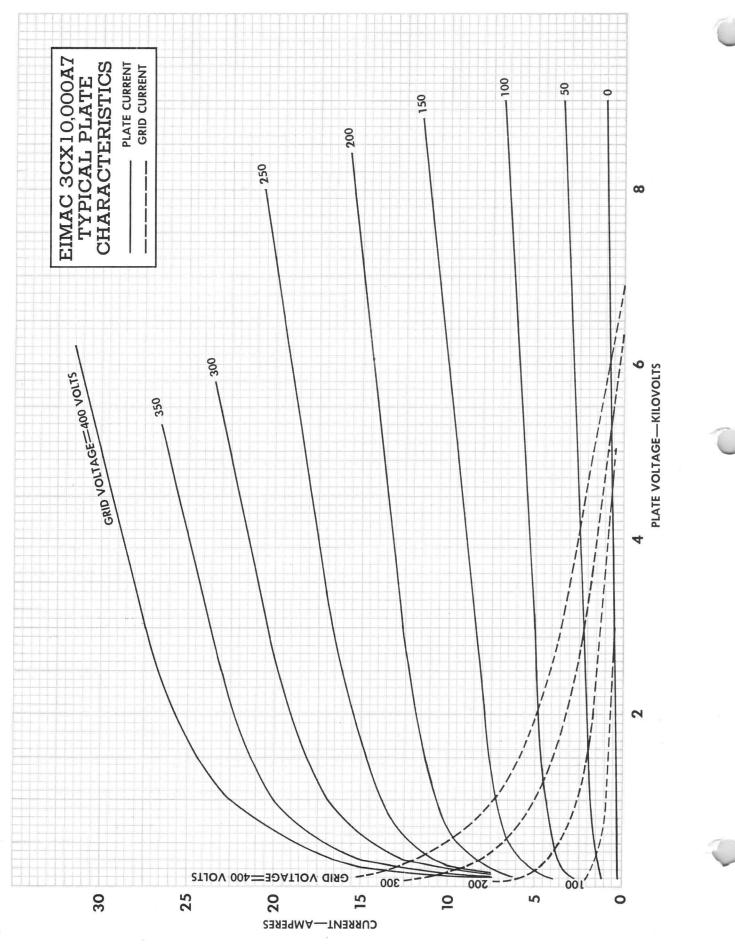

FILAMENT OPERATION - The rated filament voltage for the 3CX10,000A7 is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate from the rated value by more than plus or minus five percent. INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used. stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

HIGH VOLTAGE - The 3CX10,000A7 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, 94070, for information and recommendations.

8160/3CX10,000A7



4

8160/3CX10,000A7

FILAMENT-TO-GRID VOLTAGE-VOLTS

ELECTRICAL

TECHNICAL DATA

MEDIUM-MU AIR-COOLED POWER TRIODE

3CX10,000H3

3CX10,000H3

The Eimac 3CX10,000H3 is an air-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its air-cooled anode is conservatively rated at 10 kilowatts of plate dissipation.

Input of 40 kilowatts is permissable up to 90 megacycles. Plentiful reserve emission is available from its 750 watt filament. The grid structure is rated at 250 watts, making this tube an excellent choice for severe applications.

GENERAL CHARACTERISTICS

Min. Nom. Max. Voltage - - - 7.5 Volts Current - - 94 104 Amps Amplification Factor - - 90 Iterelectrode Capacitances, Grounded Cathode: 20 Grid-Filament - - - 48 58 µµf Grid-Plate - - - 30 38 µµf Frequency for Maximum Ratings - - 90 Mc MechAnical Base - - - - - See Outline Operating Position - - - - - - - 250°C Maximum Operating Temperature - - - - - 250°C Maximum Dimensions: - - - - - - 250°C Maximum Dimensions: - - - - - - 250°C Maximum Ratings: - - - - - - 250°C </th <th>ELECTRICA</th> <th>L</th> <th></th>	ELECTRICA	L																	
Current - - - 94 104 Amps Amplification Factor - - - 20 Interelectrode Capacitances, Grounded Cathode: Grid-Filament - - - 48 58 µµf Plate-Filament - - - 1.2 1.5 µµf Grid-Plate - - - 30 38 µµf Frequency for Maximum Ratings - - - 90 Mc MECHANICAL Base - - - - - - See Outline Operating Position - - - - - - - 250°C Maximum Operating Temperature - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Cass-C (Filtered DC Power Supply) DC Plate Voltage - - - - 250°C	Filament:								Min.	_ 1		Ma	ax.						
Amplification Factor - - 20 Interelectrode Capacitances, Grounded Cathode: Grid-Filament - - 48 58 μμf Plate-Filament - - - 1.2 1.5 μμf Grid-Plate - - - 30 38 μμf Frequency for Maximum Ratings - - 90 Mc MECHANICAL Base - - - See Outline Operating Position - - - - Forced Air Maximum Operating Temperature - - - - - 250°C Maximum Dimensions: - - - - - 250°C Maximum Ratings: - - - - - 250°C Maximum Dimensions: - - - - - 250°C MaXIMUM RATINGS: DC - - - - - 2000 Volts DC Plate Voltage - - - - - - - <t< td=""><td></td><td>Voltage</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>7.5</td><td>110 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Voltage					-	-			7.5	110 1							
Interelectrode Capacitances, Grounded Cathode: Grid-Filament - - - 48 58 $\mu\mu f$ Plate-Filament - - - 1.2 1.5 $\mu\mu f$ Grid-Plate - - - 30 38 $\mu\mu f$ Frequency for Maximum Ratings - - 90 Mc MECHANICAL Base - - - - - See Outline Operating Position - - - - - - - See Outline Operating Position - - - - - - - - Forced Air Maximum Operating Temperature - - - - - - 250°C Maximum Dimensions: - - - - - - - 250°C Net Weight - - - - - - - 250°C Maximum Dimensions: - - - - - - - 12 Pounds </td <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>94</td> <td></td> <td></td> <td>104</td> <td></td> <td>Amp</td> <td>S</td> <td></td> <td></td> <td></td> <td></td>			-	-	-	-	-	-	94			104		Amp	S				
Grid-Filament - - - 48 58 $\mu\mu$ f Plate-Filament - - 1.2 1.5 $\mu\mu$ f Grid-Plate - - 30 38 $\mu\mu$ f Frequency for Maximum Ratings - - 90 Mc MECHANICAL Base - - - - - See Outline Operating Position - - - - - - - - Forced Air Maximum Operating Temperature - - - - - - - 250°C Maximum Dimensions: - - - - - - - 250°C Maximum Dimensions: - - - - - - 250°C Maximum Ratings - - - - - - - 250°C Maximum Dimensions: - - - - - - - 250°C Class-C (Filtered DC Power Supply) - - -	Amplificat	ion Factor	-	-	-	-	-	-		-	20								
Plate-Filament - - 1.2 1.5 µµf Grid-Plate - - 30 38 µµf Frequency for Maximum Ratings - - 90 Mc MECHANICAL Base - - 90 Mc Base - - - - - See Outline Operating Position - - - - - - See Outline Cooling - - - - - - - - See Outline Maximum Operating Temperature - - - - - - - - 250°C Maximum Dimensions: Height - - - - - - - 250°C Met Weight - - - - - - - - 250°C Maximum Dimensions: - - - - - - - - 250°C RF INDUSTRIAL OSCILLATOR Class-C (Filtered DC Power Supply)	Interelectr	ode Capacit	ance	es, Gi	roun	ded (Cat	hode:											
Grid-Plate - - - 30 38 µµf Frequency for Maximum Ratings - - 90 Mc MECHANICAL Base - - - - - See Outline Operating Position - - - - - - See Outline Operating Position - - - - - - - See Outline Coling -					-	-	-	-	48			5	8	$\mu\mu f$					
Frequency for Maximum Ratings 90 Mc MECHANICAL Base - - - - - See Outline Operating Position - - - - - See Outline Operating Position - - - - - - See Outline Operating Position - - - - - - Forced Air Maximum Operating Temperature - - - - - - 250°C Maximum Dimensions: - - - - - - 250°C Maximum Dimensions: - - - - - - 250°C Maximum Neteries - - - - - - 250°C Maximum Dimensions: - - - - - - - 250°C Maximum Netwight - - - - - - - 250°C Maximum Ratings: - - - - -			nent	-	-	-	-	-				1	.5					1	
MECHANICAL Base - - - - - See Outline Operating Position - - - - - See Outline Operating Position - - - - - - See Outline Cooling - - - - - - - Forced Air Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Typical Operating Temperature - - - - - - - - - - 250°C Not Weight		Grid-Plate	-	-	-	-	-	-	30			38		$\mu\mu f$					
Base - - - - - - See Outline Operating Position - - - - - Vertical, base up or down Cooling - - - - - - - Forced Air Maximum Operating Temperature - - - - - - - - - 250°C Maximum Dimensions: - - - - - - - - 250°C Maximum Dimensions: - - - - - - - - 250°C Maximum Dimensions: - - - - - - - - 250°C Net Weight - - - - - - - - 250°C Class-C (Filtered DC Power Supply) MAXIMUM RATINGS: - - - - 12 Pounds DC Plate Voltage - - - - - - 12 Pounds DC Plate Voltage - -<	Frequency	for Maxim	um l	Ratir	ngs	-	-	-				90		Mc				0	0
Operating Position - - - - - - Vertical, base up or down Cooling - - - - - - - Forced Air Maximum Operating Temperature -	MECHANI	CAL																	
Cooling - - - - - - Forced Air Maximum Operating Temperature - - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Net Weight - - - - - - - - 250°C RF INDUSTRIAL OSCILLATOR - - - - - - - - 12 Pounds RF INDUSTRIAL OSCILLATOR - - - - - 12 Pounds Class-C (Filtered DC Power Supply) MAXIMUM RATINGS: - - - 12 Pounds DC PLATE VOLTAGE - 10,000 VOLTS DC Grid Voltage - - - - - 12 Pounds DC GRID VOLTAGE - 10,000 VOLTS DC Grid Voltage - - - - - - - - - - - - - <td>Base -</td> <td></td> <td>-</td> <td>See</td> <td>Outline</td>	Base -		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
Maximum Operating Temperature - - - - - 250°C Maximum Dimensions: Height - - - - - - 250°C Maximum Dimensions: Height - - - - - - - - 250°C Maximum Dimensions: Height - 250°C Maximum Dimensions: - - - - - - - - - - - - See Outline Net Weight - - - - - - - - 12 Pounds Class-C (Filtered DC Power Supply) MAXIMUM RATINGS: DC Plate Voltage - 7000 9000 Volts DC Grid Voltage - .275 .430 Amps DC GRID VOLTAGE - - -	Operating	Position	-	-	-	-	-	-	-	-	-	-	-	-	Ver	tical,	base	up	or down
Maximum Dimensions: Height - - - - See Outline Diameter - - - - - - See Outline Net Weight - - - - - - - See Outline Net Weight - - - - - - - - See Outline Net Weight - - - - - - - - 12 Pounds TYPICAL OPERATION* Class-C (Filtered DC Power Supply) DC Plate Voltage - - - 12 Pounds MAXIMUM RATINGS: DC PLATE VOLTAGE - - 10,000 VOLTS DC Grid Voltage - 10 A0 Amps DC Grid Current - - - - - - - - - - - - <td< td=""><td>Cooling</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>For</td><td>ced Air</td></td<>	Cooling		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	For	ced Air
Height DiameterSee OutlineNet Weight Net Weight Class-C (Filtered DC Power Supply)12 PoundsMAXIMUM RATINGS: DC PLATE VOLTAGE DC PLATE CURRENT C GRID VOLTAGE 	Maximum	Operating '	Tem	pera	ture	-	-	-	-	-	-	-	-	-	-	-	-	-	250°C
Diameter - - - - See Outline Net Weight - - - - 12 Pounds RF INDUSTRIAL OSCILLATOR Class-C (Filtered DC Power Supply) TYPICAL OPERATION* MAXIMUM RATINGS: DC Plate Voltage - - 7000 9000 Volts DC PLATE VOLTAGE 10,000 VOLTS DC Grid Voltage - - - - - - - - - - - - - - 12 Pounds DC Plate Voltage - - - - - - 12 Pounds - - - 12 Pounds MAXIMUM RATINGS: DC Plate Voltage - <	Maximum	Dimension	S:																
Net Weight - - 12 Pounds RF INDUSTRIAL OSCILLATOR Class-C (Filtered DC Power Supply) TYPICAL OPERATION* DC Plate Voltage - - 12 Pounds MAXIMUM RATINGS: DC PLATE VOLTAGE TOPIate Voltage - - 7000 9000 Volts DC Plate Voltage - - - 4.0 Amps DC PLATE VOLTAGE - - 10,000 VOLTS DC Grid Current - - - - 930 Volts DC GRID VOLTAGE - <td< td=""><td></td><td>Height</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>See</td><td>Outline</td></td<>		Height	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
RF INDUSTRIAL OSCILLATOR TYPICAL OPERATION* Class-C (Filtered DC Power Supply) DC Plate Voltage 7000 9000 Volts MAXIMUM RATINGS: DC Plate Current 4.0 4.0 Amps DC PLATE VOLTAGE 4.0 AMPS DC Grid Voltage 670 -930 Volts DC GRID VOLTAGE 1000 VOLTS DC Grid Current 2.275 .430 Amps DC GRID CURRENT 0.6 AMP Plate Input Power 2.260 570 Watts DC GRID DUSTRIAL OSCILLATOR DV OLTS DC GRID CURRENT 1000 VOLTS DC Grid Current 2.260 570 Watts DC GRID CURRENT 1000 VOLTS Driving Power 2.28 36 kW PLATE DISSIPATION 100 KW Plate Output Power 19 29 kW		Diameter	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline
Class-C (Filtered DC Power Supply)DC Plate Voltage70009000 VoltsMAXIMUM RATINGS: DC PLATE VOLTAGE10,000 VOLTSDC Plate Current4.0 AmpsDC PLATE CURRENT4.0 AMPSDC Grid Voltage670930 VoltsDC GRID VOLTAGE1000 VOLTSDC Grid Current275.430 AmpsDC GRID CURRENT0.6 AMPPlate Input Power260570 WattsDL GRID CURRENT40 KWPlate Input Power2836 kWPLATE DISSIPATION10 KWPlate Output Power97 kW	Net Weigh	nt	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12	Pounds
MAXIMUM RATINGS:DC Plate Current4.04.0 AmpsDC PLATE VOLTAGE10,000 VOLTSDC Grid Voltage670-930 VoltsDC GRID VOLTAGE4.0 AMPSDC Grid Current275.430 AmpsDC GRID VOLTAGE1000 VOLTSDC Grid Current260570 WattsDC GRID CURRENT0.6 AMPPlate Input Power2836 kWPLATE INPUT POWER10 KWPlate Dissipation97 kWPLATE DISSIPATION10 KWPlate Output Power1929 kW	RF INDUS	TRIAL OSCI	LLAT	OR						TYP	ICAL	OPER	ATIC	N*					
MAXIMUM RATINGS: DC PLATE VOLTAGE: - - 10,000 VOLTS DC Grid Voltage - - - - - 930 Volts DC PLATE VOLTAGE: - - - 10,000 VOLTS DC Grid Voltage - - - - - - 930 Volts DC PLATE CURRENT: - - - - 1000 VOLTS DC Grid Current: - - - . 275 .430 Amps DC GRID VOLTAGE: - - - - - 1000 VOLTS Peak Positive Grid Voltage: - 340 390 Volts DC GRID CURRENT: - - - 0.6 AMP Plate Input Power: - - 260 570 Watts DC AGRID CURRENT: - - 40 KW Plate Input Power: - 28 36 kW PLATE DISSIPATION - - - 10 KW Plate Output Power - 19 29 kW	Class-C (Filte	red DC Power	Supp	ly)															
DC PLATE VOLTAGE10,000 VOLTSDC Grid Current275.430 AmpsDC PLATE CURRENT4.0 AMPSPeak Positive Grid Voltage-340390 VoltsDC GRID VOLTAGE0.6 AMPDriving Power260570 WattsDC GRID CURRENT0.6 AMPPlate Input Power2836 kWPLATE INPUT POWER10 KWPlate Dissipation97 kWPLATE DISSIPATION10 KWPlate Output Power1929 kW	MAXIMUM	RATINGS:																	
DC GRID VOLTAGE <td>DC PLATE C</td> <td>LIPPENIT -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DC</td> <td>Grid C</td> <td>urrent</td> <td>t</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td>	DC PLATE C	LIPPENIT -								DC	Grid C	urrent	t		-	-			
PLATE INPUT POWER - - 40 KW Plate Dissipation - - 9 7 kW PLATE DISSIPATION - - - 10 KW Plate Output Power - - 19 29 kW	DC GRID VC	DLTAGE	-	-	-	-10	000	VOLTS											
PLATE DISSIPATION 10 KW Plate Output Power 19 29 kW	DC GRID CU	JRRENT	-	-	-	1				Plat	e Inpu	t Pow	er		-	-	28		36 kW
			-	-	-					Plat	e Dissi	pation) Wer		-				
	*Loaded Condition	15																	

NOTE: "'Typical Operation" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made.

(Effective 3-15-66) Copyright 1966 by Varian Associates

APPLICATION

ELECTRICAL

Filament — The rated filament voltage for the 3CX10,000H3 is 7.5 volts. Filament voltage, as measured at the tube, should be maintained at this value for consistent performance and maximum tube life. In no case should it be allowed to vary from 7.5 volts by more than plus or minus five percent.

Control Grid Operation — The grid current rating is 0.6 ampere dc. This value should not be exceeded for more than very short periods such as during tuning and over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.2 to 0.4 amp grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 250 watts.

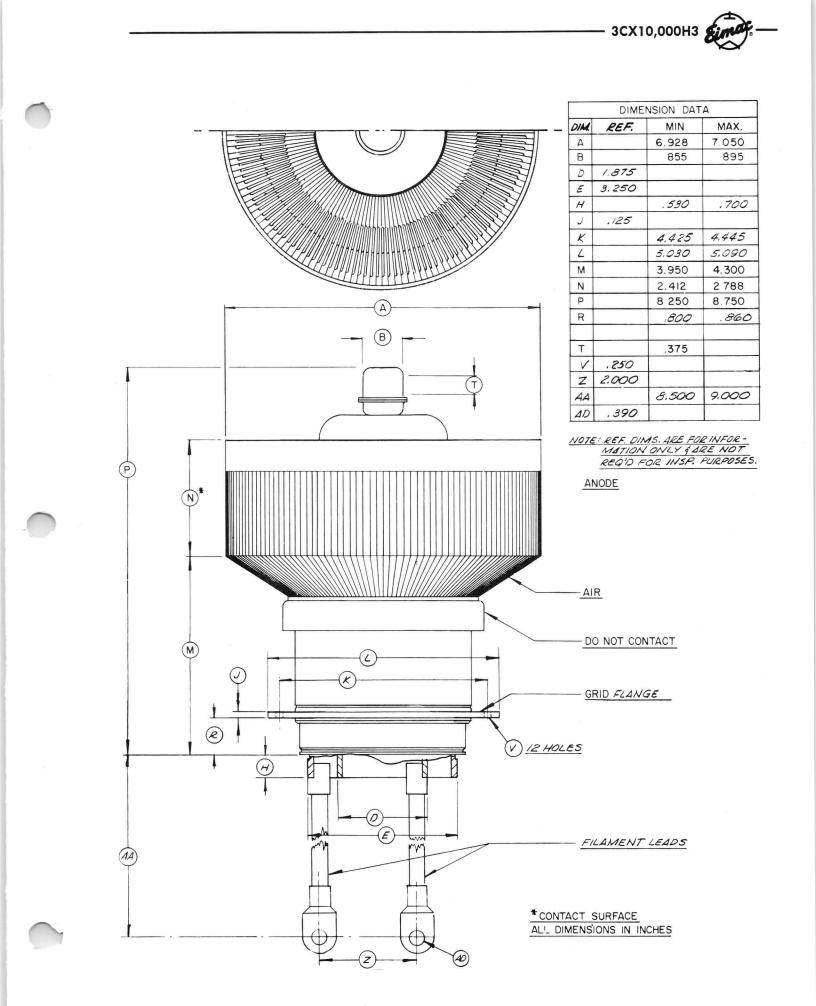
Plate Operation — Plate over-current protection should be provided to remove plate voltage quickly in the event of an over-load or an arcover at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

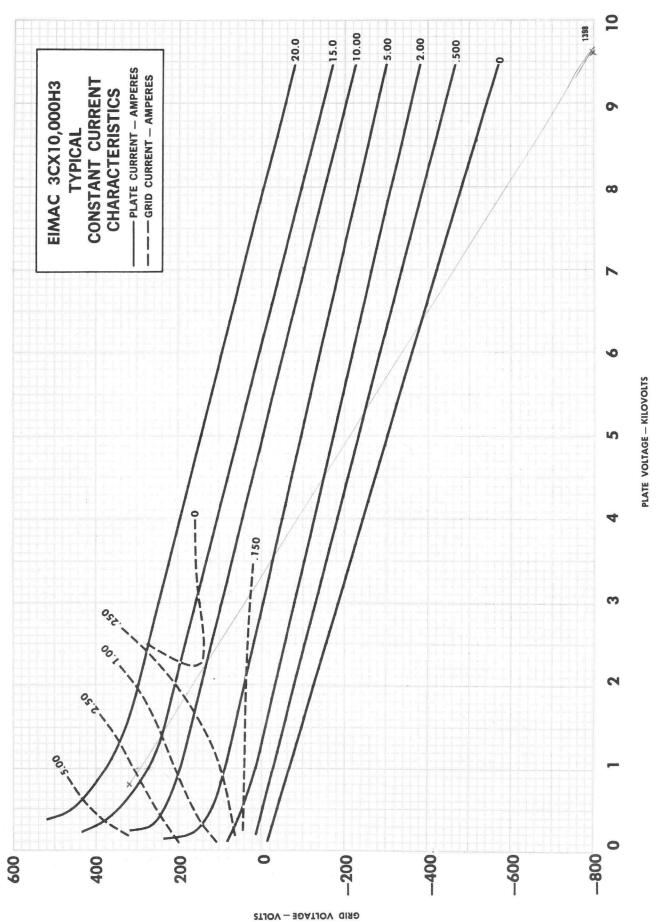
Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

High Frequency Operation—The 3CX10,000H3 is usable to 140 Mc. At this frequency, plate voltage must be reduced to 7000 volts in Class C service.

MECHANICAL

Mounting — The 3CX10,000H3 must be mounted vertically, either base up or down. A grid flange is provided for bolting to a grid strap or a grid deck. Heavy flexible leads are provided for the filament voltage connection.


Cooling — The maximum temperature rating for the external surfaces of the 3CX10,000H3 is 250°C. Sufficient forced-air cooling must be provided to keep the temperature of the anode core and the temperature of the ceramic-metal seals below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below this maximum rating. Minimum air-flow requirements to maintain anode-core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated.


	Sea	a Level	5000 Feet					
Plate** Dissipation Watts	Air Flow CFM	Pressure Drop Inches Water	Air Flow CFM	Pressure Drop Inches Water				
4000	85	0.18	105	0.21				
6000	145	0.38	175	0.46				
8000	215	0.68	260	0.82				
10,000	295	1.08	360	1.32				
12,000	390	1.62	470	1.95				

**Since the power dissipated by the filament is about 750 watts and since grid dissipation can, under some circumstances, represent another 25 watts, allowance has been made in preparing this tabulation for an additional 1000 watts dissipation.

Additional stem cooling air must be provided. 10 CFM of air directed against the center filament contact $\frac{3}{4}$ " below the outer filament contact ring by a $1\frac{1}{2}$ " I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling.

Special Application — If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Div., Eimac, A Division of Varian Associates Inc., 301 Industrial Way, San Carlos, Calif. for information and recommendations.

3CX10,000H3

4

EIMAC Division of Varian SANCARLOS CALIFORNIA 3CX15,000A3 MEDIUM-MU AIR-COOLED POWER TRIODE

The EIMAC 3CX15,000A3 is an air-cooled, ceramic/metal power triode designed primarily for use as a power oscillator in industrial radio frequency heating applications. It is also recommended for use as a grounded grid FM amplifier, as a conventional plate-modulated amplifier, or as a linear amplifier. The one kilowatt filament and rugged 500 watt grid structure make this tube especially suitable for heavy duty service.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated-Tungsten

Voltage	_	_	_	_	_	_	_	_	-	$6.3V \pm 0.3$
Current, at 6.3 volts	_	_	_	_	_	-	_	_		160
Amplification Factor -	_	_	_	_	_	_	_	_	_	20

Interelectrode Capacitance (Grounded Cathode)²

Grid-Filament	-	_	-	_	-	_	_	_	_	_		55	pF
Plate-Filament,												1.4	pF
Grid-Plate -	_	_	_		_	_	_	_	_	_	_	34	pF
Frequency for Ma	xim	um	Ra	ting	gs	_	_	_	_	-	_	100	MHz

MECHANICAL

Dimensions

Height	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	8.5 in (216 mm)
Diameter			-	_	-	_	_	-	_	_	-	_		_	_		7.0 in (178 mm)
Net Weight			-	_	_	_	-	-	_	_	_	_	_	_	_	-	12 lb (5.54 kg)
Operating Position		-		-	-	_	_	_	_	_	_	_	-	_	V	ertical,	base up or down
Recommended Socket -			-	_		_	_	-		_	_	—	_	_	_	_	EIMAC SK-1300
Recommended Chimney -		-	-	-	-	-	-	-	-	-	-	-	-	-	-		EIMAC SK-1306

Maximum Operating Temperatures

250 ° C	_	_		_		-	_	_	_	_	_	-	-	_	-	_	_	ls	bea.	al S	let	to-N	nic-	Cera	
250 ° C	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ore	e Co	Anod	
Forced Air	-	_	-	_	_	_	-	-	-	-	-	_	_	_	-	-	_	_	_	_	-	_	g —	Coolin	(
Coaxial	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	Base	ļ

V A

- Characteristics and operating values are based on performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.
- 2. Capacitance values for a cold tube as measured in a special shielded fixture.
- 3. Adjust to give specified zero-signal DC plate current.

APPLICATION

FILAMENT - The rated filament voltage for the 3CX15,000A3 is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at 6.3 volts plus or minus 0.3 volts for long tube life and consistent performance.

GRID OPERATION - A recommended maximum grid current is 1.0 Adc, This value should not be exceeded for more than very short periods such as during tuning. Over-current protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.4 to 0.6 A grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a DC current meter. The absolute maximum grid dissipation rating is 500 watts.

PLATE OPERATION - Absolute maximum plate voltage rating of 8 kV and maximum plate current of 6.0 A should not be applied simultaneously as rated plate dissipation may be exceeded. When used as a plate modulated RF amplifier, absolute maximum input is reduced to 6500 V at 5.0 Adc. Plate overcurrent protection should be provided to remove plate voltage quickly in the event of an over-load or an arc-over at the load. In addition, current limiting power supply resistors should be used. These precautions are especially important in industrial service having wide variations in plate current loading,

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions. *HIGH FREQUENCY OPERATION* - The 3CX15,000-A3 is usable to 140 MHz. At this frequency, absolute maximum plate voltage must be reduced to 7000 Vdc A, B, or C service. For plate-modulated application at 140 MHz, absolute maximum plate voltage is reduced to 5500 Vdc.

COOLING - Forced-air cooling is required to adequately maintain the rated ceramic/metal seal and anode temperature at 250° C or below. The table lists minimum air-flow requirements to maintain tube temperatures at 225° C in 40° C ambient air using the EIMAC SK-1300 socket and SK-1306 chimney. Airflow in the base-to-anode direction is recommended; reverse air-flow may be used, but users should contact the nearest Varian Field Office or EIMAC Division of Varian, San Carlos, California 94070, for specific recommendations.

MINIMUM AIR-FLOW REQUIREMENTS

Air-Flow (CFM)	Pressure Drop (Inches water)
85	0.2
195	0.7
360	2.0
590	4.9
970	10.5
	(CFM) 85 195 360 590

*An additional 1500 watts has been included in preparing this tabulation to compensate for grid and filament power.

RF POWER AMPLIFIER OR OSILLATOR INDUSTRIAL

Class C Telegraphy or FM Telephony (Key Down Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	-	-	-	_	 	-	8000	V
DC PLATE CURRENT					 	-	6.0	А
PLATE DISSIPATION	-	-	-	_	 _	-	15	kW
GRID DISSIPATION	_	_		-	 -		500	W

RF POWER AMPLIFIER PLATE-MODULATED

Class C

ABSOLUTE MAX I MUM RATINGS

									DC Flate Current
DC PLATE VOLTAGE		-	 	-	-		6500	V	DC Grid Voltage
DC PLATE CURRENT		-	 -	-		-	5.0	А	DC Grid Current
PLATE DISSIPATION	-	~	 		-	-	10	kW	Driving Power
GRID DISSIPATION	-		 				500	W	Plate Output Power

RF LINEAR AMPLIFIER

Class AB or B

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		-	-		-	-		8000	V
DC PLATE CURRENT		_	-	-	_			6.0	А
PLATE DISSIPATION	-			-	_	_	-	15	kW
GRID DISSIPATION			-	-	-			500	W

RANGE VALUES FOR EQUIPMENT DESIGN

	, A

	Min.	Max.
Filament: Current, at 6.3 volts	152	168 A
Interelectrode Capacitances ²		
Grid-Filament	50	60 pF
Plate-Filament	1.3	1.6 pF
Grid-Plate	30	38 pF

TYPICAL OPERATING CONDITIONS

DC Plate Voltage		7000	Vdc
DCPlate Current		6.0	А
DC Grid Voltage		-600	Vdc
DC Grid Current		660	mAdc
Peak RF Grid Voltage		1040	V
Driving Power		660	W
Plate Input Power		42	kW
Plate Dissipation		12	kW
Plate Output Power	-	30	kW
Resonant Load Impedance		600	ohms

TYPICAL OPERATING CONDITIONS

DC Plate Voltage -		_	-		5000	6000	Vdc
DC Plate Current -	-	_			2.9	3.9	A
DC Grid Voltage -	-		-	-	550	600	Vdc
DC Grid Current -			-	-	450	520	mAdc
Driving Power			-	-	375	490	W
Plate Output Power			-		13.0	18.0	kW

TYPICAL OPERATING CONDITIONS Class AB_2

DC Plate Voltage		-	_			7000	Vdc
DC Grid Voltage		-	_	-		-270	Vdc
Zero-Sig Plate Current ³ -	-	-				1.5	A
Max-Sig DC Plate Current		-	-	_		4.8	A
Max-Sig DC Grid Current		-	-			400	mAdc
Peak RF Grid Voltage -	_	-	-	-	-	540	V
Driving Power	-	-	-		-	215	W
Plate Output Power	-	-				23	kW
Resonant Load Impedance		-	~	~~		730	ohms

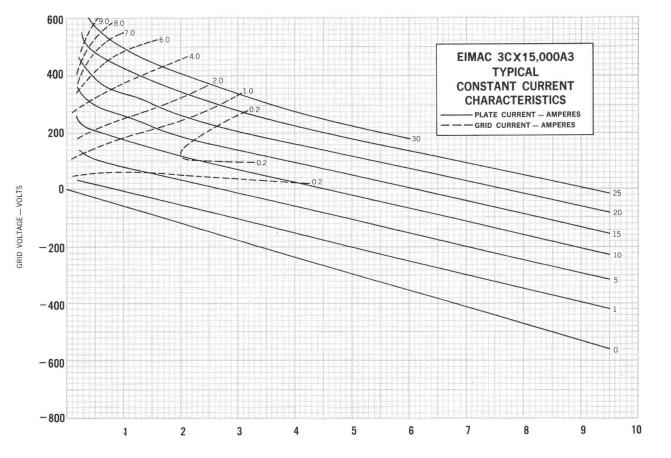
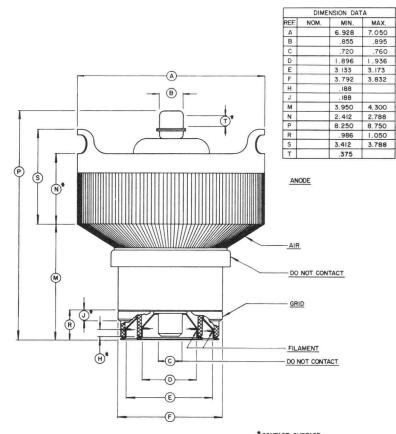



PLATE VOLTAGE - KILOVOLTS

* CONTACT SURFACE ALL DIMENSIONS IN INCHES

TECHNICAL DATA

HIGH-MU POWER TRIODE

CX15.000A7

The EIMAC 3CX15,000A7 is a ceramic/metal power triode intended for use as a zero-bias Class B rf amplifier or Class C power amplifier or oscillator. Class B operation with zero grid bias offers circuit simplicity by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 3CX15,000A7.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten Voltage	63+03	V	Provide	AREAS
_				
Current, at 6.3 volts	160	A		
Amplification Factor (Average):	200		and the second s	
Direct Interelectrode Capacitance (grounded cathode) ²				
Cin	56	pF		
Cout	0.2	pF		
Cgp	36	pF		
Direct Interelectrode Capacitance (grounded grid) ²				
Cin			56	pF
Cout			36	pF
Cpk			0.2	pF
Frequency of Maximum Rating:				
C W			110	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Maximum	0	verall	Dimensions:
---------	---	--------	-------------

Length	8.75 in;	222.3 mm
Diameter	7.05 in;	179.1 mm
Net Weight	12 lb;	5.5 kg
Operating Position	tical base	up or down
Maximum Operating Temperature:		
Ceramic/Metal Seals		. 250°C
Anode Core		. 250°C

(Effective 4-15-71) © by Varian

Printed in U.S.A.

3CX15,000A7

Cooling Forced air
Base Coaxial
Recommended Air System Socket SK-1300 or SK-1320
Recommended Air Chimney SK-1306

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN Class AB

TYPICAL OPERATION (Frequencies to 110 MHz) Class AB_2

Class AB	Plate Voltage 7000	7000 Vdc
ABSOLUTE MAXIMUM RATINGS	Grid Voltage 0 Zero-Signal Plate Current ¹ .6 Single-Tone Plate Current ² 5.92 Single-Tone Grid Current ¹ 1.22	5.0 Adc
DC PLATE VOLTAGE8000VOLTSDC PLATE CURRENT6.0AMPEREPLATE DISSIPATION15,000WATTSGRID DISSIPATION500WATTS	Driving Power 1.1750Plate Dissipation13.4Single-Tone Plate Output Power29.6Resonant Load Impedance693Drive Impedance27	10.8 kW 24.2 kW
1. Approximate values.	2. Adjust to obtain specified value.	

RADIO FREQUENCY POWER AMPLIFIER OR

OSCILLATOR Class C Telegraphy or FM Telephony Grid Driven

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE						8000	VOLTS
DC GRID VOLTAGE				•		-500	VOLTS
DC PLATE CURRENT						5.0	AMPERES
PLATE DISSIPATION						15,000	WATTS
GRID DISSIPATION .						500	WATTS

TYPICAL OPERATION (Frequencies to 110 MHz)

Discourse	-	
Plate Voltage	7000	Vdc
Grid Voltage	-230	Vdc
Plate Current	4.0	Adc
Grid Current 1	775	mAdc
Peak rf Grid Voltage 1	555	V
Calculated Driving Power 1	430	W
Plate Input Power	28	kW
Plate Dissipation	6.7	kW
Plate Output Power	21.3	kW
Resonant Load Impedance	963	Ω
1. Approximate value.		

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.3 volts	152	168 A
Cathode Warmup Time	5.0	sec.
Interelectrode Capacitances (grounded grid) ¹		
Cin	50.0	62.0 pF
Cout	32.0	40.0 pF
Cpk		0.3 pF
Interelectrode Capacitances (grounded cathode) ¹		
Cin	50.0	62.0 pF
Cout		0.3 pF
Cgp	32.0	40.0 pF

1. Capacitance values are for a cold tube as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS-191.

2

APPLICATION

MOUNTING & SOCKETING - The 3CX15,000A7 must be operated vertically, base up or down, and should be protected from severe shock and vibration. The use of an EIMAC air-system socket is recommended. For grid-driven applications, the SK-1300 is used; for cathode-driven circuits, the SK-1320 should be used, as the grid is grounded to the socket frame in this unit. The SK-1306 air chimney is designed to fit around the tube's anode cooler and mount with either socket.

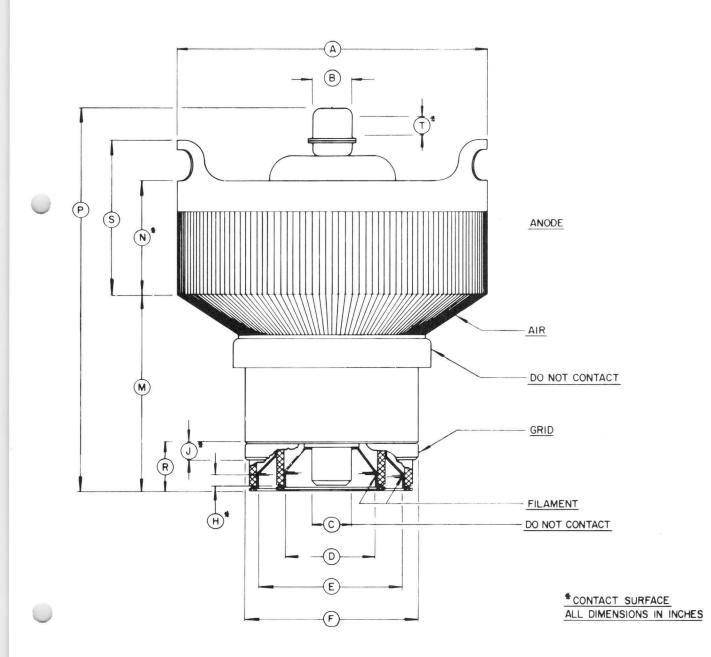
COOLING - The maximum temperature rating for the external surfaces of the 3CX15,000A7 is 250°C. Sufficient forced-air cooling must be provided to maintain the temperature of the anode core and the ceramic/metal seals below 250°C. Tube life is usually prolonged if these areas are maintained at temperatures below the maximum rating. Minimum air flow requirements (for air flowing in a base-to-anode direction) to maintain anode core and seal temperatures below 225°C with an inlet-air temperature of 50°C are tabulated below. The use of these air-flow rates through the recommended socket/ chimney combination will provide effective cooling of the tube. Air flow should be applied before or simultaneously with the application of electrode voltages (including the filament) and should normally be maintained for a short period of time after all voltages are removed to allow for tube cool-down.

SEA		LEVEL	10,000 FEET			
Anode Diss. (watts) *	Air Flow (cfm)	Approx.Press. drop (In.H ₂ O)	Air Flow (cfm)	Approx.Press. drop(In.H ₂ O)		
5,000	242	0,8	350	1.3		
7,500	325	1.7	470	2.4		
10,000	475	2.8	690	4.1		
12,500	640	4.3	930	6.3		
15,000	840	6.2	1220	9.7		

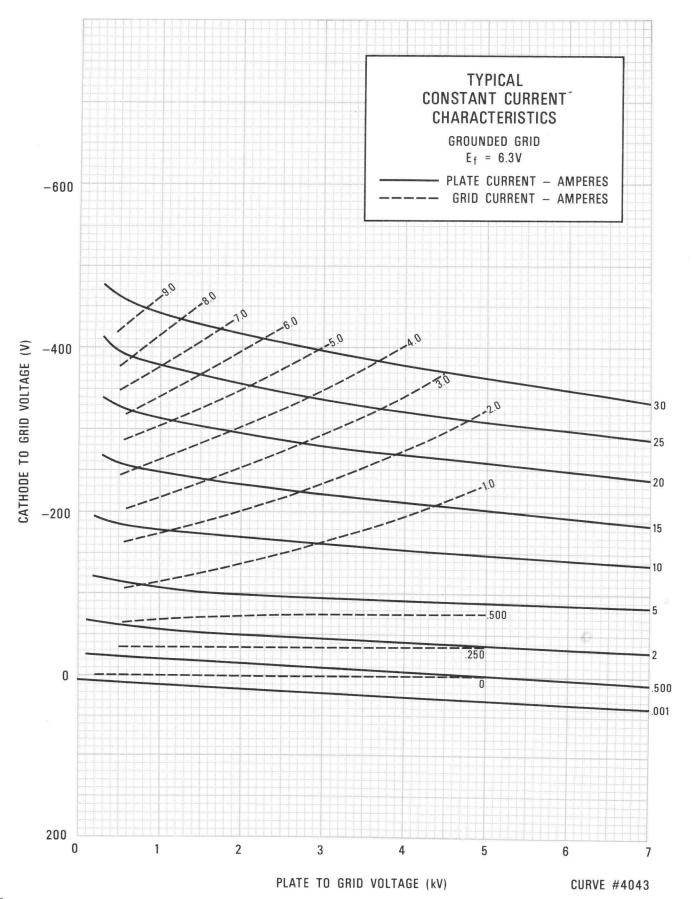
* Since the power dissipated by the filament is about 1000 watts, and since the grid dissipation can represent another 500 watts, allowance has been made in preparing this tabulation for an additional 1500 watts of dissipation.

FILAMENT OPERATION - The rated filament voltage for the 3CX15,000A7 is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate from the rated value by more than plus or minus five percent. *INPUT CIRCUIT* - When the 3CX15,000A7 is operated as a ground-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of two or more.

CLASS-C OPERATION - Although specifically designed for Class-B service, the 3CX15,000A7 may be operated as a Class-C power amplifier or oscillator. The zero-bias characteristic of the 3CX15,000A7 can be used to advantage in Class-C amplifiers by employing only grid-leak bias. If driving power fails, plate dissipation is then kept to a low value because the tube will be operating at the normal static zero-bias conditions.


INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.


HIGH VOLTAGE - The 3CX15,000A7 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA 94070, for information and recommendations.

		DIN	MENSION	L DATA					
		INCHES		MI	MILLIMETERS				
DIM.	IM. MIN. MAX. REF.		MIN.	MAX.	REF.				
A	6.928	7.050		175.97	179.07				
В	0.855	0.895		21.72	22.73				
С	0.720	0.760		18.29	19.30				
D	1.896	1.936		48.16	49.17				
E	3.133	3.173		79.58	80.59				
F	3.792	3.832		96.32	98.86				
н	0.188			4.78					
J	0.188			4.78					
М	3.950	4.300		100.33	109.22				
N	2.412	2.788		61.26	70.82				
Ρ	8.250	8.750		209.55	222.25				
R	0.986	1.050		25.04	26.67				
S	3.412	3.788		86.66	96.22				
T	0.375			9.53					

5

TECHNICAL DATA

3CX15,000H3 INDUSTRIAL MEDIUM-MU AIR-COOLED POWER TRIODE

3CX15,000H3

The EIMAC 3CX15,000H3 is an air-cooled, ceramic-metal power triode designed primarily for use in industrial radio-frequency heating services. Its air- cooled anode is rated at 15 kilowatts of plate dissipation.

Full ratings apply up to 90 megacycles. Plentiful reserve emission is available from its one kilowatt filament. The grid structure is rated at 500 watts making this tube an excellent choice for severe application.

GENERAL CHARACTERISTICS

Filament: Thoriated-Tungsten Min. Nom. Max. Voltage 6.3 Volts Current 152172 amps Amplification Factor -20 Interelectrode Capacitances, Grounded Cathode Connection: Grid-Filament 50 60 $\mu\mu f$ Plate-Filament -1.3 1.6 μµf Grid-Plate -30 38 $\mu\mu f$ Frequency for Maximum Ratings -MHz 90

MECHANICAL

ELECTRICAL

Base	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	(-)		See	Outline	
Operating Position						-	-	-	-	-	-	-	-	-	-	Vertical, base up or down					
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	For	cced Air	
Maximum Operating Temperatures														-	-	-	-	-	250°C		
Maximum Dimensions:																					
Heig		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline	
Dia	mete	er	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	See	Outline	
Net Weig	ght	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	13	Pounds	

THESE SPECIFICATIONS ARE BASED ON DATA APPLICABLE AT PRINTING DATE. SINCE EIMAC HAS A POLICY OF CONTINUING PRODUCT IMPROVEMENT, SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

(Effective 4-1-66) © 1966 Varian

Printed in U.S.A.

RF INDUSTRIAL OSCILLATOR

Class-C (Filtered DC Power Supply)

TYPICAL OPERATION*

DC Plate Voltage

Class-C (Fillered DC Pov	ver s	ouppi	(\mathbf{v})			De l'iale vollage					10,000 volts
-						DC Plate Current					5.0 Amps
MAXIMUM RATINGS:						DC Grid Voltage		-	-	600	-800 Volts
						DC Grid Current		-	-	660	542 mA
DC PLATE VOLTAGE -	-	-	-	-	12,000 Volts	Peak Positive Grid V	/oltage	(-1)		440	400 Volts
DC PLATE CURRENT -	-	-	-	-	6.0 Amps	Driving Power -				660	650 Watts
DC GRID VOLTAGE -		-	-	-	—1000 Volts	Plate Input Power					50 kW
DC GRID CURRENT -		-			1000 10110	Plate Dissipation				12	8.8 kW
				-	1.0 Amps	Plate Output Power				30	41.2 kW
PLATE INPUT POWER	-	-	-	-	60 kW	Approximate Load I	mpedar	nce	-	600	1025 Ohms
PLATE DISSIPATION -	-	-	-	-	15 kW	*Loaded Conditions					

Note: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves. No allowance for circuit losses has been made.

APPLICATION

Filament

ELECTRICAL

For the 3CX15,000H3 the rated filament voltage is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at 6.3 volts plus or minus five percent for long tube life and consistent performance. Maximum life will be obtained by operation at minus 5 percent.

Control Grid Operation

The grid current rating is one ampere dc. This value should not be exceeded for more than very short periods such as during tuning. Overcurrent protection in the grid circuit should be provided. Ordinarily it will not be necessary to operate with more than 0.4 to 0.6 amperes grid current to obtain reasonable efficiency. In industrial heating service with varying loads, grid current should be monitored continuously with a dc current meter. The maximum grid dissipation rating is 500 watts.

Plate Operation

Maximum plate voltage rating of 12,000 volts and maximum plate current of 6.0 amps should not be applied simultaneously as rated plate dissipation may be exceeded.

Plate over-current protection should be provided to remove plate voltage quickly in the event of an over-load or an arc-over at the load. In addition current limiting power supply resistors should be used. These precautions are especially important in industrial service with its wide variations in loading.

Spark gaps from plate to ground should be used to prevent transient voltages from flashing across the tube envelope during any fault conditions.

MECHANICAL

The 3CX15,000H3 must be mounted vertically, either base up or down. A grid contact

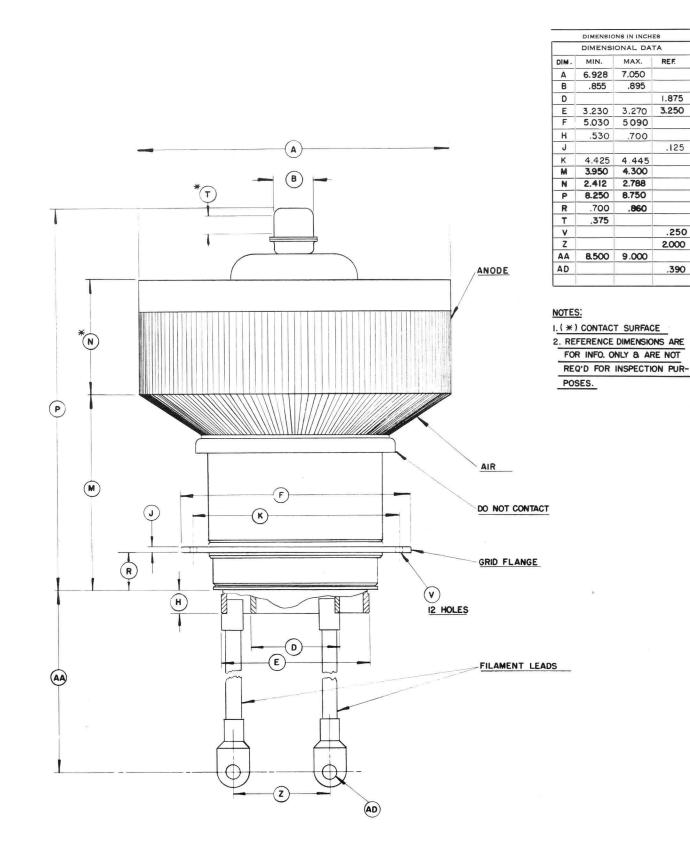
flange is provided for bolting to a strap or a grid deck. Heavy flexible leads are provided for applying the filament voltage.

7000 10 000 Valta

Cooling

The maximum temperature rating for the 3CX15,000H3 is 250°C. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic-metal seals below 250°C. Air-flow requirements to maintain seal temperature at 225°C in 50°C ambient air are tabulated below (for operation below 30 megacycles.)

MINIMUM AIR FLOW REQUIREMENTS (Anode-to-Base Air Flow)											
	Sea	5000 Feet									
Plate* Dissipation watts	Air Flow CFM	Pressure Drop inches water	Air Flow CFM	Pressure Drop inches water							
7500 10,000 15,000	361 606 1260	1.63 3.26 10.00	433 728 1510	1.96 3.92 12.00							


*Since the power dissipated by the filament represents about 1100 watts and since grid dissipation can, under some conditions represent another 500 watts, allowance has been made in preparing this tabulation for an additional 1600 watts.

Additional stem cooling air must be provided. 16 CFM of air directed against the center filament contact ring $\frac{1}{2}$ " below the outer filament contact ring by a $\frac{1}{2}$ " I.D. air duct arranged at a 45° angle with the center line of the tube will provide adequate cooling for maximum frequency of 30 MHz, 50°C ambient, and 5000 ft. altitude.

Special Application

If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Product Manager, EIMAC, Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

Mounting

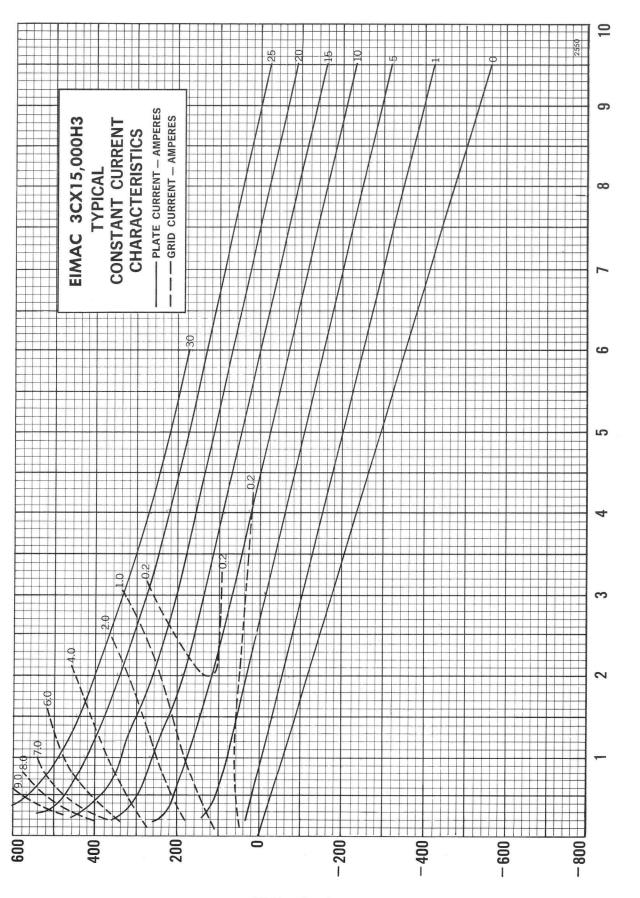


PLATE VOLTAGE - KILOVOLTS

GRID VOLTAGE - VOLTS

Eimac

TECHNICAL DATA

MEDIUM-MU INDUSTRIAL TRIODE

The EIMAC 3CX20,000A3 is a ceramic insulated power triode for industrial oscillator or general communications service. It is recommended for Class C amplifier service, or Class B radio frequency and audio frequency amplifier use.

GENERAL CHARACTERISTICS1

ELECTRICAL

Filament: Thoriated Tungsten		
Voltage	10.0 ± 0.5	V
Current, at 10.0 volts	160	Α
Direct Interelectrode Capacitance (grounded cathode) ²		
Cin	70.0	pF
Cout	2.3	pF
Сдр	43.0	pF
Frequency of Maximum Rating:		
C W	90	MHz

 Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Overall Dimensions:

Length 10.00 in; 254.0 mm
Diameter
Net Weight 19.5 lb; 8.8 kg
Operating Position Vertical
Maximum Operating Temperature:
Ceramic/Metal Seals
Anode Core
Cooling Forced air
Base Coaxial
Recommended Air System Socket SK-1300

(Effective 4-15-71) © by Varian

Printed in U.S.A.

RADIO FREQUENCY LINEAR AMPLIFIER GRID DRIVEN Class AB or B

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		•	•		x	•	8000	VOLTS
DC GRID VOLTAGE .	÷	•	•	ł	ž.		-2000	VOLTS
DC PLATE CURRENT							8.0	AMPERES
PLATE DISSIPATION					ż		20.0	KILOWATTS
GRID DISSIPATION .				÷			750	WATTS

TYPICAL OPERATION Class AB2, Grid Driven, Peak Envelope or Modulation Crest Conditions

Plate Voltage						×.	÷			6500	7500	Vdc
Grid Voltage 1.	•		ł		•				•	-320	-380	Vdc

RADIO FREQUENCY POWER AMPLIFIER OR

OSCILLATOR Class C Telegraphy, Industrial Oscillator (Key-Down Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE		÷	5	•				ł	12,000	VOLTS
DC GRID VOLTAGE .		ł	,						-2000	VOLTS
DC GRID CURRENT .					•	•			1.5	AMPERES
DC PLATE CURRENT									8.0	AMPERES
PLATE DISSIPATION									20.0	KILOWATTS
GRID DISSIPATION .								•	750	WATTS

PLATE MODULATED RADIO FREQUENCY POWER

AMPLIFIER-GRID DRIVEN Class C Telephony (Carrier Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	•		•	•	•				6500	VOLTS
DC PLATE CURRENT .										
PLATE DISSIPATION ¹ .							•		13.0	KILOWATTS
GRID DISSIPATION2 .	•	•	•		ż	•	•		750	WATTS

Corresponds to 20 kW at 100% sine-wave modulation.
 Average, with or without modulation.

AUDIO FREQUENCY POWER AMPLIFIER OR

MODULATOR Class AB, Grid Driven (Sinusoidal Wave)

ABSOLUTE MAXIMUM RATINGS (per tube)

DC PLATE VOLTAGE			ĩ	÷		•			÷		8000	VOLTS
DC PLATE CURRENT	•			,							8.0	AMPERES
PLATE DISSIPATION						•					20.0	KILOWATTS
GRID DISSIPATION		•		x	2		•	•	•	,	750	WATTS

TYPICAL OPERATION (Two Tubes)

Plate Voltage	ŝ		•	•	•	•			•						7500	Vdc
Grid Voltage1/3.		•	•	•	•		ī	•		•	X		÷		-380	Vdc

Zero-Signal Plate Current	1.0	1.0	Adc
Single-Tone Plate Current	6.0	7.4	Adc
Single-Tone Grid Current ²	460	630	mAdc
Peak rf Grid Voltage ²	545	640	V
Driving Power	520	400	W
Plate Dissipation	11.5	15.1	kW
Single-Tone Plate Output Power	27.5	40.0	kW
Resonant Load Impedance	580	570	Ω

Adjust to specified zero-signal dc plate current.
 Approximate value.

TYPICAL OPERATION

Plate Voltage	. 7	500	10,000	Vdc
Grid Voltage	, P	-800	-900	Vdc
Plate Current		8.0	7.9	Adc
Grid Resistor		575	1180	Ω
Grid Current ¹		1.4	.75	Adc
Peak rf Grid Voltage !	. 1	200	1270	V
Calculated Driving Power1	. 1	670	960	W
Plate Input Power	. 1	60.0	78	kW
Plate Dissipation		9.0	14	kW
Plate Output Power	, I	51.0	64	kW
Resonant Load Impedance	. 4	80.0	640	Ω
1. Approximate value.				

TYPICAL OPERATION

Plate Voltage	6500	Vdc
Grid Voltage	-1300	Vdc
Plate Current	5.0	Adc
Grid Current ¹	900	mAdc
Peak rf Grid Voltage ¹	1660	v
Calculated Driving Power	1500	W
Plate Input Power	32.5	kW
Plate Dissipation	5.0	k₩
Plate Output Power	27.5	kW
Resonant Load Impedance	610	Ω

1. Approximate value.

Zero-Signal Plate Current 2.0) Adc
Max. Signal Plate Current 14.8	3 Adc
	6 Adc
Peak af Grid Voltage2 640) v (
Driving Power 800	W
Max. Signal Plate Dissipation 30.2	2 kW
) kW
Load Resistance (plate to plate) 1140	Ω

1. Approximate value.

2. Per Tube.

3. Adjust to give stated zero-signal plate current.

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN

Heater: Current at 10.0 volts	152	168 A
Interelectrode Capacitances ¹ (grounded cathode connection)		
Cin	65.0	75.0 pF
Cout	2.00	2.60 pF
Cgp	38.0	48.0 pF

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MECHANICAL

COOLING - The maximum temperature rating for the external surfaces of the 3CX20,000A3 is $250^{\circ}C$. Sufficient forced-air flow must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below $250^{\circ}C$. Air flow requirements to maintain core temperature at $225^{\circ}C$ in $50^{\circ}C$ ambient air are tabulated below. These data are for air flowing in the base-to-anode direction, and the pressure drop figures shown are for the tube/socket/chimney combination.

BASE-TO-ANODE AIR FLOW										
	Sea I	_evel	10,00	0 Feet						
Plate *		Pressure		Pressure						
Dissipa- tion (watts)	Air Flow (CFM)	Drop In. H2O	Air Flow (CFM)	Drop In. H2O						
10,000 15,000 20,000	320 625 1010	1.0 3.0 6.0	464 910 1475	1.6 4.4 8.7						

* Since the power dissipated by the filament represents about 1680 watts and since the grid dissipation can, under some conditions, represent another 750 watts, allowance has been made in preparing this tabulation for an additional 2430 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures, the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

ELECTRICAL

FILAMENT/CATHODE OPERATION - The filament voltage should be maintained within 5% of the nominal 10.0 V value, and for consistent tube life even closer control is advised. For most services the filament voltage may be less than the nominal 10.0 V for extended life. The exact value about which to control should be determined by experiment in any given service.

GRID OPERATION - The grid dissipation rating of 750 watts must not be exceeded. For the convenience of industrial heating operators a maximum grid current of 1.5 amperes is specified. This provides reasonable assurance that the 750 watt rating is not exceeded.

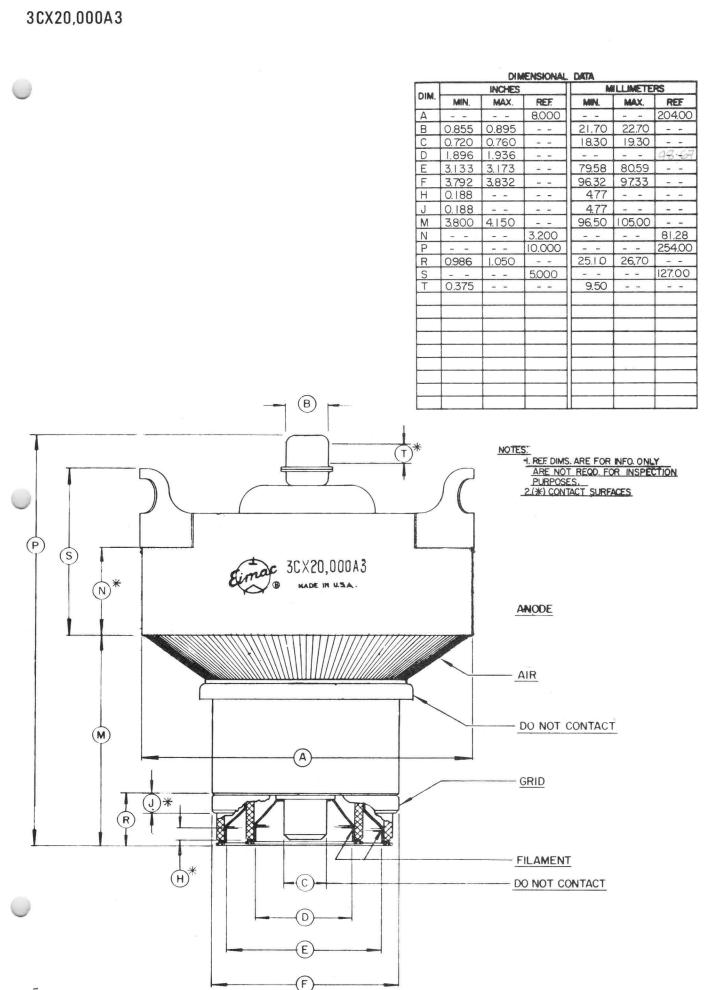
PLATE OPERATION - Allowable anode dissipation depends on provision of sufficient cooling air for the temperature and altitude environment. Anode dissipation will vary widely with load

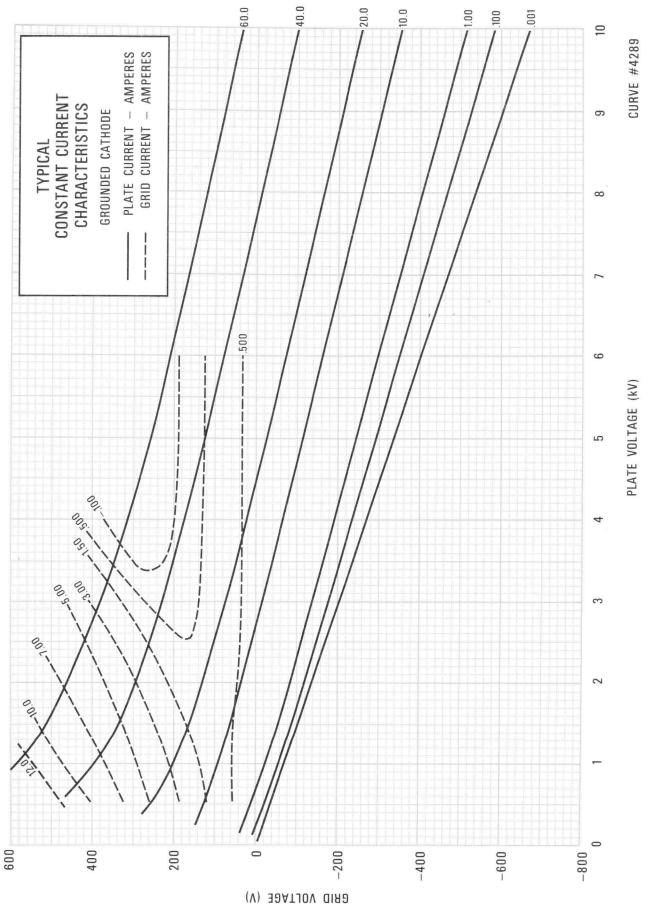
changes in industrial heating service. It is important that the power level be adjusted so that under no condition of the load cycle does the anode dissipation exceed the level established by the available cooling air. When power tubes are operated in parallel, provision should be made to meter plate and grid currents individually. It is good practice also to provide separate plate current or cathode current overload relays when tubes are operated in parallel.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as the 3CX-20,000A3, are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry---the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

HIGH VOLTAGE - Normal operating voltages used with the 3CX20,000A3 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuitx and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.


X-RADIATION - High-vacuum tubes operating at voltages higher than 10 kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 3CX20,000A3, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding an expert in this field should be contacted to perform an X-ray survey of the equipment.


Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious X-ray exposure.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used. stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and elim inates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

SPECIAL APPLICATION - If it is desired to operate this tube under conditions widely different from those listed here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, for information and recommendations.

TECHNICAL DATA

HIGH-MU POWER TRIODE

The EIMAC 3CX20,000A7 is a ceramic/metal power triode intended for use as a zero-bias Class B rf amplifier or Class C power amplifier or oscillator. Class B operation with zero grid bias offers circuit simplicity by eliminating the bias supply. In addition, grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with the 3CX20,000A7.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten					
Voltage 6.3	± 0.3	V			-
Current, at 6.3 volts	160	Α			
Amplification Factor (Average):	200				
Direct Interelectrode Capacitance (grounded cathode) ²					
Cin	61.0	pF			
Cout	0.2	pF			
Cgp	36	pF			
Direct Interelectrode Capacitance (grounded grid) ²					
Cin			 	61.0	pF
Cout			 	36	pF
Cpk			 	0.2	pF
Frequency of Maximum Rating:					
C W			 • •	110	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Overall Dimensions:	
Length	8.50 in; 215.9 mm
Diameter	8.25 in; 209.6 mm
Net Weight	13.5 lb; 6.15 kg
Operating Position Vertice	cal base up or down
Maximum Operating Temperature:	
Ceramic/Metal Seals	250°C
Anode Core	••••• 250° C

(Effective 7-1-73) © 1972 by Varian

Printed in U.S.A.

Base	Forced a Forced a Forced a Coaxi	ial
RADIO FREQUENCY LINEAR AMPLIFIER	TYPICAL OPERATION (Frequencies to 110 MHz)	
CATHODE DRIVEN Class AB	Class AB2	
	Plate Voltage 7000 7000 V	/dc
ABSOLUTE MAXIMUM RATINGS	Grid Voltage 0 0 V	/dc
	Zero-Signal Plate Current ¹ 6 6 A	١dc
DC PLATE VOLTAGE 8000 VOLTS	Single-Tone Plate Current2 5.92 5.0 A	٩dc
DC PLATE CURRENT 6.0 AMPERES	Single-Tone Grid Current ¹ 1.22 1.0 A	٨dc
PLATE DISSIPATION 20,000 WATTS	Driving Power 1 1750 1540 W	V
GRID DISSIPATION 500 WATTS	Plate Dissipation 13.4 10.8 k	W
	Single-Tone Plate Output Power . 29.6 24.2 k	W
1. Approximate values.	Resonant Load Impedance 693 745 Ω	2
2. Adjust to obtain specified value.	Drive Impedance \dots 27 32 Ω	2
RADIO FREQUENCY POWER AMPLIFIER OR	TYPICAL OPERATION (Frequencies to 110 MHz)	
OSCILLATOR Class C Telegraphy or FM	Plate Voltage	C
Grid Driven	Grid Voltage	
	Plate Current 4.0 Ad	
ABSOLUTE MAXIMUM RATINGS	Grid Current ¹	dc

DC PLATE VOLTAGE8000VOLTSDC GRID VOLTAGE-500VOLTSDC PLATE CURRENT5.0AMPERESPLATE DISSIPATION20,000WATTS

500 WATTS

RADIO FREQUENCY POWER AMPLIFIER

GRID DISSIPATION

Class C Cathode Driven

ABSOLUTE MAXIMUM RATINGS:

DC PLATE VOLTAGE							•			8000	VOLTS
DC GRID VOLTAGE .					•		•			-500	VOLTS
DC PLATE CURRENT	•					•				5.0	AMPERES
PLATE DISSIPATION	•	•	•	X	•	•	•			20,000	WATTS
GRID DISSIPATION	•	•	•		•	•	•	•	•	500	WATTS

RADIO FREQUENCY POWER AMPLIFIER

Class B Television Service, Cathode Driven

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE								•	8000	VOLTS
DC PLATE CURRENT									6.0	AMPERES
PLATE DISSIPATION	•	•	•	•		•	•	•	20,000	WATTS
GRID DISSIPATION		•	•	•	x	•	•	•	500	WATTS

TYPICAL OPERATION (Frequencies to 216 MHz) Class B

Plate Voltage 7200 Vdc

Plate Voltage	7000	Vdc
Grid Voltage	-230	Vdc
Plate Current	4.0	Adc
Grid Current ¹	775	mAdc
Peak rf Grid Voltage ¹	555	v
Calculated Driving Power 1	430	W
Plate Input Power	28	kW
Plate Dissipation	6.7	kW
Plate Output Power	21.3	kW
Resonant Load Impedance	963	Ω
1. Approximate value.		

TYPICAL OPERATION

Plate Voltage Grid to Cathode Voltage	7200 -200	7800 -200	Vdc Vdc
Plate Current	3.7		Adc
Grid Current ¹	92	98	mAdc
Peak rf Cathode Voltage ¹	480	500	v
Cathode Driving Power1	1900	2300	W
Plate Dissipation	4500	5000	kW
Plate Load Resistance	1080	1020	Ω
Plate Output Power	22.0	27.5	kW
1. Approximate value.			

Grid Voltage	0	Vdc
Zero Signal Plate Current ¹	1.2	Adc
Effective rf Load Resistance	605	Ω
Plate Current: Blanking Level	4.8	Adc
Sync. Peak Level	5.8	Adc
Grid Current: Blanking Level ¹	0.47	Adc
Sync. Peak Level ¹	1.14	Adc
rf Cathode Voltage Peak:		
Blanking Level ¹	230	V
Sync. Peak Level ¹	300	v
Driving Power: Blanking Level 1	690	w
Sync. Peak Level 1	1700	w
Plate Power Output: Blanking Level	16.5	kw
Sync. Peak Level	27.5	kw

1. Approximate value.

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 6.3 volts	152	168 A
Cathode Warmup Time	5.0	sec.
Interelectrode Capacitances (grounded grid) ¹		
Cin	55.0	67.0 pF
Cout	32.0	40.0 pF
Cpk		0.3 pF
Interelectrode Capacitances (grounded cathode) ¹		
Cin	55.0	67.0 pF
Cout		0.3 pF
Cgp	32.0	40.0 pF

1. Capacitance values are for a cold tube as measured in a shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MOUNTING & SOCKETING - The 3CX20,000A7 must be operated vertically, base up or down, and should be protected from severe shock and vibration. The use of an EIMAC air-system socket is recommended. For grid-driven applications, the SK-1300 is used; for cathode-driven circuits, the SK-1320 should be used, as the grid is grounded to the socket frame in this unit.

COOLING - The maximum temperature rating for the external surfaces of the 3CX20,000A7 is $250^{\circ}C$. Sufficient forced-air cooling must be provided to maintain the temperature of the anode core and the ceramic/metal seals below the maximum rating. Air flow should be applied before or simultaneously with the application of electrode voltages (including the filament) and should normally be maintained for a short period of time after all voltages are removed to allow for tube cool-down.

Minimum air flow requirements (for air flowing in a base to anode direction) to maintain core and seal temperatures below 225°C with an inlet temperature of 50°C are tabulated here. Pressure drop for this tabulation is measured across the anode cooler and does not include drop across a socket or chimney. In cases where the tube base is not directly in the anode cooling air stream, provision should be made to direct an air stream of at least 50 CFM at the base from a 1-1/2 inch nozzle, or make other provision to conduct heat from the filament and grid terminals.

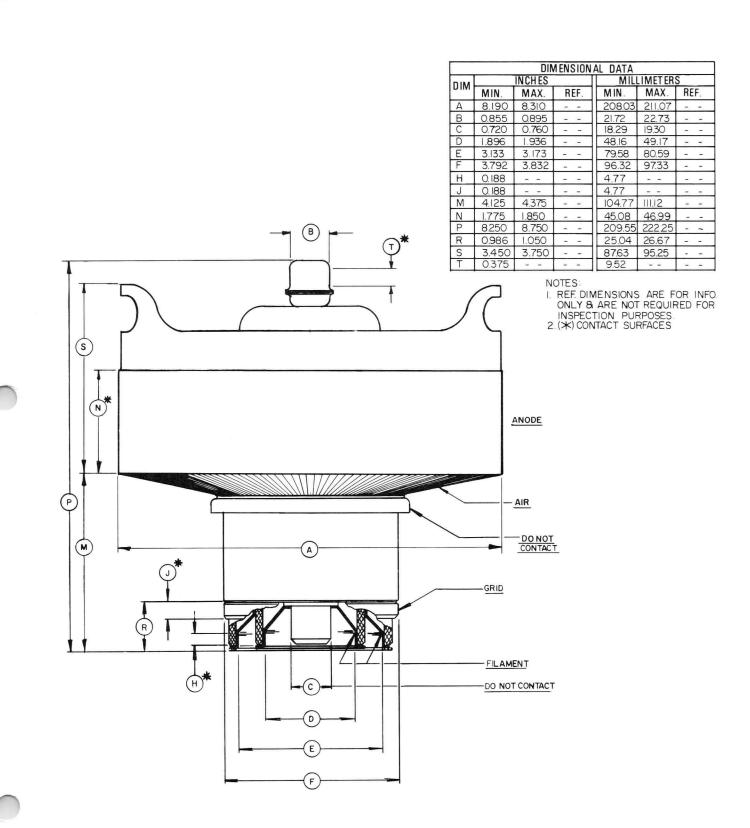
Anode	Sea Le	evel	10,000 Feet Alt.			
Dissipation * kW	Air Flow CFM	Pressure Drop In, Water	Air Flow CFM	Pressure Drop In. Water		
7.5	122	.25	203	.45		
10.0	241	.70	350	1.00		
12.5	400	1.40	580	2.25		
15.0	590	2.45	940	3.90		
17.5	840	4.25	1320	6.70		
20.0	1180	6.90	1710	10.00		

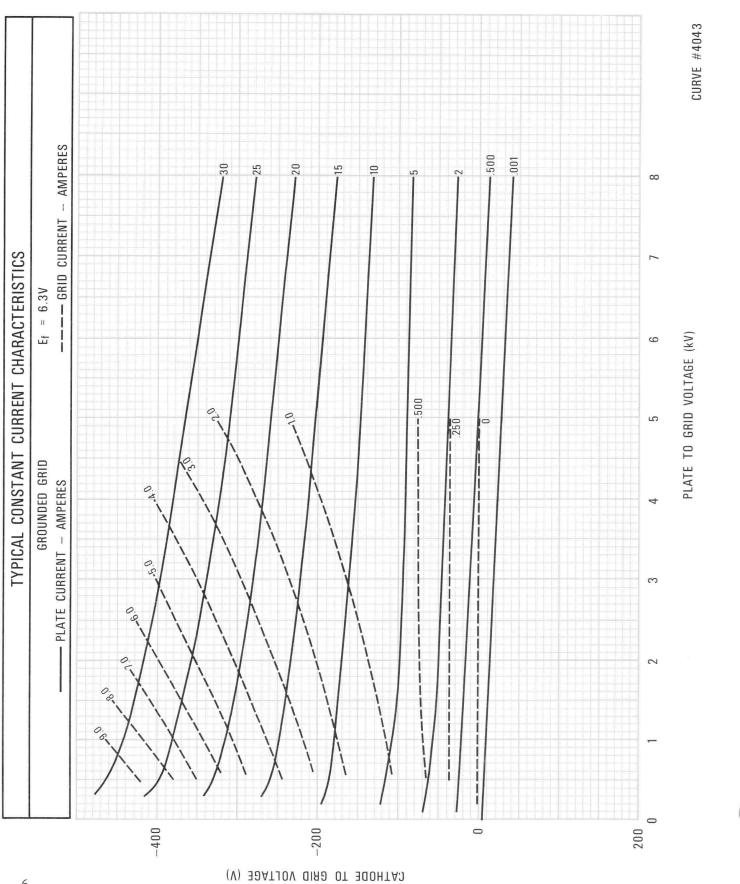
* Since the power dissipated by the filament is about 1000 watts, and since the grid dissipation can represent another 500 watts, allowance has been made in preparing this tabulation for an additional 1500 watts of dissipation.

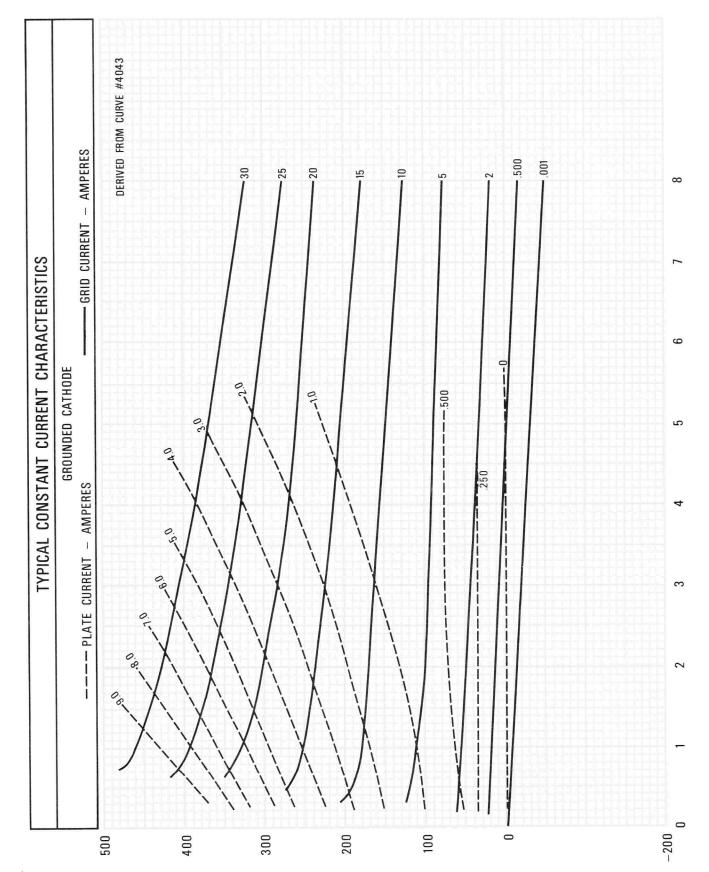
FILAMENT OPERATION - The rated filament voltage for the 3CX20,000A7 is 6.3 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate from the rated value by more than plus or minus five percent.

INPUT CIRCUIT - When the 3CX20,000A7 is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a singleended amplifier, it is suggested that the cathode tank circuit operate at a "Q" of two or more.

CLASS-C OPERATION - Although specifically designed for Class-B service, the 3CX20,000A7 may be operated as a Class-C power amplifier or oscillator. The zero-bias characteristic of the 3CX20,000A7 can be used to advantage in Class-C amplifiers by employing only grid-leak bias. If driving power fails, plate dissipation is then kept to a low value because the tube will be operating at the normal static zero-bias conditions.

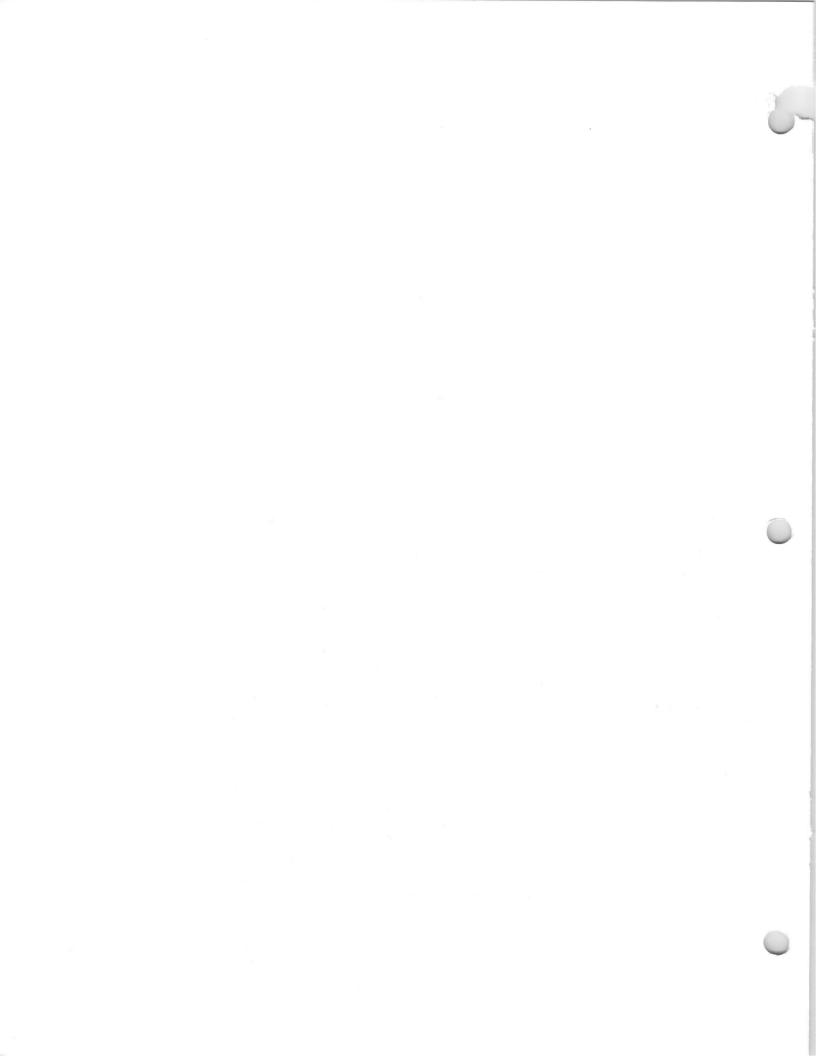

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube


capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.


The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

HIGH VOLTAGE - The 3CX20,000A7 operates at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, CA 94070, for information and recommendations.



(V) 30ATJOV 0180

3CX 20,000A7

CURVE #4282

PLATE VOLTAGE (kV)

TECHNICAL DATA

3CX20,000H3

MEDIUM-MU INDUSTRIAL TRIODE

The 3CX20,000H3 is a ceramic insulated medium-mu power triode with terminals arranged for direct mounting in industrial heating equipment without the use of a socket. The 3CX20,000H3 is recommended for use as an industrial oscillator in the LF to lower VHF range (30 KHz to 90 MHz). This triode is also recommended for the AM broadcast service as a modulator, modulated rf stage, or as a linear amplifier.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Filament: Thoriated Tungsten	
Voltage 10.0 ± 0.5	V
Current, at 10.0 volts 160	А
Direct Interelectrode Capacitance (grounded cathode) ²	
Cin	pF
Cout 2.3	pF
Cgp	pF
Frequency of Maximum Rating:	
C W 90	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

 Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

MECHANICAL

Overall Dimensions:	
Length (Not including filament leads)	10.60 in: 269.2 mm
Diameter	8.00 in; 203.2 mm
Net Weight	20.0 lb; 9.1 kg
Operating Position	al, anode up or down
Maximum Operating Temperature:	
Ceramic/Metal Seals	250°C
Anode Core	250°C
Cooling	Forced air
Base	lexible filament leads

(Effective 5-1-71) © by Varian

Printed in U.S.A.

3CX20,000H3

RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy, or Industrial Oscillator (Key-Down Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	ž	2				÷	÷	12,000	VOLTS
DC GRID VOLTAGE								-2000	VOLTS
DC GRID CURRENT				•				1.5	AMPERES
DC PLATE CURRENT									AMPERES
PLATE DISSIPATION	×.	÷	•	•	÷	÷	2	20.0	KILOWATTS
GRID DISSIPATION	÷	÷			÷	ž		750	WATTS

PLATE MODULATED RADIO FREQUENCY POWER AMPLIFIER-GRID DRIVEN

Class C Telephony (Carrier Conditions)

ABSOLUTE MAXIMUM RATINGS

DC PLATE VOLTAGE	•	•	÷	÷			6500	VOLTS
DC GRID VOLTAGE	÷					×	-2000	VOLTS
DC PLATE CURRENT								
PLATE DISSIPATION ¹							13.0	KILOWATTS
GRID DISSIPATION ²							750	WATTS

1. Corresponds to 20,000 watts at 100% sine-wave modulation.

2. Average, with or without modulation.

AUDIO FREQUENCY POWER AMPLIFIER OR MODULATOR

Class AB, Grid Driven (Sinusoidal Wave)

ABSOLUTE MAXIMUM RATINGS (per tube)

DC PLATE VOLTAGE							8000	VOLTS
DC PLATE CURRENT							8.0	AMPERES
PLATE DISSIPATION			÷	i.	•	٠	20.0	KILOWATTS
GRID DISSIPATION .			ł	ž.			750	WATTS

1. Approximate value.

TYPICAL OPERATION

Plate Voltage	7500	10,000	Vdc
Grid Voltage	-800	-900	Vdc
Plate Current	8.0	7.9	Adc
Grid Current ¹	1.4	.75	Adc
	1200	1270	V
Calculated Driving Power 1	1670	960	W
Plate Input Power	60	78	kW
Plate Dissipation	9.0	14.0	kW
Plate Output Power	51.0	64.0	kW
Resonant Load Impedance	480	640	Ω
1. Approximate value.			

TYPICAL OPERATION

Plate Voltage) Vdc
) Vdc
	0 mAdc
	0 mAdc
Peak rf Grid Voltage ¹) v
Calculated Driving Power	W O
Plate Input Power	5 kW
Plate Dissipation 5.	0 kW
Plate Output Power 27.	5 kW
	0 Ω

1. Approximate value.

TYPICAL OPERATION (Two Tubes)

Plate Voltage7500Grid Voltage1/3-380Zero-Signal Plate Current2.0Max. Signal Plate Current14.8Max. Signal Grid Current 11.26Peak af Grid Voltage 2640Driving Power1800Max. Signal Plate Dissipation30.2	Vdc Adc Adc Adc V W
Max. Signal Plate Dissipation30.2Plate Output Power80.0	
Load Resistance (plate to plate) 1140	_
2. Per Tube.	

3. Adjust to give stated zero-signal plate current

NOTE: TYPICAL OPERATION data are obtained by measurement or calculation from published characteristic curves. Adjustment of the rf grid voltage to obtain the specified plate current at the specified bias, and plate voltages is assumed. If this procedure is followed, there will be little variation in output power when the tube is changed, even though there may be some variation in grid current. The grid current which results when the desired plate current is obtained is incidental and varies from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variations in current. If grid bias is obtained principally by means of a grid resistor, the resistor must be adjustable to obtain the required bias voltage when the correct rf grid voltage is applied.

3CX20,000H3

RANGE VALUES FOR EQUIPMENT DESIGN

RANGE VALUES FOR EQUIPMENT DESIGN	Min.	Max.
Heater: Current at 10.0 volts	152	168 A
Interelectrode Capacitances ¹ (grounded cathode connection)		
Cin		1
Cout	2.00	2.60 pF
Cgp	38.0	48.0 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MECHANICAL

MOUNTING - The 3CX20,000H3 is intended for direct mounting in the equipment. It may be supported by the anode cooler or by the grid terminal flange. It must be mounted vertically, base up, or base down. The filament terminals are flexible leads approximately eight and three quarter inches in length. At higher operating frequencies it is suggested that the RF return to the filament be made to one or both of the heavy filament rings by suitable clamps. In circuits where circulating current may be large it is possible to make the grid connection through a wide strap bolted to one or more of the 1/4 inch holes in the grid flange.

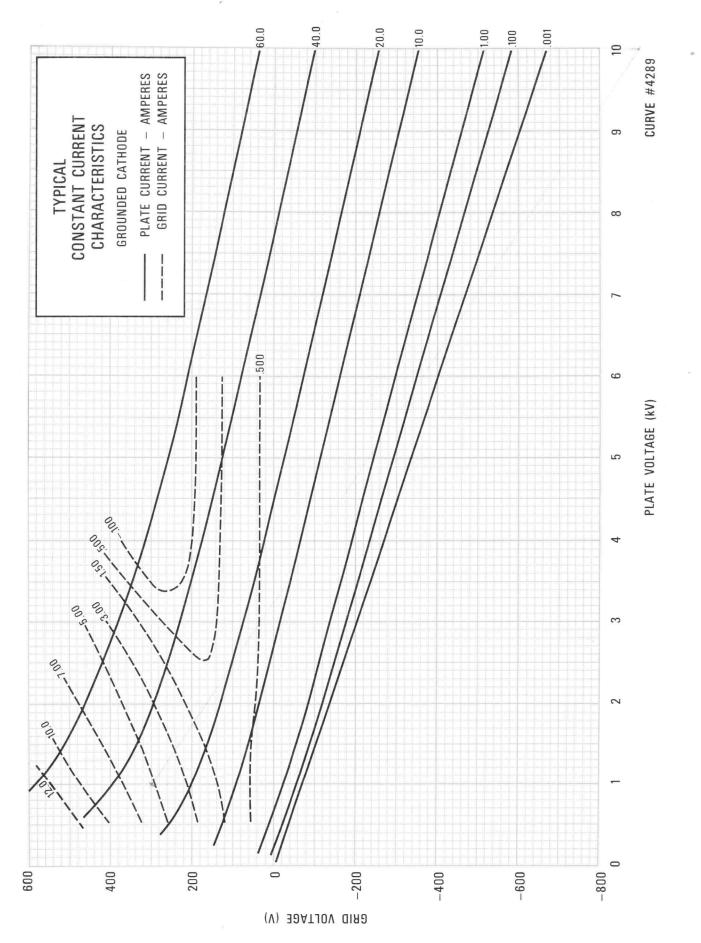
COOLING - The maximum temperature rating for the external surfaces of the 3CX20,000H3 is 250°C. Sufficient forced-air flow must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic/metal seals below 250°C. Air flow requirements to maintain core temperature at 225°C in 50°C ambient air are tabulated below. These data are for air flowing in the base-to-anode direction.

The anode cooling air table assumes that the 3CX20,000H3 will be mounted in an enclosure with cooling air flowing into the enclosure and being exhausted through the anode cooler. If the air flow is reversed, that is, flow from the anode toward the base, approximately 20% additional air flow should be provided as indicated by 33% higher pressure drop across the anode cooler.

Approximately 100 CFM of air should be directed from a $1-\frac{1}{2}$ inch diameter nozzle into the base of the tube to cool the filament terminals.

BASE TO ANODE AIR FLOW										
	Sea L	evel	10,000 Feet							
Plate *		Pressure		Pressure						
Dissipa-	Air Flow	Drop In.	Air Flow	Drop In.						
tion(watts)	(CFM)	W.C.	(CFM)	W.C.						
10,000	320	0.9	464	1.1						
15,000	625	2.1	910	2.8						
20,000	1010	4.3	1475	5.8						

* Since the power dissipated by the filament represents about 1680 watts and since the grid dissipation can, under some conditions, represent another 750 watts, allowance has been made in preparing this tabulation for an additional 2430 watts dissipation.


The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At other altitudes and ambient temperatures, the flow rate must be modified to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using rated maximum temperatures as the criteria for satisfactory cooling.

ELECTRICAL

FILAMENT/CATHODE **OPERATION** - The filament voltage should be maintained within 5% of the nominal 10.0 V value, and for consistent tube life even closer control is advised. For most services the filament voltage may be less than the nominal 10.0 V for extended life.

3CX20,000H3

The exact value about which to control should be determined by experiment in any given service.

GRID OPERATION - The grid dissipation rating of 750 watts must not be exceeded. For the convenience of industrial heating operators a maximum grid current of 1.5 amperes is specified. This provides reasonable assurance that the 750 watt rating is not exceeded.

PLATE OPERATION - Allowable anode dissipation depends on provision of sufficient cooling air for the temperature and altitude environment.

Anode dissipation will vary widely with load changes in industrial heating service. It is important that the power level be adjusted so that under no condition of the load cycle does the anode dissipation exceed the level established by the available cooling air.

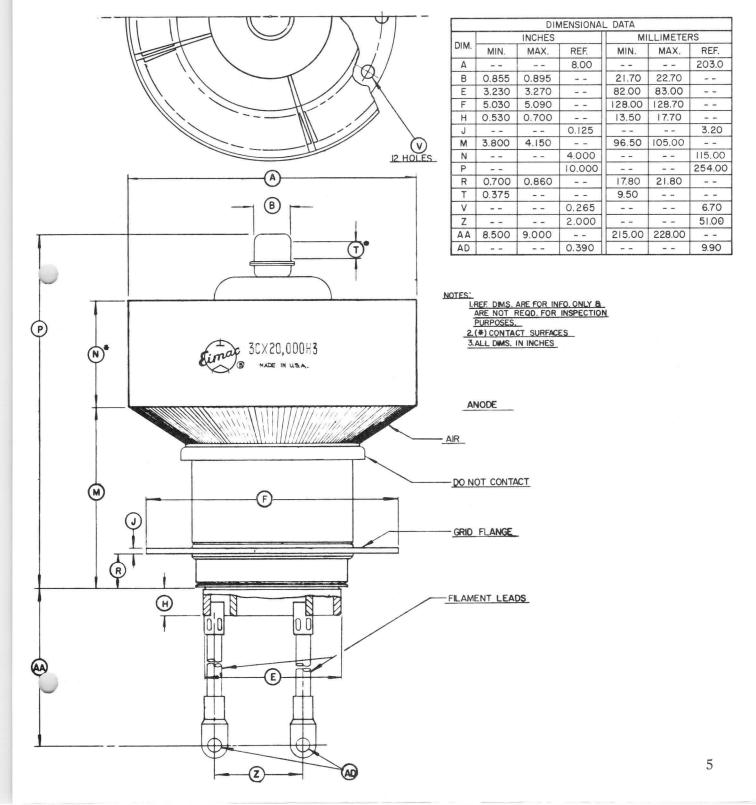
When power tubes are operated in parallel, provision should be made to meter plate and grid currents individually. It is good practice also to provide separate plate current or cathode current overload relays when tubes are operated in parallel.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used. stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

HIGH VOLTAGE - Normal operating voltages used with the 3CX20,000H3 are deadly, and the equipment must be designed properly and operating precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

X-RADIATION - High-vacuum tubes operating at voltages higher than 10kilovolts produce progressively more dangerous X-ray radiation as the voltage is increased. The 3CX20,000H3, operating at its rated voltages and currents, is a potential X-ray hazard. Only limited shielding is afforded by the tube envelope. Moreover, the X-ray radiation level can increase significantly with aging and gradual deterioration, due to leakage paths or emission characteristics as they are affected by the high voltage. X-ray shielding must be provided on all sides of tubes operating at these voltages to provide adequate protection throughout the tube's life. Periodic checks on the X-ray level should be made, and the tube should never be operated without adequate shielding in place when voltages above 10 kilovolts are in use. Lead glass, which attenuates X-rays, is available for viewing windows. If there is any doubt as to the requirement for or the adequacy of shielding, an expert in this field should be contacted to perform an X-ray survey of the equipment.


Operation of high-voltage equipment with interlock switches "cheated" and cabinet doors open in order to be better able to locate an equipment malfunction can result in serious Xray exposure.

RADIO FREQUENCY RADIATION - Avoid exposure to strong rf fields even at relatively low frequency. Absorption of rf energy by human tissue is dependent on frequency. Under 30 MHz, most of the energy will pass completely through the human body with little attenuation or heating effect. Public health agencies are concerned with the hazard, however, even at

these frequencies, and it is worth noting that some commercial dielectric heating units actually operate at frequencies as low as the 13 and 27 MHz bands.

Many EIMAC power tubes, such as the 3CX-20,000H3 are specifically designed to generate or amplify radio frequency power. There may be a relatively strong rf field in the general proximity of the power tube and its associated circuitry ---the more power involved, the stronger the rf field. Proper enclosure design and efficient coupling of rf energy to the load will minimize the rf field in the vicinity of the power amplifier unit itself.

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Product Manager, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A

The EIMAC 35T is a high-mu triode having a maximum plate dissipation of 50 watts. It is intended for use as an amplifier, oscillator or modulator, and can be used at its maximum ratings at frequencies up to 100 MHz.

The 35T is cooled by radiation and by free circulation of air around the envelope. The plate operates at a visible red color at full dissipation.

CHARACTERISTICS

ELECTRICAL

Filament: Thoriated Tungsten	Min. Nom. Ma	ax.
Voltage	5.0	volts
Current	3.6 4	.2 amperes
Amplification Factor	35 4	43
Direct Interelectrode Capacitances:		
Grid-Plate	1.4 2	.2 pF
Grid-Filament	3.0 5	.0 pF
Plate-Filament	0.08 0.2	23 pF
Transconductance (1 _b =100 ma.)	2850	umhos
Frequency for Maximum Ratings	10	00 MHz

MECHANICAL

Base: UX Medium 4-pin. Fits E.F. Johnson Co. 122-224, or National XC-4 or CIR-4 sockets.
Basing
Mounting
Cooling
Recommended Heat-Dissipating Plate Connector Eimac HR-3
Maximum Overall Dimensions:
Length
Diameter
Net Weight
Shipping Weight (Average)1.25 lbs

NOTE: In most cases, "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made. Exceptions are distinguished by a listing of "Useful" output power as opposed to "Plate" output power. Values appearing in these groups have been obtained from existing equipment(s) and the output power is that measured at the load.

(Effective 2-1-69) © 1951, 1957, 1969 by Varian

Printed in U.S.A.

AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR

Class-AB2 (Sinusoidal wave	e,	tv	vo	tub	es	un	less	
MAXIMUM RATINGS		0	the	erw	ise	sp	pecified)	
D-C PLATE VOLTAGE	2	•		×			2000	VOLT
D-C PLATE CUTTENT	2	•					150	MA.
PLATE DISSIPATION .		•					50	WATT
GRID DISSIPATION	ł	•	÷	λ.			15	WATT

TYPICAL OPERATION

	D-C Plate Voltage	600	1000	1500	2000	Volts
	D-C Grid Voltage (approx.)*	0	-8	-25	-40	Volts
	Zero-signal D-C Plate Current	90	67	45	34	Ma.
	Max-signal D-C Plate Current	300	240	200	167	Ma.
TS	Effective Load Plate-to-Plate	4250	7900	16,200 27	,500	Ohms
	Peak A-F Input Voltage (per tube)	130	240	250	255	Volts
TO	Peak Driving Power (approx.)	18	14	10	8	Watts
TS	Nominal Driving Power (approx.) .	9	7	5	4	Watts
TS	Max-signal Plate Power Output .	95	140	200	235	Watts

RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

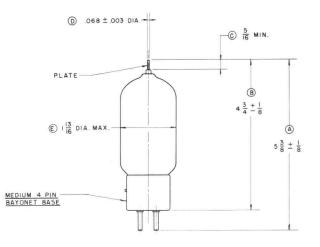
Class-C Telegraphy or FM Telephony (Key-down conditions, per tube)¹

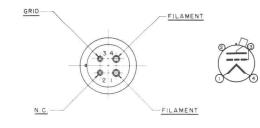
MAXIMUM RATINGS

D-C PLATE VOLTAGE				2000	VOLTS
D-C PLATE CURRENT				150	MA.
PLATE DISSIPATION .		÷		50	WATTS
GRID DISSIPATION			۰,	15	WATTS

PLATE MODULATED RADIO POWER AMPLIFIER

Class-C Telephony (Carrier cond

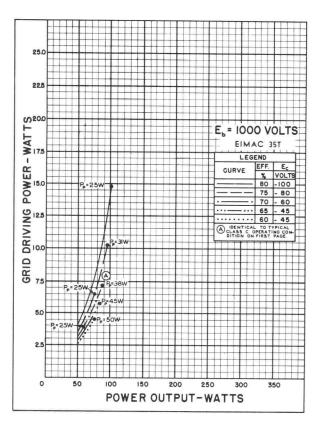

MAXIMUM RATINGS				
D-C PLATE VOLTAGE			1600	VOLT
D-C PLATE CURRENT			120	MA.
PLATE DISSIPATION .			33	WATT
GRID DISSIPATION			15	WATT

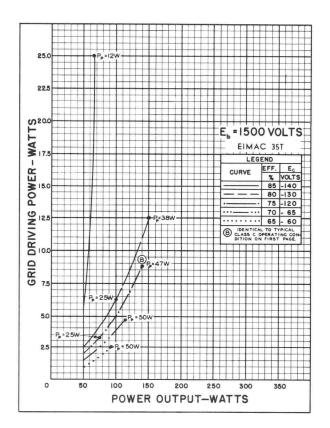

TYPICAL OPERATION D

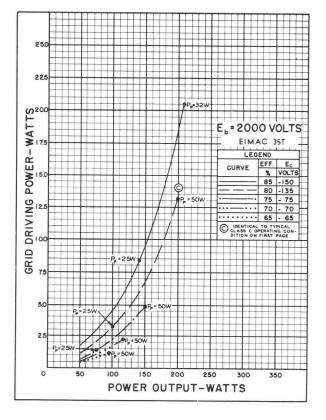
D-C Plate Voltage								1000	1500	2000	Volts
D-C Grid Voltage						•	÷	-60	-120	-135	Volts
D-C Plate Current							0	125	125	125	Ma.
D-C Grid Current					(0)			40	40	45	Ma.
Peak R-F Grid Input	V	0	ta	ge		3		165	250	285	Volts
Driving Power (app	ro	x.)					,	7	9	13	Watts
Grid Dissipation				•				4.2	5.0	6.8	Watts
Plate Power Input								125	188	250	Watts
Plate Dissipation								38	47	50	Watts
Plate Power Output							0	87	141	200	Watts

F	FF	R	EQI	JENC	ſ	TYPICAL OPERATION	
dit	io	ns	i, pi	er tube)	1	D-C Plate Voltage	Volts Volts Ma. Ma.
				1000		Peak R-F Driving Voltage (approx.) 210 240 270	Volts
	,			1600	VOLTS	Driving Power (approx.)	Watts
				120	MA.	Plate Dissipation	Watts
						Plate Input	Watts
	1	•	٠		WATTS	Plate Power Output	Watts
•	,		•	15	WATTS	* Adjust for stated zero-signal plate current.	

¹The performance figures listed under Typical Operation are for radio frequencies up to the VHF region and are obtained by calculation from the characteristic tube curves and confirmed by direct tests. The driving power given includes power taken by the tube grid and the bias circuit. The driving power and output power do not allow for losses in the associated resonant circuits. These losses are not included because they depend principally upon the design and choice of the circuit components.


DESIGN TEST MEASUREMENTS: A, E, TYPE APPROVAL MEASUREMENTS: B, D, PRODUCTION TEST MEASUREMENTS: C,


imae 35T —


DRIVING POWER vs. POWER OUTPUT

The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 1000, 1500 and 2000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by $P_{\rm P}$.

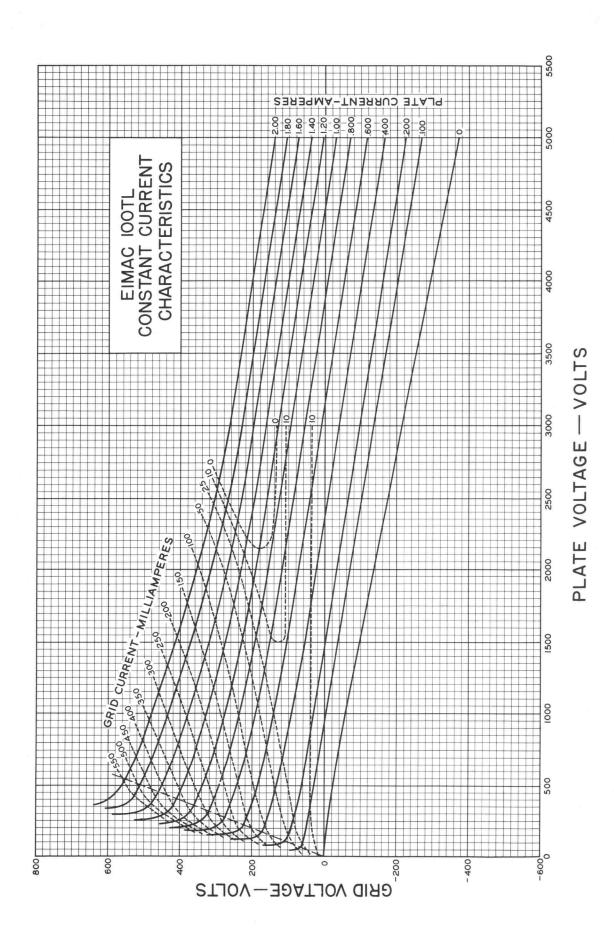
Points A,B, and C are identical to the typical Class C operating conditions shown on the first page under 1000, 1500, and 2000 volts respectively.

STJOV/23

EIMAC **Division of Varian**

SAN CARLOS CALIFORNIA

100TL LOW-MU TRIODE MODULATOR OSCILLATOR AMPLIFIER

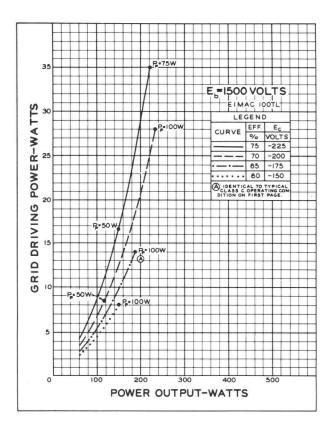

The Eimac 100TL is a low-mu power triode having a maximum plate dissipation rating of 100 watts, and is intended for use as an amplifier, oscillator or modulator. It can be used at its maximum ratings at frequencies as high as 40-Mc.

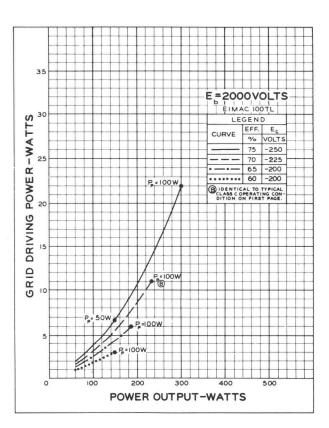
Cooling of the 100TL is accomplished by radiation from the plate, which operates at a visible red color at maximum dissipation, and by means of air circulation by convection around the envelope.

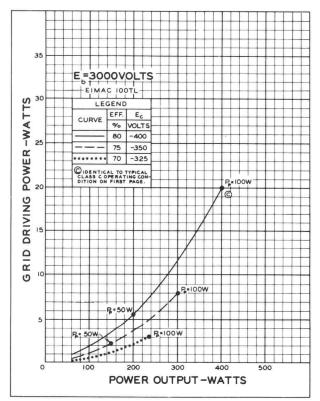
GENERAL CHARACTERISTICS

GENERAL CHARACTERIST	rics
Filament: Thoriated tungsten Voltage	5.0 volts
Amplification Factor (Average) Direct Interelectrode Capacitances (Average)	14
Grid-Plate	224
Frequency for Maximum Ratings	40 Mc.
MECHANICAL Base (Medium 4-pin bayonet, ceran Basing Ver Mounting Ver Cooling Cor	RMA type 2M rtical, base down or up. nvection and Radiation.
Recommended Heat Dissipating Connectors: Plate	Eimac HR-6
Length	7.75 inches
Net weight	4 ounces
AUDIO FREQUENCY POWER AMPLIFIER	TYPICAL OPERATION
AND MODULATOR	D.C. Plate Voltage
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified)	D-C Plate Voltage 1500 2000 2500 Volts D-C Grid Voltage (approx.)*
AND MODULATOR Class-AB2 (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS	D-C Plate Voltage 1500 2000 2500 Volts D-C Grid Voltage (approx.)*
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS	D-C Plate Voltage 1500 2000 2500 Volts D-C Grid Voltage (approx.)*
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT,	D-C Plate Voltage 1500 2000 2500 Volts D-C Grid Voltage (approx.)*
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS	D-C Plate Voltage - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - </td
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER	D-C Plate Voltage
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR	D-C Plate Voltage
AND MODULATOR Class-AB. (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER	D-C Plate Voltage
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS	D-C Plate Voltage
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS	D-C Plate Voltage
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE CURRENT 225 MAX. MA.	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 -110 -145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 3800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 21 22 20 Watts Max-Signal Nominal Driving Power (approx.) 10.5 11 10 Watts Max-Signal Plate Power Output - 280 360 425 Watts *Adjust to give stated zero signal plate current. - 1500 2000 3000 Volts D-C Plate Voltage - - - 1500 2000 3000 Volts D-C Grid Voltage - - - 150 2000 3000
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS	D-C Plate Voltage - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 -110 -145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 3800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 280 360 425 Watts Max-Signal Peak Driving Power (approx.) 10.5 11 10 Watts Max-Signal Peak Driving Power (approx.) - 280 360 425 Watts *Adjust to give stated zero signal plate current. - 100 3000 Volts D-C Plate Voltage - - - 175 -225 -400 Volts D-C Grid Voltage - - - 175 -225 -400 Volts
AND MODULATOR Class-AB; (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE CURRENT 225 MAX. MA. PLATE DISSIPATION 100 MAX. WATTS GRID DISSIPATION 15 MAX. WATTS PLATE MODULATED RADIO FREQUENCY	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 -110 -145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 8800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 21 22 20 Watts Max-Signal Plate Power Output - 280 360 425 Watts Max-Signal Plate Power Output - 280 360 425 Watts *Adjust to give stated zero signal plate current. - - 1500 2000 3000 Volts D-C Plate Voltage - - - - - 165 Ids. Ma. D-C Grid Voltage - - - - 175 - <
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE CURRENT 225 MAX. MA. PLATE DISSIPATION 100 MAX. WATTS GRID DISSIPATION 15 MAX. WATTS	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 - 110 - 145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 8800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 21 22 20 Watts Max-Signal Peak Driving Power (approx.) 10.5 11 10 Watts Max-Signal Peak Driving Power (approx.) 10.5 11 10 Watts Max-Signal Plate Power Output - 280 360 425 Watts Max-Signal Plate Power Output - - 280 360 425 Watts D-C Grid Voltage - - - - 175 - 225 - 400 Volts
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE VOLTAGE 225 MAX. MA. PLATE DISSIPATION 100 MAX. WATTS GRID DISSIPATION 15 MAX. WATTS PLATE MODULATED RADIO FREQUENCY AMPLIFIER Class-C Telephony (Carrier conditions, per tube)	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 - 110 - 145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 8800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 21 22 20 Watts Max-Signal Peak Driving Power (approx.) 10.5 11 10 Watts Max-Signal Peak Driving Power (approx.) 10.5 11 10 Watts Max-Signal Plate Power Output - - 280 360 425 Watts *Adjust to give stated zero signal plate current. - - 1500 2000 3000 Volts D-C Grid Voltage - - - 1500 2000 3000 Volts
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE CURRENT 225 MAX. MA. PLATE DISSIPATION 100 MAX. WATTS GRID DISSIPATION 15 MAX. WATTS PLATE MODULATED RADIO FREQUENCY AMPLIFIER	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 -110 -145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 8800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 280 360 425 Watts Max-Signal Plate Power Output - 280 360 425 Watts Max-Signal Plate Power Output - 280 360 425 Watts Max-Signal Plate Power Output - - 1500 2000 3000 Volts D-C Plate Voltage - - - 175 -225 -400 Volts D-C Grid Current - - - - 175 280 650
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE CURRENT 225 MAX. MA. PLATE DISSIPATION 100 MAX. WATTS GRID DISSIPATION 15 MAX. WATTS PLATE MODULATED RADIO FREQUENCY AMPLIFIER Class-C Telephony (Carrier conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 2500 MAX. VOLTS D-C PLATE VOLTAGE 180 MAX. MA.	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 - 110 - 145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 8800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 21 22 20 Watts Max-Signal Plate Power Output - - 280 360 425 Watts Max-Signal Plate Power Output - - 280 360 425 Watts Max-Signal Pote Voltage - - - 1500 2000 3000 Volts D-C Grid Voltage - - - 175 - 225 - 400 Volts D-C Grid Voltage - - - 170 165 165
AND MODULATOR Class-AB: (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 225 MAX. MA. PLATE DISSIPATION, PER TUBE - 100 MAX. WATTS RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 3000 MAX. VOLTS D-C PLATE CURRENT 225 MAX. MA. PLATE DISSIPATION 100 MAX. WATTS GRID DISSIPATION 100 MAX. WATTS PLATE MODULATED RADIO FREQUENCY AMPLIFIER Class-C Telephony (Carrier conditions, per tube) MAXIMUM RATINGS D-C PLATE VOLTAGE 2500 MAX. VOLTS	D-C Plate Voltage - - - 1500 2000 2500 Volts D-C Grid Voltage (approx.)* - - -65 -110 -145 Volts Zero-Signal D-C Plate Current - - - 80 60 48 Ma. Max-Signal D-C Plate Current - - 320 280 250 Ma. Effective Load, Plate-to-Plate - - 8800 15,000 22,000 Ohms Peak A-F Grid Input Voltage (per tube) - 235 270 290 Volts Max-Signal Peak Driving Power - - 280 360 425 Watts Max-Signal Plate Power Output - 280 360 425 Watts Max-Signal Plate Power Output - 280 360 425 Watts Max-Signal Plate Power Output - - 1500 2000 3000 Volts D-C Plate Voltage - - - 175 -225 -400 Volts D-C Grid Current - - - - 175 280 650

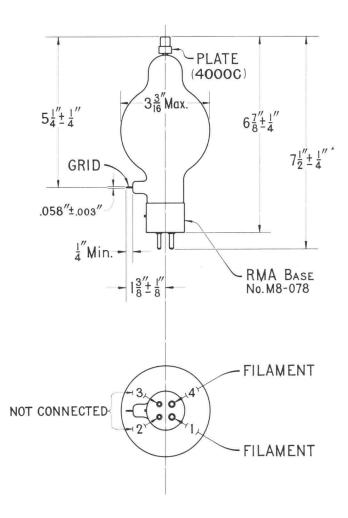
(Effective 5-1-52) Copyright, 1949

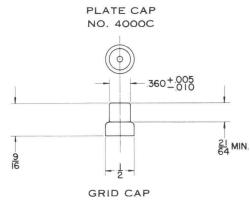

- Eimar 100TL


imas 100TL —


DRIVING POWER vs. POWER OUTPUT

The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 1500, 2000 and 3000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by P_p .


Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 1500, 2000, and 3000 volts respectively.



(SEE TUBE OUTLINE DRAWING)

Eimac

EIMAC **Division of Varian** SAN CARLOS CALIFORNIA

MODULATOR OSCILLATOR AMPLIFIER

The EIMAC 250TH is a high-mu power triode intended for use as an amplifier, oscillator or modulator. It has a maximum plate-dissipation rating of 250 watts and a maximum plate-voltage rating of 4000 volts at frequencies up to 40 MHz.

The 250TH in class-C rf service will deliver up to 1000 watts plate power output with 39 watts driving power. Two 250TH's in class-AB₂ modulator service will deliver up to 1180 watts maximum-signal plate power output with 42 watts nominal driving power.

GENERAL CHARACTERISTICS ELECTRICAL

Filament: Thor	iated '	Tung	gsten								
Voltage	-	-	-	-	-	1	-	-	-	-	5.0 volts
Current	=	-	-	-	-		-	-	-	-	10.5 amperes
Amplification F	actor	(Ave	erage)	-	-	-	-	-	-	37
Direct Interelect	trode (Capa	citar	ices	(Av	erage	e)				
Grid-Plate	-	-	-	-	-	-	-	-	-	-	$2.9 \ \mu\mu f$
Grid-Filam	ent	-	-	-	-	-	\mathbf{x}^{*}	-	-	-	$4.6 \mu\mu f$
Plate-Filan	nent	-	-	-	-	-	-	-	-	-	$0.5 \ \mu\mu f$
Transconductar	nce $(I_b$	=30	0 ma	, E _t	=30	00 v	.)	-	-	-	5600 μ mhos
Highest Freque	ncy for	r Ma	xim	ım I	Ratin	igs	-	-	-	-	40 MHz

MECHANICAL

Base .	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	Spec	ial 4-pin	L
Basing	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Se	e oi	ıtline	drawing	5
Socket	-	-	-	-	-	-	(Na	tiona	al No	. XN	1-50	or E.	F. (Johns	son]	No. 1	23-2	11)	or eq	uivalent	
Mounting	Pos	sition	ı	-	-	-	-	-	-	-	-	-	-	-	-	Ver	tical	, ba	se do	wn or up)
Cooling	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Cor	nvect	ion	and 1	radiation	L
Maximum	Te	mpe	ratu	re of	e Pla	te a	nd G	rid S	eals	~	-	-	-	-	-	-	-	-	-	225°C	;
Recommen	nde	d He	at-D	issip	oatin	g Co	onne	ctors	5:												
Plate		-	-	- 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EIM	AC HR-6	5
Grid		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EIM	AC HR-3	\$
Maximum	ı Ov	ver-a	ll Di	men	sion	s:															
Lengt	th	-	-	Ξ.	-	-	-	-	-	-	-	-	-		-	-	-	-]	10.13	inches	
Diam	neter	r	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3.81	inches	
Net Weigh	ht	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10	ounces	
Shipping V	Wei	ght	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	pounds	

RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down conditions, per tube) MAXIMUM RATINGS DC PLATE VOLTAGE -4000 VOLTS DC PLATE CURRENT ---350 MA -PLATE DISSIPATION --250 WATTS -GRID DISSIPATION 40 WATTS

TYPICAL OPERATION, per tube (Frequencies up to 40 MHz) DC Plate Voltage -2000 3000 4000 volts - -DC Grid Voltage -220 volts -100 -150DC Plate Current - - - -DC Grid Current* - - -Peak RF Grid Voltage (approx.) -- 1 357 333 313 ma 94 90 93 ma 345 395 470 volts Driving Power* 29 32 39 watts -20 19 Grid Dissipation 18 watts 714 1250 watts Plate Power Input ---1000 250 750 Plate Dissipation 250 250 watts 1000 watts Plate Power Output 464

PLATE MODULATED F POWER AMPLIFIER	RADIO	FR	EQUE	NCY	TYPICAL OPERATION, per tube ¹ (Frequencies up to 40 MHz) DC Plate Voltage 2000 2500 3000 vol DC Grid Voltage160180200 vol
Class-C Telephony (Carrier MAXIMUM RATINGS, PER (Frequencies up to 40 DC PLATE VOLTAGE - DC PLATE CURRENT - PLATE DISSIPATION - GRID DISSIPATION -	TUBE MHz)	ins) - -	280 165	VOLTS MA WATTS WATTS	DC Grid Voltage - - - - - - - 200 vol DC Plate Current - - 250 225 200 ma DC Grid Current* - - 60 45 38 ma Peak RF Grid Voltage - - 365 365 375 vol Driving Power* - - 22 17 14 wal Grid Dissipation* - - 12 8 6 wal Plate Power Input - - 500 565 600 wal Plate Dissipation - - 165 165 165 wal Plate Power Output - - 335 400 435 wal
AUDIO FREQUENCY AND MODULATOR	POWE			FIER	TYPICAL OPERATION DC Plate Voltage - - 1500 2000 3000 vol DC Grid Voltage! - - 0 - 30 - 65 vol
	, two tu	bes	0111633		Zero-Signal DC Plate Current - 220 140 100 ma Max Signal DC Plate Current - 700 700 560 ma
otherwise specified) MAXIMUM RATINGS DC PLATE VOLTAGE - MAX-SIGNAL DC PLATE	, two tu	-	4000	VOLTS	Max-Signal DC Plate Current - 700 700 560 ma Effective Load, Plate-to-Plate - 4200 6000 12,200 ohr Peak AF Grid Voltage (per tube) - 230 260 vol Max-Signal Peak Driving Power* - 92 104 83 war
MAXIMUM RATINGS	- a: - u		4000 350		Max-Signal DC Plate Current - 700 700 560 ma Effective Load, Plate-to-Plate - 4200 6000 12,200 ohr Peak AF Grid Voltage (per tube) - 230 260 260 vol

APPLICATION

MECHANICAL

250TH

Mounting — The 250TH must be mounted vertically, base down or up. The plate and grid leads should be flexible, and the tube must be protected from vibration and shock.

Cooling — Heat Dissipation Connectors (EIMAC HR-6 and HR-3 or equivalent) must be used at the plate and grid terminals of the 250TH. Forced-air cooling is not required in properly designed equipment operating at frequencies below 40 MHz. If the free circulation of air around the tube is restricted, a small fan or centrifugal blower should be used to provide additional cooling.

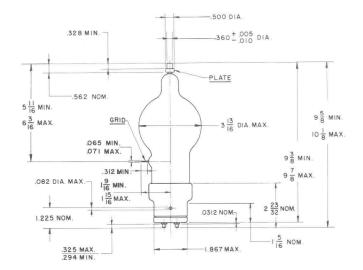
The temperature of the plate and grid seals must not be allowed to exceed 225°C. One method of measuring these temperatures is by the use of "Tempilaq," a temperature-sensitive lacquer manufactured by the Tempil Corporation, 132 W. 22nd St., New York 11, N.Y.

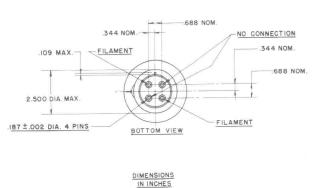
ELECTRICAL

Filament Voltage — The filament voltage, as measured directly at the tube, should be 5.0 volts with maximum allowable variations due to line fluctuations from 5.25 to 4.75 volts.

Bias Voltage — When grid-leak bias is used, suitable protective means must be provided to

prevent excessive plate dissipation in the event of loss of excitation, and the grid-leak resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired value from tube to tube.

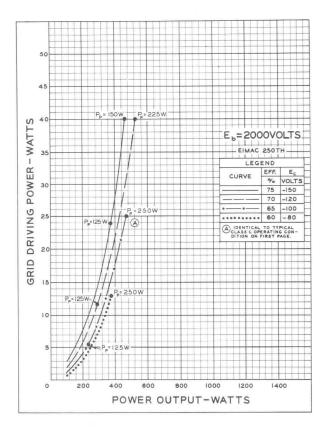

Grid Dissipation — The power dissipated by the grid of the 250TH must not exceed 40 watts. Grid dissipation may be calculated from the following expression:

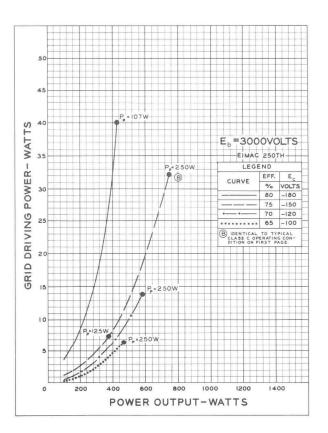

$P_g = e_{cmp}I_c$ where $P_g = grid$ dissipation,

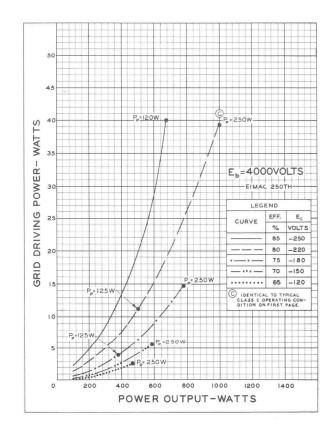
 e_{mcp} =peak positive grid voltage, and I_c =dc grid current.

e_{emp} may be measured by means of a suitable peak-reading voltmeter connected between filament and grid. In equipment in which the plate loading varies widely, such as oscillators used for radio-frequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any condition of loading.

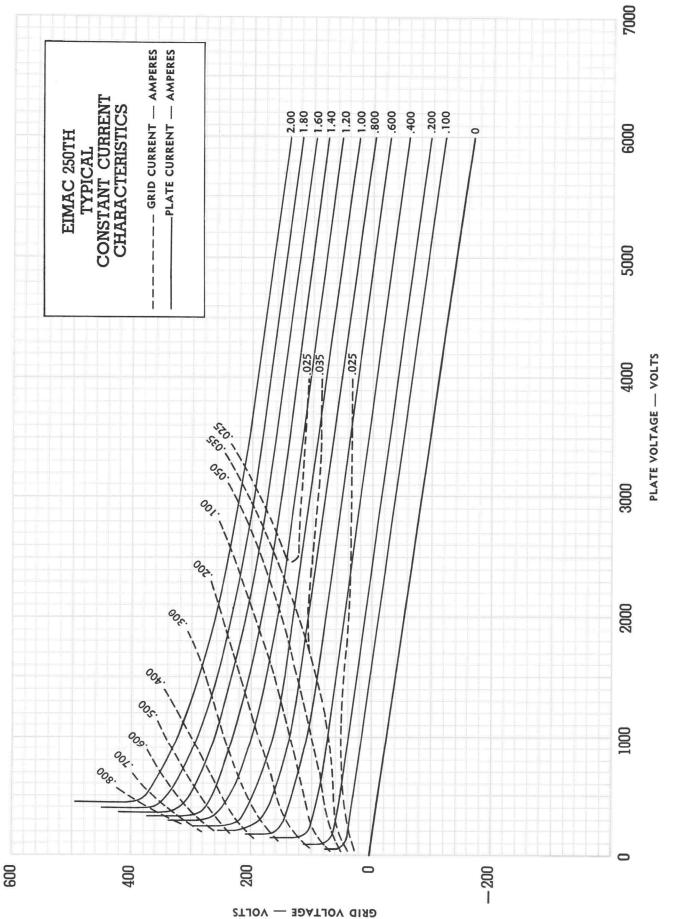
Plate Dissipation — The plates of the 250TH operate at a visibly red color at the maximum rated dissipation of 250 watts. Plate dissipation in excess of the maximum rating is permissible only for short periods of time, such as during tuning procedures.






250TH Simo -

DRIVING POWER vs. POWER OUTPUT


The three charts on this page show the relationship of plate efficiency, power output and approximate grid driving power at plate voltages of 2000, 3000, and 4000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 2000, 3000, and 4000 volts respectively.

E I M A C

Division of Varian SAN CARLOS CALIFORNIA

250TL

LOW-MU TRIODE

MODULATOR OSCILLATOR AMPLIFIER

The Eimac 250TL is a low-mu triode having a maximum plate dissipation of 250 watts. It is intended for use as an amplifier, oscillator or modulator, and can be used at its maximum ratings at frequencies up to 40 Mc.

Cooling of the 250TL is accomplished by radiation from the plate, which operates at a visible red color at maximum dissipation, and by means of air circulation around the envelope.

GENERAL CHARACTERISTICS

GENERAL GHARAGIERISIIG	
ELECTRICAL	
Filament: Thoriated tungsten	
Voltage	
Current	10.5 amperes
Amplification Factor (Average)	14
Direct Interelectrode Capacitances (Average)	
Grid-Plate	
Grid-Filament	the property in the second sec
Plate-Filament	
Transconductance (I_b=350 ma., $E_b\!=\!3000V.)$ -	
Frequency for Maximum Ratings	40 Mc
MECHANICAL	
Base: Medium 4-pin bayonet type, fits E. F. Johnson No. 211 socket, or the equivalent. For pin connections, see outline drawing.	series sockets, National XM-50
Mounting	- Vertical, base down or up.
	- Convection and radiation.
Recommended Heat Dissipating Connectors:	
Plate	Eimac HR-6
Grid	Eimac HR-3
Maximum Over-all Dimensions:	
Length	10.13 inche
Diameter	3.81 inche
Net Weight	10 ounce
Shipping Weight	3 pound
AUDIO FREQUENCY POWER AMPLIFIER	TYPICAL OPERATION
AND MODULATOR Class-AB ₂ (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS D-C PLATE VOLTAGE - 4000 MAX. VOLTS MAX-SIGNAL D-C PLATE CURRENT, PER TUBE 350 MAX. MA. MAX-SIGNAL PLATE DISSIPATION, PER TUBE 250 MAX. WATTS	D-C Plate Voltage - - - 1500 2000 3000 Volts D-C Grid Voltage (approx.)* - - -40 -90 -170 Volts Zero-Signal D-C Plate Current - - 200 150 100 Ma. Max-Signal D-C Plate Current - - 700 650 500 Ma. Effective Load, Plate-to-Plate - - 3800 6150 13,000 Ohn Peak A-F Grid Input Voltage (per tube) - 390 410 400 Volts Max-Signal Peak Driving Power - - 76 74 32 Watt Max-Signal Nominal Driving Power - 380 100 Wolt watt Max-Signal Nominal Driving - - 580 800 1000 Wattt
RADIO FREQUENCY POWER AMPLIFIER	TYPICAL OPERATION, per tube* (Frequencies up to 40 Mc.)
AND OSCILLATOR	D-C Plate Voltage 2000 3000 4000 Volts
Class-C Telegraphy or FM Telephony (Key-down conditions, per tube)	D-C Grid Voltage
MAXIMUM RATINGS	Driving Power (approx.) 22 29 33 Wat Grid Dissipation (approx.) 14 15 14 Wat
D-C PLATE VOLTAGE 4000 MAX. VOLTS	Power Input 700 1000 1250 Watt Plate Dissipation 245 250 250 Wat
D-C PLATE CURRENT 350 MAX. MA. PLATE DISSIPATION 250 MAX. WATTS	Plate Power Output 455 750 1000 Wat
GRID DISSIPATION 35 MAX. WATTS	*These figures show actual measured tube performance and do not allow fo variations in circuit losses.
	TYPICAL OPERATION, per tube* (Frequencies up to 40 Mc.) D-C Plate Voltage 2000 2500 3000 Volts
POWER AMPLIFIER Class-C Telephony (Carrier conditions, per tube)	D-C Plate Current 2000 3000 Volts Total D-C Bias Voltage

Ma. Volts Ohms Volts Grid Resistor Fixed D-C Bias Supply Voltage D-C Grid Current Peak R-F Grid Input Voltage Driving Power (approx.) Grid Dissipation (approx.) Plate Power Input Plate Dissipation -220 20 795 16 65 565 165 400 -140 29 840 24 9 -266 14 795 Wolfs Ma. Volts Watts Watts Watts Watts Watts MAXIMUM RATINGS D-C PLATE VOLTAGE 3200 MAX. VOLTS . 5 600 165 435 D-C PLATE CURRENT 500 280 MAX. MA. 165 PLATE DISSIPATION 165 MAX. WATTS Plate Power Output --*These figures show actual measured tube performance and do not allow for variations in circuit losses. GRID DISSIPATION -35 MAX. WATTS

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION", POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC, FOR INFORMATION AND RECOMMENDATIONS.

APPLICATION

MECHANICAL

Mounting—The 250TL must be mounted vertically, base down or up. The plate and grid leads should be flexible, and the tube must be protected from vibration and shock.

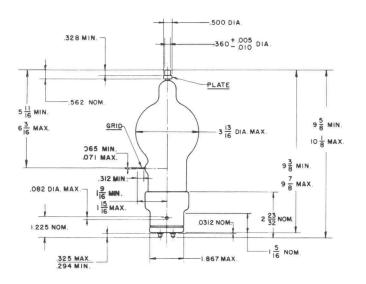
Cooling—Heat Dissipating Connectors (Eimac HR-6 and HR-3 or equivalent) must be used at the plate and grid terminals of the 250TL. Forced-air cooling is not required in properly designed equipment operating at frequencies below 40 Mc. If the free circulation of air around the tube is restricted, a small fan or centrifugal blower should be used to provide additional cooling.

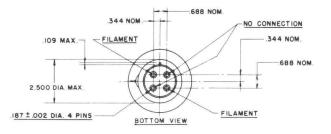
The temperature of the plate and grid seals must not be allowed to exceed 225° C. One method of measuring these temperatures is by the use of "Tempilaq," a temperature-sensitive lacquer manufactured by the Tempil Corporation, 11 W. 25th St., New York 10, N. Y.

ELECTRICAL

Filament Voltage—The filament voltage, as measured directly at the tube, should be 5.0 volts with maximum allowable variations due to line fluctuations from 5.25 to 4.75 volts.

Bias Voltage—When grid-leak bias is used, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation, and the grid-leak resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired value from tube to tube.

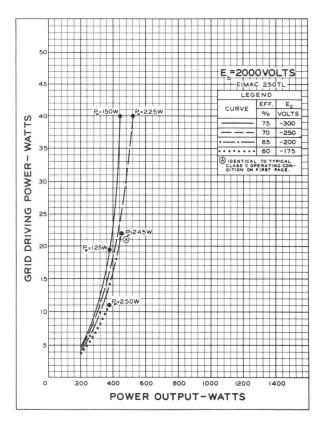

Grid Dissipation—The power dissipated by the grid of the 250TL must not exceed 40 watts. Grid dissipation may be calculated from the following expression.

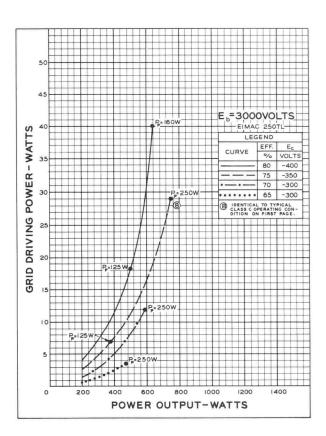

Pg=ecmplc where Pg=grid dissipation, ecmp=peak positive grid voltage, and lc=d-c grid current

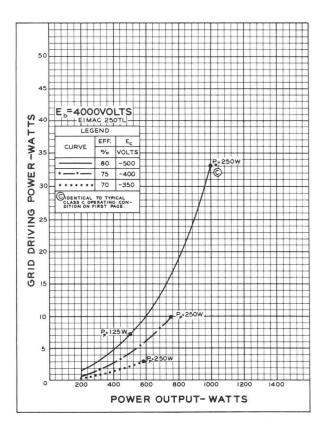
e_{cmp} may be measured by means of a suitable peak-reading voltmeter connected between filament and grid.¹ In equipment in which the plate loading varies widely, such as oscillators used for radio-frequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any condition of loading.

Plate Dissipation—The plates of the 250TL operate at a visibly red color at the maximum rated dissipation of 250 watts. Plate dissipation in excess of the maximum rating is permissible only for short periods of time, such as during tuning procedures.

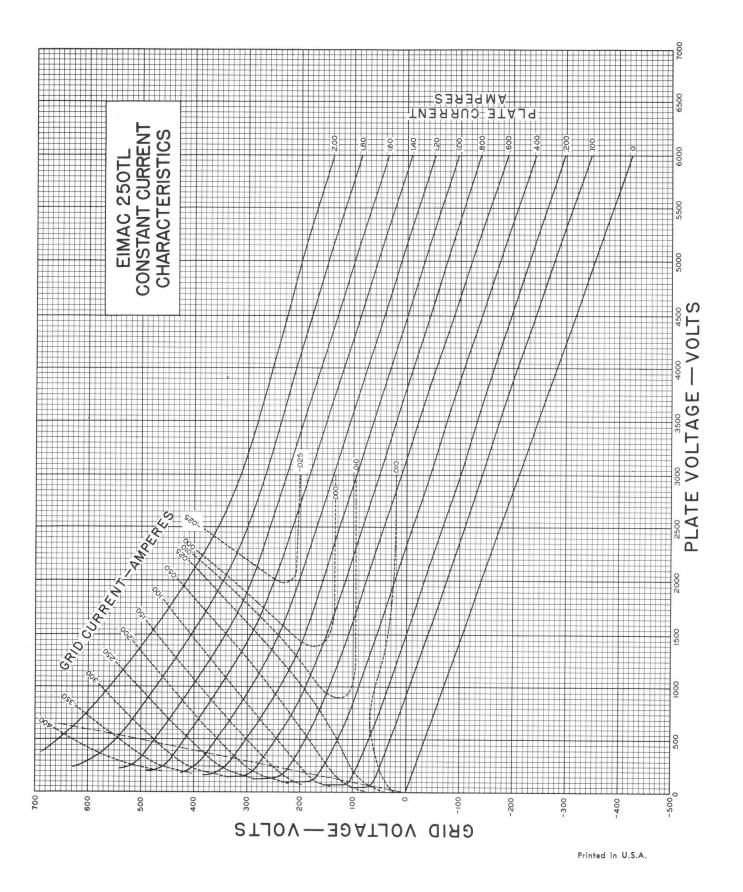
¹For suitable peak v.t.v.m. circuits see, for instance, ''Vacuum Tube Ratings,'' Eimac News, January, 1945. This article is available in reprint form on request.


DIMENSIONS


imar 250TL -


DRIVING POWER vs. POWER OUTPUT

The three charts on this page show the relationship of plate efficiency, power output and approximate grid driving power at plate voltages of 2000, 3000 and 4000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by Pp.


Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 2000, 3000, and 4000 volts respectively.

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A MEDIUM-MU TRIODE

304TH

MODULATOR OSCILLATOR AMPLIFIER

The EIMAC 304TH is a medium-mu power triode intended for use as an amplifier, oscillator or modulator. It has a maximum plate-dissipation rating of 300 watts and a maximum plate-voltage rating of 3000 volts at frequencies up to 40 MHz.

The 304TH in Class-C rf service will deliver up to 1200 watts plate power output with 53 watts driving power. Two 304TH's in Class-AB₂ modulator service will deliver up to 1400 watts maximum-signal plate power output with 14 watts nominal driving power.

GENERAL CHARACTERISTICS

	-2047H-
ELECTRICAL	
Filament: Thoriated Tungsten	- 5.0 or 10.0 volts
Voltage	- 25.0 or 12.5 amperes
Current	- 20
Amplification Factor (Average)	- 20
Direct Interelectrode Capacitances (Average)	
Grid-Plate	- 10.2 pF
Grid-Filament	- 13.5 pF
Plate-Filament	- 0.7 pF
Transconductance ($I_b=1.0$ amp., $E_b=3000$ v.)	16,700 μ mhos
Highest Frequency for Maximum Ratings -	- 40 MHz
MECHANICAL	
Base	Special 4-pin
Basing	See outline drawing
Socket	Johnson type No. 124-213 or equivalent
Mounting Position	Vertical, base down or up
Cooling	Convection and radiation
Maximum Temperature of Plate and Grid Seals	225°C
Recommended Heat-Dissipating Connectors:	
Plate	EIMAC HR-7
Grid	- - - - - - - EIMAC HR-6
Maximum Over-all Dimensions:	
Length	7.63 inches
Diameter	3.56 inches
Net Weight	9 ounces
Shipping Weight	3.0 pounds
	TYPICAL OPERATION (Frequencies up to 40 MHz)
RADIO-FREQUENCY POWER AMPLIFIER	DC Plate Voltage 1500 2000 3000 volts DC Grid Voltage
OR OSCILLATOR	DC Plate Current 665 600 500 ma
Class-C Telegraphy (Key-down conditions, one tube)	Peak RF Grid Voltage 250 325 395 volts
MAXIMUM RATINGS (Frequencies up to 40 MHz) DC PLATE VOLTAGE	Peak RF Grid Voltage - - - 250 325 395 volts Driving Power* - - - 25 39 53 watts Grid Dissipation* - - - 16 12 16 watts Nate Distipation - - - 300 300 watts
DC PLATE CURRENT 900 MA	Plate Dissipation 300 300 300 watts
PLATE DISSIPATION 300 WATTS GRID DISSIPATION 60 WATTS	Plate Power Input - - - 1000 1200 1500 watts Plate Power Output - - - 700 900 1200 watts
PLATE-MODULATED RADIO-FREQUENCY	TYPICAL OPERATION (Frequencies up to 40 MHz) DC Plate Voltage 1500 2000 2500 volts
AMPLIFIER	DC Grid Voltage
Class-C Telephony (Carrier conditions, per tube)	DC Plate Current 420 440 400 ma DC Grid Current* 55 60 60 ma
MAXIMUM RATINGS (Frequencies up to 40 MHz)	Peak RF Grid Voltage 330 440 485 volts Driving Power* 18 26 29 watts
DC PLATE VOLTAGE 2500 VOLTS	Grid Dissipation* / 8 8 watts
DC PLATE CURRENT 750 MA PLATE DISSIPATION 200 WATTS	Plate Dissipation - - - 200 200 200 watts Plate Power Input - - - 700 880 1000 watts
GRID DISSIPATION 60 WATTS	Plate Power Output 500 680 800 watts
AUDIO-FREQUENCY POWER AMPLIFIER	TYPICAL OPERATION (Sinusoidal wave, two tubes unless otherwise specified) DC Plate Voltage 1500 2000 3000 volts
OR MODULATOR	DC Grid Voltage ¹
Class-AB ₂	Max. Signal DC Plate Current 1065 900 665 ma
MAXIMUM RATINGS (Per Tube) DC PLATE VOLTAGE 3000 VOLTS	DC Plate Voltage
DC PLATE CURRENT 900 MA PLATE DISSIPATION 300 WATTS	Max. Signal Peak Driving Power* - 50 37 27 watts Max. Signal Nominal Driving Power* - 25 19 14 watts
*Approximate values.	Max. Signal Plate Power Input 1600 1800 2000 watts Max. Signal Plate Power Output 1000 1200 1400 watts
¹ Adjust to give stated Zero-Signal DC Plate Current.	these given under "Typical Operation" possibly exceeding the maximum ratings

If it is desired to operate this tube under conditions widely different from those given under "Typical Operation," possibly exceeding the maximum ratings given for CW service, write Power Grid Tube Marketing, EIMAC Division of Varian, 301 Industrial Way, San Carlos, Calif. for information and recommendations.

MECHANICAL

Mounting—The 304TH must be mounted vertically, base down or up. The plate and grid leads should be flexible, and the tube must be protected for vibration and shock.

Cooling—Heat Dissipating Connectors (EIMAC HR-7 and HR-6 or equivalent) must be used at the plate and grid terminals of the 304TH. Forced-air cooling is not required in properly designed equipment operating at frequencies below 40 MHz. If the free circulation of air around the tube is restricted, a small fan or centrifugal blower should be used to provide additional cooling.

The temperature of the plate and grid seals must not be allowed to exceed 225°C. One method of measuring these temperatures is by the use of "Tempilaq," a temperature-sensitive lacquer manufactured by the Tempil Corporation, 132 W. 22nd St., New York 11, N.Y.

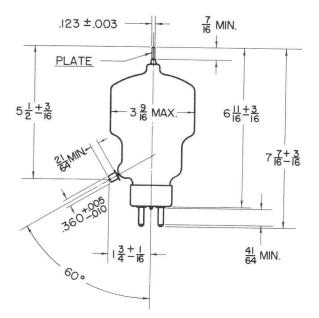
ELECTRICAL

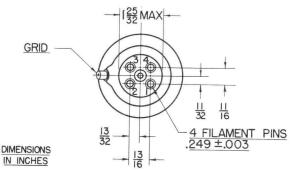
Filament Voltage—The filaments of the 304TH may be operated either at 10.0 volts when connected in series or at 5.0 volts when connected in parallel (see basing diagram). For maximum tube life the filament voltage should be maintained at the rated value. Variations must not be allowed to exceed $\pm 5\%$.

Bias Voltage — When grid-leak bias is used, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation, and the grid-leak resistor should be made adjustable to facilitate maintaining the bias voltage and plate current at the desired value from tube to tube.

Grid Dissipation — The power dissipated by the grid of the 304TH must not exceed 60 watts. Grid dissipation may be calculated from the following expression.

 $P_{g}=e_{cmp}I_{c}$

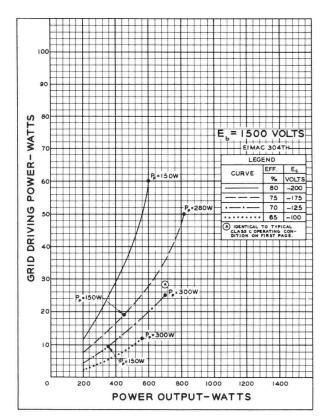

where P_g=grid dissipation,

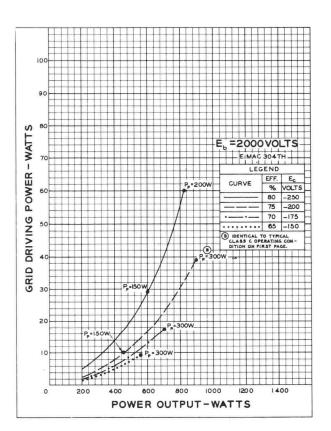

e_{cmp}=peak positive grid voltage, and

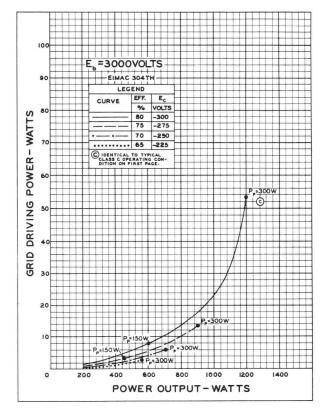
I_c=dc grid current.

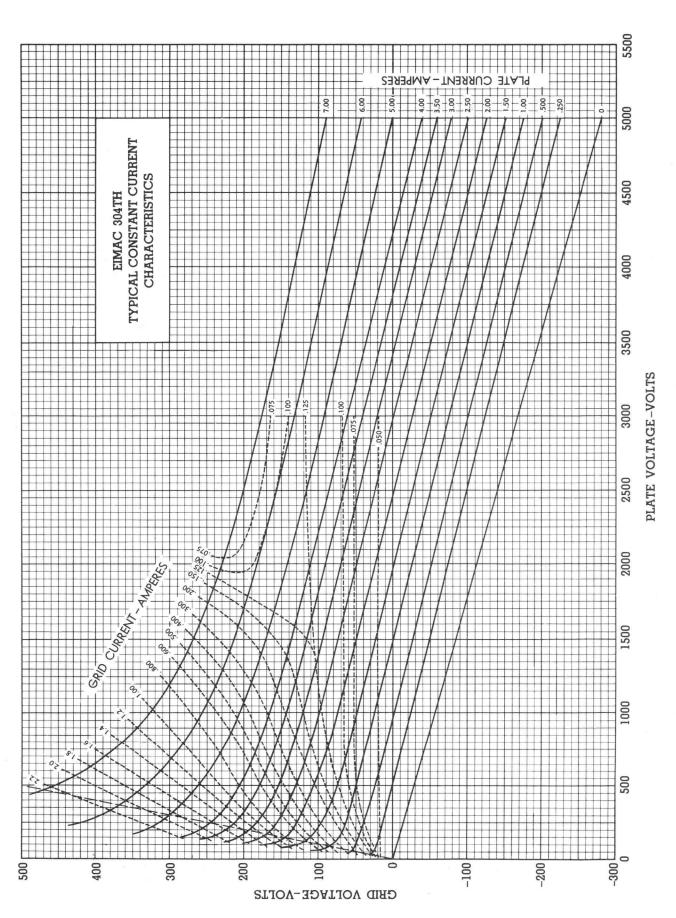
 e_{cmp} may be measured by means of a suitable peak-reading voltmeter connected between filament and grid. In equipment in which the plate loading varies widely, such as oscillators used for radio-frequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any condition of loading.

Plate Dissipation — The plates of the 304TH operate at a visible red color at the maximum rated dissipation of 300 watts. Plate dissipation in excess of the maximum rating is permissable only for short periods of time, such as during tuning procedures.




DRIVING POWER vs. POWER OUTPUT


۲


The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 1500, 2000 and 3000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by Pp.

Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 1500, 2000, and 3000 volts respectively.

4.

304TH

TECHNICAL DATA

304TL LOW-MU TRIODE

> MODULATOR OSCILLATOR AMPLIFIER

The EIMAC 304TL is a low-mu, power triode having a maximum plate dissipation rating of 300 watts, and is intended for use as an amplifier, oscillator or modulator, where maximum performance can be obtained at low plate voltage. It can be used at its maximum ratings at frequencies as high as 40 MHz.

Cooling of the 304TL is accomplished by radiation from the plate, which operates at a visible red color at maximum dissipation, and by means of air convection around the envelope.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: The	horia	ted	tungs	sten									
Voltage	-	-	-	-	-	-	-	-	-	-	5.0	or 10.0	volts
Current	-	-	-	-	-	-	-	-	-	-	25.0	or 12.5	amps
Amplification	n Fac	tor	Ave	rage) -	-	-	-	-	-	-	- 12	
Direct Intere	lectro	ode (Capa	citar	nces	(Av	erage	e)					
Grid-Plate			-	-	-	-	-	-	-	-	-	- 8.6	pF
Grid-Filam	nent	-	-	-	-	-	-	-	-	-	-	12.1	\mathbf{pF}
Plate-Filar	nent	-	-	-	-	-	-	-	-	-	-	8	pF
Transconduc	etance	e (I	,= 1.	0 an	np, E	$L_b = 3$	3000	V, e	e = -	-175	5V)	16,700	umhos
Frequency for	or Ma	axim	um	Rati	ngs	-	-	-	-	-	-	- 40	MHz

MECHANICAL

Base	-	-	-	-	-	-	-	-	-	-	-	-		Spec	cial 4	1 pin	, No	o. 5000B
Socket -	-	-	-	-	-	-	-	-	-	-	-	-	Johnson	No. 1	24-2	13 0	r Eq	juivalent
Mounting	-	-	-	-	-	-	-	-	-	-	-	-		Verti	cal,	base	dov	vn or up
Cooling -	-	-	-	-	-	-	-	-	-	-	-	-		Conv	ectio	on ar	nd R	adiation
Recommende	d He	eat I	Dissij	patin	ig Co	onne	ctors	5:										
Plate	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	- HR-7
Grid -	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	- HR-6
Maximum Ov	veral	l Dir	nens	sions	:													
Length	-	-	-	-	-	-	-	-	-	-	-	-	· ·	-	-	- 7.	625	inches
Diamete	er	-	-	-	-	-	-	-	-	-	-	-	• • • •	-	-	- 3.	563	inches
Net Weight	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	9	ounces
Shipping We	ight	(Av	erag	e)	-	-	-	-	-	-	-	-	· · ·	-	-	-	2	pounds

RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down conditions, per tube)

MAXIMUM RATINGS

DC PLATE VOLTAGE	-	-	-	3000 VOLTS
DC PLATE CURRENT	-	-	-	900 MA
PLATE DISSIPATION	-	-	-	300 WATTS
GRID DISSIPATION	-	-	-	50 WATTS

TYPICAL OPERATION*

DC Plate Voltage -	-		1500	2000	3000 Volts
DC Grid Voltage -			-250		-400 Volts
DC Plate Current -	-		665	600	500 mA
DC Grid Current -			90	85	80 mA
Peak RF Grid Input Volta	age		430	480	575 Volts
Driving Power (approx.)	30		33	36	40 Watts
Grid Dissipation -			11	11	8 Watts
Plate Power Input -	-		1000	1200	1500 Watts
Plate Dissipation -	- 0		300	300	300 Watts
Plate Power Output	-		700	900	1200 Watts
*The figures show actual measur	ed tub	e perform	ance, and do r	not allow for	circuit losses.

(Effective 6-1-67) © 1958, 1965, 1967 Varian

Printed in U.S.A.

EIMAC division of varian/301 industrial way/san carlos/california 94070

AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR

Class B (Sinusoidal wave, two tubes unless otherwise specified) MAXIMUM RATINGS

MAXIMUM RATING	20					
DC PLATE VOLTAG MAX-SIGNAL DC P		F CURR	FNT		3000 VOLTS	
	-		-		900 MA 300 WATTS	
TYPICAL OPERATIC	N,	CLASS	ABı			
DC Plate Voltage DC Grid Voltage	-	1500	2000	2500	3000 Volts	
(approx.)* -		118	170	—230	—290 Volts	
Zero-signal DC Plat Current	-	270	200	160	130 mA	
Max-Signal DC Plat Current	e -	572	546	483	444 mA	
Effective Load, Plate-to-Plate -	-	2540	5300	8500	12,000 Ohms	
Peak AF Grid Input Voltage (per tube		118	170	230	290 Volts	
Max-Signal Peak Driving Power	-	0	0	0	0 Watts	
Max-Signal Plate Power Output	-	256	490	610	730 Watts	

*Adjust to give stated zero-signal plate current. The effective grid circuit resistance for each tube must not exceed 250,000 ohms.

TYPICAL	OPERATION,	CLASS	AB_2

	· /				
be thate tonage	-	1500	2000	2500	3000 Volts
DC Grid Voltage (approx.)* -		118	170	—230	—290 Volts
Zero-signal DC Plate		270	000	140	100
Current Max-Signal DC Plate	-	270	200	160	130 mA
Current	-	1140	1000	900	800 mA
Effective Load,		0750	1500	((00	0100 01
Plate-to-Plate - Peak AF Grid Input	-	2750	4500	6600	9100 Ohms
Voltage (per tube)	-	245	290	340	390 Volts
Max-Signal Peak		70	07	0.5	110.11/
Driving Power Max-Signal Nominal	- Dr	78 iving	87	95	110 Watts
Power (approx.)		39	44	48	55 Watts
Max-Signal Plate					
Power Output	•	1100	1400	1650	1800 Watts

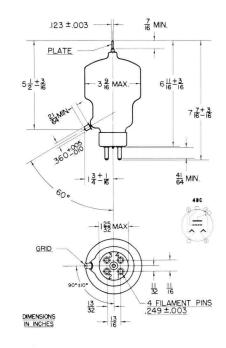
*Adjust to give stated zero-signal plate current

PLATE MODULATED RADIO FREQUENCY AMPLIFIER

Class-C Telephony (Carrier conditions, per tube) MAXIMUM RATINGS

DC PLATE VOLTAGE	~	ω	-	-	-	2500 VOLTS
DC PLATE CURRENT	-	-	-	~	-	700 MA
PLATE DISSIPATION	-	-	-	-	-	200 WATTS
GRID DISSIPATION	-	-	-	-	-	50 WATTS

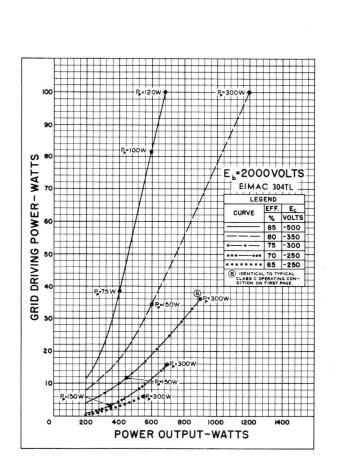
TYPICAL OPERATION (Power input limited to 500 and 1000 watts)*

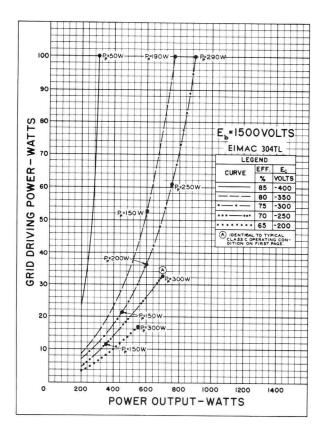

DC Plate Voltage	-	2000	2000	2500	2500 Volts
DC Plate Current	-	250	500	200	400 mA
Total Bias Voltage	\sim				-550 Volts
Fixed Bias Voltage	100	-410	-275	300	-300 Volts
Grid Resistor -	-	3000	3000	12,500	5000 Ohms
DC Grid Current	-	30	75	18	50 mA
Peak RF Grid Input					
Voltage	-	615	690	620	715 Volts
Driving Power -	12	18	52	11	36 Watts
Grid Dissipation -	-	3	15	2	9 Watts
Plate Power Input	×.	500	1000	500	1000 Watts
Plate Dissipation	-	90	190	75	170 Watts
Plate Power Output	-	410	810	425	830 Watts

*The figures are for convenience in obtaining a 500 or 1000 Watt carrier input per tube to the modulated amplifier. The output figures do not allow for circuit losses.

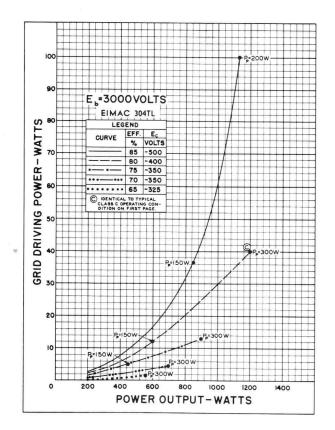
TYPICAL OPERATION*

DC Plate Voltage	-	1500	2000	2500 Volts
DC Plate Current	-	520	525	450 mA
Total Bias Voltage	\sim	370	500	—550 Volts
Fixed Bias Voltage	12	160	260	-440 Volts
Grid Resistor -	-	2800	3000	2000 Ohms
DC Grid Current	-	75	80	55 mA
Peak RF Grid Input				
Voltage	-	545	695	720 Volts
Driving Power -	-	41	55	40 Watts
Grid Dissipation -	-	13	15	10 Watts
Plate Power Input	-	780	1050	1125 Watts
Plate Dissipation	-	200	200	200 Watts
Power Output -	-	580	850	925 Watts
		72 7	22 2.121	

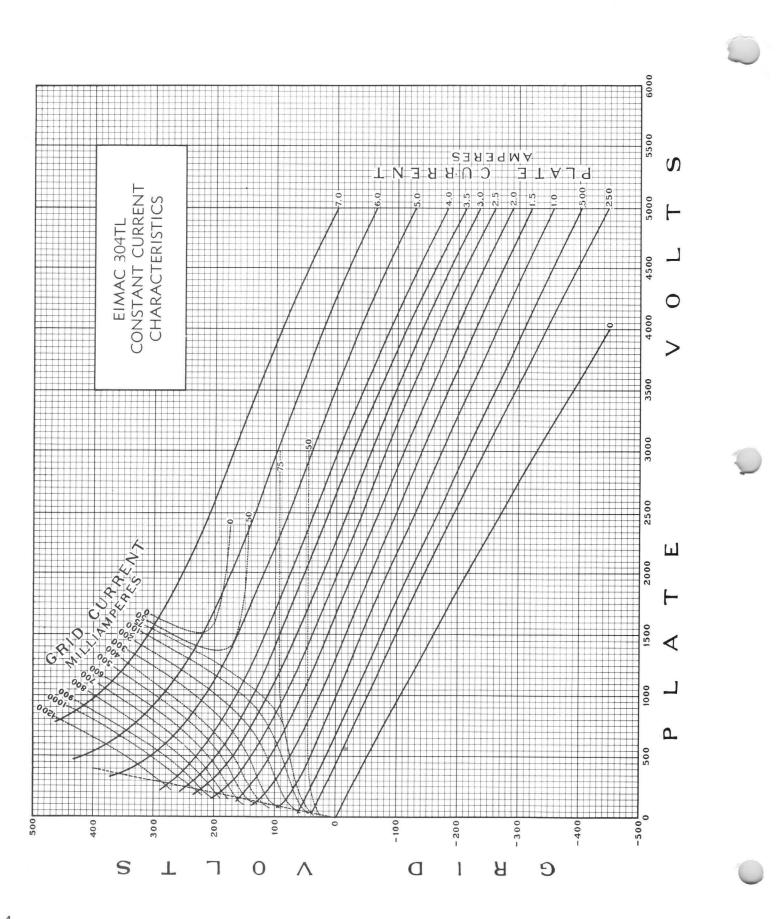

*The figures are for one tube operating at maximum plate dissipation as a plate modulated Class C amplifier, The output figures do not allow for circuit losses.



DRIVING POWER vs. POWER OUTPUT


The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 1500, 2000 and 3000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by Pp.

Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 1500, 2000, and 3000 volts respectively.



304TL

3

304TL

TECHNICAL DATA

450TH HIGH-MU TRIODE MODULATOR OSCILLATOR AMPLIFIER

Eimac HR-8

The Eimac 450TH is a high-mu power triode having a maximum plate dissipation rating of 450 watts, and is intended for use as an amplifer, oscillator and modulator. It can be used at its maximum ratings at frequencies as high as 40 Mc.

Cooling of the 450TH is accomplished by radiation from the plate, which operates at a visible red color at maximum dissipaton, and by means of air circulation around the envelope.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament	: Thoriat	ted t	ungs	ten														
	Voltag				-						-		-	-		7.5	volts	
	Curren	nt	-	-	-	-	-	-	-	-	-	-	-	-	1	2.0 a	mperes	
Not basing dia distribution	e: Dual gram).	conn Corr	espo	ons f nding	orea soc	ch fil ket te	amen [.] ermina	t lead als m	d are	prov	ided	within	the	base	of th	e tub	e lsee	
Amplific	ation F	actor	(A	verag	e)	-		-	-	-	-	-	-				38	
Direct In	terelect	rode	Cap	acita	nces	Aver	age)										50	
	Grid-p	late	-	-	-	-	-	-	-	-	-	-				5.0	μµfd.	
	Grid-F	ilame	ent	-	-	-	-	-	-		-		-	-		8.8	μμfd.	1
	Plate-	Filamo	ent		-	-	-	-	-		-		-	-		0.8	μμfd.	3
Transcon									-	-		-	-	-			//mhos	
Frequenc									-				121	-	-		~	
			ann	anne	12	-	-	-	-	-	-	-	-	-	-	4	0 Mc.	
MECHA	NICA	L																
Base	-	-	-	-	-	-	-	-	-	-	-	-	Spec	cial 4	pin.	No.	5002B	
Basing	-	-	-	-	-	-	-	-	-	-	-						e 4AQ	
Mounting	1	-	-	-	-	-	-	-	-	-	-						or up	
Cooling	-	-	-	-	-	-	-	-									ulation	
-	e: Adec	uate	ven	tilatio	on or	air d	coolin	g mu	ist be	e pro	vided	so t	hat th	ne sea	als ar	nd en	velope	
Socket				-	Johr	ison .	Type	No.	211	n Na	tional	Type	No	XM5	0 05	equi	valant	
Recomme	anded H	teat	Dicci	natin	- Co	nnort					monul	170			0 01	equi	valent.	
Reconnine	Plate			Pain	9 00	meet	015.											
	Grid	-				-		-	-	-	-	-	-	-	-	-	-	-
						-		-	-	-	-	-	-	-	-	-	-	-

Grid - Eimac HR-8 Note: The grid terminal of the 450TH is now .560" in diameter. To accommodate existing equipment designed for the older style 450TH having .098" diameter grid terminals, an adapter pin is provided with the newer tubes. This adapter pin is threaded so that it may be removed from the grid terminal of the tube. The small grid terminal, if used, requires an HR-4 heat dissipating connector. (See outline drawing.)

Maximum Overall Dimensions:

Maximum Overun Di	1101131	0113.																		
Length	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	12.625 inches
																				5.125 inches
Net weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1.3 pounds
Shipping weight (A	verag	je)	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	5.6 pounds

AUDIO FREQUENCY POWER AMPLIFIER AND MODULATOR

PLATE MODULATED RADIO FREQUENCY	TYPICAL OPERATION, PER TUBE* D-C Plate Voltage 3000 4000 4500	Volts
PLATE DISSIPATION, PER TUBE 450 MAX. WATTS	Max-Signal Plate Power Output 1400 1800 2200 * Adjust to give stated zero-signal plate current.	Watts
PER TUBE 600 MAX. MA.	Max-Signal Nominal Driving Power (approx.) 20 17 20 V	Watts Watts
MAX-SIGNAL D-C PLATE CURRENT	Peak A-F Grid Input Voltage (per tube) - 225 235 267	
D-C PLATE VOLTAGE 6000 MAX. VOLTS	Max-Signal D-C Plate Current 770 675 620 Effective Load, Plate-to-Plate 7800 12,800 18,600 (Ma.
MAXIMUM RATINGS	Zero-Signal D-C Plate Current 200 150 120 1	Ma.
Class AB ₂ (Sinusoidal wave, two tubes unless otherwise specified)	D-C Plate Voltage 3000 4000 5000 V D-C Grid Voltage (approx.)*	
Close AB (Sinusaidal wave two types related the interview of	TYPICAL OPERATION-2 TUBES	
AND MODULATOR		

Class-C Telephony (Carrier conditions, per tube)

MAXIMUM RATINGS

D-C PLATE VOLTAGE	-			-	4500 MAX. VOLTS
D-C PLATE CURRENT				-	500 MAX. MA.
PLATE DISSIPATION -		-		-	300 MAX. WATTS
GRID DISSIPATION -		-	-		80 MAX. WATTS

TYPICAL OPERATIO	N, P	ER	TUBE*							
D-C Plate Voltage	-	-	-	-	-	-	3000	4000	4500	Volts
D-C Plate Current	-	-	-	-		-	380	340	345	Ma.
Total Bias Voltage	-		-	-		-	-250	-300	-350	Volts
Fixed Bias Voltage	-	-	-	-	-	-	-100	-150	-175	Volts
Grid Resistor -	-	-	-	-	-	-	2500	3500	3500	Ohms
D-C Grid Current	-	-		-	-		60	43	50	Ma.
Peak R-F Grid Input	Volt	age	-	-	-	-	490	525	585	Volts
Driving Power (appr	ox.)	-	-	-	-	-	30	23	29	Watts
Grid Dissipation	-	-	-	-	-	-	14	10	12	Watts
Plate Power Input	-	-	-	-	-		1150	1360	1550	Watts
Plate Dissipation	-	-	-		-	-	300	300	300	Watts
Plate Power Output	-		-	-		-	850	1060	1250	Watts
*The figures are for	one	tube	oper	atir	ng at	ma	ximum r	late dis	sinatio	n as a
plate modulated C circuit losses.	lass-(C ai	mplifie	er.	The	outp	ut figur	es do i	not allo	ow for

(Revised 12-15-65) Copyright 1950, 1965 by Varian Associates

EIMAC division of varian/301 industrial way/san carlos/california 94070

RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

Class-C Telegraphy or FM Telephony (Key-down conditions, per tube)

	1 10	replic	117 (Key-u	own co	naitio	ns, per tube).	0-0	Flate	voltage	-	-	-	-	•		3000	4000	5000	Volts
								D-C	Grid	Voltage	-	-	-	-	-	-	-175	-200	-300	Volts
MAXIMUM RATINGS								D-C	Plate	Current	-	-	-	-	2.1		500	450	450	Ma.
								D-C	Grid	Current		-	.	-	×1		95	85	90	Ma.
D-C PLATE VOLTAGE					(000	MAY	VOLTS	Peak	K-F 6	Grid Inpu	t Volt	age	-	-		1.00	400	410	570	Volts
				-	6000	MAX.	VOLIS	Drivi	ng Po	wer (app	rox.)	-	-	-	-	-	35	35	46	Watts
D-C PLATE CURRENT					400	MAX.	144	Grid	Dissi	pation	-	-		-	-	-	21	18	24	Watts
			-	-	000	MAA.	MA.	Plate	Powe	er Input		-	-	-	-	-	1500	1800	2250	Watts
PLATE DISSIPATION	-	-			450	MAY	WATTS	Plate	Diss	ipation		-	-	-	-	-	450	450	450	Watts
				-	450	MAA.	WAIIS	Plate	Powe	r Output	-	-	-	•	-	•	1050	1350	1800	Watts
GRID DISSIPATION -	-	-			80	MAY	WATTS	Ine	figur	es show	actual	mea	sured	tube	e pe	erfor	mance	and do	not all	iow for
					00	MAA.	WAIIS	CITC	uit los	sses.										

TYPICAL OPERATION, PER TUBE*

MECHANICAL

Mounting—The 450TH must be mounted vertically, base up or base down. Flexible connecting straps should be provided from the grid and plate terminals to the external grid and plate circuits. The tube must be protected from severe vibration and shock.

Cooling—Provision should be made for ample circulation of air around the 450TH. In the event that the design of the equipment restricts natural circulation, the use of a small fan or centrifugal blower to provide additional cooling for the tube will aid in obtaining maximum tube life. Special heat-dissipating connectors (Eimac HR-8) are available for use on the plate and grid terminals. These connectors help to prolong tube life by reducing the temperature of the seals.

ELECTRICAL

Filament Voltage—For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated value of 7.5 volts. Unavoidable variations in fialment voltage must be kept within the range from 7 03 to 7.88 volts. All four socket terminals should be used, putting two in parallel for each filament connection.

Bias Voltage—Although there is no maximum limit on the bias voltage which may be used on the 450TH, there is little advantage in using bias voltages in excess of those given under "Typical Operation," except in certain very specialized applications. Where bias is obtained by a grid leak, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation.

Grid Dissipation-The power dissipated by the grid of the

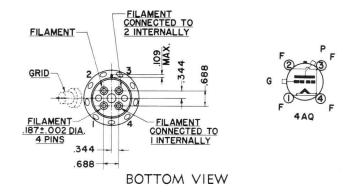
875 563 + 005 PLATE-(4003C) 484 MIN 844 7.688 ±.250 5.125 MAX ABA MIR 2504375 11.938 ±.375 312 M N 005 563+ GRID (C-519) 0 0 312 150 082 MAX 326 MAX 294 MIN. BASE NO. B-501 2.81 MA +2.50 MAX-

APPLICATION

450TH must not exceed 80 watts. Grid dissipation may be calculated from the following expression:

$$P_g = e_{cpm}I$$

where $P_g = Grid$ dissipation,

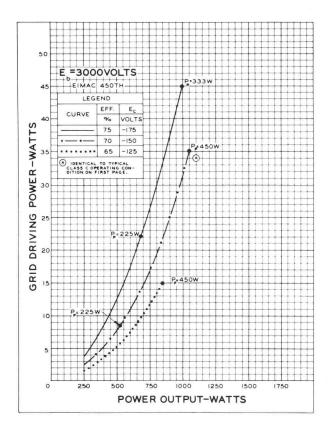

 $e_{cmp} = Peak$ positive grid voltage, and $I_c = D-c$ grid current.

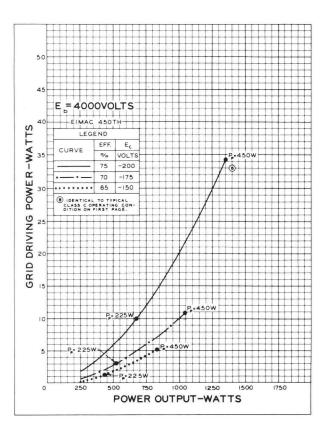
 $e_{\rm cmp}$ may be measured by means of a suitable peak voltmeter connected between filament and grid.¹ In equipment in which the plate loading varies widely, such as oscillators used for radio-frequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any conditions of loading.

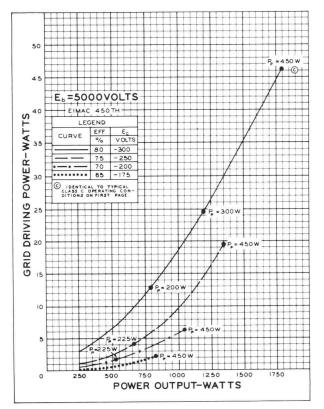
Plate Voltage—Except in very special applications, the plate supply voltage for the 450TH should not exceed 6000 volts. In most cases there is little advantage in using plate-supply voltages higher than those given under "Typical Operation" for the power output desired.

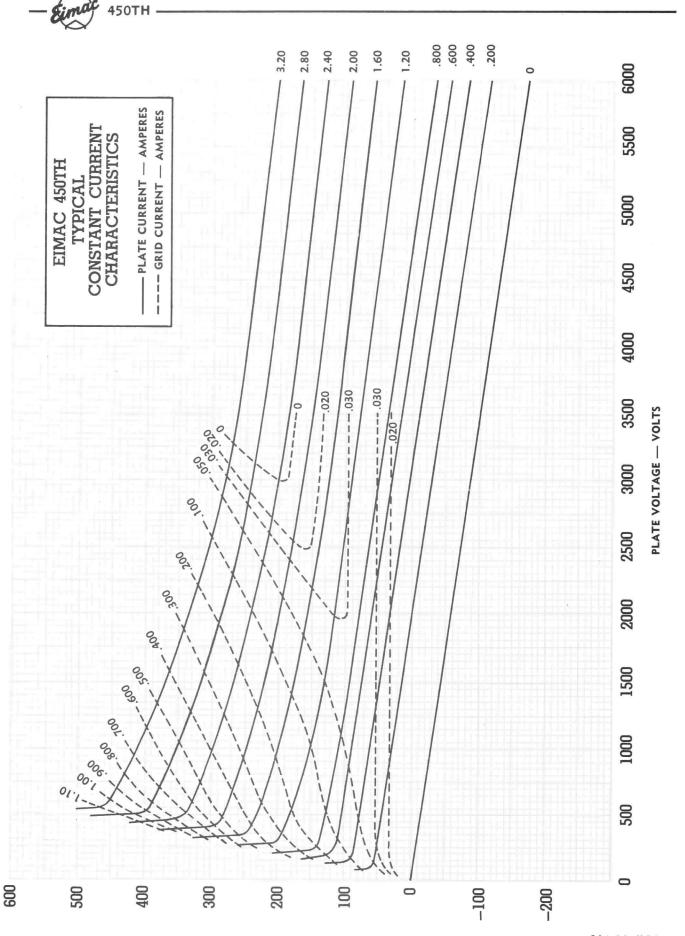
Plate Dissipation—Under normal operating conditions, the power dissipated by the plate of the 450TH should not be allowed to exceed 450 watts. At this dissipation the brightness temperature of the plate will appear a visible red color. The value of this color is somewhat effected by light from the filament as well as from external sources. Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.

¹For suitable peak v.t.v.m. circuits see, for instance, ''Vacuum Tube Ratings,'' **Eimac News**, January, 1945. This article is available in reprint form on request.


NOTE:—The grid terminal on the new 450TH and TL type tube is now .563" in diameter. To accommodate existing equipment which uses the 450TH or TL tubes with the old style .098" grid terminal, an adapter pin is provided. This adapter pin, if not needed, may be removed by unscrewing.


450TH ----


DRIVING POWER vs. POWER OUTPUT


The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 3000, 4000, and 5000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by P_p .

Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 3000, 4000, and 5000 volts respectively.

GRID VOLTAGE - VOLTS

Printed in U.S.A.

ELECTRICAL

GRID DISSIPATION

-

- -

-.

EIMAC

Division of Varian SAN CARLOS CALIFORNIA

450TL MEDIUM-MU TRIODE . MODULATOR OSCILLATOR

AMPLIFIER

The Eimac 450TL is a medium-mu power triode having a maximum plate dissipation rating of 450 watts, and is intended for use as an amplifier, oscillator and modulator. It can be used at its maximum ratings at frequencies as high as 40-Mc.

Cooling of the 450TL is accomplished by radiation from the plate, which operates at a visible red color at maximum dissipation, and by means of air circulation around the envelope.

GENERAL CHARACTERISTICS

ELECTRICAL													1	615	
Filament: Thoriated tungsten													12		1
Voltage - ·	-	-	-	-	-	-	-	7.5		olts				4	
Current -			- aad a	-	- Nidad y	- .:	-		0 ampe					Simof 4	OTL
Note: Dual connections for basing diagram). Corresponding s														The second	
distribution of filament and R-F cha				50 0	onneere	a in pa	raner re	provid	ic prop					100	
Amplification Factor (Average)				-		-		÷.	π^{-}	18				N	
Direct Interelectrode Capacitan														1	- X
Grid-Plate -	-	-	-	-	-	-	-	-	4.5 P				2		- PA
Grid-Filament Plate-Filament	-	-	-	-	-	-		-	4.8 P 0.8 P						
Transconductance $(i_b = 500 \text{ ma},$	$F_1 = 4$	1000v	e. ==	75v) -			5000) μmł					unger	
Frequency for Maximum Ratin		-		-/ 51.		-		5000	40-N					1	
MECHANICAL	93	-	-		-	-			40-1	16.				74	
							c			20					
Base Basing	-	-	-	-	-	-	Special 4		vo. 500					1 0	1
Mounting	-	-	-	-	-	- \	/ertical, b								
Cooling	-	÷ .	\sim	-	-	Radi	ation and	air c	irculat	ion				Contraction of the local division of the loc	-
Note: Adequate ventilatio	n or a	ir coolii	ng mus	st be p	provided	so tha	t the sea	ls and	envelo	pe				U	U
do not exceed 200°C under operati				211	ML-12	L T	- N. V.45			-1					
Socket			pe No.	211 0	Nation	aliype	No. AMS	ou or e	quivale	nt.					
Recommended Heat Dissipating Plate		ectors:		-	_				_		-			Eime	HR-8
Grid	-			-	-	-			-	2	2	-	-	Eimag	HR-8
Note: The grid terminal o	of the '	450TL is	s now	.560'' i	n diame	eter. To	accomm	nodate	existi	ng equ	ipment	designe	d for	the olde	r style
450TL having .098" diameter grid	termin	als, an	adapte	er pin	is provi	ded wi	th the new	wer tul	bes. Th	is adap	oter pin	is three	ided so	that it	nav be
removed from the grid terminal of	the tu	be. The	small	grid to	erminal,	if use	d, requir	es an	HR-4	heat	dissipat	ing co	nnector	. (See	outline
drawing.)															
Maximum Overall Dimensions:															
Length -	-	-	-	-	-	-	-	-		-	-	-	-		inches
Length - Diameter -	-	-	-	ļ.	-	-	-	-	-	-	-	-	-	5.125	inches
Length - Diameter - Net weight	-	-	-	-		-	-	-	į	-	-	-	-	5.125 1.3	inches pounds
Length - Diameter - Net weight Shipping weight (Average)		-	-			-	-	-	-	-		-	-	5.125 1.3	inches
Length - Diameter - Net weight Shipping weight (Average) AUDIO FREQUENCY POV		AMPI		R		D-C F	- - - AL OPERA	age -				- - - 3000	- - - 4000	5.125 1.3 5.6	inches pounds
Length - Diameter - Net weight Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR	VER					D-C F	late Volta	age -			::	110	-175	5.125 1.3 5.6 5000 V 240 V	inches pounds pounds olts olts
Length - Diameter - Net weight Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes	VER					D-C F	late Volta	age -				110	-175 150 675	5.125 1.3 5.6 5000 V -240 V 120 N 620 N	inches pounds pounds olts olts la.
Length - Diameter - Net weight Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS	VER unless	otherwise	e specif	ied)		D-C F	late Volta	age -			- - - - - - - - - - - - - - - - - - -	110	175 150 675 12,800	5.125 1.3 5.6 5000 V 240 V 120 N 620 N 18,500 C	inches pounds pounds olts olts a. a. bhms
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE -	VER unless		e specif	ied)		D-C F D-C G Zero-S Max-Si Effecti Peak Max-Si	late Voltag ignal D-C gnal D-C ve Load, A-F Grid gnal Peak	age - ge (app Plate C Plate C Plate I Plate I Input V Drivin	prox.)* Current Current to-Plate Voltage	(per tu		110 200 770 7700 325 40	175 150 675 12,800 365 33	5.125 1.3 5.6 5000 V -240 V 120 N 620 N 18,500 C 430 V 56 V	inches pounds pounds olts olts la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB _e (Sinusoidal wave, two tubes MAXIMUM RATINGS	ver unless	otherwise	e specif AX. VOI	ied) LTS		D-C F D-C G Zero-S Max-Si Effecti Peak Max-Si Max-Si	late Volta	age - ge (app Plate C Plate Plate- Input V Drivin inal Dr	Current Current to-Plate Voltage ng Pow	(per tu er -	DDrox.)	110	-175 150 675 12,800 365	5.125 1.3 5.6 5000 V 240 V 120 N 620 N 18,500 C 430 V 56 V 28 V	inches pounds pounds olts olts la. hms olts
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT	ver unless -	otherwise 6000 MA 600 MA	e specif AX. VOI	fied) LTS		D-C F D-C G Zero-S Max-Si Ffecti Peak Max-Si Max-Si Max-Si	Plate Voltag ignal D-C gnal D-C ve Load, A-F Grid gnal Peak gnal Nom	age - ge (app Plate C Plate C Plate-1 Input V Drivin inal Dr Powe	prox.)* Current Current to-Plate Voltage ng Powe iving Powe iving Powe	(pertu er - ower(a ut -			175 150 675 12,800 365 33 17	5.125 1.3 5.6 5000 V 240 V 120 N 620 N 18,500 C 430 V 56 V 28 V	inches pounds pounds olts olts la. hms olts /atts
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - D-C PLATE VOLTAGE - MAX-SIGNAL D-C PLATE CURRENT PER TUBE - PLATE DISSIPATION, PER TUBE -	VER unless - -	otherwise 6000 M/ 600 M/ 450 M/	e specif AX. VOI AX. MA AX. WA	fied) LTS .TTS		D-C F D-C G Zero-S Max-Si Effecti Peak Max-Si Max-Si Max-Si *Adjus	Plate Voltag ignal D-C gnal D-C ve Load, A-F Grid gnal Peak gnal Nom gnal Plate t to give s	age - ge (app Plate C Plate C Plate-1 Input V Drivin inal Dr Power stated 2	prox.)* Current Current to-Plate Voltage ng Pow iving Po r Outp zero-sign	(per tu er - ower (a ut - nal plat			175 150 675 12,800 365 33 17	5.125 1.3 5.6 5000 V 240 V 120 N 620 N 18,500 C 430 V 56 V 28 V	inches pounds pounds olts olts la. hms olts /atts
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - D-C PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV	VER unless - -	otherwise 6000 M/ 600 M/ 450 M/	e specif AX. VOI AX. MA AX. WA	fied) LTS .TTS		D-C F D-C G Zero-S Effecti Peak Max-Si Max-Si Max-Si *Adjus TYPIC	Plate Volta ignal D-C ye Load, A-F Grid gnal Peak gnal Nom gnal Nom gnal Plate t to give s AL OPERA	age - ge (app Plate C Plate Plate-1 Input V c Drivin inal Dr stated 2 TON, P age -	prox.)* Current Current to-Plate for Plate for	(per tu er - ower (a ut - nal plat				5.125 1.3 5.6 5000 V -240 V 120 N 620 N 18,500 V 56 V 28 V 2200 V 56 V 28 V	inches pounds pounds olts la. la. lhms olts (atts catts catts catts olts
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - D-C PLATE VOLTAGE - MAX-SIGNAL D-C PLATE CURRENT PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV	VER unless - -	otherwise 6000 M/ 600 M/ 450 M/	e specif AX. VOI AX. MA AX. WA	fied) LTS .TTS		D-C F D-C G Zero-S Max-Si Effecti Peak Max-Si Max-Si *Adjus TYPIC, D-C F D-C F	Plate Volta rid Voltag ignal D-C gnal D-C ve Load, A-F Grid gnal Peak gnal Nom gnal Plate t to give s AL OPERA late Volta Grid Volta late Curr	age - ge (app Plate C Plate Plate- Input V C Drivin inal Dr Power stated 2 TON, P gge - gge - gge -	prox.)* Current Current to-Plate for Plate for	(per tu er - ower (a ut - nal plat				5.125 1.3 5.6 5000 V -240 V 120 N 620 N 18,500 C 430 V 540 V 28 V 2200 V 500 V -500 V -500 V	inches pounds pounds la. la. lits lits la. lits lits la. lits la. lits la. lits la. lits la. lits la. lits la. lits la. lits la. lits la. lits lits la. lits lits lits la. lits lits lits lits lits lits la. lits lits lits lits lits lits lits la. lits lits lits lits lits lits lits lits
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE YOLTAGE - PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR	VER	6000 M/ 600 M/ 450 M/ AMP	a specif AX. VOI AX. MA AX. WA LIFIE	fied) LTS .TTS ER		D-C F D-C G Zero-S Max-Si Max-Si Max-Si Max-Si Max-Si Max-Si D-C F D-C F D-C C D-C C	Plate Volta rid Voltag gnal D-C gnal D-C ye Load, A-F Grid gnal Peak gnal Nom gnal Plate t to give s AL OPERA' late Volta Grid Volta Grid Volta Grid Curre	age - ge (app Plate C Plate C Plate-1 Input V Drivin inal Dr Powe stated 2 TON, P age - ent - ent - ent -	prox.)* Current Current to-Plate Voltage ng Pow iving Pr r Outp zero-sig	(per tu er ower (a ut E*				5.125 1.3 5.6 5000 V -240 V 120 N 620 N 120 N 620 N 18,500 C 430 V 54 V 550 V -500 V -500 V -500 V -240 V -250 V -240 V -250 V -250 V -250 V -500 V -50	inches pounds pounds olts olts olts olts vatts vatts vatts vatts olts olts olts olts olts olts olts o
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - CLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke	VER	6000 M/ 600 M/ 450 M/ AMP	a specif AX. VOI AX. MA AX. WA LIFIE	fied) LTS .TTS ER	-	D-C F D-C G Zero-S Max-Si Effecti Max-Si Max-Si Max-Si Max-Si Max-Si D-C F D-C F D-C C Peak F Driving	rid Voltag rid Voltag gnal D-C gnal D-C ye Load, A-F Grid gnal Peak gnal Plate t to give s AL OPERA late Volta Frid Volta Frid Curre Grid Curre Grid Curre (a Power (a g Power (a	age - age (app Plate C Plate C Plate C Input V Drivin inal Dr Powe stated 2 TON, P age - ent - ent - nput V approx.	prox.)* Current Current to-Plate Voltage ng Pow. iving P r Outp zero-sig ER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E*				5.125 1.3 5.6 5000 V -240 V 120 K 620 K 620 V 56 V 2200 V 5000 V -500 V -500 V -500 V -500 V 420 V	inches pounds pounds olts la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS	VER	otherwise 6000 M/ 600 M/ 450 M/ AMP conditio	a specif AX. VOI AX. MA AX. WA LIFIE Dns, per	ied) LTS TTS IR tube).	-	D-C F D-C G Zero-S Max-Si Effecti Max-Si Max-Si Max-Si Max-Si Max-Si D-C F D-C C D-C F D-C C D-C F D-C G Grid 1 D-C G	Plate Volta prid Voltag gnal D-C gnal D-C ye Load, A-F Grid gnal Peak gnal Nome gnal Plate t to give s AL OPERA Plate Volta Plate Volta Plate Curre Grid Urre Grid Curre Grid I	age ge (app Plate Plate Plate- Plate- Input V a Drivin inal Dr Power stated a TON, P age - ent - ent - ent - ent - approx.	prox.)* Current Current to-Plate Voltage ng Pow. iving P r Outp zero-sig ER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E*				5.125 1.3 5.6 5000 V -240 V 120 N 420 N 18,500 C 430 V 566 V 28 V 2200 V 566 V 28 V 2200 V 500 V 500 V 450 N 540 V 450 N 540 V 28 V 2200 V 500 V 5	inches pounds pounds olts olts i.a. i.a. i.a. i.a. i.a. i.a. i.a. i.a
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE -	VER unless - VER ey-down	otherwise 6000 M/ 600 M/ 450 M/ ASO M/ conditio 6000 M/	a specif AX. VOI AX. MA AX. WA LIFIE Dns, per	ied) LTS TTS ER tube). LTS	-	D-C F D-C G Zero-S Max-Si Effecti Peak / Max-Si *Adjus *Adjus TYPIC D-C F D-C C D-C F D-C C D-C F D-C C D-C F D-C C D-C F Peak F D-C C Peak F D-C C C C Peak F D-C C C C Peak F D-C C C C Peak F D-C C C C Peak F D-C C C C C C Peak F D-C C C C C C C C C C C C C C C C C C C	Itate Volta (rind Voltac) (rind Vo	age ge (app Plate (app Plate) Input V c Drivin inal Dr bowe stated 2 TON, P age - ent - nput V approx.	prox.)* Current to-Plate Voltage ng Pow iving Pr r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E*				5.125 1.3 5.6 5000 V -240 V 120 V 620 N 620 N 620 N 56 V 2200 V 56 V 2200 V 5000 V 430 V 56 N 57 8 7 2200 V 450 N 8 70 V 450 N 8 70 V 450 N 8 70 V 450 N 8 70 V 450 V 15 V 15 V 16 V	inches pounds pounds olts olts a. a. blts catts
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE VOLTAGE PLATE DISSIPATION, PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT	VER unless - VER ey-down	otherwise 6000 M/ 600 M/ 450 M/ AMP conditio 6000 M/ 600 M/	a specif AX. VOI AX. MA AX. WA LIFIE ons, per AX. VOI	ied) LTS TTS ER tube). LTS	-	D-C F D-C G Zero-S Max-Si Ffecti Peak / Max-Si *Adjus TYPIC/ D-C F D-C G D-C F D-C C Peak f Grid I Plate Plate	late Volta irid Voltaci ignal D-C ve Load, A-F Grid gnal Peak gnal Peak t to gives t to gives AL OPERA' late Volta irid Volta irid Volta irid Volta irid Curret L-F Grid II g Power (a) Dissipation Power Out	age ge (app Plate C Plate C Plate d Drivini al Drivini a Power stated 2 TON, P age - approx. approx. put - - - - - - - - - - - - - -	prox.)* Current to-Plate voltage ng Pow iving Pr r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 k 420 k 420 k 420 V 420 V 420 V 56 V 28 V 2200 V 56 V 28 V 28 V 2200 V 56 V 56 V 28 V 2200 V 56 V 50 V 56 V 50 V 50V 50 V 50 V	inches pounds pounds olts olts ia. ia. ia. ia. ia. ia. ia. ia. ia. ia.
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE VOLTAGE PLATE DISSIPATION, PER TUBE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT	VER unless - - WER ey-down	otherwise 6000 M/ 600 M/ 450 M/ ASMP conditio 6000 M/ 600 M/ 450 M/	a specif AX. VOI AX. MA AX. WA LIFIE ons, per AX. VOI AX. MA	fied) LTS TTS ER tube). LTS 	-	D-C F D-C F D-C G Zero-S Max-Si Peak // Max-Si Max-Si *Adjus TYPIC/ D-C F D-C F D-C C D-C F D-C C D-C F D-C C Peak I D-C C Peak I D-C C Peak I D-C F D-C C Peak I D-C F D-C C Si D-C F D-C C C D-C F D-C C D-C F D-C C C D-C F D-C C C C C C F D-C C C C C C C C C C C C C C C C C C C C	Itate Volta (rind Voltac) (rind Vo	age ge (app Plate C Plate C Plate d Drivini al Drivini a Power stated 2 TON, P age - approx. approx. put - - - - - - - - - - - - - -	prox.)* Current to-Plate voltage ng Pow iving Pr r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 k 420 k 420 k 420 V 420 V 420 V 56 V 28 V 2200 V 56 V 28 V 28 V 2200 V 56 V 56 V 28 V 2200 V 56 V 50 V 56 V 50 V 50V 50 V 50 V	inches pounds pounds olts olts ia. ia. ia. ia. ia. ia. ia. ia. ia. ia.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT PLATE DISSIPATION PLATE DISSIPATION	VER unless - - WER ay-down - - -	otherwise 6000 M/ 600 M/ 450 M/ AMP conditio 6000 M/ 600 M/ 450 M/ 600 M/ 650 M/	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. MA AX. WA AX. WA	fied) LTS TTS R tube). LTS TTS 	-	D-C F D-C F Zero-S Zero-S Max-Si Peak / Max-Si Max-Si Max-Si Max-Si Max-Si Peak / D-C C D-C C D-C C Peak F D-C C P- Port Plate Plate Plate Plate TYPIC, TYPIC,	Ilate Volta rird Voltagi ignal D-C gnal D-C ve Load, A-F Grid gnal Peak gnal Nom gnal Plate t to gives AL OPERA' late Volta Grid Volta late Volta Grid Volta late Curret. -F Grid II g Power (a Dissipation Power In Dissipation Power Out "igures shot t losses. AL OPERA	age - ge (app Plate C Plate Plate - Plate - Plate - Plate - Plate - state - st	prox.)* Current to-Plate foltage ng Pow iving P. r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 k 420 k 420 k 420 V 420 V 420 V 56 V 28 V 2200 V 56 V 28 V 28 V 2200 V 56 V 56 V 28 V 2200 V 56 V 50 V 56 V 50 V 50V 50 V 50 V	inches pounds pounds olts olts ia. ia. ia. ia. ia. ia. ia. ia. ia. ia.
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE VOLTAGE PLATE DISSIPATION PLATE DISSIPATION PLATE MODULATED RA	VER unless - - WER ay-down - - -	otherwise 6000 M/ 600 M/ 450 M/ AMP conditio 6000 M/ 600 M/ 450 M/ 600 M/ 650 M/	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. MA AX. WA AX. WA	fied) LTS TTS R tube). LTS TTS 		D-C F D-C G Zero-S Zero-S Max-Si Effecti Peak / Max-Si Max-Si *Adjus TYPIC/ D-C G D-C G D-C G D-C G D-C G Peak F D-C G Plate Plate Plate *The + circui	late Volta irid Voltagi ignal D.C ye Load, A-F Grid gnal Peak gnal Nom gnal Peak t to gives t to gives AL OPERA AL OPERA AL OPERA AL OPERA ate Volta irid volta	age	prox.)* Current to-Plate foltage ng Pow iving P. r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 N 420 N 420 N 18,500 C 430 V 28 V 2200 V 566 V 28 V 2200 V 560 V 430 V 560 V 420 N 560 V 430 V 28 V 2200 V 560 V 450 N 450 V 450 V 4	inches pounds pounds olts olts la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE CURRENT - D-C PLATE CURRENT - PLATE DISSIPATION - GRID DISSIPATION - GRID DISSIPATION - GRID DISSIPATION -	VER unless VER ey-down	otherwise 6000 M/ 600 M/ 450 M/ Conditio 6000 M/ 600 M/ 450 M/ 600 M/ 600 M/ 65 M/ FREQ	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. MA AX. WA AX. WA	fied) LTS TTS R tube). LTS TTS 	-	D-C F D-C F D-C G Zero-S Zero-S Max-Si Effecti Peak / Max-Si Max-Si *Adjus TYPIC F D-C F D-C C D-C F D-C C D-C F D-C C Peak I Plate Plate TYPIC P D-C C P-C C TYPIC P D-C C TYPIC P D-C C TYPIC P D-C C TYPIC P D-C C TYPIC P D-C C TYPIC P Total	late Volta rird Voltag ignal D-C ye Load, A-F Grid gnal Peak gnal Peak to give : AL OPERA itate Volta rird Volta itate Volta issipation Power (u) Dissipation Power (u) issipation Power Cut issipation Power Cut	age - app ge (app Plate C Plate Plate-1 Input V c Drivin inal Dr s Power stated 2 TON, P age - approx. TTON, P age - approx. put - put - p	prox.)* Current to-Plate foltage ng Pow iving P. r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 N 420 N 420 N 430 V 28 V 28 V 28 V 2200 V 56 V 28 V 2200 V 56 V 430 V 450 N 540 V 450 V 1800 V 450 V 450 V 1800 V 450 V 345 V 555 V 1800 V 1800 V 450 V 1800 V	inches pounds pounds olts olts la. la. la. la. la. lolts ratts ratts ratts ratts ratts ratts la. lolts ratts
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE CURRENT - D-C PLATE CURRENT - PLATE DISSIPATION - GRID DISSIPATION - GRID DISSIPATION -	VER unless VER ey-down	otherwise 6000 M/ 600 M/ 450 M/ Conditio 6000 M/ 600 M/ 450 M/ 600 M/ 600 M/ 65 M/ FREQ	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. MA AX. WA AX. WA	fied) LTS TTS R tube). LTS TTS 	-	D-C F D-C G Zero-S Max-Si Effecti Peak / Max-Si *Adjus TYPIC/ D-C F D-C G D-C C D-C C D-C C D-C C D-C C Peak f D-C C Peak f Plate Plate Plate Plate Plate Plate TYPIC/ D-C C Plate Plate TYPIC/ D-C C Plate Plate TYPIC/ D-C C Plate Plate Fictorial TYPIC/ D-C C Plate Plate Fictorial TYPIC/ D-C C Plate Plate Fictorial TYPIC/ D-C C Plate Fictorial TYPIC/ D-C C Fictorial TYPIC/ D-C C Fictorial TYPIC/	Itate Volta (rind Voltacy (rind Voltacy (rind Voltacy (rind Voltacy (rind Voltacy (rind Voltacy) (rind Voltacy (rind Voltacy (rind Voltacy) (rind Voltacy (rind Voltacy (rind Voltacy) (rind Voltacy (rind Voltacy) (rind Voltacy (rind Voltacy) (rind Voltacy) (rind Voltacy (rind Voltacy) (rind Voltacy) (ri	age - app ge (app Plate C Plate Plate-1 Input V c Drivin inal Dr s Power stated 2 TON, P age - approx. TTON, P age - approx. put - put - p	prox.)* Current to-Plate foltage ng Pow iving P. r Outp zero-sig PER TUB - - - - - - - - - - - - - - - - - - -	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 N 620 N 120 N 620 V 5000 V 56 V 2200 V 500 V 550	inches pounds pounds olts la. la. la. la. la. lots fatts fatts fatts fatts fatts la. lots la. lots la. lots la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE - LATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PLATE DISSIPATION PLATE DISSIPATION PLATE MODULATED RA AMPLIFIER Class-C Telephony (Carrier conditions, p	VER unless VER ey-down	otherwise 6000 M/ 450 M/ 450 M/ Conditio 6000 M/ 600 M/ 450 M/ 450 M/ FREQ	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. MA AX. WA AX. WA	fied) LTS TTS R tube). LTS TTS 	-	D-C F D-C G Zero-S Max-Si Effecti Peak / Max-Si Max-Si Max-Si Peak / Max-Si Peak / TYPIC/ D-C F D-C C D-C C D-C C D-C C	Itate Volta (rid Voltag (rid Voltag (rid Voltag (rid Voltag (rid Voltag (rid Voltag (rid Voltag) (rid Volt	age - ge (app Plate C Plate Plate- lapped - input V c Drivini c Drivini stated 2 TON, P age - ent - put - put - put - put - ge - ent - ge - ent -	prox.)* Current Courrent fo-Plate Voltage mg Pow viving Pr r Outp zero-sign PER TUB 	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 N 620 N 120 N 620 V 520 V 520 V 540 V 2200 V 5000 V -500	inches pounds pounds olts olts la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE VOLTAGE PLATE DISSIPATION GRID DISSIPATION PLATE DISSIPATION PLATE MODULATED RA AMPLIFIER Class-C Telephony (Carrier conditions, p MAXIMUM RATINGS	VER unless VER ey-down	otherwise 6000 M/ 450 M/ 450 M/ Conditio 6000 M/ 600 M/ 450 M/ 450 M/ FREQ	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. MA AX. WA AX. WA	fied) LTS TTS R tube). LTS TTS 	-	D-C F D-C F D-C G Zero-S Zero-S Max-Si Effecti Peak / Max-Si *Adjus TYPIC/ D-C F D-C G D-C G D-C G Peak F D-C C Peak S TYPIC/ D-C P TyPIC/ D-C C Plate Plate TYPIC/ D-C C Plate TYPIC/ D-C C Plate TYPIC/ D-C C C Peak S D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Plate D-C G C Plate D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Plate D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Peak S D-C G C Plate D-C G C Peak S D-C G C Plate D-C G C Plate D-C C C Plate D-C C Plate D-C C C Plate D-C C C Plate D-C C C Plate D-C C Plate D-C C Plate D-C C Plate D-C C C Plate D-C C Plate D-C C C Plate D-C C Plate D-C C Plate D-C C Plate D-C C Plate D-C C D-C C D-	Itate Volta rird Voltag ignal D.C ye Load, A-F Grid gnal Peak gnal Nom gnal Peak t to gives AL OPERA AL OPERA AL OPERA AL OPERA Dissipation Power (a) Dissipation Power (a) Dissipation Power (a) Dissipation Power (a) Dissipation Power (a) Dissipation Power (a) Dissipation Power (a) Dissipation Power (a) Dissipation Power (b) Dissipation Power (c) Dissipation Power (c) Dissipati	age ge (app Plate Plate Plate Plate Plate Plate stated z stated z stated z TON, P gge ent - put - - - - - - - - - - - - -	prox.)* Current Courrent fo-Plate Voltage mg Pow viving Pr r Outp zero-sign PER TUB 	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 1200 V 620 N 620 N 18,500 C 430 V 5000 V 5000 V 5000 V 5000 V 450 N 500 V 450 V 1800 V 450 V 15 V 2250 V 15	inches pounds pounds olts olts la. la. lots olts olts olts olts olts la. lots olts la. lots olts la. low for month fats fats fats fats fats fats fats fats
Length - Diameter - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PLATE DISSIPATION PLATE DISSIPATION PLATE DISSIPATION PLATE MODULATED RA AMPLIFIER Class-C Telephony (Carrier conditions, p MAXIMUM RATINGS	VER unless VER ey-down	otherwise 6000 M/ 450 M/ 450 M/ Conditio 6000 M/ 600 M/ 450 M/ 450 M/ FREQ	a specif aX. VOI aX. MA aX. WA LIFIE ons, per aX. VOI aX. MA aX. WA aX. WA aX. WA bUEN	tube). TTS tube). TTS TTS TTS TTS	-	D-C F D-C F D-C C Zero-S Max-Si Effective Max-Si Max-Si Max-Si Max-Si Max-Si Max-Si Peak F D-C C D-C C Peak K TYPIC, D-C C Plate Plate Plate Plate Plate D-C C Plate D-C C Plate D-C C C Plate Plate C D-C C Plate D-C C C Plate C D-C C C Plate C D-C C C Plate C D-C C C Plate C D-C C C C Plate C D-C C C C C Plate C D-C C C C C C Plate C D-C C C C C C C C C C C C C C C C C C C C	late Volta rid Voltac rid Voltac gnal D-C ve Load, A-F Grid gnal New gnal New gnal New gnal New AL OPERA late Volta late Volta late Volta late Volta late Volta rid Currer- rid Currer- rid Sissipation Power Inj Bias Volta Bias Volta Bias Volta Bias Volta Bias Volta Bias Volta Dissipation Power Dissipation Power Dissipation Po	age ge (app Plate (app Plate) Plate- Plate- laput v a Drivin inal Dr b Powe stated 2 TON, P age - ent - approx. put - put - put - cov actument tion, put v approx. TION, e ent - approx. TION, e approx. TION, e approx.	prox.)* Current Courrent fo-Plate Voltage mg Pow viving Pr r Outp zero-sign PER TUB 	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 V 120 V 5000 V 5000 V 5000 V 5000 V 5000 V 5000 V 430 V 5000 V 430 V 5000 V 450 V 15 V 2250 V 18,500 V 450 V 15 V 2250 V 15 V 15 V 2250 V 15 V 1	inches pounds pounds la. la. la. la. la. la. lots lots la. lots lots la. lots lots la. lots lots lots la. lots lots lots la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE - PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE D-C PLATE CURRENT PLATE DISSIPATION GRID DISSIPATION PLATE MODULATED RA AMPLIFIER	VER unless VER ey-down	otherwise 6000 M/ 600 M/ 450 M/ Conditio 6000 M/ 600 M/ 600 M/ 600 M/ 65 M/ FREQ 9) 4500 M/	a specif aX. VOI aX. MA aX. WA LIFIE ons, per aX. VOI aX. MA aX. WA aX. WA aX. WA bUEN	tube). TTS tube). TTS TTS TTS TTS TTS TTS TTS	-	D-C F D-C F D-C F D-C C Effective Max-Si Peak S Max-Si Peak S Max-Si Peak S TYPIC, D-C F D-C C D-C F D-C C D-C C Peak R Driving Grid 1 Plate Plate Plate Plate Plate Plate	Itate Volta irid Voltaci irid Voltaci gnal D-C yee Load, A-F Grid gnal Poer gnal Nom gnal Plate to give st to give st	age - age - age (app Plate C Plate Plate-1 pla	prox.)* Current Courrent fo-Plate Voltage mg Pow viving Pr r Outp zero-sign PER TUB 	(per tu er ower (a ut E* E*	e current			5.125 1.3 5.6 5000 V -240 V 120 V 120 V 18,500 C 430 V 56 V 2200 V 5000 V -500 V -500 V 450 V 15 V 2250 V 15 V 2250 V 15 V 15 V 15 V 16 V 16 V 17 V 16 V 17 V 18 S 16 V 17 V 18 S 18 S 1	inches pounds pounds olts la. la. la. la. la. lolts la. lolts la. lolts la. lolts la. lolts la. lolts la. lolts la. lolts la. lolts la. la. lolts la. la. la. la. la. la. la. la. la. la.
Length - Diameter - Net weight - Shipping weight (Average) AUDIO FREQUENCY POV AND MODULATOR Class AB, (Sinusoidal wave, two tubes MAXIMUM RATINGS D-C PLATE VOLTAGE MAX-SIGNAL D-C PLATE CURRENT PER TUBE PLATE DISSIPATION, PER TUBE - RADIO FREQUENCY POV AND OSCILLATOR Class-C Telegraphy or FM Telephony (Ke MAXIMUM RATINGS D-C PLATE VOLTAGE PLATE DISSIPATION PLATE DISSIPATION PLATE DISSIPATION PLATE DISSIPATION PLATE MODULATED RA AMPLIFIER Class-C Telephony (Carrier conditions, p MAXIMUM RATINGS D-C PLATE VOLTAGE	VER unless VER ey-down	otherwise 6000 M/ 600 M/ 450 M/ 6000 M/ 6000 M/ 600 M/ 600 M/ 65 M/ FREQ 6) 4500 M/ 500 M/	AX. VOI AX. MA AX. MA AX. WA LIFIE Ons, per AX. VOI AX. WA QUEN	tube). LTS tube). LTS TTS CY LTS LTS	-	D-C F D-C F D-C G Zero-S Zero-S Max-Si Effecti Peak Max-Si Max-Si Max-Si Max-Si D-C F D-C	late Volta rird Voltag ignal D.C ye Load, A-F Grid gnal Peak gnal Peak gnal Peak to give s to give s	age age (app Plate	prox.)* Current Coltage for Plate Voltage miting Pr r Outp zero-sig PER TUB 	(per tu er and plat E* 	e current			5.125 1.3 5.6 5000 V -240 V 1200 V 5000 V 450 V 5000 V 5000 V 5000 V 5000 V 5000 V 5000 V 5000 V 5000 V 5000 V 500 V	inches pounds pounds olts olts la. la. la. lots olts olts olts olts la. low for tats fatts

65 MAX. WATTS

"The figures are for one tube operating at maximum plate dissipation as a plate modulated Class-C amplifier. The output figures do not allow for circuit losses.

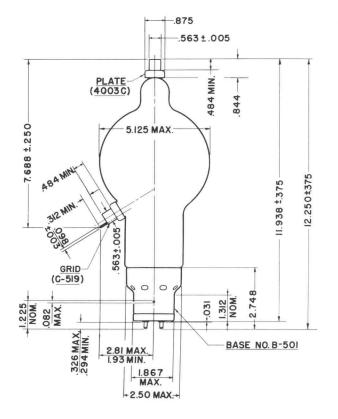
APPLICATION

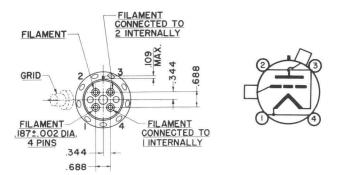
MECHANICAL

Mounting—The 450TL must be mounted vertically, base up or base down. Flexible connecting straps should be provided from the grid and plate terminals to the external grid and plate circuits. The tube must be protected from severe vibration and shock.

Cooling—Provision should be made for ample circulation of air around the 450TL. In the event that the design of the equipment restricts natural circulation, the use of a small fan or centrifugal blower to provide additional cooling for the tube will aid in obtaining maximum tube life. Special heat-dissipating connectors (Eimac HR-8) are available for use on the plate and grid terminals. These connectors help to prolong tube life by reducing the temperature of the seals.

ELECTRICAL

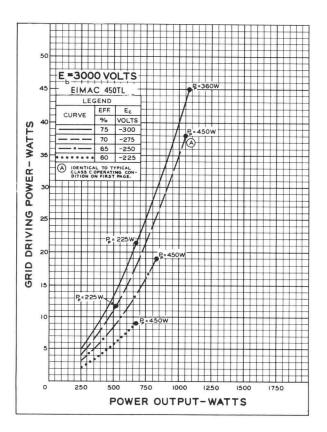

Filament Voltage—For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated value of 7.5 volts. Unavoidable variations in filament voltage must be kept within the range from 7.03 to 7.88 volts. All four socket terminals should be used, putting two in parallel for each filament connection.

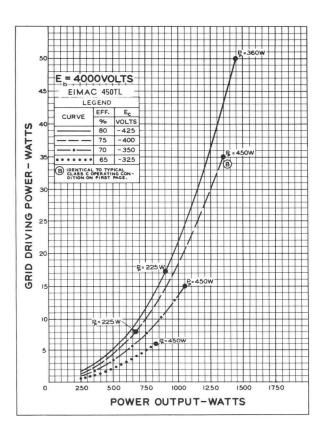

Bias Voltage—Although there is no maximum limit on the bias voltage which may be used on the 450TL, there is little advantage in using bias voltages in excess of those given under "Typical Operation," except in certain very specialized applications. Where bias is obtained by a grid leak, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation. **Grid Dissipation**—The power dissipated by the grid of the 450TL must not exceed 65 watts. Grid dissipation may be calculated from the following expression:

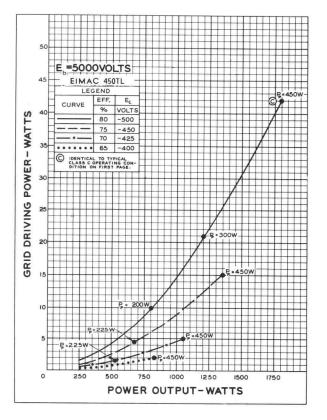
$$\begin{split} P_g = e_{\rm cmp} I_c \\ \text{where } P_g = Grid \mbox{ dissipation } \\ e_{\rm cmp} = Peak \mbox{ positive grid voltage, and } \\ I_c = D\text{-}c \mbox{ grid current.} \end{split}$$

 e_{cmp} may be measured by means of a suitable peak voltmeter connected between filament and grid. In equipment in which the plate loading varies widely, such as oscillators used for radio-frequency heating, care should be taken to make certain that the grid dissipation does not exceed the maximum rating under any conditions of loading.

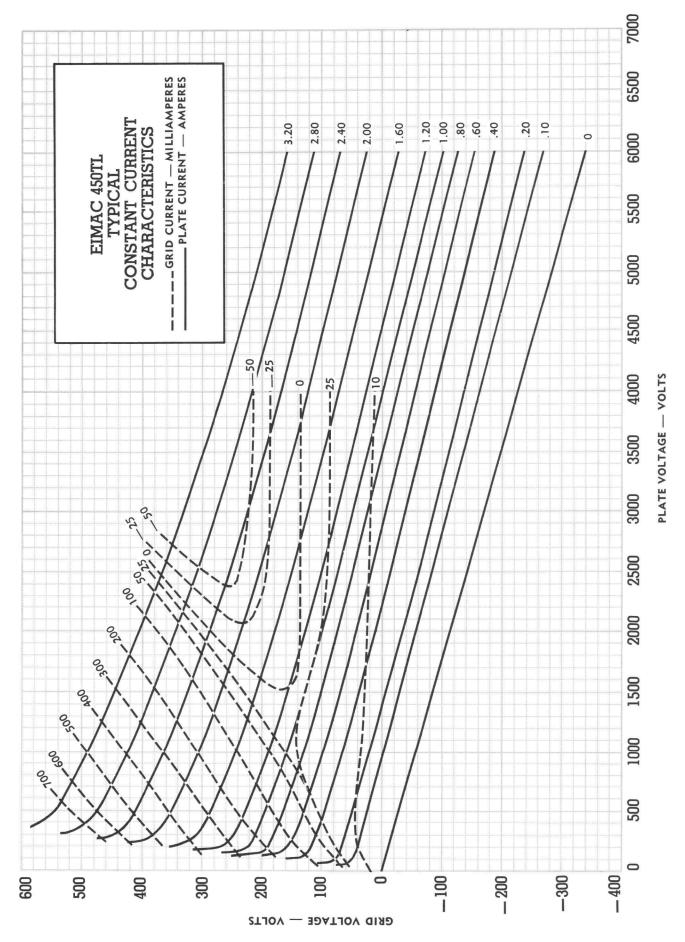
Plate Voltage—Except in very special applications, the plate supply voltage for the 450TL should not exceed 6000 volts. In most cases there is little advantage in using plate-supply voltages higher than those given under "Typical Operation" for the power output desired. Plate Dissipation—Under normal operating conditions, the power dissipated by the plate of the 450TL should not be allowed to exceed 450 watts. At this dissipation the brightness temperature of the plate will appear a red-orange in color. The value of this color is somewhat affected by light from the filament as well as from external sources. Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.


NOTE:—The grid terminal on the new 450TH and TL type tube is now .563" in diameter. To accommodate existing equipment which uses the 450TH or TL tubes with the old style .098" grid terminal, an adaptor pin is provided. This adaptor pin, if not needed, may be removed by unscrewing.


450TL Simac -


DRIVING POWER vs. POWER OUTPUT

The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 3000, 4000, and 5000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by P_p.


Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 3000, 4000, and 5000 volts respectively.

Eimac

E M **Division of Varian** SAN CARLOS CALIFORNIA

The EIMAC 592/3-200A3 is a medium-mu power triode having a maximum plate dissipation rating of 200 watts, and it is intended for use as a power amplifier, oscillator, or modulator. It can be used at its maximum ratings at frequencies as high as 150 MHz.

Cooling of the 592/3-200A3 is accomplished by radiation from the plate, which operates at a visible red color at maximum plate dissipation, and by means of forced-air circulation around the envelope.

GENERAL GENERAL	CHAR	ACTER	ISTIC	S						LJJT	7 3-LUUD (3)
ELECTRICAL	CIAN	ACIEN									The second se
Filament: Thoriated Tungsten						10.0					In
Voltage Current Amplification Factor (Average)			-	-	-		volts	200		11	11 42
Current			-	-	-	25	ampe	eres			
Amplification Factor (Average)	-	rago)	-	-	-	20				1	
Direct Interelectrode Capacitance Grid-Plate Grid-Filament	es (Ave.	rage)				33	$\mu\mu f$				
Grid-Plate Grid-Filament			-	-			$\mu\mu$ f				
Plate-Filament			-	-	-					-	
Transconductoria (I = 200 ma	F - 300	(v, v)	-	-	_	3600	umh	05			04
Transconductance (I_b =200 ma., Frequency for Maximum Rating	$E_b = 500$		-	-		150	MH7	03			le a
						100	111112				
MECHANICAL Mounting								_			Vertical
Mounting			-	-	-	-	-	-			vertical
Longth			-					_		-	6.0 inches
Length Diameter	2 2	0.70	_	-	2	-	2	-		_	$3\frac{13}{32}$ inches
Net Weight (approx.) Shipping Weight (approx.) Cooling			_	_	_	_	_	_	-	_	6 ounces
Shipping Weight (approx.)			-	_	_	_	_	-		-	$1\frac{1}{2}$ pounds
Cooling	2		_	_	-	_	_	_	Radia	ion and	Forced-Air
Recommended Heat Dissipating	Connec	otors.							ituala	cion and	r oroou mi
Plate			-	-	-	-	_	-		EII	MAC HR-10
Grid			_	-	-	-	-	-			IMAC HR-5
Maximum Bulb Temperature			-	-	-	-		-		-	- 225°C
Maximum Seal Temperature			-	-	-	-	-	-			- 175°C
			TYPIC	AL C	PFR	ATION					
AUDIO FREQUENCY POWER A	MPLIFIE	R	Sinus	oidal	wav	e. two	tubes i	unles	s otherv	vise speci	fied.
AND MODULATOR			DC P	late V	olta	ge -	 rox)*	-	2000	2500 70 100	3000 Volts —90 Volts
Class B			Zero-	Signa	I DC	Plate (Current	- 1	120	100	80 Ma.
MAXIMUM RATINGS			Max-	Signal	DC	Plate (-	500	450	400 Ma. 18,000 Ohms
	3500 VO	175	Peak	AF G	rid	Input					
MAX SICNAL DC	5500 00	LIU	Vo	Itage	(per	tube)	 - Davi	-	260	270 52	270 Volts 40 Watts
PLATE CURRENT	250 MA	ι.	Max-	Signal	Nor	minal					
DC PLATE CURRENT	200 WA	ATTS	Dr	ivina	Pow	er (app	orox.) -	-	25 600	26 725	20 Watts 820 Watts
GRID DISSIPATION	25 WA	ATTS	Max-3 *Adjust	to give	e state	ed zero-si	gnal plat	e curre	600 nt.	725	620 Walls
			TYPIC	CAL	OPER	ATION	1				
PLATE MODULATED RADIO			DC P	late V	/olta	ge -		-	-	- 2000	2500 Volts 200 Ma.
FREQUENCY AMPLIFIER			DC P	rid V	oltad	ae -		-	-	250	-300 Volts
Class-C Telephony (Carrier conditions, p	per tube)		DC G	rid C	urre	nt -		π	-	- 35	35 Ma. 535 Volts
MAXIMUM RATINGS			Peak Drivi	ng Po	wer	input v -		-	-	- 17	19 Watts
	2600 VC		Grid	Dissi	oatic	on -		-	-	- 8	9 Watts 500 Watts
	200 MA		Plate	Pow	er Ir patio	on -			-	- 2000 - 200 250 - 35 - 480 - 17 - 8 - 400 - 115 - 285	125 Watts
PLATE DISSIPATION	130 WA		Plate	Pow	er O	utput	- ·	rouit l	-	- 285	375 Watts

(Revised 6-15-66) © 1954, 1966, 1968 by Varian

RADIO FREQUENCY POWER AMPLIFIER AND OSCILLATOR

AND OSCILLATOR		DC Plate Voltage			3000	3500 Volts
		DC Plate Current	250	228	222	228 Ma.
Class-C Telegraphy or FM Telephony		DC Grid Voltage	-150	-180	-220	-270 Volts
(Key-down conditions, per tube)		DC Grid Current		28	25	30 Ma.
MAXIMUM RATINGS		Peak RF Grid Input Voltage	380	400	440	505 Volts
		Driving Power	12	11	11	15 Watts
DC PLATE VOLTAGE	3500 VOLTS	Grid Dissipation	7	6	5.5	7 Watts
DC PLATE CURRENT	250 MA.	Plate Power Input		570	666	800 Watts
PLATE DISSIPATION	200 WATTS	Plate Dissipation		200	200	200 Watts
		Plate Power Output		370	466	600 Watts
GRID DISSIPATION	25 WATTS	The output figures do not allow for ci	cuit losses.			

TYPICAL OPERATION

APPLICATION

MECHANICAL

Mounting — The 592/3-200A3 must be mounted vertically, base down or base up. Flexible connecting straps should be provided from the grid and plate terminals to the external grid and plate circuits. The tube must be protected from severe vibration and shock.

Cooling — An air-flow of approximately 15 cubic feet per minute should be directed at the bulb from a 2 inch diameter nozzle located about three inches from the center line of the tube. The center line of the nozzle should be located about two inches down from the top of the plate terminal. The incoming air temperature should not exceed 50°C. Other methods of cooling may be used provided the maximum bulb and seal temperatures are not exceeded. An 8 inch, household-type fan located about 10 inches from the tube is one alternate method. Special heat-dissipating connectors EIMAC HR-5 and HR-10, or equivalent, for grid and plate terminals respectively) should be used with this tube. These connectors help to prolong tube life by reducing the temperature of the metal-glass seals.

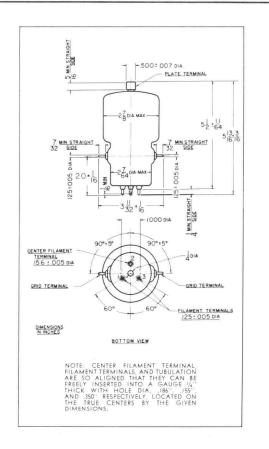
ELECTRICAL

Filament Voltage — For maximum tube life, the filament voltage, as measured directly at the filament pins, should be the rated value of 10.0 volts. Unavoidable variations in filament voltage must be kept within the range of 9.5 to 10.5 volts.

Bias Voltage — There is little advantage in using bias voltages in excess of those given under "Typical Operation" except in certain very specialized applications. Where bias is obtained by a grid leak, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation.

Grid Dissipation — The power dissipated by the grid of the 592/3-200A3 must not exceed 25 watts. Grid dissipation may be calculated from the following expression:

 $P_g = e_{cmp}I_c$

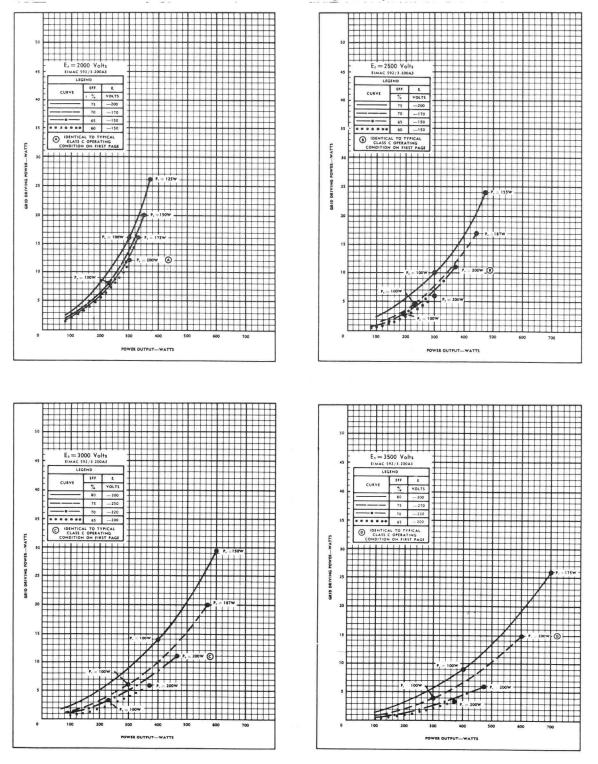

where P_g=grid dissipation,

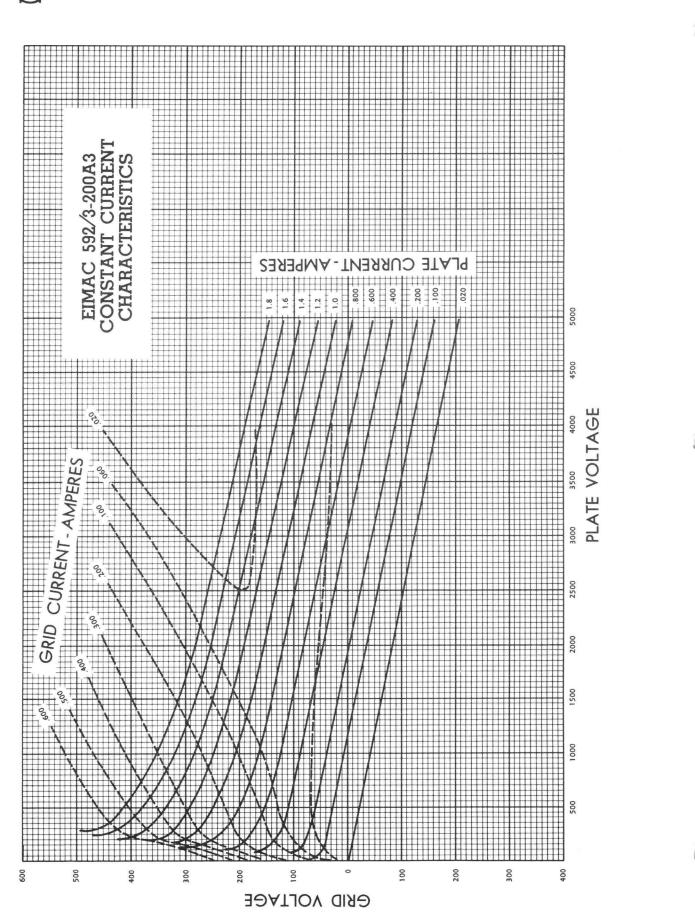
 e_{cmp} =peak positive grid voltage, and I_c =dc grid current.

 $e_{\rm emp}$ may be measured by means of a suitable peak-reading voltmeter connected between filament and grid.

Plate Voltage—Except for special applications, the plate supply voltage for the 592/3-200A3 should not exceed 3500 volts. In most cases there is little advantage in using plate-supply voltages in excess of those given under "Typical Operation" for the power output desired.

Plate Dissipation — Under normal operating conditions, the power dissipated by the plate of the 592/3-200A3 should not exceed 200 watts. At this dissipation the brightness temperature of the plate will appear a red-orange in color. The value of this color is somewhat affected by light from the filament, as well as from external sources. Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.





DRIVING POWER vs. POWER OUTPUT

The four charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 2000, 2500, 3000 and 3500 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by P_p .

Points A, B, C, and D are identical to the typical Class C operating conditions shown on the first page under 2000, 2500, 3000, and 3500 volts respectively.

TECHNICAL DATA

1000T HIGH-MU TRIODE

MODULATOR OSCILLATOR AMPLIFIER

The Eimac 1000T is a high-mu power triode intended for use as a modulator, oscillator, or amplifier. The tube has a maximum plate dissipation rating of 1000 watts, and a maximum plate voltage rating of 7500 volts at frequencies up to 50 Mc. Cooling is by forced air and radiation.

The 1000T in Class-C r-f service will deliver up to 3000 watts plate power output with 60 watts driving power. Two 1000T's in Class AB₂ modulator service will deliver up to 4600 watts maximum signal plate power output with 60 watts driving power.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thor	iated Tu	ngsten													
Volt	age -	-	-	-	-	-	-	-	-	-	-	-	7.5	volts ±	5%
Curr	ent -	-	-	-	-	-	-	-	-	-	-	-	15.5	amp	eres
Amplification	Factor (Avera	ge)	-	-	-	-	-	-	-	-	-	-		35
Direct Interele	ctrode (Capaci	tance	es (A	verag	je)									
Grid	-Plate	-	-	-	-	-	-	-	-	-	1 -	-	-	5.1	μµf
Grid	-Filamen	+ -	-	-	-	-	-	-	-	-	-	-	-	9.3	$\mu\mu f$
Plat	-Filamen	t	-	-	-	-	-	-	-	-	-	-	-	0.5	μµf
Transconducta	ice (I _b =	= 750m	a., E	b = 6	000v.	- (-	-	-	-	-	-		9050 µm	hos
Highest Frequ	ency for	Maxi	mum	Rat	ings	-	-	-	-	-	-		-	- 50	Mc
MECHANICA	1				-										

MECHANICAL

Base -		-	-	-	-	-			50-wat	t jum	bo 4-p	oin wit	h air	-cond	luctio	n pip	e					1
Connection	15	-	-	-	-	-				-	-	-	See	e outl	ine d	rawin	a					
Socket -		-	-	-	-	-			- J			No.					-					
Mounting	Posit	ion	-	-	-	-						Vertic										
Cooling -		-	-	-	-	-				-	-	For	ced	air ar	nd rad	diatio	n					
Maximum												-	-	-	-	-	-	-	-	-	-	225°C
Recommen	ded	Grid	and	Plate	Heat	Diss	ipating	Con	necto	rs -	-	-	_	-	-	-	-	-	-	-	-	Eimac HR-9
Maximum	Dime	nsion	15:																			
1	Seate	ed H	eight	ł	-	-				-		-	-	-	-	-	-	-		-	-	12.3 inches
	Diam	eter		-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	5.13 inches
Net Weig	ht	-	-	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	1.25 pounds
Shipping \	Neig	ht (/	Avera	age)	-	-				-	-	-	-	-	-	-	-	-	-	-	-	6.25 pounds

AUDIO-FREQUENCY POWER AMPLIFIER	TYPICAL OPERATION (Sinusoidal wave, two tubes unless otherwise specified)
	D-C Plate Voltage 4000 5000 6000 volts D-C Grid Voltage ¹
MAXIMUM RATINGS (Per tube) D-C PLATE VOLTAGE 7500 MAX. VOLTS	Effective Load Plate-to-Plate 6250 9200 13,300 ohms Peak A-F Grid Voltage (per tube) - 260 290 335 volts
D-C PLATE VOLTAGE 7500 MAX. VOLTS D-C PLATE CURRENT 750 MAX. MA	Max-Signal Plate Power Input 5000 5700 6300 watts
PLATE DISSIPATION 1000 MAX. WATTS	Max-Signal Plate Power Output 3000 3700 4600 watts
GRID DISSIPATION 80 MAX. WATTS	¹ Adjust to stated Zero-Signal Plate Current.
RADIO-FREQUENCY POWER AMPLIFIER	TYPICAL OPERATION (Frequencies up to 50 Mc.)
OR OSCILLATOR	D-C Plate Voltage 3000 4000 5000 6000 volts D-C Grid Voltage

Class-C Telegraphy or FM Telephony (Key-down conditions, per tube)	D-C
MAXIMUM RATINGS (Frequencies up to 50 Mc.)	D-C Peak
D-C PLATE VOLTAGE 7500 MAX. VOLTS	Drivit
D-C PLATE CURRENT 750 MAX. MA	Grid
PLATE DISSIPATION 1000 MAX. WATTS	Plate
GRID DISSIPATION 80 MAX. WATTS	Plate

PLATE-MODULATED RADIO-FREQUENCY AMPLIFIER

Class-C Telephony (Carr	ier co	onditio	ons,	pe	tube)			
MAXIMUM RATINGS (requ	encies	up	to	50 M	c.)			
D-C PLATE VOLTAGE		-	-	-	-	-	6000	MAX.	VOLTS
D-C PLATE CURRENT	-	-	-	-	-	-	600	MAX.	MA
PLATE DISSIPATION	-	-	-	-	-	-	665	MAX.	WATTS
GRID DISSIPATION	-	-	-	-	-	-	80	MAX.	WATTS

D-C Plate Voltage	-	-	-	-	1	3000	4000	5000	6000	volts
D-C Grid Voltage		-	-	-		-150	-150	-225	-350	volts
D-C Plate Current	- 1	-	-	-		750	713	667	667	ma
D-C Grid Current*	-	-	-	-		90	100	87	110	ma
Peak R-F Grid Volta	ape	-	-	-		350	365	420	610	volts
Driving Power* -	-	-	-	-		30	33	33	60	watts
Grid Dissipation" -	-	-	-	-		21	19	14	25	watts
Plate Power Input	-	-	-	-		2250	2850	3335	4000	watts
Plate Power Output	-	-	-	-		1350	1850	2335	3000	watts
TYPICAL OPERATION		-	-	- up				5000	6000	volts
D-C Plate Voltage	-	-	-		-		4000	5000	6000	volts
D-C Grid Voltage	-	-	-	-	-	-	- 300	- 400	-500	volts
D-C Plate Current	-	-	-	-	-	-	600	600	600	ma
D-C Grid Current*	-	-	-	-	-	-	80	90	95	ma
Peak R-F Grid Volta	qe	-	-	-	-	-	540	660	775	volts
Driving Power*	-	-	-	-	-		45	60	75	watts
Grid Dissipation*	-	-	-	-	-	-	20	24	25	watts
Plate Power Input	-	-	-	-	-	-	2400	3000	3600	watts
Plate Power Output		-	-	-	-	-	1735	2335	2935	watts

*Approximate values

IF IT IS DESIRED TO OPERATE THIS TUBE UNDER CONDITIONS WIDELY DIFFERENT FROM THOSE GIVEN UNDER "TYPICAL OPERATION," POSSIBLY EXCEEDING THE MAXIMUM RATINGS GIVEN FOR CW SERVICE, WRITE EIMAC DIVISION OF VARIAN ASSOCIATES, FOR INFORMATION AND RECOMMENDATIONS

(Revised 12-15-65) Copyright 1952, 1965 by Varian Associates

APPLICATION

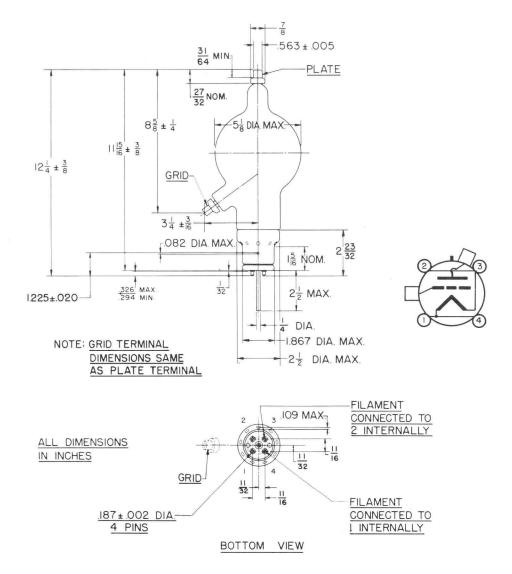
MECHANICAL

Mounting—The 1000T must be mounted vertically. The base may be either down or up. The leads to the plate and grid terminals should be flexible, and the tube must be protected from vibration and shock.

Cooling—The envelope and seals of the 1000T require forced-air cooling. Air-conduction pipes are provided in the base of the tube and in the HR-9 plate and grid Heat-Dissipating Connectors. Two cubic feet of air per minute supplied to each of these pipes will satisfy the cooling requirements of the seals. An 8- or 10-inch fan located approximately a foot from the tube will provide sufficient cooling air for the envelope. Air must be supplied to the tube when plate and grid voltages are applied, and must be continued until these voltages are removed. In some cases, particularly in locations where the ambient temperature is high, or where the free circulation of air is impeded, cooling air must be supplied when filament voltage is applied, and continued for two or more minutes after all voltages are removed.

The temperature of the grid and plate seals must not be allowed to exceed 225° C. A convenient accessory for the measurements of these temperatures is "Tempilaq", a temperature-sensitive lacquer manufactured by the Tempil Corporation, 132 W. 22nd St., New York 11, N. Y.

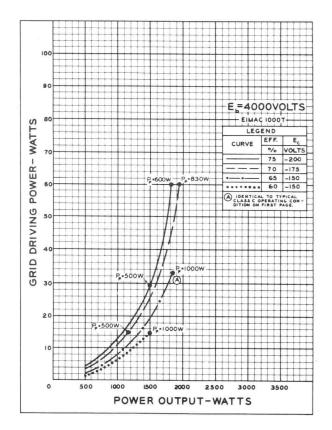
ELECTRICAL

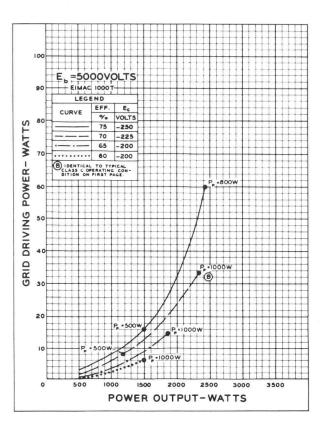

Filament—All four socket terminals should be used, putting two in parallel for each filament connection.

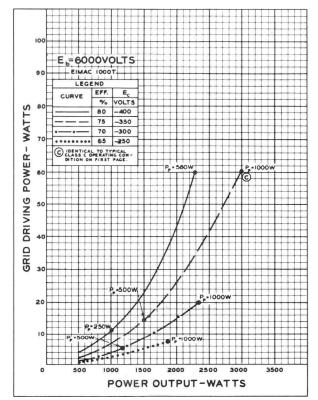
Bias Voltage—The maximum limit on bias voltages which may be used with the 1000T is considerably above those listed in "Typical Operation." Where bias is obtained by a grid leak, suitable protective means must be provided to prevent excessive plate dissipation in the event of loss of excitation.

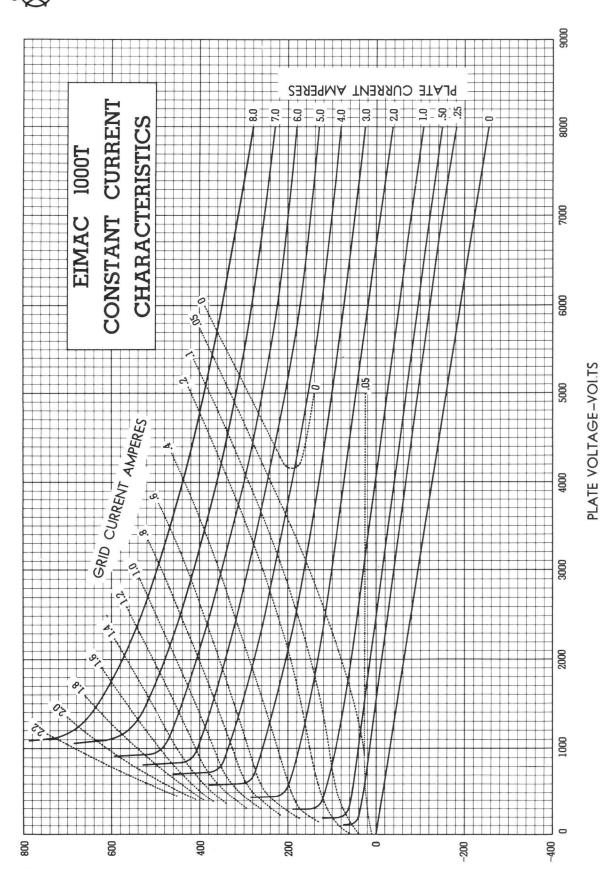
Plate Voltage—The rated maximum d-c plate voltage of 7500 volts applies at frequencies up to 50 Mc. Above that frequency the tube must be operated at lower d-c voltages. In most cases there is little advantage in using plate supply voltages higher than those given under "Typical Operation" for the power output desired. Grid Dissipation—Grid dissipation may be assumed to be

Grid Dissipation—Grid dissipation may be assumed to be the product of the d-c grid current and the peak positive cathode-to-grid voltage. This assumption is sufficiently accurate for the purpose of determining that the 1000T is operating within its maximum rated grid dissipation of 80 watts.


Plate Dissipation—Under normal operating conditions, the power dissipated by the plate of the 1000T should not be allowed to exceed 1000 watts. Plate dissipation in excess of the maximum rating is permissible for short periods of time, such as during tuning procedures.


DRIVING POWER vs. POWER OUTPUT


The three charts on this page show the relationship of plate efficiency, power output and grid driving power at plate voltages of 4000, 5000 and 6000 volts. These charts show combined grid and bias losses only. The driving power and power output figures do not include circuit losses. The plate dissipation in watts is indicated by P_p .


Points A, B, and C are identical to the typical Class C operating conditions shown on the first page under 4000, 5000, and 6000 volts respectively.

1000T

1000T

GRID VOLTAGE-VOLTS

E I M A C Division of Varian S A N C A R L O S C A L I F O R N I A 5867A AIR-COOLED MEDIUM MU POWER TRIODE

The Eimac 5867A is a power triode designed primarily for use in Industrial Heating applications. The large heat storage capacity of the graphite anode aids in compensating for the wide variations in loading generally associated with this type of sevrice. The 5867A is also suitable for use as an RF or AF Power Amplifier or Modulator.

The 5867A is cooled by radiation from the plate and by circulation of forced-air through the base, around the envelope, and over the plate seal. Cooling is greatly simplified by using the Eimac SK-410 Air-System Socket and SK-406 Air Chimney.

GENERAL CHARACTERISTICS

ELECTRICAL												
Filament: Thoriate	d Tung	rsten -	-	-	_					Min.	Nom.	Max.
Voltage Current	-		-	-	-	-	-	-	-	13.5	5.0	volts 14.7 amperes
Amplification Fact	or (Eb	=2500	V,	Ib=1	00 r	na)	-	-	-		25	
Direct Interelectro	de Capa	acitance	es									
Grid-Plate			-	-	-	-	-	-	-	5.0		6.2 uuf
Grid-Filament			-	-	-	-	-	-	-	6.5		8.0 uuf
Plate-Filamen	t -		-	-	-	-		-	-			0.5 uuf
Transconductance	(Ib=10	00 ma)) -	-	-	-	-	-	-		5,000	umhos
Highest Frequency	for Ma	aximum	ı Ra	tings	-	-	-	٣	-			50 mc
MECHANICAL												
Base			-	-	-	-	-	-	-	-		- see drawing
Mounting -			-	-	-	-	-	-	-	-	Vertical, h	base up or down
Cooling			-	-	-	-	-	-	-	-	Radiation	n and forced-air

Maximum O	pera	ting	Ter	nper	atur	es:												
Plate Se	eals	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	220°C
Base Se	eals	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	180°C
Maximum O																		-
Height	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	5.8	75 inches
Diamete	er	-	-	-	-	-	-	-	-	-	-	-	-	-	Ξ.	-	3.4	38 inches
Socket -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SK-410
Chimney	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	SK-406
Heat Radiate	or Co	onne	ctor	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- HR-6
Net Weight	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	6 ounces

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR

CLASS-C FM or Telegraphy

MAXIMUM RATINGS

DC PLATE VOLTAGE	-	-	-	4,000 MAX. VOLTS
DC GRID VOLTAGE	-	÷	-	-500 MAX. VOLTS
DC PLATE CURRENT	~	-	~	400 MAX. Ma.
PLATE DISSIPATION	-	-	-	350 MAX. WATTS
GRID DISSIPATION	-	-	-	30 MAX. WATTS

*Approximate Value.

TYPICAL OPERATION (Frequencies below 50 mc., per tube)

DC Plate Voltage	-	-	-	2,000	3,000	4,000 volts
DC Grid Voltage	-	$\mathbf{H}_{i}^{(t)}$		-150	-250	-350 volts
DC Plate Current		-1	-	400	365	380 ma
DC Grid Current-	-	-	-	80	70	80 ma
Peak Grid Driving	Volta	ge	- 1	320	430	535 volts
Driving Power* -	-	-	(-)	25	27	40 watts
Plate Input Power	-		$\mathcal{T} = \mathcal{T}$	800	1,090	1,520 watts
Plate Output Power	-	-	-	585	840	1,200 watts

CLASS-C OSCILLATOR, INDUSTRIAL APPLICATION SINGLE PHASE, FULL WAVE RECTIFIER, UNFILTERED

MAXIMUM RATINGS

DC PLATE VOLTAGE -3,800 MAX. VOLTS DC GRID VOLTAGE -500 MAX. VOLTS DC PLATE CURRENT 360 MAX. Ma. ---PLATE DISSIPATION - -350 MAX. WATTS -GRID DISSIPATION - - -30 MAX. WATTS PLATE INPUT POWER - - -1,500 MAX. WATTS

TYPICAL OPERATION (Frequencies below 50 mc., per tube)

DC Plate Voltage	π	-	-1	Ξ.	2,750	3,500 volts	
DC Plate Current	-	- 1	- 1	-	340	325 ma	
DC Grid Current -	-	-	-	-	60	65 ma	
Grid Resistor -	-		-	-	3,330	4,500 ohms	
Plate Input Power	-	-		-	935	1,400 watts	
Plate Output Power	-	-	-	Ξ.	685	1,100 watts	

CLASS-C OSCILLATOR, INDUSTRIAL APPLICATION SELF-RECTIFIED

MAXIMUM RATINGS

TYPICAL OPERATION (Frequencies below 50 mc., per tube)

PLATE VOLTAGE (r.m.s	s.)	-	-	4,500 MAX. VOLTS	Plate Voltage (r.m.s.)		-	-	-	3,000	4,000 volts
DC GRID VOLTAGE	-	-	-	-500 MAX. VOLTS	DC Grid Voltage	-		-	-	-110	—280 volts
DC PLATE CURRENT	-	-	-	210 MAX. Ma.	DC Plate Current	2-1	-	-	-	180	190 ma.
PLATE DISSIPATION	-	-	-	350 MAX. WATTS	DC Grid Current -	1	-	-	-	32	35 ma.
GRID DISSIPATION	-	-	-	30 MAX. WATTS	Plate Input Power	-	-	-	-	600	840 watts
GRID RESISTOR -	-	-	-	100,000 MAX. OHMS	Plate Output Power	-	-	-	-	415	630 watts
PLATE INPUT POWER	-	-	-	900 MAX. WATTS	Grid Resistor -	ie.	-		-	3,000	5,500 ohms

NOTE: "TYPICAL OPERATION" data are obtained by calculation from published characteristic curves and confirmed by direct tests. No allowance for circuit losses, either input or output, has been made.

5867A

APPLICATION

MECHANICAL

Mounting

The 5867A must be operated vertically, base up or down. A flexible strap must be provided between the heat dissipating plate connector and the external plate circuit. The tube must be protected from severe vibration and shock.

Cooling

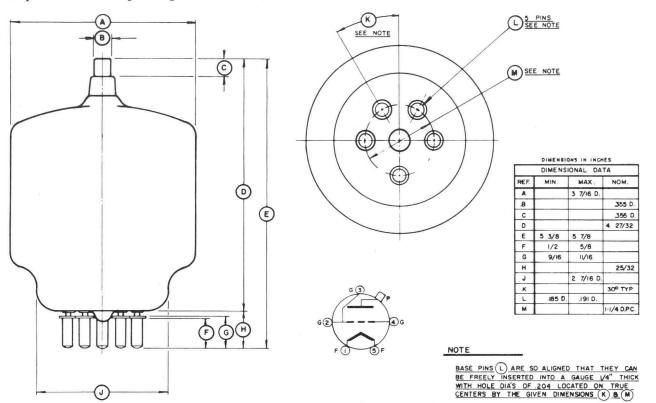
Forced-air cooling is required to maintain base and plate seal temperatures below 180°C and 220°C, respectively. When using the Eimac SK-410 Air system socket and SK-410 Air Chimney, complete with the HR-6 Heat Radiator, a minimum air-flow in the base to anode direction of 12 cfm at sea level is required to provide adequate cooling at an inlet air temperature of 50°C. This flow rate corresponds to a static pressure drop of 0.1 inches of water. At higher inlet air temperatures, higher altitudes, or at frequencies above 50 mc, the air flow rate must be increased to give adequate cooling. Cooling air must be supplied to the tube even when the filament alone is on during standby periods.

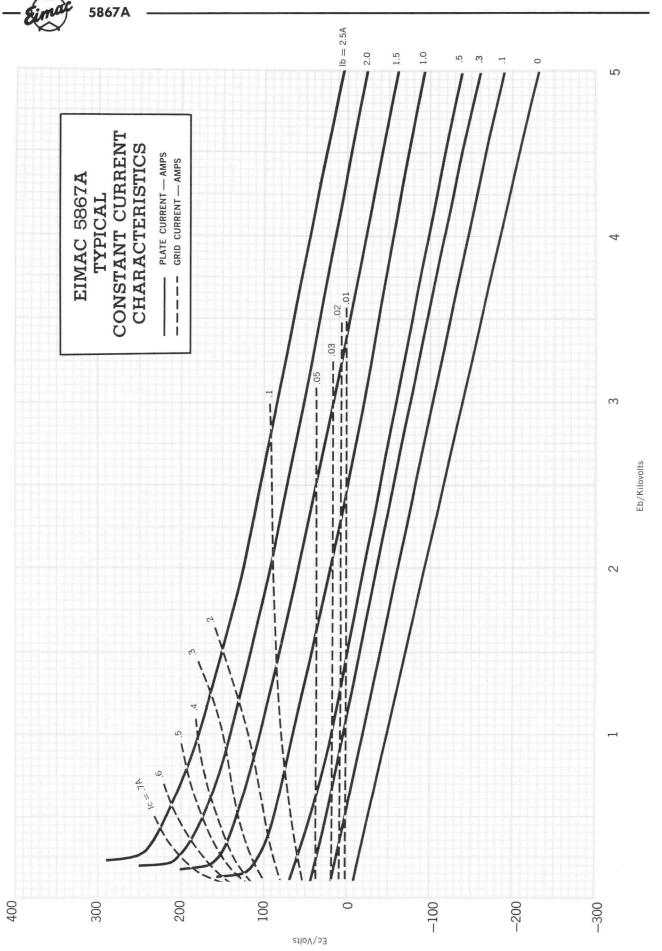
When a socket other than the SK-410 is used, provisions must be made for equivalent cooling of the base, envelope and plate seals. In all cases, air flow rates in excess of the minimum requirements will prolong tube life.

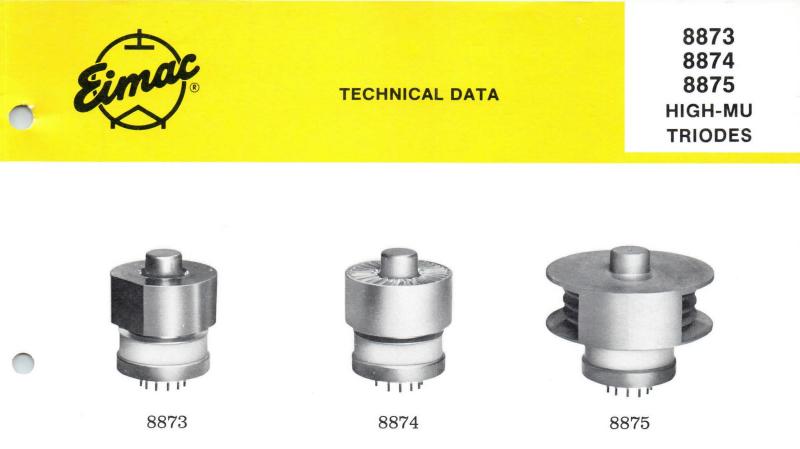
ELECTRICAL

Filament Voltage

For maximum tube life the filament voltage, as measured directly at the filament pins, should be the rated 5.0 volts. Variations in the filament voltage must be kept within the range of 4.75 and 5.25 volts.


Grid Dissipation


The rated grid dissipation of the Eimac 5867A is 30 watts. Grid dissipation is the approximate product of the dc grid current and the peak positive grid voltage. In equipment where the plate loading varies widely, such as radiofrequency heating oscillators, care should be taken to insure that the grid dissipation does not exceed the 30 watt maximum.


To prevent overheating of a grid pin by RF currents, it is advisable to connect all three grid pins into the circuit.

Special Applications

If it is desired to operate this tube under conditions widely different than those given here, write to Power Grid Tube Marketing, Eitel-McCullough, Inc., 301 Industrial Way, San Carlos, California, for information and recommendations.

The EIMAC 8873, 8874, and 8875 are compact external-anode ceramic/metal triodes intended for use in Class AB or C amplifiers in radio-frequency applications. The three types differ only in method of cooling and anode dissipation: the anode of the 8873 is designed for conduction cooling and is rated for 200 watts; the 8875 anode has a transverse cooler for forced-air cooling and is rated for 300 watts; and the 8874 requires axial-flow forced-air cooling and is rated for 400 watts. Grounded-grid operation is attractive since a power gain as high as twenty times can be obtained with these types in a cathode-driven circuit.

GENERAL CHARACTERISTICS¹

ELECTRICAL

	Cathode: Oxide Coated, Unipotential			
1	Heater Voltage	6.3 ± 0.3	V	
	Heater Current, at 6.3 volts	3.0	A	
	Cathode-Heater Potential (maximum)	± 150	V	
	Tranconductance, average			
	Ib = 250 mAdc	29,000	umhos	5
	Direct Interelectrode Capacitances, (cathode grounded, in shielded fixture) ²			
	Cin	20.5	pF	
	Cout	0.03	pF	
	Cgp	6.0	pF	
	Direct Interelectrode Capacitances, (grid grounded, in shielded fixture) ²			
	Cin	20.5	\mathbf{pF}	
	Cout	6.0	\mathbf{pF}	
	Cpk	0.03	\mathbf{pF}	
	Ck-htr	6.0	\mathbf{pF}	
	Frequency of Maximum Rating:			
	CW	500	MHz	

1. Characteristics and operating values are based upon peformance tests. These figures may change without notice as the result of additional data or product refinement. Varian, EIMAC Division should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

3981(Revised 8-1-79) © 1970, 1971, 1973, 1977, 1979 by Varian

varian, EIMAC division/301 industrial way/san carlos/california 94070

MECHANICAL

Maximum Overall Dimensions:

	TYPE 8873		TYPE 887	4	TYPE 887	õ	
Length	2.14 in. 54.41	mm	2.14 in. 54.41	mm	2.18 in. 55.50	mm	
Diameter	1.64 in. 41.66	mm	1.64 in. 41.66	mm	2.52 in. 64.01	mm	
Net Weight Operating Position	8.50 oz. 240.9 Any	gm	4.30 oz. 121.9 Any	gm	8.60 oz. 243.8 Any	gm	
Cooling: (Type 8873)							
Conduction cooled. Recommended	Beryllium Ox	tide ther	mal link		EIMAC SK-1	1920	
(Type 8874)							
Air flow at 50°C and sea level						Min.	
Pressure Drop, across tube anode cooler at 8.6 ft ³ /Min0.37							
(Type 8875))					~	
Air flow at 25°C and sea level, and		A 1.					
Pressure Drop across tube anode o	cooler (See	Applica	tion Section, C	Cooling 8	8875		
Operating Temperature, Maximum,							
Ceramic/Metal seals and Anode C	ore					0°C	
Base: (all types)							
Recommended Socket				E.F. Joh	nson #124-311-	100*	
Available grid Collet, for base grid					AC Part No. 882		
			EIMAC as Part No. 1				

RANGE VALUES FOR EQUIPMENT DESIGN

Heater Current, at 6.3 volts	2.8	3.4	A
Cathode Warmup Time	60	5	sec.
Plate Current (Ef = 6.3 V, Eb = 1000 Vdc, Ec = 0 Vdc)	35	80 1	mAdc
Grid Cut-off (Ef = 6.3 V, Eb = 2000 Vdc, Ib = 1.0 mAdc)		-16	Vdc
Interelectrode Capacitances (cathode grounded, in shielded fixture) ¹			
Cin	18.0	23.0 p	pF
Cout		0.04 p	pF
Cgp	5.0	7.0 p	pF
Interelectrode Capacitances (grid grounded, in shielded fixture) ¹			
Cin	18.0	23.0 p	pF
Cout	5.0	7.0 p	pF
Cpk		0.04 p	pF

Min.

Max.

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN

Class AB₂

MAXIMUM RATINGS:

DC PLATE VOLTAGE DC PLATE CURRENT PLATE DISSIPATION (nominal values)		VOLTS AMPERE
TYPE 8873 (with heat sink)	200	WATTS
TYPE 8874	400	WATTS
TYPE 8875	300	WATTS
GRID DISSIPATION	5	WATTS

TYPICAL OPERATION

Class AB₂ (Cathode driven) Peak Envelope Modulation Crest or Key-Down Conditions¹

Frequency	30	150	432	MHz	
Plate Voltage	2000	2000	2000	Vdc	
Cathode Voltage	8.2	9.8	8.2	Vdc	
Zero-Signal Plate Current	22	10	22	mAdc	
Single-Tone IVS Plate Current ²	500	400	500	mAdc	

Two-Tone Plate Current ³	312	245	300	mAdc
Single-Tone Grid Current ⁴	30	23	98	mAdc
Two-Tone Grid Current ⁴	12	10	39	mAdc
Peak rf Grid/Cathode Voltage ⁴	67	50	67	V
Peak Driving Power ^₄	26	17.5	27	W
Peak Power Input	1000	800	1000	W
Useful Output Power ⁴	587	526	505	W
Resonant Load Impedance	2140			0
Intermodulation Distortion ⁵				36
3rd Order	-35	2-0-		dB
5th Order	-36			dB

1. Short-term duty should not exceed 50%. During brief test periods, "on" time must be kept as short as possible, with sufficient "off" time to allow for tube cooling.

Key down condition. With 50% duty, current will be half the value shown.

 Two equal-tone modulation. During brief test periods, allow sufficient "off" time for tube cooling. Values will be lower with voice modulation for the same PEP level.
 Approximate values.

5. The intermodulation distortion products are referenced against one tone of a two equal-tone signal.

RADIO FREQUENCY POWER AMPLIFIER OR OSCILLATOR

Class C Telegraphy or FM (Key-Down Conditions)

MAXIMUM RATINGS:

DC PLATE VOLTAGE DC GRID VOLTAGE DC PLATE CURRENT PLATE DISSIPATION (nominal values)	-100	VOLTS VOLTS AMPERE
TYPE 8873 (with heat sink)	200	WATTS
TYPE 8874	400	WATTS
TYPE 8875	300	WATTS
GRID DISSIPATION	5	WATTS

TYPICAL OPERATION (Frequencies to 110 MHz)

Plate Voltage	2000	Vdc
Grid Voltage ¹	-10	Vdc
Plate Current	250	mAdc
Grid Current ¹		mAdc
Measured Driving Power	9	WATTS
Plate Input Power	500	WATTS
Plate Dissipation		WATTS
Useful Output Power	305	WATTS

1. Approximate value.

PULSE MODULATOR OR REGULATOR

MAXIMUM RATINGS:	PLATE DISSIPATION (nominal values):		
DC PLATE VOLTAGE PEAK ANODE CURRENT GRID DISSIPATION	TYPE 8873 (with heat sink) TYPE 8874 TYPE 8875	400	WATTS WATTS WATTS

APPLICATION

MOUNTING & *SOCKETING* - The 8873, 8874, and 8875 may be mounted in any position. Sockets such as E.F. Johnson #124-311-100, or equivalent, may be used as long as there are no unusual circumstances which would allow the ceramic/metal anode and base seal temperatures to exceed 250°C. The internal construction of these tubes is such that heat transfer to the tube base is minimized, but in operation there is some heat flow from the tube base to the socket. Mounting should be such that free movement of air past the base by convection is possible, or, if forced-air cooling is being provided for the anode, some of this air may be bled off to provide for some circulation past the tube base.

The 8873 mounting is normally controlled by its heat sink configuration and location. Where possible, the socket can be mounted on a bracket which in turn is mounted to the heat sink so that the one sink will act for removal of heat from the tube anode and also the tube base. The EIMAC SK-1920 beryllium oxide (BeO) thermal link is available for use between the 8873 anode and the heat sink. BeO is a ceramic material which exhibits high thermal conductance, similar to aluminum, and high electrical resistance and low loss typical of ceramics. Properly installed, it provides a low thermal resistance path allowing the anode heat to be transferred to the heat sink, while providing electrical isolation between the anode and the sink.

The 8874 requires forced-air cooling for its anode, which can often be accomplished most easily by means of a pressurized anode-compartment chassis, with air passing through the anode cooler and then exhausting. In such an installation, some air can be bled past the socket mount to provide base cooling if this is required.

The 8875 has a large transverse cooler on its anode, requiring forced-air cooling directed crossways.

HEATER/CATHODE OPERATION - The rated heater voltage for the 8873, 8874, and 8875 is 6.3 volts, as measured at the base of the tube, and variations should be restricted to plus or minus 0.3 volt for long life and consistent performance. At frequencies above approximately 300 MHz it may be necessary to reduce heater voltage to compensate for rf transit-time heating of the cathode after dynamic operation of the tube has started. The back heating is a function of frequency, grid current, grid-bias, anode current, duty cycle, and circuit design and adjustment. The following heater operating voltages are recommended:

Frequency (MHz)	Heater Voltage		
300 or lower	6.3		
301 to 400	6.0		
401 to 500	5.7		

The potential between the heater and the cathode should be limited to plus or minus 150 Vdc.

CATHODE WARMUP TIME - In normal service it is recommended that the heater voltage be applied for a minimum of 60 seconds before anode voltage and drive boltage are applied, to allow proper conditioning of cathode surface.

If it is desired to apply anode voltage simultaneously with heater voltage, enough bias voltage must also be applied so that no conduction can take place until drive voltage is applied after the full 60 seconds of warmup time.

ANODE CURRENT RATING AND TUNEUP PROCEDURE - The 8873, 8874, and 8875 are rated for 350 mAdc of continuous anode current. In intermittent voice (A3J emission) and interrupted carrier keying (A1 emission) service, which would be normal single-sideband-suppressedcarrier or keyed CW operation, and where shortterm duty does not exceed 50%, the dc anode current (per tube) may be 500 mA during the "on" time. With 50% duty, the average current (per tube) would be 250 mA. During very short test periods, the tubes may be operated at full 500 mA value but care must be taken to keep the "on" time as short as possible, with sufficient "off" time to allow for tube cooling.

Initial tuneup should preferable be done with reduced anode voltage and drive, and if done at the correct values, little or no retuning will be necessary when switching to full operating level. For the 2000 volt Intermittent Voice Service (IVS) condition, tuneup is recommended at 1500 volts and reduced grid drive. When anode voltage and drive are then raised, the full one kilowatt PEP IVS condition will be achieved with little or no retuning required.

COOLING - 8873 - This tube is designed for use in a conduction-cooled system by using a beryllium oxide (BeO) thermal link between the anode and the heat sink. The heat sink in turn can be cooled by natural (free) convection, forced-air convection, liquid cooling, or a combination of these methods. The design choice is determined by the tube application, but in all cases the cooling system must maintain the anode and the ceramicmetal seal temperatures below $250^{\circ}C$.

Intimacy of contact and pressure are two factors which will effect transfer of heat from the tube anode through the BeO thermal link to the heat

8873/8874/8875

sink. A good thermally conductive compound should be used in the interface (between anode and BeO, and between BeO and heat sink) to reduce the thermal resistance of the joint. Examples of commercially available thermal joint compound are:

- WAKEFIELD 120 Wakefield Engineering Co., Wakefield, Mass. 01880
- DOW CORNING 340 Dow Corning Corp., Midland, Michigan 48640
- ASTRODYNE THERMAL BOND 312 Astrodyne Inc., Burlington, Mass 01803
- G.E. INSULGREASE G641 G.E. Company, Cleveland, Ohio 44117

The method of fastening the tube to the heat sink should provide reasonable compression to reduce interface thermal resistance. A device such as the DE-STA-CO toggle clamp, modified by replacing the rubber nose with a ¹/₂-inch ceramic insulator, can provide a simple means of holding the tube securely and providing adequate compression.

The EIMAC SK-1920 BeO thermal link is recommended for use between the tube anode and the heat sink, as it is the correct size and thickness to match the physical and electrical characteristics of the 8873 tube.

IMPORTANT - BEFORE HANDLING OR AT-TEMPTING TO USE ANY BERYLLIUM OXIDE THERMAL LINK CAREFULLY READ THE MA-TERIAL ON PAGE 6 REGARDING THIS MA-TERIAL.

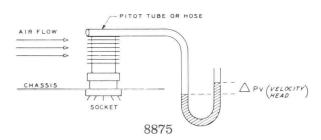
A heat sink capable of handling 200 watts of continuous dissipation from the 8873 can be made with a section of finned aluminum alloy extrusion, such as Wakefield A-2494, or equivalent, cut to approximately 8 inches by 4 inches, backed with a 1/8-inch copper plate the same size. Thermal joint compound is used between the copper plate and the flat aluminum surface, with the two secured together at enough points to assure good continuous contact. The backed extrusion is mounted so as to allow for free air convection around the fins. The tube is then mounted, with the EIMAC SK-1920 thermal link, in the approximate center of the copper surface, with thermal joint compound again used between the tube anode and the BeO link, and between the BeO link and the copper. A device such as the modified DE-STA- CO toggle clamp is used to hold the tube securely in place.

Socketing is accomplished with one of the units mentioned earlier, mounted so as to allow for free air convection around the base of the tube and the socket, and on a bracket which returns to the same heat sink if possible. The designer is cautioned to allow for some lateral movement in the socket mount, and to make sure the anode is flat against the BeO thermal link so that good conduction contact exists before the socket mounts are tightened down. If the tube anode, the thermal link, and the heat sink are not making good flat contact, heat transfer will be seriously affected.

If unusually high ambient temperatures are expected, or more than 200 watts capability is required, a small fan can be used to move air past the sink cooling fins. With any conduction-cooled power tube, dissipation capability is almost completely dependent on the ability of the heat-sink system to carry heat away and the temperature limitations of the tube itself. Thus the 200-watt dissipation rating of the 8873 is a nominal value only, as illustrated by the fact that the same tube, with an axial-flow air radiator installed (the 8874) is rated for 400 watts of dissipation under specified cooling conditions.

In all cases, temperature of the tube anode and the ceramic/metal seals is the limiting factor, and the equipment designer is encouraged to use temperature-sensitive paint or other temperaturesensing devices in connection with any equipment design before the layout is finalized.

8874 -Forced-air cooling must be provided to maintain the anode core and seal temperatures within maximum rating. The cooling data shown is for sea level, with cooling air at 50°C, and is sufficient to limit tube temperatures to 225°C. The pressure drop figures shown are for the anode cooler only, as would be the case with a pressurized anode compartment of an equipment, where air would be required to pass through the anode cooler and then through an insulated duct to the outside of the cabinet. Some air from the pressurized anode compartment can be bled by the socket for base cooling, either by means of a somewhat oversize socket-mounting hole, or a series of small holes drilled in the chassis near the edges of the socket, in order to provide a small amount of air circulation around the base pins of the tube.



8874					
Anode Diss.	Air Flow (CFM)	Approx. Press. Drop (In. H ₂ 0)			
200W	4.0	0.11			
300W	6.0	0.22			
400W	8.6	0.37			

8875 - Forced-air cooling must be provided to maintain the anode core and seal temperatures within the maximum rating. Cooling data is shown for sea level, with cooling air at 25° C.

These figures are for the case where the cooling air is supplied from a small general-purpose fan in close proximity to the tube and directing air across the tube and through the anode cooler.

The recommended cooling is sufficient to limit tube temperatures to 225°C. The required air velocity can be checked with a simple manometer, as shown in the accompanying figure.

Anode	Cooling Air	Vel. Head (Δ Pv)	
Diss.	Velocity	Inches of H ₂ 0	
200W	870 Ft/Min.	0.045	
300W	1600 Ft/Min.	0.16	

With all three tube types, the equipment designer is cautioned that it is not good practice to operate at, or close to, the absolute maximum temperature ratings for the metal/ceramic seals. Where long life and consistent performance are factors, cooling in excess of the minimum requirements outlined here is normally beneficial.

DANGER - BERYLLIUM OXIDE CERAMICS (Be0) Do not alter, grind, lap, fire, chemically clean, or perform any other operation on the SK-1920 Beryllium Oxide thermal link used with the 8873, or any other equivalent section of Be0 used with the 8873. Normal use of Be0 ceramics has never been considered hazardous, but the user should avoid any operation which would create Be0 dust particles in the air, or fumes, which could be breathed, as these are considered dangerous. It should be noted that none of these three tubes contains any Be0 in the envelope, or internally. Only the SK-1920 thermal link is made of Be0, because of its insulating qualities combined with its high thermal conductivity.

HIGH VOLTAGE - The 8873, 8874, and 8875 operate at voltages which can be deadly, and the equipment must be designed properly and operating precautions must be followed. Equipment must be designed so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open the primary circuits of the power supplies and to discharge high voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

OUTPUT CAPACITANCE - The interelectrode capacitance figures given in the General Characteristics are measured in a shielded fixture and do not include additonal external capacitance. Including the stray capacitance between the anode and the heat sink used with the 8873 tube will typically raise the output capacitance to somewhat more than double the measured internal value.

INTERMODULATION DISTORTION - Typical Operating Conditions, with distortion values included, are the result of data taken during actual operation a 2 Megahertz. Intermodulation values listed are those measured at the full peak envelope power noted and are referenced against one tone of a two-equal tone signal.

INPUT CIRCUIT - When any of these types is operated as a grounded-grid rf amplifier, the use of a resonant tank in the cathode circuit is recommended in order to obtain greatest linearity and power output. For best results with a single-ended amplifier it is suggested that the cathode tank circuit operate at a "Q" of five or more.

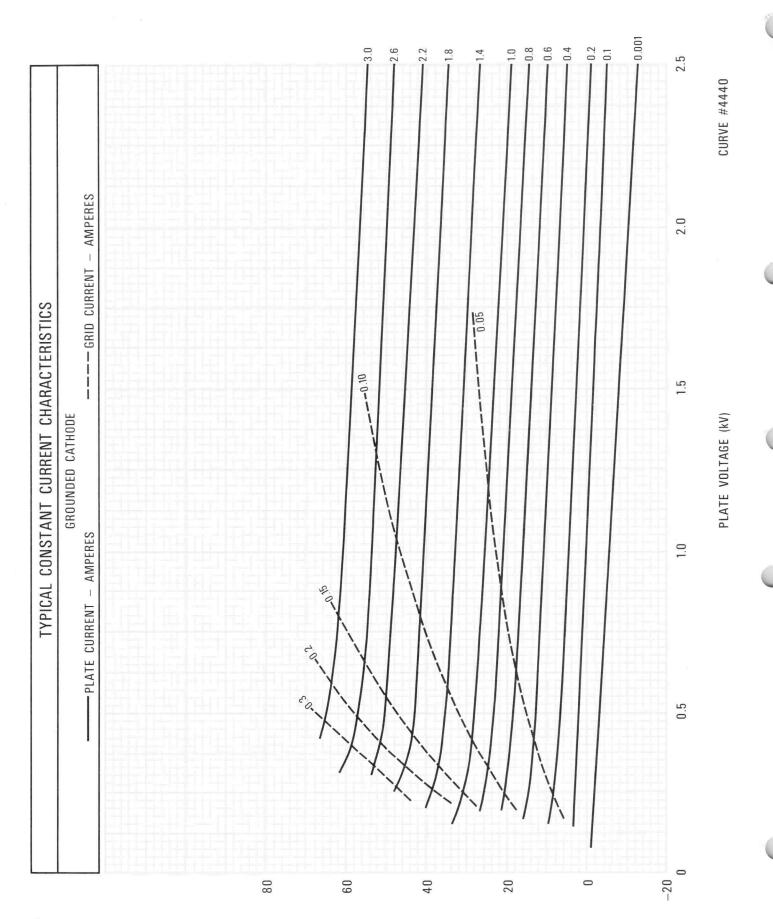
FAULT PROTECTION - All power tubes operate at voltages which can cause severe damage in the event of an internal arc, especially in those cases where large amounts of stored energy or followon current are involved.

Some means of protection is advised in all cases, and it is recommended that a series resistor of 25 to 50 ohms be used in the anode circuit to limit

peak current and provide a means of dissipating the energy in the event of a tube or circuit arc. For an oxide-cathode type such as these tubes are a maximum of 4 joules total energy should be permitted to be dumped into an internal arc. Amounts in excess of this may permanently damage the cathode or the grid structure.

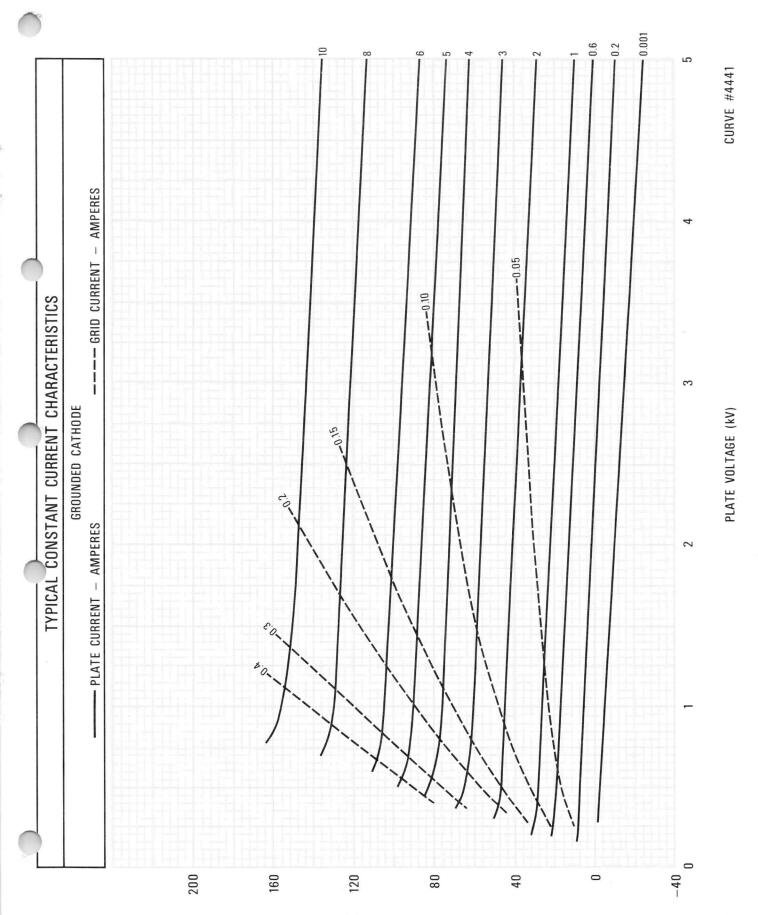
Additional information is found in EIMAC's Application Bulletin #17 titled "FAULT PROTEC-TION", available on request. SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Division, Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070 for information and recommendations.

OPERATING HAZARDS


PROPER USE AND SAFE OPERATING PRAC-TICES WITH RESPECT TO POWER TUBES ARE THE RESPONSIBILITY OF EQUIPMENT MANU-FACTURERS AND USERS OF SUCH TUBES. ALL PERSONS WHO WORK WITH OR ARE EXPOSED TO POWER TUBES OR EQUIPMENT WHICH UTILIZES SUCH TUBES MUST TAKE PRECAUTIONS TO PROTECT THEMSELVES AGAINST POSSIBLE SERIOUS BODILY IN-JURY. DO NOT BE CARELESS AROUND SUCH PRODUCTS.

The operation of power tubes involves one or more of the following hazards, any one of which, in the absence of safe operating practices and precautions, could result in serious harm to personnel:

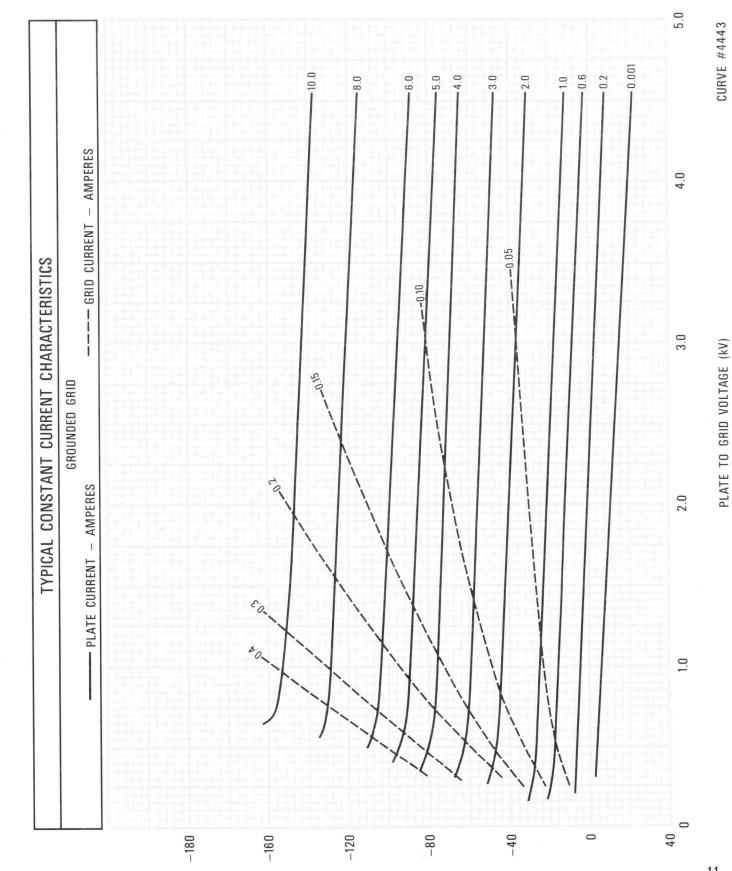
- a. HIGH VOLTAGE Normal operating voltages can be deadly.
- b. RF RADIATION Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.


- c. X-RAY RADIATION High voltage tubes can produce dangerous and possibly fatal x-rays.
- d. BERYLLIUM OXIDE POISONING Dust or fumes from BeO ceramics used as thermal links with some conduction-cooled power tubes are highly toxic and can cause serious injury or death.
- e. GLASS EXPLOSION Many electron tubes have glass envelopes. Breaking the glass can cause an implosion, which will result in an explosive scattering of glass particles. Handle glass tubes carefully.
- f. HOT WATER Water used to cool tubes may reach scalding temperatures. Touching or rupture of the cooling system can cause serious burns.
- g. HOT SURFACES Surfaces of air-cooled radiators and other parts of tubes can reach temperatures of several hundred degrees centigrade and cause serious burns if touched.

Please review the detailed operating hazards sheet enclosed with each tube or request a copy from the address shown below: Power Grid Tube Division, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070.

(V) 30ATJOV 0180

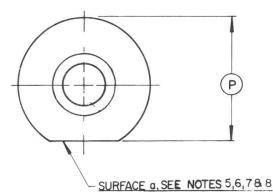
8



9

10

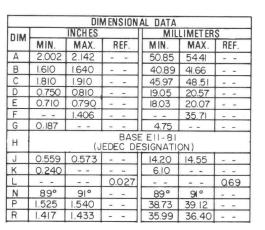
(V) ΞϿΑΤΙΟΥ ΘΙΑΘ ΟΤ ΞΟΟΗΤΑΟ

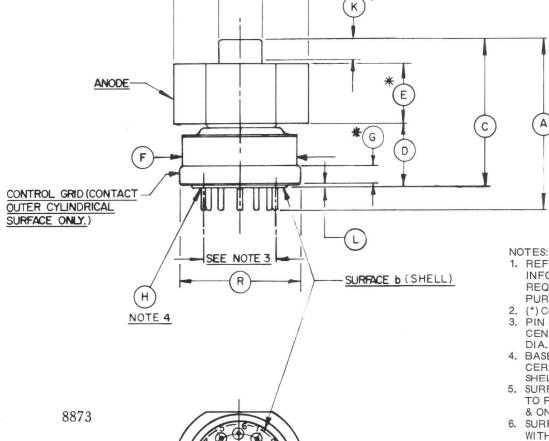

(V) ΞϿΑΤΙΟΥ ΟΙΑΘ ΟΤ ΞΟΟΗΤΑΟ

11

8873/8874/8875

Eima:



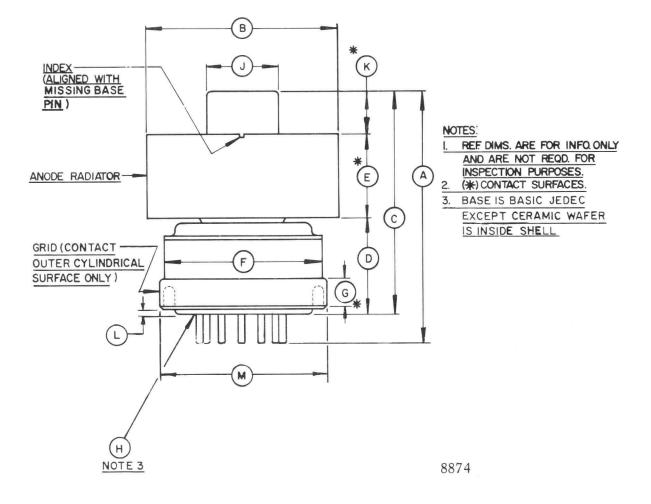


B

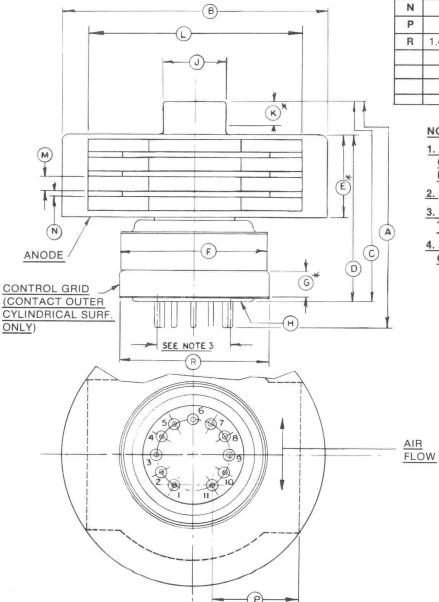
J

PIN NO. 1 CATHODE PIN NO.2 CATHODE PIN NO.3 CATHODE PIN NO.4 CONTROL GRID PIN NO.5 HEATER PIN NO. 6 HEATER CONTROL GRID PIN NO.7 PIN NO.8 CATHODE PIN NO.9 CATHODE PIN NO.10 CATHODE PIN NO. 11 CONTROL GRID

SEE NOTE 5


NOTES:

- 1. REF. DIMENSIONS ARE FOR INFO. ONLY & ARE NOT REQUIRED FOR INSPECTION
- PURPOSES. 2. (*) CONTACT SURFACE.
- PIN PITCH DIA. TO BE CON-CENTRIC TO B WITHIN .040 DIA.
- 4. BASE IS BASIC JEDEC EXCEPT CERAMIC WAFER IS INSIDE SHELL.
- 5. SURFACE a TO BE PARALLEL TO PINS I & II AXIS WITHIN 2° & ON OPPOSITE SIDE.
- 6. SURFACE a MUST BE FLAT WITHIN .001 & PERP. TO SUR-FACE b WITHIN N LIMITS.
- 7. SURFACE a TO BE FREE OF ANY CODING OR LABELING.
- 8. SURFACE a ROUGHNESS (ASA B46.1 - 1962 OR ISO R468-66) -32 µ in. 6.8 µm.

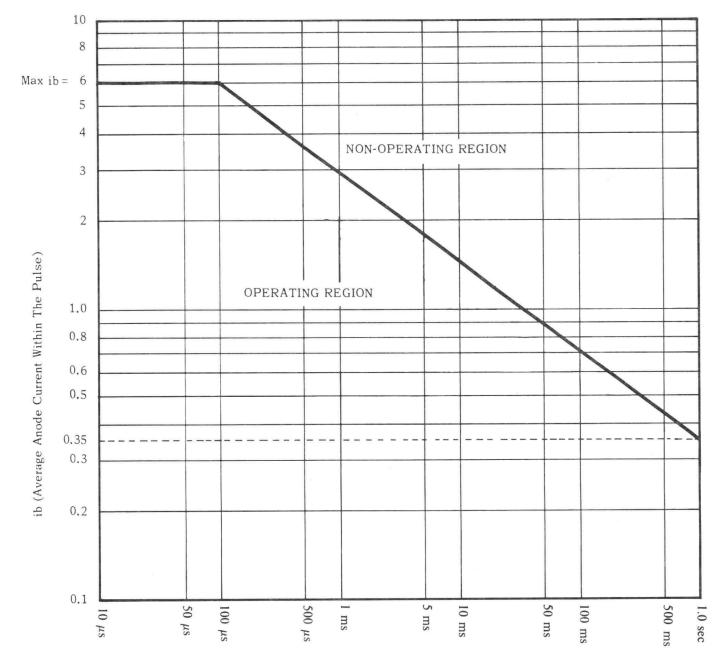


PIN No.1! CATHODE			DIM	ENSION	AL DATA			l
No.2: CATHODE	DIM		INCHES		MIL	LIMETER	S	
	DIM	MIN.	MAX.	REF.	MIN.	MAX.	REF.	
CATHODE	A	2.002	2.142		50.85	54.41		
RID	В	1.610	1.640		40.89	41.66		
HEATER	С	1.810	1.910		45.97	48.51		
HEATER	D	0.750	0.810		19.05	20.57		
AIER	E	0.710	0.790		18.03	20.07		
	F		1.406			35.71		
HODE	G	0.187			4.75			
Ē	н		(J		EII-81 ESIGNATIO	DN)		
IODE	J	0.559	0.573		14.20	14.55		
	к	0.240			6.10			
0	L			0.027			0.69	
	M	1.417	1.433		35.99	36.40		

PIN No. 1,	2, 3, 8,	9, 10 CATHODE
PIN No. 4,	7, 11	CONTROL GRID
PIN No. 5,	6	HEATER

DIMENSIONAL DATA						
INCHES			MILLIMETERS			
DIM.	MIN.	MAX.	REF.	MIN. MAX. REF		
Α		2.185			55.50	
в	2.480	2.520		62.99	64.01	
С	1.867	1.997		47.42	50.72	
D	1.544	1.674		39.22	42.52	
E	.780	.860		19.81	21.48	
F			1.406			35.71
G	.187			4.75		
н	H BASE E11-81 (JEDEC DESIGNATION)					
J	.559	.573		14.20	14.55	
к	.240			6.10		
L		2.050			52.07	
М			.135			3.43
N			.050			1.27
Р			.838			21.28
R	1.417	1.433		35.99	36.40	

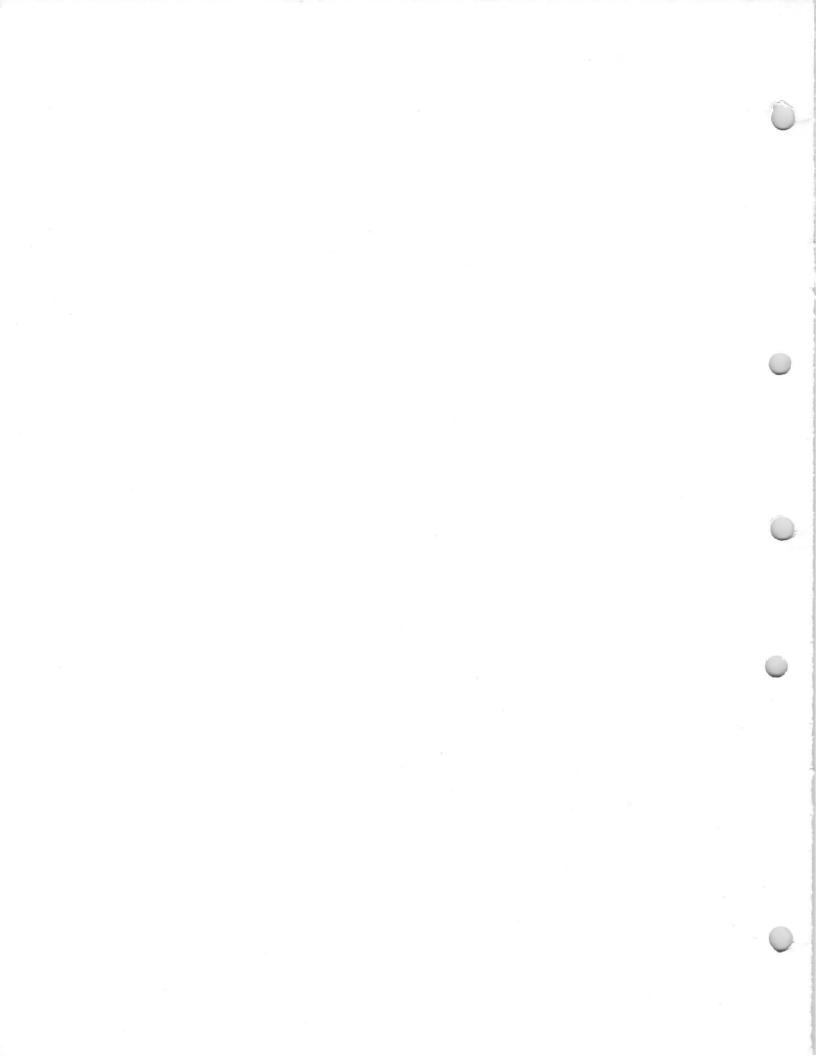
NOTES:


1. REF DIMENSIONS ARE FOR INFO ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

2. (*) CONTACT SURFACE.

3. PIN PITCH DIA. TO BE CONCENTRIC TO B WITHIN .040 DIA.

4. BASE IS BASIC JEDEC EXCEPT CERAMIC WAFER IS INSIDE SHELL.



PULSE LENGTH

Pulse anode current (ib) capability is dependent on pulse length (tp) and duty factor (Du). Maximum ib for a given tp is shown; maximum Du may then be derived from the relationship: $0.350 = ib \sqrt{Du}$

PULSE DERATING CHART, TYPES 8873, 8874, 8875

PULSE MODULATOR OR REGULATOR SERVICE

TECHNICAL DATA

8938 UHF HIGH-MU POWER TRIODE

The **EIMAC 8938** is a rugged coaxial-base ceramic and metal power triode designed for use as a cathode driven Class AB₂ or Class C amplifier.

It is recommended for VHF or UHF service as a linear amplifier, power amplifier or pulse amplifier. Linearity and power gain are both excellent due to the low ratio of grid to plate current, and the relatively high amplification factor. Low grid interception of available emission current is due to the beam forming geometry of the special grid and cathode design.

The 8938 is a practical size for use in ground based or mobile equipment in CW or PEP power levels of 1 to 2.5 kW. It is useful at frequencies higher than the upper frequency of maximum ratings, 500 MHz.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide Coated, Unipotential Heater: Voltage	5.0 ± 0.25 Volts
Current @ 5.0 Volts Transconductance (Average):	
I _b = 1.0 Adc Amplification Factor (Average)	55,000 μmhos 125
Direct Interelectrode Capacitance (Grounded Grid) ² Cin	39 pF
Cout Cap	
Ck-htr Frequency of Maximum Rating (CW)	12.8 pF

¹Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. **Varian EIMAC** should be consulted before using this information for final equipment design.

²Capacitance values are for a cold tube as measured in a special shielded fixture.

1678 South Pioneer Road / Salt Lake City, Utah 84104 / (801) 972-5000

RADIO FREQUENCY LINEAR AMPLIFIER CATHODE DRIVEN (Class AB₂)

TYPICAL OPERATION (Frequencies to 30 MHz) Class AB₂ Cathode Driven, Peak Envelope or Modulation Crest Conditions Driving Power³ 50 Watts Intermodulation Distortion² 5th Order Products--44 dB Positive cathode bias provided by zener diode. ²The intermodulation distortion products are referenced against one tone of a two equal tone signal.

³Approximate value. ⁴Delivered to the load.

ABSOLUTE MAXIMUM RATINGS

DC Plate Voltage 4000 Volts
DC Plate Current 1.0 Ampere
Plate Dissipation
Grid Dissipation

RADIO FREQUENCY POWER AMPLIFIER (Class B or C)

TYPICAL OPERATION (Cathode Driven Amplifier)

ABSOLUTE MAXIMUM RATINGS

DC Plate Voltage 4000 Volt	3
DC Plate Current 1.0 Ampere	Э
Plate Dissipation	3
Grid Dissipation	3

MECHANICAL

Maximum Overall Dimensions:

Length	3.57 in; 91.00 mm
Diameter	
Net Weight	
Operating Position	Ăny
Maximum Operating Temperature:	
Ceramic/Metal Seals	
Anode Core	
Cooling	
Base	Coaxial
Socket (Grounded Grid)	EIMAC SK-2220

APPLICATION

MECHANICAL

MOUNTING - The EIMAC 8938 may be mounted in any position.

SOCKET - The EIMAC SK-2220 socket is designed for use with the 8938 tube, making contact to the two heater terminals, the cathode, and the grid terminal. The grid is grounded to the frame of the socket.

Individual contact collets are also available from EIMAC to fit the 8938 as follows:

TUBE ELEMENT	EIMAC PART NUMBER
Anode	135304
Grid	135305
Cathode	135306
Heater	135307
Heater (Center Pin)	135310

These collets are described by EIMAC drawing SK-2221-60.

COOLING - The maximum temperature limit for all external tube surfaces and the anode core is 250°C. Tube life is prolonged, however, if these areas are maintained at a lower temperature. The cooling data shown is for the anode cooler only and the flow rates indicated will hold tube temperature below 225°C with 50°C ambient temperature at sea level at low frequencies. At frequencies above 30 MHz, or at higher altitudes, the air quantity must be increased. A small amount of additional cooling air is required around the base of the tube to maintain seal and envelope temperatures in this area within ratings.

	SEA LEVEL		10,000 FEET	
Anode	Air Flow	Pressure	Air Flow	Pressure
Dissipation	CFM	Drop	CFM	Drop
Watts		Inches		Inches
500	12.8	.08	18.7	.11
1000	27.6	.24	40.0	.35
1500	50.0	.70	73.0	1.01

Note: An allowance has been made for 25 watts of grid dissipation and 50 watts of heater power.

ELECTRICAL

FILAMENT OPERATION - Rated filament voltage for the 8938 is 5.0 Volts. For CW operation at the higher end of the frequency range of the 8938, it is advisable to reduce the heater voltage by a small percentage. For a CW or average power output of 1 kW or more at 400 MHz, it is recommended that heater voltage be reduced to 4.3 Volts. At frequencies between 400 and 200 MHz, nominal heater voltage, for the power level above, should be obtained from a straight line curve defined by 4.3 Volts at 400 MHz and 5.0 Volts at 200 MHz.

In equipment intended for a broad range of frequencies, a fixed compromise heater voltage is suggested. This may be the lowest heater voltage which provides adequate cathode emission current at the lower end of the frequency range, and should be between 4.3 and 5.0 Volts.

GRID OR CATHODE BIAS - It is convenient in linear amplifier service to use a zener diode or series of zener

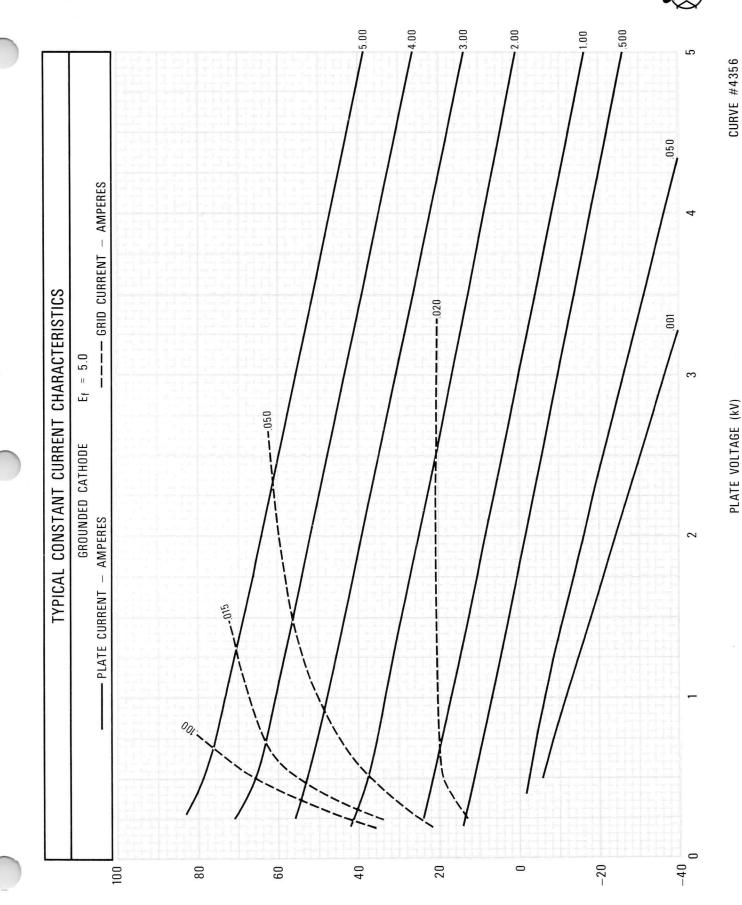
diodes in the cathode circuit if bias is required. The power loss is small because linear amplifier bias will generally be less than 25 Volts. Conventional grid bias sources may be used for CW or pulse applications.

UHF OPERATION - The 8938 provides very high gain at UHF with simple cavity designs, as a result of beam focusing action of a series of strip electron guns in the cathode grid region, which produces very high mu with unusually low grid interception.

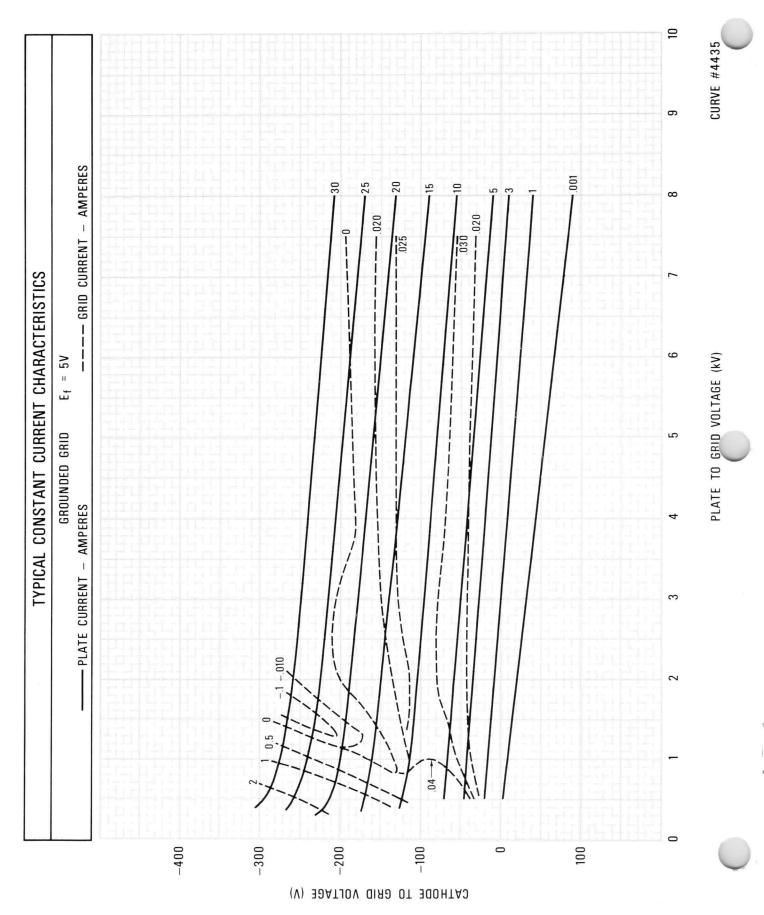
Use of a high mu triode in the cathode driven configuration at UHF simplifies circuitry in many ways.

INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between the tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and military services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield all external tube terminals or leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

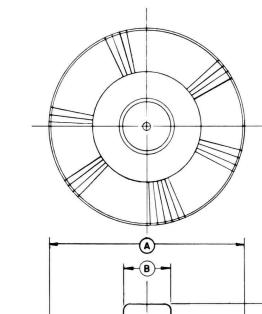

FAULT PROTECTION - It is good practice to protect the tube from internal damage caused by an internal arc which may occur at high anode voltage.

RF RADIATION - Exposure to strong rf fields should be avoided, even at relatively low frequencies. The dangers of rf radiation are more severe at UHF and microwave frequencies and can cause serious bodily and eye injuries. CARDIAC PACEMAKERS MAY BE AFFECTED.

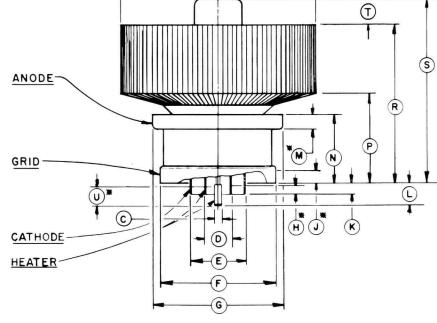

HOT SURFACES - When the tube is used in air and air cooled, external surfaces of the tube may reach temperatures up to 200 degrees C and higher. In addition to the anode, the cathode insulator and cathode/heater surfaces may remain hot for an extended time after the tube is shut off. To prevent serious burns, take care to avoid any bodily contact with these surfaces both during, and for a reasonable cool down period after, tube operation.

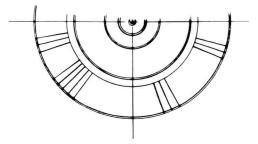
CAUTION - HIGH VOLTAGE - Operating voltage for the 8938 can be deadly, so the equipment must be designed properly and operating precautions must be followed. Design equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high voltage circuits and terminals, with interlock switches to open the primary circuits of the power supply and to discharge high voltage capacitors whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that **HIGH VOLTAGE CAN KILL.**

SPECIAL APPLICATIONS - If it is desired to operate this tube under conditions different from those given here, write to the Power Grid Tube Marketing Department, Varian EIMAC, 1678 South Pioneer Road, Salt Lake City, UT 84104, for information and recommendations.



(V) 30ATJOV 0180





DIMENSIONAL DATA							
-	INCHES			M	MILLIMETERS		
DIM.	MIN.	MAX.	REF	MIN.	MAX.	REF	
Α	3.350	3.380		85.09	85.85		
В	.810	.820		20.57	20.83		
С	.120	.127		3.05	3.23		
D	.477	.487		12.12	12.37		
Е	.965	.975		24.5	24.76		
F	1.995	2.015		50.67	51,18		
G	2.245	2.255		57.02	57.28		
н	.235			5.97			
J	.235			5.97			
κ	.170	. 200		4.32	5.08		
L	.370	.400		9.40	10.16		
M	.235			5.97			
N	1.110	1.170		28.19	29.72		
Ρ	1,400	1.530		35.56	38.86		
R	2.600	2.730		66.04	69.34		
S	3.015	3.175		76.58	80.64		
Т	.380	.480		9.65	12.19		
U	.350			8.89			
		~					
				J			
			NOT	11			

ł

NOTES: REF DIMENSIONS ARE FOR INFO. ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES. . * CONTACT SURFACE. . DIMENSIONS C, D, E TO BE CONCENTRIC WITH F & G WITHIN .015 DIA. . DIMENSIONS A & B TO BE CONCENTRIC WITH F & G WITHIN .040 DIA.

3CX400U7

TECHNICAL DATA

HIGH-MU UHF TRANSMITTING TRIODE

The EIMAC 3CX400U7 is designed for use above 200 MHz as a CW, pulse, or linear rf amplifier, particularly in the 806 to 950 MHz portion of the spectrum allocated to land mobile services.

The 3CX400U7 is a high-mu triode designed with beam-forming cathode and control grid geometry, of all metal/ceramic construction, and an external anode rated for 400 watts of dissipation with forced-air cooling.

The combination of an amplification factor of over 200 and minimum current interception by the control grid provides good power gain in cathode-driven (grounded grid) amplifiers. Coaxial terminals and continuous cone-shaped conductors for the grid and cathode allow the lowest possible inductance between these tube elements and the cavity. The heater terminals are separate from the cathode.

200 watts of useful CW rf power may be obtained with better than 33% efficiency, and better than 10 dB of gain. At frequencies near 900 MHz the amplifier circuit may be essentially a quarter-wave radial or rectangular resonator for the anode, and a three-quarter wave coaxial line section between ground and cathode. The amplifier is described in this data sheet. Terminal collets are available and are listed.

GENERAL CHARACTERISTICS¹

ELECTRICAL

Cathode: Oxide-Coated, Unipotential		
Heater Voltage, Nominal (see derating table for UHF use)	6.3 ± 0.3	V
Heater Current, at 6.3 volts	3.0	А
Cathode-Heater Potential, Maximum	± 150	V
Transconductance, average (I _b = 250 mAdc)	29,000	μ mhos
Amplification Factor, average	240	
Direct Interelectrode Capacitances (grid grounded) ²		
Cin	18.4	pF
Cout	6.1	pF
Cpk	0.07	pF
Ck-htr	6.0	pF
Frequency of Maximum Rating:		
CW	1000	MHz

1. Characteristics and operating values are based upon performance tests. These figures may change without notice as the result of additional data or product refinement. EIMAC Division of Varian should be consulted before using this information for final equipment design.

2. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

(Effective 8-1-74) © 1974 by Varian

Printed in U.S.A.

MECHANICAL

RANGE VALUES FOR EQUIPMENT DESIGN	Min. Max.
RADIO FREQUENCY POWER AMPLIFIER CLASS C TELEGRAPHY OR FM MAXIMUM RATINGS: DC PLATE VOLTAGE 1500 VOLTS DC GRID VOLTAGE -100 VOLTS DC PLATE CURRENT 0.400 AMPERE PLATE DISSIPATION 400 WATTS GRID DISSIPATION 5 WATTS	TYPICAL OPERATION, Cathode Driven, 850 MHzPlate Voltage1500 VdcPlate Current400 mAdcGrid Current-5 mAdcMeasured Driving Power13.0 WUseful Output Power225 WEfficiency37 %Power Gain12 dB
Maximum Overall Dimensions: Length Diameter Net Weight (approximate)	2.51 in; 63.75 mm 2.08 in; 52.83 mm
	Inner Heater008290Outer Heater008291Cathode008292Grid882931Anode154418
Cooling Base Recommended Contact Collets:	Tube Element EIMAC Part No.
Maximum Operating Temperature: Ceramic/Metal Seals and Anode Core	

Heater Current, at 6.3 volts		3.4 A
Cathode Warmup Time	60	Sec
Interelectrode Capacitances (grid grounded) ¹		
Cin	16.0	21.0 pF
Cout	5.0	7.0 pF
Cpk		0.1 pF

1. Capacitance values are for a cold tube as measured in a special shielded fixture in accordance with Electronic Industries Association Standard RS-191.

APPLICATION

MOUNTING & *SOCKETING* - Part numbers of available EIMAC collets are listed under ME-CHANICAL. These collets may be soft-soldered to the appropriate UHF line or cavity elements. The collets provide low-inductance connections between tube and circuitry and serve to draw off a portion of the heat released during normal operation.

HEATER-CATHODE OPERATION - The nominal heater voltage for the 3CX400U7 is 6.3 volts. For CW operation at frequencies above 300 MHz the heater voltage should be reduced as the cathode receives additional heat from rf charging currents and a transit-time effect. The following table gives approximate values of heater voltage recommended versus operating frequency for CW power levels at, or near, the typical operating conditions shown on Page 2. It is recommended that a mechanical relay, or other type of switching device, be provided so that near-nominal heater voltage will be provided during warmup and standby periods, and then dropped to the recommended level when rf drive is applied to the amplifier.

Frequency (MHz)	Heater Volts	
300 or lower	6.3	
300 to 400	6.1	
400 to 500	5.7	
500 to 600	5.3	
600 to 700	4.9	
700 to 800	4.5	
800 to 900	4.0	
900 to 1000	3.6	

The heater voltage should be operated at nominal voltage of 6.3 volts for a minimum of 60 seconds before application of plate voltage or rf driving voltage.

INTERLOCKS - An interlock device should be provided to insure that cooling air flow is established before application of electrical power, including the heater. The circuit should be so arranged that rf drive cannot be applied in the absence of normal plate voltage.

COOLING - Forced-air cooling of the tube is required, with 11.5 cfm of air directed through the anode cooler when operating at full rated (400 W) dissipation. The pressure drop across the anode cooler only at this flow rate is approximately 0.2 inch of water, and these figures are based on an incoming air temperature of 50°C and a maximum tube anode temperature of 225°, at sea level, and with air flowing in a base-to-anode direction. When air is flowing in this direction, and the base contacting arrangement does not restrict flow in and around the base seals, additional base cooling provisions may not be required, but the designer is cautioned to verify whether base cooling is adequate before a circuit design is finalized, by means of temperaturesensitive paints which are available for this purpose, or other equivalent means.

Depending on the circuit or cavity design, allowance must also be made for other losses in the air system, in order to always assure sufficient flow for tube cooling. The designer is also cautioned that it is not good practice to operate at, or very close to, the absolute maximum temperature ratings for the metal/ceramic seals. Where long life and consistent performance are factors, cooling in excess of the minimum requirements outlined is normally beneficial.

UHF CAVITY AMPLIFIER - Included in this data sheet is an exploded view of a typical cavity amplifier of simple construction requiring little precise machine work. The dimensions shown are for an amplifier to be operated near 900 MHz. The typical operating conditions for 850 MHz, shown on Page 2, were obtained with this cavity.

The output circuit is essentially a quarterwave rectangular cavity forming the tuned circuit between anode and grid. Output coupling is magnetic. A loop is formed by a post F which terminates at one end in the center conductor of the coaxial fitting, and at the other end it is solidly in contact with the opposite plate (or wall) of the cavity.

The input circuit, while simple mechanically, is not as easily visualized as an electrical circuit. Starting with the small inner conductor A, this is a heater conductor and rf choke. The next tube, B, is the second heater conductor and rf choke. The third tube, C, is the cathode line which may be considered as a broadly tuned three-quarter wave line. The next diameter of tubing, D, is a sleeve tuned to an electrical three-quarter wave-length by an adjustable capacity probe, E. The sleeve is excited by the input capacity probe, F. Current flows on the inside as well as on the outside wall of the three-quarter wave sleeve, thereby coupling energy to the cathode line. Sleeve D is electrically three-quarter wavelength because there is approximately a loaded quarter wavelength within the vacuum tube itself, E.

Suitable cowling (not shown) should be provided to introduce cooling air through three short tubes on each side of the output cavity for anode cooling. The air then exhausts through the anode cooling fins of the 3CX400U7. The three short tubes on each side of the cavity are dimensioned to serve as waveguide-above-cutoff frequency filters in the air openings.

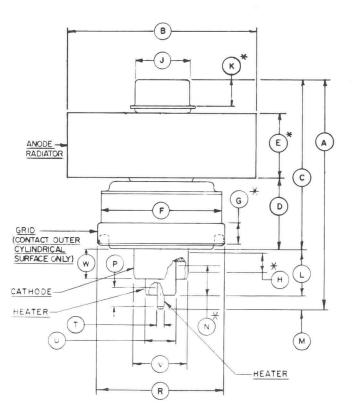
HIGH VOLTAGE - Normal operating voltages used with the 3CX400U7 are deadly, and the equipment must be designed properly and opera-

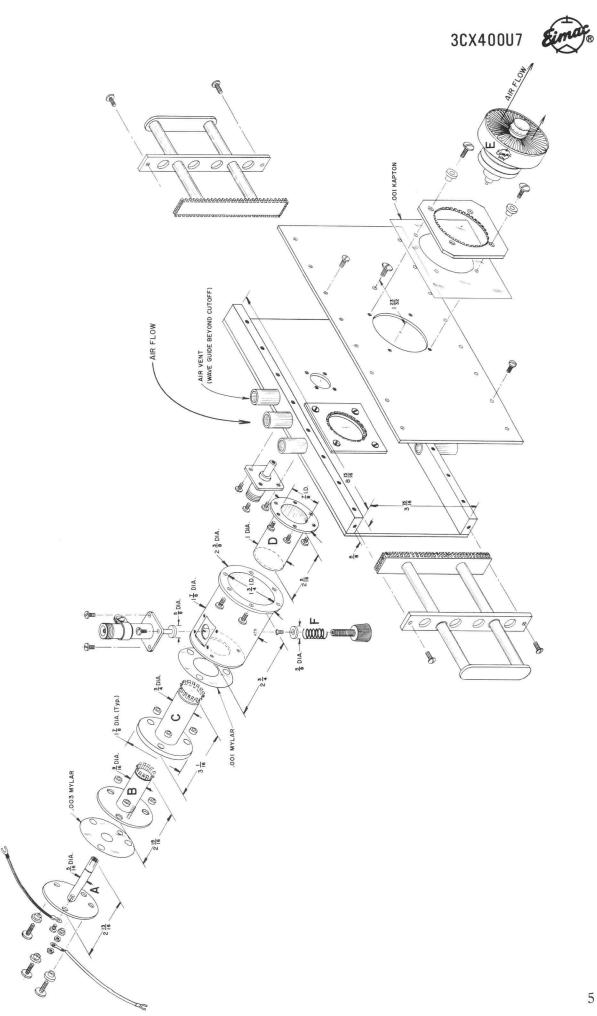
ting precautions must be followed. Design all equipment so that no one can come in contact with high voltages. All equipment must include safety enclosures for high-voltage circuits and terminals, with interlock switches to open primary circuits of the power supply and to discharge high-voltage condensers whenever access doors are opened. Interlock switches must not be bypassed or "cheated" to allow operation with access doors open. Always remember that HIGH VOLTAGE CAN KILL.

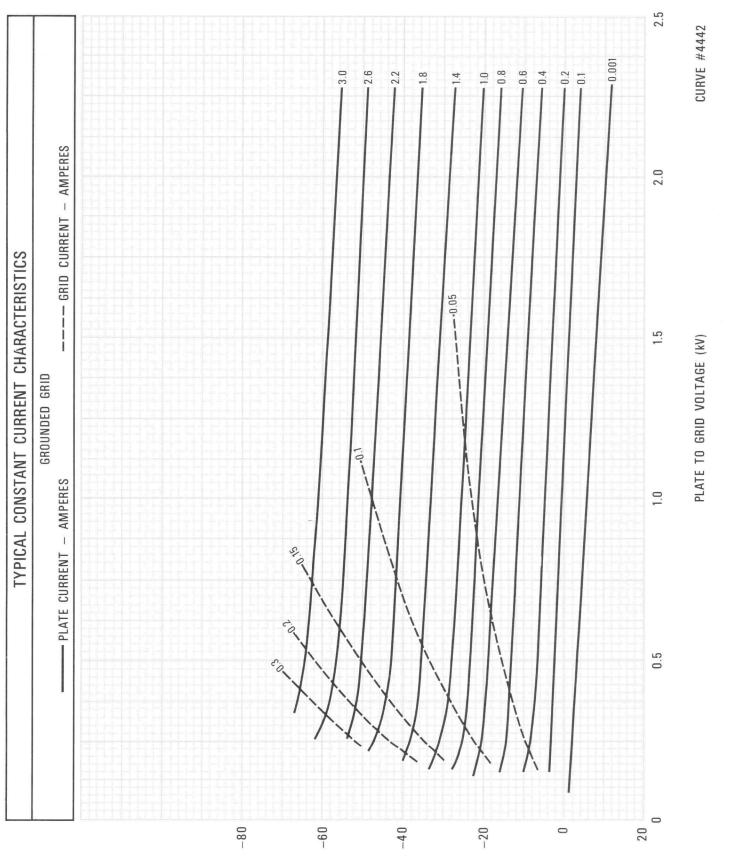
INTERELECTRODE CAPACITANCE - The actual internal interelectrode capacitance of a tube is influenced by many variables in most applications, such as stray capacitance to the chassis, capacitance added by the socket used, stray capacitance between tube terminals, and wiring effects. To control the actual capacitance values within the tube, as the key component involved, the industry and the Military Services use a standard test procedure as described in Electronic Industries Association Standard RS-191. This requires the use of specially constructed test fixtures which effectively shield

all external tube leads from each other and eliminates any capacitance reading to "ground". The test is performed on a cold tube. Other factors being equal, controlling internal tube capacitance in this way normally assures good interchangeability of tubes over a period of time, even when the tube may be made by different manufacturers. The capacitance values shown in the manufacturer's technical data, or test specifications, normally are taken in accordance with Standard RS-191.

The equipment designer is therefore cautioned to make allowance for the actual capacitance values which will exist in any normal application. Measurements should be taken with the socket and mounting which represent approximate final layout if capacitance values are highly significant in the design.

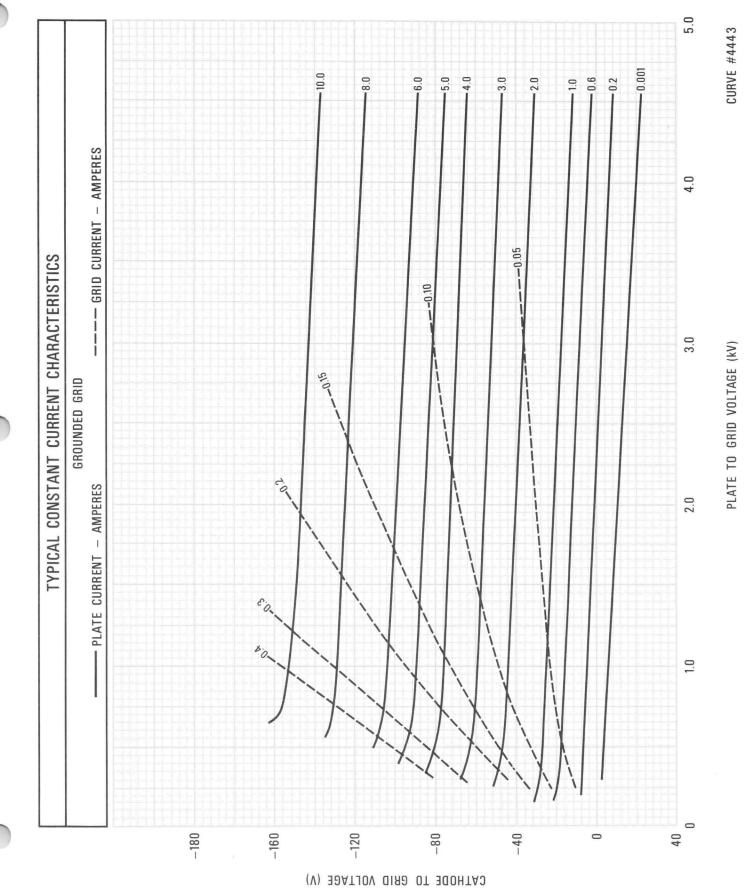

SPECIAL APPLICATIONS - If it is desired to operate these tubes under conditions widely different from those given here, write to Power Grid Tube Division, EIMAC Division of Varian, San Carlos, Calif. 94070 for information and recommendations.


DIM	DIM ENSION/ INCHES			MILLIMETERS		
	MIN.	MAX.	REF.	MIN.	MAX.	REF.
А			2.510			63.75
В	2.050	2.080		52.07	52.83	
С	1.810	1.910		45.97	48.51	
D	0.750	0.810		19.05	20.57	
Ε	0.710	0.790		18.03	20.07	
F		1.406			35.71	
G	0.187		18 ° 19 °	4.75		
Н	0.200			5.08		
J	0.559	0.573		14.20	14.55	
К	0.240			6.10		
L			0.500			12.70
М			0.150			3.81
N	0.330			8.38		
Ρ	0.230			5.84		
R	1.417	1.433		35.99	36.40	
Т	0.091	0.095		2.31	2.41	
U	0.318	0.325		8.08	8.25	
V	0.588	0.597		14.93	15.16	
W			0.325			8.25

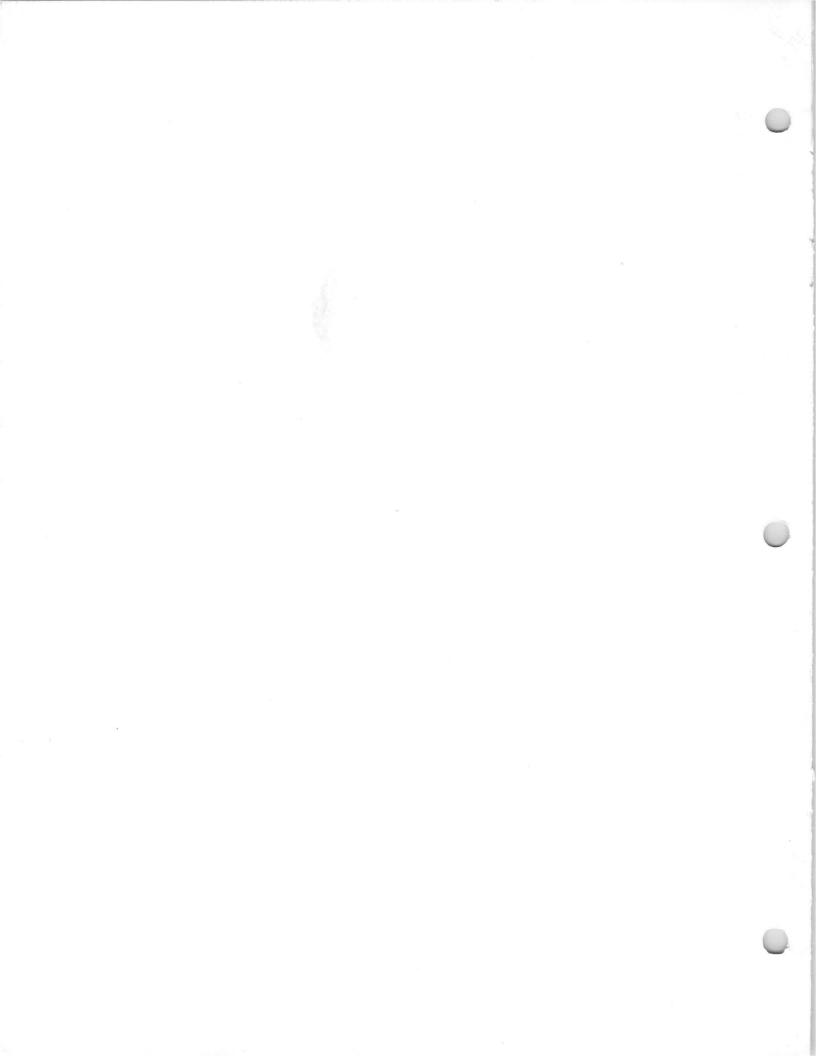

NOTES:

1. REF DIMENSIONS ARE FOR INFO ONLY & ARE NOT REQUIRED FOR INSPECTION PURPOSES.

2. (+) CONTACT SURFACE.



(V) 30ΑΤΙΟΥ ΟΙΑΘ ΟΤ 3ΟΟΗΤΑΟ


6

3CX 400U7

3CX400U7

7

U.S. SALES OFFICES

Atlanta 6650 Powers Ferry Rd., NW Suite 100 Atlanta, GA 30339 TEL: (404) 252-0045

Clearwater Branch 314 South Missouri Suite 205 Clearwater, FL 33516 TEL: (813) 446-8513

Boston 400 Totten Pond Road Building 1 Waltham, MA 02154 TEL: (617) 890-4560

Chicago 205 W. Touhy Avenue Park Ridge, IL 60068 TEL: (312) 825-6686

Dallas 558 So. Central Expressway Suite 202 P.O. Box 689 Richardson, TX 75080 TEL: (214) 235-2385

Dayton 4134 Linden Ave. Suite 101 Dayton, OH 45432 TEL: (513) 298-7318

Los Angeles 2901 Wilshire Boulevard, Suite 102 Santa Monica, CA 90403 TEL: (213) 828-5588

New York #25 Route 22 Springfield, NJ 07081 TEL: (201) 376-6600

Philadelphia 306 Fellowship Rd. Mt. Laurel, NJ 08057 TEL: (609) 235-6800

Phoenix 7117 Third Avenue, Suite 106 Scottsdale, AZ 85251 TEL: (602) 947-5461 San Francisco 4940 El Camino Real Los Altos, CA 94022 TEL: (415) 968-7630

Syracuse 6489 Ridings Road Syracuse, NY 13206 TEL: (315) 437-2568

Washington, D.C. 4701 Lydell Drive Cheverly, MD 20781 TEL: (301) 773-7010

INTERNATIONAL SALES OFFICES

Australia Varian Pty. Ltd. 82 Christie Street St. Leonards 2065 New South Wales, Australia TEL: 43-0673

Varian Pty. Ltd. 679 Springvale Road North Springvale, VICT. 3171 Australia TEL: 560-7133

Benelux Varian Benelux B.V. Maassluisstraat 100 P.O. Box 9158 Amsterdam, Holland TEL: (020) 15 94 10

Brazil Varian Industria e Comercio Ltda. AV. DR. Cardoso deMello, 1644 04548 Sao Paulo SP, Brazil TEL: 80-80-27

Canada Varian Associates of Canada, Ltd. 45 River Drive Georgetown, Ontario, Canada TEL: (416) 457-4130 France Varian S.A. Quartier de Courtaboeuf Boite Postale No. 12 91401 Orsay, France TEL: 907-78-26

Germany Varian GmbH Allacher Strasse - 230E 8 München 50 Germany TEL: (089) 8126 093

Italy Varian SpA Via Fratelli Varian 10040 Leini (Torino) Italy TEL: (011) 26 80 86

Japan Marubun Corporation 1-1, Nihombashi Odemmacho 2-Chome Chuo-Ku, Tokyo, 103 Japan TEL: (03) 662-8151

Scandinavia Varian AB Skytteholmsvagen 7D P.O. Box 1099 17122 Solna 1, Sweden TEL: (08) 82 00 30

Switzerland Varian AG Steinhauserstrasse 6300 Zug, Switzerland TEL: (042) 23 25 75

United Kingdom and Ireland EMI-Varian Ltd. 248 Blyth Road Hayes, Middlesex UB3 1HR England TEL: 01-573 5555