PHILIPS

SELENTUM

RECTIFIERS

SELENIUM RECTIFIERS FOR RADIO AND TELEVISION

Selenium flat and radiator type rectifiers have found wide application in radio and television receivers because of their many advantages, which are in brief:
long life;
no filament heating;
small dimensions;
high overload factor;
low internal resistance;
large output voltage;
simple mounting, no sockets required.
The particularly low forward resistance of the rectifiers results in a high efficiency at small dimensions.

In the Specification Table 2 of the rectifiers and in the Temperature Derating Table l, two sets of operating values have been indicated. When operated at the nominal supply voltages and the nominal current given in column A and under normal cooling conditions (see under heading "Mounting"), the lifetime expectance is approximately 10000 hours on the average. When operated at a lower supply voltage and a lower output current, as indicated in column B, the rectifiers will last approximately 50000 hours on the average.

The selenium rectifiers are suitable for use in the tropics. For temperature derating see Table 1.

The rectifiers are shock-proof and withstand heavy vibrations.

DATA

The flat and radiator type rectifiers contain 30 V plates with ef fective surface areas of $0.6,0.8,1.3,2.7,3.6$ and $5 \mathrm{~cm}^{2}$.
The rectifiers are designed for mains voltage variations of 10% and withstand overloads occurring for example during the heating up time of tubes.

Load Capacitance and temperature requirements

The current flow in the forward and inverse directions causes heating-up of the plates. The given nominal values of current and voltage are determined essentially by the heat conductivity of the mounted rectifiers in operation.

The forward resistance of selenium rectifiers increases slightly during life, which results in a higher heat dissipation. However, this aging has already been taken into account in the nominal values of Table 2. The maximum operating temperature of the plates is approximately $75^{\circ} \mathrm{C}$. To prevent this temperature from being exceeded, the surface temperature of the larger flat types (Figs l and 2) may not become higher than $65{ }^{\circ} \mathrm{C}$. whereas that of the small flat type (Fig. 3) must remain below $60^{\circ} \mathrm{C}$. To safeguard normal lifetime, the given values of Table 2 should not be exceeded.
Since, with flat rectifiers, the cooling of the plates is mainly determined by heat conductance through the mounting plate, the quoted permissible load is based on the highest temperature of the metal rectifier surface. The above-mentioned maximum external (surface) temperatures of $65{ }^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ correspond to the nominal values given in column \AA of Table 1 at an ambient temperature of $40{ }^{\circ} \mathrm{C}$; an external temperature of approximately $50{ }^{\circ} \mathrm{C}$ corresponds to the values in column B for an ambient temperature of $35{ }^{\circ} \mathrm{C}$. At ambient temperatures exceeding $35{ }^{\circ} \mathrm{C}$. the currents must be reduced according to this Table.

Table 1. Temperature derating values.

```Ambient temperature in oC```	Permissible current in \% of the nominal current at the operation values		```Permissible voltage in % of the nominal input values```
	A. Nominal ratings	B. Reduced ratings	
35	100	100	100
40	100	80	100
45	85	58	100
50	70	37	100
55	57	12	100
60	43	-	100
65	30	-	100
70	10	-	100

D.C. LOAD

The nominal values of Table 2 apply to rectifiers being used with capacitive load. If the rectifiers are connected to a direct voltage only, the max. voltage per plate in the inverse direction must not exceed 15 V .

MOUNTING
In order to quarantee the necessary heat conductance, the flat rectifiers must be attached with their largest surface to the chassis plate. When the rectifiers cannot be mounted with the flat side in contact with the chassis plate, the values must be reduced as follows: by $20 \%$ - when mounted vertically by $50 \%$ - when mounted in free air or on an insulator.

Table 2. Technical data of various types of selenium rectifiers.

Circuit	Operating values				Dimensions			$\begin{gathered} \text { Weight } \\ \text { in } \\ \text { grammes } \end{gathered}$
	A. Nominal ratings B. Reduced ratings							
	$\begin{gathered} \text { Maximum } \\ \text { altern. } \\ \text { input } \\ \text { voltage } \\ \left(V_{r m s}\right) \end{gathered}$	```Maximum direct current (mA)```	$\begin{gathered} \text { Maximum } \\ \text { altern. } \\ \text { input } \\ \text { voltage } \\ \left(V_{r m s}\right) \end{gathered}$	$\begin{gathered} \text { Maximum } \\ \text { direct } \\ \text { current } \\ \text { (mA) } \end{gathered}$				
					Fig.	a	b	
	Flat metal type rectifiers for radio							
SR $250 Y 50$ half-wave	250	50	200	40	3	8.5	12.5	10
SR $250 Y 85$ half-wave	250	85	200	60	2	6	16.5	17
SR 250 Y 130 half-wave	250	130	200	90	1	6	14.5	32
SR $250 \mathrm{B75}$ bridge	250	75	200	65	2	8.5	16.5	20
SR 250 Bl 00 bridge	250	100	200	85	2	8.5	16.5	20
SR 250 Bl 25 bridge	250	125	200	105	2	8.5	14	20
SR 250 Bl 50 bridge	250	150	200	130	1	6	14.5	32
SR 125 Y 80 half-wave	125	80	100	60	3	6	12.5	8
SR $125 Y 100$ half-wave	125	100	100	85	3	8.5	12.5	10
SR 125 Y 130 half-wave	125	130	100	100	2	6	16.5	17
SR 125 Y 180 half-wave	125	170	100	140	1	6	14	32
SR 125B85 bridge	125	85	100	70	3	8.5	12.5	10
SR 125B125 bridge	125	125	100	100	2	8.5	16.5	20
SR 125B160 bridge	125	160	100	130	2	8.5	16.5	20
SR 125B300 bridge	125	300	100	240	1	6	14	32
SR 125D50 voltage doubler	125	50	100	40	3	8.5	12.5	10
SR 125D75 voltage doubler	125	75	100	60	2	6	16.5	17
SR 125D90 voltage doubler	125	90	100	70	2	6	16.5	17
SR 125 Dllo voltage doubler	125	110	100	90	1	6	14	32
	Radiato	$r$ types	for tele	evision				
AA 220 Y 300 half-wave	220	300	175	220	4			140
(AA 110D300) doubler	110	300	88	220	4			
AA 220 Y 350 half-wave	220	350	175	260	5			140
(AA 110D350) doubler	110	350	88	260				
AA 220 Y 400 half-wave	220	400			6			140
(AA 110D400) doubler	110	400						
AA $250 Y 300$ half-wave	250	300			4			140
(AA 125D300) doubler	125	300						
AA $250 Y 350$ half-wave	250	350			5			140
(AA 125D350) doubler	125	350						
AA $250 Y 400$ half-wave	250	400			- 6			140
(AA 125D400) doubler	125	400						

Types for other current and voltage values can be offered on request.
Coding system:

SR	$=$ selenium rectifier - flat type
AA	radiator type
First number	$=$ max. alternating input voltage
Y	$=$ half-wave circuit
$B$	$=$ bridge circuit
D	doubler circuit
Second number	$=$ max. direct output current in milliamps

## DIMENSIONAL DIAGRAMS



Fig. 2 .


## RĀDIATOR TYPES FOR TELEVISION



| AA 220 Y 300 |
| :---: | :---: |
| (AA 110 D 300) |


| AA 250 Y 300 |
| :---: | :---: |
| (AA 125 D 300) |



Fig. 4 .

## REMARKS

The maximum output current of the selenium radiator type rectifiers
 $220 / 250$ volt alternating input voltage the lugs with the indication + and - must be used. For voltage doubler circuits for l10/125 volt mains the alternating input voltage must be applied to the lug marked - and the centre lug, and the direct output current must be taken from the lugs marked - and + .

NOTE
Normal execution $A \bar{A}$, with connection lugs at the bottom.


AA	220 Y 350
(AA	110 D 350 )
AA	250 Y 350
(AA	125 D 350)



## REMARKS

The maximum output current of the selenium radiator type rectifiers $\begin{array}{ll}A A \\ A A \\ A & 20 Y 350 \\ 1 & 0 D\end{array}$ and AA $250 Y 350$ is 350 mA. In half-wave circuits for $220 / 250$ volt alternating input voltage the lugs with the indication + and - must be used. For voltage doubler circuits for $110 / 125$ volt mains the alternating input voltage must be applied to the lug marked - and the centre lug, and the direct output current must be taken from the lugs marked - and + .

## NOTES

Normal execution $\AA A$. with connection lugs at the bottom. The execution indicated above represents a temporary type. For new designs the smaller dimensions can be considered. viz. 27 mm distance between the holes and 35 mm width of the flanges instead of 48 mm .


AA 250 Y 400
$(A A 125 D 400)$



Fig. 6 .

## REMARKS

The maximum output current of the selenium radiator type rectifiers AA $220 Y 400$ and AA $250 Y 400$ is 400 mA. In half-wave circuits for $220 / 250$ volt alternating input voltage the lugs with the indication + and - must be used. For voltage doubler circuits for 110/125 volt mains the alternating input voltage must be applied to the lug marked - and the centre lug, and the direct output current must be taken from the lugs marked - and + .

NOTE
Normal execution $A A$, with connection lugs at the bottom.

## TYPICAL CHARACTERISTICS

Voltage $V_{0}$ across the load capacitor as a function of the direct output current $I_{0}$ with the load capacitance $C$ as parameter:




$V_{i}=r . m . s . a l t e r n a t i n g$ supply voltage
$V_{0}=$ direct output voltage
$I_{0}=$ direct output current
$R_{t}=$ protecting resistance

Voltage $V_{o}$ across the load capacitor as a function of the direct output current $I_{o}$ with the load capacitance $C$ as parameter:





Voltage $V_{0}$ across the load capacitor as a function of the direct output current $I_{0}$ with the load capacitance $C$ as parameter:





Voltage $V_{0}$ across the load capacitor as a function of the direct output current $I_{0}$ with the load capacitance $C$ as parameter:



Voltage $V_{0}$ across the load capacitor as a function of the direct output current $I_{0}$ with the load capacitance $C$ as parameter:

16

## CIRCUITS



Fig.7. Half-wave rectifying circuit (Y).

Half-wave rectifiers can also be delivered with a centre tapping for use as voltage doublers (D).


Fig. 8. Bridge circuit ( $B$ ).
Since in voltage doubler circuits the entire supply voltage is applied alternately to each of the two series-connected rectifier halves, these must each be designed for the entire supply voltage. The direct output voltage has about twice the value of that of the corresponding half-wave rectifier at the same direct current.


Fig.9. Voltage doubler circuit (D).


Fig.l0.Bridge circuit consisting of two voltage doubler circuits.

By means of two rectifiers of the type $D$ (e.g. SR 125D90) a bridge circuit can be constructed. In this way the nominal voltage and nominal direct current can be doubled (in this example consequently to $250 V_{r m s}$ and 180 mA direct current).

In the same way a unit for twice the nominal alternating voltage and approximetely twice the direct current can be constructed by means of 4 half-wave rectifiers.

## CIRCUIT EXĀMPLES

Example of the supply unit for 110 V and 125 V mains:


Example of the supply unit for 220 V and 240 V mains:


The information given in this Bulletin does not imply a licence under any patent.

