have been entered

RCA TUBE HANDBOOK HB-3

TRANSMITTING TUBE SECTION

This Section contains data on vacuum power tubes, rectifier tubes, magnetrons, and other tube types used in broadcast, television, and communications transmitters, as well as in other types of electronic equipment handling appreciable power.

For further Technical Information, write to Commercial Engineering, Tube Division, Radio Corporation of America, Harrison, N. J.

0

RCA POWER TUBE GUIDE

VACUUM-POWER-TUBE SERVICE

TYPICAL OPERATION POWER OUTPUT APPROX. WATTS	RCA TYPE
Class A Amplif	iers, AF
0.6 3.8 3.9 30	5556 801A 2E24 845
Class AB Ampl	ifiers, AFb
15a 15a 15a 22a 22a 22a 22a 22a 22a 22a 2	807 1625 6146 6146W 6159 6159W 6883 8032 7870 7801 2E26 829B 807 1625 6816 6884 7457 7842 7843 7844 8596 6146 6146W 6159 6159W 6883 8032 6146B/8298A 6159B 6883B/8032A/ 8552 8165/4-65A 845 7271 828 6155 813 7094 4-125A/4D21

TYPICAL OPERATION POWER OUTPUT	RCA TYPE
APPROX. WATTS	
580 590 590 - - 800 1600 - - 31,900 57,000	#E27A/5-125B 7034/4X150A 7203/4CX250B 7204/4CX250F 6156 #-250A/5D22 8438/4-400A 8167/4CX300A 7650 8166/4-1000A 8168/4CX1000A 8239/3X3000F1 8170/4CX5000A 8171/4CX10000D
Class AB2 Ampl	ifiers, AF ^D
40° 40° 40° 42° 42° 42° 42° 42° 90° 90° 90° 90° 90° 110° 110° 110° 140° 140° 140° 140° 14	6524 6850 2E24 2E26 815 1624 807 1625 6146 6146A 6146W 6159 6159W 6883 8032 6146B/8298A 6159B 6883B/8032A/ 8552 6816 6884 7457 7842 7843 7844 8596 6155 4-125A/4D21 4E27A/5-125B 7034/4X150A

TYPICAL OPERATION	DAL TYPE	
POWER OUTPUT APPROX. WATTS	RCA TYPE	
_	6156 4-250A/5D22	
Class B Amplif	iers, AFb	
45 235° 235° 235° 250° 590° 600° 1640 1650° 2400° 3800 10,000 15,000 15,000 15,000 22,000 22,500 46,000 50,000 51,000 117,000	801A 811A 812A 8005 810 8000 5786 833A 833A 833A 8392R 889RA 892 207 880 9025 5771 9021 5671	

TYPICAL OPERATION		
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
	Amplif lephony 3000 3000	7801 7870
- 5.5 7.5 10.5 ^a	30 20 60 125	5556 837 801A 815
12.5ª 12.5ª 20	60 60 100	807 1625 834

TYPICAL OPERATION		
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
50° - 60° - 150° 225° 400 1800 2000 2000 4000 9000 12,000	30 120 30 30 75 30 20 110 1.6 50 40 1.6 25 1.6	813 6155 810 8000 6156 833A 833A 827R 892R 889A 889A 889A 207 892 880 5771
230 250 300 440 440 - 1200 2800 6350 5500 12,000 14,000 19,000 Class C	900 216 890 216 220 900 220 220 216 890 216 890 216 800 216 800	
1.7 1.7 9a 9a 11 13.5a 13.5a 17a	3000 3000 6 462 462 20 125 125 200 400	7801 7870 5556 6524 6850 837 2E24 2E26 832A 7801

7870

TYPICAL OPERATION		
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
18 24 28a 30a 34a 34a 34a 34a 34a 34a 42a 42a	60 60 60 1125 60 60 60 60 60 60 60 60 60 60 60	801A 1624 807 1625 815 6146 6146A 6146W 6159W 6883 8032 6146B/8298A 6159B 6883B/8032A/
	2500 2500 2500 400 400 400 400 400 400 200 100 200 30 60 30 60 30 150 30 60 30 175 175 175 175	8652 2C39WA 6897 6816 6884 7457 7842 7844 8596 829B 834 829B 812A 811A 7271 8165/4-65A 828 8005 6161 7094 813 7034/4X150A 7203/4CX250B 7204/4CX250F 8167/4CX300A 810 8000 6155

TYP OPERA			
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE	
600 635 800 800 810 825 950 1000 2700 4000 4500 5500 5500 5500 6000 6000 60	400 30 600 600 160 400 20 110 110 110 110 100 110 30 30 30 30 1.6 60 30 30 30 30 30 30 30 30 30 3	7650 833A 4618 7213 5786 827R 6181 833A 8438/4-400A 8166/4-1000A 6076 889A 889RA 8170/4CX5000A 5762/7C24 6448 892R 6166 892 6166A 207 892 6166A/7007 6806 9C25 880 5771 9C21 5671 5770	
Modu1	ated RF 7	ers, Grid- Telephony	
5.5 8 10.5 ^a 36 ^a 50 ^a 65 ^a 400	20 60 125 30 30 30 110	837 1624 815 828 813 8000 827R	
Suppr	Class C Amplifiers, Suppressor-Modulated RF Telephony		
5	20 75	837 4E27A/5-125B	

	ICAL ATION	
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
Class C Televi	Amplifi sion Se	
230 1200 4000 5300 12,000	900 900 216 216 216 216 216	6161 6181 5762/7C24 8D21 6166 6166A/7007
Class C Telegr		ers, RF d FM Telephony
3.2 3.2 	3000 3000 3000 3370 3370 2500 2500 2500 2500 125 125 125 20 60 60 60 1215 1216 60 60 60 60 60 60 60 60 60 6	780 I 7870 7870 7870 5556 2C40 2C40A 2C43 2C39A 2C39WA 6897 2E24 2E26 837 80 IA 832A 780 I 7870 4604 I 624 807 I 625 6816 6884 7457 7842 7843 7844 8596 815 6524 6850 6146A 6146A 6146W/7212

TYPICAL OPERATION		
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
52 ^a 52 ^a 52 ^a 52 ^a 63 ^a 63 ^a	60 60 60 60 60 60	6159W/7357 6883 8032 6146B/8298A 6159B 6883B/8032A/
70 75 85 85 85 80 90° 105 130° 135° - 150 160 170 180 225 235 2250 2255° 325 340 375° 375° 600 1000° - 1050	200 100 470 470 470 470 470 470 400 200 1215 30 30 30 60 60 900 470 500 500 60 30 470 470 470 470 470 470 470 47	8552 829B 834 8072 8462 8596 829B 8226 812A 811A 8165/4-65A 828 7271 8005 6161 8167/4CX300A 8121 7203/4CX250B 7204/4CX250F 7094 813 8122 5713 8226 7034/4X150A 810 8000 6155 4-125A/4D21 4E27A/5-125B 7650 6181 833A 5786 6156 4-250A/5022 8438/4-400A 4X500A 827R

GUIDE 2

TYPICAL OPERATION		
POWER OUTPUT APPROX. WATTS		RCA TYPE
14,000 15,000 16,000 32,500 36,500 40,000	20	#618 7213 833A 8166/4-1000A 8170/4CX500A #632 8501 8D21 5762/7C24 6166 8437 889A 889RA 891R 892R 6166A/7007 6448 6806 892 207 8178/4CX10000D 9C25 8281/4CX15000A 880 5771 5671 9C21 5770 6949, 6949V1
0scil 175 ^e 200 ^e	27 27	ers or elf-Rectifying 811A ^f 812A
225 330° 550° 835° 1050 1150 3350	30 50 30 20 160 30	813 8005 8000 833A 5786 833A 5762/7024

TYP I OPERA		
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
135 280 330° 600° 1100° 1150 1460 5650	30 30 27 30 30 160 30 30	812Af 813 8005 8000 833A 5786 833A 5762/7C24
		Magnetron)
30,000	915	8684
		nd Suppressed Tone Modulation 7457 8596 6146B/8298A 6159B 6883B/8032/
80 80 905ª 120 170 295 295 295 380 400 410 680 5000 25,000 600,000	30 30 30 30 30 30 30 30 175 30 30 30	8552 8072 8462 7271 811A 8121 7203/4CX250B 7204/4CX250F 8122 8167/4CX300A 4624 7650 4628 6806 6949, 6949VI

Linear RF Amplifiers,
Single-Sideband Suppressed
Carrier—Single-Tone

-	3000	7801
-	3000	7870
40	60	6816
40	60	6884
40	60	7457
40	60	7842
	1	

Modulation

Class C Amplifiers or Oscillators with Separate

8IIAf

Plate Supply

	ICAL ATION	
POWER OUTPUT APPROX. WATTS	FREQ. MHz	RCA TYPE
40 40 41 120 95 210 250 295 680 1250 1250 12,000 12,000 600,000	60 60 60 60 60 60 150 175 30 60 60 30 30 30 60 60 60 550	7843 7844 6146A 811A 7271 7094 7034/4CX250B 7204/4CX250F 7650 4618 7213 8168/4CX1000A 8170/4CX5000A 6166 6166A/7007 6448 6949, 6949VI
	RF Ampli lephony	fiers,
2000 2500	400 400	4628 4635
Linear F Accele	RF Ampli eration	fiers-Particle
300	475	4612
Plate-Pu Oscili	lsed Am	plifiers or
4.5 14 17 17 17 39 65 180 300 500 1500 1500 1500	3370 1215 1250 1215 1215 1215 1215 1215 121	2C40A 7649 5946 4621 8227 7651 7214 8184 2041 2041 2054 6950 4603 4603

	ICAL ATION	
POWER OUTPUT APPROX. kW	FREQ. MHz	RCA TYPE
2000 2000 2500 5000 8000 10,000	425 425 440 250 425 250	4616 4616VI 2054 7835 4617 7835
Pulsed	Oscillate	or (Klystron)
21,000	2586	8568
5.21 3.45	1215	76110
5.21 3.45		T
2.3	1215 1215 1215	7649 4621 8227
2.3	1215 1215	4621
2.3 10 10 20 20 100	1215 1215 1215 1215 1215 1215 450	4621 8227 7651 7214 2041
2.3 10 10 20 20 100 180	1215 1215 1215 1215 1215 1215 450 450	4621 8227 7651 7214 2041 2041
2.3 10 10 20 20 100 180 275 1200	1215 1215 1215 1215 1215 450 450 425 30	4621 8227 7651 7214 2041 2041 4616, 4616V 4603, 4603V
2.3 10 10 20 20 100 180 275 1200 RF-Freq	1215 1215 1215 1215 1215 450 450 425 30	4621 8227 7651 7214 2041 2041 4616, 4616V
2.3 10 10 20 20 100 180 275 1200 RF-Freq WATTS	1215 1215 1215 1215 1215 450 450 425 30 uency Mul	4621 8227 7651 7214 2041 2041 4616, 4616V 4603, 4603V tipliers
2.3 10 10 20 20 100 180 275 1200 RF-Freq	1215 1215 1215 1215 1215 450 450 425 30 uency Mu	4621 8227 7651 7214 2041 2041 4616, 4616V
2.3 10 10 20 20 100 180 275 1200 RF-Freq WATTS	1215 1215 1215 1215 1215 450 450 425 30 uency Mul	4621 8227 7651 7214 2041 2041 4616, 4616V 4603, 4603V tipliers
2.3 10 10 20 20 100 180 275 1200 RF-Freq WATTS	1215 1215 1215 1215 1215 1215 450 450 425 30 uency Mu l	4621 8227 7651 7214 2041 2041 4616, 4616V 4603, 4603V tipliers

	ICAL ATION	
PEAK POWER OUTPUT APPROX.	PULSE LENGTH µs	RCA TYPE
Pulse Me	odulator	S
3.4 kW 40 kW -	100 1.2	6293 3E29 4610

PEAK PLATE AMPERES	RCA TYPE
Voltage Regulat	ors
0.5 0.5 1	3C33 4614 4600A

RECTIFIERS

MAX. PLAT	E RATINGS	
PEAK AMPERES	AVERAGE AMPERES	RCA TYPE
Half-Wave	, Mercury	-Vapor
0.5 1 2 5 5 6 6 8.3 109 10 10 10 11.5 h 11.5 h 11.6 20m	0.125 0.25 0.5 1.25 1.25 1.5 1.5 1.8 2.59 2.59 2.5 2.5 2.5 2.5 2.59 2.59	816 866A 866A 872A 872A 872A 872A 872A 872A 872A 872

MAX. PLATE	RATINGS	
PEAK AMPERES	AVERAGE AMPERES	RCA TYPE
77 40 40	6.4 6.4 10	635/7019 5561 857B
Full-Wave, Types f	Mercury	-Vapor
10	2.5	604/7014
Half-Wave,	Gas Type	e g
1 2	0.25 0.5	3B28 3B28
Half-Wave,	Vacuum	Types ^g
0.04 0.06 0.15	0.002 0.0075 0.02	5825 2X2A 8013A
0.27 0.75 0.8	0.25 0.1 0.13 0.25	5798 8020 1616 836

- a Intermittent Commercial and Amateur Service.
- b Typical power output is for two tubes, except for twin-unit types.
- C Not recommended as Oscillator in this class of service.
- d Intermittent Commercial and Amateur Service only.
- f Not recommended as Oscillator in this class of service.
- 9 In phase operation, unless otherwise specified.
- h Quadrature operation.

RCA TRANSMITTIN

Limited Listing

FOR DETAILED DATA ON TYPES NOT LISTED INTHESE CHARTS, REFER TO INDIVIDUAL DATA SHEETS IN THE TRANSMITTING TUBE SECTION

3-Terminal Diagrams These charts are arranged in three parts: 1 & 2 - Data

DATA

PART 1

(Unless Otherwise Specified a

PO ¥	POWER TUBES FOR CW APPLICATIONS	§	APP	₹ 2	22		(on les	2 0 5	MING	Onless Officialise opening	-
-			Filament	lent			Max	Maximum Ratings	tings		
RCA			Heater	ter		Plate		Grid	Grid No 2	Grid No 1	101
Туре	Description	Cooling	Volts	Ama	Voits	4	Dissip	Volts	Watts	Volts	mA (Watts)
					- 1						1
2C39A	Lighthouse Triode	Forced	6.3	1.0	1000	.125	100	ı	1	.150	20
2C39WA	Lighthouse Triode- Forced	Forced	5.8	1.0	Ref.	MIL-E-	MIL-E-1/778E				
2C40	Lighthouse Triode,	Natural	6.3	0.75	450	.022	5.0	1	ı	ı	1
2C43	Lths Tri Hi Plate	Natural	6.3	06.0	450	920.	10	1	1	Ţ	1
2E24	Quick Heat, Beam Power	Natural	6.3	0.65	009	.085	13.5	200	2.5	.175	3.5
2E26	Beam Pwr Pentode Natural	Natural	6.3	08.0	009	.085	13.5	200	2.5	-175	3.5
The same of the sa	Charles and Control of the Control o	SALESCON AND STREET, SALESCON	THE RESIDENCE OF THE PROPERTY OF THE PERSON NAMED IN COLUMN 1	THE RESIDENCE AND ADDRESS OF THE PERSON AND	AGNORATED AND ADDRESS OF THE PERSONS ASSESSED.						

KCA IKANSMITTING-TUBE TYPES-Limited Listing

RCA			-	Charles de l'annie de la company de la compa	STATES OF THE PERSON STATES	HOLDS OF THE PARTY AND ADDRESS OF	BARTINGS	Springer Control (Springer)	Quinting of contracting against	Commence of the last of the la	The Party Control of C
Typo			Filament	nent			Max	Maximum Ratings	tings		
- Abe	Description	Cooling	Legie			Plate		Grid No	No 2	Grid No 1	No 1
			Volts	Amp	Volts	A	Dissip Watts	Volts	Watts	Volts	mA (Watts)
3C33 a	Twin Triode	Natural	12.6	1.125	2000 Peak	500 Peak 120 DC	15 each of two units		I	-200	7.5 IN
3E29 ^a	eam Power	Natural	6.3/	2.25/	5750 Peak	10b Peak	15b	850	3p IR	-225	1b IN
	Tube				5000 DC Max on:	12 μs	b. both units in parallel Max Int: $1200 \mu s$	in paralle 1200 μ s	-		
4-125A/ 4D21	Beam Power Tetrode	Forced Air	5.0	6.5	3000	.225	125	400	20	-500	9W
4-250A/ 5D22	Beam Power Tetrode Forced	Forced Air	5.0	14.5	4000	.350	250	009	35	-500	5W
4E-27A/ 5-125B	Beam Power Pentode Natural	Natural	5.0	7.5	4000	.200	125	750	20	-500	10W
4X500A	Beam Power Tetrode	Forced	5.0	13.5	4000	.350	200	200	30	-500	20 cW
8D21	Twin Tetrode	Water	3.2	125	0009	5.0	2 0009	1000	400°	-1000	650
807	Power Pentode	Natural	6.3	06.0	750	.100	30	300	3.5	-200	5
a. Type 3C33	a.Type 3C33 for Pulse Regulator Applications. c. $^{\rm TwoTubes}$.	gulator	Applic	ations	Туре	3E29 for	3E29 for Pulse Modulator Applications.	Modulato	r Applic	ations.	

000	-		Filament	ent			Ma	Maximum Ratings	tings		
TVD	Description	Cooling	Heater	ter		Plate		Grid	Grid No 2	Grid No 1	No 1
			Volt	Атр	Volts	٨	Dissip Watts	Volts	Watts	Volts	mA (Watts)
810	Hi Mu Triode	Natural	10.0	4.5	2000	.250	125	1	. 1	-500	75
813	Hi Gain Beam Power Natural	Natural	10.0	5.0	2250	.225	125	400	22	-300	30
827R	Beam Power Tube	Forced Air	7.5	25	3500	.500	800	1000	150	-500	150
828	Low Freq Pentode	Natural	10	3.25	2000	.150	80	750	23	1	E
829B	Twin Beam Power	Forced Air	6.3	2.25	750	.240	45	250	80	-175	20
830B	Low Freq Triode	Natural	10.0	2.0	1000	.150	09	1	1	-300	30
832A	Twin Beam Pwr Tube	Natural	6.3	1.6	750	060	15	250	2	-100	9
834	VHF Triode	Natural	7.5	3.1	1250	.100	20	1	1	-400	20
837	Low Freq Pentode	Natural	12.6	0.7	200	.080	12	200	80	-200	8

RCA TRANSMITTING-TUBE TYPES-**Limited Listing**

PART 1 (PART 1 (CONT'D)										Teleponent (SECO)
			Filament	lent			Ma	Maximum Ratings	tings		
RCA		Cooling	Heater	ter		Plate		Grid No 2	No 2	Grid No 1	101
Abe			Volts	Amp	Volts	A	Dissip Watts	Volts	Watts	Volts	mA (Watts)
845	Triode	Natural	10.0	3.25	1250	.120	100	-	1	-400	. 1
860	Tetrode	Natural	10.0	3.25	3000	.150	100	200	10	-800	40
880	Triode	Water	12.6	320	10500	0.9	20k	1	1	.1200	800
891R	Lo Freq Triode	FAd	22.0	09	10000	2.0	4k	1	ī	-3000	150
892	Lo Freq Triode	Water	22.0	09	15000	2.0	10k	Î	1	-3000	400
892R	Lo Freq Triode	FA	22.0	09	12500	2.0	4k	-	I	-3000	400
1624	Beam Power Tube	Natural	2.5	2.0	009	060	25	300	3.5	-200	2
1625	Beam Power Tube	Natural	12.6	0.45	750	.100	30	300	3.5	-200	5
5556	Lo Freq Triode	Natural	4.5	1.1	350	.040	10	ĺ	-	-150	10
Princetolistic Communication		action of perfections	Aggregation of the Committee	NATIONAL PROPERTY OF THE PARTY	SCHOOLS AND ADDRESS OF THE PERSONS	AND PROPERTY OF THE PERSONS ASSESSED.	Principal and Associated and Associa				

d. Forced Air,

YPES-

isting

												V. 100
PAR.	CONT'D)								0			
N V O			Filament	nent			Ma	Maximum Ratings	tings			
Type	Description	Cooling	Heater	ter		Plate		Grid	Grid No 2	Grid No 1	No 1	
			7				Dissip	7,516.7	Maste	N-les	Am,	
5713	Power Triode	FA	3.3	11.5	1500	30	250	Voits	Matts	-250	50	
5786	Compact Triode	FA	11.0	12.5	3000	0.5	009	1	1	-500	150	R
6146 e	Hi Eff Beam Pwr Tube	Natural	6.3	1.25	750	.150	25	250	8	-150	4.0	CA
6155	Beam Power Tube	FA	5.0	6.5	3000	.225	125	400	20	-500	15	TRA
6156	Beam Power Tube	FA	5.0	14.1	4000	.350	250	009	35	-500	20	ANS
6159	Glass Beam Power Tube	Natural	26.5	0.3	750	.150	25	250	8	-150	4.5	MIT
6181	UHF Power Tetrode	FA	120	1.55	2000	1.25	2000	200	40	-300	200	ΙΙΝ
6883 f	Beam Power Tube	Natural	12.6	0.62	750	.150	25	250	8	.150	4.0	
6897	Lighthouse Triode	FA	6.3	1.0	1000	125	100	1	1	-150	50	UB mit
1271	Beam Power Tube	Natural	13.5	1.25	1350	.340	80	425	20	-300	30	
For late	For later version of this type refer to 6146B/8298A data sheets, located in the TRANSMITTING TUBE SECTION	se refer t	o 6146E	3/8298A	data sh	eets, loca	ated in th	ve TRAN	SMITTING	TUBE S	ECTION	YP List

SECTION.

For later version of this type refer to 6883B/8032A/8552 data sheet, located in the TRANSMITTING TUBE

RCA TRANSMITTING-TUBE DATA

Limited Listing

Type Description Cooling Heater 8000 Triode Natural 10.0 4 8032 Beam Power Triode Natural 10.0 3. 8165/A VHF Power Natural 13.5 0. 8166/A VHF Power FA 7.5 21 8166/A VHF Power FA 7.5 21 8168/A VHF Power FA 7.5 21 4CX1000A Tetrode FA 6.0 10 8170/A Tetrode FA 7.5 75 8170/A Beam Power Tube FA 7.5 75 8239/A Lo Mu Triode FA 7.5 52 8438/A Beam Radial Tetrode FA 7.5 52 8438/A Beam Radial Tetrode FA 7.5 52	RCA			Filar	Filament		Management of the Commission o	Ma	Maximum Batings	tinge		
Voits Voits	/pe	Description	Cooling		iter		Plate		Grid	Grid No 2	S. S.	P. J. N. 4
Voits											BLID	ON
Triode Natural 10.0				Volts	Amp	Volts	٨	Dissip	Volte	Matte.W		МШ
Power Triode Natural 10.0	00		Natural	10.0	4.5	2500	300	175			Voits	(Watts)
Beam Power Tube Natural 13.5 A	05	Power Triode	Natural	10.0	3.25	1750				_	-500	45
VHF Power Ube Natural 13.5 VHF Power Natural 6.0 VHF Power Natural 6.0 VHF Power FA 7.5 VHF Power FA 7.5 S000A Beam Power Tube FA 7.5 S000F1 Lo Mu Triode FA 7.5 Sadial Tetrode FA 7.5 S00F1 Radial Tetrode FA 5.0 Seam Power Tube FA 5.0 Sadial Tetrode FA 5.0 Sadial Tetrode FA 5.0 South Seam Seam South 5.0 South Seam Seam South 5.0 South Seam South South 5.0 South Seam South 5.0 South South 5.		0 0000			0.20	0671	.125	75	1	1	-125	25
A VHF Power Tetrode Natural 6.0 00A VHF Power Tetrode FA 7.5 1000A Tetrode Tetrode FA 6.0 5000A Beam Power Tube FA 7.5 9.0 1000B Lo Mu Triode FA 7.5 9.0 100B Radial Tetrode FA 7.5 9.0	32	Glass	Natural	13.5	0.58	750	.150	25	250	3.0	1	
VAF Power FA 7.5 1000A Tetrode FA 6.0 5000A Beam Power Tube FA 7.5 9.0 1000F1 Lo Mu Triode FA 7.5 9.0 1000F1 Beam Tetrode FA 7.5 9.0	65/ 65A		Natural	6.0	3.5	3000	.150	65	400	10	- 500	0.4
Radial Tetrode FA 6.0 5.0 5.0 1.5 5.0	66/ 1000A	VHF Power Tetrode	FA	7.5	21	0009	.700	1000	1000	75		AA 3
1000A Tetrode FA 6.0 5000A Beam Power Tube FA 7.5 300F1 Lo Mu Triode FA 7.5 6 ABeam Beam FA 5.0 1	38/	Radial Beam		T	T	1				2	nne-	75W
5000A Beam Power Tube FA 7.5 300F1 Lo Mu Triode FA 7.5 3A Beam FA 5.0	X1000A	Tetrode	FA	0.9	10.5	3000	1.0	1000	400	12	09-	1
300F1 Lo Mu Triode FA 7.5 Radial Tetrode FA 5.0	70/ X5000A	Beam Power Tube	FA	7.5	75	7500	3.000	2000	1500	250		75W
Radial Tetrode FA 5.0	39/ X3000F1	Lo Mu Triode	FA	7.5	52	0009	2 500	3000	6.1			
	38/ 400A		FA	5.0	14.5	4000	.350	400	009	35	- 500	50W
			-			-		-		8	000	À

PART 1 (CONT'D)

PART 2									DATA
RCA	Prime	Ampli- fica-	Max		Physical		Ty	Typical Operation	ation
Туре	Service	tion or Mu	Freq	ξΞ	Dia	Wt	Freq	(mA) Watts	Output
2C39A	UHF Amp	100	2500	2-3/4	1-1/4	2	200	9	40
2C39WA	UHF Amp	1	-	2-3/4	1.1/4	2	1	1	i
2C40	UHF Amp	36	3370	2-9/16	1-5/16	2	-		
2C43	UHF Amp	48	1500	2.11/16	1-5/16	2	F	1	Å
2E24	Mobile	7.5	125	3-5/8	1-5/16	8	125	0.2	27
2E 26	Hi Power Amp	6.5	125	3-1/2	1-5/16	8	125	0.17	27
3C33	Regulator	11	-	3-1/2	2-3/8	-	1	1.	
3E29	Modulator	6	1	4-1/8	2-3/8	3.5	Pulse: 1.2	Pulse: 1.2 μs	

RCA TRANSMITTING-TUBE TYPES-Limited Listing

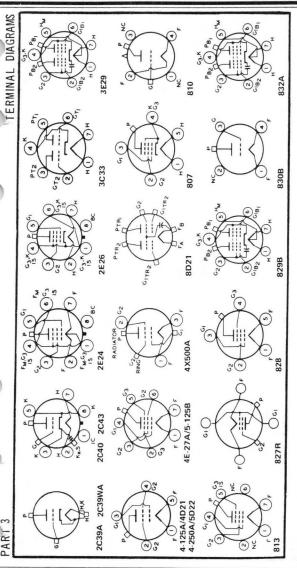
, C		Ampli-			Physical		Typ	Typical Operation	ration
Type	Prime Service	fica- tion or Mu	Max Freq MHz	ž =	Dia	Wt	Freq	Input (mA) Watts	Output Watts
4-125A/4D21	VHF Amp	6.2	120	5-1/2	2-7/8	9	120	2.5	375
4-250A/5D22	Hi Pwr VHF Amp	5.1	75	6-1/8	3-1/2	8	75	2.5	1000
4E-27A/5-125B	Hi Pwr Amp	5	75	9	2.3/4	9	75c	0°60	375c
4X500A	Hi Pwr Amp	6.2	120	4-1/2	2-5/8	28	110	18	1180
8D21	VHF Osc Amp	5	300	12	5-3/4	-	300	500c	6500c
807	VHF Amp	8	09	5-3/4	2.1/16	8	09	.3	54
810	Hi Gain VHF Amp	36	30	8-1/2	2-1/8R	ৰ	30	19	575
813	VHF Amp	8.5	30	7-1/2	2-9/16	8	30	4.0	375
827R	FM & VHF TV	16	110	8/8-9	4-5/8R	72	110	20	1050
C. Two Tubes.									

PART 2 (CONT'D) J R

RCA		Ampli-			Physical		Τy	Typical Operation	ation
Туре	Prime Service	tion or Mu	Freq MHz	±ے	Dia In	Wt	Freq	Input (mA) Watts	Output Watts
828	Audio Amp	-	30	7-7/16	2-1/16	_	AF	0	385
829B	VHF Amp	6	200	4-1/8	2-3/8	1	200	0.8	115
830B	RF Amp	25	15	6-11/16	2-1/16	1	15	7	06
832A	VHF Amp	6.5	200	3-3/16	2-5/16	1	200	0.19	26
834	RF Amp	10.5	100	8/2-9	2-11/16	I	100	4.5	75
837	RF Amp	Ī	20	5-3/4	2-1/16	-	20	0.4	22
845	Modulator	5.3	AF	8/1-7	2-5/16	1	AF	Ī	115
098	VHF Amp	200	30	8-3/4	4-1/4R	1	30	7	165

***	-	Ampli-			Physical		Ty	Typical Operation	ration
Type	Prime Service	fica- tion or Mu	Max Freq MHz	# s	Dia	Wt	Freq	Input (mA) Watts	Output Watts
880	VHF Amp	20	25	11-1/2	7	I	1.5	1500	40k
891R	RF Amp	8.5	1.6	2	6R	ı	1.6	310	10k
892	RF Osc	50	1.6	20-1/8	5-9/16R	-	1.6	299	14k
892R	RF Osc	20	1.6	22	6R	1	1.6	495	10k
1624	UHF Amp	1	09	5-3/4	2-1/16	1	09	0.43	35
1625	Freq Mult	8	09	5-3/4	2-1/16	1	09	0.2	90
5556	Lo Freq Triode	8.5	9	2-5/8	2-3/16	1	9	0.25	6.0
5713	VHF Amp	25	220	4-25/32	2-1/16	1	220	8	290
5786	Industrial	32	160	9-3/8	2-7/8	1-1/2 lb	160	36	1000

FAKI 2 (CONID)							TAN	Typical Operation	ation
RCA	Prime	Ampii- fica-	Max		Physical		2	Input	
Туре	Service	tion or Mu	Freq	F H	Dia In	Wt Oz	Freq	(mA) Watts	Output Watts
6146A	Amateur	4.5	09	3-3/16	1-21/32	2.3	09	0.2	70
6155	RF Amp	6.2	120	5-3/32	2-7/16	÷	120	2.0	375
6156	RF Amp	5.1	75	5-29/32	3-7/16	9	75	3.4	1000
6159	RF Amp	4.5	09	3-13/16	1-21/32	2.3	09	0.2	52
6181	UHF TV	80	006	7-7/16	5	5 lb	006	150	009
6883	RF Amp	4.5	09	3-13/16	1-9/16	2	09	0.2	70
6897	UHF Amp	L	2500	2-3/4	1-1/4	2	5 00	1	40
1727	RF Amp	8	09	4.75	2.00	3.5	09	06	225


RCA TRANSMITTING-TUBE DATA

(A 11100) 2 111V	Control of the Contro					-			Name and Address of the Owner, where the Owner, while the
BCA	c	Ampli-	200		Physical		Typ	Typical Operation	ation
Туре	Service	tion or Mu	Freq	i H	Dia In	Wt	Freq	(mA) Watts	Output Watts
8000	VHF Amp	16.5	30	8-1/2	2-1/8R	ı	30	18	575
8005	Oscillator	20	09	6-7/16	2-7/8	1	90	8.5	220
8032	Mobile RF Amp	4.5	09	3-13/16	1.21/32	2.3	60	0.2	70
8165/4-65A	RF Amp	2	50	4-3/16	2-3/8	3.0	50	1.7	280
8166/4·1000A	RF Amp	7	110	9-1/4	5-1/4	1.5 lb	110	15	3400
8168/4CX1000A	Lin RF Amp	1	110	4-3/4	3-3/8	27	1	ı	1680
8170/4CX5000A	RF Amp	4.5	30	9-1/8	4-15/16	9.5 lb	1	Ĭ.	1
8239/3X3000F1	AF Amp	4.8	1	10-1/2	4-3/16	7.1/2 lb	I	0	10k
8438/4-400A	RF Amp	5.1	110	8/2-9	3-9/16	9.0	75	5.8	1100

RCA TRANSMITTING-TUBE DATA

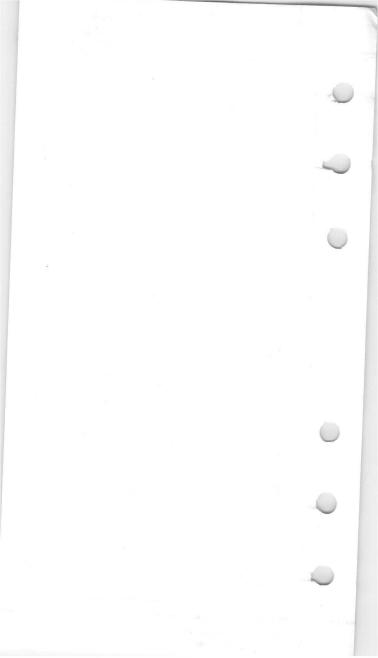
RCA TRANSMITTING-TUBE DATA **Limited Listing** BS (N) 6897 380 6181 111

PART 3 (CONT'D)

500

(N) 64

6156


6155

RCA TRANSMITTING-TUBE DATA **Limited Listing** 8166/4-1000A 8438/4-400A 8239/3X3000F1 8170/4CX5000A

8168/4CX1000A

The following operating considerations for RCA transmitting tubes are intended for use with the data sheets on individual tube types given in the Handbook. Operating considerations unique to a particular tube type are not included in this presentation but are covered by the Handbook data sheets for the given type.

RATINGS

Refer to the *General Section* of the Handbook for a detailed discussion on Rating Systems and Tube Ratings.

CLEANING

As with other high-voltage equipment, it is essential that external parts of power tubes be kept free from accumulated dirt and moisture to minimize surface leakage and the possibility of arc-over.

Some tube configurations contain re-entrant areas at the edge of the insulator seals. Particular care should be taken to prevent foreign matter from coming in contact with these areas. Unless adequately protected by filtered air, these areas collect dirt rapidly as a result of electrostatic forces and the nature of the air circulation around the tube.

The external parts of the tube should periodically be wiped free of dirt. A recommended procedure for cleaning ceramic-metal tubes is as follows:

 Remove silicone grease or similar material by use of acetone, or equivalent.

Caution: Do not allow silicone grease or similar materials to remain on any rf contact surfaces. Severe burning of the contact surfaces of cylindrical-terminal types will occur if the contact fingers do not mate firmly with clean metal contact surfaces.

 Clean rf contact surfaces with a very fine grade of silicon carbide abrasive pad, or equivalent.

Caution: Do not permit the cleaning pad to come in contact with the ceramic surfaces. Rub gently to prevent removal of plating.

COOLING CONSIDERATIONS

Tube life can always be extended by maintaining envelope temperatures substantially below the maximum temperature ratings.

The user is cautioned that typical cooling characteristics in the published data are offered only as a guide, and that maximum envelope temperatures in the intended operation are the final rating criteria.

Temperature measurements of the tube envelope must be made to insure operation within maximum ratings. For glass-bulb types, the bulb "hot-spot" must be located with the tube operating in its intended application. A simple technique for locating the "hot-spot" in low-power, receiving-type tubes is to apply a low-temperature-melting paint, such as Tempilaqa, to the entire bulb surface; the point at which this material first begins to melt is the hottest point on the bulb. For most power tubes, however, this technique is not satisfactory because of radiation effects. Therefore, it is recommended that a thermocouple be moved over the envelope to locate the hottest point on the bulb. (Although the individual thermocouple readings are not precise, the relative readings are sufficient.) Spots of various higher temperature Tempilaq paints may then be applied only to the hottest area: the lowest Tempilag paint which will not melt must be at or below the maximum temperature rating. See Ref. 1. In general, the hottest point of a ring terminal is at the seal or

- junction of the terminal and its adjacent glass or ceramic insulator. For some tube types the temperature measurement points are specified on the *Dimensional Outline* in the published data.
- All types of heat transfer—radiation, convection, conduction, and combinations thereof—are employed in the various cooling techniques: natural, forced-air, liquid, and conduction cooling.
- Natural Cooling—This method is generally used for glass-bulb types having plate dissipation ratings up to about 300 watts.

Temperature should be measured at the hottest point on the bulb using techniques previously discussed.

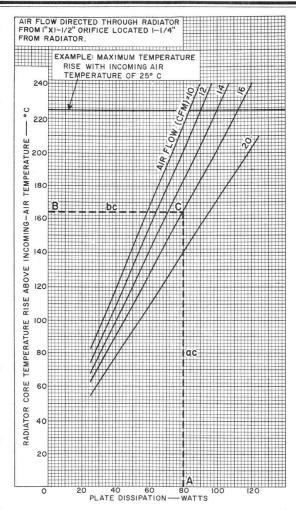
Adequate free space around the tube is required for all natural cooled types. Avoid reflective heat surfaces such as tube shields. These and other design considerations affecting natural methods of cooling are described in Ref.2.

Forced-Air Cooling-

Glass-Bulb-Types—Forced-air cooling may be applied to glass-bulb types to enhance the convection cooling and reduce bulb temperature. In some glass-bulb types, ratings are given for both natural and forced-air cooling. (The ratings with forced-air cooling reflect the higher permitted value of dissipation.) In general, any natural-cooled type may require some forced-air cooling if operation is near the maximum ratings or if limited space is available around the tube. The final decision can be made only after temperature measurements are made to insure operation below the maximum temperature rating.

Radiator Types—The external plate construction lends itself to compactness, higher

frequency operation, increased power capability, and intense-cooling techniques. Because the plate is part of the envelope, transfer of heat by radiation from the plate to the envelope is eliminated. The simplest intense-cooling technique is forced-air. All RCA forced-air-cooled, external-plate types contain integral radiators, which are brazed, pressed, or otherwise secured to the plate to insure intimate thermal contact.


Most of the heat within an electron tube is generated at the plate; additional heat generated from the other electrodes migrates to the plate. Precaution, however, must be taken to insure that none of the other terminals exceed their maximum rated temperature value. It may be necessary to direct some forced air across these terminals.

In general, there are two basic types of radiators: the stacked-disc type of finned radiator for TRANSVERSE FORCED-AIR COOLING, and the radial-fin type of radiator for AXIAL FORCED-AIR COOLING.

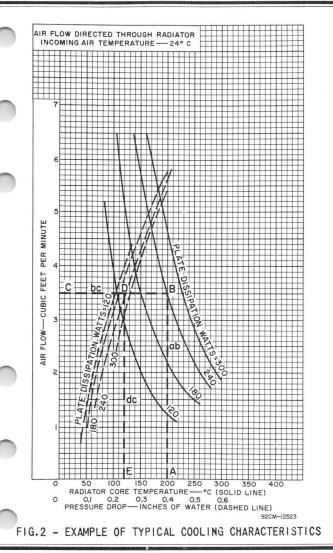
Transverse Cooling—Air flow is directed across the radiator from an orifice in a plane normal to the major axis of the tube and at the center of the radiator. More efficient cooling may be accomplished by providing a cowling to direct and confine the air. Pressure drop across the radiator itself is normally insignificant. Typical cooling characteristics for transverse cooling, such as shown in Fig.1, are given in the published data. The following steps illustrate the use of the chart:

- Estimate probable Plate Dissipation from electrical conditions, locate as point "A" on the abscissa axis (80 watts in example), and erect a perpendicular line "ac".
- Determine temperature rise by subtracting estimated incoming-air temperature (assume 36°C in example) from estimated

92CM-12522

FIG. 1 - EXAMPLE OF TYPICAL COOLING CHARACTERISTICS

tube operating temperature (assume 200° C in example), locate the determined value (200° C- 36° C= 164° C in example) as point "B" on the ordinate axis, and construct horizontal line "bc".


3. Determine air flow by interpolating the air flow curves at the intersection of lines "ac" and "bc", point "C" (16 cfm in example).

Axial Cooling—Air flow is directed through the radiator by suitable ducts. Air flow may be in either direction unless otherwise specified. Typical cooling characteristics for axial cooling, such as shown in Fig.2, are given in the published data. The following steps illustrate the use of the chart:

- Select a tube operating temperature as discussed in this section, locate as point "A" on the abscissa (assume 200°C in example), erect perpendicular line "ab", extend this line until it crosses the estimated plate dissipation curve (240 watts in example) for temperature (solid line), and designate as point "B".
- Determine air flow by constructing a horizontal line "bc" from point "B" to the ordinate axis and designate point "C" (3.5 cfm in example).
- 3. Determine the pressure drop across the radiator for the air flow in (2), locate point "D" on line "bc" at the estimated plate dissipation curve (240 watts in example) for pressure drop (dashed line), construct a perpendicular line "de" to the abscissa axis, designate as point "E", and read pressure drop (0.24 inch of water in the example).

See Ref. 3 for detailed information on the blower requirements for forced-air-cooled tubes.

Liquid Cooling—The liquid-cooling system consists, in general, of a source of cooling liquid, a feed-pipe system which carries the liquid to the water jacket surrounding, and provision for interlocking with the power supplies the liquid flow through the cooling courses. A more sophisticated system would also contain a liquid regeneration loop, flow regulators, and gages. For more detailed information on liquid-cooling systems, see Refs. 4 and 5.

Proper functioning of the coolant system is of the utmost importance. Even a momentary failure of the liquid flow may damage the tube. Without coolant the heat of the filament or heater alone may be sufficient to cause serious harm to some tube types. It is necessary, therefore, to provide a method of preventing tube operation in case the coolant supply should fail. A suitable method is the use of coolant-flow interlocks which open the power supplies when the flow is insufficient or ceases. If there is an interruption of the power supplies, it is then necessary to return the filament or heater voltage to zero and to restart in the normal manner described in the published data. The coolant flow must start before application of any voltage and continue for several seconds after removal of all voltages.

The absolute minimum coolant flow required through the system is given in the published data. Under no circumstances should the temperature of the coolant at any outlet ever exceed the maximum value given in the published data.

When the coolant fluid is water and the tube is used in equipment under conditions such that the ambient temperature is below $0\,^{\circ}\text{C}$, precautions should be taken to prevent the water from freezing in the system.

Use of Water as Coolant—For availability and ease in handling, water is recommended as the coolant wherever possible. It is of utmost importance to maintain a high quality of water in the cooling system. Contamination in the water will hasten scale formation, corrosion, and excessive electrolysis; any one of these conditions can greatly reduce tube life.

Use of Liquids other than Water as Coolant-When ambient temperatures fall below OOC, it is possible to use coolants such as ethyleneglycol-water solution and FC75b. Neither of these two coolants is as effective a coolant as water, therefore, the plate dissipation and flow data must be modified from that given for water. A more extensive discussion of ethyleneglycol-water solution and FC75 as coolants is given in Ref. 4. For information on the use of any coolant for which ratings are not given in the data, contact your RCA field representative or the nearest District Sales Office. A coolant such as oil will require a special plating on the metal of the tube envelope, such as nickel and rhodium to protect the metal surfaces from chemical attack.

Conduction Cooling—The conduction-cooling system consists, in general, of a constant temperature device (heat sink) and suitable heat-flow path (coupling) between the heat sink and tube. Primary consideration of the system should be given to the design of a heat-flow path (coupling device) with high thermal conductivity.

Heat Sink—The heat sink should be designed to act as a constant-temperature device to prevent any increase in temperature by dissipating the heat beyond the equipment compartment. Heat sinks can take the form of solids or liquids. In most applications such a heat sink is available in the form of equipment chassis, plate line, or output cavity.

Coupling—There are numerous insulating materials available to serve as the heat-coupling device, such as beryllium oxide (beryllia)^C, high-aluminum oxide (high-alumina), mica, and other insulating bodies. Since the thermal conductivity of these insulators varies considerably, the choice of insulator will depend primarily on the plate dissipation in the given application. For a detailed discussion on conduction cooling, see Ref. 6.

In hf operation the inductive element of the plate circuit is usually arelatively long coil, which does not provide a good thermal path from plate to chassis. Larger shunt capacity can be tolerated, however, and heat can be conducted through a portion of it to the chassis. In uhf operation the permissible shunt capacity of the plate circuit is limited, but the inductive element is short and can usually be made with sufficient cross-sectional area to form an excellent thermal path. In whf operation a careful compromise of the above is required to obtain adequate rf performance and reasonable cooling.

PRECAUTIONS

The voltages at which power tubes are operated are extremely dangerous. Protection circuits must be provided which will protect operation and maintenance personnel, protect the tube in the event of abnormal circuit operation, and protect the tube circuits in the event of abnormal tube operation. Power tubes require mechanical protective devices such as interlocks, relays, and circuit breakers. Circuit breakers alone may not provide adequate protection in certain high-power-tube circuits when the power-supply filter, modulator, or pulse-forming network stores considerable energy. Additional protection may be provided by the use of high-speed electronic circuits

or electronic "crow-bars" to bypass the fault current until mechanical circuit breakers are opened.

Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel cannot possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies and discharge high-voltage capacitors when any gate or door on the protective housing is opened, and should prevent the closing of this primary circuit until the door is again locked.

ELECTRICAL CONSIDERATIONS

Cathode—RCA transmitting tubes use a wide variety of cathodes. All utilize thermionic emission and should be operated at a constant temperature.

Refer to the *General Section* of the Handbook for a detailed discussion on TYPES OF CATHODES AND THEIR USE.

Filament or Heater—The rated filament or heater voltage should be applied for the heating time specified in the published data to allow the cathode to reach normal operating temperature before voltages are applied to other electrodes.

The life of the cathode can be conserved by adjusting to the lowest filament or heater supply voltage that will give the desired performance. In general, the filament or heater voltage values given in the published data include the maximum value and the typical value. Exceeding the maximum value will damage or severely shorten the life of the cathode.

The filament or heater voltage should be adjusted to the typical value initially, then reduced to provide satisfactory tube performance; any further reduction will show some degradation.

Good regulation of the filament or heater voltage about the value found above is, in general, economically advantageous from the view-point of tube life. When the rated value is shown with a percentage value in the published data, the percentage value indicates the tolerable momentary fluctuations from the rated value. For longer life, especially at higher operating frequencies, these fluctuations should be reduced by improved power supply regulation.

The cathode may be subjected to back bombardment as the frequency is increased with resultant increase in temperature. In pulse types back bombardment normally need not be considered when the duty factor is small. However, higher duty factors increase the possibility of this effect. In any event, the filament or heater supply voltage should be reduced as described above.

Standby Operation—During standby periods, the tube may be operated at decreased filament or heater voltage to conserve life. It is recommended that the filament or heater voltage be reduced to no less than 80 per cent of normal during standby periods of up to 2 hours. For longer periods, the filament or heater voltage should be turned off.

Filament Overvoltage Pulse Circuits—In certain battery-operated equipment, such as emergency-type, remote-area, or mobile applications, it is of utmost importance to conserve battery power. Quick-heating RCA power tubes provide useful power outputs within about one second from a cold start. This fast "warm-up" feature eliminates the need for standby filament

power, resulting in significant conservation of battery power.

In general, "warm-ups" of about one second are adequate in equipment where the microphone switch actuating the transmitter power relay is located in the cradle of the handset, such as a conventional telephone, or similar wall-type installation. However, when the switch is the push-button type located on the handset, faster "warm-ups" are demanded. Extremely fast "warm-ups" of less than 200 milliseconds are possible for such "push-to-talk" microphone switches by the use of a suitably designed filament overvoltage pulse circuit or "hot-shot" circuit.

The diagram shown in Fig. 3 depicts the filament-voltage waveform during a transmission using a "hot-shot" circuit. An overvoltage

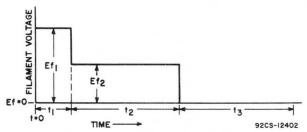


FIG.3 - FILAMENT VOLTAGE WAVE FORM

Efl is applied for time tl. A transfer switch then reduces the filament voltage to the rated value, Ef2, for the remainder of transmission time t2. During standby time t3, the filament voltage is zero.

The block diagram shown in Fig. 4 depicts the basic requirements of a "hot-shot" circuit in conjunction with the communication equipment. The auxiliary circuit must provide a low-impedance filament overvoltage source, a rated filament voltage source, an accurately timed means of switching these sources, and a

protective circuit to prevent possible damage to the tube filament from repeated applications of overvoltage with insufficient time for the filament to cool between transmissions. Both filament voltages are obtained from the transmitter power supply. Power is supplied simultaneously to the transmitter and timer

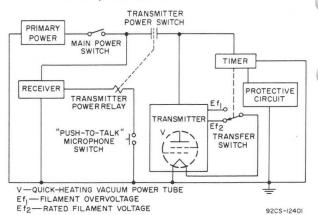


FIG.4 - BASIC RECEIVER-TRANSMITTER WITH AUXILIARY
"HOT-SHOT" CIRCUIT

by the "push-to-talk" microphone switch. The transfer switch, which is initially connected to the filament overvoltage source, is switched by the timer to the rated filament voltage source in the required time (pulse duration) after application of power to the transmitter.

Before a "hot-shot" circuit can be designed for a quick-heating tube, it is necessary to establish maximum ratings for the peak voltage (on the order of 2 to 3 times the rated filament voltage) and duration of the filament overvoltage pulse for the desired heating time. Filament overvoltage pulse ratings are given in the published data on quick-heating tube types.

Any "hot-shot" circuit design must provide protection against the application of the filament overvoltage pulse to a hot filament.

It is recommended that a dummy filament, simulating the resistance of the specific tube type, be used in the initial testing or checking of a "hot-shot" circuit design. Otherwise, any fault—especially an excessive pulse duration can cause catastrophic failure of the tube.

Plate Voltage Supply—Power-amplifier tubes usually obtain plate voltage from rectifiers provided with suitable filter circuits, although batteries or local dc generators are sometimes used, especially in portable and mobile equipment.

A time-delay relay should be provided in the plate-supply circuit to delay application of plate voltage until the filament or heater has reached normal operating temperature.

An interlocking relay system should be provided to prevent application of plate voltage prior to the application of sufficient bias voltage and/or rf drive to grid No.1; otherwise, with insufficient bias, the resultant high plate current may cause excessive plate dissipation with consequent damage to the tube. RF-load shorts or other causes of high output VSWR may also cause high dissipations, excessive voltage gradients, or insulator flashovers. The VSWR should be monitored and the detected signal used to actuate the interlock system to remove the plate voltage in less than 10 milliseconds after the fault occurs.

In beam power tubes with closely spaced electrodes, extremely high-voltage gradients occur even with moderate tube operating voltages. Consequently, momentary fault currents may cause catastrophic failure unless protection is provided. A series impedance in the plate lead is recommended. A resultant plate impedance, which will provide a plate-

voltage-supply regulation of no better than 10 per cent, is usually sufficient.

Grid-No.2 Voltage Supply—The grid No.2 must be protected by a time-delay and interlocking relay similar to the plate-voltage-supply protection described for Plate Voltage Supply. The plate voltage should be applied simultaneously with or before the grid-No.2 voltage; otherwise, with voltage on grid No.2 only, grid-No.2 current may be large enough to cause excessive grid-No.2 dissipation. If the grid-No.2 voltage is obtained from the plate voltage supply, these precautions will have been accomplished.

Grid-No.2 current is composed of a positive-current component resulting from cathode emission to grid No.2 and a negative-current component resulting from secondary-emission phenomena. Because the net result of these component currents is read on a meter in the grid-No.2 circuit, grid-No.2 dissipation can not be accurately determined. Operation similar to conditions given under Typical Operation in the published data will minimize the possibility of exceeding maximum dissipation.

In tubes with precision-aligned grids, such as Cermolox tubes, the grid-No.2 circuit must be capable of maintaining the proper grid-No.2 voltage in the presence of moderate negative dc current as well as normal values of positive current. Complete protection can be achieved by the use of a well-regulated power supply, a grid-No.2-to-ground impedance that is low enough to prevent gradual build-up of grid-No.2 voltage and/or catastrophic build-up (runaway) under negative-current conditions, and a current-overload relay to protect the grid No.2 against positive or negative currents on the order of one-tenth the required plate current.

Grid-No.1 Voltage Supply—The grid-No.1 bias circuit should preferably be adjustable to permit small variations of grid-No.1 voltage. This bias adjustment will permit setting the desired plate current, and it will minimize variations in tube performance. Sufficient fixed bias or cathode resistor bias should be provided to protect the tube in the event that the drive signal is lost.

The design of the bias-voltage supply should include an instantaneous over-current relay. The action of the over-current relay and the inherent regulation of the supply should be such that no damage to the tube or supply will result from an accidental short at the tube connection or from an internal tube fault.

The rf-power-input transmission line should be provided with VSWR protection to remove drive power as well as plate (and grid No.2) voltage within 10 milliseconds in the event of abnormal changes in input VSWR during operation.

CLASSES OF SERVICE

AF Power Amplifiers—The current and power values in the Maximum Ratings are averaged over any audio-frequency cycle of sine-wave form. The driver stage should be capable of supplying at low distortion the No.1 grid(s) with the value of peak af voltage given in the Typical Operation of the published data. In no case should the Grid-No.1-Circuit Resistance exceed the value specified under Maximum Circuit Values. Transformer or impedance coupling devices are recommended.

Individual bias adjustment for each tube (unit) should be used to balance the loading and minimize distortion. In push-pull operation the bias of each tube (unit) should be adjusted to divide the value of zero-signal plate current in the published data equally between the two tubes (units).

Except for class A amplifiers, the average plate and grid No.2 currents vary with the amplitude of the driving signal. Hence, serious distortion and inadequate power output will result with large input signals unless the plate and grid-No.2 power supplies are well regulated.

Class A—This class normally does not draw grid-No.1 current or requires tube driving power and can employ simple cathode bias. Where class A2 (indicating grid-No.1 current flows during part of the cycle) is specified, the grid-No.1 circuit precautions discussed under class AB2 operation will apply.

Class AB₁—The subscript 1 in class AB₁ indicates that grid-No.1 current does not flow during any part of the cycle.

Class B and Class AB2—These classes normally draw grid-No.1 current (indicated by the subscript 2 in AB_2) with large signals and, therefore, require tube driving power. To minimize distortion, the grid-No.1 bias supply preferably should be regulated or held to a low value of effective resistance. Transformer coupling should be used.

RF Power Amplifiers or Oscillators—On modern ceramic-metal envelope types, the frequency selected is usually the maximum value at which reasonable gain and efficiency are obtained. In glass-envelope types, the maximum frequency is selected as the frequency above which excessive rf envelope losses require voltage deratings and reduced efficiency requires input deratings.

Driving power values given in the published data include only the power that must be delivered to the tube and bias supply. The term, "driving power", is normally used only at low frequencies where circuit losses are small.

Where Driver-Power Output is shown in the ublished data, the rf losses associated with a typical input circuit are also included.

In cathode-drive circuits, a portion of the driver-power output and the developed rf power output act in series to supply the load circuit. If the driving power is increased, the output vill always increase. In a grid-drive circuit, a saturation effect takes place; i.e., above a certain value of driving voltage and current, the output increases very slowly and may even decrease. It is important to recognize this difference and not try to saturate a cathode-drive stage; otherwise, the maximum grid-No.1 and grid-No.2 input may easily be exceeded.

Parasitic oscillations may be experienced under certain operating conditions. Such oscillations result in erratic performance and may cause damage to the tube and/or associated circuitry. Operating conditions and external circuits should be adjusted for operation without oscillations. References 10 and 11 are suggested for further information on the detection and suppression of parasitic oscillations.

Class C Plate-Modulated-Power Amplifiers—In plate-modulated class C amplifier service, the tube can be modulated 100 per cent. The grid-No.2 voltage must be modulated simultaneously with the plate voltage so that the ratio of grid-No.2 voltage to plate voltage remains constant.

Grid-No.2 voltage should be obtained preferably from a separate source modulated from a separate winding on the modulation transformer.

Bias voltage may be obtained from a grid-No.1 resistor, but preferably is obtained from a combination of grid-No.1 resistor with either fixed supply or cathode resistor to protect the tube in the event the drive signal is lost.

In cathode-drive, plate-modulated, class C rf power amplifier service, the tube can be modulated 100 per cent if the rf driver stage is simultaneously modulated 100 per cent. Care should be taken to insure that the driver-modulation and amplifier-modulation voltages are exactly in phase.

Class C CW Power Amplifiers—In class C rf telegraphy service, the tube may generally be supplied with bias by any convenient method: from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods. However, when the tube is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, an amount of fixed bias must be used to limit the plate current and, therefore, the plate dissipation to a safe value. Some fixed bias is preferred in any event to protect the tube in case the drive signal is lost.

Grid-No.2 voltage should be obtained preferably from a separate source. It can also be obtained from the plate-supply voltage with a voltage divider, or through a series resistor. A series grid-No.2 resistor should be used only when the tube is used in a circuit which is not keyed.

Linear RF Power Amplifiers—The classes of operation suitable for linear rf power amplifiers include: class A, class AB1, class AB2, class B with bias, and class B with zero bias. Class A operation is the more nearly linear, but it is also the least efficient. Application is generally limited to low-power-level amplification. Class AB1 produces the best compromise for linearity, efficiency, and gain. Class AB2 or class B operation provides higher output for applications where sufficient driving power is available to permit some "swamping", and where linearity requirements are less stringent. Class B zero-bias operation

with suitable high mu triodes may be used when adequate driving power is available.

In general, grid-No.2 voltage should be obtained from a separate, well-regulated source. In circuits where the grid-No.1 current is drawn, a separate, well-regulated source is also required.

(1) - Single-Sideband, Suppressed Carrier Service—Single sideband suppressed carrier operation is a form of linear amplifier service in which only one sideband is transmitted, and the carrier is suppressed.

The values of Distortion Products Level given under Typical Operation in the published data are referenced to either of the two tones for "two-tone" modulation and are without the use of feedback to enhance linearity.

(2) - Class B and Class C Television Service—Television is a form of linear amplifier service in which the rf carrier is modulated by a video signal. Typical operation is given at conditions of a specified bandwidth measured between the half-power points.

The values for the pertinent parameters given under Typical Operation in the published data are given at the synchronizing (sync) level and pedestal level (black level or blanking level).

(3) - Class B Telephony Service — Class B telephony service is a form of linear amplifier service in which the grid is excited with an rf carrier that is modulated at audio frequencies in one of the preceding stages. Under these conditions, plate dissipation is greatest when the carrier is unmodulated. Grid bias should be obtained from a dc voltage source of good regulation.

Pulsed RF Amplifiers and Oscillators—This service consists of the generation and amplification of an rf signal, the envelope of which is a waveform limited to intermittent

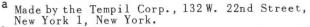
pulses of defined shape, duration, and repetition frequency. Pulse duration and duty factor are sometimes limited directly by the maximum ratings. More frequently, the maximum ratings define a relationship between these factors as a maximum "ON" time in a given time interval in order to cover pulse-train inputs. Typical operation, in general, is given for conditions with a rectangular waveshape pulse of a given duration and duty factor. For operation at pulse durations or duty factors other than those given in the published data, see Ref.12.

In the amplifier service, the power supply pulses should preferably start shortly after and end shortly before the rf drive pulse to reduce the possibility of parasitic oscillations. If the rf drive pulses are "gated" within the power-supply pulses (the rf drive pulse starts shortly after and ends shortly before the power-supply pulses), the desired "gate" conditions should be observed carefully when no rf drive pulse is present to be assured that no oscillations are present.

The peak input energy required during the pulse is normally obtained from capacitor banks that must store many times this peak value to prevent excessive voltage droop. Consequently, it is particularly important to observe all the precautions for limiting tube input during faults which are described under Grid-No.2 Voltage Supply.

Pulse-Modulated RF Amplifiers—This service consists of the simultaneous amplification and pulse modulation of a cw rf signal. If differs from the other more conventional modulated rf amplifier services in that the modulating waveform is limited to intermittent pulses of defined shape, duration, and repetition frequency. This type of amplification/modulation is normally done at low power levels; hence, few power tubes are rated specifically for this service.

Pulse Modulator Service—The tube supplies a modulation signal consisting of intermittent pulses of defined shape, duration, and repetition frequency. Ratings, waveforms, and precautions are similar to those given for pulsed rf amplifier service (except there is no rf drive signal).


Observation of the exact waveforms must be made with an oscilloscope. In this manner, transient voltage or current spikes caused by unavoidable circuit reactances may be observed. Transient values must be held within the maximum ratings given in the published data.

High-power pulse modulators, when used to "clip" or "flat-top" the output waveform by the overdriving technique, must provide grid-No.1 and grid-No.2 input protection.

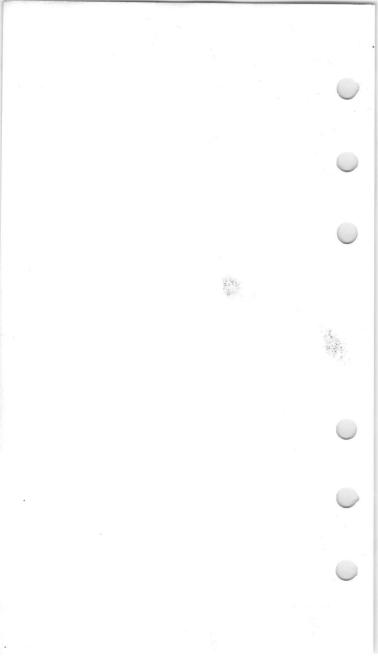
Plate current flow during the "OFF" time will contribute to plate dissipation; the bias voltage should be sufficient to hold the plate current below the required levels for any tube. The control limits, such as found in the Characteristics Range Values will provide information in determining the required bias. Current flow during the rise time and the fall time of a "rectangular" pulse can contribute significantly to plate dissipation; this current flow should be considered if the theoretical plate dissipation is close to the rated value.

Voltage Regulator Service—The tube acts as a "pass tube" having a controllable voltage drop in a series-regulated voltage-supply circuit. The plate voltage rating can be interpreted as applying to the actual plate-to-cathode voltage of the tube rather than the supply voltage. In this case, adequate protective devices must be used to protect the tube in the event of a shorted load. Special precaution should be made to observe the maximum circuit values for grid-No.1 and grid-No.2 impedance. For information on voltage regulator circuits, see Refs. 13,14, and 15.

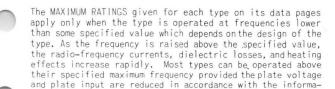
It is recommended that only tube types rated for this service be used since the use of a high power vacuum tube in a high-voltage, low-current application will frequently result in the selection of a tube inadequately controlled in the low-current region.

b Manufactured by the Fluorchemical Division, Minnesota Mining and Manufacturing Co., 900 Bush Avenue, St.Paul 6, Minnesota.

Warning: Beryllia dust and fumes are highly toxic to mucous membranes and may cause serious ulcers when imbedded under the skin. See References 7, 8, and 9.


REFERENCES

Copies for references I, 3, 4, and 6 may be obtained by writing to Commercial Engineering, Radio Corporation of America, Harrison, New Jersey.


- Techniques for Measuring Electron-Tube Bulb Temperatures, RCA Application Note, AN-200.
- Design Manual of Natural Methods of Cooling Electronic Equipment, Department of the Navy, Bureau of Ships, Navships 900, 192.
- 3. Blower Requirements for RCA Forced-Air-Cooled Tubes, RCA Application Note, AN-161.
- Application Guide for RCA Super-Power Tubes, 1CE-279A.
- 5. Design Manual of Methods of Liquid Cooling Electronic Equipment, Department of the Navy, Bureau of Ships, Navships 900, 195.
- J. W. Gaylord, "The Conduction Cooling of Power Tubes in Vehicular Communication Equipment," IEEE Transactions on Vehicular Communications, September, 1963. Cont'd

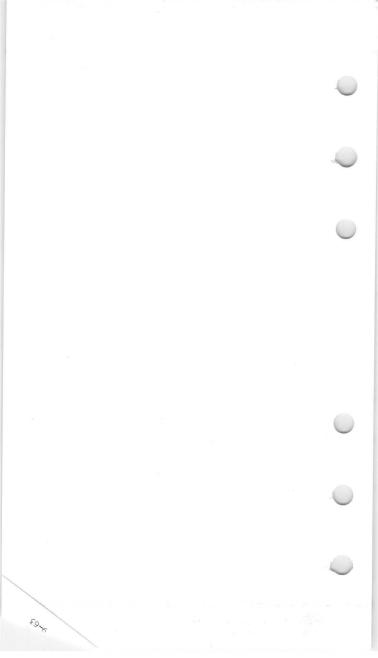
- D. W. White, Jr. and J. E. Burke, "The Metal Beryllium" (book), published by the American Society for Metals, Cleveland, Ohio.
- Donald P. O'Neil, "Toxic Materials Machined Safely," American Machinist, June 4. 1955.
- 9. Sidney Laskin, Robert A. N. Turner, and Herbert E. Stokinger, "Analysis of Dust and Fume Hazards in a Beryllium Plant," U.S. Atomic Energy Commission, MDDC-1355.
- 10. F. E. Terman, "Radio Engineers' Handbook," pages 498 to 503 of 1943 edition. Published by McGraw-Hill Pub. Co., Inc.
- 11. EE Staff of MIT, "Applied Electronics," page 619.
- Predicted Cathode Capability, RCA Power Tube Engineering Note, IEN-1.
- F. V. Hunt, & R. W. Hickman, Review of Scientific Instruments, "On Electronic Voltage Stabilizers," January, 1939.
- 14. F. E. Terman, "Radio Engineers' Handbook," pages 614 and 615 of 1943 edition. Published by McGraw-Hill Pub. Co., Inc.
- 15. Cruft Electronics Staff, "Electronic Circuits and Tubes," page 575. Published by McGraw-Hill Pub. Co., Inc.

Transmitting Tube Ratings vs Operating Frequency

tion given in the following tabulation.

		MAXIMUM PERMISSIBLE PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE & PLATE INPUT				
TUBE	OPERATING	TELEPH	TELEGRAPHY			
TYPE	FREQUENCY Mc	Class B, Class C Grid or Suppressor Modulated Class C Plate- Modulated		Class C Unmodulated		
8D21	300	100	-	100		
207		Same as fo	r Type 892			
211	15	100	100	100		
	30	88	80	80		
	80	70	50	50		
801-A	60 75 120	100 93 78	93 80 80			
803	20	100	100	100		
	40	86	77	77		
	60	80	60	60		
805	30	100	100	100		
	45	90	82	82		
	80	77	55	55		
807	60	100	100	100		
	80	90	80	80		
	125	75	55	55		
809	60	100	100	100		
	70	93	88	88		
	120	75	50	50		
810	30	100	100	100		
	60	88	70	70		
	100	80	50	50		
813ª	30	100	100	100		
	60	88	75	75		
	120	76	50	50		

a In Self-Rectifying Oscillator or Amplifier Service, and in Amplifier or Oscillator Service with Separate, Rectified, Unfiltered, Single-Phase, Full-Wave Plate Supply, the 813 has the same maximum permissible percentages as those shown for Class C Telegraphy.


Transmitting Tube Ratings vs Operating Frequency

		MAXIMUM PERMISSIBLE PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE & PLATE INPUT				
	OPERATING	TELEPH	TELEGRAPHY			
TUBE TYPE	FREQUENCY Mc	Class B, Class C Grid or Suppressor Modulated	Class C Plate- Modulated	Class C Unmodulated		
814	30	100	100	100		
	50	90	80	80		
	75	85	64	64		
815	125	100	100	100		
	175	85	80	80		
	200	75	70	70		
828	30	100	100	100		
	50	90	80	80		
	75	80	65	65		
830-B	15	100	100	100		
	30	87	77	77		
	60	74	54	54		
832-A	200 250	-	100 89	100 89		
834 100		100	100	100		
170		89	80	80		
350		73	53	53		
835	20	100	100	100		
	40	85	80	80		
	100	70	50	50		
837	20 40 60		100 76 62	100 76 62		
838	30	100	100	100		
	60	85	75	75		
	120	70	50	50		
860		Same as for	Type 838			
880	25 50 75 100	Voltage Input 100 100 80 94 68 85 60 75 45		100 75 62 50		
889-A	50	100 100		100		
	100	85 75		75		
	150	72 50		50		
889RA	40 65 100	100 85 72	100 78 60	Volt. Input 100 100 87 73 65 50		

Transmitting Tube Ratings vs Operating Frequency

			MAXIMUM PERMISSIBLE PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE & PLATE INPUT					
		OPERATING	TELEPH	TELEGRAPHY				
T	TUBE TYPE	FREQUENCY Mc	Class B, Class C Grid or Suppressor Modulated	Class C Plate- Modulated	Class C Unmodulated			
8	391	1.6 7.5 20	7.5		100 75 50			
8	891–R	1.6 7.5 20	7.5		100 75 50			
8	392	1.6 7.5 20	100 85 76	100 85 75	100 75 50			
8	392 – R	1.6 7.5 20	100 85 76	100 75 50	100 75 50			
1	1613	45 60 90	- 100 - 90 - 85		100 90 85			
1	1614	80 120	-	100 75	100 75			
1	1619	45 60 90	100 93 85	100 90 77	100 90 77			
1	1624	60 80 125	100 100 90 80 75 55		100 80 55			
1	1625		Same as fo	r Type 807				
1	1626	30 60 90	-	-	100 96 93			
	5713	220.	-	-	100			
	5763	50 175	-	Volt. Input 100 100 100 80	Volt. Input 100 100 100 80			
	5771	1.6 25 .50	100 100 75	100 100 75	Volt. Input 120 112.5 100 75			
	5786	160		100	100			
(6417		Same as fo	r Type 5763				
	8005	60 100 80 90 100 83		100 75 60	100 75 60			

CIRCUITS FOR HOT-CATHODE MERCURY-VAPOR & GAS RECTIFIER TUBES

Numerical Relationships Among Electrical Quantities

E = Trans. Sec. Voltage (RMS) Eav = Average DC Output Voltage

E_{bmi} = Peak Inverse Anode Voltage

Em = Peak DC Output Voltage

f = Supply Frequency

f = Major Ripple Frequency

Er = Major Ripple Voltage (RMS)

I av = Average DC Output Current 1 = Average Anode Current

In = Anode Current (RMS) pm = Peak Anode Current

Pal = Line Volt-Amperes Pap = Trans. Pri. volt-Amperes

Pas = Trans. Sec. Volt-Amperes

Pdc = DC Power (Eav x lav)

Note: Conditions assumed involve sine-wave supply; zero voltage drop in tubes; no losses in transformer and circuit: no back emf in the load circuit; and no phase-back.

RATIO	Fig. 1	Fig. 2	Fig. 3	Fig. 4	Fig. 5°	Fig. 6	Fig. 7	Fig. 8
Voltage Ratios								
E/E _{av}	2.22	1711	1.11	0.854	0.854	0.427	0.785	0.74
E _{bmi} /E	1.41	2.83	1.41	2.45	2.45	2.45	2.83	2.83
Ebmi/Eav	3.14	3. 14	1.57	2.09	2.09	1.05	2.22	2.09
E _m /E _{av}	3,14	1.57	1.57	1.21	1.05	1.05	1.11	1.05
Er/Eav	1.11	0.472	0.472	0.177	0.04	0.04	0.106	0.04
Frequency Ratio	*			A.O.	-1-1	1 1		
fr/f	1	2	2	3	6	6	4	6
Current Ratios		-	,					
lp/lav	1.57	0.785	0.785	0.578	0.289	0.578	0.5	0.408
lb/lav	- 1	0.5	0.5	0.33	0.167	0.33	0.25	0.167
Resistive Load								
lpm/lav	3.14	1.57	1.57	1.21	0.52	1.05	1.11	1.05
pm/1b	3.14	3.14	3.14	3.63	3.14	3.14	4.5	6.3
Inductive Load				1 8				
pm/lav	-	- 1	1	. 1	0.5	1	- 1	1
Power Ratios								
Resistive Load	- 2			1.89		100	1 1980	
Pas/Pdc	3.49	1.74	1.24	-	-	-	-	-
Pap/Pdc	2.69	1.23	1.24	10 - c	-	-	-	_
Pa1/Pdc	2.69	1.23	1.24	-	-	-	-	-
Inauctive Load®	100	-	J. C.	1 34				
Pas/Pdc	-	1.57	1.11	1.71	1.48	1.05	1.57	1.8
Pap/Pdc	-	1.11	1.11	1.21	1.05	1.05	1.11	1.29
Pal/Pdc	_	1.11	1.11	1.21	1.05	1.05	1.11	1.05

Bleeder current of 2≸ full-load current will provide exciting current for balance coil and thus avoid poor regulation at light loading.

The use of a large filter-input choke is assumed.

CIRCUITS FOR HOT-CATHODE MERCURY-VAPOR & GAS RECTIFIER TUBES

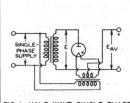


FIG. I HALF-WAVE SINGLE-PHASE

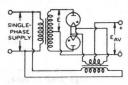


FIG. 2 FULL-WAVE SINGLE-PHASE

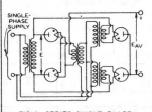


FIG. 3 SERIES SINGLE-PHASE

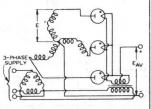


FIG. 4 HALF-WAVE THREE-PHASE

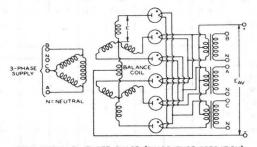


FIG. 5 PARALLEL THREE-PHASE (QUADRATURE OPERATION)

92CL-7673A

CIRCUITS FOR HOT-CATHODE MERCURY-VAPOR & GAS RECTIFIER TUBES

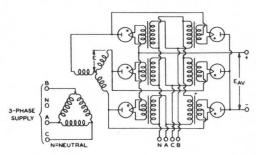


FIG. 6 SERIES THREE-PHASE (QUADRATURE OPERATION)

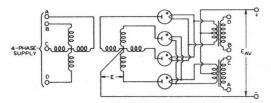


FIG. 7 HALF-WAVE FOUR-PHASE (QUADRATURE OPERATION)

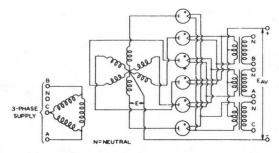
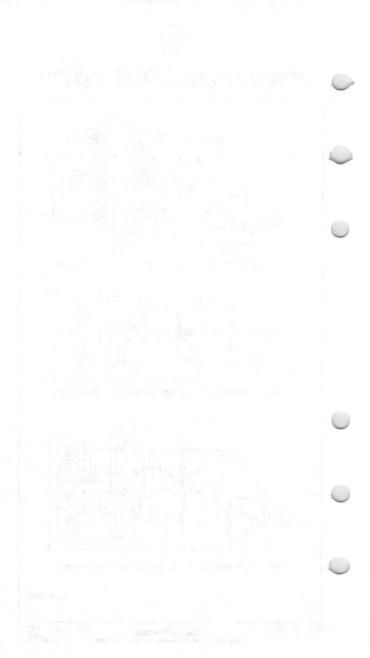



FIG. 8 HALF-WAVE SIX-PHASE (QUADRATURE OPERATION)

92CL-7673B

KLYSTRON

2426

SINGLE-RESONATOR, REFLEX TYPE Frequency: 6250 to 7060 Mc.

GENERAL DATA
Heater, for Unipotential Cathode: Voltage 6.3 ± 0.5 ac or dc volts Current 0.44 amp Frequency Range 6250 to 7060
Mechanical:
Mounting Position
Pin 1- Shell, Resonator Pin 2- Heater Pin 8- Cathode Cap - Reflector Terminal
NOTE: COAXIAL OUTPUT LINE PASSES THROUGH VACANT PIN POSITION NO. 4
CW OSCILLATOR - Class C
Maximum Ratings, Absolute Values: DC RESONATOR VOLTAGE
Positive Value 0 max. volts Negative Value
Heater negative with respect to cathode. 50 max. volts Heater positive with respect to cathode. 50 max. volts AMBIENT TEMPERATURE OF SHELL
Typical Operation ^D at 6660 Mc in Mode "A" with 3/4" x I-1/2" Wave Guide
DC Resonator Voltage
(continued on next page)
, : See next page.

Half-Power Electronic-Tuning		
Frequency Change	55	Mc
Power Output	120	mw

Adjusted for maximum power output at the given operating frequency.

Change in frequency between the two half-power points when the reflector voltage is varied above and below the point of maximum power output corresponding to the given frequency.

The coaxial output line is coupled to the specified wave guide through the wide-band coaxial coupling unit shown on following pages.

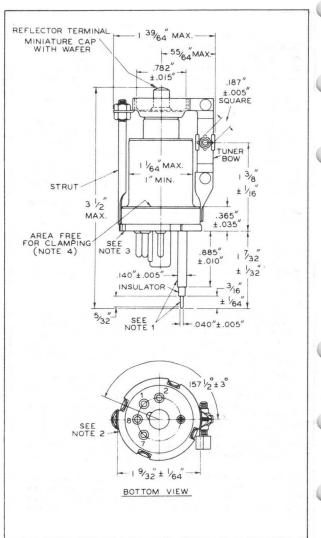
INSTALLATION NOTES

A socket for the 2K26 may be obtained by removing the clip from the No.4 pin position of an octal socket and drilling the No.4 opening large enough to admit the coaxial line and the surrounding coupling unit. To guard against excessive strain on the coaxial output line, the tube must be securely fastened by a clamp on the base of the socket mounting. Bumping or continued pressure on the output line will seriously damage the tube. The proper area for clamping on the shoulder of the header skirt is shown on the Outline Drawing.

OPERATING NOTES

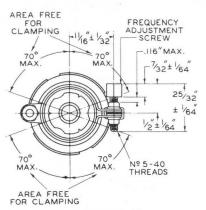
All tabulated data and curve information shown for the 2K26 were taken with the specified coupling unit and wave guide. It is important that this coupling unit or its electrical equivalent be used to insure tube interchangeability and satisfactory tuning characteristics. In addition, the standing-wave ratio of the coupler should not exceed 0.8 db. (I.I voltage-standing-wave ratio).

In most applications the cathode of the 2K26 is operated at a negative potential with respect to ground so that the tube shell, which is integral with the resonator, is at ground potential. In those applications which do not operate with the shell at ground potential, it is essential that the 2K26 be surrounded by a grounded shield and tuned with an insulated tool, in order to protect the user from contact with high voltage. The shield design should permit adequate ventilation to assure that ambient temperature, as measured with a thermometer inserted between the metal tube shell and the shield, will be less than the maximum rated value. Ambient temperature changes will cause the resonator to expand or contract, producing a change in frequency. For best frequency stability, the 2K26 should be operated at nearly constant ambient temperature and with a well-regulated power supply.


Shielding of the reflector and resonator voltage leads as close to the tube as possible is essential to avoid modulation of the tube output by any external voltages. In addition, the connection to the reflector terminal must be insulated to withstand the total acceleration and reflector voltage. To avoid damage to the tube, the reflector potential must never become positive with respect to the cathode.

Tuning of the 2K26 is accomplished by mechanical and electronic means. The mechanical tuning system is designed to permit approximate adjustment of frequency, but is not recommended for use where continual or frequent adjustment of frequency is required. Approximately five full turns of the frequency-adjustment screw are sufficient to tune the tube over its rated frequency range. The electronic tuning range is dependent upon reflector voltage, the type of load and the kind of coupling to the load.

Voltage modes are regions within the total range of reflector voltage in which oscillations will occur. The typical operating conditions and curves shown for type 2K26 apply to mode "A", the only mode recommended for this tube.


RCA) 2K26 KLYSTRON

KLYSTRON

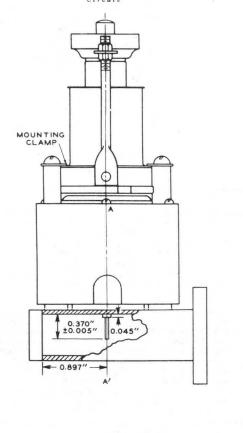
TOP VIEW

NOTE 1: THE INNER AND OUTER CONDUCTORS OF THE COAXIAL OUTPUT LINE ARE CONCENTRIC WITHIN 0.010".

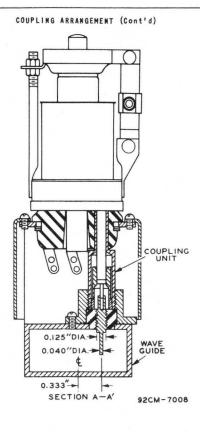
NOTE 2: BASE-PIN AND COAXIAL-OUTPUT-LINE POSITIONS ARE HELD TO TOLERANCES SUCH THAT PINS AND OUTPUT LINE WILL FIT FLAT-PLATE GAUGE HAVING (a) THICKNESS OF 1-7/32", (b) 4 HOLES WITH DIAMETER OF 0.1030" ± 0.0005" FROM TOP SURFACE OF GAUGE TO A DEPTH OF 0.25" AND THEN WITH DIAMETER INCREASED BY APPROXI-MATELY 1/64" FOR REMAINING DEPTH OF HOLE, SO LOCATED ON A 0.6870" ± 0.0005" DIAMETER CIRCLE THAT THE DISTANCE ALONG THE CHORD BETWEEN ANY TWO ADJACENT HOLE CENTERS IS 0.2630" ± 0.0005", (c) ONE HOLE WITH DIAMETER OF 0.1600" ± 0.0005" TO DEPTH OF 1-7/32" WHOSE CENTER IS LOCATED ON THE SPECIFIED PIN CIRCLE A DISTANCE DETERMINED BY LAYING OFF ON THE TOP SURFACE OF THE GAUGE COUNTERCLOCKWISE FROM THE LAST OF THE FOUR HOLES TWO CONSECUTIVE CHORDS EACH 0.2630" ± 0.0005", AND (d) A CENTER HOLE WITH A MINIMUM DIAMETER OF 0.400" TO CLEAR THE BASE PLUG AND KEY. PIN AND OUTPUT-LINE FIT IN GAUGE SHALL BE SUCH THAT GAUGE TOGETHER WITH SUPPLEMENTARY WEIGHT TOTALING 2 LBS. WILL NOT BE LIFTED WHEN PINS AND COAXIAL OUTPUT LINE ARE WITHDRAWN.

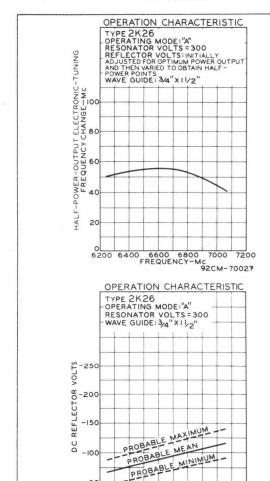
NOTE 3: SMALL-WAFER OCTAL 4-PIN BASE WITH PIN No.4 REPLACED BY COAXIAL OUTPUT LINE.

NOTE 4: MINIMUM WIDTH OF SHOULDER IS 0.045".



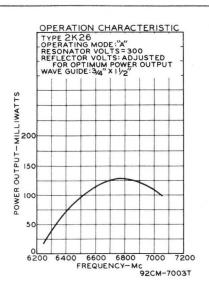
KLYSTRON

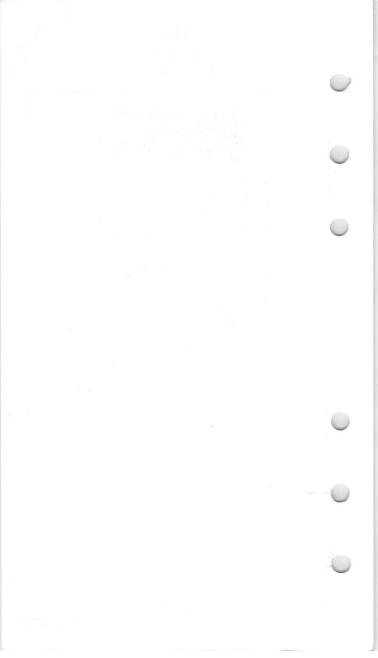

RCA-2K26 Coupled to a 3/4" x 1-1/2" Wave Guide Through a Coaxial Transducer Coupling Circuit



2420

RCA 2K26 KLYSTRON


-50


6400

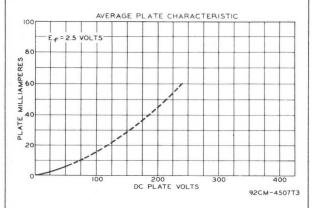
7200 FREQUENCY-MC 92CM-7004T

12t2.4

HALF-WAVE VACUUM RECTIFIER

For applications critical as to severe shock and vibration

	GENERAL DATA
Electrical:	
Heater, for Unipotential	
Voltage	Min. Av. Max. . 2.25 2.50 2.75 ac volts . 1.55 1.75 1.95 amp
Mechanical:	
Eulb	
Pin 1 - Heater Pin 2 - No Connec- tion Pin 3 - No Connec- tion	Pin 4 - Heater, Cathode Cap - Plate
HAL	F-WAVE RECTIFIER
Maximum Ratings, Design-	Cantar Values
PEAK INVERSE PLATE VOLTA PEAK PLATE CURRENT DC OUTPUT CURRENT HOT—SWITCHING TRANSIENT for duration of 0.2 se AMBIENT TEMPERATURE	GE
Typical Operation: AC Plate-Supply Voltage Total Effective Plate-Su Filter Input Capacitor . DC Output Current DC Output Voltage (At in	pply Impedance 0.3 megohm μf
S	HOCK TEST DATA
Impact Acceleration	250 max. g
production run to dete the specified impact a	on a sample lot of tubes from each ermine ability of tube to withstand coeleration. The tubes are subjectwis in each of the 3 primary mutually


SEPT. 1, 1955

HALF-WAVE VACUUM RECTIFIER

perpendicular tube planes when tested in the Navy Type, High-Impact (flyweight) Shock Machine. At the end of this test, tubes will not show permanent or temporary shorts or open circuits, and will not be inoperative.

HALF-WAVE GAS RECTIFIER

HOT-CATHODE TYPE

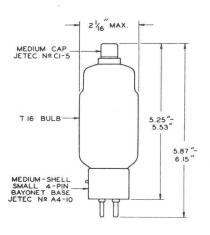
	HOT-CATHODE TYPE
	GENERAL DATA
	Electrical:
)	Filament, Coated: Voltage 2.5 ± 5% ac volts Current at 2.5 volts 5 amp Minimum Heating Time Befor Anode Voltage is Applied . 10 seconds Peak Anode Voltage Drop (Approx.) 10 volts
	Mechanical:
	Mounting Position Any Overall Length 5.87" to 6.15" Seated Length 5.25" to 5.53" Maximum Diameter 2-1/16" Bulb T-16 Cap Medium (JETEC No.C1-5) Base Medium-Shell Small 4-Pin, Bayonet (JETEC No.A4-10) Basing Designation for BOTTOM VIEW 4P1
	Pin 1 - Filament Pin 2 - No Connection Pin 3 - No Connection Connection Connection Output Pin 4 - Filament, Cathode Shield Cap - Anode
	HALF-WAVE RECTIFIER
	Maximum Ratings, Absolute values:
	Rating r Rating rr PEAK INVERSE ANODE VOLTAGE 5000 max. 10000 max. volts ANODE CURRENT:
	Peak
	of 0.1 second max 20 max. 20 max. amp. FREQUENCY OF POWER SUPPLY . 500 max. 150 max. cps AMBIENT TEMPERATURE75 to +90 -75 to +90 °C
	CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN
	Note Min. Max. Filament Current 1 → 5.40 amp Critical Anode Voltage. 2 → 50 volts Peak Anode Voltage Drop 3 → 14 volts
-	Note 1: With 2.5 volts rms on filament.

FEB. 1, 1952

Note 2: With 2.38 volts rms on filament.

Averaged over any period of 30 seconds maximum.

TENTATIVE DATA 1



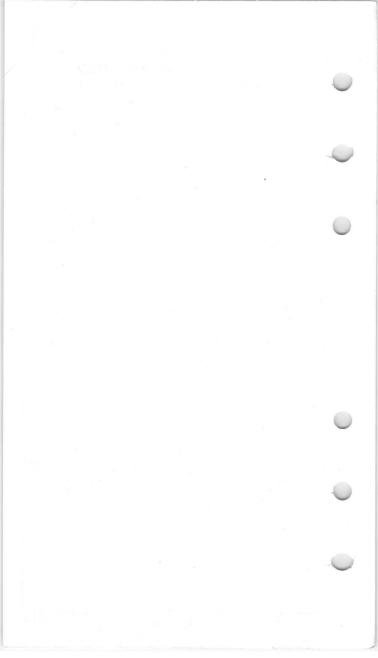
HALF-WAVE GAS RECTIFIER

Note 3: With 2.5 volts rms on filament, peak anode current of 2 amperes provided by half-cycle pulse from a 60-cps sine wave and recurring approximately once a second. Tube drop is measured by an oscilloscope connected between anode and center tap of filament transformer.

OPERATING NOTES

The filament-supply voltage for the 3B28 may be either in phase or out of phase with the anode voltage. With out-of phase excitation (quadrature operation), improved utilization of the cathode is possible. Although the 3B28 carries no higher anode-current rating for quadrature operation than for in-phase operation, quadrature operationis conducive to appreciably longer tube life. For optimum results, the filament and anode voltages should be 90° out of phase. In practical applications however, nearly, full realization of the advantages of this type of excitation is possible even when the phase difference between the filament and anode supply voltages ranges from the optimum value by as much as $\pm 30^{\circ}$. In polyphase operation where the anode voltage shifts from one phase to another during the current-conduction period, quadrature operation is obtained when the filament voltage passes through zero at the center of the current-conduction period.

92CM - 7642


HALF-WAVE GAS RECTIFIER

For Circuit Figures, see Front of this Section

CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MA D OUT AMPE	C PUT ERES	MA: OUT K! TO F!	C PUT W LTER		
Fig. 1 Half-Wave Single-Phase In-Phase Operation	7000 ≜ 3500	3200 1600	0.		0.			
Fig. 2 Full-Wave Single-Phase In-Phase Operation	3500▲ 1700●	3200 1600	0.			6 6		
Fig. 3 Series Single-Phase In-Phase Operation	7000 △ 3500	6400 3200	0.		3.2 3.2			
Fig. 4 Half-Wave Three-Phase In-Phase Operation	4000 ⁴ 2000 ⁹	4800 2400	0.			. 6 . 6		
Fig.5 Parallel Three-Phase Quadrature Operation	4000 ⁴ 2000 ⁹	4800 2400	1. 3.			.2		
Fig.6 Series Three-Phase Quedrature Operation	4,000 A 2000 ®	9600 4800	0.	75 5		.2		
Fig.7 Half-Wave Four-Phase Quadrature Operation	3500▲ 1700 [●]	4500 2250	Resis- tive Load 0.9	Induc- tive Load 1.0 2.0	Resis- tive Load 4.0 4.0	Induc- tive Load 4.5 4.5		
Fig.8 Half-Wave Six-Phase Quadrature Operation	3500 [▲] 1700 [●]	4800 2400	Resis- tive Load 0.95	Induc- tive Load 1.0 2.0	Resis- tive Load 4.5 4.5	Induc- tive Load 4.8 4.8		

For maximum peak inverse anode voltage of 10000 volts.

For maximum peak inverse anode voltage of 5000 volts.

Beam Power Tube

13

4.6

Muf

μμf

FORCED-AIR COOLED

GENERAL DATA

Electrical:

Filament, Thoriated Tungsten:				
Voltage (AC or DC)			$5 \pm 5\%$	volts
Current at 5 volts		. :	14.5	amp
Transconductance, for plate volts =				
2500, $grid-No.2$ volts = 500, and				
plate ma. = 100			4000	μmhos.
Mu-Factor, Grid No.2 to Grid No.1 .			5.1	
Direct Interelectrode Capacitances				
(Approx.):				
Grid No.1 to plate			0.12	μμ
Grid No.1 to filament, grid No.2,				

and base shell.

and base shell.

Plate to filament, grid No.2,

Mechanical:																	
Operating Position										Ve	er	ti	ca	1,	ba	ase	down -
Maximum Overall Length.							è									6	-3/8"
Seated Length							į						5-	-3	18	' ±	1/4"
Maximum Diameter						×	i									3-	9/16"
Weight (Approx.)							ě										9 oz
Cap					Ski	irt	ec	1 5	Sma	al		(J	ED	EC	No	0.0	1-22)
Base ^a																	
Basing Designation fo	or	B01	T(MC	V	IEV	٧.										. 5BK

Pin 1-Filament Pin 2-Grid No.2 Pin 3-Grid No.1

Pin 4-Grid No.2 Pin 5-Filament Cap - Plate

Thermal:

Forced-Air Cooling:

Upward through base toward bulb: Base-cooling air flow from a small fan or centrifugal blower should be applied simultaneously with filament power. In continuous service 15 cfm at a static pressure of 0.4 inch of water are required through the base when

the recommended socket and chimney are used. 00 200 max. 00 225 max.

- Indicates a change.

4-400A

- Components:

Socket. . . . Johnson 122-275, National HX-100, or equivalent Chimney Penta Labs PL-C1, or equivalent Heat-Radiating Plate Connector. . . Eimac HR-6, or equivalent

AF POWER AMPLIFIER & MODULATOR - Class AB

Maximum CCSb Ratings, Absolute-Maximum Values:

DC PLATE VOLTAGE	4000 max.	volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE	800 max.	volts
MAXSIGNAL DC PLATE CURRENTC	350 max.	ma
GRID-No.2 INPUTC	35 max.	watts
GRID-No.1 (CONTROL-GRID) INPUT°	10 max.	watts
PLATE DISSIPATIONC	400 max.	watts

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with a maximum modulation factor of 1

Maximum CCSb Ratings, Absolute-Maximum Values:

At frequencies up to 110 Mc

DC PLATE VOLTAGE.							max.	volts
DC GRID-No.2 VOLTA							max.	volts
DC GRID-No.1 VOLT	AGE				100	-500	max.	volts
DC PLATE CURRENT.						275	max.	ma
GRID-No.2 INPUT .						35	max.	watts
GRID-No.1 INPUT .				×		10	max.	watts
PLATE DISSIPATION						270	max.	watts

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy^d

RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCSb Ratings, Absolute-Maximum Values:

At frequencies up to 110 Mc

DC PLATE VOLTAGE.												4000	max.	volts	
DC GRID-No.2 VOLTA	AGE											600	max.	volts	
DC GRID-No.1 VOLTA	AGE											-500	max.	volts	
												350	max.	ma	
												35	max.	watts	
GRID-No.1 INPUT .												10	max.	watts	
												400	max.	watts	
	DC GRID-No.2 VOLTA DC GRID-No.1 VOLTA DC PLATE CURRENT. GRID-No.2 INPUT . GRID-No.1 INPUT .	DC GRID-No.2 VOLTAGE DC GRID-No.1 VOLTAGE DC PLATE CURRENT GRID-No.2 INPUT GRID-No.1 INPUT	DC GRID-No.2 VOLTAGE. DC GRID-No.1 VOLTAGE. DC PLATE CURRENT GRID-No.2 INPUT GRID-No.1 INPUT	DC GRID-No.2 VOLTAGE. DC GRID-No.1 VOLTAGE. DC PLATE CURRENT. GRID-No.2 INPUT . GRID-No.1 INPUT	DC GRID-No.2 VOLTAGE DC GRID-No.1 VOLTAGE DC PLATE CURRENT GRID-No.2 INPUT GRID-No.1 INPUT	DC GRID-No.2 VOLTAGE DC GRID-No.1 VOLTAGE DC PLATE CURRENT GRID-No.2 INPUT GRID-No.1 INPUT	DC GRID-No.2 VOLTAGE DC GRID-No.1 VOLTAGE DC PLATE CURRENT	DC GRID-No.2 VOLTAGE DC GRID-No.1 VOLTAGE DC PLATE CURRENT	DC GRID-No.2 VOLTAGE	DC GRID-No.2 VOLTAGE	DC GRID-No.2 VOLTAGE	DC PLATE VOLTAGE. DC GRID-No.1 VOLTAGE. DC PLATE CURRENT. GRID-No.2 INPUT PLATE DISSIPATION	DC GRID-No.2 VOLTAGE. 600 DC GRID-No.1 VOLTAGE. -500 DC PLATE CURRENT. 350 GRID-No.2 INPUT 35 GRID-No.1 INPUT 10	DC GRID-No.2 VOLTAGE. 600 max. DC GRID-No.1 VOLTAGE. -500 max. DC PLATE CURRENT. 350 max. GRID-No.2 INPUT 35 max. GRID-No.1 INPUT 10 max.	DC GRID-No.2 VOLTAGE. 600 max. volts DC GRID-No.1 VOLTAGE. -500 max. volts DC PLATE CURRENT. 350 max. ma GRID-No.2 INPUT 35 max. watts GRID-No.1 INPUT 10 max. watts

Metal base shell should be grounded by means of suitable spring fingers.

- Indicates a change.

b Continuous Commercial Service.

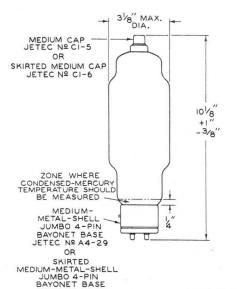
C Averaged over any audio-frequency cycle of sine-wave form.

d Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

575-A

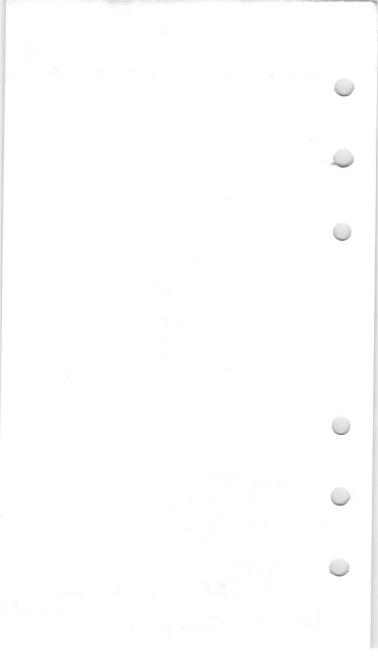
HALF-WAVE MERCURY-VAPOR RECTIFIER

The 575-A is the same as the 673 except for the following items:


Mechanical:
Overall Length 10-1/8" + 1" - 3/8"
Maximum Diameter
Weiaht (Approx.)
Cap Medium (JETEC No.C1-5), or
Skirted Medium (JETEC No.C1-6)
Base Medium-Metal-Shell Jumbo 4-Pin ◄
with Bayonet (JETEC No.A4-29), or
Skirted Medium-Metal-Shell Jumbo 4-Pin

with Bayonet (JETEC No. A4-31) Basing Designation for BOTTOM VIEW .

Pin 1 - No Connection Pin 2-Filament, Cathode Shield


Pin 3 - No Connection Pin 4-Filament Cap - Anode

JETEC Nº A4-31

←Indicates a change.

92CS-6654R2

Half-Wave Vacuum Rectifier

HIGH-VOLTAGE, LOW-CURRENT TYPE

GENERAL DATA

Electrical:

	Filament,																	
	Voltage	(A	c).											2.5	±	5%	volts	
r	Current	at	fi	ame	ent	V	01	ts	=	2	.5			6			amp	1
1.																		

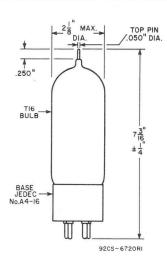
Mechanical:

Operating Position Vertical, base down or up
Overall Length
Maximum Diameter
Bulb
Plate Terminal 0.050"-Diameter Pin Located at Top of Bulb
Base Medium-Shell Super-Jumbo 4-Pin (JEDEC No. A4-16)
Basing Designation for BOTTOM VIEW

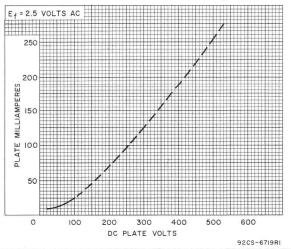
Pin 1-No Internal Connection Pin 2-Filament Pin 3-Filament

Pin 4 - No Internal Connection TOP PIN - Plate

HALF-WAVE RECTIFIER


Maximum Ratings, Ab	50	lui	te-	-Mo	ax	i mı	um	V	alı	ues:			
PEAK INVERSE PLATE	V0	LT	AGE	Ε.		·					20000	max.	volts
PLATE CURRENT:													
Peak					ï	÷						max.	ma
Average					×							max.	ma
AMBIENT TEMPERATURE											(7)	max.	oC
BULB TEMPERATURE											75	max.	°C

OPERATING CONSIDERATIONS


X-Radiation Warning. X radiation is produced when the 579B is operated with a peak inverse plate voltage above 16,000 volts (Absolute-Maximum value). This radiation can constitute a health hazard unless the tube is adequately shielded for X radiation.

→ Indicates a change.

AVERAGE PLATE CHARACTERISTIC

Harrison, N. J.

Full-Wave Gas and Mercury-Vapor Rectifier

OFN	FDAI	DATA
GEN	ERAL	DATA

	GENERAL DATA	
	Electrical: a	
).	Filament, Coated: Voltage (AC)	
	Mechanical:	
	Operating Position. Vertical, base down Maximum Overall Length. 7-1/2" Maximum Diameter. 2-1/16" Weight (Approx.) 502 Bulb. T16 Socket. Super-Jumbo 4-Contact Base. Medium-Metal-Shell Super-Jumbo 4-Pin Super-Jumbo	
	2 3	
	Pin 1 - Anode No.2 Pin 2 - Filament Pin 4 - Anode No.1	
	Thermal:	
	Type of Cooling	
	FULL-WAVE RECTIFIER ^a	
	Maximum and Minimum Ratings, Absolute-Maximum Values:	
	For power-supply frequency of 60 cps PEAK INVERSE ANODE VOLTAGE 900 max. volts ANODE CURRENT (Each Anode): Peak	0
	(Alexandria)	

604/7014

- ${\color{red}a}$ With circuit returns to filament-transformer center-tap.
 - Averaged over any interval of 5 seconds maximum.
- For longest life, the operating condensed-mercury temperature range after warm-up should be kept between +40° and +90° C which corresponds approximately to +15° to +65° C ambient.

Half-Wave Mercury-Vapor Rectifier

GENERAL DATA

FI	ec	tr	ica	1	. a
	CC	LI	Ica		

Filament, Voltage	Coated: (AC)												2.5			volts
Current	at 2.5 v	volts											7	±	1	amp
Minimum	heating	time	pr	ioi	r											
to tu	be conduc	ction											20			sec
Typical A	node Stai	rting	Vo	lta	age								13			volts
Peak Tube	Voltage	Drop	at	ar	nod	e a	amp	ere	es	=	8	•	12			volts

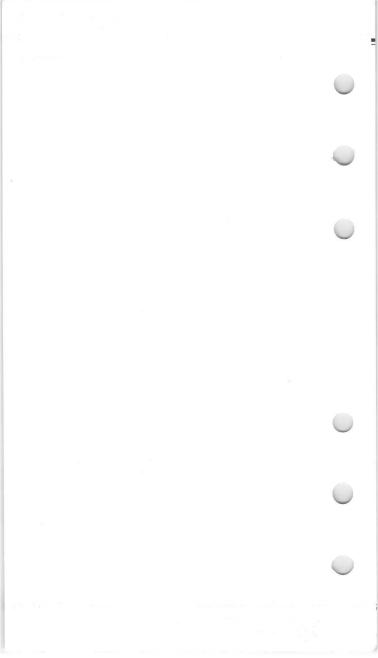
Peak Tube Voltage Drop at anode amperes = 8 12 volts
Mechanical:
Operating Position Vertical, base down
Maximum Överall Length
Maximum Diameter
Weight (Approx.) 4 oz
Bulb
Cap
Socket
Base
with Bayonet (JEDEC No.A4-10)
Basing Designation for BOTTOM VIEW 4AU

Pin 1-Filament Pin 2-Filament Pin 3-Filament

Pin 4 - Filament Cap - Anode

Thermal:

Type of Cooling Temperature Rise of Condensed		Conv	ection
Equilibrium Above Ambient Temperature (Approx.)	 	30	oC


HALF-WAVE RECTIFIER a

Maximum and Minimum Ratings, Absolute-Maximum Values:

For	po	wen	5	ир	ply	f_1	rec	ue	nc	y	of	6	o cps		
PEAK INVERSE AND ANODE CURRENT:	DE	VO	LTA	AGE									2000	max.	volts
													10	max.	amp
Peak Average b													2.5	max.	amp
Fault													250	max.	amp
CONDENSED-MERCUR	Υ -	TEM	PEF	RAT	URE										
RANGE (Operati	ng) .											+35 to	08+ c	oC

a With circuit returns to filament-transformer center-tap.

b Averaged over any interval of 5 seconds maximum.

Half-Wave Gas and Mercury-Vapor Rectifier

GENERAL	DATA

Current at 2.5 volts	Electrical: a			
to tube conduction	Voltage (AC) Current at 2.5 volts			volts amp
Peak Tube Voltage Drop at anode amperes = 20. 9 vol	to tube conduction			sec volts volts

Mechanical:

Operating Position Vertical, base down
Maximum Överall Length 9-1/2"
Maximum Diameter
Weight (Approx.)
Bulb
Cap
SocketSuper-Jumbo 4-Contact
Base Medium-Metal-Shell Super-Jumbo 4-Pin
Terminal Diagram: BOTTOM VIEW

Pin 1-No Internal Connection Pin 2-Filament Pin 3-Filament

Pin 4 - No Internal Connection Cap - Anode

Thermal:

	Type of Cooling	ion
1	Temperature Rise of Condensed Mercury	
7	to Equilibrium Above Ambient	
	Temperature (Approx.) 30	oC

HALF-WAVE RECTIFIER a

THE THE RESTRICT	
Maximum and Minimum Ratings, Absolute-Maximum Values:	
For power-supply frequency of 60 cps	
PEAK INVERSE ANODE VOLTAGE 1000 max.	volts
ANODE CURRENT:	
Peak	amp
Average ^b 6.4 max.	amp
	amp
CONDENSED-MERCURY TEMPERATURE	
RANGE (Operating) c	oC
	For power-supply frequency of 60 cps PEAK INVERSE ANODE VOLTAGE

635/7019

- ${\bf a}$ With circuit returns to filament-transformer center-tap. ${\bf b}$ Averaged over any interval of 20 seconds maximum.
- C For longest life, the operating condensed-mercury temperature range after warm-up should be kept between +40° and +100° C which corresponds approximately to +10° to +70° C ambient.

67

HALF-WAVE MERCURY-VAPOR RECTIFIER

			GEN	ERAL	DAT	Α								
Electrical:														
Minimum h	t 5 volts eating tin d voltage oltage	ne		5 10 30 10	± 5%	6 · ·				:				amp sec
Mechanical:														
Operating P Maximum Ove Seated Leng Maximum Dia Weight (App Cap	rall Lengt th meter rox.)	h .	La	· · · · · · · · · · · · · · · · · · ·	Meta	9- 	-9/ · Me She	16 edi	" + um Sı	(JI	-1/ -1/ ETE r-J	. 13 16" 	1-7/ - 1 3-1 10.8 0.C1	16" /4" /8" oz -5) -Pin -18)
Pin 2-Fi C	ion		1		3				in	4 -	- No t	lam Co ion ode	nnec	-
Temperature	Control:													
	When the a normal riabove the condensed-value of Maximum Racclosure or	se amb mer the	of cient cury ope	onde tem tem rati	pera per per ng for	ed- aturatu rar m o	me re re ge	wi wi uj s ea	Iry II o t spe t-c	not o t c i	emp t b he fie	era ring mir d u ving	tur g th nimu inde g en	e e m
4, 11	When the omaximum vatemperature be made for vent excee	lue e r	of ange	the d is air	exc	ati eed	ng ed	co , l	nde oro ffi	ense vis	ed-	mero n sh	cury	d d
Temperature Above Amb No load* Full load	ient Tempe	rati	ire	(App	rcui rox.	`): •	to ·	Eq	ui 1	i b ı		m 12 7.5		°C °C
* With 4.75 vo														
▲ With 5.25 vo current = 2.	olts rms on	fila	ment,	quad	rati	ire	оре	era	tio	n,	ave	rage	and	ode

HALF-WAVE MERCURY-VAPOR RECTIFIER

HALF-WAVE	RECTIFIER	- In-Phase	Operation*
-----------	-----------	------------	------------

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range

	20° to 60° C	20° to 50° C	1
PEAK INVERSE ANODE VOLTAGE	10000 max.	15000 max.	volts
ANODE CURRENT:	_		
Peak	7 max.	6 max.	amp
Average**	1.75 max.	1.5 max.	amp
tion of 0.1 second maximum	100 max.	100 max.	amp

HALF-WAVE RECTIFIER - Ouadrature Operation -

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range

100 max. 100 max.

	20° to	60° C	20° to	50° C	
PEAK INVERSE ANODE VOLTAGE	10000	max.	15000	max.	volts
ANODE CURRENT:	955				amp
Peak	10	max.	10	max.	amp
Average**	2.5	max.	2.5	max.	amp
Fault, for dura-					
tion of 0.1					- 1

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	1
Filament Current	1	-	11.5	amp
Critical Anode Voltage	2	-	100	volts
Peak Tube Voltage Drop	3	-	16	volts

Note 1: With 5 volts rms on filament.

second maximum . . .

Note 2: With 4.75 yolts rms on filament, and condensed-mercury tempera-ture at 20°C.

Note 3: With 5 volts rms on filament, condensed-mercury temperature of 350 ± 50 c, peak anode current of 20 amperes provided by half-cycle pulse from a 60-cps sine wave and recurring approximately once a second. Tube drop is measured by an oscilloscope connected between anode and center-tap of filament transformer.

- Filament voltage in phase with anode voltage.
- ** Averaged over any interval of 20 seconds maximum.
- •• Filament voltage out of phase (60° to 120°) with anode voltage.

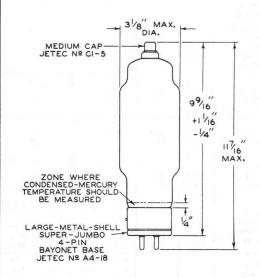
amp

HALF-WAVE MERCURY-VAPOR RECTIFIER

For Circuit Figures, see Front of this Section

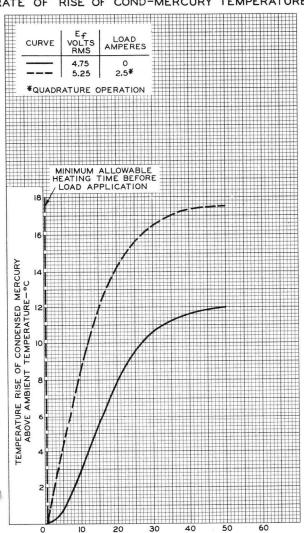
CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES	MAX. DC OUTPUT KW TO FILTER Pdc
Fig. I Half-Wave Single-Phase In-Phase Operation	10600 ^D 7000 ^A	4800 3200	1.50 1.75	7.1 5.5
Fig. 2 Full-Wave Single-Phase In-Phase Operation	5300 [□] 3500 [♠]	4800 3200	3.00 3.50	14.2
Fig. 3 Series Single-Phase In-Phase Operation	10600 [□] 7000 [▲]	9600 6400	3.00 3.50	28.4 22.0
Fig. 4 Half-Wave Three-Phase In-Phase Operation	6100 ^D 4000 ^A	7200 4800	4.50 5.25	32.2 25.0
Fig. 5 Parallel Three-Phase Quadrature Operation	6100 ^D 4000 ^A	7200 4800	15.0 15.0	108 72
Fig. 6 Series Three-Phase Quadrature Operation	6100 [□] 4000 ^	4300 9600	7.5 7.5	108 72
Fig. 7 Half-Wave Four-Phase Quadrature Operation	5300 ^D 3500 ^A	6750 4500	Resis- Inductive tive Load Load 9.0 10.0 9.0 10.0	tive tive Load Load 0 60.8 67.5
Fig. 8 Half-Wave Six-Phase Quadrature Operation	5300 ^P 3500 ^A	7200 4800	Resis- Inductive tive Load Load 9.5 10.0	tive tive d Load Load 0 68.4 72.0

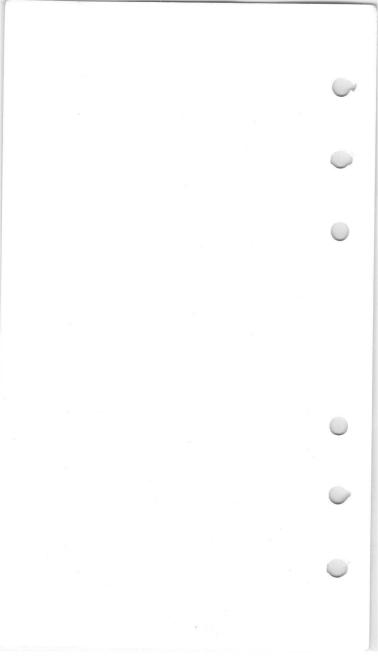
For maximum peak inverse anode voltage of 15,000 volts, and condensed-mercury-temperature range of 20 $^{\rm o}$ to 50 $^{\rm o}$ C.


For maximum peak inverse anode voltage of 10,000 volts, and condensed-mercury-temperature range of 20 $^{\circ}$ to 60 $^{\circ}$ C.

HALF-WAVE MERCURY-VAPOR RECTIFIER

OPERATING CONSIDERATIONS


Shields and rf filter circuits should be provided for the 673 if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.



92CS-6655R3

RISE OF COND-MERCURY OF

Power Triode

GENERAL DATA

	Filament, Thoriated Tungsten:	
	Voltage (AC or DC)	4 amp
	Grid to plate	5.6 pf
	Mechanical:	
	Operating Position Vertical, b	pase down; or Horizontal, s 1 & 4 in vertical plane
	Seated Length	2-7/16" 2.7 oz ST19 Medium (JEDEC No.C1-5)
	Basing Designation for BOTTOM VIEW	3G
	Pin 1-Filament Pin 2-Do Not Use	Pin 3−Grid Pin 4−Filament Cap−Plate
)
	AA'=PLANE OF ELEC	TRODES
	AF POWER AMPLIFIER & MODULA	ATOR — Class B
	Maximum Ratings, Absolute-Maximum Va	lues:
	CCS ^a	ICAS ^b
	DC PLATE VOLTAGE 1250 max. MAX.—SIGNAL DC PLATE	1500 max. volts
	CURRENT 175 max.	175 max. ma
	MAX.—SIGNAL PLATE INPUT . 165 max. PLATE DISSIPATION° 45 max.	235 max. watts 65 max. watts
3	Typical Operation:	

MAXSIGNAL PLATE INPUT . 165 PLATE DISSIPATION 45		watts watts
Typical Operation:		
Values are f	for two tubes d	
DC Plate Voltage 750 DC Grid Voltage 0 Peak AF Grid-to-Grid	1250 1000 1250 1500 0 0 0 -4.5	volts volts
Voltage 197 Zero-Signal DC Plate	145 185 175 170	volts
Current 32	50 44 54 32	

Electrical:

811A

01174	Marin San						
10 00		CCS	[ICAS			
MaxSignal DC Plate			250		212		
Current Effective Load Resist-	350	260	350	350	313	ma	
ance (Plate to							6
plate)	5100	12400	7400	9200	12400	ohms	
Max.—Signal Driving Power (Approx.)	9.7	3.8	7.5	6.0	4.4	watts	
MaxSignal Power	0.7).0	7.5	0.0	7.7	watts	
Output (Approx.)	178	235	248	310	340	watts	
							6
PLATE-MODULATED RF	POWER	AMPLIFI	ER — C	lass C T	eleph	ony	
Carrier c							
with a max				or.of 1			
Maximum Ratings, Absol	ute-Mo	aximum V					
			CCS	IC	AS		
DC PLATE VOLTAGE			00 max.	1250		volts	
DC GRID VOLTAGE DC PLATE CURRENT			00 max. 25 max.	-200 150	max.	volts	
DC GRID CURRENT			50 max.		max.	ma	
PLATE INPUT			15 max.		max.	watts	
PLATE DISSIPATION			30 max.	45	max.	watts	
Typical Operation:							
DC Plate Voltage		10	00	1250		volts	
DC Grid Voltage: f From a grid resistor	of.						
1200 ohms			55	-		volts	
2700 ohms				-120		volts	
Peak RF Grid Voltage.		1	50	250		volts	
DC Plate Current DC Grid Current (Appro			15 45	140 45		ma ma	
Driving Power (Approx.			.1	10		watts	
Power Output (Approx.)			88	135		watts	
RF POWER AMPLIFIER				s C Tele	graph	y ^h	
Maximum Ratings, Absol	ute-Mo	aximum V					
DO DI ATE VOI TAGE		4.0	CCS	IC.		1.	
DC PLATE VOLTAGE DC GRID VOLTAGE			50 max.	1500 -200		volts	
DC PLATE CURRENT			75 max.		max.	ma	
DC GRID CURRENT			50 max.		max.	ma	
PLATE INPUT			75 max. 45 max.		max.	watts	
			45 max.	63	max.	watts	
Typical Operation:							
DC Plate Voltage		12	50	1500		volts	
DC Grid Voltage: J From a grid resistor	of:						
1100 ohms			50	-		volts	0
1750 ohms			-	-70		volts	

From a cathode resistor of:	
270 ohms50 -	volts
330 ohms70	volts
Peak RF Grid Voltage 140 175	volts
DC Plate Current	ma
DC Grid Current (Approx.)9 45 40	ma
Driving Power (Approx.)9 5.7 7.1	watts
Power Output (Approx.) 135 200	watts
SELF-RECTIFYING AMPLIFIER ^k — Class C	
Maximum CCS Ratings, Absolute-Maximum Values:	
	2.
AC PLATE VOLTAGE (RMS) 1750 max.	volts
DC GRID VOLTAGE125 max.	volts
DC PLATE CURRENT 65 max.	ma
DC GRID CURRENT 25 max.	ma
PLATE INPUT 125 max.	watts
PLATE DISSIPATION 45 max.	watts
Typical Operation in Push-Pull Circuit at 27 Mc:	
Values are for 2 tubes	
AC Plate Voltage (RMS) 1750	volts
DC Grid Voltage: f, m	
From a grid resistor of:	
	wol+c
	volts
DC Plate Current	ma
DC Grid Current (Approx.) 46	ma
Driving Power (Approx.)	watts
Power Output (Approx.) 175	watts
Useful Power Output (Approx.)-	
75% circuit efficiency 130	watts
AMPLIFIER ^k — Class C	
With Separate, Rectified, Unfiltered,	
Single-Phase, Full-Wave Plate Supply	
Maximum CCS Ratings, Absolute-Maximum Values:	
DC PLATE VOLTAGE	volts
DC GRID VOLTAGE125 max.	volts
DC PLATE CURRENT	ma
DC GRID CURRENT	ma
PLATE INPUT 175 max.	watts
PLATE DISSIPATION 45 max.	watts
Typical Operation:	
DC Plate Voltage	volts
DC Grid Voltage: f, m	
From a grid resistor of:	
1400 ohms	volts
DC Plate Current	ma
DC Grid Current (Approx.)	ma
Driving Power (Approx.) $^{\mathbf{k}}$	watts
Power Output (Approx.)	watts
Tomor output (Approx./	marts.

- LINEAR RF POWER AMPLIFI Single-Sideband Suppressed		
Maximum Ratings, Absolute-Maximum V		
naximam natinge, neservice naximam ;	CCS ICAS	
DC PLATE CURRENT:	1250 max. 1500 max.	volts
MaxSignal (Single-Tone) or Peak-Envelope (Two-Tone) DC GRID CURRENT DC PLATE INPUT: MaxSignal (Single-Tone) or Peak-Envelope (Two-Tone)	165 max. 235 max.	
PLATE DISSIPATION	45 max. 65 max.	watts
Typical Operation with "Single-Tone	" Modulation: q	
DC Plate Voltage	130 157 30 30 78 88 7 8 90 90	volts volts ma ohms ma ma volts watts
(Approx.)	120 ^t 160 ^t	watts
Typical Operation with "Two-Tone" M	odulation at 30 Mc:	
DC Plate Voltage	0 -4.5 25 16	volts volts ma ohms
Peak-Envelope	130 157 91 110 20 20	ma ma ma
(Approx.)s. Output-Circuit Efficiency (Approx.). Distortion Products Level:	7 8 90 90	watts %
Third order	-26 -25 -32 -30	db db
Peak-Envelope	120 ^t 160 ^t 80 ^t	watts watts
CHAPACTEDISTICS DANGE VALUES	FOR FOULDMENT DESIGN	

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Filament Current	1	3.75	4.25	amp
Amplification Factor	1,2	144	176	
Grid-Plate Capacitance	_	4.9	6.3	pf
Grid-Filament Capacitance			6.9	pf
		→ India	cates a	change.

Plate-Filament Capacitance.		÷	×	-	0.52	0.88	pf
Plate Current						36	ma
Grid Current					25	85	ma
Useful Power Output				1,5	160	_	watts 🕶

Note 1: With dc filament voltage of 6.3 volts.

Note 2: With dc plate current of 20 ma, and dc grid voltage of -1 volt.

Note 3: With dc plate voltage of 2000 volts and dc grid voltage of -2 volts.

With dc plate voltage of 200 volts and dc grid voltage of +50 volts. Note 4.

With dc plate voltage of 1500 volts; dc plate current of 175 ma; dc grid current of 34 to 50 ma; grid resistor of 3500 \pm 10% ohms; and frequency of 15 Mc. Note 5:

a Continuous Commercial Service.

b Intermittent Commercial and Amateur Service.

c Averaged over any audio-frequency cycle of sine-wave form.

 $oldsymbol{\mathsf{d}}$ When two or more tubes are used precautions should be taken to balance the plate currents.

e For ac filament supply.

 ${\sf f}$ Obtained by grid resistor of value shown or by partial self-bias methods.

For effect of load resistance on grid current and driving power, refer to TUBE RATINGS — Grid Current and Driving Power in the General Section.

Key-down conditions pertube without modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.

 $^{
m J}$ Obtained from fixed supply, by grid resistor, by cathode resistor, or by combination methods.

k The B11A is not recommended for oscillator service in applications involving wide variations in load. For such applications, the 812A with its low amplification factor is preferred because of its ability to oscillate over a wide range of load variation.

The B11A can be blased by any convenient method. However, the use of a grid resistor is preferred because the blas is automatically adjusted as the load on the circuit varies. In those applications, such as are encountered in therapeutic equipment, where grid current and grid voltage may vary widely because of fluctuating loads, it is important to design equipment so that the maximum grid-current and grid-voltage ratings are never exceeded for any load.

n From a self-rectifying driver.

P From a driver with a rectified, unfiltered, single-phase, full-wave plate supply.

"Single-Tone" operation refers to that class of amplifier service in which the input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-Sideband suppressedcarrier system when a single audio frequency of constant amplitude applied to the input of the system.

r Obtained preferably from a separate, well-regulated supply.

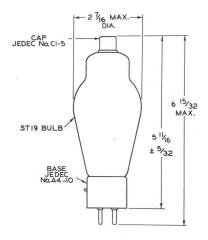
S Driver power output represents circuit losses and is the actual power measured at input to the grid circuit. The actual power required depends on the operating frequency and the circuit used.

t This value of useful power is measured at load of output circuit having indicated efficiency.

"Two-Tone Modulation" operation refers to that class of amplifier service in which the input consists of two equal monofrequency rf signals having constant amplitude. These signals are produced in a single-sideband suppressed-carrier system when two equal-and-constant amplitude audio frequencies are applied to the input of the system.

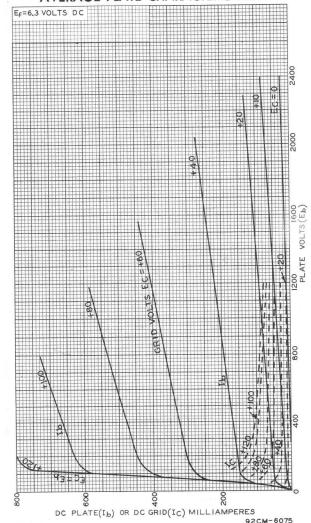
Referenced to either of the two tones and without the use of feedback to enhance linearity.

OPERATING CONSIDERATIONS


Plate shows no color when tube is operated at maximum CCS ratings, and shows a barely perceptible red color at maximum ICAS ratings.

- Indicates a change.

MAXIMUM RATINGS vs OPERATING FREQUENCY


	The state of the s	SIBLE PERCENTAGE OLTAGE & PLATE INPUT		
FREQUENCY TELEPHONY		TELEGRAPHY		
Mc	Class C Plate- Modulated	Class C		
30	100	100		
60	89	89		
80	70	70		
100	55	55		

92CS-6905R2

ALL DIMENSIONS IN INCHES

AVERAGE PLATE CHARACTERISTICS

OPERATION CHARACTERISTICS

E = 6.3 VOLTS AC FOR 811A'S & 2.5 VOLTS AC FOR 2A3's INPUT: CLASS ABI-TWO TYPE 2A3's; PLATE-SUPPLY VOLTS = 360; CATHODE - BIAS RESISTOR(R1) = 780 OHMS; BYPASS CAPACITOR(C1)=80 LF 1/2 SEC. OUTPUT: CLASS B-TWO TYPE BIIA'S; PLATE-SUPPLY VOLTS (Ebb)=1250; DC GRID VOLTS=0; PLATE - TO -PLATE LOAD = 12 400 OHMS TYPE BIIA TYPE 2A3 TYPE TYPE 2A3 BIIA Ó - B + 360V +Ebb 300# 60 -PERCENT 50 POWER OUTPUT - WATTS DC PLATE MILLIAMPERES 200 40 -NOIT MILLIAMPERE DISTOR 150 30 TOTAL HARMONIC GRID 20 10 30 60 INPUT SIGNAL (Eq)PER TUBE-RMS VOLTS

92CM-7138

OPERATION CHARACTERISTICS

E.==6.3 VOLTS AC FOR BIIA'S & 2.5 VOLTS AC FOR 2A3'S CIRCUIT ARRANGEMENT: SAME AS ON DWG.92CM-7138 UNDER TYPE BIIA

UNDER TYPE 81IA

INPUT: CLASS ABI-TWO TYPE 2A3's;PLATE - SUPPLY

VOLTS = 360; CATHODE - BIAS RESISTOR (R1)=780


OHMS; BYPASS CAPACITOR(C1)=80 JF

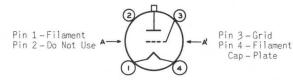
INTERSTAGE TRANSFORMER (T):

VOLTAGE RATIO PRIMARY = 6

OUTPUT: CLASS B-TWO TYPE 811A'S; PLATE-SUPPLY VOLTS

(Ebb)=1500; DC GRID VOLTS = -4.5; PLATE-TOPLATE LOAD=12400 OHMS

92CM-7139


森科县

difficult

- NG

Power Triode

GENERAL DATA
Electrical:
Filament, Thoriated Tungsten: Voltage (AC or DC)
Grid to plate 5.5 pf Grid to filament 5.4 pf Plate to filament 0.77 pf
Mechanical:
Operating Position Vertical, base down; or Horizontal, pins 1 and 4 in vertical plane
Maximum Overall Length. 6-15/32" Seated Length 5-11/16" ± 5/32" Maximum Diameter 2-7/16" Weight 2.7 oz Bulb ST19 Cap Medium (JEDEC No.C1-5) Base Medium-Shell Small 4-Pin Micanol with Bayonet (JEDEC No.A4-10)
Basing Designation for BOTTOM VIEW

AA'=PLANE OF ELECTODES

AF POWER AMPLIFIER & MODULATOR - Class B

Maximum	Ratings,	Absolute-Maximum	Values:

		CCS	ICAS	
	DC PLATE VOLTAGE	1250 max.	1500 max.	volts
	MAXSIGNAL DC PLATE CURRENT* .	175 max.	175 max.	ma
1	MAXSIGNAL PLATE INPUT*	165 max.	235 max.	watts
7	PLATE DISSIPATION*	45 max.	65 max.	watts
	Typical Operation:			

Values ar	e for	2 t.	ubes
-----------	-------	------	------

	1	2 .			
	DC Plate Voltage DC Grid Voltage*		1250 -40	1500 -48	volts
	be alla voltager	•		-40	VOILS
18.	Peak AF Grid-to-Grid Voltage.		225	270	volts
	Zero-Signal DC Plate Current.		22	28	ma
	•				

Averaged over any audio-frequency cycle of sine-wave form.

*. **: See next page.

Indicat - Indicates a change.

	ccs.	ICAS ••		
MaxSignal DC Plate Current	260	310	ma	
Effective Load Resistance (plate-to-plate)	12200	13200	ohms	
Max.—Signal Driving Power (Approx.)	3.5	5	watts	
Max,-Signal Power Output (Approx.)	235	340	watts	
PLATE-MODULATED RF POWER AMPL	IFIER — Cla	ass C Teleph	ony	
Carrier conditions with a maximum modul				
Maximum Ratings, Absolute-Maximu				
DC PLATE VOLTAGE. DC GRID VOLTAGE. DC PLATE CURRENT. DC GRID CURRENT.	1000 max. -200 max. 125 max. 35 max.	1250 max. -200 max. 150 max. 35 max.	volts volts ma ma	0
PLATE INPUT	115 max. 30 max.	175 max. 45 max.	watts watts	
Typical Operation:				
DC Plate Voltage	1000	1250	volts	
DC Grid Voltage	{-110 {3400	-115 3300	volts	
Peak RF Grid Voltage. DC Plate Current. DC Grid Current (Approx.) Driving Power (Approx.) Power Output (Approx.).	220 115 33 6.6 85	240 140 35 7.6 130	volts ma ma watts watts	
RF POWER AMPLIFIER & OSCILLA				
Key-down conditions per tu	ibe without 1	modulation	ı	
Maximum Ratings, Absolute-Maximu	ım Values:			
	ccs	ICAS ••		
DC PLATE VOLTAGE DC GRID VOLTAGE DC PLATE CURRENT DC GRID CURRENT PLATE INPUT PLATE DISSIPATION	1250 max. -200 max. 175 max. 35 max. 175 max. 45 max.	1500 max. -200 max. 175 max. 35 max. 260 max. 65 max.	volts volts ma ma watts watts	
Typical Operation:				
DC Plate Voltage	1250 (-90	1500 -120	volts volts	
DC Grid Voltage	3000 530 200	4000 590 240	ohms ohms volts	
DC Plate Current	140 30 5.4 130	173 30 6.5 190	ma ma watts watts	0

• , •• , # , • , ♣ , □ : See next page.

8I2-A POWER TRIODE

	SELF-RECTIFYING	OSCILLATOR	or	AMPLIFIER -	- Class C
--	-----------------	------------	----	-------------	-----------

1			
	Maximum Ratings, Absolute Values:	ccs•	
-	AC PLATE VOLTAGE (RMS)	1750 max.	volts
h	DC GRID VOLTAGE	-125 max.	volts
9		75 max.	ma
	DC PLATE CURRENT	20 max.	ma
	DC GRID CURRENT		
	PLATE INPUT	145 max.	
	PLATE DISSIPATION	45 max.	watts
	Typical Operation in Push-Pull Circuit at 27	Mc.:	
	Values are for 2 tubes		
	AC Plate Voltage (RMS)	1740	volts
	Grid Resistor●	3500	ohms
	DC Plate Current	150	ma
	DC Grid Current (at full load)	29	ma
	Driving Power (Approx.)▲	12	watts
	Power Output (Approx.)	200	watts
	Useful Power Output (Approx.)-		
		150	watts
	AMPLIFIER or OSCILLATOR - Clas	s C	
	With Separate, Rectified, Unfiltered, Sin Full-Wave Plate Subply	igie-rhase,	
	Full-wave Flate Supply		
1	Maximum Ratings, Absolute Values:		
		ccs•	
	DC PLATE VOLTAGE	1125 max.	volts
	DC GRID VOLTAGE	-125 max.	volts
	DC PLATE CURRENT	160 max.	ma
	DC GRID CURRENT	32 max.	ma
n	PLATE INPUT§	175 max.	watts
7	PLATE DISSIPATION	45 max.	watts
	TEATE DISSIPATION	45 max.	watts
	Typical Operation:		
	DC Plate Voltage:	1125	volts
	Grid Resistor	2200	ohms
h	DC Plate Current	125	ma
7		-	watts
	Driving Power (Approx.) §§		
	Approx	135	watts
	Continuous Commercial Service.		
	Intermittent commercial and Amateur Service.		
	For ac illament suppry.		
ħ.	Obtained by grid resistor of value shown or by partie	al self-bias m	ethods.
	Intermittent Commercial and Amateur Service. # For ac filament supply.	135	watt ethods.

Obtained by grid resistor of value shown or by partial self-bias methods.
Obtained from a fixed supply, by grid resistor (3000, 4000) or by cathresistor (530,590).

□□, ♠, ♣, §, §§: See next page.

← Indicates a change.

- Modulation essentially negative may be used, if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.
- From a self-rectified driver.

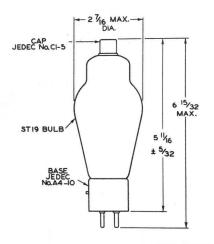
The B12-A can be biased by any convenient method, but the use of a grid resistor is preferred because the bias is automatically varied as the load on the circuit varies. In those applications where grid current and grid voltage may vary widely because of fluctuating loads, it is important to design equipment so that the maximum grid-current and grid-voltage ratings are never exceeded for any load. An approximate rule is to adjust the grid-current and grid-voltage values at full-load to one-half of the corresponding maximum values. This operating condition permits grid-current and grid-voltage values to rise from zero load to twice their full-load values, and usually provides adequate leeway.

- Power input to plate is 1.23 times the product of DC Plate Voltage and DC Plate Current.
- \S From a driver with a rectified, unfiltered, single-phase, full-wave plate supply.
- NOTE: When the 812-A is used in the final amplifier or a preceding stage of a transmitter designed for break-in operation and oscillator keying, a small amount of fixed bias must be used to maintain the plate current at a safe value. With a plate voltage of 1500 volts, a fixed bias of at least -45 volts should be used.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

and the state of t		Note	Min.	Max.	
Filament Current		1	3.75	4.25	amp
Amplification Factor	×	1,2	26	32	
Grid-Plate Capacitance			4.8	6.2	μμf
Grid-Filament Capacitance.			4.4	6.4	μμf
Plate-Filament Capacitance		-	0.58	0.96	μμf
Grid Current		1,3	17	39	ma
Plate Current			18	42	ma
Useful Power Output		1,5	140	-	watts
Note 1: DC filament voltage = 6.	. 3	volts.			

- Note 2: With dc grid voltage of -30 volts and plate voltage adjusted to give plate current of 30 ma.
- Note 3: With dc plate voltage of 200 volts and dc grid voltage of +50 volts.
- Note 4: With dc plate voltage of 1250 volts and dc grid voltage of -30 volts.
- Note 5: With dc plate voltage of 1500 volts, plate current of 175 ma., grid current of 34 to 50 ma., grid resistor of 3500 ± 10≸ ohms and frequency of 15 Mc.

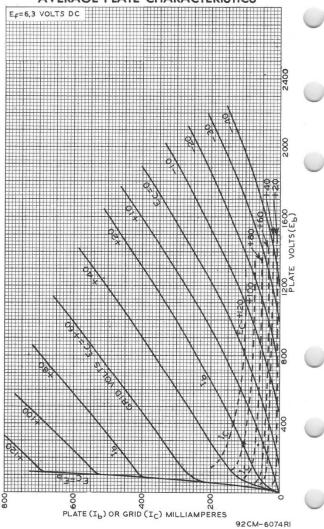

Data on operating frequencies for the 812-A are given on the sheet TRANS. TUBE RATINGS vs FREQUENCY

OPERATING CONSIDERATIONS

Plate shows no color when tube is operated at maximum CCS ratings, and shows a barely perceptible red color at maximum ICAS ratings.

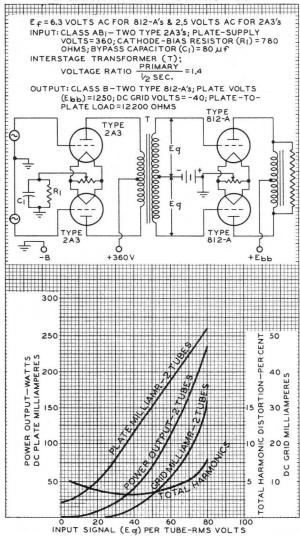
MAXIMUM RATINGS VS OPERATING FREQUENCY

III		IBLE PERCENTAGE LTAGE & PLATE INPUT	
OPERATING FREQUENCY	TELEPHONY	TELEGRAPHY Class C	
Mc	Class C Plate- Modwlated		
30	100	100	
60	89	89	
80	70	70	
100	55	55	



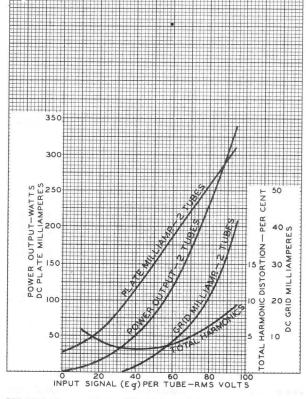
92CS-6905R2

ALL DIMENSIONS IN INCHES


AVERAGE PLATE CHARACTERISTICS

OPERATION CHARACTERISTICS

OPERATION CHARACTERISTICS


E + = 6.3 VOLTS AC FOR 812-A'S & 2,5 VOLTS AC FOR 2A3'S
CIRCUIT ARRANGEMENT: SAME AS ON DWG. 92CM-6938
UNDER TYPE 812-A

UNDER TYPE 812-A
INPUT: CLASS AB_I — TWO TYPE 2A3's; PLATE-SUPPLY
VOLTS=360; CATHODE-BIAS RESISTOR (R_I)=780
OHMS; BYPASS CAPACITOR (C_I)=80 µ f

INTERSTAGE TRANSFORMER (T):

VOLTAGE RATIO PRIMARY = 1.4

OUTPUT:CLASS B-TWO TYPE 812-A's; PLATE VOLTS
(Ebb)=1500; DC GRID VOLTS=-48; PLATE-TO-PLATE LOAD=13200 OHMS

0/

HALF-WAVE MERCURY-VAPOR RECTIFIER

		_
	GENERAL DATA	
	Electrical:	-
	Filament, Coated: Min. Av. Max.	1
	Voltage 2.25 2.5 2.75 ac volts	1
	Current at 2.5 volts 2 2.2 amp Heating time at rated	
	voltage	
	Peak Tube Voltage Drop	
	(Approx.) 15 - volts	
	Mechanical:	
	Operating Position Vertical, base down	
	Maximum Överall Length 4-11/16"	
	Seated Length	
	Maximum Diameter	
	Weight (Approx.)	1
	[Cap	
	Socket Johnson No.122-224, or equivalent Base	1
	Base Small-Shell Small 4-Pin (JETEC No.A4-5)	
	Basing Designation for BOTTOM VIEW 4F	
	Pin 1 - Filament 2 3 Pin 4 - Filament.	
	Pin 2 - No Connec- Cathode	
	tion Shield	
	Pin 3 – No Connec-	
	1 1011	
	Temperature Control:	
	Heating—When the ambient temperature is so low that the	
	normal rise of condensed-mercury temperature above the ambient temperature will not bring the condensed-mercury	
h	temperature up to the minimum value of the operating	
	ranges specified under Maximum Ratings, some form of	
	heat-conserving enclosure or auxiliary heater will be	4
	required.	
	Cooling-When the operating conditions are such that the	
	maximum value of the operating condensed-mercury-tem- perature range is exceeded, provision should be made	
-	for forced-air cooling sufficient to prevent exceeding	
	the maximum value.	
	Temperature Rise of Condensed Mercury to Equilibrium	
	Above Ambient Temperature (Approx.):	

←Indicates a change.

22 26

HALF-WAVE RECTIFIER

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range 20° to 60° C

PEAK INVERSE ANODE VOLTAGE 7500	max. volts
ANODE CURRENT:	
Peak 500	max. ma
	max. ma
Fault, for duration of 0.1	
second maximum 5	max. amp

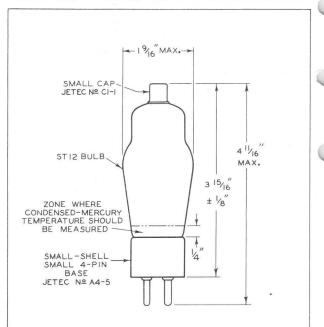
[#] Averaged over any interval of 30 seconds maximum.

OPERATING CONSIDERATIONS

Shields and rf filter circuits should be provided for the 816 if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.

→ Indicates a change.

0/6


HALF-WAVE MERCURY-VAPOR RECTIFIER

For Circuit Figures, see Front of this Section

For Circui	t Figur	es, see l	e Front of this Section							
CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES	MAX. DC OUTPUT KW TO FILTER Pdc						
Fig. I Half-Wave Single-Phase In-Phase Operation	5300 [©]	2400	0.125	0.3						
Fig. 2 Full-Wave Single-Phase In-Phase Operation	2600 [©]	2400	0.25	0.6						
Fig. 3 Series Single-Phase In-Phase Operation	5300 [©]	4800	0.25	1,2						
Fig. 4 Half-Wave Three-Phase In-Phase Operation	3000 [©]	3600	0.75	2.7						
Fig. 5 Parallel Three-Phase Quadrature Operation	3000 ^D	3600	1.5	5.4						
Fig. 6 Series Three-Phase Quadrature Operation	3000 [©]	7200	0.75	5.4						
Fig. 7 Half-Wave Four-Phase Quadrature Operation	2600 ⁿ	3500	Resis- Induc- tive tive Load Load 0.45 0.5	Resis- Induc- tive tive Load Load 1.55 1.75						
Fig. 8 Half-Wave Six-Phase Quadrature Operation	2600 [©]	3600	Resis- Induc- tive tive Load Load 0.47 0.5	Resis- Induc- tive tive Load Load 1.7 1.8						

 $^{^\}square$ For maximum peak inverse anode voltage of 7500 volts and condensed-mercury-temperature range of 20 $^\circ$ to 60 $^\circ$ C.

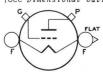
92CM - 6277R4

Power Triode

THORIATED-TUNGSTEN FILAMENT ZIRCONIUM-COATED ANODE RUGGED STRUCTURE POST TERMINALS

1250 WATTS CW INPUT (CCS) TO 30 Mc WITH NATURAL COOLING 1800 WATTS CW INPUT (CCS) TO 20 Mc WITH FORCED-AIR COOLING

GENERAL DATA


Electrical:

Filament, Thoriated Tungsten:		
Voltage (AC or DC)	10 ± 5% vo	lts
Current at heater volts = 10	10	amp
Amplification Factor, for grid volts		
- 10 and plato ma - 200	35	

Mechanical:

Moonan roars																					
Operating Position.	٠	٠	٠			or	de	i ca	η;	-	Ho	ri:	zor	nta	al,	٧	vi	th	p	la	ne
Overall Length																					
Maximum Diameter																					
Bulb																				T;	36
Weight (Approx.)																			1	1	16
Terminal Connection	S	150	90	n.	· m	2 22	011	0 22 /	. 1	0	1+	1	10								

F-Filament G-Grid

P-Plate

Thermal:

Cooling:

Natural or forced air—depending on the operating conditions. Natural Cooling means that adequate free circulation of air around the tube is necessary. Forced-Air Cooling means that an air flow of 40 cfm from a 2"—diameter nozzle directed vertically on bulb between grid and plate seals is required to limit temperature between these seals to 145° C.

Fittings:

Johnson (E.F. Johnson Company, Waseca, Minn.) Assembly Cat. No.124-212 consisting of ceramic mounting for filament end and two heat-radiating connectors forgrid and plate terminals.

o, . *: See next page.

- Indicates a change.

AF POWER AMPLIFIER & MODULATOR - Class B

NATURAL COOLING

	LING			
	CCS'	ICA	S	
Maximum Ratings, Absolute-Maximum	Values			
DC PLATE VOLTAGE	3000 m 500 m 1125 m	ax. 3300 ax. 500 ax. 1300	max. ma max. watts	
Typical Operation with Natural Coo	ling:			
Values are for	2 tube	e s		
DC Grid Voltage*	-70 400 100 750 9500	3300 -80 440 100 780 10500 30 1900	volts volts volts ma ma ohms watts	
EARCED-AIR C				
FUNCED-AIR C	OOLING			
FORCED-AIR C	CCS'	ICA	S	
Maximum Ratings, Absolute-Maximum	ccs'		S	
Maximum Ratings, Absolute-Maximum DC PLATE VOLTAGE	CCS Values 4000 m 500 m 1600 m	: 4000 ax. 500 ax. 1800	max. volts max. ma max. watts	
Maximum Ratings, Absolute-Maximum DC PLATE VOLTAGE	CCS Values 4000 m 500 m 1600 m 400 m	: 4000 ax. 500 ax. 1800 ax. 450	max. volts max. ma max. watts	
Maximum Ratings, Absolute-Maximum DC PLATE VOLTAGE	CCS Values 4000 m 500 m 1600 m 400 m Coolin	: aax. 4000 aax. 500 aax. 1800 aax. 450	max. volts max. ma max. watts	
Maximum Ratings, Absolute-Maximum DC PLATE VOLTAGE	CCS Values 4000 m 500 m 1600 m 400 m Coolin	: aax. 4000 aax. 500 aax. 1800 aax. 450	max. volts max. ma max. watts	0
	DC PLATE VOLTAGE. MAX.—SIGNAL DC PLATE CURRENT* MAX.—SIGNAL PLATE INPUT*. PLATE DISSIPATION*. Typical Operation with Natural Coc Values are for DC Plate Voltage. DC Grid Voltage*. Peak AF Grid-to-Grid Voltage. Zero—Signal DC Plate Current. Max.—Signal DC Plate Current. Effective Load Resistance (Plate to plate). Max.—Signal Driving Power (Approx.) Max.—Signal Power Output (Approx.)	Maximum Ratings, Absolute-Maximum Values DC PLATE VOLTAGE	Maximum Ratings, Absolute-Maximum Values: 3000 max. 3300 DC PLATE VOLTAGE. 3000 max. 3300 MAXSIGNAL DC PLATE CURRENT* 500 max. 500 MAXSIGNAL PLATE INPUT* 1125 max. 1300 Typical Operation with Natural Cooling: Values are for 2 tubes DC Plate Voltage. 3000 3300 DC Grid Voltage* -70 -80 Peak AF Grid-to-Grid Voltage. 400 440 Zero-Signal DC Plate Current. 100 100 MaxSignal DC Plate Current. 750 780 Effective Load Resistance (Plate to plate). 9500 10500 MaxSignal Driving Power (Approx.) 20 30 MaxSignal Power Output (Approx.) 1650 1900	Maximum Ratings, Absolute-Maximum Values: DC PLATE VOLTAGE 3000 max. 3300 max. volts MAXSIGNAL DC PLATE CURRENT* . 500 max. 500 max. ma MAXSIGNAL PLATE INPUT* 1125 max. 1300 max. watts PLATE DISSIPATION* 300 max. 350 max. watts Typical Operation with Natural Cooling: Values are for 2 tubes DC Plate Voltage*

^{*} Averaged over any audio-frequency cycle of sine-wave form.

•,••,#: See next page.

833-A

033

ICAS ...

POWER TRIODE

RF POWER	AMPLIFIER	-	Class	В	Telephony	
----------	-----------	---	-------	---	-----------	--

Carrier conditions per tube for use with a max. modulation factor of 1.0

NATURAL COOLING

			CCS	
Mavimum	Patinge	Abaaluta	Valuac:	

DC PLATE VOLTAGE.			3000	max.	3300	max.	volts
DC PLATE CURRENT.			300	max.	300	max.	ma
PLATE INPUT			450	max.	525	max.	watts
PLATE DISSIPATION			300	max.	350	max.	watts

Typical Operation with Natural Cooling:

	DC Plate Voltage	3000	3300	volts
,	DC Grid Voltage#	-70	-100	volts
	Peak RF Grid Voltage	90	110	volts
	DC Plate Current	150	150	ma
	DC Grid Current (Approx.)	2	2	ma
	Driving Power (Approx.).	10	11	watts
	Power Output (Approx.)	150	200	watts

FORCED-AIR COOLING

	CCS	ICAS
N		

Maximum Ratings, Absolute Values:

DC PLATE VOLTAGE.				max.	4000	max.	volts
DC PLATE CURRENT.			300	max.	300	max.	ma
PLATE INPUT			600	max.	675	max.	watts
PLATE DISSIPATION			400	max.	450	max.	watts

Typical Operation with Forced-Air Cooling:

	DC Plate Voltage	4000	4000	volts
	DC Grid Voltage#	-120	-120	volts
h	Peak RF Grid Voltage	120	130	volts
	DC Plate Current	150	150	ma
	DC Grid Current (Approx.)	2	3	ma
	Driving Power (Approx.).	14	21	watts
	Power Output (Approx.)	225	250	watts

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with a max. modulation factor of 1.0 NATURAL COOLING

ccs

Maximum Ratings, Absolute Values:

DC	PLATE VOLTAGE.			2500	max.	3000	max.	volts
DC	GRID VOLTAGE .			 -500	max.	-500	max.	volts
Inc	PLATE CURRENT			400	may	400	may.	ma

[#] For ac filament supply.

At crest of audio-frequency cycle with modulation factor of 1.0.

POWER TRIODE

properties and the	ccs	ICAS	
DC GRID CURRENT	100 max.	100 max.	ma
PLATE INPUT	835 max.	1000 max.	watts
PLATE DISSIPATION	200 max.	250 max.	watts
Typical Operation with Natura	l Cooling:		
DC Plate Voltage	2500	3000	volts
DC Grid Voltage	-300	-240	volts
From a grid resistor of .	4000	3400	ohms
Peak RF Grid Voltage	460	410	volts
DC Plate Current	335	335	ma
DC Grid Current (Approx.).	75	70	ma
Driving Power (Approx.)⊕	30	26	watts
Power Output (Approx.)	635	800	watts
FORCED-A	IR COOLING		
	ccs	ICAS	
Maximum Ratings, Absolute Valu	les:		
DC PLATE VOLTAGE	3000 max.	4000 max.	volts
DC GRID-VOLTAGE	-500 max.	-500 max.	volts
DC PLATE CURRENT	450 max.	450 max.	ma
DC GRID CURRENT	100 max.	100 max.	ma
PLATE INPUT	1250 max.	1800 max. 350 max.	watts watts
	270 max.		Walls
Typical Operation with Forced-			
DC Plate Voltage	3000	4000	volts
DC Grid Voltage	-300	-325	volts
From a grid resistor of .	3600	3600	ohms
Peak RF Grid Voltage	490	520	volts
DC Plate Current	415	450	ma
DC Grid Current (Approx.).	85	90	watts
Driving Power (Approx.) ●	37 1000	1500	watts
Power Output (Approx.)	1000	1300	waits

RF POWER AMPLIFIER & OSCILLATOR--Class C Telegraphy and RF POWER AMPLIFIER--Class C FM Telephony NATURAL COOLING

ccs ICAS

Maximum Ratings, Absolute Values:

 DC PLATE VOLTAGE.
 3000 max.
 3300 max.
 volts

 DC GRID VOLTAGE.
 -500 max.
 -500 max.
 volts

 DC PLATE CURRENT.
 500 max.
 500 max.
 max.

Obtained by grid resistor, or from a combination of grid resistor with either fixed supply or cathode resistor.

OD Rey-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

• ,•• ,• : See next page.

333-A

833.4

POWER TRIODE

					CC	S.	ICA	S	
DC GRID	CURRENT .			13	100	max.	1 100	max.	m
PLATE IN	NPUT	- 10	7.74	1		max.	1500	max.	watt
	ISSIPATION					max.	350	max.	watt
Typical	Operation	wit	h Na	atura	al Cool	ing:			
	e Voltage.				2250	3000	13000	3000	volt
	Voltage.			No.	-125	-200	-160	-155	volt
	a grid				-125	-200	100	100	VO1 C
	istor of .		20 10		1500	3600	2300	2150	ohm
	a cathode		•		1000	2000	2,00	2200	0,,,,,
	istor of .				235	425	400	270	ohm
	Grid Volt			•	300		310	350	volt
					445	415		500	voi c
	e Current. Current				445	415	335	500	m
	ox.).				85	55	70	70	m
Driving					00	55	10	10	111
	ox.)				23	20	20	25	watt
Power O					2)	20	20	23	Wall
	ox.)				780	1000	800	1150	watt
Appro					700	1000	1 000	1150	Wate
			FOR	CED-	AIR COO				
					CC	'S°	ICA	S	
Maximum	Ratings,	Abso	lut	e Va	lues:				
DC PLATI	E VOLTAGE.				4000	max.	4000	max.	volt
	VOLTAGE .				-500	max.	-500	max.	volt
	E CURRENT.		•		-	max.	-	max.	m
						max.		max.	
	CURRENT .		•						m
	NPUT					max.		max.	watt
PLATE D	ISSIPATION				400	max.	450	max.	watt
Typical	Operation	wit	h F	orce	d-Air C	ooling	j :		
	e Voltage.				4000		4000		volt
DC Grid	Voltage⁴⁴				-200		-225		volt
From	a grid								
res	istor of .				2650		2400		ohm
From	a cathode								
res	istor of .				380		380		ohm
0 1 05	Grid Volt	age.			375		415		volt
reak Kr	e Current.				450		500		m
					75		95		m
DC Plat			i m	- 100	26		35		watt
DC Plate		nroy	10						
DC Plate DC Grid Driving	Power (Ap			• •	1440		1600		watt

Subject to wide variation depending on the impedance of the load circuit, high-impedance load circuits require more grid current and driving power to obtain the desired output. Low-impedance load circuits need less grid current and driving power, but plate-circuit efficiency is sacrificed. The driver stage should have good regulation and should be capable of delivering considerably more than the required driving power.

→ Indicates a change.

DATA 3

 $^{^{}f AA}$ Obtained from fixed supply, by grid resistor, by cathode resistor, or by combination methods.

[•] See next page.

POWER TRIODE

NOTE: When the 833-A is used in the final amplifier or a preceding stage of a transmitter designed forbreak-in operation and oscillator keying, a small amount offixed-bias must be used to maintain the plate current at a safe value. With a plate voltage of #000 volts, a fixed bias of at least -00 volts should be used.

SELF-RECTIFYING OSCILLATOR OR AMPLIFIER - Class C

-	ccs	ICAS ••		
Maximum Ratings, Absolute V	alues:			
AC PLATE VOLTAGE (RMS). DC GRID VOLTAGE. DC PLATE CURRENT. DC GRID CURRENT. PLATE INPUT** PLATE DISSIPATION	4250 max. -315 max. 250 max. 50 max. 1180 max. 300 max.	4650 max. -315 max. 250 max. 50 max. 1290 max. 350 max.	volts volts ma ma watts watts	
Typical Operation with Natu	ral Cooling:			
AC Plate Voltage (RMS) DC Grid Voltage From a grid resistor of DC Plate Current DC Grid Current (Approx.) ** Output-Circuit Ef-	4000 -80 2200 240 37 13	4400 -85 2400 240 36 13.5	volts volts ohms ma ma watts	
ficiency (Approx.) Useful Power Output (Approx.)	85 710 ⁻	85 800 ⁰	% watts	
FORCE	D-AIR COOLING			
The second secon		ccs*	3-1	
Maximum Ratings, Absolute 1	Values:			
AC PLATE VOLTAGE (RMS) DC GRID VOLTAGE DC PLATE CURRENT PLATE INPUT PLATE DISSIPATION		5650 max. -315 max. 250 max. 50 max. 1570 max. 400 max.	volts volts ma ma watts watts	
Typical Operation with Forc	ed-Air Cooling:			
DC Grid Current (Approx.). Driving Power (Approx.) **. Output-Circuit Efficiency (Useful Power Output (Approx	Approx.)	5300 -97 2700 240 35 14 85 975	volts volts ohms ma ma watts % watts	
Power input to plate is 1.11 (rms) and the dc plate curren	t times the product	of ac plate	voltage	

10-56

From a self-rectified driver.

▶ , □: See next page.

→ Indicates a change.

DATA 3

833-A

POWER TRIODE

AMPLIFIER or OSCILLATOR - Class C

With Separate, Rectified, Unfiltered, Single-Phase, Full-Wave Plate Supply

NATURAL COOLING

			1
	CCS	ICAS ••	
Maximum Ratings, Absolute Value	es:		
DC PLATE VOLTAGE. DC GRID VOLTAGE. DC PLATE CURRENT. DC GRID CURRENT. PLATE INPUT†. PLATE DISSIPATION.	2700 max. -450 max. 500 max. 100 max. 1250 max. 300 max.	-450 max. 500 max. 100 max. 1500 max.	volts volts ma ma watts watts
Typical Operation with Natural	Cooling:		
DC Plate Voltage DC Grid Voltage From a grid resistor of . DC Plate Current. DC Grid Current (Approx.) Driving Power (Approx.)†† Output-Circuit Ef- ficiency (Approx.).	2500 -130 1560 450 83 27	2750 -135 1770 450 76 25	volts volts ohms ma ma watts
Useful Power Output			
(Approx.)	935 ⁰	1020□	watts -
FORCED-AI	R COOLING		
		ccs•	
Maximum Ratings, Absolute Value	s:		
DC PLATE VOLTAGE. DC GRID VOLTAGE. DC PLATE CURRENT. DC GRID CURRENT PLATE INPUT† PLATE DISSIPATION		3600 max. -450 max. 500 max. 100 max. 1800 max. 400 max.	volts volts ma ma watts watts
Typical Operation with Forced-A	ir Coolin	g:	
DC Plate Voltage	· · · · · · · · · · · · · · · · · · ·	3300 -155 2100 450 73 26 85	volts volts ohms ma watts
Useful Power Output (Approx.) .	• •	1240 [□]	watts -
Continuous Commercial Service. Intermittent Commercial and Amateu Power input to plate is 1.23 tim times dc plate current. This value of useful power is measu the indicated efficiency.	es the prod	duct of dc plate of output circuit	voltage having

· . ++ . 2-59

See next page.

- Indicates a change.

POWER TRIODE

CHARACTERISTICS	RANGE	VALUES	FOR EQUIP	MENT DESIGN	
		Note	Min.	Max.	
Filament Current		1	9.4	10.6	атр
Direct Interelectrode Capacitances:					
Grid to plate		_	5.5	7.1	μμf
Grid to filament		-	10.1	14.5	μμf
Plate to filament .			6.4	10.6	μμf
Amplification Factor.		2	31.5	38.5	
Grid Current		3	160	380	ma
Plate Current (1)		3	490	810	ma
Plate Current (2)		4	60	140	ma
Power Output		5	1150	-	watts

Note 1: With 10 volts dc on filament.

Note 2: With 10 volts ac on filament, dc grid voltage of -10 volts, and dc plate voltage adjusted to give dc plate current of 200 ma.

Note 3: With 10 volts ac on filament, dc plate voltage of 100 volts, and dc grid voltage of +100 volts.

Note 4: With 10 volts ac on filament, dc plate voltage of 2500 volts, and dc grid voltage of -50 volts.

Note 5: In self-excited oscillator circuit, and with 10 volts ac on filament, dc plate voltage of 4000 volts, dc plate current of 450 ma., dc grid current of 80 to 120 ma., grid resistor of 5000 ohms, and frequency of 30 Mc.

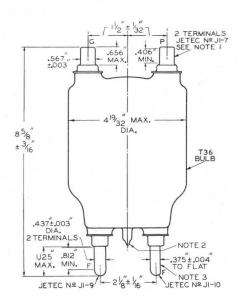
 Obtained from a grid resistor of the value shown or from a combination of grid resistor and cathode resistor. Fixed bias operation is not recommended. The bias resistor should not be bypassed for the plate and grid voltage supply frequency.

† From a driver with a rectified, unfiltered, single-phase, full wave plate supply.

RATINGS VS FREQUENCY WITH NATURAL COOLING

FREQUENCY	30	50	75	Mc
MAXIMUM PERMISSIBLE PERCENTAGE of MAXIMUM RATED PLATE VOLTAGE and PLATE INPUT:				
Class B telephony Class C telephony Class C telegraphy	100 100 100	98 90 90	94 72 72	% % %

RATINGS VS FREQUENCY WITH FORCED-AIR COOLING


FREQUENCY	20	50	75	Mc
MAXIMUM PERMISSIBLE PERCENTAGE of MAXIMUM RATED PLATE VOLTAGE and PLATE INPUT:				
Class B telephony Class C telephony Class C telegraphy	100 100 100	97 83 83	93 65 65	% %

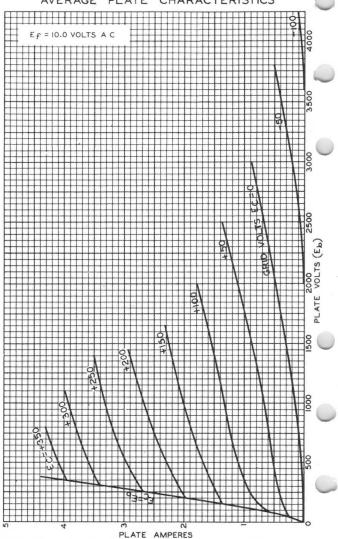
833-A

8331 A

POWER TRIODE

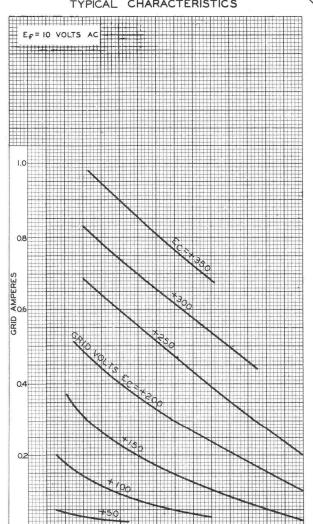
92CM-4786R5

NOTE I: THE ANGLE FORMED ON /A PLANE NORMAL TO THE TUBE AXIS BY THE INTERSECTION OF THE PLANE DETERMINED BY THE AXIS OF THE FILAMENT TERMINALS WITH THE PLANE DETERMINED BY THE AXIS OF THE GRID AND PLATE TERMINALS IS NOT MORE THAN 50.

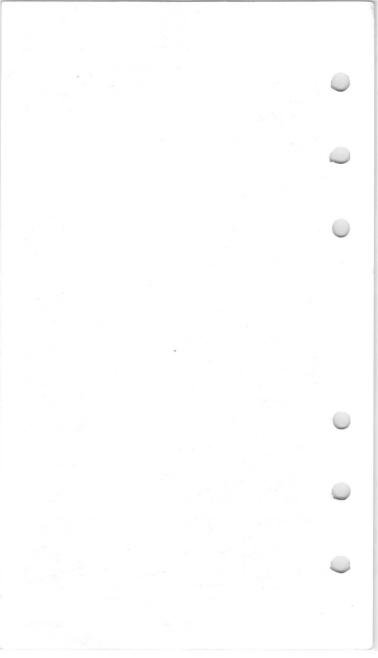

NOTE 2: THE MOUNTING SHOULD PROVIDE LIBERAL CLEARANCE FOR THIS TIP.

NOTE 3: THE PLANE THROUGH THE FLAT SIDE OF THE FILAMENT TERMINAL IS 90° $\pm7^\circ$ WITH RESPECT TO THE PLANE THROUGH THE AXES OF THE FILAMENT TERMINALS.

833'A



AVERAGE PLATE CHARACTERISTICS



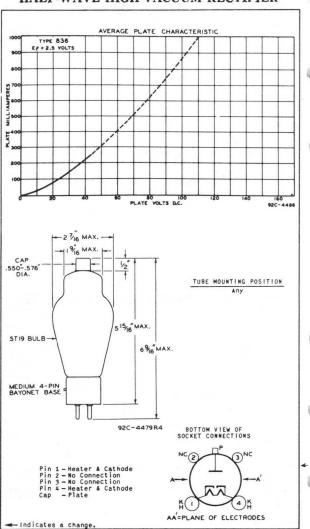
TYPICAL CHARACTERISTICS

92CM-6197

VOLTS

R-F POWER AMPLIFIER, A-F POWER AMPLIFIER, MODULATOR

A-F FUN	CR AMITLI	rier, Moi	DULAI	UK
Filament	Thoriated	Tungsten	\wedge	
Voltage	1		a-c or d-	s volts
Current	3,2	25	11/1	amp
Amplification F	actor < 1	2	1110	1/
Direct Interele	ctrode Capacitan	ides:	1110	>-
Grid to Plate	() 9.2	5	110	μμf
Grid to Filam		6	10	иµf
Plate to Fila		50		µµf
Maximum Overal	Length	1110	~	7-7/8"
Maximum Diamete	Eldidel .	1///		2-5/16"
Bulb	VIV /	11.		T-18
Base	U. (V)	11	lumbo	4-Pin
RCA Socket (Typ	a LITZ541_AI	\\ // _{\\\\}		No.9936
MON COCKET (1)P	c o / out til		OLOCK I	10.33,0
For additional	data, see Type ;	The The	and the	ROE OFE
	except for inter			
raentitegi	except jor since	exections out	ucitunces	•
Data on onbrate	ng frequencies	for the 835	are diven	on the
dhae	TRANS. TUBE RA	TINGS VS FREN	LIENCY	OII THE
() Jaliet	E TRANS. TODE IN	(I MOS AS LIKEA	OLINCI.	
1/1/1/				
11				


Heater Coated Unipotentia	
Voltage 2.5 Current 5.0	a—c volts
Maximum Overall Length	amp. 6-9/16'
Maximum Diameter	2-7/16'
Maximum Diameter Bulb	2-7716 ST-19
Cap	Mediu
Base	
RCA Socket (Type UR-542-A)	Medium 4-Pin, Bayone Stock No.993
Maximum Ratings Are A	Absolute Values
MAXIMUM RAT	TINGS
Peak Inverse Plate Voltage	5000 max. volts
Peak Plate Current	1.0 max. amp.
Average Plate Current	0.25 max. amp.
* The cathodes should be allowed to come fore plate current is drawn from the delay is approximately 40 seconds.	he tube. For average conditio
The 836 has two separate cathodes ead respective heater. Plate circuit return tap of the heater transformer.	ch of which is connected to its n should be made to the center-

Indicates a change.

HALF-WAVE HIGH VACUUM RECTIFIER

Dec. 1, 1942

657

HALF-WAVE MERCURY-VAPOR RECTIFIER

	GENERAL DATA
	Electrical:
	Filamentary Cathode, Coated: Voltage
	Mechanical:
	Terminal Connections:
	F1 - Filament (Insulated) F2 - Filament, Cathode Shield, Shell (Anode Return) Cap - Anode
	Mounting Position Vertical with filament end down
	Maximum Overall Length 29-7/8" (Including flexible leads) 19-1/2" ± 3/8" Seated Length 7-1/8" Maximum Diameter 7-1/8" Weight (Approx.) 4 lbs Bulb GT-56 Cap Skirted Large (JETEC No.C1-10) Base Terminal-Support Shell (JETEC No.F0-2) Temperature Control:
	Heating—When the ambient temperature is so low that the normal rise of condensed—mercury temperature above the ambient temperature will not bring the condensed—mercury temperature up to the minimum value of the operating ranges specified under Maximum Ratings, some form of heat-conserving enclosure or auxiliary heater will be required.
)	Cooling—When the operating conditions are such that the maximum value of the operating condensed—mercury temperature range is exceeded, provision should be made for forced—air cooling sufficient to prevent exceeding the maximum value.
	Temperature Rise of Condensed-Mercury to Equilibrium Above Ambient Temperature (Approx.):*
	No load
)	with filament volts = 4.75 and no heat-conserving enclosure.

- Indicates a change.

HALF-WAVE RECTIFIER

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury Temperature Range

I .	101	ubol eren	- nun	9 0	1
	25° to	60°C	30° to	40°C	
PEAK INVERSE ANODE VOLTAGE	10000	max	22000	max	volts
ANODE CURRENT:	. 10000	mari	22000	max.	10100
Peak		max.	40	max.	amp
Average**	. 10	max.	10	max.	amp
Fault, for dura-					
tion of 0.2	400	may	400	may	2000

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Filament Current	1		33	amp
Critical Anode Voltage	2	0.000	100	volts
Peak Tube Voltage Drop	3	-	25	volts

Note 1: With 5 volts rms on filament.

Note 2: With 4.75 volts rms on filament, and condensed-mercury temperature at 25°C, or above.

Note 3: With 5 volts rms on filament, condensed-mercury temperature of 350 ± 5°C, peak anode current of 100 amperes provided by half-cycle pulse from a c0-cps sine wave and recurring approximately once a second. Tube drop is measured by an oscilloscope connected between anode and center tap of filament transformer.

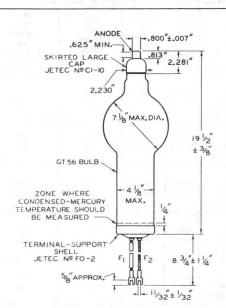
OPERATING CONSIDERATIONS

X-Ray Warning. X-rays are produced when the 857-8 is operated with a peak inverse voltage above 16000 volts (absolute value). These rays can constitute a health hazard unless the tube is adequately shielded for X-ray radiation. Although relatively simple shielding should prove adequate, make sure that it provides the required protection to the operator.

Shields and rf filter circuits should be provided for the 857-B if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.

** Averaged over any period of 30 seconds maximum.

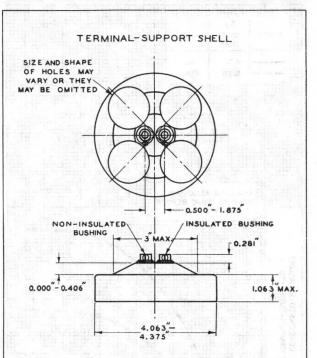
- Indicates a change.


For Circuit Figures, see Front of this Section

CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX- DC OUTPUT VOLTS TO FILTER Eav	5.37	c	K	C PUT W LTER
Fig. I Half-Wave Single-Phase In-Phase Operation	15400 [□] 7000 ▲	7000 3200	10 10		70 32	
Fig. 2 Full-Wave Single-Phase In-Phase Operation	7700 [□] 3500▲	7000 3200	2 2		140 64	
Fig. 3 Series Single-Phase In-Phase Operation	15400 [□] 7000 [▲]	14000 6400	2 2	0	280 128	
Fig. 4 Half-Wave Three-Phase In-Phase Operation	8900 [□] 4000 ▲	10500	30 30		315 144	
Fig. 5 Parallel Three-Phase Quadrature Operation	8900 [□] 4000 [▲]	10500 4800	60 60		630 288	
Fig. 6 Series Three-Phase Quadrature Operation	8900 [□] 4000▲	21000 9600	31		63 28	
Fig. 7 Half-Wave Four-Phase Quadrature Operation	7700 [□] 3500 [▲]	10100 4600	Resis- tive Load 36 36	Induc- tive Load 40 40	Resis- tive Load 364 166	Induc- tive Load 404 184
Fig. 8 Half-Wave Six-Phase Quadrature Operation	7700 [□] 3500 [♠]	10500 4800	Resis- tive Load 38 38	Induc- tive Load 40 40	Resis- tive Load 399 182	Induc- tive Load 420 192

D For maximum peak inverse anode voltage of 22000 volts and maximum average current of 10 amperes.

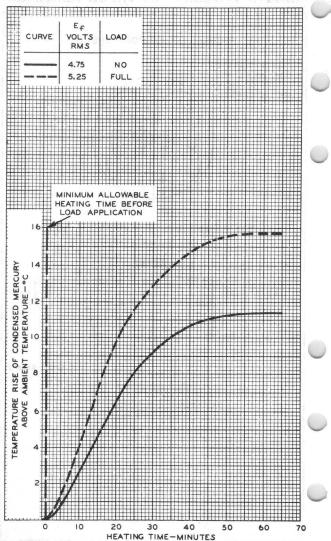
For maximum peak inverse anode voltage of 10000 volts and maximum average current of 10 amperes.


F1 = FILAMENT (INSULATED)
F2 = FILAMENT, CATHODE SHIELD,
AND SHELL (ANODE RETURN)

92CM-4649R3

857.6

HALF-WAVE MERCURY-VAPOR RECTIFIER


92CS-4653R2

JETEC No.FO-2 RCA No.3911

RATE OF RISE OF COND.- MERCURY TEMPERATURE

	GENERAL DATA
	Electrical:
	Filament, Coated:
	Min. Av. Max.
)	Voltage 2.38 2.5 2.62 ac volts Current at 2.5 volts 5 5.4 amp Heating time at
	rated voltage 15 sec Peak Tube Voltage Drop (Approx.) 15 - volts
	Mechanical: Operating Position Vertical, base down Maximum Overall Length 6-9/16" Maximum Overall Length 5-3/4" ± 3/16" Maximum Seated Length 2-7/16" Maximum Diameter 2-7/16" Weight (Approx.) 3 oz Bulb 512 Cap. Medium (JETEC No. C1-5) Socket Johnson No.123-209, or equivalent Base Medium-Shell Small 4-Pin with Bayonet (JETEC No. A4-10)
	Basing Designation for BOTTOM VIEW 4P
	Pin 1 - Filament Pin 2 - No Connection Pin 3 - No Connection Pin 4 - Filament Cathode Shield Cap - Anode
	Temperature Control:
	Heating—When the ambient temperature is so low that the normal rise of condensed—mercury temperature above the ambient temperature will not bring the condensed—mercury temperature up to the minimum value of the operating ranges specified under Maximum Ratings, some form of heat-conserving enclosure or auxiliary heater will be required.
	Cooling—When the operating conditions are such that the maximum value of the operating condensed—mercury—temperature range is exceeded, provision should be made for forced—air cooling sufficient to prevent exceeding the maximum value.
	Temperature Rise of Condensed Mercury to Equilibrium Above Ambient Temperature (Approx.): No load*
	* With 2.38 volts rms on filament, and no heat-conserving enclosure. A With 2.62 volts rms on filament, average anode current = 0.5 ampere, and no heat-conserving enclosure.

← Indicates a change.

DATA 1

866-A

HALF-WAVE MERCURY-VAPOR RECTIFIER

HALF-WAVE RECTIFIER

- Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range®

20° to 80° C 20° to 70° C 20° to 60° C

PEAK INVERSE

ANODE VOLTAGE. . 2500 max. 5000 max. 10000 max. volts

ANODE CURRENT:

2 max. 1 max. 0.25 max. Peak . 1 max. amp Average# 0.5 max. 0.25 max. amp

Fault, for duration of

0.1 second

maximum. . . . 20 max. 20 max. 20 max. amp

Operation at 400 ± 50 C is recommended.

Averaged over any interval of 30 seconds maximum.

OPERATING CONSIDERATIONS

Shields and rf filter circuits should be provided for the 866-A if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.

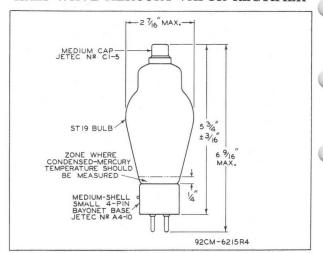
- Indicates a change.

866-A

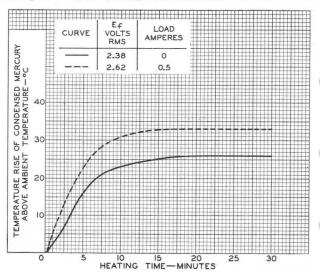
HALF-WAVE MERCURY-VAPOR RECTIFIER

For Circuit Figures, see Front of this Section

CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES		MAX. DC OUTPUT KW TO FILTER Pdc	
Fig. I Half-Wave Single-Phase In-Phase Operation	7000 [□] 3200 0.25 3500 1600 0.25 1700 800 0.5 3500 0.5 3500 0.5 3500 0.5 1700 1600 0.5 800 1		0.25		0	.8 .4 .4
Fig. 2 Full-Wave Single-Phase In-Phase Operation			Full-Wave 3500 5200 0.5 Single-Phase 900* 800 0.5		0.5	
Fig. 3 Series Single-Phase In-Phase Operation	7000 [□] 3500 [▲] 1700*	6400 3200 1600	0.5 0.5		3.2 1.6 1.6	
Fig. 4 Half-Wave Three-Phase In-Phase Operation	4000□ 2000▲ 1000*	4800 2400 1200	0.75 0.75 1.5 1.5 1.5		3.6 1.8 1.8 7.2 3.6 3.6	
Fig. 5 Parallel Three-Phase Quadrature Operation	4000 [□] 2000 [♠] 1000*	4800 2400 1200				
Fig. 6 Series Three-Phase Quadrature Operation	4000 [□] 2000 ^ 1000*	9600 4800 2400	0.	75 75 .5	3	.2 .6 .6
Fig. 7 Half-Wave Four-Phase Quadrature Operation	3500 [□] 1700 ^ 800*	4500 2300 1100	Resis- tive Load 0.91 0.91 1.82	Induc- tive Load 2	Resis- tive Load 4.05 2.07 1.98	Inductive Load 4.5 2.3 2.2
Fig. 8 Half-Wave Six-Phase Quadrature Operation	3500 [□] 1700 ≜ 800*	4800 2400 1200	Resis- tive Load 0.95 0.95	Induc- tive Load 	Resis- tive Load 4.6 2.3 2.28	Inductive Load 4.8 2.4 2.4


For maximum peak inverse anode voltage of 10000 volts, and condensedmercury-temperature range of 200 to 600 C.

866,A


For maximum peak inverse anode voltage of 5000 volts, and condensedmercury-temperature range of 20° to 70° C.

mercury-temperature range of 20 $^\circ$ to 70 $^\circ$ C. *For maximum peak inverse anode voltage of 2500 volts, and condensed-mercury-temperature range of 20 $^\circ$ to 80 $^\circ$ C.

RATE OF RISE OF CONDENSED-MERCURY TEMPERATURE

869-B

HALF-WAVE MERCURY-VAPOR RECTIFIER

Floatsianle	GENERAL DATA	
Electrical:	Contodo	
Filamentary Cathode,		ac volts
Current		amperes
Minimum Heating Ti		amperes
at Rated Volta		seconds
IPeak Tube Voltage	-g-	
Drop (Approx.)	15	volts
W	P	
Mechanical:		
Terminal Connections	5: F ₁	
4 = =:,		.1
F ₁ -Filament, Cathode Shield	SHIELD	ilament
(Anode Return)		node
(Allode Netarri)	FILS ON LEFT SIDE OF TUBE	
	FIIS ON LEFT SIDE OF TUBE TYPE MARKING ON BASE	
Mounting Position .	Vertical with filament	
Overall Length	14-1/	4" ± 3/16"
Maximum Diameter .		. 5-1/8"
Bulb		. GT-40
Cap		C No.C1-9
		A No.3905 No.A3-20
Base		A No.3502
Temperature Control:		A 1101/002
	ient temperature is so low that the no	mal rise
	d-mercury temperature above the ambient	
	ot bring the condensed-mercury temperat	
the minimum	value of the operating ranges specifi	ed under
Maximum Kati	ings, some form of heat-conserving enceater will be required.	osure or
4	Account to the state of the sta	
	perating conditions are such that the e operating condensed—mercury temperati	
value of the	d, provision should be made for fo	rced-air
cooling suff	ficient to prevent exceeding the maximu	m value.
	Condensed Mercury to Equilibrium emperature (Approx.):*	
No Load		oC
Full Load	20	oC
HALE WAVE	RECTIFIER-In-Phase Operation	
Maximum Ratings, Abso	plute Values: For supply frequency of 6	o cps
	Operating Condensed-Mercury Temperature Range	
30	0° to 60°C 30° to 50°C 30° to 40°C	
PEAK INVERSE		
ANODE VOLTAGE 10	0000 max. 15000 max. 20000 max.	volts
*, : See next page.		
NOV. 1. 1952	THE DER A RELIEF	DATA 1

869-B

HALF-WAVE MERCURY-VAPOR RECTIFIER

	Operating Condensed-Mercury Temperature Range						
	30° to 60°C	30° to 50°C	30° to 40°C				
ANODE CURRENT:				1			
Peak	10 max.	10 max.	10 max.	ampl			
Average**	2.5 max.	2.5 max.	2.5 max.	an			
Fault, for dura- tion of 0.1							
second max.	100 max.	100 max.	100 max.	amp			

HALF-WAVE RECTIFIER-Quadrature Operation **

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury Temperature Range 30° to 60°C 30° to 50°C 30° to 40°C

100 max.

100 max.

amp

PEAK INVERSE ANODE VOLTAGE 10000 max. 15000 max. 20000 max. volts ANODE CURRENT: 20 max. Peak 20 max. 10 max. amp Average** 5 max. 5 max. 2.5 max. amp Fault, for duration of 0.1

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

100 max.

			Note	Min.	Max.	
Filament Current			1	-	21	amp
Critical Anode Voltage			2	-	100	volts
Peak Tube Voltage Drop			3	-	17	volts

Note 1: With 5 volts rms on filament.

second max.

Note 2: With 4.75 volts rms on filament, and condensed-mercury temperature at 30°C.

Note 3: With 5 volts rms on filament, condensed-mercury temperature of 350±50°C, peak anode current of 50 amperes provided by half-cycle pulse from a 60-cps sine wave and recurring approximately once a second. Tube drop is measured by an oscilloscope connected between anode and center tap of filament transformer.

with filament volts = 4.75 and no heat-conserving enclosure.

Filament voltage in phase with anode voltage.

Filament voltage out of phase (60° to 120°) with anode voltage.

** Averaged over any period of 30 seconds maximum.

OPERATING NOTES

X-Ra, Warning. X-rays are produced when the 869-8 is operated with a peak inverse anode voltage above L6000-volts (absolute value). These rays can constitute a health hazard unless the tube is adequately shielded for x-ray radiation.

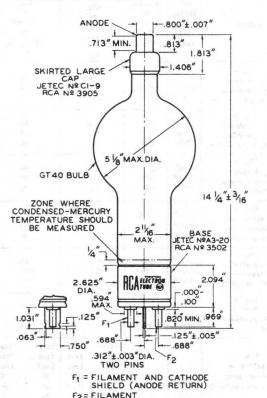
164

NOV. 1, 1952

869-B

CESIA HALF-WAVE MERCURY-VAPOR RECTIFIER

For Circuit Figures, see Front of this Section

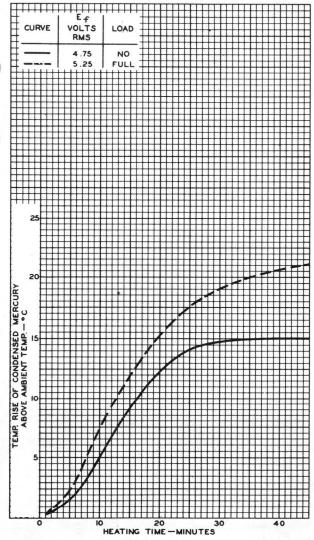

CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES	MAX. DC OUTPUT KW TO FILTER Pdc	
Fig. 1	- P.J		1992		
Half-Wave	14000 ^G	6300	2.5	16	
Single-Phase	10600▲	4700	2.5	12	
In-Phase Operation	7000*	3100	2.5	8	
Fig. 2	7000	6700	3		
Full-Wave	7000 ^D	6300	5.0	32	
Single-Phase	5300▲	4700	5.0	24	
In-Phase Operation	3500*	3100	5.0	16	
Fig. 3	14000 ^ロ	12700	5.0	64	
Series	10600▲	9500	5.0	48	
Single-Phase In-Phase Operation	7000*	6300	5.0	32	
Fig. 4			1	31403	
Half-Wave	8100	9500	7.5	72	
Three-Phase	6100▲	7100	7.5	54	
In-Phase Operation	4000*	4700	7.5	36	
Fig. 5	8100 ^a	9500	15.0	143	
Parallel	6100		30.0	0.000	
Three-Phase	4000*	7100 4700		215	
Quadrature Operation	4000	4/00	30.0	143	
Fig. 6	8100 ^D	19000	7.5	143	
Series Three-Phase	6100	14200	15.0	215	
Quadrature Operation	4000*	9500	15.0	143	
	3582		Resis- Induc-	Resis- Induc-	
Fig. 7		× 610 80	tive tive	tive tive	
Half-Wave	- 1	Ship	Load Load	Load Load	
Four-Phase	7000 ^D	9000	9.0 10.0	81 90	
Quadrature Operation	5300	6700	18.0 20.0	121 135	
	3500*	4500	18.0 20.0	81 90	
aruz ra -[MDS]			Resis- Induc-	Account and a second	
Fig. 8			tive tive	tive tive	
Half-Wave	-		Load Load	Load Load	
Six-Phase	7000°	9500	9.5 10.0	91 96	
Quadrature Operation	5300	7100	19.0 20.0	136 143	
	3500*	4700	19.0 20.0	91 96	

For maximum peak inverse anode voltage of 20000 volts, and condensed-mercury-temperature range of 30° to 40°C.

For maximum peak inverse anode voltage of 15000 volts, and condensed-mercury-temperature range of 300 to 500c.

^{*} For maximum peak inverse anode voltage of 10000 volts, and condensed-mercury-temperature range of 30 $^{\circ}$ to 60 $^{\circ}$ C. TUBE DEPARTMENT

F2 = FILAMENT


92CM-4330R4

869rb

869.10

RATE OF RISE OF COND.-MERCURY TEMPERATURE

872-A

65

HALF-WAVE MERCURY-VAPOR RECTIFIER

		G	EN	ER/	1L	DA	TA			
Electrical:										
Filament, Coated:							Min.	Av.	Max.	
Voltage										ac volts
Current at 5 volts Heating time at		٠			•		-	7.5	8	amp
rated voltage Peak Tube Voltage							30	1-	-	sec
Drop (Approx.)							-	10	-	volts
Mechanical:										
Operating Position .					×			.Vert	ical,	base down
Overall Length									8-1/	/4" ± 1/4"
Maximum Diameter										
Weight (Approx.)										7 oz
Bulb										T18
Cap										
Socket										
Base										
										No.A4-29)
Basing Designation	fo	rt	301	10	M	VIE	-W			4AT
Pin 1 - No Connec-		(2	_	7	2	3	Pin		Connec-
Pin 2-Filament.			<i>ا</i> ا	\ -	-		1	Pin	4 - Fil	ament
Cathode Shield		(1	1	^	X	1		ip – And	
Temperature Control:										
Heating-When the	am	bie	ent	t t	en	ipe	rature	e is s	so low	that the

Heating—When the ambient temperature is so low that the normal rise of condensed-mercury temperature above the ambient temperature will not bring the condensed-mercury temperature up to the minimum value of the operating ranges specified under Maximum Ratings, some form of heat-conserving enclosure or auxiliary heater will be required.

Cooling—When the operating conditions are such that the maximum value of the operating condensed-mercury-temperature range is exceeded, provision should be made for forced-air cooling sufficient to prevent exceeding the maximum value.

No 1.	**										4.4
INO L	pad*										14
E., 11	load⁴										10
IUII	Idau										19

Temperature Rise of Condensed Mercury to Equilibrium

With 4.75 volts rms on filament, and no heat-conserving enclosure. With 5.25 volts rms on filament, average anode current = 1.25 amperes, and no heat-conserving enclosure.

- Indicates a change.

00

HALF-WAVE MERCURY-VAPOR RECTIFIER

HALF-WAVE RECTIFIER

Maximum Ratings, Absolute Values: For supply frequency of 60 cps

Operating Condensed-Mercury-Temperature Range* 20° to 70° C 20° to 60° C

PEAK INVERSE ANODE					
VOLTAGE	5000	max.	10000	max.	volts
ANODE CURRENT:					
Peak	. 5	max.	5	max.	amp
Average#	1.25	max.	1.25	max.	amp
Fault, for duration					
of 0.1 second maximum.	. 50	max.	50	max.	amp

Operation at 40° ± 5° C is recommended.

OPERATING CONSIDERATIONS

Shields and rf filter circuits should be provided for the 872-A if it is subjected to extraneous high-frequency fields during operation. These fields tend to produce breakdown effects in mercury vapor and are detrimental to tube life and performance. When shields are used, special attention must be given to providing adequate ventilation and to maintaining normal condensed-mercury temperature. Rf filters are employed to prevent damage caused by rf currents which might otherwise be fed back into the rectifier tubes.

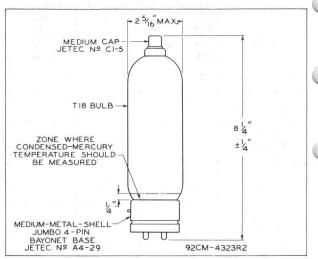
[#] Averaged over any interval of 15 seconds maximum.

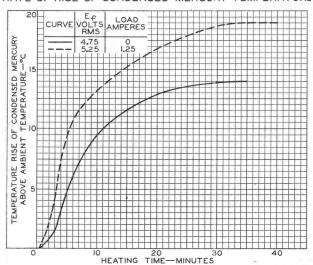
872-A

HALF-WAVE MERCURY-VAPOR RECTIFIER

CIRCUIT	MAX. TRANS. SEC. VOLTS (RMS)	APPROX. DC OUTPUT VOLTS TO FILTER Eav	MAX. DC OUTPUT AMPERES	MAX. DC OUTPUT KW TO FILTER Pdc
Fig. 1 Half-Wave Single-Phase In-Phase Operation	7000 [□] 3500 [♠]	3200 1600	1.25 1.25	4 2
Fig. 2 Full-Wave Single-Phase In-Phase Operation	3500 [□] . 1700 [▲]	3200 1600	2.5 2.5	8 4
Fig. 3 Series Single-Phase In-Phase Operation	7000 ^D 3500	6400 3200	2.5 2.5	16
Fig. 4 Half-Wave Three-Phase In-Phase Operation	4000 [□] 2000	4800 2400	3. 75 3. 75	18 9
Fig. 5 Parallel Three-Phase Quadrature Operation	4000 [□] 2000	4800 2400	7.5 7.5	36 18
Fig. 6 Series Three-Phase Quadrature Operation	4000 [□] 2000	9600 4800	3.75 3.75	36 18
Fig. 7 Half-Wave Four-Phase Quadrature Operation	3500 1700	4500 2250	Resis- Induc- tive tive Load Load 4.5 5 4.5 5	tive tive
Fig. 8 Half-Wave Six-Phase Quadrature Operation	3500 ⁰	4800 2400	Resis- Induc- tive tive Load Load 4.75 5 4.75 5	Resis- Induc- tive tive Load Load 22.8 24

 $^{^\}square$ For maximum peak inverse anode voltage of 10000 volts and condensed-mercury-temperature range of 200 to 600 c.


For maximum peak inverse anode voltage of 5000 volts and condensedmercury-temperature range of 20° to 70° C.


RCA

872-A

HALF-WAVE MERCURY-VAPOR RECTIFIER

RATE OF RISE OF CONDENSED-MERCURY TEMPERATURE

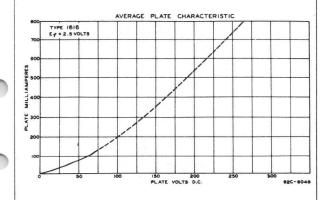
ELECTRON TUBE DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CS-9029

66

HALF-WAVE HIGH-VACUUM RECTIFIER

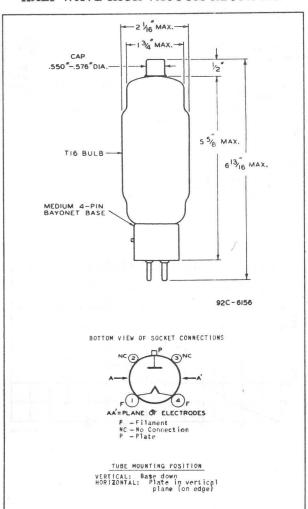
Filament	Coated	
Voltage †	2.5	a-c volts
Current	5.0	amp.
Maximum Overall Length		6-13/16"
Maximum Diameter		2-1/16"
Bulb		T-16
Cap		Medium Metal
Base		Medium 4-Pin, Bayonet
RCA Socket (IIT-542-A)		Stock No 9937


Maximum Ratings Are Absolute Values

MAXIMUM RATINGS

Peak Inverse Voltage 5500 max. volts
Peak Plate Current 0.8 max. amp.
Surge Current 2.5 max.* amp.
Average Plate Current 0.13 max. amp.

* Equipment should be designed so that this value is not exceeded during switching operations.


† Should not deviate more than ±5% from the rated value.

1616

HALF-WAVE HIGH-VACUUM RECTIFIER

1616

Super-Power Triode

5 MW PEAK POWER OUTPUT IN LONG-PULSE SERVICE AT 440 MHz

CERAMIC-METAL SEALS INTEGRAL WATER DUCTS
DOUBLE-ENDED CONSTRUCTION 17.00 INCH MAX. LENGTH
COAXIAL-ELECTRODE STRUCTURE 14.125 INCH MAX. DIAMETER

WATER COOLED

For Use as a Plate-Pulsed Amplifier at Frequencies up to 605 MHz, for Long Range Search Radar, Pulsed Transmission in Communications Service, and Particle Accelerator Service.

FLECTRICAL

ELECTRICAL							
Filamentary Cathode, Multistrand Thoriated Tungsten ⁿ —							
Current (DC): Typical operating range value 6800 to 7200 ^a Maximum range value 7000 to 7400 ^a Maximum value for starting, even	A						
momentarily	As						
current before plate voltage is applied 60 Voltage (DC):b	S						
Typical range value for prescribed operating current	V						
Grid to plate	pF pF pF						
MECHANICAL							
Operating Position Tube axis vertical, either end Overall Length 17.00 max Maximum Diameter 14.125 max Terminal Connections See Dimensional Out l Weight 175 Crated 340	in in						
THERMAL ^p , q							
Ceramic-Bushing Temperature	0°C						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ial						
To upper grid coolant course 3 2 25	max max max						

Water Flow (cont'd)			
Tyl Fll g/	ow Flow	Pressure Differential for Typ. Flow psi	
To grid cathode coolant course	5 30	30 max	
Plate and grid water		min MΩ-cm 5 min MΩ-cm 70 max OC 65 max psig 90 max psig	
FI - Filament Terminal (Inner) FO - Filament Terminal (Outer) KURF - Upper RF Cathode Terminal KLRF - Lower RF Cathode Terminal GURF - Upper RF Grid Input Terminal GURF - Upper RF Grid Output Terminal GLIRF - Lower RF Grid Input Terminal GLORF - Lower RF Grid Output Terminal GLORF - Lower RF Grid Output Terminal PLRF - Lower RF Plate Terminal PURF - Upper RF Plate Terminal	GLORF GLIRF	GUORF GUIRF KURF	

PLATE-PULSED AMPLIFIER-Class Br

For a maximum "ON" time $^{\mathbf{e}}$ of 2200 microseconds in any 34000-microsecond interval

Absolute-Maximum Ratings

								450 MHz	605 MH	
Peak Positive-Pulse Plate V	01	tag	ge.	f,	9,	×		34	25	k٧
Peak Negative Grid Voltage.								150	150	٧
Peak Plate Current								300	300	A
Peak Cathode Currenth								600	600	A
DC Plate Current								19.5	19.5	Α
DC Cathode Current								39	39	A
Plate Input (Average)								664	487	kW
Plate Dissipation (Average)								300	300	kW
- 1										

Typical Operation

With rectangular wave shape in cathode-drive circuit with duty factors of 0.06 and pulse duration of 2000 microseconds

At	440	MHz	At	550	MH 2

Peak Positive Pulse Plate-to-				
Voltage ^{f,g}	30	33	20	k٧
Peak Cathode-to-Grid Voltagek	80	60	100	٧
Peak Plate Current	285	295	250	A

Section 2		CONTRACTOR OF THE PARTY OF	245 m. 1
7			
	At 440 MHz At	550	MHz
	Peak Cathode Currenth 570 590	500	Α
	DC Plate Current 17.1 17.7	15	A
	DC Cathode Current 34.2 35.4	30	A
	Peak Driving Power Output. 170 200	225	
	Useful Power Output at Peak	225	kW
	of Pulse (Approx.) 4 5	2.5	MW
	Absolute-Maximum Ratings		
	For a maximum "ON" time of 10000 microseconds in	any	
	155000-microsecond interval		
		Up to	
		50 MH	
	Peak Positive-Pulse		
	Plate Voltagef.q	28	k٧
	Peak Negative Grid Voltage	150	
	Peak Plate Current	250	A
	Peak Cathode Current ^h	500	Α
	DC Plate Current	16.25	Α
	DC Cathode Current	32.5	
	Plate Input (Average)	45.5	kW
	Plate Dissipation (Average)	200	kW
	Typical Operation		
	With rectangular wave shape in cathode-drive circuit as		
	with duty factor of 0.06 and pulse duration of 1000 micr	oseco	nds
	Peak Positive-Pulse		
	Plate-to-Grid Voltage ^{f,g}		k٧
	Peak Cathode-to-Grid Voltagek	50	
	Peak Plate Current	220	
	Peak Cathode Currenth	440	
	DC Plate Current	13.2	
	DC Cathode Current	27.4	
	Peak Driver Power Output ^m		kW
	Useful Power Output at Peak of Pulse (Approx.)	2.5	MW
	CHARACTERISTICS RANGE VALUES		
	Note Min	Max	
	Input Strap-Resonant Frequency 90	140	MHz
	Output Strap-Resonant Frequency 300		MHz
	Useful Power Output	-	MW
	Note I: For conditions with filament current at pr		
	typical operating value supplied with the tube, see foo		
	peak positive-pulse plate-to-grid voltage = 32000 may peak current = 18 max. amperes, frequency = 400 to		
	peak current = 18 max. amperes, frequency = 400 to pulse duration = 2000 microseconds, duty factor = 0	450 N	IHZ,
	peak pulse driving power = 220000 max. watts.	.00,	and
	pour parse arriving power 220000 max. watts.		

The typical and maximum operating filament currents recommended for each tube are specified on a label attached to the outside diameter of the plate terminal of each tube. The specified maximum filament current for each tube is a maximum rating which should not be exceeded, even momentarily, during operation of the tube. The life of the tube can be conserved by operating the filament atthe lowest current which will enable the tube to provide the desired power output. Because the filament when operated near the maximum value usually provides emission in excess of any requirements within the tube ratings, the filament current should

be reduced to a value that will give adequate but not excessive emission for any particular application. Good regulation of the filament current is, in general, economically advantageous from the viewpoint of tube life.

- b Measured between KLRF and KURF (See Terminal Diagram).
- ^C Measured directly across cooled element for the indicated typical flow.

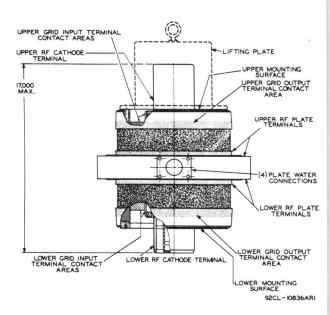
With the gauge located in an area where the maximum pressure external to the gauge is one atmosphere absolute.

to the gauge is one atmosphere ausociace, ""O," time is defined as the sum of the duration of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 50% of the peak power value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

The magnitude of any spike on the plate voltage pulse should not exceed its peak value by more than 10% and the duration of any spike when measured at the peak-value level should not exceed 100 microseconds.

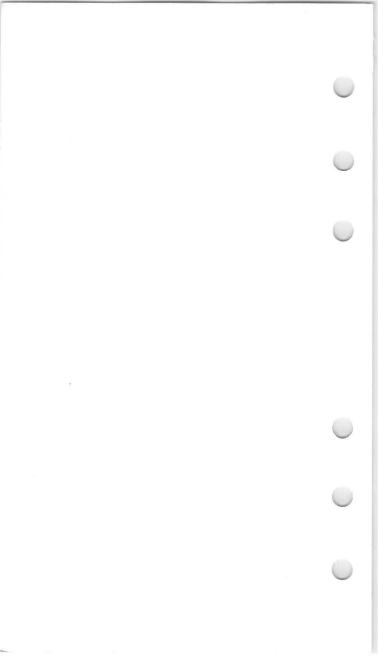
- The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
- 9 Under most conditions pressurized cavities will be required for operation at the indicated typical voltages to prevent flash-over at the tube seals.
- h Peak cathode current is the total of the peak plate current and the peak rectified grid current. (Pulses are not coincident, hence they cannot be added arithmetically).
- Duty factor is the product of the pulse duration and repetition rate.
- k Preferably obtained from a cathode bias resistor.
- The driver stage is required to supply tube losses, rf circuit losses, and rf power added to the plate circuit. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, and in initial tube characteristics during life.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at the front of this section.


- n See Electrical Considerations Filament or Heater.
- P See Cooling Considerations Forced-Air Cooling.
- 9 See Cooling Considerations Liquid Cooling.
- See Classes of Service.

FOR ADDITIONAL INFORMATION ON THIS TYPE, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FORRCA SUPER POWER TUBES. ICE-279A AVAILABLE FROM:

> Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey



SIMPLIFIED DIMENSIONAL OUTLINES

DIMENSIONS IN INCHES

⁸ A detailed Dimensional Outline and associated Gauge Drawings are given in the Technical Bulletin available upon request.

High-Mu Triode

	CERAMIC-METAL PENCIL TYPE FAST WARM-UP TIME FAST WARM-UP TIME
	THE THE
	For use in plate-pulsed operation as a power amplifier, oscil-
	lator, and frequency multiplier in compact mobile and aircraft equipment at frequencies up to 4 Gc/s and above and at altitudes
	up to 25,000 feet without pressurization.
	up to 25,000 jeet without pressurization.
	ELECTRICAL
7	Heater, for Unipotential Cathode
	Voltage (AC or DC) 6.3 ± 10% V
	Current at 6.3 V 0.300 A
	Cathode Warmup Time (Average) to reach 80%
	of operating plate current 10 s
	DC plate supply volts = 80, grid volts = 0,
	cathode resistor = 0Ω , load resistor = 10Ω ,
7	heater volts = 6.3
	Amplification Factor
	Transconductance
	cathode resistor = 50Ω
	Direct Interelectrode Capacitances
	Grid to plate 2.0 pF
	Grid to cathode and heater 5.8 pF
	Plate to cathode and heater 0.08 max pF
	MECHANICAL
	Operating Position Any
	Dimensions and Terminal
	Connections See accompanying Dimensional Outline
	Weight (Approx.)
	Sockets
	Heater-Terminals Connector .Grayhilla No. 22-5, or equivalent
	Socket for operation up to
	about 550 Mc/s (Including heater-terminals connector)Jettron ^b No.CD7010,
	or equivalent
7	Cavities (Including heater-
	terminals connector)J-V-M ^C No.D-7980 Series, Resdel ^d
	No.10 Series, AML. Inc. ^e MCL.
	No.10 Series, AML, Inc, ^e MCL, Inc, ^f or equivalent

H - Heater Pin K - Cathode Cylinder (Adjacent to Heater Pins) G - Grid Flange P - Plate Cylinder (Adjacent to pinch-off)

Terminal Connections (see Dimensional Outline):

PLATE PULSED SERVICE-CLASS C

Absolute Maximum Ratings (Up to 4 Gc/s)
For a maximum "ON" time⁹ of 5 microseconds in any 5000-microsecond interval.

Peak Positive-Pul	se	F	11 8	ite	e-	Su	pp	1 y	Vo	10	ta	qe				2000	٧
Peak Plate Currer	nt	fr	ОП	1	Pu	Is	е	Sul	pp	1 y						3.0	Α
DC Plate Current																3.0	mΑ
DC Grid Current.																1.5	mA
Pulse Duration .																1.5	us
Duty Factor																	
Plate-Seal Temper	at	uı	e	1.											,	225	oC

Typical Operation as Oscillator with Rectangular Wave Shape in Cathode-Drive Circuit at 3.3 Gc/s

With duty factor of 0.001 and pulse duration	2 0	f:	1 mi	crosec	ond
Peak Positive-Pulse Plate-Supply Voltage				1750	٧
DC Plate Current				2.5	mA
DC Grid Current				1.0	mA
Grid Resistor				50	Ω
Useful Power Output at Peak of Pulse (Approx.)				1000	W

Typical Operation as Frequency Doubler to I Gc/s with Rectangular Wave Shape in Cathode-Drive Circuit

Peak Positive-Pulse Plate-Supply Voltage	1200 V
DC Plate Current	0.4 mA
DC Grid Current	0.2 mA
Grid Resistor	2000 Ω
Driver Power Output (Approx.)	50 W
Useful Power Output (Approx.)	100 W

RF POWER AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY^k RF POWER AMPLIFIER—CLASS C FM TELEPHONY

Absolute Maximum Ratings (Up to 4 Gc/s)

DC Plate Voltage .															300	٧
DC Grid Voltage															-50	٧
DC Plate Current .															35	mA
DC Cathode Current															45	mA
DC Grid Current Plate-Seal Tempera		٠.													15	mA
Plate-Seal Tempera	atu	re	٦.												225	°C
Peak Heater-Cathod	le	Vo	Ita	age	е											
Heater negative	wi	th	r	es	pe	ct	to)	cat	the	ode	2.			50	V
Heater positive															50	٧

Typical Operation as RF Power Amplifier in Cathode-Drive Circuit at 550 Mc/s

1.11	out		uc	U	1 4 6	0	1 (-u i		aL	0.	,,	110/	3		
DC Plate Voltage														250	300	٧
DC Grid Voltage.														-6.5	-9	٧
Grid Resistor														500	700	Ω
DC Plate Current														31	35	mA
DC Grid Current.														13	13	mA
Driver Power Outp	ut	(A	opi	rox	.).											W
Useful Power Outp	ut	(A	ppi	rox	.).									4.8	6	W
		Ma	хi	mum	Ci	rc	ui	t	۷a	1 u	е					
Grid-Circuit Res	ista	anc	e.												0.25	$M\Omega$

RADIO CORPORATION OF AMERICA
Electronic Components and Devices Harrison, N. J.

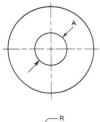
CHARACTERISTICS RANGE VALUES

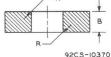
							Note	Min	Max	
Heater Current		ě			ě	į.	1	0.270	0.330	A
Direct Interelectrode (Car	a	cit	tar	10	es				
Grid to plate		v			ų.	ų.	-	1.7	2.4	pF
Grid to cathode								5.0	6.5	pF
Plate to cathode							-	-	0.08	pF
Heater-Cathode Leakage										
Heater negative with										
respect to cathode.							1,2	-	30	μA
Heater positive with							363			
respect to cathode.		×				×	1,3	-	30	μA
Reverse Grid Current .	200						1,4	-	0.3	μA
Transconductance								18000	27000	μ mhos
Plate Current (I)		*		100	•	×	1,5	13	25	m A

- Note I: With 6.3 volts ac or dc on heater.
- Note 2: With 60 volts do between heater and cathode, heater negative with respect to cathode.
- Note 3: With 60 volts dc between heater and cathode, heater positive with respect to cathode.
- Note 4: With dc plate voltage of 200 volts, dc grid voltage of -2 volts, grid resistor of 0.5 megohm.
- Note 5: With dc plate-supply voltage of 125 volts, cathode resistor of 50 ohms, and cathode bypass capacitor of 1000 μf .
- a Grayhill, Inc., 561 Hillgrove Ave., LaGrange, Ill.
- b Jettron Products, Inc., 56 Route 10, Hanover, N.J.
- Fidelitone Microwave, Inc., JVM Division, 6415 N. Ravenswood Ave., Chicago, Ill. Indicated No. applies to a series of cavities covering the range from 220 to 3500 Mc/s.
- d Resdal Engineering Corp., 330 South Fair Oaks Ave., Pasadena, Calif This series of cavities covers the range from 215 to 2325 Mc/s.
- e Applied Microwave Laboratory, Inc., 106 Albion St., Wakefield, Mass.
- f Microwave Cavity Laboratory, Inc., 10 Beach Ave., LaGrange, Ill.
- 9 "ON" time is defined as the sum of the duration of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
- h In applications where the plate dissipation exceeds 2.5 watts, it is important that a large area of contact be provided between the plate cylinder and the terminal to provide adequate heat conduction.
- Duty factoristhe product of pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of time "ON" to total elapsed time in any 5000-microsecond interval.
- k

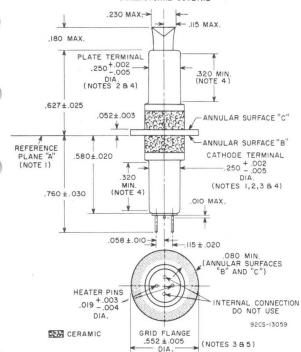
 Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio frequency envelope does not exceed 115 per cent of the carrier conditions.

OPERATING CONSIDERATIONS


Connections to the cathode cylinder, grid flange, and plate cylinder should be made by flexible spring contacts. The connectors should make firm, large-surface contact, yet must be sufficiently flexible to insure that no part of the tube is subjected to excessive strain.



The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum rated values shown in the tabulated data.


GAUGES

	_		Dimension	
Gauge	Туре	Diameter A	Thickness B	Radius R
G ₁ -1	Go	0.25200" +0.00000" -0.00007"	0.320" +0.001" -0.000"	0.003" Max
G ₁ -2	No-Go	0.24500" +0.00007" -0.00000"	-	-
G ₃ -1	Go	0.55700" +0.00000" -0.00007"	-	-
G ₃ -2	No-Go	0.54700" +0.00007" -0.00000"	-	-

DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

Reference Plane "A" is defined as that plane against which annular surface "B" of the grid flange abuts.

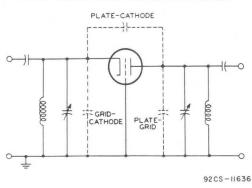
Annular Surface "B" is on the side of the grid flange toward the cathode

cylinder. Annular Surface "C" is on the side of the grid flange toward the plate

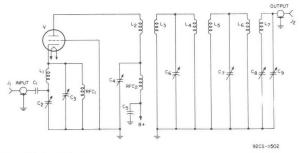
cylinder.

Note 1: With annular surface "B" resting on reference plane "A". The axis of the cathode cylinder will be within 20 of a line perpendicular to reference plane "A".

Note 2: The axes of the plate cylinder and cathode cylinder will coincide within 0.010 inch.


Note 3: The axes of the cathode cylinder and grid flange will coincide within $0.005\ \mathrm{inch}$.

Note 4: The diameter along the 0.320 inch minimum length is measured with


"OO" and "NO-OO" ring gauges Gl-1 and Gl-2, respectively.

Note 5: This diameter is measured with "OO" and "NO-OO" gauges G3-1 and G3-2, respectively.

TYPICAL CATHODE-DRIVE POWER AMPLIFIER CIRCUIT

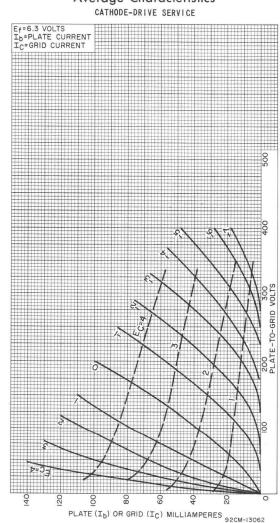
TYPICAL BROADBAND AMPLIFIER CIRCUIT

C1: 100 to 500 pF.

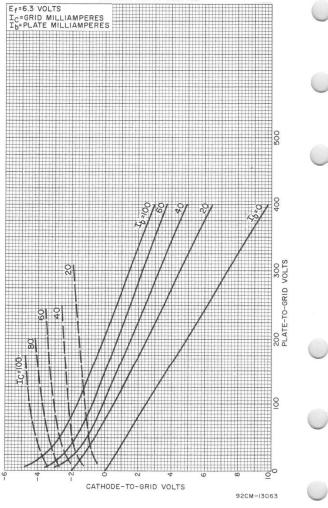
 C_2 , C_3 , C_4 , C_6 , C_7 , C_8 , C_9 : 0.8-8.5 pF Glass Dielectric Trimmers—JFD VC 20G or equivalent.

C₅: 500 pF. J₁, J₂: BNC Connectors. L₁, L₂, L₃, L₄, L₅, L₆, L₇: For Frequency Range of:

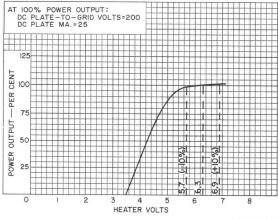
200-500 Mc/s-Two Turns, 1/2 inch Dia., Spaced 3/8 inch, Silver-Plated #14 Wire.


500-1000 Mc/s-One Turn, 1/2 inch Dia., Silver-Plated #14 Wire.

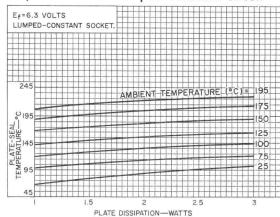
RFC1, RFC2: Ohmite Z-450 RF Chokes, or equivalent.


V: RCA-4028A

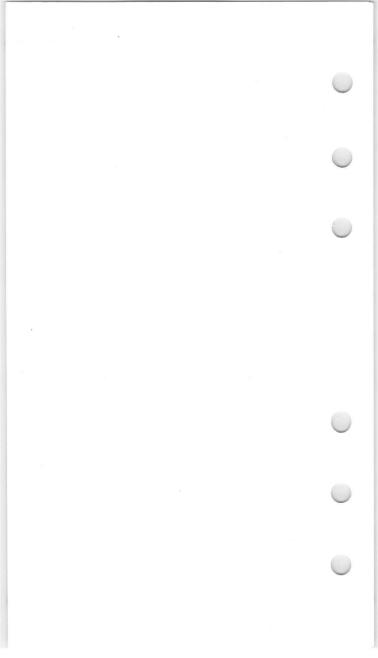
Average Characteristics


CATHODE-DRIVE SERVICE

Average Constant-Current Characteristics



Typical Oscillator Power Output as a Function of Variations in Heater Voltage



92CS-11624RI

Plate-Seal Temperature as a Function of Ambient Temperature With Lumped-Constant Circuit

92CS-11488

High-Mu Triode

OCTAL-BASED PENCIL TUBE

For RF-Power-Amplifier, Oscillator, and Frequency-Multiplier Applications at Altitudes up to 100,000 Feet Without Pressurization

Replaces Type 2C40A in Most Applications

ELECTRICAL
Heater, for Unipotential Cathode Voltage (AC or DC) 6.3 ±10% Current at 6.3 volts 0.145 Cathode Warmup Time to reach 90 percent of
Typical oscillator power output 10 max Operating dc plate current 15 max Amplification Factor 30 Transconductance for dc plate mA = 18
and dc plate volts = 250 5500 μ mhc Direct Interelectrode Capacitances (Approx.)
Grid to plate I.I profit to cathode I.8 profit to cathode I.8 profit to cathode I.8 profit to cathode I.8 profit to cathode to rf cathode terminal I00 profit to the II00 profit to the II00 profit to the II00 profit to II00 profit t
MECHANICAL
Operating Position
Pin 1- Do Not Use Pin 2- Heater Pin 3- Cathode Pin 5- Cathode Pin 7- Heater Pin 8- Cathode KR- Cathode rf terminal (Cylinder adjacent to base) G-Grid (Flange between insulator sections) P-Plate (Cylinder adjacent to upper insulator section)
THERMAL Plate Seal Temperature
Plate Seal Temperature 175 max

)	late	Seal	Tempera	ture.	٠				•			175	max	OC	

CLASS AI RF AMPLIFIER

Maximum CCS Ratings, Absolute-Maximum Values up to 2000 Mc/s

For Altitudes up to 25000 ft

DC	Plate Voltage.									300	٧
DC	Grid Voltage .									-100	V
	Plate Current.										mA

Pe	ate Dissipation ^a		6.25 90 90	W V	0
	Maximum Circuit Value				
Gr	id-Circuit Resistance		0.5	MΩ	
	RF POWER AMPLIFIER AND OSCILLATOR — CLASS C Key-down conditions per tube without amplitude aximum CCS Ratings, Absolute-Maximum Values up	mo	dulatio	n b	
DC DC DC P1	For Altitudes up to 25000 ft Plate Voltage	:	360 -100 25 8 9 6.25	V V mA mA W	0
	Heater negative with respect to cathode Heater positive with respect to cathode		90 90	V	
	Typical CCS Operation				
	As oscillator in cathode-drive circ	uit			
	At 500 20	00	3000	Mc/s	
DC DC	Cathode-to-Grid Voltage	52 2 23 3 45	252 2 25 4 0.1	V W MA W	
	As rf power amplifier in cathode-drive circuit	a t	500 Me	:/s	
DC DC DC	Plate-to-Grid Voltage. Cathode-to-Grid Voltagec Plate Current. Grid Current (Approx.) Grid Current Output (Approx.) Seful Power Output (Approx.)		. 23 . 7 . 2	V V mA mA W	0
	Maximum Circuit Value				
Gr	id-Circuit Resistance		. 0.1	$\mathbf{M}\Omega$	
	PLATE-MODULATED RF POWER AMPLIFIER — CLASS Carrier conditions per tube for use with a max modulative ximum CCS Ratings, Absolute-Maximum Values up For Altitudes up to 25000 ft	ion ;	factor o	f 1	
DC DC	Plate Voltage		. 275 100 . 22 . 8	V V mA mA	0

Plate Dissipation ^a	6 W 5 W
Peak Heater-Cathode Voltage Heater negative with respect to cathode 9 Heater positive with respect to cathode 9	
Maximum Circuit Value	
Grid-Circuit Resistance 0.	I MΩ
CHARACTERISTICS RANGE VALUES	
Note Min Max	
Heater Current	A
Direct Interelectrode Capacitances	
Grid to plate	μ F
Grid to cathode 1.5 2.1	μ F
Plate to cathode 0.05	μ F
Heater-Cathode Leakage Current	
Heater negative with	
respect to cathode 1,2 - 50 Heater positive with	μ A
The state of the s	
respect to cathode 1,3 - 50 Reverse Grid Current 1,4 - 1	μ Α μ Α
Amplification Factor 1,5 22 38	μ Α
Transconductance	umhos
Plate Current (1) 1,5 13.5 24.5	mA
Plate Current (2) 1,6 - 55	μA
Transport to the state of the s	Louis .

With 6.3 volts ac or dc on heater.

With 100 volts dc between heater and cathode, heater negative Note 2: with respect to cathode.

1,7

0.15

Note 3: With 100 volts dc between heater and cathode, heater positive with respect to cathode.

With dc plate voltage of 250 volts, dc grid voltage of -2.5 volts, grid resistor of 0.5 megohm. Note 4:

With dc plate-supply voltage of 250 volts, cathode resist 200 ohms, and cathode bypass capacitor of 1000 microfarads. Note 5: cathode resistor of

With dc plate voltage of 250 volts and dc grid voltage of -25 Note 6: volts.

With dc plate voltage of 250 volts, grid resistor adjusted to give a dc plate current of 25 milliamperes in a cavity-type oscillator operating at 1800 ± 25 megacycles per second. Note 7:

a In applications where the plate dissipation exceeds 2.5 watts, it is important that a large area of contact be provided between the plate cylinder and the terminal to provide adequate heat conduction.

b Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.

^C Obtained from grid resistor.

SPECIAL TESTS AND PERFORMANCE DATA

Low-Pressure Voltage Breakdown Test

This test (similar to MIL-E-1D, par. 4.9.12.1) is periodically performed on a sample lot of tubes. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 25,000 Breakdown should not occur when a 60-cycle rms voltage

of $500\ \mathrm{volts}$ is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance

This test (similar to MIL-E-1D, par. 4.9.19.1) is performed on a sample lot of tubes from each production run under the following conditions:

Heater voltage of 6.3 volts, dc plate-supply voltage of 250 volts, grid voltage of -2.5 volts, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 25 cycles per second at an acceleration of 2.5 g. The rms output voltage across the plate load resistor as a result of vibration of the tube should not exceed 100 millivolts.

High-Frequency Vibration Performance

This test (similar to MIL-E-1D, par. 4.9.19.2) is performed on a sample lot of tubes from each production run. The tube is vibrated perpendicular to its axis, with no voltages applied to the tube. Vibration frequency is $40-60\,\mathrm{c/s}$ and acceleration is $10\,\mathrm{g}$. At the end of this test, tubes should not show temporary or permanent shorts or open circuits and should meet the following limits:

Heater-Cathode Leakage Current 50 max μ A For conditions shown under Characteristics Range Values Notes 1,2 and 1,3.

Low-Frequency Vibration (rms) 100 max mV For conditions shown above under Low-Frequency Vibration Performance.

Transconductance. 3900 min μ mhos For conditions shown under Characteristics Range Values Notes 1,5.

Shorts and Continuity Test

This test (similar to MIL-E-1D, par. 4.7.3) is performed on all tubes from each production run. Voltage applied between adjacent elements of the tube under test should be between 20 and 70 volts dc or peak ac. Plate and cathode terminals are tied together and connected to the grid terminal through the shorts test equipment. Tubes are tapped with a rubber tapper three times in each of three mutually perpendicular directions. If a short indication is obtained, the tapping cycle is repeated two times for verification. Acceptance criteria is based on the "Resistance vs. Time Duration" curve shown in par. 4.7.7 of MIL-1-D, Amendment 5.

Glass Seal Fracture Tests

Fracture tests are performed on sample lots of subassemblies during manufacture.

1. Tubes (prior to final assembly) are placed on supports spaced $15/16\,\pm\,1/64$ inch apart with the grid flange centered

between these supports. Tubes should withstand gradual application, perpendicular to the tube axis, of a force of 30 pounds upon the grid flange without causing fracture of the glass insulation.

2. Tubes (prior to final assembly) are held by clamping to the cathode cylinder. Tubes should withstand gradual application of a torque of 12.5 inch-pounds upon the plate terminal without causing fracture of the glass insulation.

Dynamic Life Performance

This test (similar to MIL-E-1D, par. 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is life-tested in a cavity-type oscillator at 500 ± 15 Mc/s under the following conditions:

Heater voltage of 6.3 volts, plate-supply voltage of 300 volts, cathode resistor adjusted to give a dc plate current of 25 mA and value recorded, heater positive with respect to cathode by 100 volts, and plate-seal temperature of 175° C min.

At the end of 500 hours, the tube should not show permanent shorts or open circuits and will be criticized for the total number of defects in the sample lot and for the number of tubes failing to meet the following limit.

For conditions shown under Characteristics Range Values Notes 1.7.

OPERATING CONSIDERATIONS

Mechanical

The maximum plate-seal temperature of 175° C is a tube rating and is to be observed in the same manner as other ratings. The temperature of the plate seal should be measured on the plate seal. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. The latter is made by the Tempil Corporation, 132 W. 22nd Street, New York 11, N. Y., in the form of a liquid or stick.

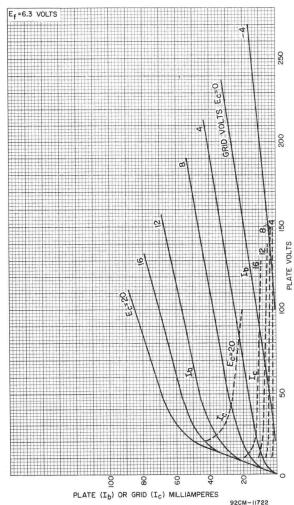
The mounting for the 4037A in cavity-type circuits should support the tube by the cathode cylinder which should make firm contact to the cavity surface. Connections to the grid flange and plate cylinder must be made by contacts with flexible leads to allow for variations in tube dimensions and eccentricities of the tube structure. In addition the plate connector should make firm, large-surface contact and be capable of conducting heat so that the plate-seal temperature will not exceed 175° C under any operating conditions. Contact should not be made to the 0.230-inch cap at the plate-terminal end of the tube as indicated on the Dimensional Outline.

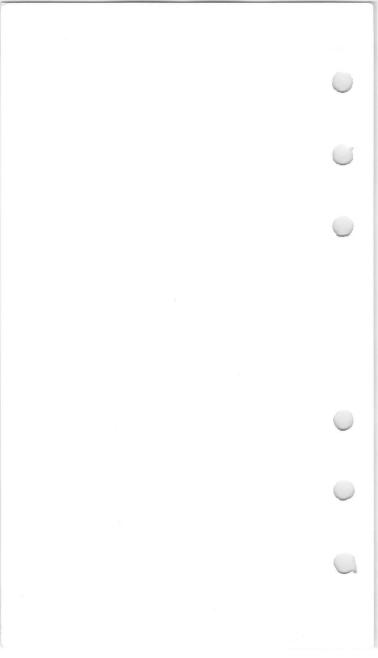
Flectrical

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not

connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum values shown in the tabulated data.

DIMENSIONAL OUTLINE .230 MAX -> 312 MAX PLATE TERMINAL .375 ±.005 .855 ± .020 .567 MAX. DIA. -> GRID TERMINAL .035 MAX. .812 ± .005 DIA.-.750 MAX. DIA. -.375 ±.015 3.125 MAX CATHODE RF TERMINAL 1.025 ±.005 DIA. .490 ± .015 1.201 ± .010 DIA-BASE SKIRT .160 ±.015 .380 ± .030 JEDEC GROUP I 1.312 MAX. DIA. -


STIPPLED REGION (NOTE I)


92CM-11472R2

DIMENSIONS IN INCHES

Note I: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these areas.

Average Characteristics

Traveling-Wave Tube

Frequency Range 8 to 12 GHz Integral Periodic-Permanent-Magnet Type

ELECTRICAL	
Heater, for Unipotential Cathode:	
Voltage (ac or dc) 6.3 ± 5% V	
Current at 6.3 volts 0,7	
Starting Current Must never exceed 4 amperes, even momentarily	
Minimum Cathode Heating Time 3 minutes	
Frequency Range	
Cold Insertion Loss 60 dB	
Input VSWR 2.5:1 max.	
Output VSWR 2.0:1 max.	
Gain, Small Signal (at 0.1 W output) 8.0 to 12 GHz 34 min. dB	
MECHANICAL	
Operating Position Any	
Maximum Dimensions:	
Overall Length	
Height	
Width 2.20 max. in	
Shell Diameter 1.75 in	
Connectors:	
RF Input Type TNC Plug	
RF Output Special Flange Coupling	
Terminal Leads See Dimensional Outline	
Weight (Approx.)	
RF POWER AMPLIFIER	
Maximum Ratings, Absolute-Maximum Values	
DC Collector Voltage 3000 max. V	
DC Helix Voltage 2950 max. V	
DC Grid-No.2 Voltage 2000 max. V	
DC Collector Current	
DC Helix Current	
DC Grid-No.2 Current 0.1 max. mA	
RF Power Input 1 max. mW	

Typical Operation at 10 GHz									
DC Collector Voltage	3000	V							
DC Helix Voltage	2800	V							
DC Grid-No.2 Voltage	1800	V							
DC Collector Current	12	mA							
DC Helix Current	0.5	mA							
DC Grid-No.2 Current	0	mA							
Input VSWR	2.0:1								
Output VSWR	1.5:1								
RF Power Input	1 to 10) mW							

CHARACTERISTICS RANGE VALUES

Saturated Power Output

	Note	Min.	Max.	
Heater Current	1	0.5	1.1	A
DC Collector Voltage	2,3	2600	3000	V
DC Helix Voltage	2,3	2600	2950	V
DC Grid-No.2 Voltage	3	1600	2000	V
DC Collector Current	3	8	15	mA
DC Helix Current	3	0.1	2.5	mA
DC Grid-No.2 Current	-	0	0.1	mA

Note 1: With heater voltage of 6.3 volts.

Note 2: Normally the tube is operated with the helix voltage equal to the collector voltage.

Note 3: Specific operating value is supplied with each tube.

OPERATING CONSIDERATIONS

The magnetic field required to focus the electron beam in the 4041 is supplied by integral periodic permanent magnets. Although the periodic-magnet structure is difficult to demagnetize, and has little stray field, care should be taken to prevent the presence of any appreciable external transverse magnetic field which might cause defocusing of the electron beam within the tube. Magnetic material should be kept at least eight inches away from the tube.

Impedance match between the 4041 rf power output and the load should have a voltage standing wave ratio (VSWR) no greater than 4:1. With VSWR's in excess of

1.5

4:1, oscillations may occur causing permanent damage to the tube. Tubes should not be operated without a termination.

Conduction cooling on the tube is necessary whenever collector current is flowing. Failure to observe this precaution may result in permanent damage to the tube.

The power supply should incorporate a helix-current overload protective device to prevent damage to the tube in the event of loss of collector voltage. Such a condition would cause the entire electron beam current to flow to the helix and thereby overheat that electrode. If it is desired to remove all voltages by a single control, the time-constant values of the power supply should be chosen so that the grid No.2 voltage decays faster than all other voltages (except the heater voltage).

Mounting. The 4041 may be mounted in any position by means of clamps around the specified areas shown on the *Dimensional Outline*.

Electrical connections are made to the 4041 by means of the six leads. These color-coded, flexible, insulated leads are identified on the *Dimensional Outline*. The rf input is made to a type TNC male plug on the tube, the rf output is by means of a flange coupling and a transition piece (see *Dimensional Outline*). The collector is connected to the capsule and is normally grounded.

The rated values for collector voltage, helix voltage, and grid-No.2 voltage are high enough to be dangerous to the user. Care should be taken during adjustment of circuits, especially when exposed circuit parts are at a high dc potential.

Starting Procedure

Voltages should be applied to the 4041 in the following sequence: Apply the rated heater voltage and allow tube to warm-up for 3 minutes minimum. Then apply the collector voltage as specified on the tube label. Next, apply the helix voltage as specified on

the tube label. Finally, increase the grid-No.2 voltage in a few milliseconds to obtain the collector current specified on the tube label. The three power supplies can be controlled by one switch provided there is a sufficient delay in application of the grid-No.2 voltage to allow the collector and helix voltages to stabilize first.

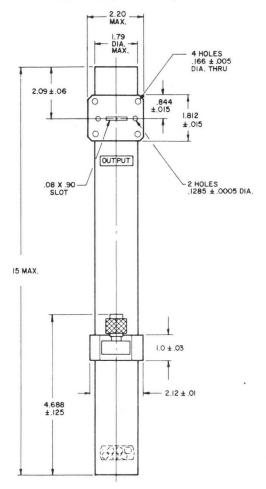
Turn-Off Procedure

To turn off the tube, remove the electrode voltages in the following sequence: First reduce the grid-No.2 voltage, then remove the helix voltage, collector voltage, and heater voltage in that order. The three power supplies can be controlled by one switch provided the grid-No.2 voltage decays faster than the collector and helix voltages.

FLEXIBLE LEAD COLOR CODE (See Dimensional Outline)

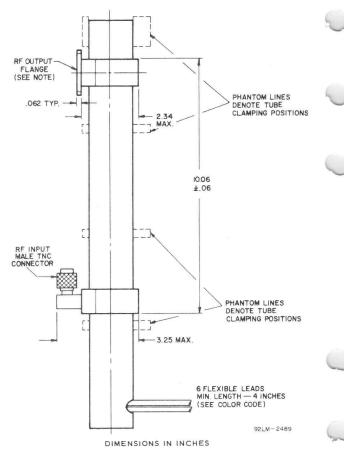
Yellow: Heater-Cathode

Brown: Heater


Green: Grid No.1

Black: Collector (Ground)

Orange: Helix


Blue: Grid No.2 (Anode)

DIMENSIONAL OUTLINE (Front View)

DIMENSIONS IN INCHES

DIMENSIONAL OUTLINE (Side View)

Note: RF output flange requires use of a transition piece (Waveline Type 60083, or equivalent) if matching to standard waveguide flange.

Traveling-Wave Tube

	HELIX-TRANSMISSION-LINE TYPE FREQUENCY RANGE I-2 GC (L-Band) FREQUENCY RANGE F
	Electrical: Heater, for Unipotential Cathode: Voltage (AC or DC) $6.3 \pm 5\%$ volts Current at heater volts = 6.3 1.75 amp Starting Current Must never exceed 4 amperes, even momentarily
	Minimum Cathode Heating Time 3 minutes Frequency Range
,	At 125 volts ac. 6 amp At 240 volts ac. 1.8:1 max. Output VSWR. 1.8:1 max.
	Mechanical:
	Operating Position Any Maximum Overall Length 20.50" Maximum Height 3.875" Maximum Width 3.125" Maximum Shell Diameter 1.625" Weight (Approx.) 6.5 pounds Connectors: 6.5 pounds
	RF Input
	Thermal:
	Collector Temperature ^a
	RF POWER AMPLIFIER
	Maximum Ratings, Absolute-Maximum Values: 3000 volts DC Collector Voltage 2500 volts DC Helix Voltage 1700 volts DC Grid-No.2 Voltage 1700 volts DC Collector Current 80 ma DC Helix Current 3 ma DC Grid-No.2 Current 1 ma RF Power Input 5 watts

The thermostatic switch will open when collector temperature exceeds 225°C.

Typical Operation at 1.4Gc:

DC Collector Voltage								2200	volts
DC Helix Voltage								2200	volts
DC Grid-No.2 Voltage									
DC Collector Current									ma
DC Helix Current								0.25	ma
DC Grid-No.2 Current								0.25	ma
Gain at 10 Watts									
Saturated Power Outpu	ıt							13	watts

CHARACTERISTICS RANGE VALUES

					Note	Min.	Max.	
Heater Current			٠		1	_	2	amp
DC Collector Voltage					2,3	1800	2500	volts
DC Helix Voltage					2,3	1800	2500	volts
DC Grid-No.2 Voltage					3	1150	1600	volts
DC Collector Current					3	60	75	ma
DC Helix Current					3	_		
DC Grid-No.2 Current	٠			•	-	_	1	ma

Note 1: With heater volts = 6.3.

Note 2: Normally the tube is operated with the helix voltage equal to the collector voltage.

Note 3: Specific operating value is supplied with each tube.

OPERATING CONSIDERATIONS

The magnetic field required to focus the electron beam in the 4053 is supplied by integral periodic permanent magnets. Although the periodic-magnet structure is difficult to demagnetize and has little stray field, care should be taken to prevent the presence of any appreciable external transverse magnetic field which might cause defocusing of the electron beam within the tube. Magnetic material should be kept at least eight inches away from the tube.

Impedance match between the 4053 rf power output and the load should have a voltage standing wave ratio (VSWR) no greater than 2:1. With VSWR's in excess of this value, oscillations may occur causing permanent damage to the tube. Tubes should not be operated without a termination.

Forced-air cooling of the collector is necessary whenever collector current is flowing. Failure to observe this precaution may result in permanent damage to the tube. It is recommended that the forced-air cooling be applied when the heater power is applied.

A thermostatic switch is mounted on the collector of the 4053 which opens when the collector temperature exceeds a safe limit. It is recommended that the thermostatic switch be used in an interlock circuit in the power supply for the collector, helix, and grid-No.2 voltages. The thermostatic switch will carry 6 amperes at 125 volts ac or 3 amperes at 240 volts ac.

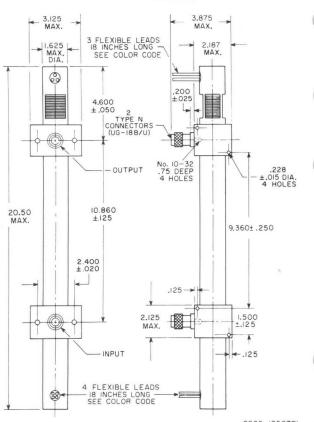
The power supply should incorporate a helix-current overload protective device to prevent damage to the tube in the event of loss of collector voltage. Such a condition would cause the entire electron beam current to flow to the helix and thereby overheat that electrode. If it is desired to remove all voltages by a single control, the time-constant values of the power supply should be chosen so that the helix voltage decays faster than the collector voltage.

As the grid-No.2 voltage increases from zero to the operating value, the helix current may reach as high as 10 ma in the vicinity of 200 to 600 volts on grid No.2, then will fall below 2 ma at the proper operating grid-No.2 voltage. The helix supply should have adequate regulation to handle this transient during the turn on procedure. In order to protect the tube, the helix supply should also have an interlock to open the circuit if the helix current exceeds 3 ma longer than a few milliseconds.

Mounting. The 4053 may be mounted in any position by means of bolts through either set of holes in the two mounting blocks.

Electrical connections are made to the 4053 by means of the seven leads. These color-coded, flexible, insulated leads are identified on the Dimensional Outline. RF input and output connections are made to type N plugs (UG-18 B/U) on the tube (see Dimensional Outline). The collector is connected to the capsule and is normally grounded.

The rated values for collector voltage, helix voltage, and grid-No.2 voltage are high enough to be dangerous to the user. Care should be taken during adjustment of circuits. especially when exposed circuit parts are at a high dc potential.


STARTING PROCEDURE

Voltages should be applied to the 4055 in the following sequence: Apply the rated heater voltage and allow tube to warm-up for 5 minutes minimum. Then apply the collector voltage as specified on the tube label. Next, apply the helix voltage as specified on the tube label. Finally, increase the grid-No.2 voltage in a few milliseconds to obtain the collector current specified on the tube label. The three power supplies can be controlled by one switch provided there is a sufficient delay in application of the grid-No.2 voltage to allow the collector and helix voltages to stabilize first.

TURN-OFF PROCEDURE

To turn off the tube, remove the electrode voltages in the following sequence. First reduce the grid-No.2 voltage, then remove the helix voltage, collector voltage, and heater voltage in that order. The three power supplies can be controlled by one switch provided the grid-No.2 voltage decays faster than the collector and helix voltages.

DIMENSIONAL OUTLINE

92CS-12587RI

DIMENSIONS IN INCHES

COLOR CODE OF LEADS

11	n 1	-	-17														DIOWII
HE	ΑT	E	R,		C.	A٦	THO	DE	,	GR	I	D	No	٥.	1		Yellow
HE	LI	X															Orange
GR	ID)	No		2												Blue
																	Black
TH	ER	N	105	T	A	TI	C	SV	/1	TCH		12).			٠	White

Traveling-Wave Tube

Frequency Range 1.7 to 2.7 GHz Integral Periodic-Permanent-Magnet Type

EL ECTRICAL

Heater, for Unipotential Cathode:	
Voltage (ac or dc) 6.3 ± 5%	7
Current at 6.3 volts 1.75	A
Starting Current Must never exceed 4	1
amperes, even momentarily	y
Minimum Cathode Heating Time 3 minutes	S
Frequency Range 1.7 to 2.7 GHz	Z
Cold Insertion Loss 60 dE	3
Input VSWR 1.8:1 max.	
Output VSWR 1.8:1 max.	
Noise Figure	3
Gain (at 20 W output):	
1.8 to 2.4 GHz	3
2.4 to 2.7 GHz 29 min. dI	
Gain (at 16 W output)	
1.8 to 2.7 GHz	В
Gain (at 17 W output)	
1.7 to 1.8 GHz	В
Gain Compression (referenced to 5 W)	
	В
at 20 W output	
The state of the s	В
appropriate street and other properties of the cap and a contract of the cap.	В
at 17 W output	D
w and the first and the second	В
Phase Sensitivity (with	D
Beam-Voltage Variation) 2 max. 0/	V
Bandwidth Flatness (over a	٧
15-MHz segment) 0.02 max. dB/MH	I
10-MITZ Segment/ 0.02 max. db/Mit	12
MECHANICAL	
Operating Position Any	y
Maximum Dimensions:	
Overall Length 19	1
Height 3.88	1
Width	1
Shell Diameter 3.62	1
Connectors:	
RF Input)
RF Output)
Terminal Leads See Dimensional Outline	
Weight (Approx.) 6.5	b

RF POWER AMPLIFIER

Absolute-Maximum Ratings

DC Collector Voltage	3000 max.	V
DC Helix Voltage	2500 max.	V
DC Grid-No.2 Voltage	1700 max.	V
DC Collector Current	80 max.	mA
DC Helix Current	3 max.	mA
DC Grid-No.2 Current	0.2 max.	mA
RF Power Input	5 max.	W
Typical Operation at 2.0 GHz		
DC Collector Voltage	2200	V
DC Helix Voltage	2200	V
DO CHA ON I	1500	* 7

DC	Coll	ector	Current							
----	------	-------	---------	--	--	--	--	--	--	--

Saturated Power Output . . .

DC Grid-No.2 voltage 1500	V
DC Collector Current 70	mA
DC Helix Current 0.25	mA
DC Grid-No.2 Current 0.25	mA
Input VSWR 1.5:1	
Output VSWR 1.5:1	
RF Power Input 20	mW

20

CHARACTERISTICS RANGE VALUES

Heater Current					Note 1	Min.	$\frac{Max}{2}$	A
DC Collector Voltage					2,3	1800	2500	V
DC Helix Voltage					2,3	1800	2500	V
DC Grid-No.2 Voltage					3	1150	1600	V
DC Collector Current.	٠				3	60	75	mA
DC Helix Current		٠			3	_	1.1	mA
DC Grid-No.2 Current	•				_	_	1	mA

Note 1: With heater voltage of 6.3 volts.

Note 2: Normally the tube is operated with the helix voltage equal to the collector voltage.

Note 3: Specific operating value is supplied with each tube.

OPERATING CONSIDERATIONS

The magnetic field required to focus the electron beam in the 4054 is supplied by integral periodic permanent magnets. Although the periodic-magnet structure is difficult to demagnetize, and has little stray field, care should be taken to prevent the presence of any appreciable external transverse magnetic field which might cause defocusing of the electron beam within the tube. Magnetic material should be kept at least eight inches away from the tube.

Impedance match between the 4054 rf power output and the load should have a voltage standing wave ratio (VSWR) no greater than 2:1. With VSWR's in excess of 2:1, oscillations may occur causing permanent damage to the tube. Tubes should not be operated without a termination.

Forced-air cooling on the collector is necessary whenever collector current is flowing. Failure to observe this precaution may result in permanent damage to the tube. It is recommended that the forced-air cooling be applied when the heater power is applied.

The power supply should incorporate a helix-current overload protective device to prevent damage to the tube in the event of loss of collector voltage. Such a condition would cause the entire electron beam current to flow to the helix and thereby overheat that electrode. If it is desired to remove all voltages by a single control, the time-constant values of the power supply should be chosen so that the helix voltage decays faster than the collector voltage.

As the grid-No.2 voltage increases from zero to the operating value, the helix current may reach as high as 10 milliamperes with grid-No.2 voltage in the range of 200 to 600 volts, then will fall below 2 milliamperes at the proper operating grid-No.2 voltage. The helix supply should have adequate regulation to handle this transient during the turn-on procedure. To protect the tube, it is recommended that an interlock be incorporated in the helix supply to open the circuit if the helix current exceeds 3 milliamperes longer than a few milliseconds.

Mounting. The 4054 may be mounted in any position by means of bolts through either set of holes in the two mounting blocks.

Electrical connections are made to the 4054 by means of the five leads. These color-coded, flexible, insulated leads are identified on the Dimensional

Outline. The rf input and output connections are made to type N plugs (UG-18 B/U) on the tube (see Dimensional Outline). The collector is connected to the capsule and is normally grounded.

The rated values for collector voltage, helix voltage, and grid-No.2 voltage are high enough to be dangerous to the user. Care should be taken during adjustment of circuits, especially when exposed circuit parts are at a high dc potential.

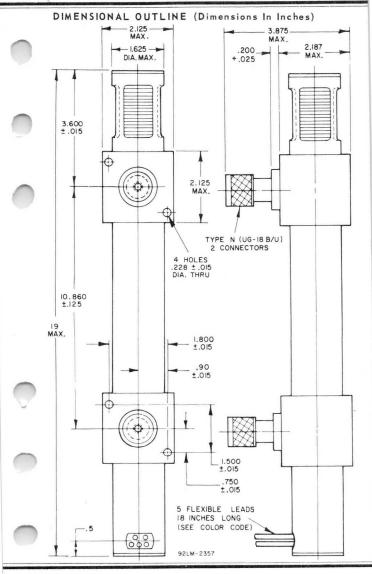
Starting Procedure

Voltages should be applied to the 4054 in the following sequence: Apply the rated heater voltage and allow tube to warm-up for 3 minutes minimum. Then apply the collector voltage as specified on the tube label. Next, apply the helix voltage as specified on the tube label. Finally, increase the grid-No.2 voltage in a few milliseconds to obtain the collector current specified on the tube label. The three power supplies can be controlled by one switch provided there is a sufficient delay in application of the grid-No.2 voltage to allow the collector and helix voltages to stabilize first.

Turn-Off Procedure

To turn off the tube, remove the electrode voltages in the following sequence: First reduce the grid-No.2 voltage, then remove the helix voltage, collector voltage, and heater voltage in that order. The three power supplies can be controlled by one switch provided the grid-No.2 voltage decays faster than the collector and helix voltages.

FLEXIBLE LEAD COLOR CODE (See Dimensional Outline)


Brown: Heater

Yellow: Heater-Cathode

Orange: Helix

Blue: Grid No.2 (Anode)

Black: Collector (Ground)

High-Mu Triode

CERAMIC-METAL PENCIL TUBE OPERATING FREQUENCIES UP TO 4 GHZ AND ABOVE

For Plate-Pulsed Operation as a Power Amplifier, Oscillator, and Frequency Multiplier in Compact Mobile and Aircraft Equipment at Altitudes up to 50,000 Feet without Pressurization

ELECTRICAL

Heater, for Unipotential Cathode			
Voltage (AC or DC)		. 6.3 ±	10% V
Current at 6.3 volts		.0.295	A
Cathode Warmup Time (Average) to reac			
of operating power output as rf osc			
or amplifier			S
Amplification Factor		. 70	
Transconductance, for dc plate mA = 3			
plate volts = 150, and cathode resis		05000	μmho
= II Ω		.35000	μ IIIIO
Grid to plate		2.0	pF
Grid to cathode			pF
Plate to cathode			
MECHANICAL			
Operating Position			Any
Weight			
Dimensions and Terminal Connections.		See accom	panying
	Di	mensional	Outline
Sockets			
Heater - Terminals Connector	G		
		or equ	ivalent
Socket for operation up to about			
550 MHz (Including heater-	N- 007	010	
terminals connector) Jettron ^b	NO.CD/	oro, or equ	ivaient

TERMINAL DIAGRAM (Bottom View)

H - Heater K - Cathode

G-Grid P-Plate

← Indicates a change.

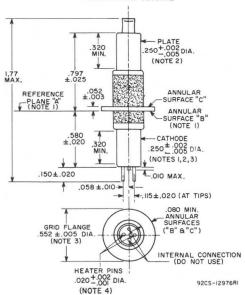
PLATE-PULSED SERVICE-Class C

Maximum Ratings, Absolute-Maximum Values Up to 4 GHz

For a maximum duty factor of 0.01

For Altitudes For Altitudes

up to 25,000 ft up to 50,000 ft
Peak Plate Voltage 3500 max 2000 max V
Peak Plate Current 3.0 max 3.0 max A
DC Plate Current 40 max 40 max mA
DC Grid Current 15 max 15 max mA
Plate Dissipation ^c 10 max
Peak Heater-Cathode Voltage
Heater negative with
respect to cathode 60 max 60 max V
Heater positive with respect to cathode 60 max 60 max V
Typical Operation as Plate-Pulsed Oscillator at 3.3 GHz
With duty factor of 0.001 and pulse duration of 1 μs
Peak Plate Voltage 1750 V
DC Plate Current
DC Grid Current
Grid Resistor 2000 Ω
Useful Power Output at Peak of Pulse (Approx.) 1300 W
Typical Operation as a Power Amplifier in Frequency


Typical Operation as a Power Amplifier in Frequency Range of I to 1.2 GHz

a Grayhill, Inc., 561 Hillgrove Ave., La Grange, Ill.

b Jettron Products, Inc., 56 Route 10, Hanover, N. J.

 $^{^{\}mbox{\scriptsize C}}$ When used in a heat sink that will limit the plate-seal temperature to 2250 C.

DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

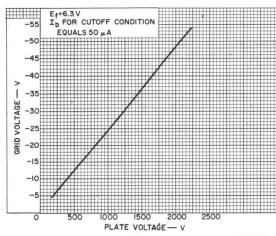
Reference Plane "A" is defined as that plane against which annular surface "B" of the grid flange abuts.

Annular Surface "B" is on the side of the grid flange toward the cathode cylinder.

Annular Surface "C" is on the side of the grid flange toward the plate cylinder.

Note 1: With annular surface "B" resting on reference plane "A". The axis of the cathode cylinder will be within 20 of a line perpendicular to reference plane "A".

Note 2: The axes of the plate cylinder and cathode cylinder will coincide within $0.010\,$ inch.


Note 3: The axes of the cathode cylinder and grid flange will coincide within 0.005 inch.

Note 4: Pin diameter is slightly greater when pretinned.

- Indicates a change.

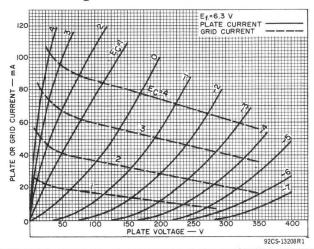
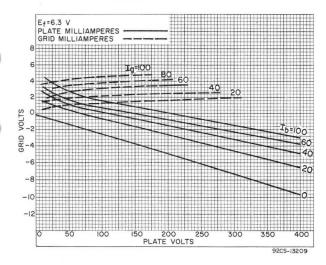
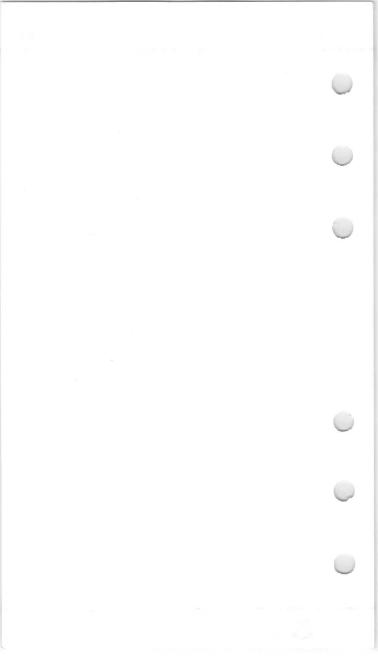


Plate-Current Cutoff Characteristic




92CS-13207

Average Plate and Grid Characteristics

Average Constant-Current Characteristics in Cathode-Drive Service

Medium-Mu Triode

GLASS-METAL PENCIL TYPE

For Use at Frequencies Up to 4000 Mc/s in Pulse Service and 2000 Mc/s in CW Service

ELECTRICAL

Heater, for Unipotential Cathode Voltage (AC or DC):	
Under transmitting conditions 6.0 \pm 10%	٧
Under standby conditions 6.3 max	٧
Current at 6.0 V 0.300	A
Amplification Factor 40	
Transconductance 7300	umhos
For dc plate current of 22 mA and dc plate voltage of 200 V	
Direct Interelectrode Capacitances (Approx.)	
Grid to plate 1.8	pF
Grid to cathode 3.2	pF
Plate to cathode 0.07 max	pF

MECHANICAL

		411		1174		01	-					
Operating Position												
Dimensions and Terminal	Co	nn	ec	ti	on	S		Se	ee	Dimensio	nal	Outline
Plate Seal Temperature										175 ma	X	°C
Weight (Approx.)		100								0.4		oz
Sockets												

TERMINAL CONNECTIONS (See Dimensional Outline)

K-Cathode (Cylinder adjacent to heater pins) G-Grid (Flange between glass sections) P-Plate (Cylinder adjacent to pinch-off)

PLATE-PULSED OSCILLATOR D—CLASS C Maximum CCS Ratings, Absolute-Maximum Values

For a maximum "ON" timed of 5 microseconds in any 500-microsecond interval.

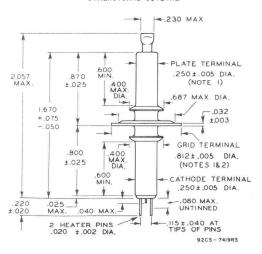
300-microsecona interva	1.			
For altitudes up to 30,000	f	eet		
			Up to 4000	Mc/s
Peak Positive-Pulse Plate-Supply Voltage ^e Peak Grid-Bias Voltage			2000	٧
Negative pulse			150	V
Positive pulse			25	٧
Peak Plate Current			3	A
Peak Rectified Grid Current			1.5	A
DC Plate Current			0.03	A

2		CONTRACTOR OF STREET
	Up to 4000 Mc/s	
	DC Grid Current	
	Pulse Duration	-
	Typical Operation with Rectangular Wave Shape in Cathode-Drive Circuit at 3300 Mc/s	
	THE PROPERTY OF THE PROPERTY O	
	With duty factor 9 of 0.01 and pulse duration of 1 microsecond	
	Peak Positive-Pulse Plate-Supply Voltage ^e 1750 V	
	Peak Negative-Pulse Grid-hias voltage	
	Grid-bias voltage	
	Peak Plate Current	
	From pulse supply	
	Peak Rectified Grid Current	
	DC Plate Current	
	Useful Power Output 800 W	
	At peak of pulse ^h (approx.)	
	RE POWER AMPLIFIER AND OSCILLATOR—CLASS C TELEGRAPHY	
	Key-down conditions per tube without amplitude modulation	
	Absolute-Maximum Ratings	
	For altitudes up to 60,000 feet	
	ccs icas ^k	
	DC Plate Voltage	
	DC Grid Voltage	
	DC Plate Current	
	DC Cathode Current	
	Plate Input	
	Plate Dissipation 8 13 W	
	Peak Heater-Cathode Voltage: Heater negative with respect to cathode 50 50 W	
	Heater negative with respect to cathode 50 50 W Heater positive with respect to cathode 50 50 W	
	notes positive with respect to services.	
	Typical Operation as Oscillator in Cathode-Drive Circuit at 500 Mc/s	
	CCS ICAS	
	DC Plate-to-Grid Voltage 325 380 V	
	DC Cathode-to-Grid Voltage ^m 25 30 V	
	DC Plate Current	
	DC Grid Current (Approx.)	
	decidi fondi despes (Approxi).	
	Typical Operation as Oscillator in Cathode-Drive Circuit at 1700 Mc/s	
	DC Plate-to-Grid Voltage ^m	
	DC Plate-to-Grid Voltage"	
	DC Plate Current	
	DC Grid Current (Approx.)	
	Useful Power Output (Approx.) In W	

Typical Operation as RF Power Amplifier in	
Cathode-Drive Circuit at 500 Mc/s	
CCS ICAS	
DC Plate-to-Grid Voltage	
DC Cathode-to-Grid Voltage ^m	
DC Plate Current (Approx.)	
DC Grid Current (Approx.)	
Useful Power Output (Approx.)	
Maximum Circuit Values	
Grid-Circuit Resistance 0.1 0.1 $M\Omega$	
FREQUENCY MULTIPLIER	
Absolute-Maximum Ratings	
For altitudes up to 60,000 feet	
CCS ICAS ^k	
DC Plate Voltage 300 350 V	
DC Grid Voltage	
DC Plate Current	
DC Grid Current	
DC Cathode Current	
Plate Input	
Peak Heater-Cathode Voltage:	
Heater negative with respect to cathode 50 50 V	
Heater positive with respect to cathode 50 50 V	
Typical Operation as Tripler to 510 Mc/s in Cathode-	
Drive Circuit	
CCS ICAS	
DC Plate-to-Grid Voltage	
DC Cathode-to-Grid Voltage ^m	
DC Plate Current	
DC Grid Current (Approx.) 4.1 5.8 mA Driver Power Output (Approx.)	
Useful Power Output (Approx.) 2.1 ⁿ 3.4 ⁿ W	
Maximum Circuit Values	
Grid-Circuit Resistance	l
a Grayhill Inc., 561 Hillgrove Ave., LaGrange, Ill.	
b In this class of service, the heater should be allowed to warm up for a minimum of 60 seconds before plate voltage is applied.	
manament of or accounts before brace vortage is appried.	

C Continuous Commercial Service.

Ocntinuous Commercial Service.

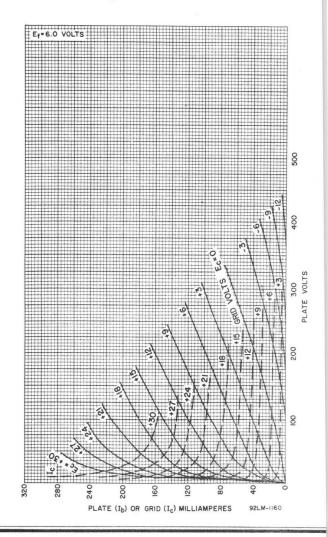

"NOM" time is defined as the sum of the duration of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

The magnitude of any spike on the plate voltage pulse should not exceed a value of 2000 volts with respect to cathode and its duration should not exceed 0.01 microsecond measured at the peak-pulse-value level.

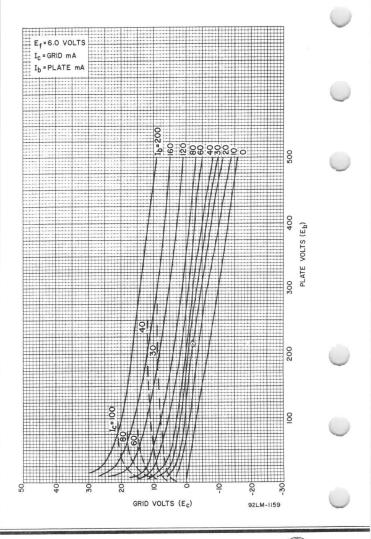
In applications where the plate dissipation exceeds 3 watts, it is important that a large area of contact be provided between the plate cylinder and the connector in order to provide a dequate heat conduction.

- 9 Duty factor is the product of pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of time "ON" to total elapsed time in any 500-microsecond interval.
- h The power output at peak of pulse is obtained from the average power output using the duty factor of the peak pulse. This procedure is necessary since the power output pulse duty factor may be less than the applied voltage pulse duty factor because of a delay in the start of rf power output.
- J Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115 percent of the carrier conditions.
- K Intermittent Commercial and Amateur Service.
- ^m From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor.
- n This value of useful power is measured at load of output circuit having an efficiency of about 75 percent.

DIMENSIONAL OUTLINE


DIMENSIONS IN INCHES

Note I: Max. eccentricity of center line (Axis) of plate terminal or grid-terminal flange with respect to the center line (Axis) of the cathode terminal is $0.0\,10$ inch.


Note 2: Tilt of grid-terminal flange with respect to rotational axis of cathode terminal is determined by chucking the cathode terminal, rotating the tube, and gauging the total travel distance of the grid-terminal flange parallel to the axis of a point approximately 0.020 inch inward from its edge for one complete rotation. The total travel distance will not exceed 0.020 inch.

Average Plate Characteristics

Average Constant-Current Characteristics

4060-406	
L-Band Pencil-Tube Oscillator-Amplific 1090 MHz These Units ^a are Designed to Implement New Airborne Transponder Systems ELECTRICAL	K
Current at 6.3 volts (Total)	z
Output VSWR	,
Change in Peak Power Output During Modulation b 0.5 max d Pulse Rise Time (10% to 90%) 0.05-0.10 Pulse Decay Time (90% to 10%) 0.05-0.20 RF Delay Time (measured at 50% of pulse amplitude) 0.25 max	S
RF Jitter 0.01 max μ	
Operating Position	S
ENVIRONMENTAL	
The units will remain stable within \pm 2.5 MHz in frequency an \pm 3 dB in peak power output (from nominal conditions) under an combination of the following conditions:	
Vibration° 5 to 53 Hz	
Ambient Temperature54 to +125	C
	%
Absolute-Maximum Ratings	
For a maximum long-term duty factor d of 0.01e	

101 a maximum tong term	 ·u·	J	ju	 01	0	0.01	
DC Plate Voltage (Each Unit) .						1100	max
Peak Oscillator Grid Current .						0.5	max
Peak Amplifier Cathode Current						2.0	max
Peak Plate Current							
0 '11 '						^ -	

Oscillator . . . 0.7 max 1.5 max 18 max Amplifier. . . . Plate Dissipation (Total).

← Indicates a change.

Peak	Heater-	-Cathode	Vol	tage
------	---------	----------	-----	------

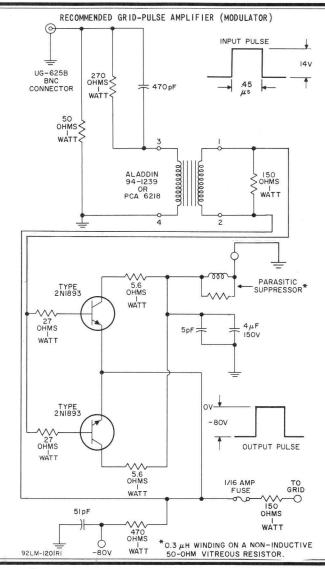
Heater	negative	with	respect	to	cathode.	ž		60	max	٧
Heater	positive	with	respect	to	cathode.	×		60	max	V

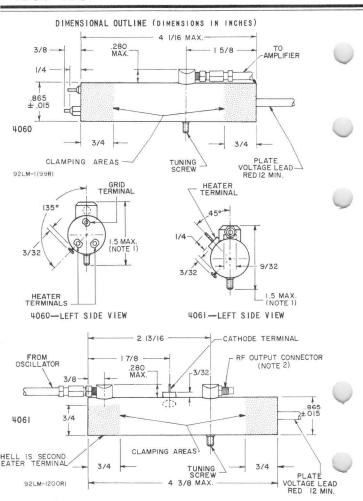
TYPICAL OPERATION

With Rectangular Wave Shape in Grid-Drive Circuit at 1090 MHz

With duty factor of 0.01 and pulse duration of $0.45~\mathrm{microsecond}$

DC Plate Voltage		*	٠	¥	8		ě	÷		٠	٠	×	1000	٧
Oscillator Grid Bias		į.											-80	٧
Amplifier Cathode Bias.														٧
DC Plate Current													20	mA
Total				3.										10.01
Useful Power Output At peak of pulse	**	٠	٠	•	•	٠			•	٠		٠	500	W

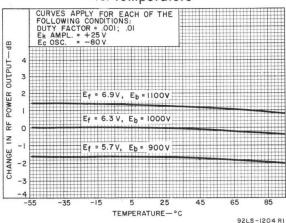

a The ruggedized oscillator-amplifier combination is built to satisfy all AIMS/FAA (Army Integrated Meteorological Systems) requirements.


b With 56 pulses in 100 microsecond interval.

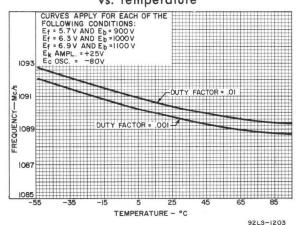
C Tested per methods described in MIL-E-5400 and MIL-T-5422.

Only factor is the product of pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of the time "ON" to total elapsed time in any 2500 microsecond interval. "ON" time is defined as the sum of the duration of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. The peak value is defined as the maximum value of as most ourve through the average of the fluctuations over the top portion of the pulse.

This value is for continuous pulsing. The duty factor can be 0.25 for any interval up to 100 microseconds in length as long as the long-term duty factor does not exceed 0,01.



Note I: When adjusted for operation at 1090 MHz.


Note 2: Mates with female screw-type connector Selectro No.50-007-0259, Micon No.1002, or equivalent.


These units are supplied without the mounting brackets; they are also available with brackets upon request.

Typical Change in Power Output vs. Temperature

Typical Output Frequency vs. Temperature

High-Mu Triode

CERAMIC-METAL PENCIL TUBE OPERATING FREQUENCIES UP TO 4 GHZ AND ABOVE

For Grid-Pulsed Operation as a Power Amplifier or Oscillator in Compact Mobile and Aircraft Equipment at Altitudes up to 50,000 Feet without Pressurization

ELECTRICAL

ELECTRICAL	
Heater, for Unipotential Cathode	
For conditions: dc plate supply volts = 0, cathode resistor = 0 Ω , load resistor = 10 Ω , heater volts = 6.3 10 s. Amplification Factor	>
plate volts = 150, and cathode resistor = 11 Ω	
MECHANICAL	
Operating Position	9

Socket for operation up to about 550 MHz (Including heater-terminals connector) Jettron^b No.CD7010,

TERMINAL DIAGRAM (Bottom View)

H - Heater K - Cathode

Heater-Terminals Connector . .

G-Grid P-Plate

or equivalent

. Grayhilla No.22-5,

GRID-PULSED SERVICE - Class C

Maximum	Ratings,	Absolute-Maximur	n Values	Up to 4 G	Hz
---------	----------	------------------	----------	-----------	----

For a maximum long-term duty factor of 0.01°

DC Plate Voltage DC Grid Voltage		٠	•			•	•			٠	•	•	•		2000	max	٧
Negative-bias v															200	max	٧
Positive value	dur	in	g	ga	ti	ng	P	ul	se						25	max	V
Peak Plate Curren	t .														3.0	max	A
Peak Grid Current															1.5	max	A
Plate Dissipation	d .														10	max	W
Grid Dissipation															0.5	max	W
Peak Heater-Catho																	
Heater negative	wi	th	r	esi	pe	ct	t	0	ca	th	ode	٥.			60	max	V
Heater positive															60	max	V

Typical Operation with Rectangular Waveshape in Grid-Drive Oscillator Circuit at 1090 MHz

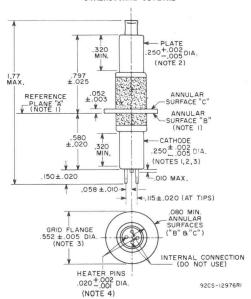
With duty factor of 0.01 and pulse duration of 0.5	microsecond
DC Plate Voltage	1400 V
Grid-Bias Voltage	-80 V
Peak Positive Grid Voltage ^e	20 V
Peak Plate Current	I A
Useful Power Output at Peak of Pulse	500 W

Typical Operation with Rectangular Waveshape in Grid-Drive Amplifier Circuit at 1090 MHz

Typical Operation with Rectangular Waveshape in Cathode-Drive Amplifier Circuit at 1090 MHz

With duty factor of 0.01 and pulse duration	of 0.	5 microsecond
DC Plate Voltage		1000 V
Cathode-Bias Voltage		25 V
Peak Plate Current		1.2 A
Peak Driving Power		180 W
Useful Power Output at Peak of Pulse		600 W

^a Grayhill, Inc., 561 Hillgrove Ave., LaGrange, Ill.


b Jettron Products, Inc., 56 Route 10, Hanover, N.J.

C This value is for continuous pulsing. The duty factor can be 0.25 for any interval up to 100 microseconds in length as long as the long-term duty factor does not exceed 0.01.

d Plate-seal temperature must be limited to 225°C.

e Amplitude of grid-drive gating pulse is adjusted to produce this value.

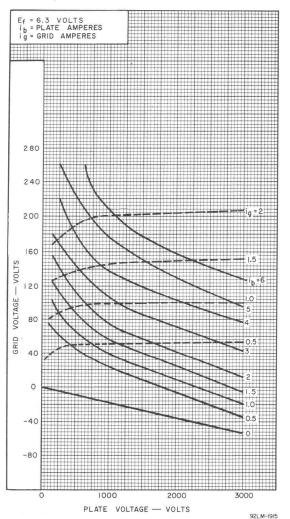
DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

Reference Plane "A" is defined as that plane against which annular surface "B" of the grid flange abuts.

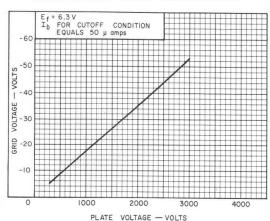
Annular surface "B" is on the side of the grid flange toward the cathode cylinder.
Annular surface "C" is on the side of the grid flange toward the plate

cylinder.


Note 1: With annular surface "B" resting on reference plane "A". The axis of the cathode cylinder will be within 2° of a line perpendicular to reference plane "A".

Note 2: The axes of the plate cylinder and cathode cylinder will coincide within $0.010\,\mathrm{inch}$.

Note 3: The axes of the cathode cylinder and grid flange will coincide within 0.005 inch.


Note 4: Pin diameter is slightly greater when pretinned.

Average Constant-Current Characteristics of Type 4062A in Grid-Pulsed Service

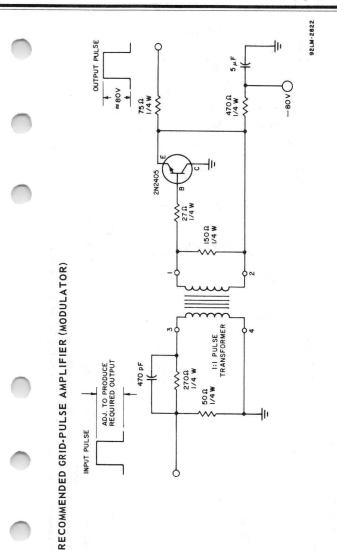
DATA 2

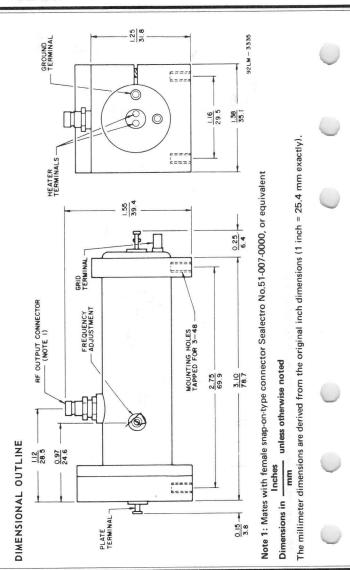
Plate-Current Cutoff Characteristic

Pencil Tube Oscillator

L-Band Cavity Oscillator

	ELECTRICAL	
	Heater, for Unipotential Cathode:	
	Voltage (AC or DC) 6.3 ± 10%	V
١	Current at 6.3 volts 0.33 max.	Α
7	Frequency	Hz
	Tuning Range	Hz
	RF Coaxial Output Terminal Mates with fem snap-on-type connec: Sealectro No.51-007-0000, or equivale	tor
Ŋ.	Characteristic Impedance	SIIL
7	(Approx.)	Ω
	Maximum Output VSWR (Ali phase angles) 1.3:1	
	MECHANICAL	
	Operating Position	ny
	Dimensions and Terminal Connections See Dimension Outli	
	Weight (Approx.)	oz
	ENVIRONMENTAL	
	The units will remain stable within \pm 3 MHz in frequency and –dB in peak power output (from nominal conditions) under any cobination of the following conditions:	m-
	Operating Temperature	oC
	Altitude	ft
	Output VSWR (All phase angles) 1.1:1	
	Plate and Heater Voltage Variation ±10	%
	Duty Factor Up to 0.01	
	GRID-PULSED OSCILLATOR — CLASS C MAXIMUM RATINGS, Absolute-Maximum Values	
7	For a maximum duty factor ^a of 0.01c ^b	
	DC Plate Voltage	V
	DC Grid Voltage:	
	Negative-bias value 100 max.	V
1	Positive value during gating pulse 0 max.	V
	Peak Plate Current	Α
	Peak Grid Current 0.7 max.	Α


Plate Dissipation	15 max.	W
Grid Dissipation	1.0 max.	W
Peak Heater-Cathode Voltage:		
Heater negative with respect to cathode	60 max.	V
Heater positive with respect to cathode	60 max.	V


Typical Operation with Rectangular Waveshape in Grid-Pulsed Circuit at 1090 MHz

With duty factor of 0.001 and pulse duration of 0.45 microsecond

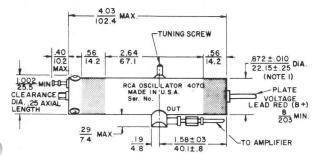
DC Plate Voltage	1400	V
Grid-Bias Voltage	-80	V
DC Plate Current	1	mA
Useful Power Output at Peak of Pulse	500	W

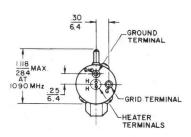
- a Duty factor is defined as the product of the pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of the "ON" time to total elapsed time in any 500-microsecond interval. "ON" time is defined as the sum of the durations all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. Peak value is defined as the maximum value of a smooth curve through the average of the fluctations over the top portion of the pulse.
- b When operated for 10 minutes per hour. For continuous pulsing, the maximum duty factor is 0.005.

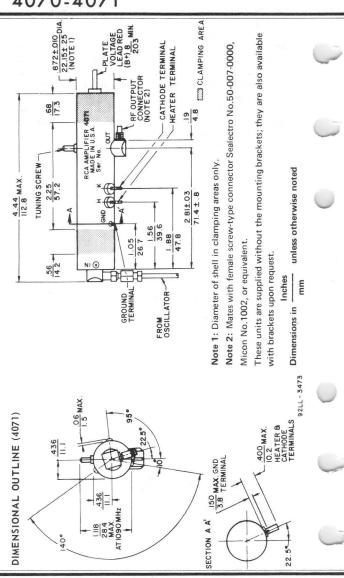
Pencil-Tube Oscillator-Amplifier

600W Peak Power Output at 1090 MHz

	ELECTRICAL			
	Heater, for Unipotential Cathode:			
1	Voltage (AC or DC)	$6.3 \pm 5\%$		V
	Current at 6.3 volts (Total)	0.66 ma	×.	Α
	Frequency	1090	M	Hz
	Tuning Range	±15	M	Hz
	RF Coaxial Output Terminal Mates wit connector Sealed Micon No.	h female scr tro No.50-00 .1002, or eq	07-00	00
	Characteristic Impedance (Approx.)	50		Ω
	Change in Peak Power Output During Modulation ^a	0.5 ma	x.	dB
	Pulse Rise Time (10% to 90%)b	55-90		ns
	Pulse Decay Time (90% to 10%)	60-180		ns
	RF Delay Time (measured at 50% of pulse amplitude)	250 ma	x.	ns
	RF Jitter	10 ma	x.	ns
	MECHANICAL			
	Operating Position		Α	ny
	Dimensions and Terminal Connections See I	Dimensional	Outli	ne
	Total Weight	9	max.	oz
	ENVIRONMENTAL			
	The units will remain stable within ± 3 MHz in			
	dB in peak power output (from nominal conditional bination of the following conditions: Vibration:	ons) under a	ny co	m-
	20 to 33 Hz	2	2	G
	33 to 105 Hz	0.036	in 3	DA
	105 to 500 Hz Parallel	20)	G
	Perpendicular	15	5	G
	Shock, 11 ms:d	20)	G
1	Case Temperature	-54 to +12	5	oC
	Altitude	Jp to 30,000)	ft


Output VSWR (All phase angles)	. ±5	%	0
GRID-PULSED OSCILLATOR - CLASS C MAXIMUM RATINGS, Absolute-Maximum Value	es:		
For a maximum long-term duty factor ^e of 0.01 ^f			
DC Plate Voltage (Each Unit)	1050 max.	V	0
Peak Oscillator Grid Current	0.5 max.	Α	
Peak Amplifier Cathode Current	2.0 max.	Α	
Peak Plate Current:			
Oscillator	0.7 max.	Α	
Amplifier	1.5 max.	Α	
Plate Dissipation (Total)	18 max.	W	
Peak Heater-Cathode Voltage:			
Heater negative with respect to cathode	60 max.	V	
Heater positive with respect to cathode	60 max.	V	
TYPICAL OPERATION WITH RECTANGUL. SHAPE IN GRID-DRIVE CIRCUIT AT 1090 N With duty factor of 0.01 and pulse duration of	MHz	cond	
DC Plate Voltage (Each Unit)	1000	V	
Oscillator Grid Bias	-80	V	
Amplifier Cathode Bias	+25	V	
DC Plate Current (Total)	20	mA	
Useful Power Output at Peak of Pulse	600	W	
The change in peak power output between the and any other video pulse in a pulse train consi The individual pulse width is 0.45 microseco to pulse spacing is 1.45 microseconds.	sting of 56 pt	ulses.	0
b The pulse rise time and decay time are measu scope having a bandwidth of 24 MHz and a bandwidth of 12.4 GHz. If the bandwidth of scope or the detector is less than 15 MHz, t must be corrected to account for changes intre- strumentation.	detector hav either the os the measuren	ing a cillo- nents	
c Tested per methods described in MIL-STD-20 204A, Test Condition A.			
d Tested per methods described in MIL-STD-20	J2C, Test Me	tnod	


202B.


- Duty factor is defined as the product of the pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of the "ON" time to total elapsed time in any 2500-microsecond interval. "ON" time is defined as the sum of the durations of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. Peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
 - f This value is for continuous pulsing. The duty factor can be 0.25 for any interval up to 100 microseconds in length as long as the long-term duty factor does not exceed 0.01.

NOTE: See Type 4072 for Recommended Grid-Pulse Amplifier (Modulator)

DIMENSIONAL OUTLINE (4070)

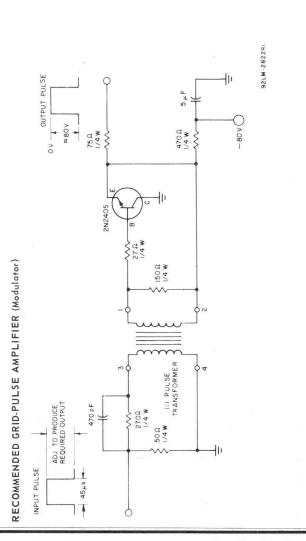
Pencil Tube Oscillator

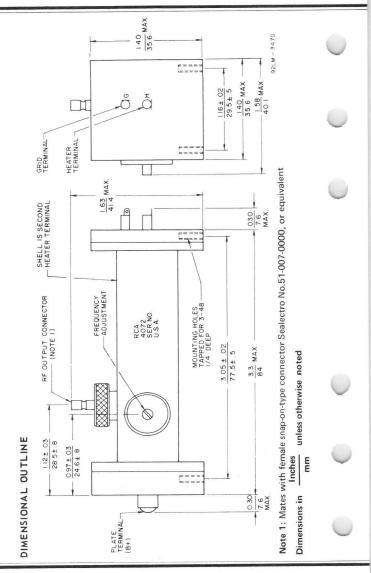
L-Band Cavity Oscillator

	ELECTRICAL	
	Heater, for Unipotential Cathode:	
	Voltage (AC or DC) 6.3 ± 10% V	
1	Current at 6.3 volts 0.33 max. A	
	Frequency	
	Tuning Range	
	RF Coaxial Output Terminal Mates with female snap-on-type connector Sealectro No.51-007-0000, or equivalent	
7	Characteristic Impedance (Approx.)	
	Maximum Output VSWR (All phase angles) 1.3:1	
	MECHANICAL Operating Position	
	Outline	
	Weight (Approx.) 4 oz	
	ENVIRONMENTAL	
	The units will remain stable within \pm 3 MHz in frequency and $-$ 2 dB in peak power output (from nominal conditions) under any combination of the following conditions:	
	Operating Temperature -46 to +71 °C Altitude Up to 55,000 ft Output VSWR (All phase angles) 1.1:1 Plate and Heater Voltage Variation ±10 % Duty Factor Up to 0.01	
	GRID-PULSED OSCILLATOR - CLASS C MAXIMUM RATINGS, Absolute-Maximum Values	
	For a maximum duty factor ^b of 0.01 ^c DC Plate Voltage	
	Positive value during gating pulse 0 max. V	

Peak Plate Current

	ear Fate Guiterit	1.2 max. A	
F	Peak Grid Current	0.7 max. A	
F	Plate Dissipation	15 max. W	0
(Grid Dissipation	1.0 max. W	
F	Peak Heater-Cathode Voltage:		
	Heater negative with respect to cathode	60 max. V	
	Heater positive with respect to cathode	60 max. V	0


12 may A


TYPICAL OPERATION WITH RECTANGULAR WAVE SHAPE IN GRID-DRIVE CIRCUIT AT 1090 MHz

With duty factor of 0.005 and pulse duration of 0.45 microsecond

DC Plate Voltage	1400	V
Grid-Bias Voltage	-80	V
DC Plate Current	1	mA
Useful Power Output at Peak of Pulse	500	W

- Duty factor is defined as the product of the pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of the "ON" time to total elapsed time in any 2500-microsecond interval. "ON" time is defined as the sum of the durations of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. Peak value is defined as the maximum value as a smooth curve through the average of the fluctuations over the top portion of the pulse.
- When operated for 10 minutes per hour. For continuous pulsing, the maximum duty factor is 0.005.

Beam Power Tube

FORCED-AIR COOLED

CERAMIC-METAL CONSTRUCTION "ONE-PIECE" ELECTRODE DESIGN
COAXIAL-ELECTRODE STRUCTURE INTEGRAL RADIATOR
MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE

For Voltage-Regulator Applications

GENERAL DATA

Electrical:

Heater, for Matrix-Type Oxide-Coated Unipotential Cathode:

volts = 600, and plate ma. = 600. .

coated on potential cathode.	
Voltage (AC or DC) $\begin{cases} 5.5 \text{ typical} \\ 6.0 \text{ max.} \end{cases}$	volts
Current at heater volts = 5.5 17.3 Minimum heating time at	amp
heater volts = 5.5 5	minutes
Mu-Factor, Grid No.2 to Grid No.1, for plate volts = 2500, grid No.2	

Mechanical:

Operating	Po	S	it	ioi	٦.								į.							Any
Overall Le	eng	gth	h.																3	. 25"
Diameter.														3.	. 7	25	11	±	0.1	035"
Radiator.											1	nt	eg	ra		pa	rt	0	f ·	tube
Weight (Ap	opi	0	х.) .															2	lbs
Terminal (

G_I - Grid No.1 G₂ - Grid No.2 H - Heater

K - Cathode P - Plate

Thermal:

Terminal Temperature (Plate, grid No.2, grid No.1,

cathode, and heater)...... 250 max. °C
Air Flow:

Through radiator—Adequate air flow to limit the plate-terminal temperature to 250°C should be delivered by a blower through the radiator before and during the application of heater, plate, grid No.2, and grid No.1 voltages. Typical values of air flow directed through the radiator versus plate dissipation are shown in accompanying Typical-Cooling-Requirements curve. Plate power, grid-No.2 power, heater power, and air flow may be removed simultaneously.

To grid No.2, grid No.1, cathode, and heater terminals—
A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these

terminals so that its temperature does not exceed the specified maximum value of 250° C. An air flow of 10 cfm is usually adequate.

VOLTAGE REGULATOR

Maximum CCSa Ratings. Absolute-Maximum Values:

DC PLATE VOLTAGE.							3500	max.	volts
DC GRID-No.2 VOLT	AGE		•				1000	max.	volts
DC PLATE CURRENT.							1	max.	amp
GRID-No.2 INPUT .								max.	watts
PLATE DISSIPATION							1750	max.	watts

CHARACTERISTICS RANGE VALUES

	Min.	Max.	
1. Heater Current	16.3	18.2	amp
2. Direct Interelectrode Capacitances:			
Grid No.1 to cathode	37	46	$\mu\mu f$
Grid No.1 to grid No.2	46	62	μμf
Grid No.1 to plateb	-	0.17	_{mu} f
Grid No.2 to cathodec	-	1.40	$\mu\mu$ f
Grid No.2 to plate	14.6	17.8	$\mu\mu f$
Plate to cathodeb,c	-	0.017	μμf
3. Grid-No.1 Voltaged (1)	5	30	volts
4. Grid-No.1 Voltage (2)	5	30	volts
5. Grid-No.2 Current ^d (1)	-15	0	ma
6. Grid-No.2 Current ^e (2)	-30	0	ma
7. Pulse Emission Voltage f	_	650	volts
7. Turse Emission Fortage		550	.0100

Continuous Commercial Service.

With external, flat, metal shield having diameter of 8°, and center hole approximately 3° in diameter provided with spring fingers that connect the shield to grid-No.2 terminal. Shield is located in plane of grid-No.2 terminal to the tube axis. is located in plane

c with external, With external, flat, metal shield having diameter of 8", and center hole approximately 2-3/8" in diameter provided with spring fingers that connect the shield to grid-No.1 terminal. Shield is located in plane of grid-No.1 terminal perpendicular to the tube axis.

With dc plate voltage 3500 volts, dc grid-No.2 voltage of 400 volts, grid-No.1-circuit resistance of 30,000 ohms, and dc grid-No.1 voltage adjusted to give a dc plate current of 0.25 ampere.

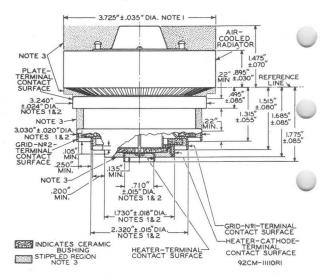
With dc plate voltage of 600 volts, dc grid-No.2 voltage of 400 volts, grid-No.1-circuit resistance of 30,000 ohms, and dc grid-No.1 voltage adjusted to give a dc plate current of 0.5 ampere.

Adjusted to give a duplate content of the second of the give and plate tied together; and a pulse-voltage source connected between plate and cathode. The half-sinusoid (Approx.) pulse is 2 microseconds between the two points on the pulse at which the instantaneous value is 50% of the peak value, pulse-repetition frequency is 60 cps, and duty factor is 0.00012. The voltage-pulse amplitude is adjusted until a peak cathode current of 90 amperes is obtained. After 2 minutes at this value, the voltage-pulse amplitude content of the voltage-pulse content of obtained. After 2 minutes at will not exceed 650 volts peak.

SPECIAL TEST

5-to-400 cps Vibration Test:

This test is performed on sample lots of tubes to determine the ability of the tube to withstand variable-frequency vibration. With heater voltage of 5.5 volts ac, dc plate supply

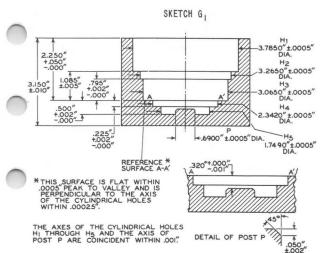


- voltage of 450 volts, dc grid-No.2 supply voltage of 300 volts, and grid-No.1 supply voltage adjusted to give dc plate current of 10 ma. Plate load resistor = 2000 ohms, grid-No.2 resistor = 1000 ohms, and grid-No.1 resistor = 30 ohms. The tube is vibrated along each of three mutually perpendicular axes over a 6-minute sweep consisting of:
 - (a) 5 to 22 cps with a fixed double amplitude of 0.240 inch \pm 10%.
 - (b) 22 to 200 cps at a fixed acceleration of 10 g \pm 10%.
 - (c) 200 to 400 cps at a fixed acceleration of 3 g \pm 10%.

At the end of this test, the tubes are required to meet the limits of items 1,3,4,5,6, and 7 under *Characteristics Range Values*.

OPERATING CONSIDERATIONS

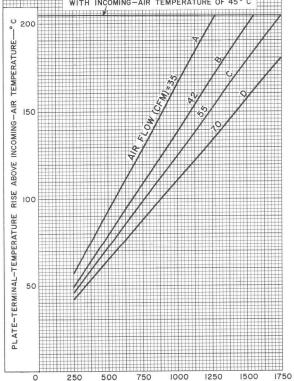
The maximum-rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel cannot possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.


NOTE 1: WITH THE CYLINDRICAL SURFACES OF THE RADIATOR BAND, PLATE TERMINAL, GRID-No.2 TERMINAL, GRID-No.1 TERMINAL, HEATER-CATHODE TERMINAL, AND HEATER TERMINAL CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH G₁. PROPER ENTRY OF THE TUBE IS OBTAINED WHEN THE GRID-No.2 TERMINAL IS SEATED ON THE SHOULDER A-A'. THE TUBE IS PROPERLY SEATED ON THE SHOULDER WHEN A 0.010"-THICKNESS GAUGE 1/8" WIDE WILL NOT ENTER MORE THAN 1/16" BETWEEN THE SHOULDER SURFACE AND THE GRID-No.2 TERMINAL. THE GAUGE IS PROVIDED WITH SLOTS TO PERMIT MAKING MEASUREMENT OF SEATING OF GRID-No.2 TERMINAL ON SHOULDER A-A'.

NOTE 2: THE DIAMETER OF EACH TERMINAL IS HELD TO INDICATED VALUES ONLY OVER THE INDICATED MINIMUM LENGTH OF ITS CONTACT SURFACE.

NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

92CM-11109

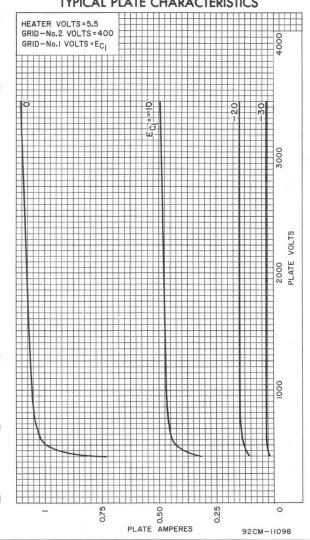


TYPICAL COOLING REQUIREMENTS

AIR FLOW THROUGH RADIATOR IN EITHER DIRECTION. MAXIMUM PLATE-TERMINAL TEMPERATURE = 250° C В C D CURVE A

PRESSURE DROP-1.5 0.35 0.6 INCHES OF WATER

MAXIMUM ALLOWABLE TEMPERATURE RISE WITH INCOMING-AIR TEMPERATURE OF 45° C



92CM-11100

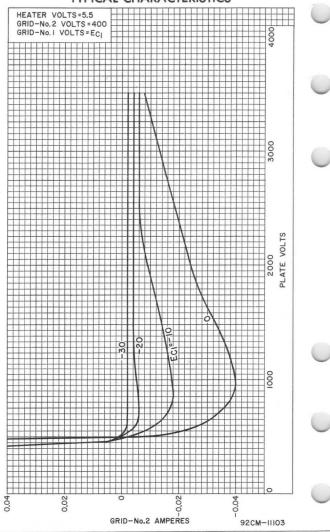


PLATE DISSIPATION - WATTS

TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS

Beam Power Tube

QUICK-HEATING FILAMENT 90 WATTS CW INPUT (ICAS) UP TO 60 Mc 60 WATTS CW INPUT (ICAS) AT 175 Mc

For Use in Push-to-Talk Mobile and Emergency-Communications Equipment as an RF Power-Amplifier Tube

GENERAL DATA

	Electrical:
	Filament, Coated: Voltage (AC or DC) 6.3 \pm 10% volts Current at 6.3 volts 0.65 amp Heating time 1 sec Transconductance, for plate volts = 200,
	grid-No.2 volts = 200, and plate ma. = 100 · · · · · · · · · · · · · · · 6000 Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 200, grid-No.2 volts
	= 200, and plate ma. = 100 4 Direct Interelectrode Capacitances:
	Grid No.1 to plate 0.24 max. μμf Grid No.1 to filament & grid No.3 & internal shield, grid No.2, and
	base sleeve
	base sleeve 8.5 μμf
	Mechanical:
	Operating Position Vertical, base down or up, or Horizontal with pins 3 and 7 in vertical plane Maximum Overall Length
7	Cap
	Pin 1-Filament Tap, Grid No.3, Internal

Shield Pin 2-Filament Pin 3-Grid No.2

Pin 7 - Filament Pin 8 - Base Sleeve

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy and

RF POWER AMPLIFIER - Class C FM Telephony

Maximum	ICAS*	Ratings,	Absolute-Maximum	Values:
---------	-------	----------	------------------	---------

	Up to 60 Mc
DC PLATE VOLTAGE	750 max. volts
DC GRID-No.2 VOLTAGE	250 max. volts
DC GRID-No.1 VOLTAGE	-150 max. volts
DC PLATE CURRENT	150 max. ma
DC GRID-No.1 CURRENT	4 max. ma
PLATE INPUT	90 max. watts
GRID-No.2 INPUT	3 max. watts
PLATE DISSIPATION	25 max. watts
BULB TEMPERATURE (At hottest point on	
bulb surface)	220 max. °C

Typical Operation:

As amplifier at 175 Mc

DC Plate Voltage 400	volts
DC Grid-No.2 Voltage* 190	volts
From a series resistor of 18000	ohms
DC Grid-No.1 Voltage♥60	volts
From a grid resistor of 30000	ohms
DC Plate Current	ma
DC Grid-No.2 Current	ma
DC Grid-No.1 Current (Approx.) 2	ma
Driving Power (Approx.) 4.5	watts
Power Output (Approx.) 30	watts

Maximum Circuit Values:

Grid-No 1-	Circuit	Resistance		30000 max.	ohms

- ▲ Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.
- Intermittent Commercial and Amateur Service.
- ★ Obtained preferably from a separate source, or from the plate supply voltage with a voltage divider, or through a series resistor. A series grid-Mo.2 resistor should be used only when the #604 is used in a circuit which is not keyed. Grid-Mo.2 voltage must not exceed #00 volts under key-up conditions.
- Obtained from fixed supply, by grid-No.1 resistor, or by combination methods.
- When grid No.1 is driven positive and the 4604 is operated at maximum ratings, the total dc grid-No.1-circuit resistance should not exceed the specified value of 30,000 ohms. If this value is insufficient to provide adequate bias, the additional required bias must be supplied by a fixed supply.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

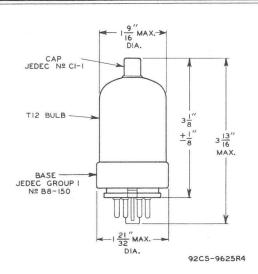
Min. Max.

Filament Current at 6.3 volts ac. . . . 0.59

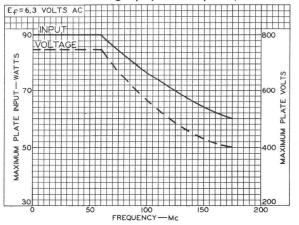
0.71

amp

Direct Interelectrode Capacitances: Grid No.1 to plate Grid No.1 to filament & grid No.3 & internal shield, grid No.2, and	-	0.24	μμ f
base sleeve	9.5	12.5	$\mu\mu$ f
base sleeve	7.3	9.5	μμf
Plate Current♠	46	94	ma
Grid-No.2 Current♠	-	5.5	ma
Useful Power Output♣	47	-	watts

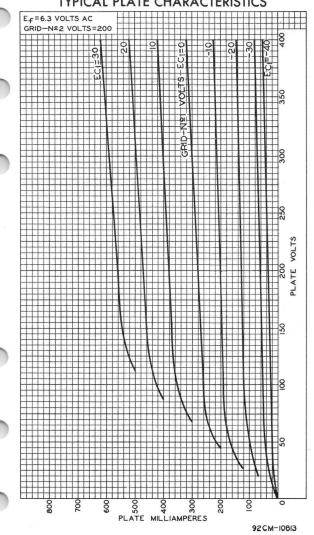

♦ With 6.3 volts ac on filament, dc plate voltage of 300 volts, dc grid-No.2 voltage of 200 volts, and dc grid-No.1 voltage of -29 volts. →

In a single-tube, self-excited-oscillator circuit, and with 6.3 volts ac on filament, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-No.1 existor of 30,000 ± 10% ohms, dc plate current of 100 to 112 ma., dc grid-No.1 current of 2 to 2.5 ma., and frequency of 15 Mc.

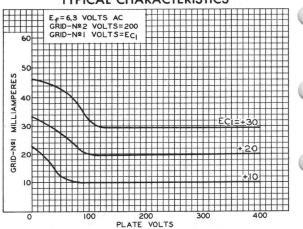

OPERATING CONSIDERATIONS

The bulb becomes hot during operation. To insure adequate cooling, therefore, it is essential that free circulation of air be provided around the 4604.

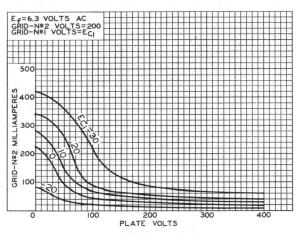
The plate shows no color when the 4604 is operated at full ratings under ICAS conditions. Connections to the plate should be made with a flexible lead to prevent any strain on the seal at the cap.



RATING CHART ICAS Class-C Telegraphy or Telephony Service



92CS-108I7RI


TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS

92CS-108I4

92CS-10816

Super-Power Beam Power Tube

2-MW SHORT-PULSE POWER, 275-kW LONG-PULSE POWER

PULSE LENGTH TO 2500 MICROSECONDS LOW FILAMENT POWER FOR AIRBORNE USE

WATER COOLED

For RF-Pulse Power Amplifier at Frequencies from 195 to 600 MHz in Search Radar, Telemetry, and Particle Accelerator Service.

ELECTRICAL	
Filamentary Cathode, Multistrand, Matrix-Type, Oxide-Coated— Voltage: a, J	
Maximum, with dc or 60-Hz ac excitation . I.00 Maximum, with 400-Hz ac excitation I.05 Typical, with dc or 60-Hz ac excitation . 0.95 Current:	V V
Typical operation value at 0.95 volt, with 60-Hz excitation	A
voltage	S
voltage before other voltages are applied. 90 Mu-Factor, Grid No.2 to Grid No.1 7 Direct Interelectrode Capacitances	S
Grid No.1 to plate	pF pF
capacitors)	pF
MECHANICAL	
Operating Position Tube axis vertical, either end Overall Length 8.62 \pm 0.31 Maximum Diameter	in in 1b
THERMAL k,m	0-
Ceramic-Insulator Temperature	°C °C °C
Absolute Differenti Typ. Min. for Typ. Flow Flow Flow g/m g/m psi	ial
Through filament block. 1.2 0.8 18 Through dc cat hode block. 1.2 0.8 18 Through grid-No.1 block. 1.2 0.8 14 Through grid.No.2 block. 1.2 0.8 18	

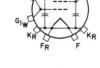
Water Flow (cont'd)
--------------	--------	---

	Typ. Flow g/m	Absolute Min. Flow g/m	Max. Pressure Differential for Typ. Flow psi
Through plate: For plated dissipations up to 10 kW (Average) • • For plate dissipations of 10 kW to 30 kW (Average).	14	12	30 60
Resistivity of water at 25°C	outlet		

TERMINAL DIAGRAM (Bottom View)

F-Insulated Filament Terminal and Coolant Connection

FR - Uninsulated Filament
Terminal for DC Circuit Returns and
Coolant Connection
G1 - RF Grid-No.1 Terminal
Contact Surface


G1W - DC Grid-No.1 and Coolant Connection G2 - DC Grid-No.2 and Coolant

Connection
KR - RF Cathode Terminal
Contact Surface for
Circuit Returns

P-RF Plate Terminal Contact

Surface Pw - DC Plate and Coolant Connection

DATA 1

PULSED RF AMPLIFIERⁿ

For frequencies from 195 to 600 MHz and a maximum "ON" time as specified in any 25000-microsecond intermal

Absolute-Maximum Ratings

"ON" time 15	μs 2500	Ms
Peak Positive-Pulse Plate Voltage ^d 55	-	kV
DC Plate Voltage ^e	25	kV
Peak Positive-Pulse Grid-No.2 Voltage f, g 2.2	2.2	k٧
DC or Peak Negative-Pulse Grid-No. Voltage. 400	400	٧
Peak Plate Current 80	30	
Peak Grid-No.2 Current 15	2	
Peak Rectified Grid-No. Current 15	2	A
DC Plate Current	2.5	A
DC Grid-No.2 Current 0.06	0.2	A
DC Grid-No.I Current 0.06	0.2	A

Absolute-Maximum Ratings (cont'd)

1111

"ON" time	15	μs 2500	MS
Plate Input (Average)	16		kW kW
Typical Plate-Pulsed Operatio	n		
In Class B service at 425 MHz with a rectangula of 13 microseconds and a duty factor	r wai		ılse
Peak Positive-Pulse Plate Voltaged		. 50	kV
Peak Positive Pulse Grid-No.2 Voltage		. 2.1	kV
Peak Negative-Pulse Grid-No. Voltageh			٧
Peak Plate Current			Α
Peak Grid-No.2 Current			Α
Peak Rectified Grid-No. Current			A
DC Plate Current			Α
DC Grid-No.2 Current			Α
DC Grid-No.1 Current		. 0.04	Α
Peak Driver Power Output (Approx.)			kW
Useful Peak Power Output		. 2	MW
Typical Grid-Pulsed Operation	n		
In Class B service at the frequencies shown w			
waveshape pulse of 2000 microseconds and a d	uty j	factor of (0.06
At	425 I	Hz At 600) Hz
DC Plate Voltage ^e	20	21	k٧
Peak Positive-Pulse Grid-No.2 Voltagef .	2	2	k٧
	350	350	
Peak Plate Current	27	26	
Peak Grid-No.2 Current	1.6	1.6	A

Useful Peak Power Output Maximum Circuit Value

Peak Rectified Grid-No. | Current .

Peak Driver Power Output (Approx.)

Grid-No. | Circuit Resistance . .

DC Plate Current

DC Grid-No.2 Current . .

DC Grid-No. | Current . . .

Because the filament voltage, when operated near the maximum value, provides emission in excess of any requirements within tube ratings, during life the filament voltage should be reduced to a value that will give adequate but not excessive emission. Careful attention to maintaining the value consistent with adequate emission will result in conserving the life of the tube. The filament voltage should be measured serving the life of the tube. The filament voltage should be measured at the respective liquid coolant connections on the tube side of the threads. This procedure is essential for accurate measurement of the filament voltage. At 400 cycles some heating of the filament leads and rf cathode terminal (cathode heater) occurs; this condition isnot detrimental to tube operation or tube life.

b Measured directly across cooled element for the indicated typical flow.

C This pressure is related to the output-cavity pressurization as required to prevent corona or external arc-over.

d The magnitude of any spike on the plate voltage pulse should not exceed its peak value by more than 4000 volts, and the duration of any spike when measured at the peak-value level should not exceed 10% of the maximum "ON" time. The output cavity must be pressurized as required to prevent corona or external arc-over at the ceramic insulator.

High speed "fault" protection must be used with all grid-pulsed appli-cations and with all plate-pulsed applications where the pulse length exceeds 20 microseconds.

A

A

A

A

1.2

1.56

0.096

0.072

2.7 kW

250 kW

500

1.2

1.62

0.096

0.072

2.7

275

- $^{\rm f}$ The magnitude of any spike on the grid-No.2 voltage pulse should not exceed its peak value by more than 250 volts, and the duration of any spike when measured at the peak-value level should not exceed 10% of the maximum "ON" time.
- 9 A negative dc voltage of 300 volts maximum may be applied to grid No. 2 to prevent any tube conduction between pulses.

h The grid-No.1 voltage may be a combination of fixed and self bias obtained from a series grid resistor.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section.

J See Electrical Considerations - Filament or Heater

k See Cooling Considerations - Liquid Cooling

M See Cooling Considerations - Forced-Air Cooling

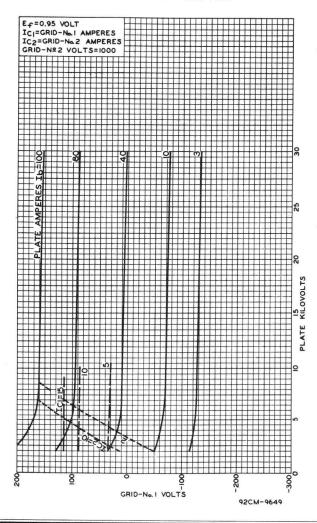
n See Classes of Service.

CHARACTERISTICS RANGE VALUES

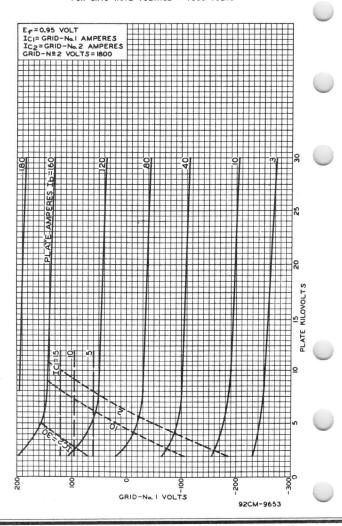
		Note	Min	Max	
Filament Current		1	460	530	Α
Input Strap-Resonant Frequency		-	230	250	MHz
Output Strap-Resonant Frequency.		-	240	260	MHz
Direct Interelectrode Capacitano	ces				
Grid No.1 to plate		2	-	0.15	pF
Grid No.2 to cathode		1-1	12000	18000	pF

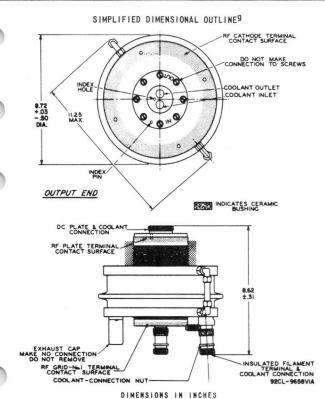
Note I: At filament voltage of 0.95 volt and ac filament excitation at 60 Hz.

Note 2: Measured with special shield adapter.


FOR ADDITIONAL INFORMATION ON THIS TYPE, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FOR RCA SUPER POWER TUBES, ICE-279A AVAILABLE FROM:

Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey


Typical Constant-Current Characteristics


FOR GRID-No.2 VOLTAGE = 1000 VOLTS

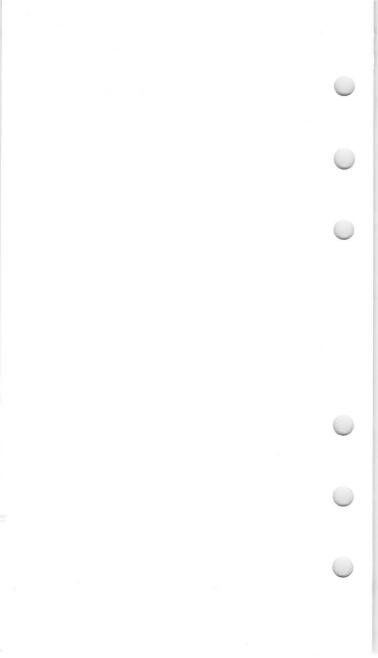
Typical Constant-Current Characteristics FOR GRID-No.2 VOLTAGE = 1800 VOLTS

9 A detailed Dimensional Outline and associated Gauge Drawings are given in the Technical Bulletin available upon request.

UNINSULATED FILAMENT TERMINAL & COOLANT CONNECTION

UNINSULATED FILAMENT TERMINAL & COOLANT CONNECTION INPUT END RF CATHODE TERMINAL CONTACT SURFACE DC GRID-Nº 2 & COOLANT CONNECTION DC GRID-NºI & COOLANT 92CL-9658VIB

Super-Power Beam Power Tube


2-MW SHORT-PULSE POWER, 275-kW LONG-PULSE POWER
PULSE LENGTH TO 2500 MICROSECONDS

LOW FILAMENT POWER WATER COOLED

ATER COOLED FOR AIRBORNE USE

For RF-Pulse Power Amplifier Frequencies from 195 to 600 MHz

The 4616VI is the same as the 4616 except the 4616VI does not have a water separator.

Super-Power Triode

8 MEGAWATTS OF PEAK POWER OUTPUT AT 425 MHz

MATRIX-OXIDE-TYPE CATHODE LIQUID COOLED

DOUBLE-ENDED TERMINAL CONFIGURATION FOR SYMMETRICAL CIRCUITRY

For RF Power Amplifier in Pulse Service at Frequencies up to 450 MHz

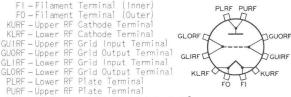
F 1	FC	TD	10	A I

ELECTRICAL	
Filamentary Cathode, Multistrand, Matrix-Oxide-Typek-	
Current (DC):	
Typical operating value 1800	A
Maximum value ^a	A
Maximum value for starting,	
even momentarily 2000	Α
Minimum time to reach operating current . 30	S
Minimum time at normal operating current	
before plate voltage is applied 60	S
Voltage (DC): b	
Typical value required	
to obtain 1800 amperes	V
Direct Interelectrode Capacitances	
Grid to plate 160	pF
Grid to cathode	pF
Plate to cathode Less than I.O	pF
The second secon	Pi
MECHANICAL	
Operating Position Tube axis vertical, either end	ир

operating rooteron.				un	-	4		- 1	 Ju	,	0	-	101	CITA	up
Overall Length		×	÷				v				×	ě	17	max	in
Maximum Width	(19)		*	*	ř				100	100			24	max	in
Weight Uncrated		ų.				9		9	7.5			2		190	1 b

(See Dimensional Outline)

THERMAL^{m, n}


Ceramic-Insulator Temperature		2		×			150	max	oc
Metal-Surface Temperature		×				Ŷ.	100	max	OC
Minimum Storage Temperature .							-65	min	OC
Water Flow									

		Absolute	Max. Pressure Differential
	Times.		
	Typ.	Min.	
	Flow	Flow	Flowc
	g/m	g/m	psi
To plate:	0.4	0.	
Total flow for two parallel			
input and output coolant			
courses:			
For plata discipation up			

Water Flow (con'd)		Absolute	Max. Pressure Differential
		Min. $Flow$	for Typ. Flow ^c
To upper grid coolant	g/m	g/m	psi
course	3	2	25
course	3	2	25
course	12	10	6
Through plate and grid cool		urses	l min MΩ-cm
Through grid-cathode coolar			
Water temperature from any ou	itlet .		70 max °C
External gas pressured, e		* * * * *	65 max psig

TERMINAL DIAGRAM (Bottom View)

Maximum watter pressure at any inlet. 90 max

PULSED RF AMPLIFIER P Absolute-Maximum Ratings

For a maximum "ON" time of 25 microseconds in any 2500-microsecond interval, for frequencies up to 450 MHz

Peak Positive-Pulse Plate \	101	tag	je f				×					(00)		40	kV
Peak Negative Grid Voltage.					×			200	N.		ž.	140		200	V
Peak Plate Current				000	(*)		41					000		500	Α
Peak Cathode Current ⁹			į.		9					8	ě		ŝ	750	Α
DC Plate Current		0 12	×			v		¥	14		¥		Ŋ.	5	Α
DC Cathode Current ⁹			×				41		×	×	20	0.00	×	7.5	Α
Plate Input (Average)		*	ϵ		0.00	×	$\mathbf{e}_{\mathbf{i}}$		×		\mathbf{x}_{i}	(4)	9	200	kW
Plate Dissipation (Average)) .				2	*	\sim		i.	•	*		2.7	150	kW

Typical Plate-Pulsed Operation With Rectangular Wave Shape in Cathode-Drive Circuit

With duty factor of 0.01 and pulse duration of 25 microseconds $At\ 425\ \mathrm{MHz}$

Peak Positive-Pulse Plate-to-Grid	Voltage ^{f, h} 30000	35000 V
Peak Cathode-to-Grid Voltageh	60	70 V
Peak Plate Current	310	400 A
Peak Cathode Current ^g	525	680 A
DC Plate Current	3.1	4 A
DC Cathode Current ^g	5.2	6.8 A

psiq

2012		NAME OF TAXABLE PARTY.	COLUMN TO SERVICE
	ak Driver Power Output ^j	350 8	kW MW
	The specified maximum filament current is a maximum rating whoot be exceeded, even momentarily, during operation of the life of the tube can be conserved by operating the filament at current which will enable the tube to provide the desired power of the season of the life of the season of the life of the season of the seas	the low veroutp ually p e ratin e adequ Good re	rest out. oro- igs, ate
	Measured between KLRF and KURF (See Terminal Diagram).		
	Measured directly across cooled element for the indicated typ	ical fl	.ow.
	This pressure is related to the output-cavity pressurizatio quired to prevent corona or external flash-over.	n when	re-
	With the gauge located in an area where the maximum pressur to the gauge is one atmosphere absolute.	e exter	nal

f The magnitude of any spike on the plate voltage pulse shouldnot exceed its peak value by more than 10%, and the duration of any spike when measured at the peak-value level shouldnot exceed 5% of the pulse duration. 9 Peak or average cathode current is the total of the peak or average plate current and the peak or average rectified grid current. (Pulses may not be coincident, hence they may not necessarily be added directly).

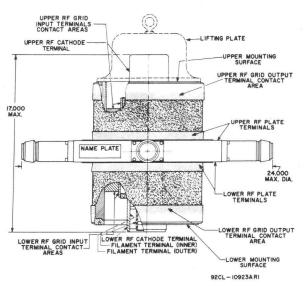
Preferably obtained from a cathode bias resistor.

The driver stage is required to supply tube losses, rf circuit losses, and rf power added to the plate circuit. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at the front of this section.

- k See Electrical Considerations Filament or Heater.
- See Cooling Considerations Forced-Air Cooling.
- ⁿ See Cooling Considerations Liquid Cooling.
- P See Classes of Service.

CHARACTERISTICS RANGE VALUES


														Note	Min	Max	
Filamer	nt 1	Voltage	2.	i 1		ı v	21		ī,	÷				Ĭ.	1	1.8	٧
Input S															90	120	MHz
Output	St	rap-Res	on	an	Ł F	re	que	en	СУ	e		151		-	240	280	MHz
Direct	In	terelea	ctr	ode	e (ap	ac	it	and	ce	6						
Grid	to	plate	i.	21 (0)							÷		100	-	120	180	pF
Grid	to	catho	de					100	(80)	×		90		-	1250	1700	pF

Note 1: With 1800 amperes through filament.

FOR ADDITIONAL INFORMATION ON THIS TYPE, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FOR RCA SUPER POWER TUBES. ICE-279A AVAILABLE FROM:

> Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey

SIMPLIFIED DIMENSIONAL OUTLINE'

DIMENSIONS IN INCHES

A detailed Dimensional Outline and associated Gauge Drawings are given in the Technical Bulletin available upon request.

Beam Power Tube

MATRIX-TYPE CATHODE CERMOLOX FORCED-AIR COOLED
1350 Watts CW Power Output at 600 MHz

For Use at Frequencies up to 1215 MHz as a Linear RF Power Amplifier in Single-Sideband Suppressed-Carrier Service, as a Plate-Modulated RF Power Amplifier in Class C Telephony Service, as an RF Power Amplifier and Oscillator in Class C Telegraphy Service, and as an RF Power Amplifier in Class C FM Telephony Service.

ELECTRICAL

	Heater, for Matrix-Type Oxide- Coated Unipotential Cathode ^d	
	Voltage (AC or DC)	V
î.	Current at 5.5 volts	A
7	Minimum Heating Time	es
	Mu-Factor, Grid No.2 to Grid No.1	
	For plate volts = 2500, grid No.2 volts = 600, and plate mA = 600	
	Direct Interelectrode Capacitances	_
		ρF
	Grid No.2 to cathode & heater ^b 1.4 max	ρF
	MECHANICAL	
	Operating Position	ny
	Maximum Overall Length	in
	Maximum Diameter . 3.75	

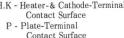
Terminal Temperature	250 max	°C
Plate, grid No.2, grid No.1, cathode, and heater		
Plate-Seal Temperature	250 max	00

See Dimensional Outline for temperature-measurement points

Forced-Air Cooling®

Air Flow:

Through radiator - Adequate air flow to limit the plate-seal temperature to 250°C should be delivered by a blower, such as Rotron° AXIMAX 2, KS-408 or equivalent, through the radiator before and during the application of heater, plate, grid-No.2, and grid-No.1 voltages, See graph, Typical Cooling Characteristics.


To Plate, Grid-No.2, Grid-No.1, Heater-Cathode, and Heater Terminals - A sufficient quantity of air should be allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

During Standby Operation - Cooling air is required to the Heater-Cathode and Heater Terminals when only heater voltage is applied to the tube.

During Shutdown Operation - Air flow should continue for a few minutes after all electrode power is removed.

TERMINAL DIAGRAM (Bottom View)

LINEAR RF POWER AMPLIFIER, CLASS AB1^f Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2

Maximum CCS Ratings, Absolute Values

	Up to 1215 MHz
DC Plate Voltage	. 3000 V
DC Grid-No.2 Voltage	. 1000 V
MaxSignal DC Plate Current	1.0 A
MaxSignal DC Grid-No.1 Current	0.2 A
MaxSignal Plate Input	
MaxSignal Grid-No.2 Input	. 50 W
Plate Dissipation	. 1500 W

Maximum Circuit Values

Grid-No. 1 Circuit Resistance Under Any Condition
With fixed bias
With fixed bias (in Class AB1 operation) Not recommended
With cathode bias
Grid-No.2 Circuit Impedance See footnote g
Plate Circuit Impedance See footnote h

Typical CCS Class AB1 "Single-Tone" Operation

Up to 60 MHz	
DC Plate Voltage	٧
DC Grid-No.2 Voltage	V
DC Grid-No.1 Voltage	V
Zero-Signal DC Plate Current 0.2 0.2	A
Zero-Signal DC Grid-No.2 Current 0	Α
Effective RF Load Resistance	Ω
MaxSignal DC Plate Current 0.9 1.0	A
MaxSignal DC Grid-No.2 Current 0.045 0.045	A
MaxSignal DC Grid-No.1 Current 0	A
MaxSignal Peak RF Grid-No.1 Voltage	٧
MaxSignal Driving Power (Approx.)	W
MaxSignal Power Output (Approx.) 1000 1250	W

Up to 1215 MHz

0.9

0.02

0.07

90

70

Un to 1915 MH2

1050

1.0

0.02

0.07

90

75

1350

PLATE-MODULATED RF POWER AMP.-Class C Telephony f

Carrier conditions per tube for use with max. modulation factor of 1.0

Maximum CCS Ratings, Absolute Values

DC Plate Voltage	2500	٧
DC Grid-No.2 Voltage	1000	٧
DC Grid-No.1 Voltage	-300	٧
DC Plate Current	0.85	A
DC Grid-No.1 Current	0.2	A
Plate Input	1700	W
Grid-No.2 Input	35	W
Plate Dissipation	1000	W
Maximum Circuit Value Grid-No.1-Circuit Resistance Under any condition.	5000	Ω
Chaci any condition.		12
Typical CCS Operation		2.2
AND CONTRACTOR OF THE AND CONTRACTOR OF THE CONT		12

Maximum Circuit Value	
Grid-No. 1-Circuit Resistance	
Under any condition	5000

Driver Power Output (Approx.).......

RF POWER AMPLIFIER & OSC. - Class C Telegraphy f and

RF POWER AMPLIFIER - Class C FM Telephony f

Maximum CCS Ratings, Absolute Values

													Up t	0 1210 MH2	
DC Plate Voltage						•			į.					3000	٧
DC Grid-No, 2 Voltage														1000	V
DC Grid-No.1 Voltage														-300	٧
DC Plate Current														1.0	A
DC Grid-No.1 Current.										÷	ï	ě		0.2	A
Plate Input														2500	W
Grid-No.2 Input														50	W
Plate Dissipation														1500	W
, rait brookparion		-													

Typical CCS Operation

In a	Grid-Dri	ne Circu	it at 60	00 MHz

DC Plate Voltage	2000	٧
DC Grid-No.2 Voltage	500	٧
DC Grid-No.1 Voltage	-75	٧
DC Plate Current	0.83	A
DC Grid-No.2 Current 0.015	0.015	Α
DC Grid-No.1 Current (Approx.) 0.04	0.04	A
Driver Power Output (Approx.)	55	W
Useful Power Output (Approx.)	800	W

Characteristics Range Values

	Note	Min	Max	
1. Heater Current	1	16.3	18.2	A
2. Direct Interelectrode Capacitances				
Grid No.1 to plate	2	-	0.181	pF
Grid No.1 to cathode & heater		37	46	pF
Plate to cathode & heater	2,3	-	0.017	pF
Grid No.1 to grid No.2	-	46	62	pF
Grid No.2 to plate		9.9	13.1	pF
Grid No.2 to cathode & heater		-	1.4	pF
3. Mu-Factor, Grid No.2 to Grid No.1	1,4	8	24	
4. Cutoff Grid-No.1 Voltage		-	-140	V
5. Grid-No.2 Current		-28	12	mA
6. Useful Power Output	1,7	1000	-	W
7. Low-Frequency Vibration		-	500	m V
8. High-Frequency Vibration	9	(See)	Note 9)	

Note 1: With 5.5 volts ac on heater.

Note 2: With external flat metal shield having diameter of 8^n , at center hole approximately 3^n in diameter provided with spring fingers that connect the shield to grid-No.2 terminal. Shield is located in plane of grid-No.2 terminal perpendicular to the tube axis.

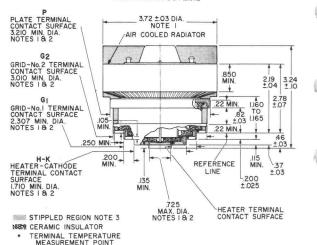
Note 3: With external flat metal shield having diameter of 8", and center hole approximately 2-3-8" in diameter provided with spring fingers that connect the shield to grid-No.1 terminal. Shield is located in plane of grid-No.1 terminal perpendicular to the tube axis.

Note 4: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 600 volts, and dc grid-No.1 voltage adjusted to give a plate current of 0.6 ampere.

Note 5: With dc plate voltage of 3000 volts, dc grid-No.2 voltage of 1000 volts, and dc grid-No.1 voltage adjusted to give a plate current of 20 mA.

Note 6: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 500 volts, and dc grid-No.1 voltage adjusted to give a plate current of 0.6 ampere.

Note 7: In a CW cathode-driven amplifier circuit at 600 MHz and for conditions: dc plate voltage at 2500 volts, dc grid-No.2 voltage of 700 volts, and dc grid-No.1 voltage adjusted to give a plate current of 1.0 ampere.


Note 8: As specified in MIL-E-IE Test Method 1031, and with plate voltage of 450 volts, grid-No.2 voltage of 300 volts, grid-No.1 voltage varied to give a plate current of 10 mA, and plate load resistor of 2000 ohms.

Note 9: As specified in MIL-E-IE Test Method 1031.

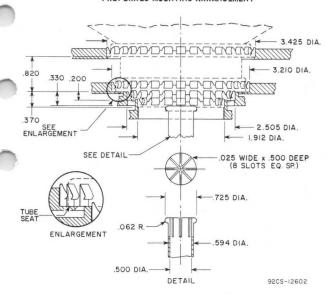
- With external metal shield having diameter of 8", and center hole approximately 3" in diameter provided with spring fingers that connect the shield to grid-No.2 terminal. Shield is located in plane of grid-No.2 terminal perpendicular to the tube axis.
- b With external flat metal shield having diameter of 8", and center hole approximately 2-3/8" in diameter provided with spring fingers that connect the shield to grid-No.1 terminal perpendicular to the tube axis.
- Rotron Mfg. Co., Inc., Woodstock, N. Y.
- The following footnotes apply to the RCA Transmitting Operation Considerations given at front of this section.
- d See Electrical Considerations Filament or Heater.
- e See Cooling Considerations Forced-Air Cooling.
- f See Classes of Service.
- 9 See Electrical Considerations Grid-No.2 Voltage Supply.
- h See Electrical Considerations Plate Voltage Supply.

DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

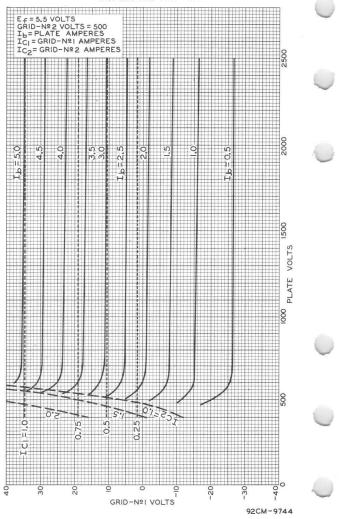
Note 1: Concentricity between the various diameters is such that the tube will enter a gauge having suitably spaced concentric apertures and posts of the following diameters:

- a. Radiator Band 3.7805
- b. Plate Terminal 3,2605
- c. Grid-No.2 Terminal 3.0605
- d. Grid-No.1 Terminal 2.3375
- e. Heater-Cathode Terminal 1.7445
- f. Heater Terminal 0.6945

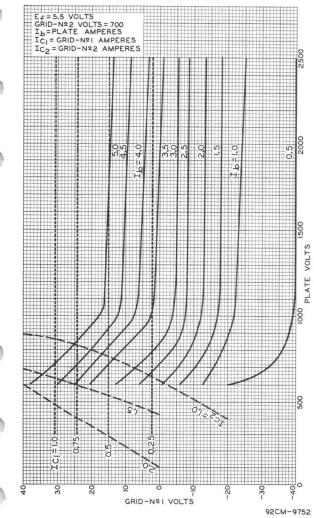

Note 2: The diameter of the terminal is held to the indicated value only over the contact surface length. The contact surface length of the heater-cathode and grid-No.1 terminals extends from the edge of its terminal to the plane coincident with the edge of the adjacent larger terminal.

Note 3: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes. Diameters of stippled areas above air-cooled radiator, plate terminal contact surface, and grid-No.2 terminal contact surface shall not be greater than is associated diameter.

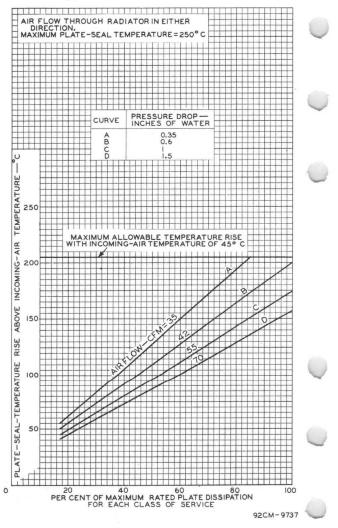
92CL-12603V


PREFERRED MOUNTING ARRANGEMENT

Only the fixed method of mounting is recommended. The fixed method offers simpler design and construction with resulting lower cost. It sepacially simplifies the associated hollow-cylinder cavity construction, if used. On the other hand, it requires greater finger stock accommodation. As used here, accommodation is defined as the amount of flexing required by the fingers of the finger contact strip to accept tubes at all the extremes of mechanical variation. Accommodation which make be provided for in the contact of the contact strip to accept tubes at all the extremes of mechanical variation. Accommodation which make be provided for in the contact strip to accept tubes at all the extremes of mechanical variations. Accommodation which make the provided for in the contact strip to accommodation of the contact strip to accept the extreme the contact strip to accept the accept the accept the contact strip to accept the contact strip the contact strip to accept the contact strip to accept the contac

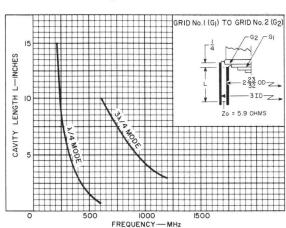

Typical Constant-Current Characteristics

With Grid-No.2 Volts = 500

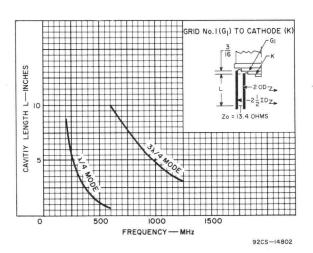


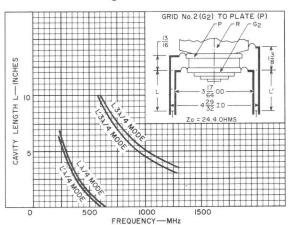
Typical Constant-Current Characteristics

With Grid-No.2 Volts = 700



Typical Cooling Characteristics




Tuning Characteristics

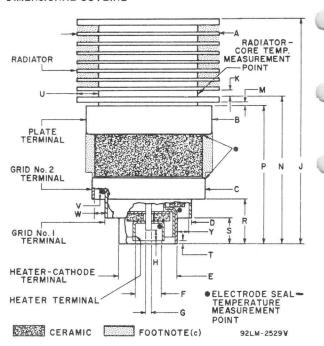
92CS-1480I

Tuning Characteristics

92CS-14803

Beam Power Tube

CERMOLOX Matrix Cathode Forced-Air Cooled


17 kW Pulsed RF Output Full Input to 1215 MHz UHF Pulsed RF Amplifier

	For Use In Airborne, Shipboard, Mobile,	
	Stationary Equipment	
	ELECTRICAL	
	Heater a	
	Type Matrix, Oxide Coated Unipotential Catho	ode
	Voltage (ac or dc) 6.3	V
	Current at 6.3 V	A
	Minimum heating time 60	s
7	MAXIMUM RATINGS, Absolute-Maximum Values	
	For frequencies up to 1215 MHz and for a maximum "ON" ti	me
	as specified in any 1000-microsecond interval.	
	Peak Positive-Pulse Plate Voltage 7000	V
	DC Plate Voltage 4000	V
	DC or Peak Positive-Pulse	
	Grid-No. 2 Voltage 1000	V
	Negative Pulse Grid-No. 1 Voltage 200	V
	DC Plate Current During Pulse	
	With 5-microsecond "ON" time 6	A
	DC Plate Current	
	With 5-microsecond "ON" time 0.050	A W
	Plate Dissipation (Average)	W
	Useful Peak Power Output With 5-microsecond "ON" time 17000	W
		**
ħ.	MECHANICAL	
7	Operating Position	
	Weight (Approx.) 2 oz (0.06	kg)
	THERMAL	_
	cour remperature	°C
	Radiator Core	$^{\rm o}{ m C}$
	^a See Electrical Considerations-Filament or Heater, under R	
	Transmitting Tube Operating Considerations given at front	of
	this section.	

bSee Dimensional Outline for temperature measurement points. ^cKeep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J. 07029.

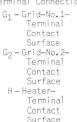
DIMENSIONAL OUTLINE

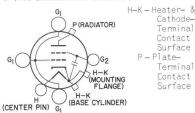
DI- MEN- SION	INCHES	MILLIMETERS	DI- MEN- SION	INCHES	MILLIMETERS
A Dia.	1.250 ±.015	31.75 ± .38	M	0.035 Min.	0.89 Min.
B Dia.	1.100 ±.015	27.94 ±.38	N	1.335 ± .045	33.91 ± 1.14
C Dia.	1.000 ±.015	25.40 ±.38	P	1.230 ± .030	31.22 ± .76
D Dia.	0.750 ± .015	19.05 ±.38	R	0.370 ± .020	9.40 ±.50
E D:-	+.017	+ .43	S	0.175 ± .015	4.45 ±.38
E Dia.	020	12.7050	T	0.025 ± .025	0.64 ±.63
F Dia.	0.250 ± .010	6.35 ± .25	U	0.200 Min.	5.08 Min.
G Dia.	0.070 Max.	1.78 Max.	V	0.060 Min.	1.52 Min.
Н	0.054 Min.	1.37 Min.	w	0.090 Min.	2.29 Min.
J	2.080 ±.050	52.8 ± 1.2	X	0.120 Min.	3.05 Min.
K	0.050 Min.	1.27 Min.	Y	0.095 Min.	2.41 Min.

Beam Power Tube

FORCED-AIR COOLED INTEGRAL RADIATOR MATRIX-TYPE CATHODE

UHF GRID-DRIVE OPERATION 300 WATTS UHF TV OUTPUT AT 890 Mc 410 WATTS PEP OUTPUT AT 30 Mc


DISTRIBUTED AMPLIFIER SERVICE TO 500 Mc


For Use as an RF Power Amplifier in Television and Single-Sideband Suppressed-Carrier Service and as a Broadband UHF Amplifier in Mobile and Stationary Equipment.

	ectr		
-	CCLI	I Call	

Unipotential Cathode, Matrix-Type ⁹ :	
Voltage (AC or DC) 6.3	8 volts
Current at heater volts = 6.3 3.5	
Minimum heating time 60) sec
Mu-Factor, Grid No.2 to Grid No.1 for	
plate volts = 450, grid-No.2 volts =	
325 and plate amperes = 1.2)
Direct Interelectrode Capacitances:	
Grid No.1 to plate 0.062	2 max. pf
Grid No.1 to cathode 20) pf
Plate to cathode 6.2	max. pf
Grid No.1 to grid No.2 19	
Grid No.2 to plate 2.2	2 pf
Grid No.2 to cathode 590) max. pf

Operating Position			*	•		×					•	•	•	*		. Any
Maximum Överall Length	•	×	*	•		*	٠									2.19'
Maximum Diameter					*							•			- 6	2.262
Weight (Approx.)								100			300	100			- 9	1.5 oz
Radiator									In:	ted	ara	11	Da	art	0	f tube

Cathode-Terminal Contact Surface P-Plate-Terminal Contact Surface

Thermal:

Terminal Temperature (Plate, grid No.2,		
grid No.1, cathode-heater, and heater)		max. °C
Plate-Core Temperature	. 250	max. °C
Air Flowc:		

Through radiator - Adequate air flow to limit the radiator core temperature to 250° C should be delivered by a blower through the radiator before and during the application of plate, grid-No.2, and grid-No.1 voltages.

To Plate, Grid-No.2, Grid-No.1, Cathode, and Heater Terminals — A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

 $\it During\ Standby\ \it Operation\ --$ Cooling air is required when heater voltage is applied to the tube.

 $\textit{During Shutdown Operation} \ - \ \text{Air flow should continue for a few minutes after all electrode power is removed.}$

RF POWER AMPLIFIER — Class B Television Service

Synchronizing-level conditions per tube unless otherwise specified

A	050	011	ut.	e-1	nas	x 11	nui	72	va.	lue	S.	
					×							volts
												volts
		*									375	ma
		3	٠			٠		•			12.0.0	ma
140	141										-	watts
			340			*			•	÷	400	watts
												100

Typical CCS Operation in Grid-Drive Circuit:

For frequency of 890	0 1	1c	ar	ıd	Bo	anc	lwi	dth	of 8.5 Mc	
DC Plate Voltage					•		÷		2000	volts
DC Grid-No.2 Voltage				•		*			400	volts
DC Grid-No.1 Voltage		*							-55	volts
DC Plate Current:										
Synchronizing level	*1		•						350	ma
Pedestal level		7				×			260	ma
DC Grid-No.2 Current:										
Synchronizing level									1.3	ma
Pedestal level	100					300	100		1	ma
DC Grid-No.1 Current:										
Synchronizing level				¥.					0	ma
Pedestal level									0	ma
Driver Power Output:										
Synchronizing level									30	watts
Pedestal level			î	÷		v		ž.	17	watts
Output Circuit Efficiency.									80	%
Useful Power Output:									-	

LINEAR RF POWER AMPLIFIER

Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2

Maximum	CCS	Ratings,	Absolute-Maximum	Values:
---------	-----	----------	------------------	---------

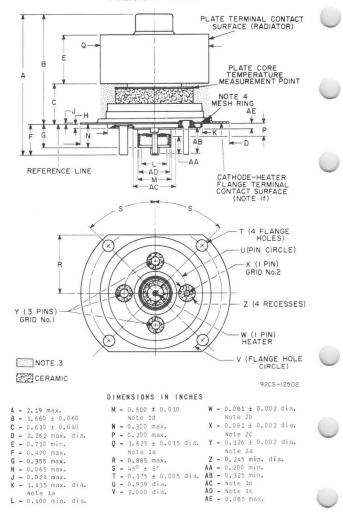
Synchronizing level. . . .

Pedestal level

DC	Plate Volt	tage		100	20		(4)	20.0		2200	volts
DC	Grid-No.2	Voltage				ÿ.				400	volts
	Grid-No.1									-100	volts

watts

watts


DC Plate Current at Peak of Envelope DC Grid-No.1 Current	450 ^a 100 8 400	ma ma watts watts
Maximum Circuit Values:		
Grid-No.1 Circuit Resistance	See	Note e
Typical CCS Operation with "Two-Tone Modula	ation":	
DC Plate Voltage . DC Grid-No.2 Voltage . DC Grid-No.1 Voltage . Zero-Signal DC Plate Current . Effective RF Load Resistance . DC Plate Current at Peak of Envelope . Average DC Plate Current . DC Grid-No.2 Current at Peak of Envelope . Average DC Grid-No.2 Current . DC Grid-No.1 Current . Peak-of-Envelope Driver Power Output (Approx.) Output-Circuit Efficiency (Approx.) Distortion Products Level:	At 30 Mc 2000 4000 -444 1000 32000 3355 2500 200 13300 0.33092	volts volts volts ma ohms ma ma ma ma watt
Third order	30 34	db db
Useful Power Output (Approx.): Average. Peak of envelope	205 410	watts watts

The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 ma. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 ma.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section.

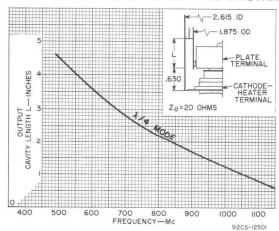
- b See Electrical Considerations—Filament or Heater
- $^{\mathbf{c}}$ See Cooling Considerations—Forced-Air Cooling
- d See Classes of Service
- e See Blectrical Considerations—Grid-No. 2 Voltage Supply
 - See Electrical Considerations-Plate Voltage Supply

DIMENSIONAL OUTLINE

Note I: Concentricity between the various diameters on the major tube axis is such that the tube will enter a gauge having suitably spaced concentric apertures and posts of the following diameters:

- (a) Base seat-1.500
- (b) Flared flange of cathode-heater cylinder terminal— 0.680
- (c) Cathode-heater cylinder terminal (ID)-0.400
- (d) Cathode-heater cylinder terminal (OD)-0.525
- (e) Radiator-1.660
- (f) Cathode-heater flange terminal contact surface—

Note 2: Concentricity of the base pins is such that the tube will enter the gauge in Note I having suitably spaced apertures of the following diameters:

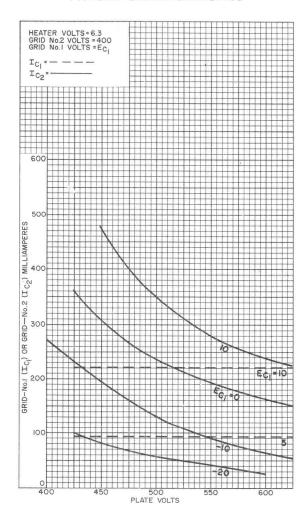

- (a) Grid-No. | pins-0.1450
- (b) Heater pin-0.0830 (.123 Dia x 82° CSK.)
- (c) Grid-No.2 pins-0.0930

Note 3: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

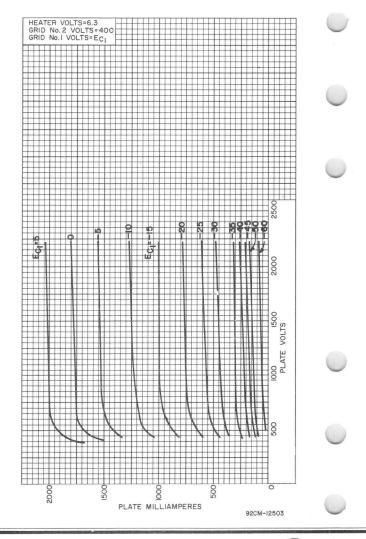
Note 4: RF gasket, such as METEX* No.A2733, or equivalent.

* Metex Electronics Corp., Walnut Ave., Clark, N.J.

TYPICAL OUTPUT CAVITY TUNING CHARACTERISTICS



TYPICAL COOLING CHARACTERISTICS



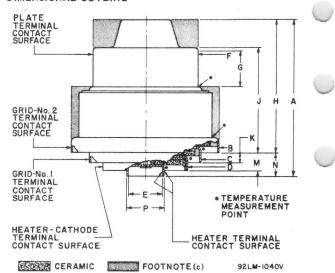
PRESSURE DROP IN INCHES OF WATER (DASHED LINE)
92CM-12496

TYPICAL CHARACTERISTICS

TYPICAL PLATE CHARACTERISTICS

Beam Power Tube

	CERMOLOX	Matrix Cathode	13 kV, 30 Amp.
	Ruggedized	Pulse Modulator	Conduction Cooled
	ELECTRICAL	ix Type, Oxide-Coated	
	Voltage (ac o	r dc)	5.5 V
	the state of the s	volts	
		ing time	
_	MAXIMUM RATIN	NGS, Absolute-Maximum	Values
	DC Plate Voltag	e	13 kV
	Instantaneous Pe (Pulse duration	eak Plate Voltage on < 0.1 s)	17 kV
	DC Peak Pulsed-Grid-N	No. 2	
	Voltage		1000 V
	DC Grid-No. 1 V Peak Positive-P	oltage	300 V
	Grid-No. 1 Vo	oltage	
	Peak Plate Curre	ent	30° A
		t	
	Plate Dissipatio	n (Average)	1.5 kW
		on	
	THERMAL b		1-1/2 lb (0.00 kg)
		rature (All Terminals).	250 Max. ^o C
		Considerations—Filamen ube Operating Consider	


this section. $^{\mathsf{b}}$ See $\mathit{dimensional}$ $\mathit{outline}$ for temperature measurement points.

c Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J.

DIMENSIONAL OUTLINE

DIMENSION	INCHES	MILLIMETERS
A	3.31 Max.	84.1 Max.
B Dia.	3.020 ±.010	76.71 ± .25
C Dia.	2.317 ±.010	58.85 ± .25
D Dia.	1.717 ± .007	43.61 ± .18
E Dia.	0.713 ±.012	18.11 ± .30
F Dia.	2.265 ±.003	57.53 ± .08
G	0.725 Min.	18.42 Min.
H	2.780 ± .040	70.61 ± 1.02
J	2.185 ± .030	55.50 ± .76
K	0.200 ±.025	5.08 ± .64
M	0.370 ± .030	9.40 ± .76
N	0.460 ±.030	11.68 ± .64
P Dia.	0.755 ±.010	19.18 ± .25

Beam Power Tube

CERMOLOX® INTEGRAL LOUVERED-FIN RADIATOR THORIATED-TUNGSTEN MESH FILAMENT FORCED-AIR COOLED

For Single-Sideband Service in Stationary and Portable Equipment.
Rated as a Linear RF Power Amplifier in Class AB₁ Suppressed
Carrier Service. Also Useful as AF Amplifier or Modulator,
RF Power Amplifier and Oscillator in Class-C Telephony and
Telegraphy and Other Special Services.

ELECTRICAL

Filamer	ntary	Cat	hode,	Th	or	ia	te	ed-	·Tu	ing	15	ter	1	1esh	Туре		
Volta	age (ac c	or dc)	a			i							.{4.	5 to 4.75 5.0	typ	V
	oical		ue at ue for						٠						125		A
			itaril												300		Α
Cold	Resi	star	ice												0.005		Ω
Minir	num h	eat	ng ti	me											15		S
Mu-Fact																	
volts																	
plate	ampe	res	= 9												10		
Direct																	
			plate												0.60	max	рF
			filan												60		pF
Plate	e to	fila	ament t	C			Ī								0.11	max	-
			grid												65	man	pF
			plate												13		pF
Crid	No. Z	. 10	filan		ċ	•	:	•				•	•				-
Grid	140.2		111an	ient	-	•	٠	•				•	•		3.3	max	b.
									2000								

MECHANICAL

Operating Position					Ver	ti	ical,	eithe	r end up
Maximum Overall Length								5.65	in
Maximum Diameter								6.17	in
Terminal Connections .					See	I	Dimen	sional	Outline
Radiator					. 1	nt	tegra	1 part	of tube
Weight (Approx.)		·							. 10 1b

THERMAL

Terminal Temperature	250	max °C
Plate, grid No. 2, grid No. 1,		
cathode-filament and filament		
Plate-Core Temperature	250	may oc

See Dimensional Outline for temperature-measurement points

Forced-Air Cooling^f

Air Flow

Through Radiator — Adequate air flow to limit the plate-core temperature to 250° C should be delivered by a blower through the radiator before and during the application of filament, plate, grid-No. 2, and grid-No.1 voltages.

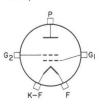
Air Flow (Cont'd)

To Plate, Grid-No. 2, Grid-No. 1, Cathode-Filament, and Filament Terminals - A sufficient quantity of air should be allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

During Standby Operation - Cooling air is required when only filament voltage is applied to the tube.

During Shutdown Operation - Air flow should continue for a few minutes after all electrode power is removed.

TERMINAL DIAGRAM (Bottom View)



G2 - Grid-No. 2-Terminal Contact

F-Filament-Terminal Contact

K.F - Cathode-Filament-Terminal Contact Surface

P-Plate-Terminal Contact

LINEAR RE POWER AMPLIFIER9

SINGLE-SIDEBAND SUPPRESSED-CARRIER SERVICE

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2

Maximum CCS Ratings. Absolute-Maximum Values

DC Plate Voltage	7500	٧
		٧
		٧
DC Plate Current at Peak	of Envelope 4.0	A
DC Grid-No. Current	500 r	nΑ
		W
		ĸW.

Maximum Circuit Values

Grid-No. 1-Ci	rcui	t Res	sist	ance	e (1	Jnde	r	any	Co	nd	ition)	
Fixed bias													Ω
Fixed bias													Ω
Cathode bi													
Grid-No. 2 Ci													
Plata Ciroui													

Typical Class AB| CCS Operation with "Two-Tone" Modulation

In a grid-drive circuit, at 30 Mc/s	
DC Plate Voltage	7000 V
DC Grid-No.2 Voltage	
DC Grid-No. Voltage	
Zero-Signal DC Plate Current	
Effective RF Load Resistance	1200
DC Plate Current at Peak of Envelope	
Average DC Plate Current	2.15 A
DC Grid-No. 2 Current at Peak of Envelope	

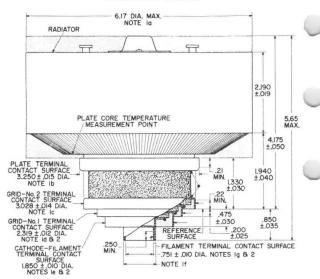
	Average DC Grid-No.2 Current 0.07 A Peak-Envelope Driver Power Output (Approx.) . See footnoted Output Circuit Efficiency (Approx.) 90 % Useful Power Output (Approx.) Average
	LINEAR RF POWER AMPLIFIER ^f
	AM TELEPHONY SERVICE
	Carrier conditions for use with a maximum modulation factor of 1
)	Maximum CCS Ratings, Absolute-Maximum Values
)	DC Plate Voltage
	In a cathode drive circuit, at 400 Mc/s
	DC Plate Voltage 6500 V
	DC Grid-No.2 Voltage
	DC Grid-No.1 Voltage 160° V
	DC Plate Current
	DC Grid-No.2 Current
	Output Circuit Efficiency (Approx.) 90 %
	Useful Power Output 2000 W

a Measured at tube terminals.

With external flat metal shield 8 inches in diameter having a center hole 3 inches in diameter. Shield is located in plane of the grid-No. 2 terminial, perpendicular to the tube axis, and is connected to grid No. 2.

With external flat metal shield 8 inches in diameter having a center hole 2-3/8 inches in diameter. Shield is located in plane of the grid-No.1 terminal, perpendicular to the tube axis, and is connected to grid No. 1. Driver power output represents circuit losses and is the actual power measured at input to grid-No.lcircuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section. e Typical value for 1 ampere of DC plate current with carrier turned off.


See Cooling Considerations - Forced-Air Cooling.

See Classes of Service.

See Electrical Considerations-Grid-No. 2 Voltage Supply

See Electrical Considerations-Plate Voltage Supply

DIMENSIONAL OUTLINE

STIPPLED REGION NOTE 3

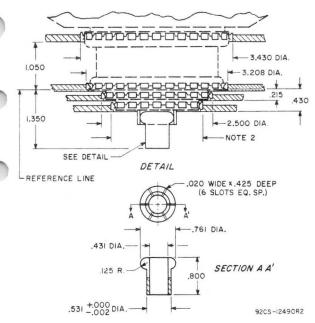
CERAMIC INSULATOR

TERMINAL TEMPERATURE MEASUREMENT POINT

92CL-13039

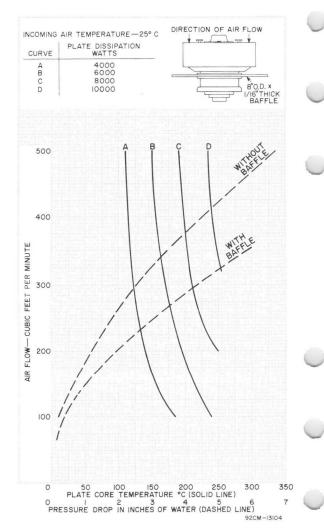
DIMENSIONS IN INCHES

Note 1: Concentricity between the various diameters is such that the tube will enter a gauge having suitably spaced concentric apertures and posts of the following diameters:


- a. Radiator 6.241
- b. Plate Terminal 3,288
- c. Grid-No. 2 Terminal 3.061
- d. Grid-No.1 Terminal 2.338
- e. Cathode-Filament Terminal 1.878
- f. Filament Terminal (OD) 0.908
- g. Filament Terminal (ID) 0.722

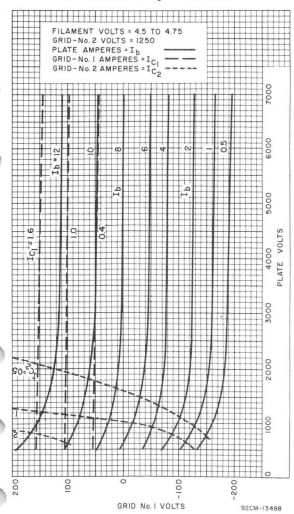
Note 2: The diameter of the terminal is held to the indicated value only over the contact surface length. The contact surface length of the cathode-filament and grid-No.1 terminals extends from the edge of its terminal to the plane coincident with the edge of the adjacent larger terminal.

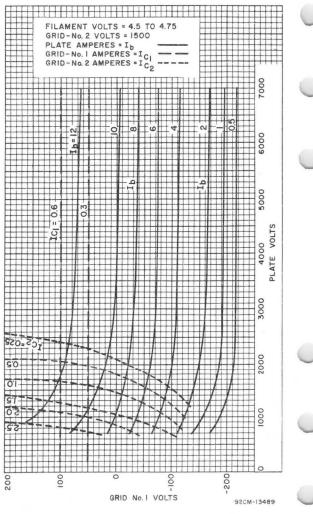
Note 3: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.


PREFERRED MOUNTING ARRANGEMENT

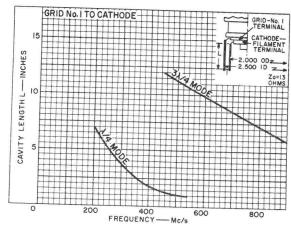
Note 1: Finger stock is No. 97-360 made by Instrument Specialties Co., Little Falls, N.J.

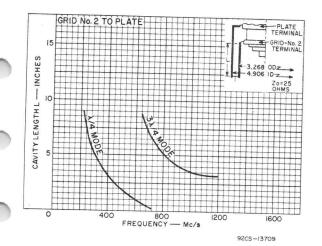
Note 2: Cathode ring dia. is 2.030 inches when using No.97-360 finger stock or 2.080 inches when using No.97-135 finger stock. Made by Instrument Specialties Co., Little Falls, N.J.

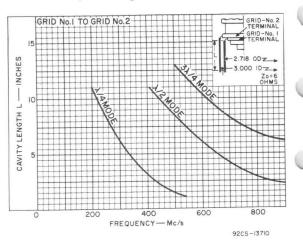

Typical Cooling Characteristics



Typical Constant-Current Characteristics

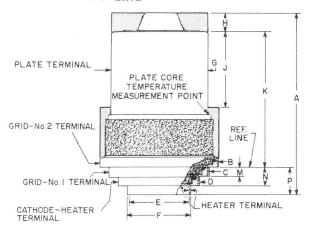

For Grid-No.2 Voltage = 1250 Volts


Typical Constant-Current Characteristics For Grid-No.2 Voltage = 1500 Volts


Cavity Tuning Characteristics

92CS-13708

Cavity Tuning Characteristics



CERMOLOX Matrix Cathode	17 kV, 40 Amper Pulse Modulator		Rugge uction C	
ELECTRICAL				
Heater of for Matrix	x-Type Oxide-Coated			
Unipotential Cath				
Voltage (ac or	dc)		22 ± 2	V
Current at 22 vo	olts		12.6	A
Minimum heating	g time		180	s
Mu-Factor, grid N	o.2 to grid No.1		6	
MAXIMUM CSS RA	ATINGS, Absolute-M	aximum	Values	
DC Plate Voltage			17 ^b	kV
Instantaneous Per (Pulse duration	ak Plate Voltage < 0.1 s)		22 ^b	kV
DC Peak Pulsed (No.2 Voltage .	Grid- 		2000	V
DC Grid No.1 Vol	tage		-600	V
Peak Positive-Pu Grid No.1 Volta	lse age		150	V
Peak Plate Curren	nt		40°	A
DC Plate Current	********		5	Α
Plate Dissipation	(Average)		7.5	kW
MECHANICAL Operating Position	n			Any
MODEL OF THE R. D. D.				45 26 20
THERMAL b				
Terminal Tempera	ture (All terminals) .		250 ma	x. °C
1 1000			250 ma	x. °C
	Considerations - Fil			
RCA Transmitt	ing Tuhe Operating	Conside	ratione	given

- RCA Transmitting Tube Operating Considerations at front of this section.
- b See dimensional outline for temperature measurement points.
- c Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J. 07029.

DIMENSIONAL OUTLINE

CERAMIC SEE FOOTNOTE(c)

TEMP.
MEASUREMENT
POINT

92LM-1052VI

DIMENSION	INCHES	MILLIMETERS
A	6.175 Max.	156.85 Max.
B Dia.	$3.905 \pm .015$	99.19 ±.38
C Dia.	3.305 ± .015	83.95 ± .38
D Dia.	2.695 ± .015	68.45 ± .38
E Dia.	1.973 ± .007	49.21 ± .18
F Dia.	2.095 ± .015	$53.21 \pm .38$
G Dia.	3.201 + .002001	81.305 + .051
Н	$0.590 \pm .010$	$14.99 \pm .25$
J	2.593 Min.	65.86 Min.
K	4.470 ± .030	$113.54 \pm .76$
M	$0.320 \pm .020$	$8.13 \pm .51$
N	0.630 ± .020	$16.00 \pm .51$
P	0.940 ± .020	$23.88 \pm .51$

CERMOLOX
Oxide-Coated Cathode
Forced-Air Cooled
Linear RF Power
Amplifier

Ruggedized 80 Watts CW Power Output at 400 MHz 40 Watts CW Power Output at 1215 MHz

ELECTRICAL

Heater for Matrix-Type, Oxide-Coated, Unipotential Cathode:

Voltage (ac or dc) 26.5 ± 10%	V
Current at 26.5 volts 0.54	A
Minimum heating time 60	s
Mu-Factor, Grid No.2 to Grid No.1 18	

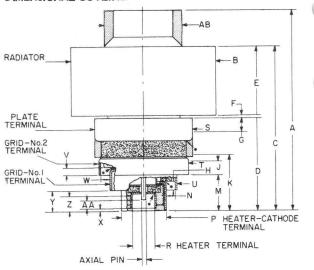
MAXIMUM CCS RATINGS, Absolute - Maximum Values

	Up to 1215	MHZ
DC Plate Voltage	1000	V
DC Grid-No.2 Voltage	300	V
DC Grid-No.1 Voltage	-100	V
DC Plate Current	200	mA
Plate Dissipation	150	W

MECHANICAL

Operating Position															Any
Weight (Approx.)										(0	.0	6	kg)	2 oz

THERMAL a


Terminal Temperature (Plate.

grid No.2, grid No.1,	С	a	th	00	de	,					
and heater)											250 max. °C
Plate-Core Temperature											250 max. °C

- a See Dimensional Outline for temperature measurement points.
- b Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

DIMENSIONAL OUTLINE

SEE FOOTNOTE (b)

EXCES CERAMIC

 TEMPERATURE MEASURMENT POINT

92LM-2327V

DI- MEN- SION	INCHES	MILLIMETERS	DI- MEN- SION	INCHES	MILLIMETERS
A	2.270 Max.	57.66 Max.	P Dia.	0.480 Min.	12.19 Min.
B Dia.	1.625±.015Max	41.28±.38 Max	R Dia.	0.260 Max.	6.60 Max.
C	1.840 ± .032	46.74 ± .81	S Dia.	1.085 Min.	27.56 Min.
D	1.030 ± .030	26.16 ± .76	T Dia.	0.985 Min.	25.02 Min.
E	0.750 ± .015	19.05 ± .38	U Dia.	0.735 Min.	18.67 Min.
F	0.030 Min.	0.76 Min.	V	0.060 Min.	1.52 Min.
G	0.165 Min.	4.19 Min.	W	0.090 Min.	2.29 Min.
Н	0.120 Min.	3.05 Min.	X	0.025 ± .025	0.64 ± .64
J	0.140 Min.	3.56 Min.	Y	0.175 ± .015	4.45 ± .38
К	0.600 Min.	15.24 Min.	Z	0.100 Min.	2.54 Min.
M	0.370 ± .020	9.40 ± .51	AA	0.054 Min.	1.37 Min.
N	0.095 Min.	2.14 Min.	AB Dia.	0.85 Max.	21.6 Max.

CERMOLOX

Broadband UHF Operation 2300 w CW Output at 890 MHz Matrix Cathode Forced-Air Cooled

ELECTRICAL

- 6				10			
	Н	P	a	+1	2	r	•

Type	•	•		•	•		•				Matrix Oxide Coated Unipotential Cathode

Co.u max	. V
Current at 5.5 V	A
Instantaneous Starting Current 90 max	. A
Minimum Heating Time 180	s

Mu-factor (Grid No.2 to Grid No.1) 14

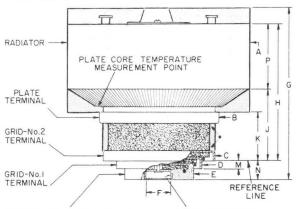
MAXIMUM CCS RATINGS, Absolute-Maximum Values

DC Plate Voltage			٠		*			•	7000	V
DC Grid-No.2 Voltage									1000	V
DC Grid-No.1 Voltage									-250	V
DC Plate Current									3	A
Plate Dissipation									5000	W

MECHANICAL

Operating Position														Any	,
Weight (Approx.)										6	11	b	(2.	7 kg)

THERMAL


Seal Temperatures (Plate, Grid No.2,		_
Grid No.1 Heater-Cathode, Heater)	250 max.	°C
Plate Core Temperature	250 may	00

 $^{^{\}mathbf{a}}$ See ${\it Dimensional\,Outline}$ for temperature measurement points.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

b Keep all stippled regions clear. Do not allow contacts or circuit components to intrude into these annular regions.

DIMENSIONAL OUTLINE

HEATER-CATHODE TERMINAL CONTACT SURFACE

HEATER-TERMINAL

SEE FOOTNOTE (b)

☑ CERAMIC
TEMPERATURE MEASUREMENT POINT

92LM-2522V

DIMENSION	INCHES	MILLIMETERS
A Dia.	4.57 Max.	116.1 Max.
B Dia.	$3.250 \pm .015$	$82.55 \pm .38$
C Dia.	$3.028 \pm .014$	$76.91 \pm .35$
D Dia.	$2.319 \pm .012$	$58.90 \pm .30$
E Dia.	$1.850 \pm .010$	$44.99 \pm .25$
F Dia.	0.725 Max.	18.42 Max.
G	4.70 Max.	119.4 Max.
H	4.140 ±.050	105.2 ± 1.2
J	$1.620 \pm .040$	41.15 ± 1.01
K	1.330 ±.030	$33.78 \pm .76$
M	$0.200 \pm .025$	$5.08 \pm .63$
N	0.475 ± .030	$12.07 \pm .76$
P	1.945 ±.015	$49.40 \pm .38$

- CERMOLOX®
- Compact, Ruggedized
- Hard Tube Modulator
- 7000 Volts Peak
- 8.0 Amperes Peak
- Nanosecond Switching Time

General Data

Electrical:

Heater for Unipotential Cathode:

Voltage ^a (AC or DC)	∫ 6.0	typ.	V
Voltage ⁴ (AC or DC)	6.4	max.	V
Current @ 6.0 volts	7.6		Α
Minimum heating time	120		S
Mu-Factorb	6.6		
Direct Interelectrode Capacitances:			

Sirect interesects ode dapacitances.			
Grid No.1 to plate	0.12	max.	pF
Grid No.1 to cathode	30		pF
Plate to cathode	0.011	max.	pF
Grid No.1 to grid No.2	38		pF
Grid No.2 to plate	5.3		pF

Mechanical:

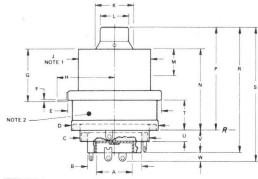
Operating Position				Any
Maximum Overall Length	(69.1 mm)	2.72		in
Greatest Diameter	(45.3 mm)	1.77		in
Temperature (All seals & plate core)		250	max.	oC
Weight (Approx.)	(0.17 kg)	6		oz
Tarreigal Consessions		O	alina Daa	:

Pulse Modulator Serviced

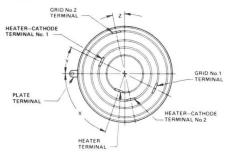
Maximum CCS Ratings, Absolute-Maximum Values:

Instantaneous Peak Plate Voltage ^e	7000	max.	٧
DC Plate Voltage	5000	max.	V
DC Grid-No.2 Voltage	1200	max.	V
DC Grid-No.1 Voltage	-250	max.	V
Peak Positive Grid-No.1 Voltage	150	max.	V
Peak Plate Currentf	8	max.	Α
DC Plate Current	.500	max.	Α

Grid-No.2 Input (Average)		20	max.	W
Grid-No.1 Input (Average)		8	max.	W
Plate Dissipation (Average)	1	600	max.	W


Typical Operation:

With rectangular wave shape pulses, duty factor of 0.05 and pulse duration of $2\ \text{microseconds}$.


DC Plate Voltage	3000	V
Instantaneous Peak Plate Voltage	7000	V
DC Grid-No.2 Voltage	800	V
DC Grid-No.1 Voltage	-120	V
Peak Positive Grid-No.1 Voltage	25	V
Peak Plate Current	8	Α
DC Plate Current	0.4	Α
DC Grid-No.2 Current	0.012	Α
DC Grid-No.1 Current	0.050	Α
Load Resistance	225	Ω
Plate Dissipation (Average)	480	W
Useful DC Power Output at Peak of Pulse	14,400	W

- See V.A.3 of 1CE-300. Heater voltage should be adjusted to the typical value initially, and then reduced to a lower value that will provide satisfactory performance. The life of the cathode can be conserved by adjusting to the lowest heater value that will give the desired performance.
- b For plate voltage = 500 V, grid-No.2 voltage = 350 V, and plate current = 0.24 A.
- C Measured with special shield adaptor.
- d See Section VC of 1CE-300
- e An insulating fluid or pressurization may be required to prevent external tube arcing. The insulating fluid must be determined to be compatible with the tube for the particular application.
- f The value of peak plate current shown applies to duty factors up to 0.05; for higher duty factors, the peak plate current must be reduced as shown in the Peak Plate Current Rating Chart.
- 9 Maximum plate dissipation is a function of the maximum plate input efficiency of the class of service, and the effectiveness of the cooling system. The value of maximum plate dissipation shown is a practical value which can be achieved. In all cases of operation, sufficient cooling must be provided to prevent the terminal and plate core temperatures from exceeding their maximum values. When longer life expectancy and more consistent performance are desirable, operation at reduced temperatures is recommended.

Dimensional Outline

Note 1: Dimension "H" is maintained over the distance "M" with a finish of better than 32 microns.

Note 2: Ceramic.

Note 3: Keep all stippled regions clear.

*Dimensions are in inches unless otherwise stated. Metric equivalents in parentheses are given for information only and are based on 1 inch = 25.4 mm.

See next page for dimensions.

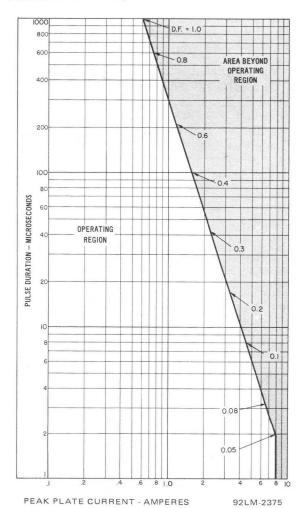
92LM-4189

Dimensional Outline (Continued)

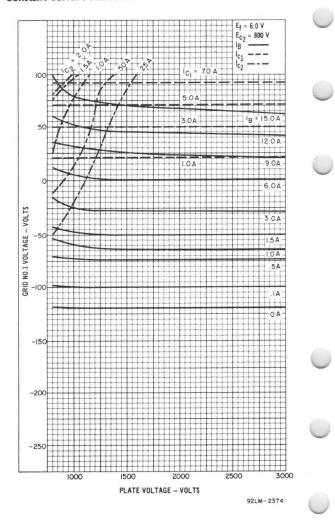
Tabulated Dimensions*

Dimension

A Dia.	0.660 ±	.010	(16.76	± .25)
B Dia.	1.000 ±	.010	(25.40	± .25)
C Dia.	1.300 ±	.010	(33.02	± .25)
D Dia.	1.600 ±	.010	(40.64	± .25)
E Dia.	1.755 ±	.010	(44.58	± .25)
F	0.020	Ref.	(0.51	Ref.)
G	1.150	Max.	(29.21	Max.)
H Radius	1.130	Max.	(28.70	Max.)
J Dia.	1.300 ±	.002	(33.020	± .051)
K Dia.	0.855	Max.	(21.72	Max.)
L Dia.	0.573	Max.	(14.55	Max.)
M	0.700	Min.	(17.78	Min.)
N	$1.595 \pm$.035	(40.5	± .9)
P	2.000 ±	.045	(50.8	± 1.1)
R	2.400	Ref.	(60.96	Ref.)
S	2.72	Max.	(69.1	Max.)
Т	0.575 ±	.025	(14.61	± .64)
U	0.200 ±	.020	(5.08	± .51)
V	0.400 ±	.020	(10.16	± .51)
W	0.250	Ref.	(6.35	Ref.)
X	60°	Ref.		
	B Dia. C Dia. D Dia. E Dia. F G H Radius J Dia. K Dia. L Dia. M N P R S T U V W	B Dia. 1.000 ± C Dia. 1.300 ± D Dia. 1.600 ± E Dia. 1.755 ± F 0.020 G 1.150 H Radius 1.130 ± K Dia. 0.855 L Dia. 0.573 M 0.700 N 1.595 ± P 2.000 ± R 2.400 S 2.72 T 0.575 ± U 0.200 ± W 0.400 ± W 0.250	B Dia.	B Dia.


300

150


Ref.

Ref.

Peak Plate Current Rating

Constant Current Characteristics

CERMOLOX

High Gain RF
Power Amplifier
Matrix Cathode
Forced-Air Cooled

2500 Watts Carrier Output at 400 MHz 10 kW PEP 16 dB Gain

Matrix Trong Ovida Contad

Up to 500 MH2

ELECTRICAL

Heater:

Type		•						IAT	a	LL.	LA		LУ	be Oxide Co	aleu
											U	n	ip	otential Cat	hode
Voltage (ac or	dc)													22 ± 2	V
Current at 22 v	olts .													12.6	A
Minimum heatin	g time	9												180	s
Mu-Factor (Grid N	10.2 to)	Cir	id	1	V	1)		000				(4)	20	

MAXIMUM CCS RATINGS, Absolute-Maximum Values:

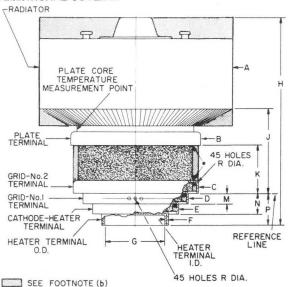
	CP 10 000	
DC Plate Voltage	7000	V
DC Grid-No.2 Voltage	1200	V
DC Plate Current	2.0	A
Plate Dissipation	10	kW

MECHANICAL

Operating Position															Aı	ny
Weight (Approx.) .										1	2	11	b	(5	.4 k	g)

THERMAL

Terminal Temperature (Plate,


heater-cathode, and heater)	250 max. °C
Grid No.2 and Grid No.1	200 max. °C
Plate-Core Temperature	250 may OC

^a See Dimensional Outline for temperature measurement points.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

b Keep all stippled regions clear. In general do not allow contacts to intrude into these annular regions.

DIMENSIONAL OUTLINE

TEMPERATURE MEASURMENT
 POINT

CERAMIC

92LM-2497V

DIMENSION	INCHES	MILLIMETERS
A Dia.	6.130 ±.040	55.70 ± 1.02
B Dia.	$4.190 \pm .020$	$106.43 \pm .51$
C Dia.	3.915 ± .015	$99.44 \pm .38$
D Dia.	3.315 ±.015	$84.20 \pm .38$
E Dia.	$2.700 \pm .020$	$68.58 \pm .51$
F Dia.	$2.100 \pm .015$	$53.34 \pm .38$
G Dia.	$1.975 \pm .010$	$50.17 \pm .25$
Н	6.500 Max.	165.1 Max.
J	2.650 ± .025	$67.31 \pm .64$
K	$1.625 \pm .025$	$41.28 \pm .64$
M	$0.340 \pm .030$	$8.64 \pm .76$
N	0.660 ± .038	$6.76 \pm .97$
P	$1.000 \pm .030$	$25.40 \pm .76$
R Dia.	0.089 Nom.	2.26 Nom.

Matrix-type Unipo	otential Cathode
Liquid Cooled	410 Watts PEP Output
UHF Grid-Drive Operation	at 30 MHz
300 Watts UHF TV	Output at 890 MHz
Distributed Amplifier	Service to 500 MHz
EL ECTRICAL	

ELECTRICAL

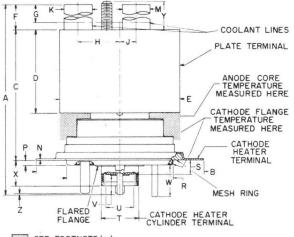
Heater, Unipotential Matrix Type:		
Voltage (ac or dc)	6.3	V
Current at 6.3 volts	3.5	A
Minimum heating time	60	s
Mu-Factor, (grid No.2 to grid No.1)	12	

MECHANICAL

Operating Position		٠			ž				٠			ž	ě				A	ny	1
Weight (Approx.)							٠			•	8	0	Z	(0.	2	3	kg))

THERMAL

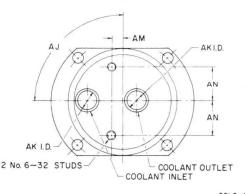
Terminal Temperature	250 max. °C								
Cathode-Heater Flange	125 max. ^O C								
Plate Seal Temperature	250 max. °C								
See Dimensional Outline for Temperature Measurement Points									


MAXIMUM CCS RATINGS, Absolute-Maximum Values:

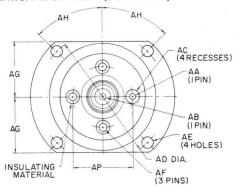
DC Plate Voltage	V
DC Grid No.2 Voltage 400	V
DC Grid No.1 Voltage	V
DC Plate Current (Class A Service) 600	mA
Plate Dissipation 1000	W

Keep all stippled regions clear. Do not allow contacts or circuit components to intrude upon these regions.

Detailed performance and application information is available through your RCA Sales Office Distributor, or by writing to RCA Commercial Engineering, Harrison, NJ 07029.


DIMENSIONAL OUTLINE (Front View)

SEE FOOTNOTE(a)


92LM-2512V

DIMENSIONAL OUTLINE (Top View)

92LS-2517V

DIMENSIONAL OUTLINE (Bottom View)

92LS-2518V

DIMENSION	INCHES	MILLIMETERS
A	3.330 Max.	84.6 Max.
B Dia.	2.262 Max.	57.45 Max.
C	$1.745 \pm .025$	44.32 ± .64
D	$1.130 \pm .010$	28.70 ± .25
E Dia.	$1.625 \pm .015$	4.128 ± .38
F	$0.437 \pm .010$	1.11 ± .25
G	0.875 Min.	22.23 Min.
Н	$0.560 \pm .020$	$14.22 \pm .51$
J	$0.220 \pm .020$	5.59 ± .51
K Dia.	0.375 Nom.	9.53 Nom.
M Dia.	0.375 Nom.	9.53 Nom.
N	$0.022 \pm .002$	$0.56 \pm .05$
P	0.058 + .007	1.47 + .18
R Dia.	$1.425 \pm .010$	$36.20 \pm .25$
S	0.200 Max.	5.08 Max.
T Dia.	$0.500 \pm .010$	$12.70 \pm .25$
U Dia.	0.400 Min.	10.16 Min.
V	0.250 Min.	6.35 Min.

DIMENSION	INCHES	MILLIMETERS
W	0.425 Max.	10.80 Max.
X	$0.337 \begin{array}{l} + .018 \\017 \end{array}$	$8.56 \begin{array}{l} + .46 \\43 \end{array}$
Y	$0.380 \pm .020$	$9.65 \pm .51$
Z	0.060 Max.	1.12 Max.
AA Dia.	$0.081 \pm .002$	$2.06 \pm .05$
AB Dia.	$0.081 \pm .002$	$2.06 \pm .05$
AC Dia.	0.245 Min.	6.22 Min.
AD Dia.	$2.000 \pm .010$	$50.8 \pm .25$
AE Dia.	$0.175 \pm .005$	$4.45 \pm .13$
AF Dia.	$0.126 \pm .002$	$3.20 \pm .05$
AG	$0.868 + .017 \\018$	22.05 + .43 46
AH	45° ± 5'	_
AJ	$90^{\circ} \pm 3^{\circ}$	-
AK	$0.378 \pm .003$	$9.60 \pm .08$
AM	$0.171 \pm .010$	4.34 ± .25
AN	$0.562 \pm .010$	$14.27 \pm .25$
AP	$0.950 \pm .011$	$24.13 \pm .28$

CERMOLOX

Matrix-Type Cathode 105 Watts CW Power Output at 1215 MHz

RF Power Amplifier and Oscillator to 1215 MHz 340 Watts CW Power Output at 400 MHz Conduction Cooled

ELECTRICAL

Heater for Matrix-Type Oxide-Coated

Unipotential Cathode:

Voltage (ac or dc)	6.3	V
Current at 6.3 volts	3.2	A
Minimum heating time	60	S
Factor Crid No 2 to Crid No 1	10	

MAXIMUM CCS RATINGS, Absolute-Maximum Values:

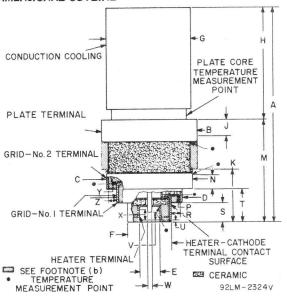
	Up to 1215 MHz
DC Plate Voltage	. 2500 V
DC Grid-No.2 Voltage	. 400 V
DC Grid-No.1 Voltage	200 V
DC Plate Current	. 250 mA
Plate Dissipation	. 300 W

MECHANICAL

Operating Position		٠			٠	٠	•	•	•	•			•			1	Any	
Weight (Approx.)												4	() Z	(1)	.1	kg)	

THERMAL

grid No.2, grid No.1, cathode	
and heater)	250 max. °C
Plate-Core Temperature	250 max. °C


^a See Dimensional Outline for Temperature Measurement Points.

b Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

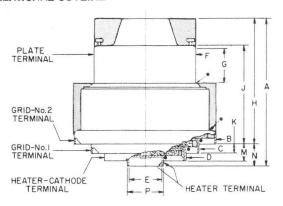
Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

Terminal Temperature (Plate.

DIMENSIONAL OUTLINE

DI- MEN- SION	INCHES	MILLIMETERS	DI- MEN- SION	INCHES	MILLIMETERS
A	2.650 ± .090	67.31 ± 2.29	N	0.140 Min.	3.56 Min.
B Dia.	1.085 Min.	27.56 Min.	P	0.120 Min.	3.05 Min.
C Dia.	0.985 Min.	25.02 Min.	R	0.095 Min.	2.41 Min.
D Dia.	0.735 Min.	18.67 Min.	S	0.175 ± .015	4.45 ± .38
E Dia.	0.260 Max.	6.60 Max.	T	0.370 ± .020	9.40 ± .51
F Dia.	0.480 Min.	12.19 Min.	U	0.025 ± .025	0.64 ± .64
G Dia.	0.990 ± .005	25.15 ± .13	V	0.054 Min.	1.37 Min.
Н	1.355 Min.	34.42 Min.	W	0.070 Max.	1.78 Max.
J	0.165 Min.	4.19 Min.	X	0.100 Min.	2.54 Min.
K	0.600 Min.	15.24 Min.	Y	0.060 Min.	13.24 Min.
M	1,230 ± .030	31.24 ± .76	Z	0.090 Min.	22.86 Min.

CERMOLOX Ruggedized Pulse Modulator Matrix Cathode 13 kV, 20 Amperes Conduction Cooled


	, and a moderator	0011	40 61101	
	ELECTRICAL Heater:			
	Type Matrix Oxide-Coated	Unipo	tential	Cathode
		•	1	typ. V
	Voltage (ac or dc)		. <	max. V
	Current at 5.5 volts		(A
0	Minimum heating time			s
	Mu-Factor, Grid No.2 to Grid No.1		. 200	
	MAXIMUM RATINGS, Absolute-Maximum			
	DC Plate Voltage			kV
	Instantaneous Peak Plate Voltage			kV
	(pulse duration < 0.1 s)		. 20	K v
	DC Grid-No.2 Voltage		. 1000	V
	DC Grid-No.1 Voltage		300	V
	Peak Positive Pulse Grid-No.1 Voltage		. 100	V
	Peak Plate Current		. 30	A
	DC Plate Current		. 1.5	A
	Plate Dissipation (Average)		. 1.5	kW
	MECHANICAL			
	Operating Position			Any
	Weight (Approx.)		. 2 lb	(0.91 kg)
	THERMAL			
	Terminal Temperature (Plate, grid No.2 grid No.1, cathode and heater)		. 250	max. °C
	Plate-Seal Temperature		. 250	max. OC
-				

 $^{\mathbf{a}}$ See Dimensional Outline for temperature measurement points.

b Keep all stippled clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

DIMENSIONAL OUTLINE

SEE FOOTNOTE (b)

CERAMIC

 TEMPERATURE MEASUREMENT POINT

92LM-2509V

DIMENSION	INCHES	MILLIMETERS
A	3.31 Max.	84.1 Max.
B Dia.	$3.020 \pm .010$	$76.71 \pm .25$
C Dia.	$2.317 \pm .010$	$58.85 \pm .25$
D Dia.	$1.717 \pm .007$	$43.61 \pm .18$
E Dia.	$0.713 \pm .012$	$18.11 \pm .30$
F Dia.	$2.266 \pm .001$	57.56 ± .03
G	0.725 Min.	18.42 Min.
Н	$2.780 \pm .040$	70.61 ± 1.02
J	$2.185 \pm .030$	$55.50 \pm .76$
K	$0.200 \pm .025$	$5.08 \pm .64$
M	$0.370 \pm .030$	$9.40 \pm .76$
N	$0.460 \pm .030$	$11.68 \pm .76$
P Dia.	$0.755 \pm .010$	$19.18 \pm .25$

4647, 4648

RF Power Amplifier Tetrodes

- CW Ouput up to 250 kW (4647), 500 kW (4648)
- Pulsed Output up to: 500 kW peak (4647) 1000 kW peak (4648)
- Full Input to 1000 MHz (Each Type)
- Power Gain up to 28 dB (Each Type)

General	Data
General	Data

Goriorai Bata			
Electrical: Type 4	1647	4648	
Filamenta			
Type Multistrand Tho	riated	Tungst	en
Current, dc operating, Typ.	840	1600	Α
Max.	860	1640	Α
Starting Current (Must never exceed even momentarily) Max. 1	1000	2000	А
Voltage at 840 A Typ.	3.7	3.7	V
Minimum Heating Time to Reach Operating Voltage.	60	60	s
Minimum Heating Time at Operating Voltage Before Applying Plate Voltage	60	60	S
Mu-Factor (grid No.2 to grid No.1)	9	9	
Direct Interelectrode Capacitances:			
Grid No.1 to plate	0.3	0.6	pF
Grid No.1 to grid No.2 and cathode	680	1200	pF
Plate to cathode and grid No.2	85	85	pF
Grid No.2 to cathode	130	140	pF
Grid No.2 to grid No.1	425	775	pF
Grid No.1 to cathode	255	425	pF
Mechanical (Each Type)			
Operating Attitude Tube axis vertice	al, eit	her end	l up
Overall Length, Maximum (470 r	mm)	18.5	in
Maximum Diameter (296	mm)	11.65	in
Terminal Connections See Dime	ension	al Outl	ine
Weight (approx.) Uncrated (34.0	kg)	75	lb
Crated (122.5) Thermal (Each Type)	kg)	270	lb
Maximum Ceramic-Insulator Temperature	. 150		οС
Maximum Metal-Surface Temperature	. 100		oC

Minimum Storage Temperature ^b	-65	oC
Maximum External Gas Pressure ^C Absolute	$\begin{cases} 60 \\ 4.2 \end{cases}$	psi kg/cm ²
Cooling:	(4.2	kg/cm
to the first of the control of the c		

It is important that the temperature of the individual parts of the tube not exceed the value specified.

Air Cooling

In general, forced-air cooling of the ceramic insulators and the adjacent contact areas may be required if the tube is used in a confined space without free circulation of air. Under such conditions, provision should be made for blowing an adequate quantity of air across the ceramic insulators and adjacent terminal areas to limit their maximum temperature to the value specified. Interlocking of the air flow with all power supplies is recommended to prevent tube damage in case of failure of adequate air flow.

Liquid Cooling:d

Liquid cooling of the filament, filament ground, grid No.1, grid No.2, and plate is required. When the environmental temperature permits, the coolant may be water; the use of distilled water or filtered deionized water is essential. The liquid flow must start before application of any voltages and preferably should continue for several seconds after removal of all voltages. Interlocking of the liquid flow through each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate liquid flow.

Liquid Pressure at any inlet, Maximum Gauge	100 lbs/in ² (7.0 kg/cm ²)
Resistivity of water @ 25° C, Minimum	1.0 megohm-cm
Water Temperature from any outlet, Maximum	70 °C

Pulsed RF Amplifierf

For frequencies up to 100 MHz and a maximum "ON" time 9 of 2500 μs in any 40,000-microsecond interval

Maximum Ratings, Absolute-Maximum Values:

4647	4648		
Peak Positive-Pulse Plate Voltage ^h	32	max. kV	1
Peak Positive-Pulse Grid-No.2 Voltage ^{j,k} 1500	1500	max. V	/
DC or Peak Negative-Pulse Grid-No.1 Voltage 400	400	max. V	/
Peak Plate Current	55	max. A	4
Peak Grid-No.2 Current 2.0	4.0	max. A	4
Peak Rectified Grid-No.1 Current 2.5	5.0	max. A	4
DC Plate Current 1.7	3.4	max. A	1

Ees		",	7070				
	4647	4648					
	DC Grid-No.2 Current 120	250	max, mA				
	DC Grid-No.1 Current 150	310	max. mA				
)	Plate Dissipation ^m						
	(Average)	40	max. kW				
	Typical Plate-Pulsed Operation:						
	In Class B service at 425 kHz with a rectangular way duty factor 9 of 0.06 and a pulse duration 9 of 200	00 mic					
ì	Peak Positive-Pulse Plate Voltage ^h 30	4648 30	kV				
,	Peak Positive-Pulse Grid-No.2 Voltage1400		V				
	Peak Negative-Pulse Grid-No.1 Voltage ⁿ 225	225	V				
	Peak Plate Current	50	A				
	Peak Grid-No.2 Current 1.3	2.5	A				
h	Peak Rectified Grid-No.1 Current 2.5	5.0	A				
y.	DC Plate Current 1.5	3.0	А				
	DC Grid-No.2 Current 80	150	mA				
	DC Grid-No.1 Current	300	mA				
	Peak Driver Power Output (approx.) 750	1500	W				
	Output Circuit Efficiency (approx.) 95	95	%				
	Useful Peak Power Output 500	1000	kW				
	RF Power Amplifier - Class C Telegraphy						
	RF Power Amplifier - Class C Telegraphy RF Power Amplifier - Class C FM Telepho						
	Maximum CCS Ratings, Absolute-Maximum Value	200,000	to 100 MHz				
		4648					
	DC Plate Voltage	22	max. kV				
h		1400	max. V				
	DC Grid-No.1 Voltage		max. V				
	DC Plate Current	45	max. A				
	Plate Dissipation ^m	250 3.5	max. kW max. kW				
	Grid-No.1 Dissipation ^m 1.5	3.0	max. kW				
1	30 May 20						
	Typical CCS Operation: 4647	4648	At 425 kHz				
	DC Plate Voltage 20	20	kV				
	DC Grid-No.2 Voltage 1200	1200	V				
	DC Grid-No.1 Voltage225	-225	V				
)	Peak RF Grid-No.1 Voltage 285	285	V				
	DC Plate Current	38	Α				

	WAST-DISCOURSE	SERVICE DOME		Action by the same of the
9	4647	4648		
DC Grid-No.2 Current	. 0.8	1.3	Α	
DC Grid-No.1 Current	. 1.8	3.5	Α	
Driver Power (approx.)	. 500	1000	W	
Circuit Efficiency (approx.)	. 95	95	%	
Useful Power Output (approx.)	. 250	500	kW	
Plate-Modulated RF Power Amplifier	f _ C	lass C	Γelephony	
Carrier conditions per tube for use with a m 1.0 unless otherwise indicated				
Maximum CCS Ratings, Absolute-Maximum Values: Up to 100 MHz				
~ "	4647	4648		
DC Plate Voltage	16	16	max. kV	
DC Grid-No.2 Voltage	1100	1100	max. V	
DC Grid-No.1 Voltage	-400	-400	max. V	
DC Plate Current	13	25	max. A	
Plate Dissipation ^m	75	150	max. kW	
Grid-No.2 Dissipation ^m	1.3	2.5	max. kW	
Grid-No.1 Dissipation ^m	1.3	2.5	max. kW	

Typical Operation	At 425 kHz		
4647	4648		
DC Plate Voltage 14	14	kV	
DC Grid-No.2 Voltage 1000	1000	V	
DC Grid-No.1 Voltage	-250	V	
Peak RF Grid-No.1 Voltage 280	280	V	
DC Plate Current	22	Α	
DC Grid-No.2 Current	1.3	Α	
DC Grid-No.1 Current 1.3	2.5	Α	
Driver Power Output (approx.) 375	750	W	
Output-Circuit Efficiency (approx.) 95	95	%	
Useful Power Output (approx.) 100	200	kW	

The filament, when operated near its maximum current is capable of providing emission in excess of service requirements for which the tube is rated. To extend the filament life, it is recommended that the filament current be reduced to a value that will give adequate but not excessive emission. For accurate measurement it is

- essential that the filament voltage be measured at the respective coolant terminals on the tube side of the coupling thread.
- b The tube coolant ducts must be free of water before storage or shipment of the tube to prevent damage from freezing.
- C The external gas pressure is related to the output cavity pressurization required to prevent corona or external arc-over.
- d For additional information on liquid cooling see Section IV of the "Application Guide for RCA Power Tubes" 1CE-279A.
- e Measured directly across cooled element for the indicated typical flow.
- f See RCA Transmitting Tube Operating Considerations, CLASSES OF SERVICE given at front of this section.
- 9 Refer to 1CE-279A for definitions.
- h The magnitude of any spike on the plate voltage pulse should not exceed the peak value of the plate voltage pulse by more than 4000 volts, and the duration of any spike when measured at the peak-value level should not exceed 10% of the maximum "ON" time. The output circuit may require pressurization to prevent corona or external arc-over at the ceramic insulator.
- j The magnitude of any spike on the grid-No.2 voltage pulse should not exceed the peak value of the grid-No.2 voltage pulse by more than 250 volts, and the duration of any spike when measured at the peak-value level should not exceed 10% of the maximum "ON" time.
- k A negative dc voltage of 300 volts maximum may be applied to grid No.2 to prevent any tube conduction between pulses.
- M Determined by calorimeter measurements. Power specified includes intercepted power radiated from the filaments.
- n The grid-No.1 voltage may be a combination of fixed and self bias obtained from a series grid resistor.

Handling (Each Type)

General information for handling RCA large power tubes is given in Section II-D of RCA's "Application Guide for RCA Power Tubes", 1CE-279A. During shipment the tube is suspended by springs in a crate. An AJ2195 Lifting Adaptor, featuring a 1.0-inch I.D. eyebolt, must be attached to the tube before removing it from the shipping crate. The

4647, 4648

use of a hoist capable of lifting a weight of 100 lbs is recommended for the uncrating operation.

Uncrating Instructions (Each Type)

The following is the recommended procedure for removing this tube from its shipping crate.

- Cut the two metal bands which close the crate. Remove the two "ball" seals. Disengage the two hasps and remove the crate lid.
- 2. Open the two drop flaps on the sides of the crate.
- 3. Cut the wires threaded through the four wing nuts that secure the wooden mounting plate for the tube to the spring supported frame. Unscrew and remove the wing nuts and washers. Save the wing nuts and washers for Step 8.
- Cut open the top of plastic bag enclosing the tube. Attach the AJ2195 Lifting Adaptor to the ground surface ring surrounding the grid-No.1 terminal using four 10-32 bolts.
- Connect a hoist to the eyebolt of the lifting fixture. Raise the tube and wooden mounting plate from the crate.
- 6; Remove the wooden mounting plate from the tube by cutting and removing the safety wire and then unscrewing the four cap screws. Do not drop the wooden mounting plate.
- 7. Remove the plastic bag from the tube.
- Reattach the wooden mounting plate to the spring supported frame using the washers and wing nuts from Step 3. Replace the crate lid. Retain the crate for future tube shipment or storage.

Tube Mounting (Each Type)

It is recommended that the tube be mounted with the axis vertical and either end up. In either case, support the weight of the tube on or by the indicated mounting surface shown on the tube outline drawing. Eight equally spaced 1/4-28 tapped holes on a 9.25-inch (23.5 mm) dia. bolt circle are provided in this surface for securing the tube in place.

If the tube is to be mounted with the input end up, the tube may be placed directly into the operating position with the hoist setup of Step 7 of the Uncrating Instructions. After mounting, the AJ2195 Lifting Adaptor should be removed from the tube and stored for future use.

If the tube is to be mounted with the output end up special care must be taken when turning it around. The recommended procedure is as follows:

- 1. Lift tube using the Lifting Adaptor AJ2195.
- Attach a 15-inch diameter mounting plate to the tube mounting surface. This plate shall have two eye-bolts 180° apart in a horizontal plane. Use all eight mounting holes. See accompanying Mounting Plate and Lifting Recommendation.
 - 3. Set tube down resting on mounting plate.
 - 4. Remove the Lifting Adaptor AJ2195.
- Lift tube using the eye-bolts on the mounting plate. It is important that the tube be held steady while being raised.
- 6. Carefully turn tube end for end.
- 7. Set tube down on stand so that it will be suspended from the mounting plate.
- Cooling Considerations (Each Type)
 Consult Section IV of 1CE-279A for general recommendations on liquid cooling.

The weight of the coolant hoses must be externally supported to insure against applying excessive mechanical stress to the tube.

Anode Coolant Separator (Each Type)

The AJ2196 Plate Coolant Separator was designed as an accesory for this tube and must be ordered as a separate item. Unless ordered, the tube will be delivered without a

4647, 4648

water separator. The coolant separator shall be installed in accordance with the following procedure.

- Visually inspect the coolant separator and tube anode water cavity to assure that they are clean and free of particles. Caution: Do not clean the anode coolant fins mechanically.
- Place a clean, lubricant-free "O" ring (uniform size No. 237) in the moat on the anode flange.
- 3. Carefully insert the AJ2196 Plate Coolant Separator into the anode cavity so as not to damage the anode coolant fins along the side of the anode cavity. Note: No force is required to insert the separator. After the coolant separator has been completely inserted rotate it, if necessary, to line up the clearance holes in the separator with the tapped holes in the anode flange.
- 4. Secure the separator in place with eight 1/4-20 NC x 5/8-inch long stainless steel, binding-head screws.

Coolant Course Inspection (Each Type)

Please consult Section IV-D of 1CE-279A for instructions on "Inspection of Coolant Courses" and Section IV-E for instructions on "Cleaning Coolant Courses." Attention is directed especially to the anode coolant fins which are soft and easily damaged. Do not attempt to clean these fins by mechanical methods.

Electrical Considerations (Each Type)

Please consult 1CE-279A. Attention is directed to Section III-B for the design of electrical connections and to Section VI for general electrical considerations.

Electrical requirements unique to this tube include the following items:

A. Filament

A dc filament supply is required. Filament excitation with an ac supply may generate mechanical resonances in the cathode structure.

The dc electrical filament connections must be made as

follows: the positive lead is connected to the filament terminal and coolant connection on the input end of the tube using the AJ2198 connector. The negative lead is connected to the dc filament ground terminal on the output end of the tube using all eight 1/4-28 tapped holes.

B. RF Driver

The value of drive power given under typical operation represents the approximate drive power required at the specified operating frequency. The driver stage should be designed to provide an excess of power over that indicated to take care of variations in line voltage and initial tube characteristics, changes in components, and tube characteristics during life, and transmission line mismatches.

The input impedance of this tube may vary over a considerable range. The exact range is a function of the grid bias and input rf voltage swing. In instances where the input rf voltage swing exceeds the bias level, the input impedance of the tube will decrease considerably. This change in input drive impedance may limit the input drive voltage unless the circuit designer utilizes a low impedance bias supply and driver circuit. The RF input circuit should be connected between the RF-Grid-No.1 terminal and the RF Input Cathode Terminal, Caution: The RF Input Cathode terminal is at filament potential and must never be connected directly to the Grid-No.1 terminal or ground. For drive circuit recommendations, please consult your RCA representative or RCA Large Power Tube Application Engineering, Lancaster, PA 17604

C. Control Grid and Screen Grid

Due to power radiation from the filament and secondary electron emission, the control and screen grid power dissipation will be higher than that indicated by the voltage-current product for each grid. The actual dissipations must be measured calorimetrically by measuring the electrode inlet and outlet water temperatures and the

4647, 4648

coolant flow. For temperatures measured in ^{OC} and for water flow in GPM, the dissipation may be calculated using the equation:

Power Dissipation in kW = 0.264 (GPM) ($T_{out} - T_{in}$)

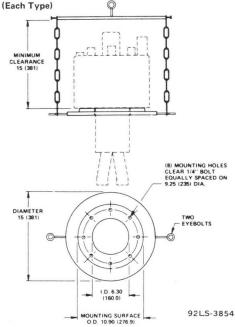
X-Radiation Warning

X-radiation may be produced when operating this tube. For each installation, the X-radiation must be checked and shields provided if the radiation level exceeds safe limits.

Protection Circuitry (Each Type)

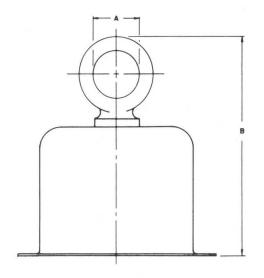
Protection circuits serve a three-fold purpose; safety of personnel; protection for the tube in the event of abnormal circuit operation; and protection of the tube circuits in the event of abnormal tube operation.

Large power tubes require protective devices to insure against high voltage shocks, rf radiation, loss of coolant flow, inadequate warm-up, etc. A full treatment of protective requirements is covered in Section VI.B of the "Application Guide for RCA Power Tubes" 1CE-279.


Filament, Grid No. 1 and Grid No. 2 (Type 4647) Flow and Pressure Drop Characteristics for Water

	Flow				Max. Press.	
Coolant Course	Abs. min.		Typ. flow		Diff. for typ. flow ^e	
	gpm	cc/s	gpm	cc/s	psi	kg/cm ²
Filament	1.5	95	2.0	126	15	1.05
Filament Ground	1.5	95	2.0	126	15	1.05
Grid No.1	1.5	95	2.0	126	17	1.19
Grid No.2	1.5	95	2.0	126	15	1.05

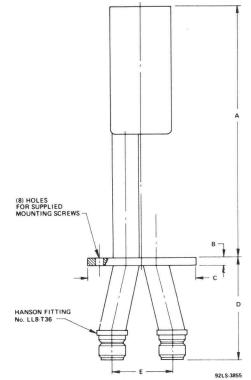
Filament, Grid No. 1 and Grid No. 2 (Type 4648) Flow and Pressure Drop Characteristics for Water


	Flow				Max. Press.	
Coolant Course	Abs.		Typ. flow		Diff. for typ. flow ^e	
	gpm	cc/s	gpm	cc/s	psi	kg/cm ²
Filament	2.0	126	2.5	158	20	1.40
Filament Ground	2.0	126	2.5	158	20	1.40
Grid No.1	2.0	126	2.5	158	23	1.61
Grid No.2	2.0	126	2.5	158	20	1.40

MOUNTING PLATE AND LIFTING RECOMMENDATION

Basic dimensions in inches. Parenthetical dimensions in mm for reference.

LIFTING ADAPTER AJ2195 (Each Type)

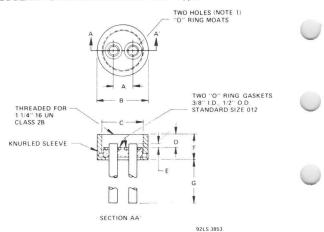

92LS - 2638R1

Tabulated Dimensions*

Dimension	Inches	Millimeters		
A Dia.	0.88 Min.	22.3 Min.		
В	5.0 Max	127 Max		

^{*}Basic dimensions are in inches. Metric dimensions are derived from the basic inch dimension (1 inch = 25.4 mm)

PLATE COOLANT SEPARATOR AJ2196 (Each Type)

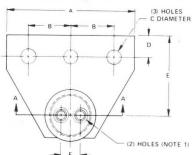

Tabulated Dimensions*

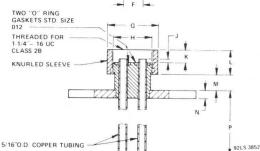
Di	mension	Inches	Millimeters				
Α		10.95 Max.	278.1 Max.				
В		$0.35 \pm .02$	$8.89 \pm .51$				
C	Dia.	$5.20\pm.01$	$32.08 \pm .25$				
D		5.5 Max.	139 Max.				
E		$2.60 \pm .20$	66.1 ± 5.1				

^{*}Basic dimensions are in inches. Metric dimensions are derived from the basic inch dimension (1 inch = 25.4 mm).

COOLANT CONNECTOR AJ2197 (Each Type)

Tabulated Dimensions*


Dimension	Inches	Millimeters
A	0.53	13.5
B Dia.	1.50	38.1
C Dia.	1.15	29.2
D	0.38	9.6
E	0.12	3.0
F	0.69	17.5
G	3.32 Min.	84.3 Min.

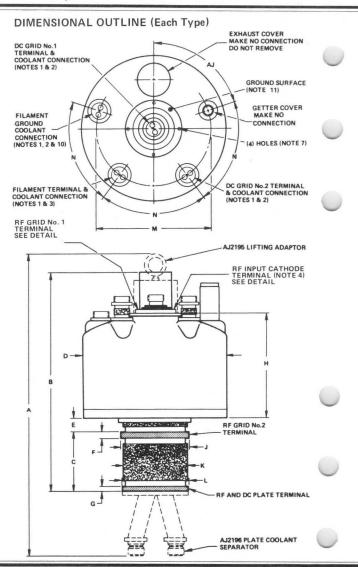

Note 1— "O" Ring Moat has an OD of 0.485" (12.32 mm) and a depth of 0.05" (1.3 mm)

^{*}Basic dimensions are in inches. Metric dimensions are derived from the basic inch dimension (1 inch = 25.4 mm).

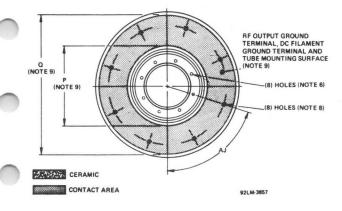
FILAMENT ELECTRICAL AND COOLANT CONNECTOR AJ2198

SECTION AA

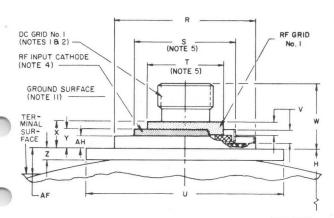
Tabulated Dimensions*

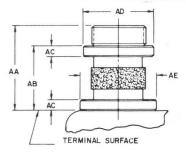

n Inches	Millimeters
3.75	95.3
1.25	31.7
0.39	9.9
0.62	15.7
2.37	60.2
0.53	13.5
1.50	38.1
1.15	29.2
0.12	3.0
0.38	9.6
0.69	17.5
0.69	17.5
0.25	6.4
	3.75 1.25 0.39 0.62 2.37 0.53 1.50 1.15 0.12 0.38 0.69 0.69

Note 1— Moat for "O" ring has an OD of 0.485 inch (12.3 mm) and a depth of 0.05 inch (1.3 mm).

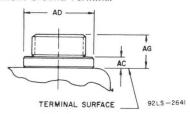

66.7 Min.

P


2.62 Min.


DIMENSIONAL OUTLINE (Bottom View)

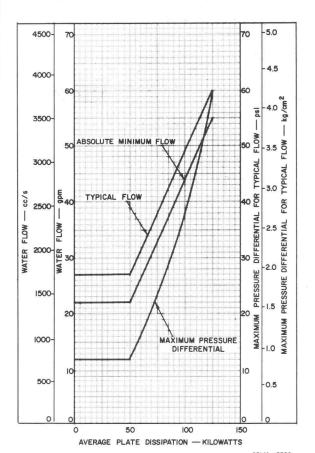
DETAIL OF RF INPUT CATHODE AND RF GRID NO. 1 TERMI-NAL, CONTACT SURFACES AND DC GRID NO. 1 TERMINAL



Detail of Filament and DC Grid No.2 Terminals

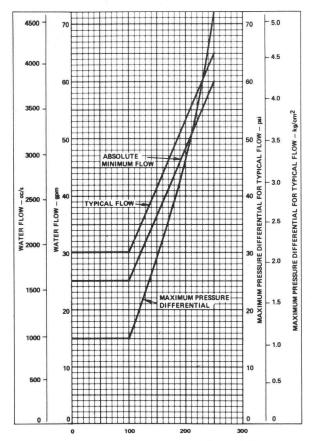
92LS-2640

Detail of Filament Ground Terminal


Notes for Dimensional Outline

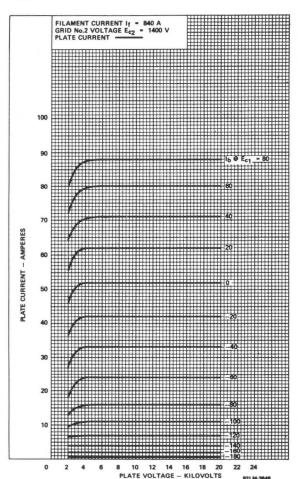
- Terminal is 1-1/4" dia. threaded 0.5" (12.7 mm) long with 16 UN class 2A thread. It has two holes 0.312" 0.324" (7.92–8.23 mm) diameter spaced 0.531" (13.49 mm) on centers.
- Terminal will accept coolant connector AJ2197.
- Terminal will accept filament electrical and coolant connector AJ2198.
- The RF Input Cathode Terminal is at filament potential. Do not ground.
- 5. This diameter dimension is held only over length of V.
- Eight (8) holes tapped 1/4"-20 NC equally spaced on a 4.20" (106.7 mm) diameter bolt circle.
- 7. Four (4) holes tapped 10-32 NF to a minimum depth of .20" (5.1 mm) equally spaced on a 4.20" \pm .03" (106.68 \pm .76 mm) diameter bolt circle.
- 8. Eight (8) holes, tapped 1/4"-28 NF to a minimum depth of

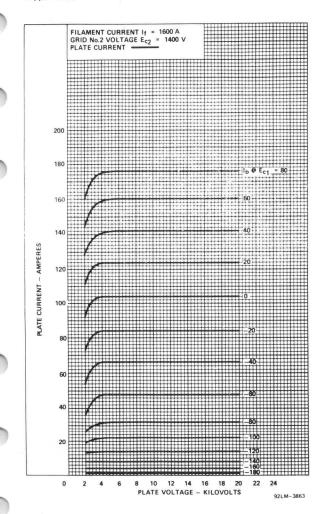
- .30" (7.6 mm) equally spaced on a 9.25" \pm .03" (234.95 \pm .76 mm) diameter bolt circle.
- Contact should not be made at a diameter smaller than 6.30" (160.0 mm) nor greater than 10.90" (276.9 mm).
 - Make no electrical connections.
 - Ground surface is used to attach Lifting Adaptor AJ2195 and may be used during operation to support input circuit components at ground potential.


Tabulated Dimens	sions for	Dimensional	Outline	
Dimension	Inches		Millimeters	Degrees
Α	26.0	max.	660 max.	
В	18.5	max.	470 max.	
С	4.84	± .02	122.94 ± .51	
D Dia.	11.65	max.	295.9 max.	
E	1.07	± .03	27.18 ± .76	
F	0.52	± .01	13.21 ± .25	
G	0.42	± .01	10.67 ± .25	
Н	8.35	± .10	212.1 ± 2.5	
J Dia.	5.50	± .01	139.70 ± .25	
K Dia.	5.12	± .10	130.0 ± 2.5	
L Dia.	5.25	± .01	133.35 ± .25	
M Dia.	9.10	± .08	231.1 ± 2.0	
N	-	-	_	$72^{\circ} \pm 3^{\circ}$
P Dia.	6.30 r	nax.	160.0 max.	
Q Dia.	10.90 r	min.	276.9 min.	
R Dia.	3.30 r	nax.	83.9 max.	
S Dia.	2.319	± .012	58.90 ± .30	
T Dia.	1.725	± .015	43.82 ± .38	
U	4.50	± .02	114.30 ± .51	
V	0.24 r	min.	6.1 min.	
W	1.47	Ł .06	37.3 ± 1.5	
X	0.63	Ł .06	16.00 ± 1.52	
Y	0.46	L .06	11.68 ± 1.52	
Z	0.22	Ł .02	5.59 ± .51	
AA	2.00	Ł .05	50.8 ± 1.3	
AB	1.50	Ł .04	38.10 ± 1.02	
AC	0.25	Ł .02	6.35 ± .51	
AD Dia.	1.62	Ł .02	41.15 ± .51	
AE Dia.	1.74	Ł .02	44.20 ± .51	
AF	0.62	Ł .10	15.7 ± 2.5	
AG	0.75	Ł.05	19.0 ± 1.3	
AH	0.45	max.	11.4 max.	
AJ				720 ± 50

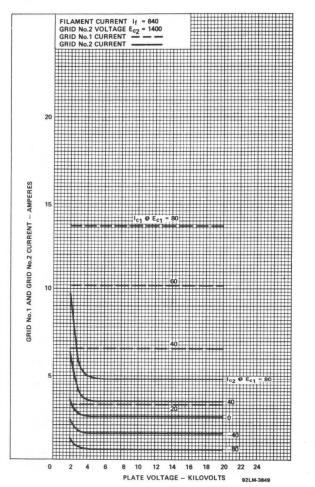
COOLING CHARACTERISTICS (Type 4647)

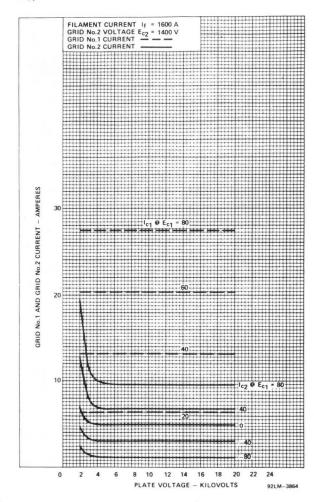
92LM-2589


COOLING CHARACTERISTICS (Type 4648)

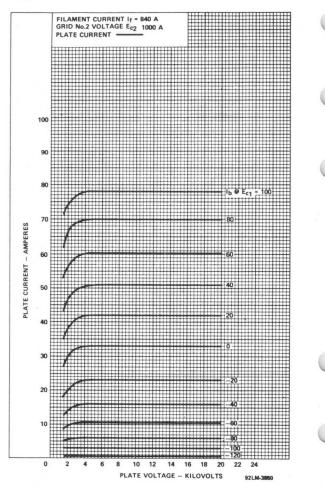

AVERAGE PLATE DISSIPATION - KILOWATTS

92LM-3867

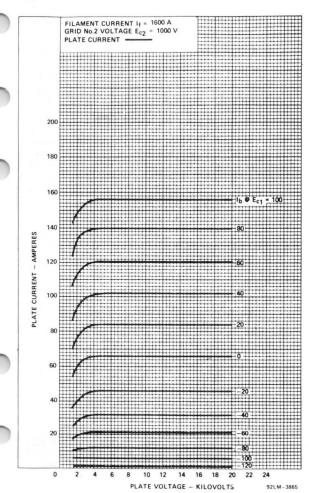

TYPICAL PLATE CHARACTERISTICS ($E_{c2} = 1400 \text{ V}$) (Type 4647)


TYPICAL PLATE CHARACTERISTICS (E_{c2} = 1400 V) (Type 4648)

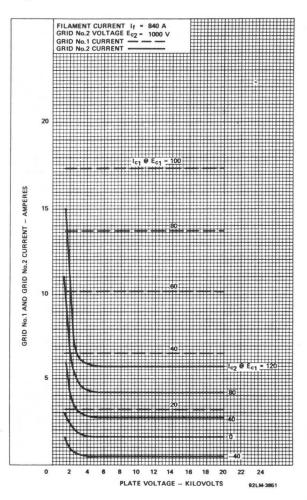
TYPICAL CHARACTERISTICS (E_{c2} = 1400 V) (Type 4647)

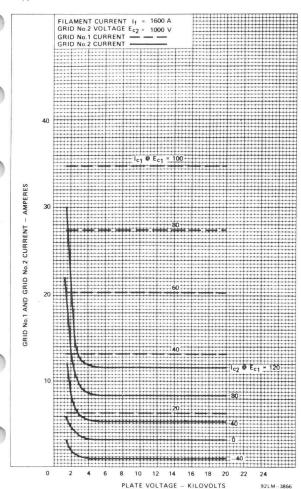


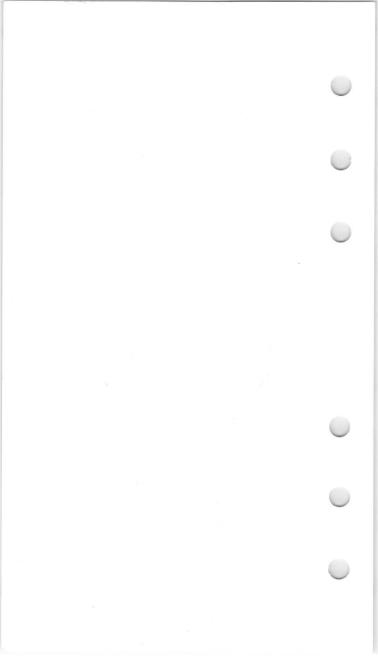
TYPICAL CHARACTERISTICS (E_{c2} = 1400 V) (Type 4748)



4647, 4648


TYPICAL PLATE CHARACTERISTIC ($E_{c2} = 1000 \text{ V}$) (Type 4647)


TYPICAL PLATE CHARACTERISTIC (E_{c2} = 1000 V) (Type 4648)



TYPICAL CHARACTERISTICS (E_{c2} = 1000 V) (Type 4647)

TYPICAL CHARACTERISTICS (E_{c2} = 1000 V) (Type 4648)

Beam Power Tube

CERMOLOX

Full Input to 400 MHz Ruggedized 1000 Watts PEP Output Matrix Cathode 37 dB Open-Loop Third Order Distortion

ELECTRICAL

Heater-Cathode:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Type	Unipotential, Oxide Coated,
	Matrix
Voltage (ac or dc)	5.5 typ5.8 max. V
Current at 5.5 V	17.3 A
	50 max. A
(Under any conditions)	
Minimum Heating Time	180 s
Mu Factor (Grid No.1 to Grid N	0.2) 7

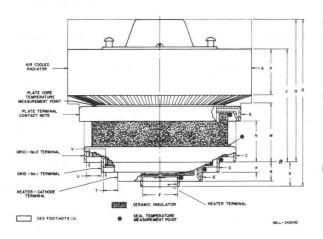
MAXIMUM CCS RATINGS, Absolute-Maximum Values:

	Up to 400 MHz
DC Plate Voltage	 3500 max. V
DC Grid-No.2 Voltage	 1000 max. V
DC Plate Current at Peak of Envelope	 1.25 max. A
Grid-No.2 Input	 50 max. W
Plate Dissipation	 1.5 max.kW

MECHANICAL

Operating Position	•	٠	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		Any	1
Weight (Approx.)																	2	lb)	(0.9	kg)	1

THERMAL a


Plate-Core Temperature .

Seal Temperature	250 max. °C
(Plate, Grid No.1, Grid No.2	
Cathode-Heater, and Heater)	
Plate-Core Temperature	250 max, oC

^a See Dimensional Outline for temperature measurement points. b Keep all strippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J. 07029.

DIMENSIONAL OUTLINE

DIMENSION	INCHES	MILLIMETERS
1.5	0.50 1.00	04.40 50
A Dia.	$3.72 \pm .03$	94.49 ±.76
B Dia.	3.210 Min.	81.54 Min.
C Dia.	3.010 Min.	76.45 Min.
D Dia.	2.307 Min.	58.60 Min.
E Dia.	1.710 Min.	43.41 Min.
F Dia.	0.725 Max.	18.41 Max.
G	$3.24 \pm .10$	82.3 ± 2.5
Н	$2.78 \pm .07$	70.61 ± 1.78
J	$2.19 \pm .04$	55.63 ± 1.02
K	0.85 Min.	21.59 Min.
М	1.160 ⁺ .005 000	$29.464^{+.127}_{000}$
N	$0.82 \pm .03$	$20.83 \pm .76$
P	$0.200 \pm .025$	$5.08 \pm .63$
R	$0.37 \pm .03$	$9.40 \pm .76$
S	$0.46 \pm .03$	$11.68 \pm .76$
T	0.200 Min.	5.08 Min.
U	0.250 Min.	6.35 Min.
V	0.105 Min.	2.66 Min.

4652/8042

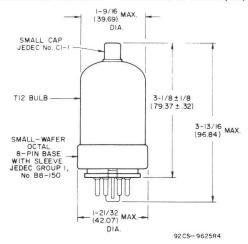
Beam	Power	Tube
------	-------	------

	Be	eam Pa	ower T	ube
	Quick-Heating Filament	High I	Power Sens	itivity
	90 Watts CW Input (I	-		,
	60 Watts CW Input			
	For use as a	Constitution of the second		
	amplifier in communic			
	ELECTRICAL			
	Filament, Coated:			
	Voltage (AC or DC)		1.6 ± 10%	V
	Current at 1.6 volts		3.2	A
	Heating time		1	s
	Transconductance a		6000	µmho
7	Mu-Factor , Grid No.2 to Grid No.	0.1	4	
	Direct Interelectrode Capacitano	es:		
	Grid No.1 to plate		0.24 max.	pF
	Grid No.1 to filament & grid			
	No.3 & internal shield, base sleeve and grid No.2		11	pF
	Plate to filament & grid No.3			
	& internal shield, base sleeve and grid No.2		8.5	pF
	MECHANICAL			
	Operating Position	. Vertical, plane of pir	or horizonta as 3 and 7 v	l with ertical
	Maximum Overall Length		3-	13/16''
	Seated Length		3-1/8"	± 1/8"
	Maximum Diameter		1-	21/32"
	Bulb			T-12
	Cap	Small	(JEDEC No	.C1-1)
	Base Small		8-pin with oup 1, No.B	
	Bulb Temperature (At hottest poi			122
	RF POWER AMPLIFIER & OSC.	- CLASS	C TELEGR	APHY ^b
	AND			
	RF POWER AMPLIFIER - CL			HY
	Maximum ICAS Ratings, Absolute	e-Maximum		0 MII-
	DC Plate Voltage		Up to 6	
	DC Grid-No.2 Voltage		. 250 ma	
	Do Gild-100.2 Voltage		. 200 1116	ta. Y

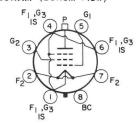
4652/8042

DC Grid-No.1 Voltage150 max.	V	
DC Plate Current 150 max.	mΑ	
DC Grid-No.1 Current 4 max. r	mA	6
Plate Input 90 max.	W	1
Grid-No.2 Input 3 max.	W	
Plate Dissipation 25 max.	W	
Typical Operation as Amplifier at 175 MHz		
DC Plate Voltage 400	V	1
	V	
DC Grid-No.2 Voltage 190		
From a series resistor of 18000	Ω	
DC Grid-No.1 Voltage d60	V	
From a grid resistor of 30000	Ω	1
DC Plate Current	mA	1
DC Grid-No.2 Current	mA	
DC Grid-No.1 Current (Approx.) 2	mA	
Driving Power (Approx.) 4.5	W	
Power Output (Approx.) 30	W	
Maximum Circuit Values:		
Grid-No.1 Circuit Resistance 30000 max.	Ω	

For plate volts = 200 V, grid No.2 volts = 200 V, and plate current = 100 mA.


The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section.

b See Classes of Service.


c See Electrical Considerations - Grid-No.2 Voltage Supply.

d See Electrical Considerations - Grid-No.1 Voltage Supply.

DIMENSIONAL OUTLINE - Dimensions In Inches (mm)

TERMINAL DIAGRAM (Bottom View)

Pin 1: Filament 1, Grid No.3, Internal Shield

Pin 2: Filament 2

Pin 3: Grid No.2

Pin 4: Same as Pin No.1

Pin 5: Grid No.1

Pin 6: Same as Pin No.1

Pin 7: Filament 2

Pin 8: Base Sleeve

Cap: Plate

C Band Klystron

	 Gang Tuned Cavities Air Cooled High Efficiency High Efficiency 	
	Frequency 4.4 to 5.0	GHz
	ELECTRICAL	
	Cathode Indirectly-heated Tung Dispenser Cath	
	Filament:	
	Voltage 6.5 ± 0.5	V
	Current at 6.5 V 7.6	Α
	Maximum current 8.2	Α
	Warmup time (min.)	S
	MECHANICAL Mounting Position	Any
	Length (max.)	in
	Width (max.) (267 mm) 10.5	in
	Weight (approx.)	lb .
	In commercial pack (18.1 kg) 40	lb
	In military pack (22.5 kg) 50	lb
	THERMAL	
	Collector Temperature (max.) 260	oC
	Body Temperature (max.)	oC.
	Tuner Fin Temperature (max.)	oC
	Electron Gun Potting	
	Insulation temperature (max.) 250	°C
	Storage temperature (min.)	o _C
	Typical air requirements for operation with 20° C ambient air perature at sea level are:	
)	Min Reg Max Air Flow Press-Drop Ib/min kg/min in H ₂ O cm	H ₂ O

3.4

0.38

2.0

0.75

Body & Tuners

5.1

1.9

kimum Value	s:		
	8.5	kV	
	600	mA	
	60	mA	
	25	Α	
	2.0:1		
	2.0:1		
4.4 GHz	5.0 GH	z	
7.5	7.5	kV	
490	490	mA	
4.4 GHz	5.0 GH	z	
10.0	10.0	mA	
1.45	1.30	kW	
8.0	10.0	MHz	
39.0	35.0	%	
44.0	44.0	dB	
50.0	50.0	mW	
1.05:1	1.05:1	_	
1.3:1	1.3:1	_	
4.4 GHz	5.0 GH	Z	
7.5	7.5	kV	
490	490	mA	
10.0	10.0	mA	
1.30	1.15	kW	
6.0	8.0	MHz	
35.0	31.0	%	
51.0	51.0	dB	
	4.4 GHz 7.5 490 4.4 GHz 10.0 1.45 8.0 39.0 44.0 50.0 1.05:1 1.3:1 4.4 GHz 7.5 490 10.0 1.30 6.0 35.0		

10.0

1.05:1

1.3:1

Input VSWR

10.0

1.05:1

1.3:1

Broadband Tuned				
Frequency		4.4 GHz	5.0 GH	ž
DC Beam Voltage		7.5	7.5	kV
DC Beam Current		490	490	mA
DC Body Current	œ	10.0	10.0	mA
RF Power Output		1.35	1.25	ķW
Bandwidth (3 dB)		13.0	19.0	MHz
Efficiency	٠	36.0	33.0	%
Gain		41.0	41.0	dB
Drive		100.0	100.0	mW
Load VSWR		1.05:1	1.05:1	-
Input VSWR	100	1.3:1	1.3:1	-

GENERAL INFORMATION

Installation and Operation

No installation or operation should be attempted without first consulting the Installation and Operating Instructions shipped with each tube or available on request from Super Power Marketing, RCA, Lancaster, PA.

RCA reference publications required for the installation and operation of this device include the following:

Data Sheet - RCA-4658

Application Note AN 4213

Application Guide 1CE-279A

These publications are available as a complete packet — request PWR 543 "Applications Information for the RCA-4658 klystron."

Personnel Safety

The high voltages and microwave radiations from this device can be dangerous to life. High voltage shielding and interlock precautions must be taken and all rf connections must be tightly closed and rf terminals shielded.

Packaging

Two types of packaging are available with these tubes; Commercial Pack and Military Pack. The customer specifies the desired type.

The Commercial Pack is made of nesting carboard cartons with the inner carton shock-mounted. The Military Pack complies with MIL-S-4473C for air shipment. It uses a hermetically-sealed metal container which protects the tube and serves to shield the area surrounding the pack from stray magnetic fields set up by the klystron focusing magnet.

In shipment, the tube is enclosed in a polyethylene bag to prevent dust and other particles from collecting in the waveguide or tuning system. It is recommended that the tube be stored in the bag and in the shipping container when not in use. Dust or other unwanted particles in the waveguide can cause arcing during operation and subsequent tube destruction.

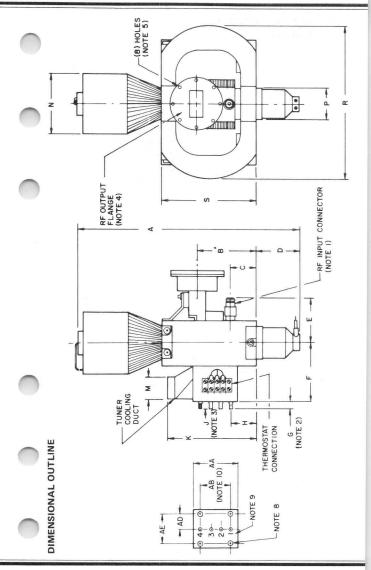
Cooling

Air ducts must be provided to connect to the top of the collector and the tuner cooling duct. See Outline Drawing.

Mounting

Four holes are provided in the gun-end of the focusing magnet for mounting purposes. Only non-magnetic studs should be used.

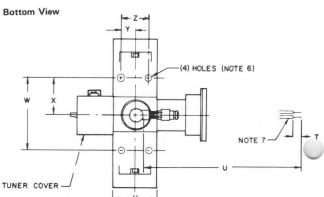
Thermocouple


A thermocouple mounted on the collector provides a signal output for excessive collector temperature. This output is used to operate protective circuitry.

Tuning

Tuning is accomplished by a single knob which "gang-tunes" all four cavities simultaneously. The second, third and output cavities may be individually trimmed for optimizing the tube performance at any frequency within the tube operating band. See Outline Drawing.


Protection Circuits


Protection circuits serve a threefold purpose: safety of personnel, protection of the tube and protection of tube circuits. Consult Application Guide 1CE-279A for complete information on protection circuits.

DIMENSIONAL OUTLINE

(Top View)

TABULATED DIMENSIONS for the Outline Drawing

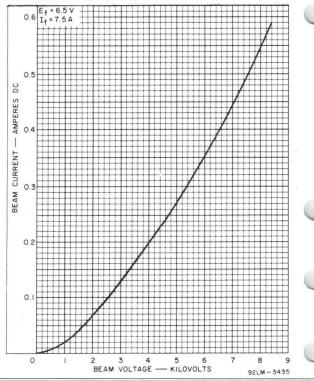
Reference	Inches		Millimeters				
A	15.5 ma	ax.	393.7	max.			
B C	4.06 ±	.12	103.1	± 3.0			
С	1.80 ±	.12	45.7	± 3.0			
D	3.5 m	nax.	88.9	max.			
E	3.00 ±	.06	76.2	± 1.5			
F	3.80 ±	.12	96.5	± 3.0			

Specified Values

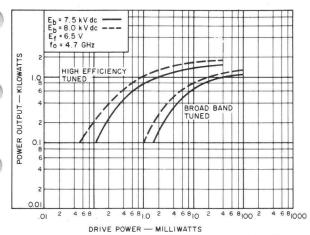
Dimension

TABULATED DIMENSIONS (Cont'd)

G	0.68	± .05	17.3	± 1.3
Н	1.80	± .09	45.7	± 2.3
J	0.68	+ .15 10	17.3	+3.8
K	6.25	max.	158.8	max.
M	1.50	± .03	38.1	8. ±
N Dia.	4.12	± .03	101.6	± .8
P Dia.	2.130	± .015	54.10	± .38
R	10.5	max.	266.7	max.
S	6.5	± .5	165.0	± 13.0
T	0.50	± .12	12.7	± 3.0
U	15.00	± .25	381.0	± 6.0
V	3.25	max.	82.55	max.
W	5.00	± .06	127.0	± 1.5
X	2.50	± .06	63.5	± 1.5
Υ	1.00	± .06	25.4	± 1.5
Z	2.00	± .06	50.8	± 1.5
AA	3.00	± .06	76.2	± 1.5
AB	2.10	± .02	53.34	± .51
AD	1.00	±.03	25.4	± .8
AE	2.00	± .03	50.8	8. ±
AK	0.440	010. ± (11.18	± .25
AL	0.230	± .005	5.84	±.13
AM Dia.	0.249	± .002	6.325	± .051
AP	3.00	± .06	76.2	± 1.5
AR	4.75	±.12	120.6	± 3.0

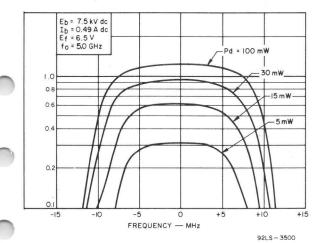

NOTES FOR OUTLINE DRAWINGS

- 1. Mates with Type "N" Connector UG-21 B/U or equivalent.
- 2. Dimension applies to Shaft No.1 only.
- 3. Dimension applies to Shafts No,'s 2, 3, and 4 only.
- 4. Mates with UG-149 A/U or equivalent.
- 5. Holes 10-32 UNF-2B equally spaced on 3.250" \pm .032" (82.6 \pm .8 mm) dia. circle.
- 6. Holes $0.437'' \pm .062''$ (11.1 \pm 1.6 mm) thru (One side only).

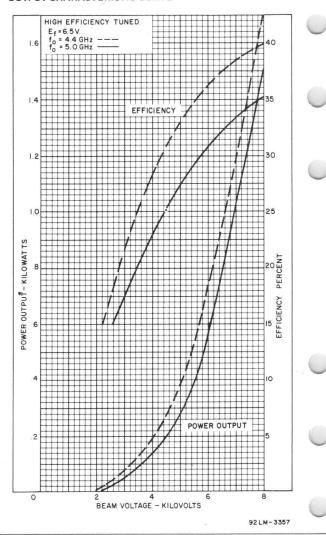

4658

- High-Voltage Lead Designation Heater Lead — Yellow Heater-Cathode Lead — White
- Thru-holes checked with gauge.
- 9. Three spaces between shafts are 0.70" \pm .03" (17.8 \pm .8 mm) and add to 2.100" (53.34 mm). Shafts are numbered as shown.
- Tolerance for this dimension applies to location of four 0.201" (5.11 mm) holes.
- 11. Hole #6-32 UNC-2B, 0.25" (6.35 mm) minimum depth.

BEAM CURRENT CHARACTERISTIC CURVE



GAIN CHARACTERISTIC CURVE



92LS - 3436

BANDWIDTH CHARACTERISTIC CURVE

OUTPUT CHARACTERISTIC CURVE

C Band Klystrons

.. (22.5 kg)

5.0 Kilowatts Pulsed Power Output High Efficiency — High Power Gain Compact — Sturdy Gang-Tuned Cavities Air Cooled

E	LE	CT	RI	CA	1L

outilout	 mamoury	ricated	dingston	Disperioei	outhout	
Filament						

Voltage 6.5 \pm 0.5	V	
Current (at 6.5 V)	Α	į
Current (maximum) 8.2	Α	ě
Warm-Un Time 180	5	

MECHANICAL	
Mounting Position	Any
Length (maximum)	(393 mm) 15.5 in
Width (maximum)	(267 mm) 10.5 in
Weight (approx.)	
Uncrated	(17.2 kg) 38 lb
In commercial pack	(18.1 kg) 40 lb

THERMAL

In military pack

Collector Temperature (maximum)								260 °C
Body Temperature (maximum)					٠			150 °C
Tuner Fin Temperature (maximum)								150 °C
Electron Gun Temperature								

Insulation (maximum) 250 °C Storage (minimum) -65 °C

	air	flow	across	the	collector,	body	and	tuner	is
required.									

Typic	cal	aii	r-flo	w rec	uir	emei	nts
(200	C	at	sea	level	pr	essur	e)
				N.	lin	Air	Fle

	Min. Air i	FIOW	Max. Press Drop					
	lbs/min.	kg/min.	in H ₂ 0	cm H ₂ 0				
Collector	7.5	3.4	2.0	5.1				
Body and Tuner	0.85	0.38	0.75	1.9				

50 lb

Typical Rating as a Pulsed RF Amplifier

MAXIMUM RATINGS, Absolute-Maximum Values:	
Pulsed Beam Voltage 14.0 max.	kV
Pulsed Beam Current 1.6 max.	Α
Pulse Width	µsec €
Duty 0.2	%

TYPICAL PULSED OPERATION

TYPICAL PULSED OPERATION		
Frequency	4.7	GHz
Pulsed Beam Voltage	12.0	kV
Pulsed Beam Current	1.4	Α
Pulsed Power Output*	5.0	kW
Power Gain	50.0	dB
Efficiency	30.0	%
Pulse Width	5.0	μ sec
Duty	0.2	%

^{*}A waveguide transformer was used to optimize the power output at the stated frequency

GENERAL INFORMATION

Installation and Operation

No installation or operation should be attempted prior to consulting the Installation and Operating instructions shipped with each tube or available upon request from Super Power Tube Marketing, RCA Lancaster, PA 17604.

RCA reference publications helpful for installation and operation include the following:

Data Sheet — RCA 4659, RCA 4660 Application Note — AN 4213 Application Guide — 1CE-279

These publications are available as complete packets—Request PWR-544, "Application Information for the RCA 4569 Klystron."

Request PWR-545, "Application Information for the RCA 4660 Klystron."

Personnel Safety

The high voltages and microwave radiations from these devices can be dangerous to life. High voltage shielding and interlock precautions must be taken and all rf connections must be tightly closed and rf terminals shielded.

These devices in operation, may produce X-Radiation which can constitute a health hazard. Shielding or other precautions may be required.

Packaging

Two types of packaging are available with these tubes; Commercial Pack and Military Pack. The customer specifies the desired type.

The Commercial Pack is made of nesting, cardboard cartons with the inner carton shock-mounted. The Military Pack complies with MIL-S-4473C for air shipment. It uses an hermetically-sealed, metal container which protects the tube and serves to shield the surrounding area from stray magnetic fields set up by the klystron focusing magnet.

During shipment, the tube is enclosed in a polyethylene bag to prevent dust and other particles from collecting in the waveguide or tuning systems. It is recommended that the tube be stored in the bag and in the shipping container when not in use. Dust or other unwanted particles in the waveguide can cause arcing during operation and subsequent tube destruction

Cooling

Air ducts must be provided to connect to the top of the collector and the tuner cooling duct. See the Outline Drawing.

Mounting

Four holes are provided in the gun end of the focusing magnet for mounting purposes. Only non-magnetic studs should be used.

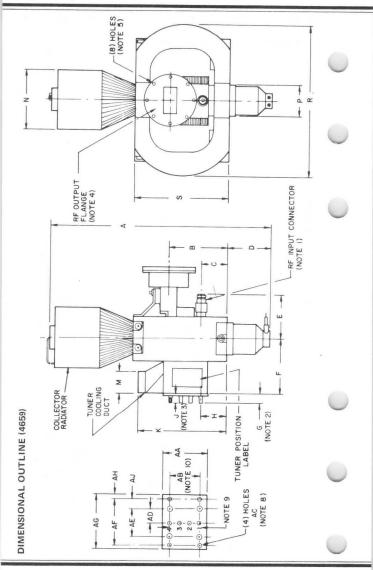
Thermocouple

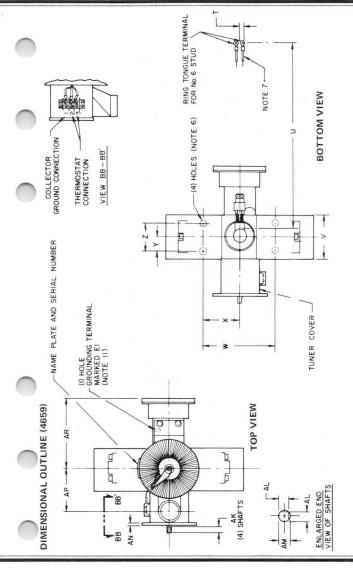
A thermocouple, mounted on the collector, provides a signal which will indicate excessive collector temperature. This output can be used to operate protective circuitry.

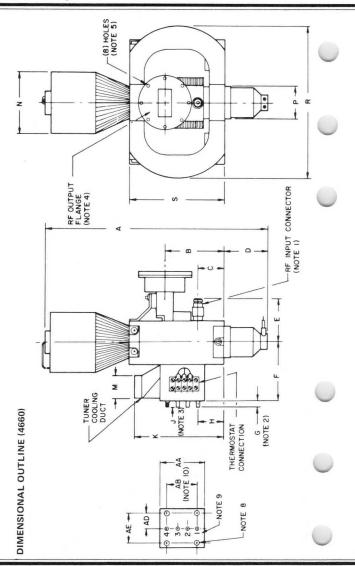
Tuning

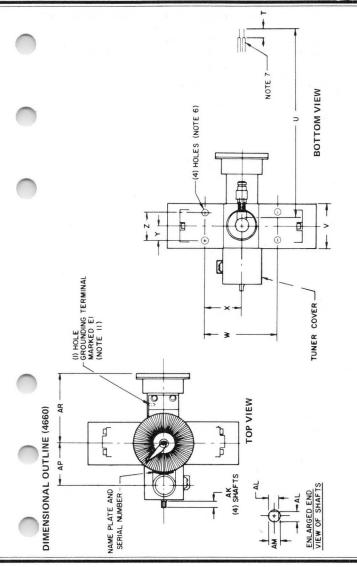
Tuning is accomplished by a single knob which gang tunes all four cavities simultaneously. The second, third and output cavities may be individually trimmed for optimizing the tube performance at any frequency within the tube operating band. See Outline Drawing.

Protection Circuits


Protection circuits serve a three fold purpose: safety of personnel, protection of the tube, and protection of the circuits. Consult "Application Guide" 1CE-279 for complete information on protection circuits.


NOTES FOR OUTLINE DRAWINGS (BOTH TYPES)


- 1. Mates with Type "N" Connector UG-21 B/U or equivalent.
- 2. Dimension applies to Shaft No.1 only.
- 3. Dimension applies to Shafts No.'s 2, 3, and 4 only.
- 4. Mates with UG-149 A/U or equivalent.
- Holes 10-32 UNF-2B equally spaced on 3.250" ± .032"
 (82.6 ± 8 mm) dia circle
- 6. Holes $0.437'' \pm .062''$ (11.1 \pm 1.6 mm) thru (One side only).
- High-Voltage Lead Designation Heater Lead — Yellow Heater-Cathode Lead — White
- Thru-holes checked with gauge.
- 9. Three spaces between shafts are $0.70^{\prime\prime}\pm.03^{\prime\prime}$ (17.8 $\pm.8$ mm) and add to 2.100 $^{\prime\prime}$ (53.34 mm). Shafts are numbered as shown.
- Tolerance for this dimension applies to location of four 0.201" (5.11 mm) holes.
- 11. Hole #6-32 UNC-2B, 0.25" (6.35 mm) minimum depth.


TABULATED DIMENSIONS FOR THE OUTLINE DRAWING (4659)

	Dimension Reference	Specified Values Inches	Millimeters
	Α	15.5 max.	393.7 max.
	В	4.06 ± .12	103.1 ± 3.0
	С	1.80 ± .12	45.7 ± 3.0
	D	3.5 max.	88.9 max.
	E	$3.00 \pm .06$	76.2 ± 1.5
	F	3.80 ± .12	96.5 ± 3.0
	G	$0.68 \pm .05$	17.3 ± 1.3
	Н	1.80 ± .09	45.7 ± 2.3
	J	0.68 ^{+ .15}	17.3 ^{+ 3.8} _{- 2.5}
_	K	6.25 max.	158.8 max.
	M	1.50 ± .03	38.1 ± .8
	N Dia.	4.12 ± .03	101.6 ± .8
	P Dia.	2.130 ± .015	54.10 ± .38
	R	10.5 max.	266.7 max.
	S	6.5 ± .5	165 ± 13.0
	T Dia.	0.250 ±.015	6.35 ± .38
	U	13.50 ± .25	343.0 ± 6.0
	V	3.25 max.	82.55 max.
	W	5.00 ± .06	127.0 ± 1.5
	X	$2.50 \pm .06$	63.5 ± 1.5
	Y	1.00 ± .06	25.4 ± 1.5
	Z	2.00 ± .06	50.8 ± 1.5
	AA	$3.00 \pm .06$	76.2 ± 1.5
	AB	2.10 ± .02	53.34 ± .51
	AC	$0.201 \pm .010$	5.11 ± .25
	AD	1.00 ± .03	25.4 ± .8
	AE	2.00 ± .03	50.8 ± .8
	AF	$3.25 \pm .02$	82.55 ± .51
	AG	$3.75 \pm .03$	95.3 ± .8
	AH	$0.25 \pm .03$	6.4 ± .8
	AJ	$0.62 \pm .03$	15.8 ± .8
	AK	0.440 ± .010	11.18 ± .25
	AL	$0.230 \pm .005$	5.84 ± .13
	AM Dia.	$0.249 \pm .002$	6.325 ± .051
	AN	$0.125 \pm .030$	$3.2 \pm .8$
	AP	3.00 ± .06	76.2 ± 1.5
	AR	4.75 ± .12	120.6 ± 3.0
			120.0 - 0.0

TABULATED DIMENSIONS FOR THE OUTLINE DRAWING (4660)

Dimension Reference	Specified Values Inches	Millimeters	
Α	15.5 max.	393.7 max.	
В	$4.06 \pm .12$	103.1 ± 3.0	
С	1.80 ± .12	45.7 ± 3.0	
D	3.5 max.	88.9 max.	
E	$3.00 \pm .06$	76.2 ± 1.5	1
F	3.80 ± .12	96.5 ± 3.0	
G	$0.68 \pm .05$	17.3 ± 1.3	
Н	$1.80 \pm .09$	45.7 ± 2.3	
J	0.68 + .15 10	17.3 ⁺ 3.8 - 2.5	
K	6.25 max.	158.8 max.	6
M	1.50 ± .03	$38.1 \pm .8$	-
N Dia.	4.12 ± .03	101.6 ± .8	
P Dia.	$2.130 \pm .015$	$54.10 \pm .38$	
R	10.5 max.	266.7 max.	
S	$6.5 \pm .5$	165 ± 13.0	
T	$0.50 \pm .12$	12.7 ± 3.0	
U	$15.00 \pm .25$	381.0 ± 6.0	
V	3.25 max.	82.55 max.	
W	$5.00 \pm .06$	127.0 ± 1.5	
X	$2.50 \pm .06$	63.5 ± 1.5	
Υ	$1.00 \pm .06$	25.4 ± 1.5	
Z	$2.00 \pm .06$	50.8 ± 1.5	
AA	$3.00 \pm .06$	76.2 ± 1.5	
AB	$2.10 \pm .02$	53.34 ± .51	
AD	$1.00 \pm .03$	$25.4 \pm .8$	
AE	$2.00 \pm .03$	50.8 ± .8	(
AK	0.440 ± .010	11.18 ± .25	-
AL	0.230 ± .005	5.84 ± .13	
AM Dia.	0.249 ± .002	6.325 ± .051	
AP	3.00 ± .06	76.2 ± 1.5	
AR	4.75 ± .12	120.6 ± 3.0	

Beam Power Tube

Cermolox Ruggedized

Forced-Air Cooled Full Input to 400 MHz

ELECTRICAL Heater-Cathode:

Unipotential, Oxide Coated, Matrix Type

Voltagea (AC or DC) 17.3 A

Minimum heating time 180 Mu Factorb 6.5 (Grid No.1 to Grid No.2)

Direct Interelectrode Capacitances:

Grid No.1 to plate^C 0.14 pF Grid No.1 to Cathode-Heater 38 pF 0.02 pF

Grid No.1 to Grid No.2 52 pF Grid No.2 to Plate 13 pF Grid No.2 to Cathode-Heater^C pF 14

MECHANICAL

Weight (Approx.)

Operating Position Anv Maximum Length (98.0 mm) 3.86 in Greatest Diameter (94.7 mm)

Terminal Connection See Dimensional Outline Integral part of tube

Sockets may be obtained from:

Erie Technological Products, Inc. 644 West 12th Street, Erie, PA 16512 Jettron Products Incorporated

56 Route 10, Hanover, NJ 07936

THERMAL

Ceramic-Metal Interface Temperatured 250 max. °C (Plate, grid No.1, grid No.2, cathode-heater, and heater) 250 max. O C

(0.9 kg) 2 lb

	THE RESERVE THE PERSON NAMED IN	General State of the Control of the
LINEAR RF POWER AMPLIFIER® AM TELEPHONY SERVICE, CLASS AB		
Carrier conditions for use with a maximum modulation factor	of 1.0	
Maximum CCS Ratings, Absolute-Maximum Values:		
DC Plate Voltage ^f	. v	
DC Grid-No.2 Voltage9 1000 max	. v	
DC Grid-No.1 Voltageh	V	
DC Plate Current	. mA	
Grid-No.2 Input 50 max	w	
Plate Dissipation	w	
Calculated CCS Operation as a Class AB ₁ Amplifier:		
In a cathode-drive circuit at 400 MHz with an output circuit width of 4.5 MHz.	band-	
DC Plate Voltage) V	
DC Grid-No.2 Voltage		
DC Grid-No.1 Voltage ^k -75		
) mA	
	5 mA	
) mA	
Drive Power (Approx.)		
Output Circuit Eff. (Approx.)		
Useful Power Output		
RF POWER AMPLIFIER&OSCILLATOR-CLASS C TELEGI AND	RAPHY	е
RF POWER AMPLIFIER - CLASS C FM TELEPHONY ^e		
Maximum CCS Ratings, Absolute-Maximum Values:		
up to 400	ИНz	
DC Plate Voltage ^f	. v	
DC Grid-No.2 Voltage ⁹ 1000 max	. v	
DC Grid-No.1 Voltage ^h 300 max	. V	
DC Plate Current 1.25 max	. A	
DC Grid-No.1 Current 0.2 max	. А	
Grid-No.2 Input9 50 max	. W	
Plate Dissipation	. W	
Maximum Circuit Values:		
Grid-No.1-Circuit Resistance 5000 m	ax. Ω	
Grid-No.2-Circuit Impedance See	note g	
Plate-Circuit Impedance See	note f	

Calculated CCS Operation:

In a cathode-drive circuit at 400 MHz with an output circuit bandwidth of 4.4 MHzi.

Width of It in it.		
DC Plate Voltage	2600	V
DC Grid-No.2 Voltage	550	V
DC Grid-No.1 Voltage ^m	-85	V
DC Plate Current	900	mA
DC Grid-No.2 Current	-10	mA
DC Grid-No.1 Current	5	mA
Drive Power (Approx.)	70	W
Output Circuit Eff. (Approx.)	90	%
Useful Power Output	1160	W

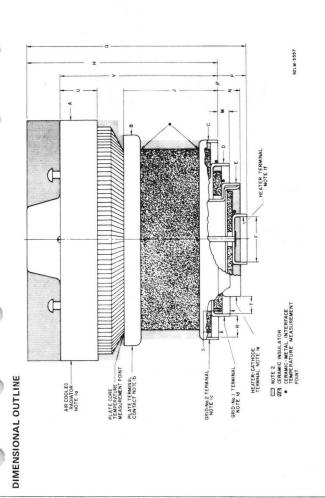
- b For: plate voltage = 2500 V grid No.2 voltage = 600 V plate current = 600 mA
- c With special shield adapter.
- d See Dimensional Outline for temperature measurement points.
- j Computed between half-power points using two times tube capacity.
- k Adjust for zero-signal DC plate current of 0.2 A.
- m Adjust for zero-signal DC plate current of 0.1 A.

The following footnotes apply to the RCA *Transmitting Tube Operating Considerations* given at the front of this section.

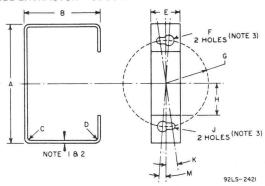
- a See Electrical Considerations Filament or Heater.
- e See Classes of Service
 - f See Electrical Considerations Plate Voltage Supply
 - g See Electrical Considerations Grid No. 2 Voltage Supply
- h See Electrical Considerations Grid No. 1 Voltage Supply

OUTLINE TABULATED DIMENSIONS*

Dimensions	Value	
	Inches	Millimeters
A Dia.	3.70 ±.03	93.98 ± .76
B Dia.	3.210 min.	81.54 min.
C Dia.	3.010 min.	76.45 min.
D Dia.	2.307 min.	58.60 min.
E Dia.	1.700 min.	43.18 min.
F Dia.	0.725 max.	18.41 max.
G	3.76 ± .10	95.5 ± 2.5
Н	3.30 \ ± .10	83.8 ± 2.5
J	1.65 ± .03	41.91 ± .76
M	$0.200 \pm .025$	5.08 ± .64
N	$0.37 \pm .03$	$9.40 \pm .76$
P	0.46 ±.03	$11.68 \pm .76$
R	0.250 min.	6.35 min.
S	0.105 min.	2.67 min.
Т	0.200 min.	5.08 min.
U	0.620 min.	15.75 min.
V	2.71 ± .10	68.8 ± 2.5


OUTLINE NOTES

Note 1: The contact distance* indicated is the minimum uniform length as measured from the edge of the terminal.

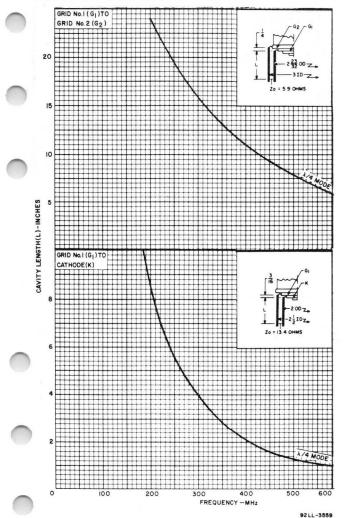

Terminal	Dimensional Value		
	Inches	Millimeters	
1.a Radiator	0.620	15.75	
1.b Plate	0.220	5.59	
1.c Grid No.2	0.220	5.59	
1.dGrid No.1	0.175	4.45	
1.e Heater-Cathode	0.115	2.92	
1.f Heater	0.135	3.43	

Note 2: Keep all stippled regions clear. In general do not allow contacts to protrude into these annular regions. If special connectors are required which may intrude on these regions, contact RCA Power Tube Application Engineering, Lancaster, PA, for guidance.

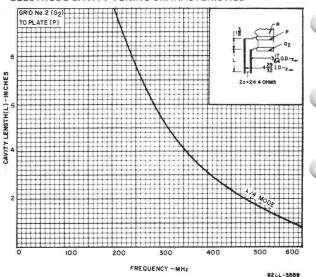
^{*}Basic dimensions are in inches unless otherwise specified. Metric dimensions are derived from the basic inch dimensions (One inch = 25.4 mm).

TUBE EXTRACTOR - SUGGESTED DESIGN

TABULATED DIMENSIONS*


Di	m.	Value	S
Α		2.8	(71.)
В		1.8	(46.)
C	Radius	0.06	(1.5)
D	Radius	0.06	(1.5)
E		0.7	(18.)
F	Dia.	0.250	(6.35)
G	Radius	1.015	(25.78)
Н		0.75	(19.)
J	Dia.	0.140	(3.56)
K		8.30	0.145 radians
M		4 50	0.078 radians

Notes:


- 1. Material 1/16" thick cold rolled steel.
- 2. Round all edges
- 3. Slot between holes

^{*}Dimensions are in inches unless otherwise stated. Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions (1 inch = 25.4 mm).

ELECTRODE CAVITY TUNING CHARACTERISTICS

ELECTRODE CAVITY TUNING CHARACTERISTICS

Detailed performance and application information is available through your RCA Sales Office Distributor, or write to RCA Commercial Engineering, Harrison, N. J. 07029

UHF Power Amplifier

Ruggedized

Forced-Air Cooled

300 W CW Output at 470 MHz 380 W PEP Output at 30 MHz

_			
	ELECTRICAL		
	Heater, for Unipotential Cathode:		
	Voltage (AC or DC) ^a	13.5	V
	Current at 13.5 volts	1.3	Α
_	Minimum heating time	60	S
	Mu-Factor, (Grid No.2 to Grid No.1)b	12	
	Direct Interelectrode Capacitances:C		
	Grid No.1 to plate	0.15 max.	pF
	Grid No.1 to cathode	16	pF
	Plate to cathode	0.01	pF
	Grid No.1 to grid No.2	24	pF
	Grid No.2 to plate	7.0	pF
	Grid No.2 to cathode	2.7	pF
	Cathode to heater	3.3	pF
	MECHANICAL		
	Operating Position		Any
	Maximum Overall Length (57.40 mm) 2.	26′′
	Seated Length (48.8 \pm 1.7 mm)	1.920" ± 0.0	65''
	Greatest Diameter $(41.28 \pm .38 \text{ mm})$	1.625" ± 0.0	15''
)	Base Large-Wafer Elevenar (JE	11-Pin with F DEC No.E11	
	Socket Erie ^d No.9802-000 and 980 No.124-311-1		
	Grid No.2 Bypass Capacitor E Johnson No.124-1		
7	Weight (Approx.)	3.5	oz.
	THERMAL		
	Terminal Seal Temperature9 (All Terminals)	250 max	. °C
	Radiator Core Temperature9	250 max	. °C
	Air Flow:		
7	See Typical Cooling Requirements curves and H	Forced-Air Co	oling

LINEAR RF POWER AMPLIFIER

Single Sideband	Suppressed-Carrier	Sarvicah
Single-Sideband	Suppressed-Carrier	Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of $2\,$

Maximum CCS Ratings, Absolute-Maximum Values:

	Up	to 500 MH	Z
DC Plate Voltage	2200	max.	V
DC Grid-No.2 Voltage	400	max.	V
DC Grid-No.1 Voltage	-100	max.	V
DC Plate Current at Peak of Envelope	450k	max. m	Α
DC Grid-No.1 Current	100	max. m.	Α
Plate Dissipation	400	max. \	N
Grid-No.2 Dissipation	8	max. \	N
Peak Heater-Cathode Voltage:			

eak Heater-Cathode Voltage:

Heater negative with respect to cathode	150	max.	V
Heater positive with respect			
to cathode	150	max.	V

MAXIMUM CIRCUIT VALUES

Grid-No.1	Circuit Resistance
Under Any	Condition: m

With fixed bias	25000	max.	Ω
With fixed bias (in Class AB ₁ operation)	100000	max.	Ω
With cathode bias	Not re	ecommen	ded
Grid-No.2 Circuit Impedance ⁿ	1000	max.	Ω
Plate Circuit Impedancej		See Not	e p

TYPICAL CCS OPERATION AT 30 MHz WITH "TWO-TONE MODULATION"

DC Plate Voltage	AB ₁ 2000	V
DC Grid-No.2 Voltage	400	V
DC Grid-No.1 Voltage	-35 100	V mA
Effective RF Load Resistance	3050	Ω
DC Plate Current at Peak of Envelope	335 250	
DC Grid-No.2 Current at Peak of Envelope	10 7	mA mA

	DC Grid-No.1 Current at Peak of Envelope	0.05 ^r	mA	
0	Peak-Envelope Driver Power Output (Approx.)	0.3	W	
	Output-Circuit Efficiency (Approx.)	90	%	
	Distortion Products Level:			
	Third order	29s	dB	
	Fifth order	32	dB	
	Useful Power Output (Approx.):			
	Average	190	W	
	Peak envelope	380	W	
	RF POWER AMPLIFIER & OSCILLATOR -			
	CLASS C TELEGRAPHYh AND RF POWER AMPL	IFIER	_	
	CLASS C FM TELEPHONYh			
	MAXIMUM CCS RATINGS, Absolute-Maximum Values	:		
	Up to	500 N	ИHz	
	DC Plate Voltage 2200	max.	V	
	DC Grid-No.2 Voltage 400	max.	V	
	DC Grid-No.1 Voltage100	max.	V	
	DC Plate Current 300	max.	mΑ	
	DC Grid-No.1 Current 100	max.	mΑ	
	Grid-No.2 Dissipation 8	max.	W	
	Plate Dissipation	max.	W	
	Peak Heater-Cathode Voltage:			
	Heater negative with respect to cathode 150	max.	V	
	Heater positive with respect to cathode 150	max.	V	
	MAXIMUM CIRCUIT VALUES			
	Grid-No.1 Circuit Resistance			
	Under Any Condition: With fixed bias	max.	Ω	
	Grid-No.2 Circuit Impedance 10000	max.	Ω	
0		See No	ote p	
	TYPICAL CCS OPERATION			
	In Grid-Drive Circuit at 50 MHz DC Plate Voltage	2000	V	
	DC Grid-No.2 Voltage 175 200 200	200	V	
	DC Grid-No.1 Voltage10 -30 -30	-30	V	
	DC Plate Current 300 300	300	mA	
	DC Grid-No.2 Current 25 20 20	20	mA	
		0 780 VOV-58	100 E 10 E 10	

DC Grid-No.1 Current	50	40	40	30	mA	
Driver Power Output (Approx.)	1.2	2	2	2	W	
Useful Power Output	120	175	275	375	W	- (
In Grid-Drive Circuit at 470 MHz						
DC Plate Voltage	700	1000	1500	2000	V	
DC Grid-No.2 Voltage	200	200	200	200	V	
DC Grid-No.1 Voltage	-30	-30	-30	-30	V	
DC Plate Current	300	300	300	300	mΑ	1
DC Grid-No.2 Current	10	10	5	5	mΑ	
DC Grid-No.1 Current	30	30	30	30	mΑ	
Driver Power Output (Approx.)	5	5	5	5	W	
Useful Power Output	100	165	235	300	W	
SEC IN THE COMMENT OF THE PROPERTY OF THE PROP						- 1

PLATE-MODULATED RF POWER AMPLIFIER - CLASS C TELEPHONY^h

Carrier conditions per tube for use with a max, modulation factor of $1.0\,$

MAXIMUM CCS RATINGS, Absolute-Maximum Values:

	OP to 500 MHZ
DC Plate Voltage	1800 max. V
DC Grid-No.2 Voltage	400 max. V
DC Grid-No.1 Voltage	-100 max. V
DC Plate Current	250 max. mA
DC Grid-No.1 Current	100 max. mA
Grid-No.2 Input	5 max. W
Plate Dissipation	280 max. W
a December the matter to the first of the fi	

- a Because the cathode is subjected to back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater voltage obtained at minimum supply voltage conditions (all other voltages constant) the tube performance just starts to show some degradation; e.g., at 470 MHz heater volts = 12.5 (approx.).
- b For plate voltage = 450 V Grid No.2 voltage = 325 V Plate current = 1.2 A
- c Measured with special shield adapter.
- d Erie Technological Products, Inc., 645 West 12th Street, Erie, PA 16501
- e E.F. Johnson Co., 1921 10th Ave., S.W. Waseca, MN 56093

In to EOO MHZ

- 9 See Dimensional Outline for Temperature Measurement Points.
- h See RCA Transmitting Tube Operating Considerations CLASSES OF SERVICE given at the front of this section.
 j The tube shall see an effective plate-supply impedance of no less
- j The tube shall see an effective plate-supply impedance of no less than 750 ohms. A fault current limiting resistor of no less than 15 ohms is to be used between the output filter capacitance and the tube plate. The plate-supply-output-filter capacitance is to be no greater than 10 μ F.
- k The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 mA. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 mA.
- m A fault current limiting resistor of no less than 20 ohms is to be used between the bias supply output filter capacitance and the tube grid-No.1. The bias supply output filter capacitance is to be no greater than 150 μ F.
- ⁿ A fault current limiting resistor of no less than 320 ohms is to be used between the screen output filter capacitance and the tube screen. The screen supply output filter capacitance is to be no greater than 80 μ F.
- P The tube should see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes.
- This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.
- S The value of third order distortion product level shown may be improved by approximately 5 dB by utilizing an unbypassed, non-inductive 20-ohm resistor between the cathode and ground; a slight increase in drive power will be required.

CHARACTERISTICS RANGE VALUES

	Note	Win.	Max.	
1. Heater Current	1	1.15	1.45	Α
2. Direct Interelectrode Capacitances:				
Grid No.1 to plate	2	-	0.15	pF
Grid No.1 to cathode	2	14.6	18.0	pF
Plate to cathode	2	0.00	4 0.016) pF
Grid No.1 to grid No.2	2	20.0	26.5	pF
Grid No.2 to plate	2	6.3	7.7	pF

Grid No.2 to cathode	2	2.1	4.1	pF
Cathode to heater	2	2.5	4.1	pF
3. Grid-No.1 Voltage	1,3	-19	-10	V
4. Interelectrode Leakage				
Resistance	4	50	-	$M\Omega$
5. Zero Bias Plate Current	1,5	1.0	1.8	Α

Note 1: With 13.5 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

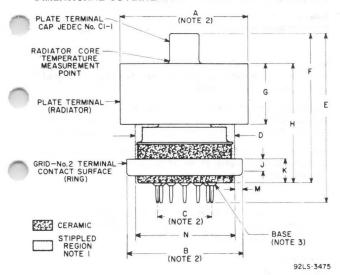
Note 3: With dc plate voltage at 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 mA.

Note 4: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1.0 megohm, will be no less than the valve specified.

Note 5: With dc plate voltage of 450 volts, dc grid No.2 voltage of 400 volts, dc grid No.1 voltage of -100 volts, grid drive voltage to zero. With pulse duration of 4500 to 5000 μ s and pulse repetition frequency is 10 to 12 pps.

FORCED-AIR COOLING

AIR FLOW:


Through radiator — Adequate air flow to limit the platecore temperature to 250° C should be delivered by a blower through the radiator before and during the application of filament, plate, grid-No.2, and grid No.1 voltages.

For a plate dissipation of 310 watts, approximately four and one half cubic feet of air per minute at an incoming temperature of 24° C is required in accordance with the air flow characteristics as shown in the chart.

During Shutdown Operation — Air flow should continue for a few minutes after all electrode power is removed.

For further information on forced-air cooling, see RCA Trans — mitting Tube Operating Considerations at front of this section.

DIMENSIONAL OUTLINE

TABULATED DIMENSIONS*

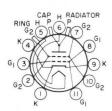
	Inches	Millimeters
A Dia.	1.625 ± .015	41.28 ± .38
B Dia.	1.426 ± .010	36.22 ± .25
C Dia.	0.687 ref.	17.45 ref.
D Dia.	1.25 max.	31.75 max.
E	2.26 max.	57.40 max.
F	$1.920 \pm .065$	48.8 ± 1.7
G	$0.750 \pm .040$	19.0 ± 1.0
H	1.515 ± .045	38.5 ± 1.1
J	0.150 min.	3.81 min.
K	$0.300 \pm .020$	$7.62 \pm .51$
M	0.080 min.	2.03 min.
N	1.200 max.	30.48 max.

^{*}Basic dimensions are in inches. Metric dimensions are in millimeters and are derived from the inch dimensions (1 inch = 25.4 mm).

NOTES FOR DIMENSIONAL OUTLINE

Grid-No.2 Terminal Contact Surface to Pin Circle

Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

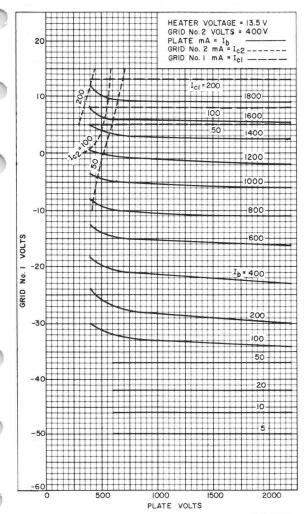

The diameters of the radiator, grid-No.2 ring terminal contact, and pin circle shall be concentric within the following values of the maximum full indicator reading:

Radiator to Grid-No. 2 Terminal Contact Surface 0.030" max. 0.040" max. Radiator to Pin Circle 0.030" max.

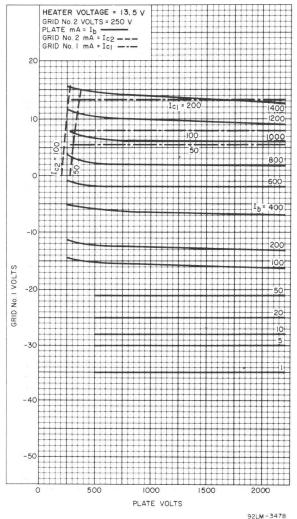
The full indicator reading is the deviation of a surface when the tube is rotated about the center of the reference. It is a measure of the total effect of run-out and ellipticity.

Note 3: Base conforms to specification of the Large Wafer, Elevenar, Eleven pin with ring Base No.JEDEC No.E11-81. It may be checked with Gauge JEDEC No.GE11-1.

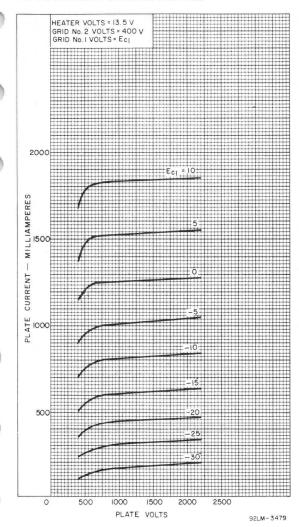
TERMINAL DIAGRAM (Bottom View)

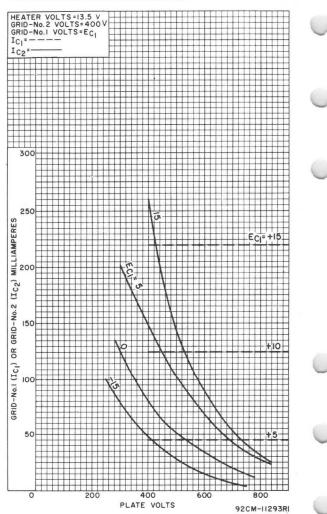


Pin 1: Cathode Pin 2: Grid No.2 Pin 3: Grid No.1 Pin 4: Cathode 5: Heater Pin Pin 6: Heater 7: Grid No 2 Pin Pin 8. Grid No 1


Pin 9: Cathode Pin 10: Grid No.2 Pin 11: Grid No.1 Cap: Plate Terminal Radiator: Plate Terminal

Ring: Grid-No.2 Terminal Contact Surface (For use at higher frequencies)


TYPICAL CONSTANT - CURRENT CHARACTERISTICS


TYPICAL CONSTANT - CURRENT CHARACTERISTICS

TYPICAL PLATE CHARACTERISTICS

TYPICAL GRID CHARACTERISTICS

TYPICAL COOLING REQUIREMENTS

AIR FLOW DIRECT THROUGH RADIATOR WITH AIR CHIMNEY (SK-606, # OR 124-111-1*) SOCKET* AND BY-PASS CAPACITOR.*

PLATE-CORE TEMPERATURE - 250° C. INCOMING-AIR TEMPERATURE -24° C.

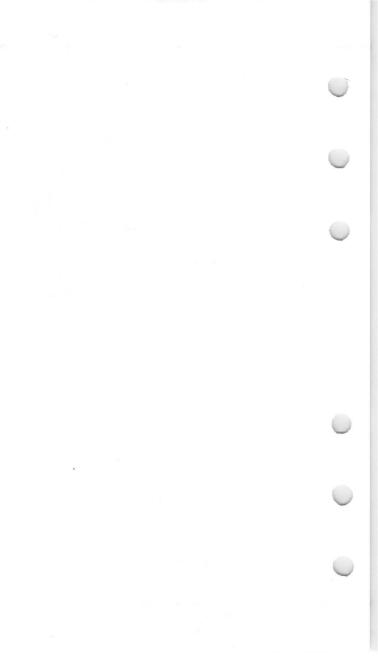


PLATE DISSIPATION — WATTS (SOLID LINE)
0.2
0.4
PRESSURE DROP—INCHES OF WATER (DASHED LINE)
92LM-3476

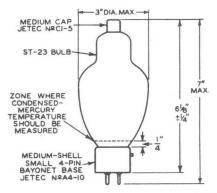
[†]May be obtained through EF Johnson, Co., 1921 10th Ave., SW, Waseca, MN 56093.

 $^{^{+}\!\!}M$ May be obtained through Eitel McCullough, Inc., San Carlos, CA 94070.

HALF-WAVE MERCURY-VAPOR RECTIFIER

GENERAL (ATA			
Electrical:				
Heater, for Unipotential Cathode:	Min.	Av.	Max.	
Voltage	4.75	5.0	5.25	volts
Current at 5 volts	_	4.5	4.9	amp
Cathode: Heating Time.				
before tube conduction	5	-	- m	inutes
Tube Voltage Drop	_	15	-	volts
Critical Anode Voltage	-	-	50	volts
Mechanical:				
Mounting Position	V	ertica	al, Bas	
Maximum Overall Length		8.6	 6-1/4"	. 7
Seated Length				± 1/4
Cap	Mediu	um (JE	TEC No.	C1-5
Base Mediu	n-Shell Sm			
BOTTOM V	I = W	(JET	EC No.	A4-10
BOLLOW A	I E.W			
Pin 1 - Heater	₹	Pin ;	3 - No	
Pin 2 - Cathode		5 .	Cor	
(Anode Return)	•)	PIN 4	4 - Heat Cat	er,
	1	Ca	p'- Anoc	
	0	00	P 7,1100	
Temperature Control:		2		10.147
HeatingWhen the ambient te the normal rise of co				
above the ambient tem				
condensed-mercury tem				
value of the operati				
Maximum Ratings, some closure or auxiliary h				
Cooling—When the operating co				
temperature range is e	xceeded,	provis	ion she	ould t
made for forced-air co		ficie	nt to p	prever
exceeding the maximum				
Temperature Rise of Condensed Mero to Equilibrium Above Ambient	ury			
Temperature	(Approx.)	: 6		
No Load				22 0
Full Load				28 °
● With heater volts = 4.75 and no heat-	onservina e	nclosu	re.	
7170 213 110 11000		,		

HALF-WAVE MERCURY-VAPOR RECTIFIER

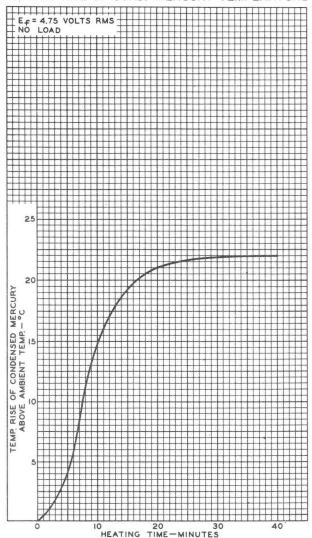

HALF-WAVE RECTIFIER

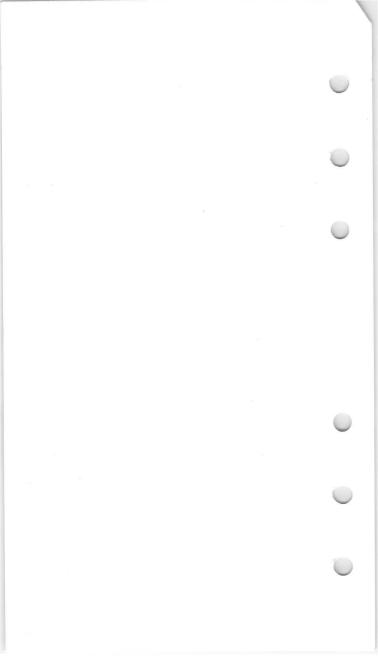
Maximum Ratings, Absolute Values: Up to 150 cps

Operating Condensed-Mercury

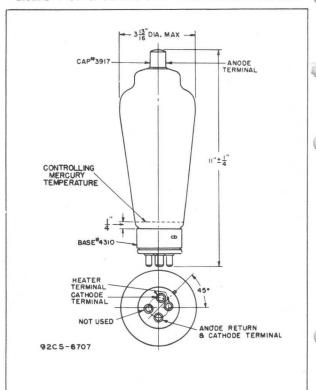
	Temperature Range
	30° to 80°C 30° to 60°C
PEAK INVERSE	
ANODE VOLTAGE	2000 max. 5000 max. volts
CATHODE CURRENT:	
Peak	15 max. 15 max. amp
Average	
Fault, for duration	
of 0.1 second max.	200 max. 200 max. amp

Averaged over any interval of 15 seconds maximum.




92CS-670IR3

RATE OF RISE OF COND.-MERCURY TEMPERATURE


HALF-WAVE MERCURY-VAPOR RECTIFIER

			DAT	<u> </u>								
Electrical:												
Heater, for Unipotes Voltage* Current			5									vol
Peak Voltage Drop(A												vol
Mechanical:												
Mounting Position .												
Overall Length												
Maximum Diameter Bulb												
Cap					100							39
Cap	ge Met	al-	She:	ii s	100							39
Cap	ge Met	al-	She:	ii s	100			oď m	4-	Pi	n,	39
Cap	ge Met	al-	She	ll S	upe	er_	Ju	od m	4-	Pi	n,	39
Cap	ge Met	al-	She	ll S s:	upe	er_	Ju	mbo W	4-	Pi ler	n, 1	39
Cap Lar Base Lar Maximum Ratings, Ab	ge Met	al- Va	Shellue	ont:	inu	er_	Ju	mbo	4-	Pi ler	n,	39 Bayon
Cap Lar Base Lar Maximum Ratings, Ab	ge Met	al- Va	Shellue:	ll S s:	inu	er_	Ju	mbo	4-	Pi ler	n,	39
Cap	ge Met solute VOLTAG CURRE	al- Va E	Shellines	ont:	inu vi	ou ce	Ju s	mbo C S	deld ont	Pi ler	n,	39 Bayon vol
Cap Lar Base Lar Maximum Ratings, Ab PEAK INVERSE ANODE INSTANTANEOUS ANODE Below 25 Cycles	ge Met solute VOLTAG CURRE	al- Va E	Shellines	ont: Ser 3000	inuvi(mamamamamamamamamamamamamamamamamamama	er- ce ex.	Ju	mbo W	deld ont erv	Piler tro	n, l e ax. ax.	39 Bayon vol a
Cap	ge Met solute VOLTAG CURRE her	al- Va E	Shellines	ont: Ser 3000	inuvi(mamamamamamamamamamamamamamamamamamama	er- ce ex.	Ju	mbo W	deld ont erv	Piler tro	n, l e ax.	39 Bayon vol a
Cap Lar Base Lar Maximum Ratings, Ab PEAK INVERSE ANODE . INSTANTANEOUS ANODE Below 25 Cycles . 25 Cycles and Hig. AVERAGE ANODE CURRENT SURGE ANODE CURRENT	ge Met solute VOLTAG CURRE her	al- Va E	Shelline:	ont: Ser 3000 2.8 40	inu vic ma ma ma ma	ce ex.	Ju	mbo M C S 100	4- Veldont erv	-Pi ler	n, leax. ax. ax.	39 Bayon vol a a

- * Heater voltage must be applied at least 5 minutes before anode voltage is applied.
 - # Averaged over any 15-second interval.
 - D Recommended condensed-mercury temperature 40°C.

HALF-WAVE MERCURY-VAPOR RECTIFIER

56/8

VHF POWER PENTODE MINIATURE TYPE

GENERAL DATA Electrical: Filament, Coated: Filament Arrangement Series* Parallel ** 6.0 ± 10% 3.0 ± 10% Voltage. ac or dc Current. 0.23 0.46 amp Direct Interelectrode Capacitances: Grid No.1 to Plate . 0.24 Muf Input. **Muf** 7.0 5.0 Output . μμf With no external shield. Mechanical: Mounting Position. . . Vertical, or Horizontal with pins No.1 & No.5 in a horizontal plane Maximum Overall Length . 2-5/8" Maximum Seated Length. . 2-3/8" Length from Base Seat to Bulb Top ± 3/32" (excluding 3/4" Maximum Diameter . T-5-1/2Bulb . . . Base Basing Designation for BOTTOM VIEW . . . Pin 1-Filament (-) Pin 5 - Filament Pin 2-Plate Mid-Tap Pin 6 - Grid No. 1 Pin 3-Grid No. 2 Pin 7-Filament (+) Pin 4-Grid No.3, Int. Shield

)	AF POWER AMPLIFIER	&	MC	DU	JL	AT(OR-	C1 a	ass A	1	
	Maximum ICAS Ratings, Absolu	иt	e	Va	ıl	ue:	s:				
	DC PLATE VOLTAGE								300	max.	volts
	DC GRID-No. 2 (SCREEN) VOLTAGE								125	max.	volts
	GRID-No.2 INPUT								2	max.	watts
	PLATE DISSIPATION								5	max.	watts
,	Typical Operation:										
	Filament Arrangement					Se	ri	25*	Par	allel*	*
	DC Plate Voltage						250			250	volts
	DC Grid-No.3 Voltage						(*		0**	volts
	DC Grid-No.2 Voltage							5		75	volts
	DC Grid-No.1 (Control-										
)	Grid) Voltage						-8	3		-8	volts
	Peak AF Grid-No.1-to-										
	Grid-No.1 Voltage.						1	3		8	volts

See next page.

OCTOBER 15. 1947

TENTATIVE DATA 1 TUBE DEPARTMENT

5618

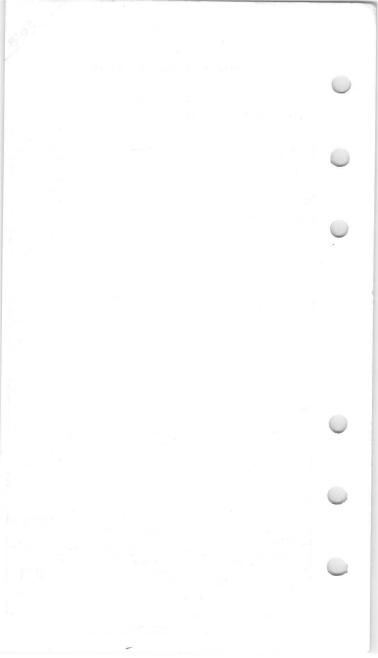
5618 VHF POWER PENTODE

Zero-Signal DC Plate Current MaxSignal DC Plate Current	16 17.5	19 20.5	ma ma
Zero-Signal DC Grid-No.2 Current	1.5	2.0	ma
MaxSignal DC Grid-No.2 Current Transconductance	3.5 3500	4.5 3600	ma μmhos
Effective Load Resistance	5500	2000	MIIIOS
(plate to plate)	12000	12000	ohms
Total Harmonic Distortion	10	10	%
MaxSignal Power Output	1.2	1.4	watts
Circuit Values:			
	ſ	5000 min.	ohms
Grid-No.1-Circuit Resistance		100000 max.	ohms
RF POWER AMPLIFIER & OSCILLATOR	Class	C Telegraphy	,00
and RF POWER AMPLIFIER—Class	C EM 1	[e]enhony	
Maximum ICAS Ratings, Absolute Va		rerephony	
	tues.	200	1.
DC PLATE VOLTAGE		300 max. 125 max.	volts
DC GRID-No.1 (CONTROL-GRID) VOLTAGE		-125 max.	volts
DC PLATE CURRENT		30 max.	ma
DC GRID-No.1 CURRENT		3 max.	ma
PLATE INPUT		7.5 max.	watts
GRID-No.2 INPUT		2 max.	watts
PLATE DISSIPATION		5 max.	watts
Typical Operation:	Ub to	At	
77	40 Mc	80 Mc	
DC Plate Voltage	300	300	volts
DC Grid-No.3 Voltage [®]	0	0	volts
DC Grid-No.2 Voltage	75	75	volts
	32000	32000	ohms
DC Grid-No.1 Voltage	-45 30000	-45 30000	volts
be distance	1400	1400	ohms
Peak RF Grid-No.1 Voltage	65	65	volts
DC Plate Current	25	25	ma
DC Grid-Nc.2 Current	7	7	ma
DC Grid-No.1 Current (Approx.) .	1.5	1.5	ma
Driving Power (Approx.)	0.2	0.3	watt
Power Output (Approx.) ♦	5.4	5.2	watts
Circuit Values:			1
Grid-No.1-Circuit Resistance	ſ	5000 min.	ohms
la no.1-circuit nesistance	[100000 max.	ohms
Useful power output is approximately 5.	n watte f	or NO Mc and "	5 watte
for 80 Mc.	v watts 1	or wo me and 4.	J watts

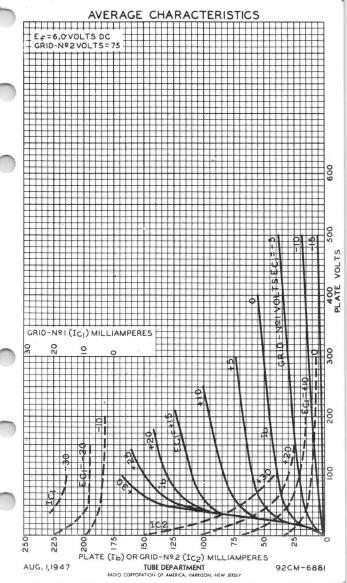
OCTOBER 15, 1947

** •• 0 00 **m** •• See next page.

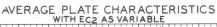
TUBE DEPARTMENT TENTATIVE DATA 1

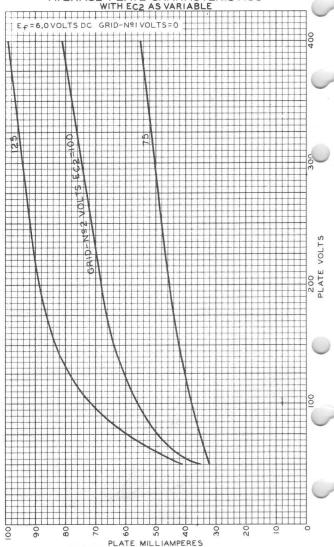

FREQUENCY MULTIPLIER

5618 VHF POWER PENTODE


56/8

		-		
Maximum ICAS Ratings, Absolute	Val	ues:		
DC PLATE VOLTAGE			300 max.	volts
DC GRID-No.2 (SCREEN) VOLTAGE			125 max.	volts
DC GRID-No.1 (CONTROL-GRID) VOLT			-125 max.	volts
DC PLATE CURRENT			30 max.	ma
DC GRID-No.1 CURRENT			3 max.	ma
PLATE INPUT			7.5 max.	watts
GRID-No.2 INPUT			2 max.	watts
PLATE DISSIPATION			5 max.	watts
Typical Operation:	I	Doubler	Tripler	
	t	o 80 Mc		
DC Plate Voltage		300	300	volts
DC Grid-No.3 Voltage®		0	0	volts
DC Grid-No.2 Voltage ^D	(75	75	volts
be dilu-no.2 for tage	1	41000	41000	ohms
DC Grid-No.1 Voltage	ſ	-125	-125	volts
be dilu-No.1 voitage	1	68000	68000	ohms
Peak RF Grid-No.1 Voltage		160	160	volts
DC Plate Current		25	25	ma
DC Grid-No.2 Current		5.5	5.5	ma
DC Grid-No.1 Current (Approx.) .		1.85	1.85	ma
Driving Power (Approx.)		0.75	0.75	watt
Power Output (Approx.)↔		4.2	3.4	watts
Circuit Values:				
Crid No. 1 Circuit Popietossa		ſ	5000 min.	ohms
Grid-No.1-Circuit Resistance		1	100000 max.	ohms


- Grid-No.1-Circuit Resistance { 5000 min. ohms 100000 max. ohms wiseful power output is approximately 3.5 watts for doubler service and 2.7 watts for tripler operation.
- For series filament arrangement, filament voltage is applied between pins No.1 and No.7. The grid-No.1 voltage is referred to pin No.1, and grid-No.3 (pin No.4) is connected to pin No.1.
- For parallel filament arrangement, filament voltage is applied between pin No.5 and pins No.1 and No.7 connected together. The grid-No.1 voltage is referred to pin No.5 and grid No.3 (pin No.4) is connected to pin No.5.
- Intermittent Commercial and Amateur Service.
- For dc filament supply.
- Obtained from a fixed supply or by a grid-No. 1 resistor (30000) or cathode resistor (1400).
- Obtained from a separate source, or from the plate voltage supply with a voltage divider. Series screen resistor of value shown should be used only where the 5618 is employed as a buffer amplifier and is not keyed.
- Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.
- Filament may be connected in either parallel or series arrangement. With parallel connection, grid No.3 (pin No.4) is connected to pin No.5; for series operation, connect pin No.4 to pin No.1.
 - Obtained from a fixed supply, or by a grid-No. 1 resistor of value shown.



AUG. 12,1947

TUBE DEPARTMENT RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-6882

Power Triode

FORCED-AIR COOLED

GENERAL DATA

GENERAL DATA
Electrical:
Filament, Multistrand Thoriated Tungsten: Excitation Single-Phase AC or DC
Voltage ^a
Minimum heating time
-50, plate amperes = 2
Grid to plate
Plate to filament 1.5 μμf
Mechanical:
Operating Position Vertical, filament end up Maximum Overall Length
Weight (Approx.)
F-Filament F-Plate G-Grid
G P
Thermal:
Air Flow:
Through radiator—The specified air flow for various plate dissipations as indicated below should be delivered by a blower vertically upward through the radiator before and during the application of any voltages. Filament power, plate power, and air may be removed simultaneously. Plate Dissipation
Static Pressure 0.85 1.5 2.2 in. of water
To filament seals

← Indicates a change.

of the filament seals to the maximum value.

the application of any voltages to limit the temperature

	30/1		
025	Input Air Temperature (To radiator) 45 max. Radiator Temperature	°C	
	Bulb Temperature	oC	0
	and plate)	oC	
	AF POWER AMPLIFIER and MODULATOR — Class B		
	Maximum CCS ^b Ratings, Absolute-Maximum Values:		
	DC PLATE VOLTAGE	volts amp kw kw	0
	Typical Operation:		
	Values are for 2 tubes		
	Filament Voltage. 10 11 DC Plate Voltage. 10200 15000 DC Grid Voltage. -220 -320 Peak AF Grid-to-Grid Voltage. 900 1600 Zero-Signal DC Plate Current. 0.6 0.6 MaxSignal DC Plate Current. 5.8 10 Effective Load Resistance	volts volts volts volts amp amp	
	(Plate to plate)	ohms watts kw	
	PLATE-MODULATED RF POWER AMPLIFIER — Class C Telepho	ony	
	Carrier conditions per tube for use with a max. modulation factor of 1		
	Maximum CCSb Ratings, Absolute-Maximum Values:		
	DC PLATE VOLTAGE. 12500 max. DC GRID VOLTAGE -2000 max. DC PLATE CURRENT. 4.5 max. DC GRID CURRENT 1 max. PLATE INPUT 55 max. PLATE DISSIPATION 17 max.	volts volts amp amp kw kw	
	Typical Operation:		
	At 1.6 Mc		
	Filament Voltage	volts	0
	From a fixed supply of	volts ohms volts amp amp watts kw	

RF POWER AMPLIFIER and OSCILLATOR - Class C Telegraphy

Key-down conditions per tube without modulation9

Maximum	CCS b	Ratings,	Absolute-Maximum	Values:
---------	-------	----------	------------------	---------

DC PLATE VOLTAGE.							15000	max.	volts
DC GRID VOLTAGE .							-2000	max.	volts
DC PLATE CURRENT.							8	max.	amp
DC GRID CURRENT .							1	max.	amp
PLATE INPUT									kw
PLATE DISSIPATION							25	max.	kw

Typical Operation:

					At 1	. 6 Mc	
Filament Voltage					10	11	volts
DC Plate Voltage	×	÷			12500	15000	volts
DC Grid Voltage: h							
From a fixed supply of.							volts
From a cathode resistor						225	ohms
From a grid resistor of					1300	1500	ohms
Peak RF Grid Voltage					1970	2270	volts
DC Plate Current					5.8	6	amp
DC Grid Current (Approx.)					0.95	1	amp
Driving Power (Approx.) f.					1700	2040	watts
Power Output (Approx.)					55	70	kw

a When the 5671 is operated at less than maximum ratings, the filament voltage may be reduced to 9.75 volts.

b CCS Continuous Commercial Service.

c Averaged over any audio-frequency cycle of sine-wave form.

d The driving stage should have good regulation and should be capable of supplying considerably more than the required driving power.

Obtained from a fixed supply, grid resistor, or a combination of both. Low Frequency driving power is absorbed by the grid and grid resistor and does not include circuit losses. At higher frequencies the power furnished by the driver must be greater because of increased tube and circuit losses.

9 Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions. Obtained from a fixed supply, a cathode resistor, a grid resistor, or from a combination of a fixed supply and self-bias.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

								Note	Min.	Max.	
Filament Current								1	265	305	amp
Amplification Factor.								1,2	35	45	
Direct Interelectrode	C	ара	ac	ita	and	ce	s:				
Grid to plate									45	59	$\mu\mu f$
Grid to filament										104	$\mu\mu f$
Plate to filament .									1.1	1.9	μμ f
Plate Voltage								1,3	3200	4200	volts
Plate Voltage											volts
Grid Voltage								1,5	-310	-490	volts
Grid Voltage								1.6	_	1100	volts

- Indicates a change.

	Note	Min.	Max.	
Peak Cathode Current	 7	50	-	amp
Grid Current				amp
Useful Power Output	 1,8	59	-	kw

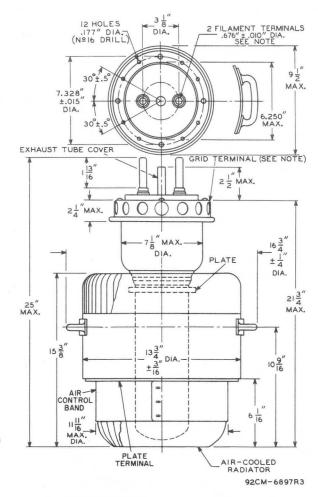
Note 1: With 11 volts ac on filament.

Note 2: With dc grid voltage of -50 volts and dc plate voltage adjusted to give dc plate current of 2 amperes.

Note 3: With dc grid voltage of 0 volts and dc plate voltage adjusted to give dc plate current of 2 amperes.

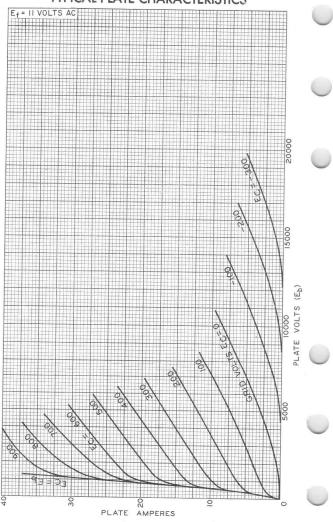
Note 4: Withdcgrid voltage of -100 volts and dc plate voltage adjusted to give dc plate current of 2 amperes.

Note 5: With dc plate voltage of 15000 volts and dc grid voltage adjusted to give dc plate current of 50 ma.

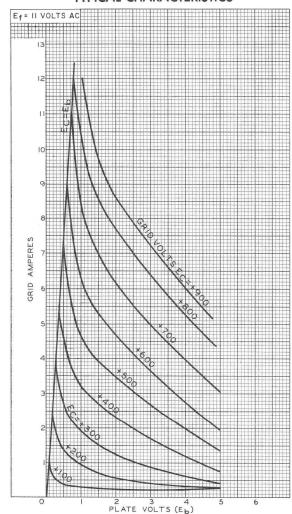

Note 6: With dc plate voltage of 2600 volts and instantaneous grid voltage adjusted to give instantaneous plate current of 35 amperes.

Note 7: Represents the maximum usable cathode current (plate current and grid current) for the tube under any condition of operation.

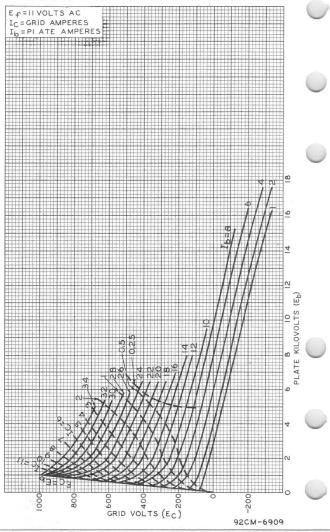
Note 8: In self-excited oscillator circuit and with dc plate voltage of 15000 volts, dc plate current of 6.6 amperes, dc grid current of 0.8 to 1.0 ampere, grid resistor of 1600 ± 10% ohms, and frequency of 1.6 Mc.


MAXIMUM RATINGS VS OPERATING FREQUENCY

FREQUENCY	10	18	25	Mc =
MAXIMUM PERMISSIBLE PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE AND INPUT: Class C Telephony (Plate— Modulated) Class C Telegraphy	100	88 88	80	80 94


NOTE: FLEXIBLE CONNECTIONS ARE REQUIRED.

TYPICAL PLATE CHARACTERISTICS


92CM-6899RI

TYPICAL CHARACTERISTICS

92CM-6900

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

volts

umhos

of ←

of-

pf

amp

Medium-Mu Triode

 $6.3 \pm 10\%$

0.135

6200

1.4

2.4

. . . . See Dimensional Outline

0.09 max.

. Any

. . . . Grayhill No. 22-3b. Cinch 54A16325°. or equivalent

GLASS-METAL PENCIL TYPE

FAST WARM-UP TIME

STURDY COAXIAL-ELECTRODE STRUCTURE

For Cathode-Drive Applications with Full Input up to 1700 Mc and with Reduced Input up to 3000 Mc, and at Altitudes up to 100,000 Feet

GENERAL DATA

Electrical:

Heater, for Unipotential Cathode:

Voltage (AC or DC). Current at heater volts = 6.3

dc plate volts = 135. Direct Interelectrode Capacitances: a

Grid to plate

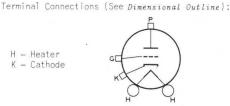

Grid to cathode

Plate to cathode.

Mechanical:

Operating Position. . . Dimensions. Socket for Heater Pins. .

H - Heater K - Cathode

G - Grid P - Plate

Thermal:

Plate-Seal Temperature. .

RF POWER AMPLIFIER AND OSCILLATOR - Class C Telegraphy

Key-down conditions per tube without amplitude modulation d Maximum CCSe Ratings, Absolute-Maximum Values:

For altitudes up to 100,000 feet

and frequencies up to 1700 Mc

DC PLATE VOLTAGE.

300 max. -90 max.

175 max.

30 max. ma

- Indicates a change.

volts

volts

00

DC GRID CURRENT 8 max. m PLATE INPUT 5 max. watt PLATE DISSIPATION 5 max. watt PEAK HEATER—CATHODE VOLTAGE: Heater negative with respect to cathode	s s
Typical CCS ^e Operation:	
As oscillator in cathode-drive circuit	
At frequency of 1700 3000 M	
DC Plate-to-Grid Voltage	s s s a a
Maximum Circuit Values:	
Grid-Circuit Resistance 0.1 max. megoh	m
a without external shield. b Grayhill, Inc., 561 Hillgrove Ave., LeGrange, Illinois. c Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago, Illinois d Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of th carrier conditions. e Continuous Commercial Service. f In applications where the plate dissipation exceeds 2.5 watts, it i important that a large area of contact be provided between the plat cylinder and the connector to provide adequate heat conduction	f e
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN	
Note Min. Max.	
Heater Current	f f
Heater negative with respect to cathode 1,2 $-$ 100 μ Heater positive with	a (
respect to cathode 1,2 $-$ 100 μ	a
Leakage Resistance: From grid to plate and cathode connected together 1,3 25 - megohm From plate to grid and cathode connected together 1.4 25 - megohm	
connected together 1,4 25 - megohm Reverse Grid Current 1,5 - 1 μ	
Emission Voltage	
Transconductance 1,7 5100 7700 μmho	S .

-	
	Plate Current (1)
1	Plate Current (2) 1,8 - 100 μα Power Output 1,9 300 - mw
	Note 1: With 6.3 volts ac or dc on heater.
	Note 2: With 100 volts do between heater and cathode.
	Note 3: With grid 100 volts negative with respect to plate and cathode
	which are connected together.
	Note 4: With plate 300 volts negative with respect to grid and cathode which are connected together.
7	Note 5: With dc plate voltage of 150 volts, dc grid voltage of -2 volts, grid resistor of 0.1 megohm.
	Note 6: With dc voltage on grid and plate which are connected together adjusted to produce a cathode current of 30 ma. and with 5.5 volts on heater.
	Note 7: With dc plate-supply voltage of 135 volts, cathode resistor of 68 ohms, and cathode bypass capacitor of 1000 μf .
	Note 8: With dc plate voltage of 120 volts and dc grid voltage of -25 volts.
	Note 9: With dc plate voltage of 120 volts, grid resistor adjusted to give a dc plate current of 25 milliamperes in a cavity-type oscillator operating at 1700 ± 5 Mc.
	SPECIAL TESTS AND PERFORMANCE DATA
	Low-Frequency Vibration Performance:
	This test (similar to MIL-E-ID, paragraph 4.9.19.1) is
	performed on a sample lot of tubes from each production run under the following conditions:
	Heater voltage of 6.3 volts, dc plate supply voltage of 150 volts, grid voltage of -2.5 volts, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 25 cps at an acceleration of 2.5 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.
	High-Frequency Vibration Performance:
	This test (similar to MIL-E-ID, paragraph 4.9.19.2) is performed on a sample lot of tubes every 90 days. The tube is vibrated perpendicular to its axis, with no voltages applied to the tube. Vibration frequency is 40 to 60 cps and acceleration is 10 g. At the end of this test, tubes will
	meet the following limits: Heater-Cathode Leakage Current 100 max. μa
-	For conditions shown under Characteristics Range Values Notes 1.2.
	Low-Frequency Vibration (rms) 100 max. mv
	For conditions shown above under Low-Frequency Vibration
	Performance.
	Transconductance 5100 min. µmhos For conditions shown under Characteristics Range Values

Notes 1,7.

Notes 1.8.

Plate Current (2) 100 max. μ a For conditions shown under Characteristics Range Values

Shorts and Continuity Test:

This test (similar to MIL-E-ID, paragraph 4.7.3) is performed on all tubes from each production run. Voltage applied between adjacent elements of the tube under test will be between 20 and 70 volts dc or peak ac. Plate and cathode terminals are tied together and connected to the grid terminal through the shorts test equipment. Tubes are tapped with a rubber tapper three times in each of three mutually perpendicular directions. If a short indication is obtained, the tapping cycle is repeated two times for verification. Acceptance criteria is based on the "Resistance vs. Time Duration" curve shown in paragraph 4.7.7 of MIL-I-D, Amendment 5.

Glass Seal Fracture Tests:

Fracture tests are performed on a sample lot of tubes every $90\ \mathrm{days}$.

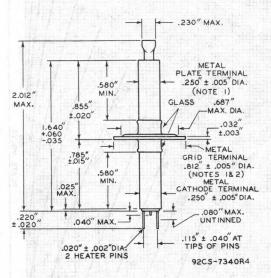
- I. Tubes are placed on supports spaced 15/16" \pm 1/64" apart with the grid flange centered between these supports. Tubes will withstand gradual application, perpendicular to the tube axis, of a force of 30 pounds upon the grid flange without causing fracture of the glass insulation.
- 2. Tubes are held by clamping to the cathode cylinder. Tubes will withstand gradual application of a torque of 12.5 inch-pounds upon the plate terminal without causing fracture of the glass insulation.

Dynamic Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is lifetested in a cavity-type oscillator at 500 \pm 15 Mc under the following conditions:

Heater voltage of 6.3 volts, plate-supply voltage of 300 volts, cathode resistor is adjusted to give a dc plate current of 30 ma and value is recorded. At the end of 500 hours, the tube will not show permanent shorts or open circuits and will be criticized for the total number of defects in the sample lot and for the number of tubes failing to meet the following limit:

OPERATING CONSIDERATIONS


The mounting for this type in coaxial-line, parallel-line, or lumped circuits may support the tube securely by any one of the three terminals. Connections to the other two terminals must be made by contacts with flexible leads.

The mounting for this type in cavity-type circuits should preferably support the tube by the grid flange which should make firm contact to the cavity surface.

The *heater* pins of this type should not be soldered to circuit elements. The heat of the soldering operation may crack the glass seals of the heater pins and damage the tube.

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum-rated values.

MAXIMUM ECCENTRICITY OF CENTER LINE (AXIS) OF PLATE TERMINAL OR GRID-TERMINAL FLANGE WITH RESPECT TO THE CENTER LINE (AXIS) OF THE CATHODE TERMINAL IS 0.010".

TILT OF GRID-TERMINAL FLANGE WITH RESPECT TO RO-TATIONAL AXIS OF CATHODE TERMINAL IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE GRID-TERMINAL FLANGE PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM ITS EDGE FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.020".

AVERAGE CHARACTERISTICS

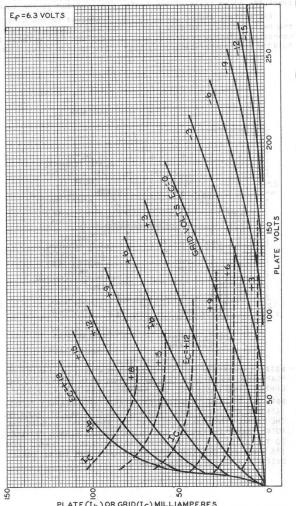


PLATE (Ib) OR GRID (IC) MILLIAMPERES

92CM - 7343

2160

VHF BEAM POWER TUBE

9-PIN MINIATURE TYPE

	6	ENE	RAL DA	ATA						
Electrical:										
Heater, for Unipo	tential (Cat	hode:							
Voltage				10	0%		. a	c or	dc	volts
Current			0.75							amp
Transconductance										
current of 45 m			/000							μmhos
Mu-Factor, Grid N			16							
to Grid Direct Interelect				.0						
Grid No.1 to Pla										μμ
Input			9.5							_{µµ} f
			4.5							μμε
O with no external sh	nield.									
Mechanical:										
Mounting Position		200								Any
Maximum Overall L	enath .	:				: :				
Maximum Seated Le	ngth									2-3/8"
Length, Base Seat	to Bulb	To	p (exc)	ud i	ing t	ip)		. 2)" ±	3/32"
Maximum Diameter										7/8"
Bulb										-6-1/2
Base	. Smal	1-B								
Basing Designat										9K
Pin 1 - Plate			(3)				Pin 5	- He	ate	r
Pin 2 – No		4		5			Pin 6			
	(3	M		17)		0.0000000000000000000000000000000000000			
Connect	10.000	100		1			Pin 7			
Pin 3 - Grid No.	3	1		70)		Pin 8	-Gr	id	No.1
Pin 4 - Heater		0					Pin 9	-Gr	id	No.1
PLATE-MODULAT	ED RF PO	WER	AMPLI	FIE	ER	Cla	ss C	Telep	oho	ny
Carrier conditions p	er tube fo	or u	se with	а	max.	mod	ulatio	n fac	tor	of 1.0
		**		CCS			IC.	45		
Maximum Ratings,				_						
DC PLATE VOLTAGE			. 25	0 r	nax.		300	max.		volts
DC GRID-No.3 (SUP	TAGE			0 0	nax.		0	max.		volts
DC GRID-No.2 (SCRI		•		0 11	iidx.		O	max.		VO1 63
	TAGE		. 25	0 r	nax.		250	max.		volts
DC GRID-No.1 (CON	TROL-									
GRID) VOL								max.		volts
DC PLATE CURRENT					max.			max.		ma
DC GRID-No.2 CURRI					nax.			max.		ma
DC GRID-No.1 CURRI					nax.			max.		ma watts
PLATE INPUT GRID-No.2 INPUT .					nax.			max.		watts
PLATE DISSIPATION					nax.			max.		watts
LAIL DISSILATION		•	1 10	0 1	iidA e		12	max.		HULES
•. • : See next page										
e, e e next page	•									

VHF BEAM POWER TUBE

					C	cs.	IC	AS .	
PEAK	HEATER-C	CATHODE	VOLTAC	E:					
Hea	ater nega	ative wi	th						
r	respect t	o catho	de		100	max.	100	max.	. volts
Hea	ater pos	itive wi	th .						
	espect t				100	max.	100	max.	volts
	TEMPERAT			st					
	point on				250	max.	250	max.	• °C
							200		
	al Opera			MC			000		
	ate Volt	age			250		300		
							to catho		
	rid-No.2				250		250		volts
DC G	rid-No.1	Voltage	*		-39		-42.5		volts
	m a grid				39000		18000		ohms
	RF Grid-				46.5)	53.5		volts
DC P	ate Curi	rent			40)	50)	ma
	id-No.2				5.6		6	ò	ma
	rid-No.1				5400 T 550				
		(Approx.)		1		2.4		ma
Driv	ing Power				0.05		0.15		watt
	l Power			.)	6.4		10) 🕮	watts
			5 5 5		1000				
Maxin	num Circu	iit Value	es (CC	Sc	r ICAS	Condi	itions):		
							- 4		1
Grid-	-No.1-Cir	rcuit Res	sistar	ce			. 0.1 m	nax.	megohm
Grid-	-No.1-Cir	rcuit Res	sistar	ce			. 0.1 п	ax.	megonm
					ILLATO	 RCla	ss C Tel		
	RF POWER	AMPLIFI	ER &	osc	ILLATO and		ss C Tel	egrap	
	RF POWER	AMPLIFI	ER &	osc	ILLATO and Clas	s C FM	ss C Tel	egrap ny	
	RF POWER	AMPLIFI POWER A	ER &	OSC IER	ILLATO and Clas		ss C Tel	egrap	
Ma x in	RF POWER RF num Ratir	AMPLIFI POWER A	ER &	OSC IER	ILLATO and Clas	s C FM	ss C Tel	egrap ny AS®	hy ^a
Maxim DC PL	RF POWER RF num Ratin ATE VOLT	POWER A	ER &	OSC IER	ILLATO and Clas	s C FM	ss C Tel	egrap ny	
Maxim DC PL	RF POWER RF num Ratir	POWER A	ER &	OSC IER	ILLATO and Clas cues: . 300	cs•	ss C Tel Telepho	egrap ny AS max.	volts
Maxim DC PL DC GR	RF POWER RF num Ratin ATE VOLT	POWER A	ER &	OSC IER	ILLATO and Clas cues: . 300	s C FM	ss C Tel Telepho	egrap ny AS®	hy ^a
Maxim DC PL DC GR	RF POWER RF num Ratin ATE VOLT	POWER A TAGE . (SUPPRES VOLTAGE (SCREEN)	WPLIF	OSC IER	ILLATO andClas Cues: . 300	cs C FM	ss C Tel Telepho IC 350	max.	volts
Maxim DC PL DC GR	RF POWER RF num Ratin ATE VOLT	POWER A	WPLIF	OSC IER	ILLATO andClas Cues: . 300	cs•	ss C Tel Telepho IC 350	egrap ny AS max.	volts
Maxim DC PL DC GR	RF POWER RF num Ratin ATE VOLT	POWER A POW	WPLIF	OSC IER Val	ILLATO andClas Cues: . 300	cs C FM	ss C Tel Telepho IC 350	max.	volts
Maxim DC PL DC GR	RF POWER RF Num Ratin ATE VOLT RID-No.3	POWER A POW	ER & AMPLIF Colute SSSOR) E L—GRID	OSC IER Val	ILLATO andClas Cues: . 3000	cs C FM	ss C Tel Telepho IC 350	max. max.	volts
Maxim DC PL DC GR DC GR	RF POWER RF Num Ratin ATE VOLT RID-No.3	AMPLIFI POWER A AGE (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTRO) VOLTAGE	ER & AMPLIF Colute SSSOR) E L—GRID	OSC IER Val	ILLATO andClas	max.	350 0 250 -125	max. max.	volts volts volts
Maxim DC PL DC GR DC GR DC GR	RF POWER RF NUM Ratir ATE VOLT RID-No.2 RID-No.1 ATE CURF	AMPLIFI POWER A ABS (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTRO) VOLTAGE RENT	ER & AMPLIF Colute SSSOR) E L—GRID	OSC IER Val	ILLATO andClas	max. max. max.	350 0 250 -125 50	max. max. max.	volts volts volts volts
Maxim DC PL DC GR DC GR DC GR DC PL DC GR	RF POWER RF Num Ratir ATE VOLT RID-No.2 RID-No.1 ATE CURR RID-No.2	AMPLIFI POWER A AND A B S C SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTRO) VOLTAGE CONTRO) VOLTAGE CURRENT	ER & AMPLIF Colute SSSOR) E L—GRID	OSC IER Val	ILLATO andClas	max. max. max. max. max. max.	ss C Tel Telepho IC 350 0 250 -125 50 15	max. max. max. max.	volts volts volts volts volts
Maxim DC PL DC GR DC GR DC GR DC GR DC GR	RF POWER RF NUM Ratir ATE VOLT RID-No.2 RID-No.1 ATE CURR RID-No.2 RID-No.2	AMPLIFI POWER A AND A B S C SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTRO) VOLTAGE CONTRO) VOLTAGE CURRENT	ER & AMPLIF Colute SSSOR) E L—GRID	OSC IER Val	ILLATO andClas Cues: . 300 . 00 . 250125 . 50 . 515 . 55	max. max. max. max.	350 0 250 -125 50 15 5	max. max. max. max. max.	volts volts volts volts volts ma ma
Maxim DC PL DC GR DC GR DC GR DC GR DC GR	RF POWER RF Num Ratir ATE VOLT RID-No.2 RID-No.1 ATE CURR RID-No.2	AMPLIFI POWER A AND A B S C SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTRO) VOLTAGE CONTRO) VOLTAGE CURRENT	ER & AMPLIF Colute SSSOR) E L—GRID	OSC IER Val	ILLATO andClas Cues: . 300 . 00 . 250125 . 50 . 515 . 55	max. max. max. max. max. max. max. max.	350 0 250 -125 50 15 5	max. max. max. max. max. max. max.	volts volts volts volts volts ma ma
Maxim DC PL DC GF DC GF DC GF DC GF DC GF PLATE	RF POWER RF NUM Ratir ATE VOLT RID—No.2 RID—No.1 ATE CURR RID—No.2 RID—No.1 INPUT	AMPLIFI POWER A AMPLIF	SSOR) L-GRIE	OSC IER Val	ILLATO andClas	max. max. max. max. max. max. max. max.	ss C Tel Telepho 1C 350 0 250 -125 50 15 5	max. max. max. max. max. max. max. max.	volts volts volts volts ama ma watts
Maxim DC PL DC GR	RF POWER RF NUM Ratir ATE VOLI RID—No.2 RID—No.1 ATE CURF RID—No.1 INPUT INPUT Lained pre RIPLO POPUL RIPLO PO	AMPLIFI POWER A 198, Absorver AGE . (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTROI VOLTAGE RENT . CURRENT CURRENT CURRENT CURRENT CURRENT COURTON TO THE METERS	SSOR) E L-GRIDE	OSC IER Val	ILLATO andClas C ues: . 300 . 0 . 250	max. max. max. max. max. max. max. max.	350 0 250 -125 50 15 5 17	max. max. max. max. max. max. max. max.	volts volts volts volts volts ma ma watts the plate
Maxim DC PL DC GR	RF POWER RF NUM Ratir ATE VOLI RID—No.2 RID—No.1 ATE CURF RID—No.1 INPUT INPUT Lained pre RIPLO POPUL RIPLO PO	AMPLIFI POWER A 198, Absorver AGE . (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTROI VOLTAGE RENT . CURRENT CURRENT CURRENT CURRENT CURRENT COURTON TO THE METERS	SSOR) E L-GRIDE	OSC IER Val	ILLATO andClas C ues: . 300 . 0 . 250	max. max. max. max. max. max. max. max.	350 0 250 -125 50 15 5 17	max. max. max. max. max. max. max. max.	volts volts volts volts volts ma ma watts the plate
Maxim DC PL DC GR CC GR	RF POWER RF NUM Ratir ATE VOLT RID—No.3 RID—No.1 ATE CURF RID—No.1 INPUT Lained prephy, or fained fraistor with	AMPLIFI POWER A Ings, Absor AGE . (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTROI VOLTAGE RENT . CURRENT CURRENT CURRENT of the moin grid—Nich either:	SSOR) L-GRIDE from a odulate of restricted streets	OSC IER Val	ILLATO and	max. max. max. max. max. max. max. max.	### Complete Section	max. max. max. max. max. max. max. max.	volts volts volts volts volts ma ma watts the plate esistor. grid-No.1
Maxim DC PL DC GR CC GR	RF POWER RF NUM Ratir ATE VOLT RID—No.3 RID—No.1 ATE CURF RID—No.1 INPUT Lained prephy, or fained fraistor with	AMPLIFI POWER A Ings, Absor AGE . (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTROI VOLTAGE RENT . CURRENT CURRENT CURRENT of the moin grid—Nich either:	SSOR) L-GRIDE from a odulate of restricted streets	OSC IER Val	ILLATO and	max. max. max. max. max. max. max. max.	### Complete Section	max. max. max. max. max. max. max. max.	volts volts volts volts volts ma ma watts the plate esistor. grid-No.1
Maxim DC PL DC GR CC GR	RF POWER RF NUM Ratir ATE VOLT RID—No.3 RID—No.1 ATE CURF RID—No.1 INPUT Lained prephy, or fained fraistor with	AMPLIFI POWER A Ings, Absor AGE . (SUPPRES VOLTAGE (SCREEN) VOLTAGE (CONTROI VOLTAGE RENT . CURRENT CURRENT CURRENT of the moin grid—Nich either:	SSOR) L-GRIDE from a odulate of restricted streets	OSC IER Val	ILLATO and	max. max. max. max. max. max. max. max.	350 0 250 -125 50 15 5 17	max. max. max. max. max. max. max. max.	volts volts volts volts volts ma ma watts the plate esistor. grid-No.1
Maxim DC PL DC GG DC GG DC GG DC GG DC GG PLATE obtour res Keyessi	RF POWER RF NUM Ratir ATE VOLT RID—No.3 RID—No.1 ATE CURF RID—No.1 INPUT Lained prephy, or fained fraistor with	AMPLIFI POWER A ags, Abs. (Suppress VOLTAGE (SCREN) VOLTAGE (CONTRO) VOL	SSOR) L-GRIDE from a odulate of restricted streets	OSC IER Val	ILLATO and	max. max. max. max. max. max. max. max.	ss C Tel Telepho IC 350 0 250 -125 50 15 5 17 modulated rough a se combinative sistor. e modulative se accombinative sistor. e modulative peaks carrier	max. max. max. max. max. max. max. max.	volts volts volts volts volts ma ma watts the plate esistor. grid-No.1

MAY 3, 1954

5/63

VHF BEAM POWER TUBE

		CC	·s•	ICA	15	
GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE V	OLTAGE:		max. max.	2	max.	
Heater negative wit respect to cathod Heater positive wit	e	100	max.	100	max.	volts
respect to cathod BULB TEMPERATURE (At	e	100	max.	100	max.	volts
point on bulb sur	face)	250	max.	250	${\tt max.}$	oC
Typical Operation up						
DC Plate Voltage Grid No.3	r of tage	250 -28.5 18000	nected to	350 cathor 250 -28.5 18000 37 48.5 6.2	de at	volts socket volts volts ohms volts ma ma
Useful Power Output (10.3		12		watts
Typical Operation at DC Plate Voltage	r of . tage	250 -60 22000 80 50 5 3 0.35		-	de at	volts socket volts volts ohms volts ma ma watt watts
Grid-No.1-Circuit Res					max.	megohm
	REQUENCY	MULTI	PLIFR			1
Maximum CCS® Ratings,						
DC PLATE VOLTAGE DC GRID-No.3 (SUPPRES) DC GRID-No.2 (SCREEN) DC GRID-No.1 (CONTROLDC PLATE CURRENT	SOR) VOLT VOLTAGE -GRID) VO	AGE :	: : :	0 250 –125	max. max. max. max.	volts volts volts
Continuous Commercial Intermittent Commercia		eur Ser	vice.			
●,■: See next page.				← Indi	cates	a change
MAY 3 1954	200000000000000000000000000000000000000					DATA 2

VHF BEAM POWER TUBE

	DC GRID-No.2 CURRENT 15 max.	ma
	DC GRID-No.1 CURRENT 5 max.	ma
	PLATE INPUT 15 max. w	vatts
		vatts
ı	PLATE DISSIPATION	vatts
	PEAK HEATER-CATHODE VOLTAGE:	
ĺ	The state of the s	olts
		olts
	BULB TEMPERATURE (At hottest	00
	point on bulb surface) 250 max.	°C
	Typical Operation: Doubler Tripler	
	to 175 Mc to 175 Mc	
	DC Plate Voltage 300 300 v	
	Grid No.3 Connected to cathode at so	cket
	DC Grid-No.2 Voltage * v	olts
		olts
	From grid resistor of 75000 100000	ohms
	Peak RF Grid-No.1 Voltage 95 120 v	olts
	DC Plate Current 40 35	ma
	DC Grid-No.2 Current 4 5	ma
	DC Grid-No.1 Current (Approx.). 1	ma
ı	Driving Power (Approx.) 0.6 0.6	watt
	Useful Power Output (Approx.) . 2.1 1.3 w	<i>i</i> atts
ı	Maximum Circuit Values (For maximum rated conditions):	
ı	The state of the s	
	Grid-No.1-Circuit Resistance 0.1 max. me	gohm

-No.1-Circuit Resistange 0.1 max. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	. 1	0.69	0.81	amp
Grid No.1-Plate Capacitance	. 2	-	0.3	μμf
Input Capacitance	. 2	8.0	11.0	μμf
Output Capacitance	. 2	3.8	5.2	μμ.f
Transconductance	. 1.3	5100	8900	µmhos
Plate Current	. 1,3	33	57	ma
Grid-No.2 Current	. 1.3	-	10	ma
Reverse Grid-No.1 Current .	. 1,4	-	2	μ amp

NOTE 1: With 6 volts ac or dc on heater.

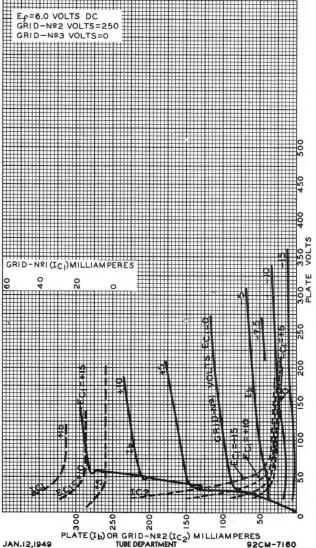
NOTE 2: With no external shield.

NOTE 3: With dc plate voltage of 250 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage of -7.5 volts.

NOTE 4: With dc plate voltage of 250 volts, dc grid-No.2 voltage of 250 volts, dc grid-No.1 voltage of -7.5 volts, and grid-No.1-circuit resistance of 0.1 megohm.

Obtained from a fixed supply, or by a grid-No.1 resistor of value shown.
 This value of useful power is measured at load of output circuit.

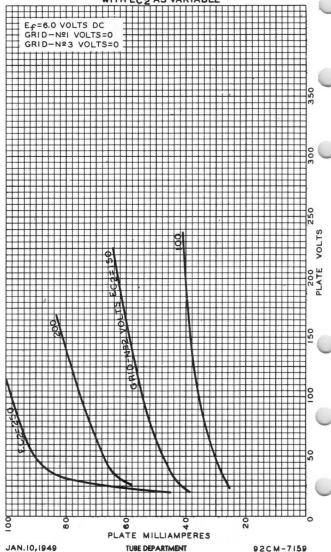
Data on Operating Frequencies for the 5763 are given on the sheet TRANS. TUBE RATINGS vs FREQUENCY


→ Indicates a change

DATA 2

2163

AVERAGE CHARACTERISTICS


JAN.12,1949

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7160

AVERAGE PLATE CHARACTERISTICS WITH EC2 AS VARIABLE

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

Power Triode

WATER AND FORCED-AIR COOLED

GROUNDED-GRID TYPE

GENERAL DATA

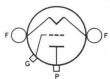
Electrical:

Filament, Multistrand Thoriated-Tungsten: Voltage (AC or DC). 11 ± 0.6 volts Current at filament volts = 11. amp

Starting Current: It is not necessary to provide means for limiting filament starting current on this type. Full rated filament voltage can be

applied safely to the cold filament. Minimum Heating Time. 15 Amplification Factor. 40

Direct Interelectrode Capacitances


(Approx.): Grid to plate

pf Grid to filament. pf Plate to filament . . . 1.2 pf

Mechanical:

Operating Position. Vertical, filament end up Maximum Overall Length. 24-1/2" Terminal Diagram (See Dimensional Outline):

F-Filament G-Grid

P-Plate

Thermal:

The specified water flow must start before the application of any voltages, and may be removed simultaneously with the filament and plate power.

Air Flow:

To plate seal and bulb:

At frequencies below 1.7 Mc Natural At frequencies above 1.7 Mc Up to 250 cfm Adequate forced-air cooling should be provided to limit the temperature of the plate seal and bulb to their specified maximum values. The amount of air flow required will increase with the operating frequency. The cooling air should start before the application of any voltages and should be distributed uniformly around the plate seal by means of a suitable air manifold and an airdeflector. The airflow may be removed simultaneously with filament and plate power.

- Indicates a change.

To filament seals and grid seal 10 min. cfm The specified air flow should be directed vertically from a I-I/4" diameter nozzle into the filament heater before and during the application of any voltages. It may be removed simultaneously with filament and plate power. Outlet Water Temperature	0
AE DOWED AND LELED & MODILLATOR Close B	
AF POWER AMPLIFIER & MODULATOR — Class B	
Maximum CCSa Ratings, Absolute-Maximum Values: DC PLATE VOLTAGE. 15000 max. volts MAX.—SIGNAL DC PLATE CURRENTb 6 max. amm Max.—SIGNAL PLATE INPUTb 90 max. kv PLATE DISSIPATIONb 50 max. kv) V
Typical Push-Pull Operation:	
Values are for 2 tubes	
DC Plate Voltage	5
(Plate to plate)	3
PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephony	
Carrier conditions per tube for use	
with a maximum modulation factor of 1	
Maximum CCS Ratings, Absolute-Maximum Values: DC PLATE VOLTAGE. 12500 max. volts DC GRID VOLTAGE -2000 max. volts DC PLATE CURRENT. 5.0 max. amm DC GRID CURRENT. 1.25 max. amm PLATE INPUT 60 max. kv PLATE DISSIPATION 33 max. kv	
Typical Operation:	
DC Plate Voltage	
DC Plate Current. 3.3 4.5 amp DC Grid Current (Approx.)* 0.72 1.1 amp Driving Power (Approx.)* 1350 2160 watts Power Output (Approx.) 28 45 ks	

RF POWER	AMPLIFIE	R & 05	CILLA	TOR -	- Class	C Telegrap	ohy ^f
Maximum CCS	Ratings,	Absol	ute-M	aximun	Values.	:	
DC PLATE VOLT DC GRID VOLT DC PLATE CUR DC GRID CURR PLATE INPUT PLATE DISSIP	TAGE AGE RENT ENT				. 170 20	000 max. 000 max. 9 max. .25 max. 150 max.	volts volts amp amp kw kw
Typical Oper	ation in	Groun	ded-F	ilamer	nt Circu	it:	
DC Plate Vol DC Grid Volt	tage					17000	volts
From a fix From a cat	ed suppl hode res	istor	of 125	ohms.	-900	-1450 -	volts
From a cat						-1450	volts
From a gri From a gri Peak RF Grid DC Plate Cur DC Grid Curr Driving Powe Power Output	d resist Voltage rent ent (App r (Appro	or of · · · rox.)e x.)e.	1320	ohms	1600 6 1.2 1700	-1450 2375 8.5 1.1 2300 105	volts volts volts amp amp watts kw
Typical Oper	ation in	Groun	ded-G	rid C	rcuit:		
	Same val: Circuit u						
Driving Powe Power Output						11200 114	watts kw
a Continuous C b Averaged ove				ycle o	f sine-way	ve form.	

The driving stage should have good regulation and should be capable of supplying considerably more than the specified driving power.

d Obtained from a fixed supply, grid resistor, or a combination of both.

For effect of load resistance on grid current and driving power, refer to TUBE RATINGS-Orid Current and Driving Power in the General Section.

Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency enveloped does not exceed 115 per cent of the carrier conditions.

9 Obtained from a fixed supply, a cathode resistor, a grid resistor, or from a combination of a fixed supply and self-bias.

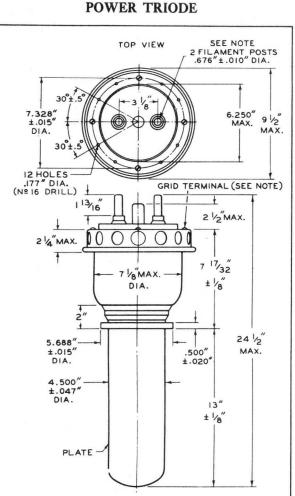
CHARACTERISTICS RANGE VALUES

	Filament Current			Note 1	Min. 265	Max. 305	amp
	Amplification Factor			1.2	35	45	+
	Grid-Plate Capacitance			_	47	59	pf
	Grid-Filament Capacitance .			-	74	104	pf
	Plate-Filament Capacitance.			-	0.8	1.6	pf
	Grid Voltage			1,3	-310	-490	volts
K.	Plate Voltage			1,4	7100	9100	volts -
7	Plate Voltage			1,5	3600	4600	volts
	Peak Cathode Current			1,6	50	_	amp
	Useful Power Output			1.7	80	_	kw 🕶
					→Indic	cates a	change.

5770

- Note 1: With 11 volts ac on filament.
- Note 2: With dc grid voltage of -50 volts, and with plate voltage adjusted to give dc plate current of 2 amperes.
- Note 3: With dc plate voltage of 15000 volts, and with grid voltage adjusted to give dc plate current of 0.05 ampere.
- Note 4: With dc grid voltage of -100 volts, and with plate voltage adjusted to give a dc plate current of 2 amperes.
- Note 5: With dc grid voltage of 0 volts, and with plate voltage adjusted to give dc plate current of 2 amperes.
- Note 6: Represents the maximum usable cathode current (plate current and grid current) for the tube under any condition of operation.
- Note 7: With dc plate voltage of 17000 volts, dc plate current of 8.8 amperes, dc grid current of 1.05 to 1.25 amperes, grid resistor of 1600 ± 10% ohms, and frequency of 1.6 Mc.

MAXIMUM RATINGS VS OPERATING FREQUENCY


OPERATING	MAXIMUM PERMISSIBLE PE MUM-RATED PLATE VOLTA			
FREQUENCY Mc	TELEPHONY	TELEGRAPHY		
	Class C Plate-Modulated	Class C Unmodulated		
20	100	100		
27	88	88		
35	77	77		

CURVES shown under Type 5671 also apply to the 5770

→ Indicates a change.

NOTE: FLEXIBLE CONNECTIONS ARE REQUIRED

92CM - 7070

12/

POWER TRIODE

WATER & FORCED-AIR COOLED

7	
	GENERAL DATA
	Electrical:
)	Filament, Multistrand Thoriated—Tungsten: Excitation Single Phase AC or DC Voltage 7.5 ± 0.4 ac or dc volts Current amp Starting Current: The filament current should never exceed 800
)	amperes, even momentarily. Cold Resistance 0.0055
	Mechanical:
	Terminal Connections: F-Filament G-Grid P-Water-Cooled Plate Grid terminals are spaced diametrically wider than filament terminals.
	Mounting Position Vertical, Filament End Up Maximum Overall Length
	power. Air Flow
	Components: RCA MI-19461 Water Jacket
	AF POWER AMPLIFIER & MODULATOR - Class B Maximum CCS® Ratings, Absolute Values:
	DC PLATE VOLTAGE 12500 max. volts
	DO TENTE TOETHOE

FEB. 1, 1949 TIRE DEPARTMENT TENTATIVE DATA

AXSIGNAL DC PLATE CURRENT* 5 max. amp
AXSIGNAL PLATE INPUT* 45 max. kw
LATE DISSIPATION* 22.5 max. kw
ypical Operation:
Values are for 2 tubes C Plate Voltage
o reaction to tage to the term of the term
C Grid Voltage600 volts
eak AF Grid-to-Grid Voltage 1900 volts
ero-Signal DC Plate Current 1 amp
axSignal DC Plate Current 6.4 amp
ffective Load Resistance
(Plate-to-plate) 4400 ohms
ax.—Signal Driving Power (Approx.)∦ 430 watts
ax.—Signal Power Output (Approx.) 55 kw
Averaged over any audio-frequency cycle of sine-wave form. The driving stage should have good regulation and should be capable of supplying considerably more than the specified driving power.
RF POWER AMPLIFIER - Class B Telephony
Carrier conditions per tube for use with a max. modulation factor of 1.0
aximum CCS® Ratings, Absolute Values:
C PLATE VOLTAGE 12500 max. volts
C PLATE CURRENT 4 max. amp
LATE INPUT
LATE DISSIPATION
ypical Operation:
C Plate Voltage 12500 volts
C Grid Voltage625 volts
eak RF Grid Voltage 625 volts
C Plate Current 2.4 amp
C Grid Current ^o 0 amp
riving Power (Approx.) 1070 watts
Power Output (Approx.)
At crest of audio-frequency cycle with modulation factor of 1.0.
The second state of power well fire Class C Talashari
PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony
arrier conditions per tube for use with a max. modulation factor of 1.0 $$
aximum CCS® Ratings, Absolute Values:
C PLATE VOLTAGE 10000 max. volts
C GRID VOLTAGE1600 max. volts
C PLATE CURRENT 4 max. amp
C GRID CURRENT 0.8 max. amp
LATE INPUT
LATE DISSIPATION 15 max. kw
Π; See next page.
, occ man page.

FEB. 1, 1949

Typical Operation:	
DC Plate Voltage	. 10000 volts
DC Grid Voltage	∫-840 volts
	(1075 ohms
Peak RF Grid Voltage	. 1440 volts
DC Plate Current	. 3.8 amp
Driving Power (Approx.)	. 1010 watts
Power Output (Approx.)	. 29 kw
Obtained by grid resistor of value shown or by p	artial self-bias methods.
,	
RF POWER AMPLIFIER & OSCILLATOR - C	lass C Telegraphy
Key-down conditions per tube withou	it modulation DO
Maximum CCS® Ratings. Absolute Values:	
1.6 to 25	Mc Below 1.6 Mc
DC PLATE VOLTAGE 12500 ma	
DC GRID VOLTAGE	
DC PLATE CURRENT 6 ma	
DC GRID CURRENT 0.8 ma	
PLATE INPUT 60 ma	
PLATE DISSIPATION 22.5 ma	x. 22.5 max. kw
Typical Operation:	
DC Plate Voltage 10000 10000 125	
DC Grid Voltage \	30 -990 volts 15 185 ohms
	15 185 onms 40 1240 ohms
Peak RF Grid Voltage . 1290 1440 12	
	.8 4.5 amp
DC Grid Current	
$(Approx.)^{\Box}$ 0.69 0.77 0.	75 0.8 amp
Driving Power	EO 1100
(Approx.) 800 1000 10 Power Output (Approx.) 33 40	50 1160 watts 44 53 kw
TOWER OUTPUT (Approx.))) 40	TT 0) KM
Continuous Commercial Service.	the positive near of the
audio-frequency envelope does not exceed 115%	of the carrier conditions
For effect of load resistance on grid current to TUBE RATINGS—Grid Current and Driving Pour	and driving power, refer
Obtained from cathode resistor (140, 115, 115 (1040, 1000, 840, 1240) or by partial self-bi	
CHARACTERISTICS RANGE VALUES FOR E	QUIPMENT DESIGN
Note	Min. Max.
Filament Current 1	160 180 amp
Amplification Factor 1,2	17 23
	✓-Indicates a change.
	- indicates a change.

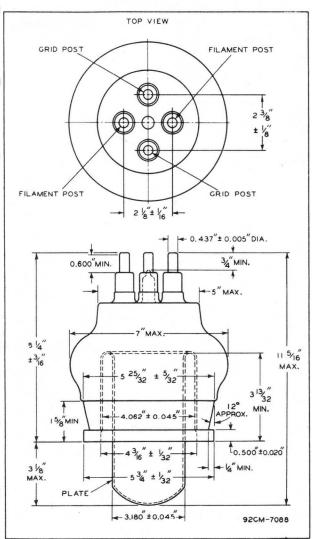
		Note	Min.	Max.	
Grid-Plate Capacitance		-	20	28	μμ
Grid-Filament Capacitance.		_	39	55	_{µµ} f
Plate-Filament Capacitance		-	2.3	3.7	$\mu\mu f$
Plate Voltage		1,3	5300	7900	volts
Plate Voltage			2100	3100	volts
Peak Cathode Current	ï	1,5	35	-	amp
Useful Power Output			33	-	kw

Note 1: With 7.5 volts ac on filament.

Note 2: With dc grid voltage of - 100 volts, and with plate voltage adjusted to give dc plate current of 2 amperes.

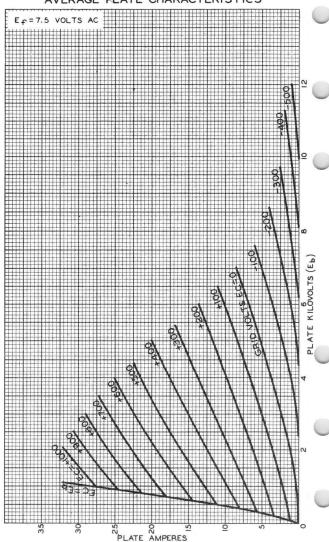
Note 3: With dc grid voltage of - 200 volts, and with plate voltage adjusted to give dc plate current of 2 amperes.

Note 4: With dc grid voltage of 0 volts, and with plate voltage adjusted to give dc plate current of 2 amperes.


Note 5: Represents the maximum usable cathode current (plate current and grid current) for the tube under any condition of operation.

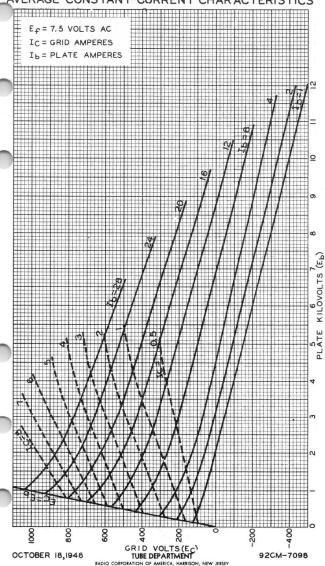
Note 6: With dc plate voltage of 12500 volts, dc plate current of 4.8 amperes, dc grid current of 0.6 to 0.9 ampere, grid resistor of 1600 ± 10% ohms, and frequency of 22 Mc.

Data on operating frequencies for the 5771 are given on the sheet TRANS. TUBE RATINGS vs FREQUENCY.



FEB. 1, 1949

AVERAGE PLATE CHARACTERISTICS


OCTOBER 28,1948

TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7106

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CHARACTERISTICS

5025

HALF-WAVE VACUUM RECTIFIER

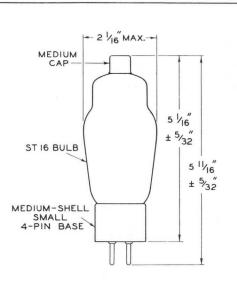
GENERAL DATA
Electrical:
Filament, Thoriated Tungsten: Voltage 1.6 ac volts Current 1.25 amp
Direct Interelectrode Capacitance: ⁰ Plate to Filament 2.2 μμf Tube Voltage Drop at maximum peak plate current 1750 volts
O with no external shield.
Mechanical:
Mounting Position.
Pin 1-Filament Pin 2-No Connection Pin 3-No Connection Pin 3-No Connection Pin 4-Filament, Internal Shield Cap- Plate
114 E 114 E 115 E 115 E
HALF-WAVE RECTIFIER
Maximum Ratings, Absolute Values:
For supply frequencies up to 250 kc
PEAK INVERSE PLATE VOLTAGE 60000 max. volts PEAK PLATE CURRENT 40 max. ma AVERAGE PLATE CURRENT 2 max. ma HOT—SWITCHING TRANSIENT CURRENT for
duration of 0.1 sec. max. 100 max. ma PLATE DISSIPATION 3.5 max. watts BULB TEMPERATURE 80 max. °C
Typical Operation at 70 kc in Half-Wave Circuit with Capacitor-Input to Filter:
AC Plate-Supply Voltage (RMS)
Effective Plate-Supply Impedance

HALF-WAVE VACUUM RECTIFIER

CHARACTERISTICS RANGE	VALUES FOR	EQUIPMENT	DESIGN	
	Note	Min.	Max.	
Filament Current	1	1.15	1.35	amp
Plate-Filament Capacitance	-	2.14	2.26	щf

Note: With 1.6 volts dc on filament.

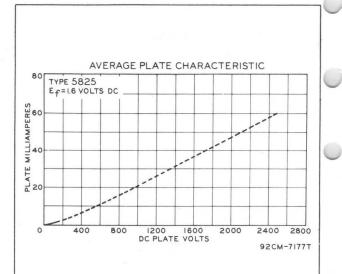
OPERATING NOTES


When the filament is supplied from an rf power source which is at a high dc potential above ground, adjustment of the filament voltage by direct measurement is usually impractical. However, a simple method utilizing visual comparison of filament temperatures can be used for adjustment of filament power. The color temperature of the filament operating from an rf power source may be checked visually by observing in a darkened room the reflection of the incandescent filament upon the surface of the internal shield. A visual comparison of this color temperature with that obtained when the filament of another 5825 is operated from a dc or low-frequency ac supply of 1.6 volts, provides a convenient means for adjusting the amount of rf excitation to produce 1.6 volts (rms) at the filament terminals.

The filament must never under any condition of operation be allowed to reach a temperature higher than that caused by operating the filament on dc or low-frequency ac at a voltage of 1.68 volts. Operation at higher temperatures will cause impaired performance of the tube. During circuit adjustment, however, it is permissible to allow the filament voltage to rise to 2 volts for the brief interval required to make the adjustment.

Soft x-rays are produced when the 5825 is operated at a plate voltage above approximately 20000 volts. These rays can constitute a health hazard unless the tube is adequately shielded. Relatively simple shielding should prove adequate, but the need for this precaution should be considered in equipment design.

HALF-WAVE VACUUM RECTIFIER



92CS-7176

5025

80° (RG

HALF-WAVE VACUUM RECTIFIER

High-Mu Triode

GLASS-METAL PENCIL TYPE

FAST WARM-UP TIME

STURDY COAXIAL-ELECTRODE STRUCTURE

For Use in Cathode-Drive Service at Frequencies up to 3000 Mc. The 5876A is Unilaterally Interchangeable with Type 5876.

GENERAL DATA

Electrical:

Heater, for Unipotential Cathode: 6.3 ± 10% volts Voltage (AC or DC). 0.135 amp Amplification Factor. 56

Transconductance, for dc plate ma. =

18, dc plate volts = 250. umhos Direct Interelectrode Capacitances: a Grid to plate μμf 1.4 Grid to cathode ₁µ₄f 2.4 Plate to cathode. 0.035 max. Muf

Mechanical:

Operating Position. . . . Dimensions and Terminal Connections See Dimensional Outline

Socket for Heater Pins. . Grayhill No.22-3b. Cinch 54A16325c. or equivalent

Terminal Connections (See Dimensional Outline):

H-Heater K - Cathode

G-Grid P-Plate

Thermal:

Plate-Seal Temperature (Measured on plate seal). .

RF AMPLIFIER - Class A

Maximum CCSd Ratings, Absolute-Maximum Values:

DC PLATE VOLTAGE.

For altitudes up to 100,000 feet and frequencies up to 1700 Mc

300 max. DC GRID VOLTAGE . . . -100 max. volts DC PLATE CURRENT. 25 max. ma PLATE DISSIPATION . 6.25 max. watts

OC

volts

5876A

PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode. 90 max. volt: Heater positive with respect to cathode. 90 max. volt: Maximum Circuit Values: Grid-Circuit Resistance 0.5 max. megohr	
RF POWER AMPLIFIER AND OSCILLATOR — Class C Telegraphy Ney-down conditions per tube without amplitude modulation f Maximum CCSd Ratings, Absolute-Maximum Values:	
For altitudes up to 100,000 feet and frequencies up to 1700 Mc DC PLATE VOLTAGE. 360 max. volt: DC GRID VOLTAGE100 max. volt: DC PLATE CURRENT. 25 max. m. DC GRID CURRENT 8 max. m. PLATE INPUT 9 max. watt PLATE DISSIPATION. 6.25 max. watt PLATE DISSIPATION. 6.25 max. volt: Heater negative with respect to cathode. 90 max. volt: Heater positive with respect to cathode. 90 max. volt:	
Typical Operation in Cathode-Drive Circuit:	
As oscillator	
At frequency of 500 1700 3000 M. DC Plate-to-Grid Voltage. 262 252 252 volt DC Cathode-to-Grid Voltage 12 2 2 volt DC Plate Current. 23 23 25 m DC Grid Current (Approx.) 6 3 4 m Useful Power Output (Approx.) 3 0.75 0.1 watt	s s a
As rf power amplifier at 500 Mc	
DC Plate-to-Grid Voltage. 326 volt DC Cathode-to-Grid Voltage 51 volt DC Plate Current. 23 m DC Grid Current (Approx.) 7 m Driver Power Output (Approx.) 2 watt Useful Power Output (Approx.) 5 watt	s a a s
Maximum Circuit Values:	
Grid-Circuit Resistance 0.1 max. megoh	n

PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephony

	PLATE-MODULATED RF FUNER AN	11 L	. 11	11	-1		U	1455 6	1616	phony
	Carrier condition with a maximum mod									
	Maximum CCS ^d Ratings, Absolute	- A	fax	in	nun	ı V	al	ues:		
	For altitudes u									
	and frequencie									
	DC PLATE VOLTAGE							. 275	max.	volts
	DC GRID VOLTAGE					×		100	max.	volts
	DC PLATE CURRENT							. 22	max.	ma
	DC GRID CURRENT							. 8	max.	ma
	PLATE INPUT			٠				. 6	max.	watts
		٠	•	•	•			. 4.25	max.	watts
	PEAK HEATER-CATHODE VOLTAGE:									
	Heater negative with							0.0		2 .
_	respect to cathode	•	*	•	•		٠	. 90	max.	volts
	Heater positive with respect to cathode							90	max.	volts
					•	•		. 50	max.	VUILS
	Maximum Circuit Values:									
	Grid-Circuit Resistance	٠		٠	•	٠	٠	. 0.1	max.	megohm
	FREQUENCY									
	Maximum CCSd Ratings, Absolute	-M	ax	in	ıun	V	al	ues:		
	For altitudes u	Þ	to	1	00	,00	00	feet		
	and frequencie	2 5	u	þ	t o	1	70	o Mc		
	DC PLATE VOLTAGE							. 330	max.	volts
	DC GRID VOLTAGE							100	max.	volts
	DC PLATE CURRENT		101					. 22	max.	ma
	DC GRID CURRENT							. 8	max.	ma
	PLATE INPUT	4							max.	watts
	PLATE DISSIPATION	×	٠		•	•	ě	. 6.25	max.	watts
	PEAK HEATER-CATHODE VOLTAGE:									
	Heater negative with respect to cathode							90	max.	volts
	Heater positive with	•	•		•	•	•	. 90	max.	VOILS
	respect to cathode							. 90	max.	volts
	Typical CCS Operation in Catho			١			: -			
	Typical Cos Operation in Catho	oge	3-L	JΓ					7.7	
						180			ubler 960 Mc	
	DC D1-t- t- C-: 1 V-1t									
	DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage	•	•			390	-		370 70	volts
	DC Plate Current	0				18		1	7.3	ma
	DC Grid Current (Approx.)	Ĵ	Ε.				6		7	ma
	Driver Power Output (Approx.)		8			2.			2	watts
	Useful Power Output (Approx.)					2.	1		2	watts

Grid-Circuit Resistance 0.1 max. 0.1 max. megohm

5876A

- Without external shield.
- Grayhill, Inc., 561 Hillgrove Avenue, LaGrange, Illinois.
- Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago, Illinois.
- d Continuous Commercial Service.
- In applications where the plate dissipation exceeds 2.5 watts, it is important that a large area of contact be provided between the plate cylinder and the connector to provide adequate heat conduction.
- Modulation essentially negative may be used if the positive peakof the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.
- **9** Obtained from grid resistor.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.		
Heater Current Direct Interelectrode	1	0.127	0.143	amp	
Capacitances:					
Grid to plate	-	1.2	1.6	μμξ	(
Grid to cathode	-	2.1	2.7	$\mu\mu$ f	1
Plate to cathode	_	V 201	0.035	μμ	
Heater-Cathode Leakage Current:					
Heater negative with					
respect to cathode	1.2	_	50	μa	
Heater positive with	_,_			,,	
respect to cathode	1.2	-	50	μα	
Leakage Resistance:	-,-			Ma	
From grid to plate and					
cathode connected together	1,3	25	-	megohms	
From plate to grid and	-1/	20		megerine	
cathode connected together	1.4	25	_	megohms	
Reverse Grid Current	1,5	-	1	μa	
Emission Voltage	6	-	10	volts	
Amplification Factor	1,7	41	71		
Transconductance	1,7	5150	7850	µmhos	
Plate Current (1)	1.7	12.5	23.5	ma	
Plate Current (2)	1,8	-	55	μa	
Plate Current (3)	1.9	0.5	_	ma	
Power Output		0.285	-	watt	

- With 6.3 volts ac or dc on heater. Note 1:
- Note 2: With 100 volts dc between heater and cathode.
- With grid 100 volts negative with respect to plate and cathode Note 3: which are connected together.
- With plate 300 volts negative with respect to grid and cathode Note which are connected together.
- Note 5: with dc plate voltage of 250 volts, dc grid voltage of -2.5 volts, grid resistor of 0.5 megohm.
- Note 6:
- with dc voltage on grid and plate which are connected together adjusted to produce a cathode current of 30 ma., and with 5.5 volts on heater.
- With dc plate-supply voltage of 250 volts, cathod 75 ohms, and cathode bypass capacitor of 1000 μ f. Note cathode resistor of
- With dc plate voltage of 250 volts and dc grid voltage of -12 volts. Note 8:
- Note 9: With dc plate voltage of 250 volts and dc grid voltage of -5 volts.
- With dc plate voltage of 200 volts, grid resistor adjusted to give a dc plate current of 18 milliamperes in a cavity-type oscillator operating at 1700 ± 15 Mc. Note 10:

SPECIAL TESTS & PERFORMANCE DATA

Low-Pressure Voltage Breakdown Test:

This test (similar to MIL-E-ID, paragraph 4.9.12.1) is performed on a sample lot of tubes from each production run. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 100,000 feet. Breakdown will not occur when a 60-cycle rms voltage of 500 volts is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.1) is performed on a sample lot of tubes from each production run under the following conditions:

Heater voltage of 6.3 volts, dc plate supply voltage of 250 volts, grid voltage of -2.5 volts, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 25 cps at an acceleration of 2.5 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.

High-Frequency Vibration Performance:

This test (similar to MIL-EIID, paragraph 4.9.19.2) is performed on a sample lot of tubes from each production run. The tube is vibrated perpendicular to its axis, with no voltages applied to the tube. Vibration frequency is 40 to 60 cps and acceleration is 10 g. At the end of this test, tubes will not show temporary or permanent shorts or open circuits and will meet the following limits:

Heater-Cathode Leakage Current. 50 max. μ a For conditions shown under Characteristics Range Values Notes 1,2.

Low-Frequency Vibration (rms) 100 max. mv For conditions shown above under Low-Frequency Vibration Performance.

Transconductance. 5150 min. µmhos
For conditions shown under Characteristics Range Values
Notes 1.7.

Plate Current (2) 55 max. μ a For conditions shown under Characteristics Range Values Notes 1,8.

Shorts and Continuity Test:

This test (similar to MIL-E-ID, paragraph 4.7.3) is performed on all tubes from each production run. Voltage applied between adjacent elements of the tube under test will be between 20 and 70 volts dc or peak ac. Plate and cathode terminals are tied together and connected to the grid terminal through the shorts test equipment. Tubes are tapped with a rubber tapper three times in each of three mutually perpendicular directions. If a short indication is obtained, the

5876A

tapping cycle is repeated two times for verification. Acceptance criteria is based on the "Resistance vs. Time Duration" curve shown in paragraph 4.7.7 of MIL-I-D, Amendment 5.

Glass-Seal-Fracture Test:

This test is performed on a sample lot of tubes from each production run. Tubes are placed on supports spaced $15/16^{\prime\prime}\pm1/64^{\prime\prime}$ apart with the grid flange centered between these supports. Tubes will withstand gradual application, perpendicular to tube axis, of a force of 30 pounds upon the grid flange without causing fracture of the glass insulation.

Heater Cycling Life Performance:

This test (similar to MIL-E-ID, paragraph 4.II.7) is performed on a sample lot of tubes from each production run. With 6.3 volts on heater and no voltage on plate and grid, the heater is cycled three minutes on and three minutes off for at least 2000 cycles. At the end of this test, tubes will not show temporary or permanent shorts or open circuits, and will meet the following limits:

Grid-Plate and Cathode

Leakage Resistance. 25 min. megohms For conditions shown under *Characteristics Range Values Notes* 1,3.

Heater-Cathode Leakage Current. 100 max. μa For conditions shown under *Characteristics Range Values* Notes 1,2.

I-Hour Stability Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.1.a) is performed on a sample lot of tubes from each production run to insure that the tubes have been properly stabilized. Tubes are operated under the following conditions:

Heater voltage of 6.3 volts, plate dissipation of 2 to 2.5 watts. At the end of I hour, the change intransconductance value for each tube, referred to its initial transconductance reading, will not exceed 15% of the initial value, for conditions shown under Characteristics Range Values Notes 1,7.

50-Hour Survival Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.1.b) is performed on a sample lot of tubes from each production run to insure a low percentage of early inoperatives. Lifetest conditions are the same as those specified for 1-Hour Stability Life Performance except that all voltages are cycled at the rate of IIO minutes on and IO minutes off. At the end of 50 hours, the tubes are required to meet the following limits:

Power Output 0.2 min. watt For conditions shown under *Characteristics Range Values Notes* 1,10.

Plate Current (2) 100 max. For conditions shown under Characteristics Range Values Notes 1,8.

Shorts and Continuity Test specified above.

Intermittent Dynamic Life Performance:

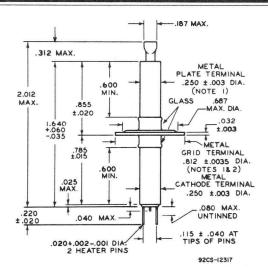
This test (similar to MIL-E-ID, paragraph 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is lifetested in a cavity-type oscillator at 500 ± 15 Mc under the following conditions:

Heater voltage of 6.3 volts, plate supply voltage of 300 volts, cathode resistor is adjusted to give a dc plate current of 25 ma. and value is recorded, plate-circuit load resistance of zero ohms, heater positive with respect to cathode by 100 volts, and plate-seal temperature of 1750 C minimum. Heater voltage is cycled at a rate of 110 minutes on and 10 minutes off. At the end of 500 hours, the tube will not show permanent shorts or open circuits and will be criticized for the total number of defects in the sample lot and for the number of tubes failing to meet the following limits:

Power Output. 0.2 min. For conditions shown under Characteristics Range Values Notes 1.10.

Plate Current (2) 150 max. For conditions shown under Characteristics Range Values Notes 1.8.

Shorts and Continuity Test specified above.


OPERATING CONSIDERATIONS

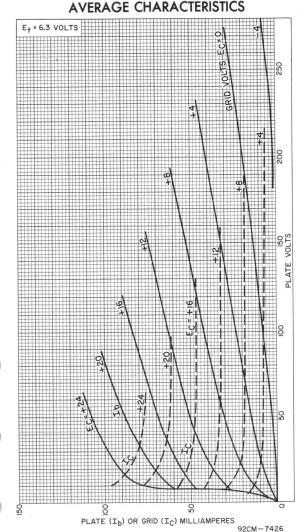
The mounting for this type in coaxial-line, parallel-line, or lumped circuits may support the tube securely by any one of the three terminals. Connections to the other two terminals must be made by contacts with flexible leads.

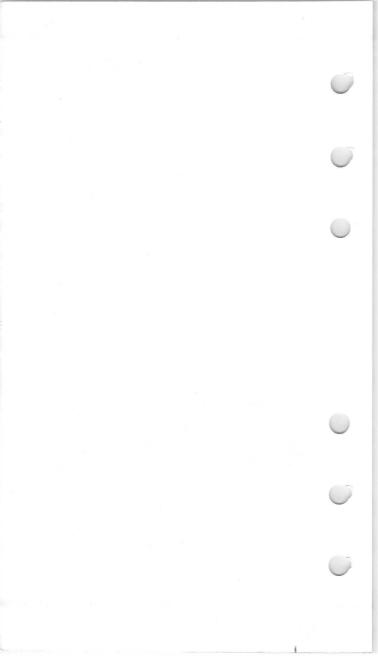
The mounting for this type in cavity-type circuits should preferably support the tube by the grid flange which should make firm contact to the cavity surface.

The heater pins of this type should not be soldered to circuit elements. The heat of the soldering operation may crack the glass seals of the heater pins and damage the tube.

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum values shown in the tabulated data.

DIMENSIONS IN INCHES


NOTE 1: MAXIMUM ECCENTRICITY OF CENTER LINE (AXIS) OF PLATE TERMINAL OR GRID-TERMINAL FLANGE WITH RESPECT TO THE CENTER LINE (AXIS) OF THE CATHODE TERMINALIS 0.008".


NOTE 2: TILT OF GRID-TERMINAL FLANGE WITH RESPECT TO ROTATIONAL AXIS OF CATHODE TERMINAL IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE GRID-TERMINAL FLANGE PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM ITS EDGE FOR ONE COMPLETE ROTATION. THE TOTAL DISTANCE WILL NOT EXCEED 0.020".

-Indicates a change.

AVERAGE CHARACTERISTICS

Medium-Mu Triode

GLASS-METAL PENCIL TYPE

FAST WARM-UP TIME

STURDY COAXIAL-ELECTRODE STRUCTURE

For Use in Cathode-Drive Service at Frequencies up to 4000 Mc

GENERAL DATA

Electrical:

Heater, for Unipotential Cathode:

Voltage (AC or DC):

6.0 +5% Under transmitting conditions volts

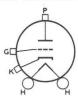
Under standby conditions. . . . 6.3 max. volts Current at 6.0 volts. 0.280 amp Amplification Factor. 27

Transconductance, for dc plate ma. = 25, dc plate volts = 200.

Direct Interelectrode Capacitances:

Grid to plate

1.7 Muf μμf Grid to cathode . . . 2.4 Plate to cathode. . . 0.07 max. μμf


Mechanical:

Operating Position. . . . Dimensions and Terminal

Connections See Dimensional Outline Socket for Heater Pins. . Grayhill No. 22-3b, Cinch 54A16325c, or equivalent

Terminal Connections (See Dimensional Outline):

H-Heater K - Cathode

G-Grid P-Plate

μmhos.

Thermal:

Plate-Seal Temperature (Measured 00 on plate seal).

RF AMPLIFIER - Class A

Maximum CCSd Ratings, Absolute-Maximum Values:

For altitudes up to 100,000 feet and frequencies up to 2000 Mc

330 max. DC GRID VOLTAGE -100 max. volts

Indicates a change.

PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode 90 max. Heater positive with	ma watts volts
respect to cathode 90 max. Maximum Circuit Values:	VOLES
Grid-Circuit Resistance 0.5 max. me	egohm
PLATE-PULSED OSCILLATOR - Class C	
Maximum CCS ^d Ratings, Absolute-Maximum Values:	
PEAK NEGATIVE—PULSE GRID—BIAS VOLTAGE	volts volts amp amp amp amp watts µsec
Typical Operation:	
In cathode-drive circuit with rectangular wave shape at 3300 Mc, with duty factor of	
o.oo1, and pulse duration of 1 microsecond	
Peak Negative—Pulse 110 Grid—Bias Voltage 100 From grid resistor of 100 Peak Plate Current from Pulse Supply 3 Peak Rectified Grid Current 1,1 DC Plate Current 0.003 DC Grid Current 0.0011 Useful Power Output at	volts volts ohms amp amp amp amp amp
RF POWER AMPLIFIER AND OSCILLATOR — Class C Telegrap	hy
Key down conditions per tube without amplitude modulati	on m
Maximum Ratings, Absolute-Maximum Values:	
For altitudes up to 100,000 feet and frequencies up to 2000 MC CCS dICAS n	0
	volts

0	DC PLATE CURRENT. DC GRID CURRENT PLATE INPUT PLATE DISSIPATION®. PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode.	. 35 max. . 15 max. . 11 max. . 7 max.	40 max. 15 max. 16 max. 8 max.	ma ma watts watts
	Heater positive with respect to cathode	. 90 max.	90 max.	volts
	Typical Operation:			4
	As rf power amplifier i	n cathode-dri	ve circuit	
		At 500 Mc	At 1000 Mc	
0	DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage DC Plate Current	7.5 8.5	330 383 30 33 33 35 12 13 1.9 2.4 5.5 6.5	volts volts ma ma watts watts
	As oscillator in ca			-
	00 01 1 1 0 1 1 1 1	At 500		1.
	DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage DC Plate Current		401 51 35 13 6	volts volts ma ma watts
	Maximum Circuit Values:			
	Grid-Circuit Resistance	0.1 max.	0.1 max.	megohm
	PLATE-MODULATED RF POWER AM	PLIFIER - C1	ass C Telep	hony
	Carrier conditions			
	with a maximum modu		r of 1	
	Maximum Ratings, Absolute-Maxim			
	For altitudes up and frequencies			
	ana grequencie.	CCS d	ICAS ⁿ	
	DC PLATE VOLTAGE	. 260 max.	320 max.	volts
	DC GRID VOLTAGE	-100 max.	-100 max.	volts
	DC PLATE CURRENT	33 max.	33 max.	ma
	DC GRID CURRENT	. 15 max.	15 max.	ma
	PLATE INPUT	8.5 max. 5 max.	10.5 max. 5.5 max.	watts
	PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode	90 max.	90 max.	watts
	Heater positive with	. 55 max.	oo max.	10113
	respect to cathode	. 90 max.	90 max.	volts
			← Indicates a	a change.

→ Typical Operation:	→	Typical	Operation:
----------------------	----------	---------	------------

In cathode-drive circuit at 500	MC
	345 volts
DC Cathode-to-Grid Voltage 36	45 volts
	30 ma
DO GITTO COLL (TIPPICATE)	12 ma
Driver Power Output (Approx.) 1.8	2 watts
Useful Power Output (Approx.) 5.5	6.5 watts

Maximum Circuit Values:

Grid-Circuit Resistance 0.1 max. 0.1 max. megohm

FREQUENCY DOUBLER

Maximum Ratings, Absolute-Maximum Values:

For altitudes up to 100,000 feet and frequencies up to 2000 Mc

		66.5	
	CCS ^d	ICAS ⁿ	
DC PLATE VOLTAGE	260 max.	320 max.	volts
DC GRID VOLTAGE	-100 max.	-100 max.	volts
DC PLATE CURRENT	33 max.	33 max.	ma
DC GRID CURRENT		12 max.	ma
PLATE INPUT		10.5 max.	watts
PLATE DISSIPATION ^e	6 max.	7.5 max.	watts
PEAK HEATER-CATHODE VOLTAGE:			
Heater negative with			
respect to cathode	90 max.	90 max.	volts
Heater positive with	0.0	0.0	1.1
respect to cathode	90 max.	90 max.	volts

-Typical Operation:

In cathode-drive circuit up to 1000 Mc

DC Plate-to-Grid Voltage 290 35	50 volts
DC Cathode-to-Grid Voltage 40	50 volts
DC Plate Current	33 ma
DC Grid Current (Approx.) 7	8 ma
Driver Power Output (Approx.) . 3.2 3.	.5 watts
Useful Power Output (Approx.) . 2.75	3 watts

Maximum Circuit Values:

Grid-Circuit Resistance . . . 0.1 max. 0.1 max. megohm

- a Without external shield.
- Grayhill, Inc., 561 Hillgrove Avenue, LaGrange, Illinois.
- Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago, Illinois.
- d Continuous Commercial Service.
- e in applications where the plate dissipation exceeds 2.5 watts, it is important that a large area of contact be provided between the plate cylinder and the connector in order to provide adequate heat conduction.
 - In this class of service, the heater should be allowed to warm up for a minimum of 60 seconds before plate voltage s applied.

→ Indicates a change.

- 9 "O#" time is defined as the sum of the duration of all individual pulses which occur during the indicated interval. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70% of the peak power value. The peak power value. The peak power defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
 - h The magnitude of any spike on the plate voltage pulse should not exceed a value of 2000 volts with respect to cathode and tits duration should not exceed 0.01 microsecond measured at the peak-pulse-value level.
- J Duty factor is the product of pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of time "ON" to total elapsed time in any 5000-microsecond interval.
- k The power output at peak of pulse is obtained from the average power output using the duty factor of the peak pulse. This procedure is necessary since the power output pulse duty factor may be less than the applied voltage pulse duty factor because of a delay in the start of rf power output.
- Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.
- Intermittent Commercial and Amateur Service. No operating or "ON" period exceeds 5 minutes and every, "ON" period is followed by an "OFF" or stand by period of at least the same or greater duration.
- P Obtained from grid resistor.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

				Note	Min.	Max.	
He	ater Current			1	0.260	0.300	amp
Di	rect Interelectrode						
	Capacitances:						
1	Grid to plate			-	1.30	1.80	$\mu\mu$ f
	Grid to cathode			-	2.05	2.95	$\mu\mu$ f
	Plate to cathode			-	-4-	0.07	$\mu\mu$ f
He	ater-Cathode Leakage Curre	n	:				
	Heater negative with						
	respect to cathode			1,2	-	200	μa
	Heater positive with						
	respect to cathode			1.2	-	500	μa
Le	akage Resistance:						
	From grid to plate and						
	cathode tied together .			1,3	25	-	megohms
	From plate to grid and			10.00			· ·
	cathode tied together .			1,4	25	-	megohms
Re	verse Grid Current			1,5	-	1	μ a
Em	ission Voltage			6	-	14	volts
	ak Emission Current				2.75	-	amp
	plification Factor				18	36	
	ansconductance				4800	7200	μ mhos
P]	ate Current (1)			1,8	16	34	ma
PI	ate Current (2)			1,9	-	55	μ a
	wer Output				4.5	-	watts
	wer Output at Peak of Pulse				750	-	watts
Ch	ange in Output Frequency.			12	-	3	Mc

- Note 1: With 6.0 volts ac or dc on heater.
- Note 2: With 100 volts dc between heater and cathode.
- Note 3: With grid 100 volts negative with respect to plate and cathode which are tied together.
- Note 4: With plate 300 volts negative with respect to grid and cathode which are tied together.

- Indicates a change.

- Note 5: With dc plate voltage of 200 volts, dc grid voltage of -2.5 volts, grid resistor of 0.1 megohm.
- Note 6: With dc voltage on grid and plate which are tied together adjusted to produce a cathode current of 30 ma, and with 5.4 volts on heater.
- Note 7: With 150 volts on grid and plate which are connected together, duty factor of 0.001, and pulse duration of 1 microsecond.
- Note 8: With dc plate voltage of 200 volts, cathode resistor of 100 \pm 10% ohms, and cathode bypass capacitor of 1000 μf .
- Note 9: With dc plate voltage of 200 volts, dc grid voltage of -20 volts.
- Note 10: With do plate voltage of 350 volts, cathode resistor adjusted to give a do plate current of 32 milliamperes in a cavity-type oscillator operating at 500 ± 15 Mc.
- Note 11: With peak positive-pulse plate supply voltage of 1750 volts, grid resistor varied to give dc plate current of 3 ma, dc grid current of approximately 1.3 ma, duty factor of 0.001, pulse duration of 1 microsecond, and frequency of 3300 ± 100 Mc.
- Note 12: At end of Peak Power Output test, reduce heater voltage to 5.4 volts and note change in output frequency, then increase heater voltage to 6.3 volts and note change in output frequency.

SPECIAL TESTS & PERFORMANCE DATA

Low-Pressure Voltage Breakdown Test:

This test (similar to MIL-E-ID, paragraph 4.9.12.1) is performed on a sample lot of tubes from each production run. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 100,000 feet. Breakdown will not occur when a 60-cycle rms voltage of 400 volts is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.1) is performed on a sample lot of tubes from each production run under the following conditions:

Heater voltage of 6.0 volts, dc plate supply voltage of 200 volts, grid voltage of -2.5 volts, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 25 cycles per second at an acceleration of 2.5 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.

High-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.2) is performed on a sample lot of tubes from each production run. The tube is vibrated perpendicular to its axis, with no voltages applied to the tube. Vibration frequency is 40 to 60 cps and acceleration is 10 g. At the end of this test, tubes will not show permanent shorts or open circuits.

Shorts and Continuity Test:

This test (similar to MIL-E-ID, paragraph 4.7.3) is performed on all tubes from each production run. In this test, a tube is considered inoperative if it*shows a permanent or temporary short or open circuit, an air leak, or reverse grid current in excess of I microampere for the conditions shown under Characteristics Range Values, Notes 1,5.

Glass Seal Fracture Tests:

Fracture tests are performed on sample lots of tubes from each production run.

- 1. Tubes are placed on supports spaced 15/16" ± 1/64" apart with the grid flange centered between these supports. Tubes will withstand gradual application, perpendicular to the tube axis, of a force of 50 pounds upon the grid flange without causing fracture of the glass insulation.
- Tubes are held by clamping to the cathode terminal. Tubes will withstand gradual application of a torque of 15 inchpounds upon the plate terminal without causing fracture of the glass insulation.

100-Hour Dynamic Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is lifetested in a cavity-type oscillator at 3300 ± 100 Mc under the following conditions.

Heater voltage of 6.0 volts, peak positive-pulse plate supply voltage of 1750 volts, grid resistor is adjusted to give a dc plate current of 3 ma., dc grid current of approximately 1.3 ma., duty factor of 0.001, and pulse duration of I microsecond.

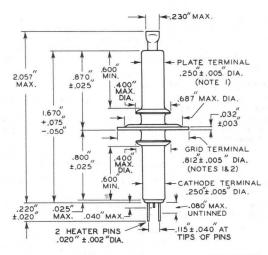
At the end of 100 hours, the tubes will have a minimum peak pulse power output of 600 watts.

500-Hour Dynamic Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is lifetested in a cavity-type oscillator at 500 ± 15 Mc under the following conditions:

Heater voltage of 6.0 volts, plate supply voltage of 350 volts, cathode resistor is adjusted to give a dc plate current of 33 ma.

At the end of 500 hours, the tubes will have a minimum power output of 3.5 watts.

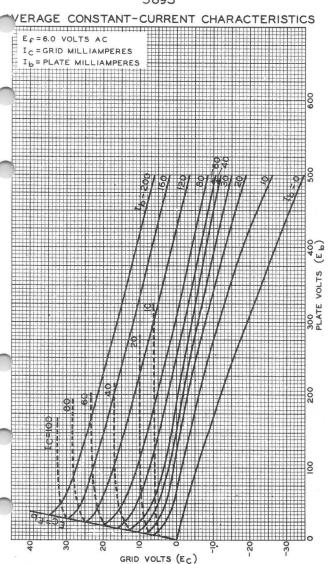

OPERATING CONSIDERATIONS

The mounting for this type in coaxial-line, parallel-line, or lumped circuits may support the tube securely by any one of the three terminals. Connections to the other two terminals must be made by contacts with flexible leads.

The mounting for this type in cavity-type circuits should preferably support the tube by the grid flange which should make firm contact to the cavity surface.

The heater pins of this type should not be soldered to circuit elements. The heat of the soldering operation may crack the glass seals of the heater pins and damage the tube.

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum values shown in the tabulated data.



92CS-7419R3

NOTE I: MAXIMUM ECCENTRICITY OF CENTER LINE (AXIS) OF PLATE TERMINAL OR GRID-TERMINAL FLANGE WITH RESPECT TO THE CENTER LINE (AXIS) OF THE CATHODE TERMINAL IS 0.010".

NOTE 2: TILT OF GRID-TERMINAL FLANGE WITH RESPECT TO ROTATIONAL AXIS OF CATHODE TERMINAL IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE GRID-TERMINAL FLANGE PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM ITS EDGE FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.020".

JAN. 23, 1952

TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7609RI

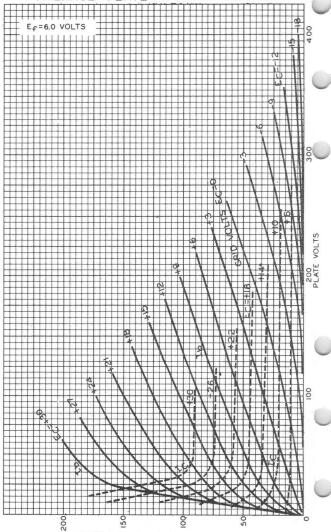
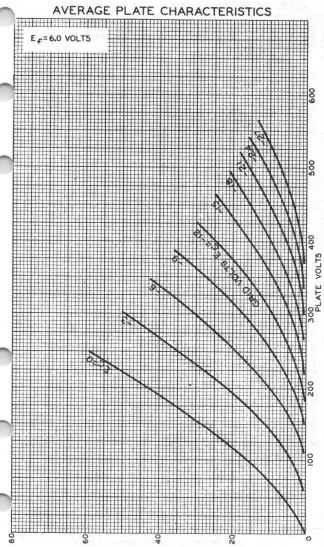
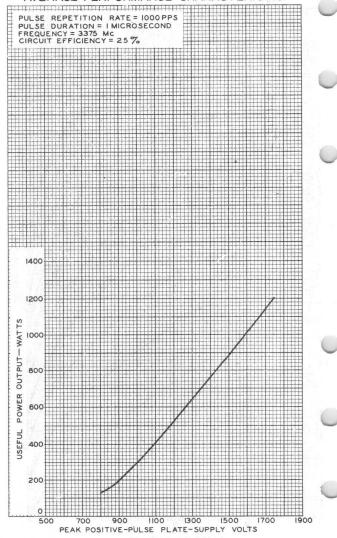



PLATE (I_b) OR GRID (I_C) MILLIAMPERES TUBE DEPARTMENT TUBE DEPARTMENT BADIO COMPOSITION OF AMERICA, MARRISON, NEW JEFETY

92CM-7610

JUNE 13, 1951


PLATE MILLIAMPERES TUBE DEPARTMENT

92CM-7483

AVERAGE PERFORMANCE CHARACTERISTIC

Power Triode

FORCED-AIR COOLED

GROUNDED-GRID TYPE

For UHF Plate-Pulsed Oscillator and Amplifier Service

GENERAL DATA

Electrical:

	Heater, for Unipotential Cathode:	
	Voltage (AC or DC) 6.3	volts
)	Current 3.4	amp
	Minimum heating time 1	minute
	Amplification Factor 25	
	Direct Interelectrode Capacitances:	
	Grid to plate 6.0	pf
	Grid to cathode 11.0	pf
	Plate to cathode ^a 0 19 max.	nf

Mechanical:

Operating Position.															Any	1
Overall Length																
Diameter							,		1	. 7	50	11	±	0.0	010	1
Weight (Approx.)																
Radiator						11	nt	eq	ra	1	pa	rt	. 0	ft	tube	2
Mounting																
Terminal Diagram (S																

P-Plate G-Grid

K - Cathode H - Heater

Thermal:

Air Flow:

The specified air flow for various plate dissipations, as indicated in the tabulation below, should be delivered by a blower onto the respective terminals and seals, and through the radiator before and during the application of any voltages. Heater power, plate power, and air may be removed simultaneously.

The above flow and pressure values are for condition with radiator temperature held constant at 135°C rise above ambient temperature. The air flow must be adequate to limit the temperature of the radiator, grid terminal, cathode terminal, and seals to their respective maximum values.

Radiator Temperature (Measured on core

Cathode-Terminal	Temperatu	re		150 r	max.	oC
Seal Temperature	(Plate, g	rid, and	cathode)	150 r	max.	oC

PLATE-PULSED OSCILLATOR & AMPLIFIER - Class C

	Maximum Ratings, Absolute	-Ma	xi	mu	ım Value	es:			
	For maximum "on" time b of				10 μs	ec	100 p	isec	
	PEAK POSITIVE-PULSE PLATE-SUPPLY VOLTAGE PEAK NEGATIVE-PULSE				7500 r	max.	7500	max.	volts
	GRID-BIAS VOLTAGE PEAK PLATE CURRENT				600 r	max.	600	max.	volts
	FROM PULSE SUPPLY				4.5 r	max.	3.5	max.	amp
	PEAK RECTIFIED GRID CURRE	NT			1 r	max.	0.75	max.	amp.
	DC PLATE CURRENT				0.045 r	max.	0.250	max.	amp
	DC GRID CURRENT				0.010 r	max.	0.070	max.	amp
+	PLATE INPUT				340 r	max.	340	max.	watts
	PLATE DISSIPATION						250	max.	watts

Typical Operation with Rectangular Wave Shape in Oscillator Circuit at 1250 Mc:

With duty factor of 0.01

Peak Positive—Pulse Plate—Supply Voltage	00 7500 volts
Grid-Bias Voltage	75 500 volts 00 100 ohms
	25 850 volts
	.5 4.5 amp
	25 0.5 amp
	35 0.045 amp
DC Grid Current 0.003	25 0.005 amp
Useful Power Output at Peak of Pulse (Approx.) 800	00 14000 watts

a with external shield connected to grid.

"ON" time is defined as the sum of the durations of all the individual pulses which occur during the interval of 1000 microseconds. Pulse duration is defined as the time interval between the two points on the pulseat which the instantaneous value is 70 per cent of the peak value. The peak value is 40 per cent of the peak value. the average of the fluctuations over the top portion of the pulse.

Duty factor is the product of pulse duration and repetition rate. For variable pulse durations and pulse repetition rates, the duty factor is defined as the ratio of time "on" to total elapsed time in any 500-

microsecond interval.

It is recommended that the entire bias be obtained from a cathode resistor. Incertain applications, partial grid-resistor bias may be used.

The power output at peak of pulse is obtained from the average power output using the duty factor of the peak power output pulse. This procedure is necessary since the power output pulse duty factor may be less than the applied voltage pulse duty factor because of a delay in the start of rf power output.

- Indicates a change.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

		Note	Min.	Max.	
)	Heater Current	1	3.05	3.75	amp
	Amplification Factor	1,2	18	32	
	Grid-Plate Capacitance		5.6	6.6	pf
	Grid-Cathode Capacitance		10.5	12.5	pf
	Plate-Cathode Capacitance	3	0.12	0.26	pf
	Plate Voltage	1,4	500	850	volts
	Plate Voltage		690	1140	volts
b:	Grid Voltage	1,6	_	-165	volts
7	Peak Cathode Current	1,7	12		amp
	Useful Power Output at Peak of Pulse.	1,8	12	_	kw

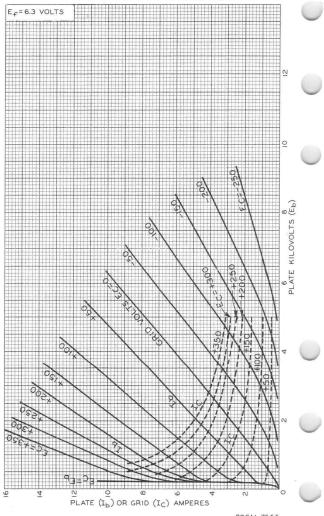
- Note 1: With 6.3 volts on heater.
- Note 2: With dc grid voltage of -15 volts, and dc plate voltage adjusted to give dc plate current of 250 milliamperes.
- Note 3: With external shield connected to grid terminal.
- Note 4: With dc grid voltage of -10 volts, and dc plate voltage adjusted to give dc plate current of 250 milliamperes.
- Note 5: With dc grid voltage of -20 volts, and dc plate voltage adjusted to give dc plate current of 250 milliamperes.
- give dc plate current of 250 milliamperes.

 Note 6: With dc plate voltage of 1600 volts, and dc grid voltage adjusted to give dc plate current of 1 milliampere.
- Note 7: Represents the maximum value of cathode current (Plate current and grid current) for the tube under any condition of operation.
- Note 8: With peak positive-pulse plate-supply voltage of 7500 volts, cathode-bias resistor of 100 ± 10 per cent ohms, peak plate current from pulse supply of 4.5 amperes, peak rectified grid current of 0.5 ampere, duty factor of 0.01, and frequency of 1250 Mc.

MAXIMUM RATINGS vs OPERATING FREQUENCY

OPERATING FREQUENCY Mc	MAXIMUM PERMISSIBLE PERCENTAGE OF MAXIMUM RATED PLATE VOLTAGE & PLATE INPUT
	Plate-Pulsed Oscillator and Amplifier Service
1300	100
2000	75

DIMENSIONAL OUTLINE and MOUNTING ARRANGEMENT shown under Type 6161 also apply to the 5946


OPERATING NOTES

Rated heater voltage should be applied for at least one minute to allow the cathode to reach normal operating temperature before voltages are applied to the other electrodes. In circuits where the plate is grounded and the negative pulse is applied to the cathode, the heater supply must be insulated to withstand the peak-positive-pulse plate-supply voltage, and it should also present a minimum amount of capacitance loading to the pulse-supply source.

- Indicates a change.

AVERAGE CHARACTERISTICS

92CM-7555

6026 OSCILLATOR TRIODE

6026

SUBMINIATURE TYPE

For radiosonde service at 400 Mc

GENERAL DATA

Electrical:

Heater, for Unipotential Cathode:
Voltage range*.... 5.2 to 6.6ac or dc volts

Current at 6.3 volts. 0.2 Direct Interelectrode Capacitances (Approx.):°

Characteristics, Class A, Amplifier:

 Plate—Supply Voltage.
 120
 volts

 Cathode Resistor.
 220
 ohms

 Amplification Factor.
 24

 Plate Resistance (Approx.)
 4000
 ohms

 Transconductance.
 5900
 µmhos

 Plate Current
 12
 ma

Mechanical:

Mounting Position ... Any Maximum Length (Excluding flexible leads) . . . 1-1/2" Length, Bulb Seat to Bulb Top(Excluding tip). 1.200" ± 0.060 " Maximum Diameter . . . 0.400" Dimensional Outline ... See General Section

Lead 3 - Cathode

Lead 4 - Heater Lead 5 - Heater

Lead 7 - Grid

OSCILLATOR - Class C Telegraphy

Maximum Ratings*, Absolute Values:

* Heater-voltage range and maximum ratings are established on basis that tube heater will be supplied from batteries in radiosonde and similar applications utilizing equipment designed for extreme compactness and light weight and requiring tube life of only a few hours.

O without external shield.

← Indicates a change.

OSCILLATOR TRIODE

PLATE INPUT	ma
	watts vatts volts
Typical Operation as Oscillator at 400 Mc:	t a miles
DC Plate Voltage	volts
DC Plate Current 20	ma
DC Grid Current (Approx.)	ma watts

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT

Note

Min.

Heater Current:							5 4
With 5.2 volts ac on h				-	0.176	_	amp
With 6.6 volts ac on h	nea:	ter		-	-	0.225	amp
Direct Interelectrode							
Capacitances:							1 1
Grid to plate				1	1.05	1.55	Muf
Grid to cathode and he	eat	er		1	1.55	2.45	Muf
Plate to cathode and				1	0.345	0.495	unf
Amplification Factor .				2	17	31	111
Transconductance				3	4200	7600	umhos
Transconductance				4	4600	8000	umhos
Plate Current				3	8	16	mal
Plate Current				1	9.5	18.5	mai
Plate Current				6	0.0	200	1110
riate current		*		0	-	200	μamp

Note 1: Without external shield.

With 5.2 or 6.3 volts ac on heater, dc plate-supply volts = 120, and cathode resistor (ohms) = 220. Note 2:

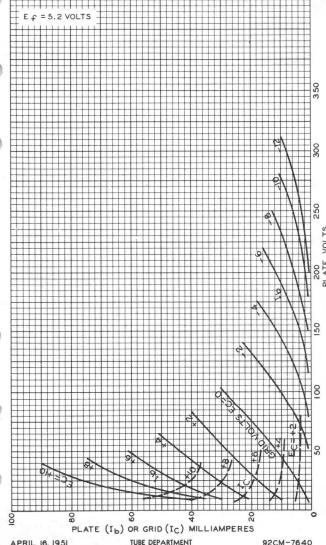
Note 3:

With 5.2 volts ac on heater, dc plate-supply volts = 120, and cathode resistor (ohms) = 220. with 6.3 volts ac on heater, dc plate-supply volts = 120, and cathode resistor (ohms) = 220. Note 4:

With 5.2 volts ac on heater, dc plate-supply volts = 120, dc grid volts = -12, and cathode resistor (ohms) = 220. Note 5:

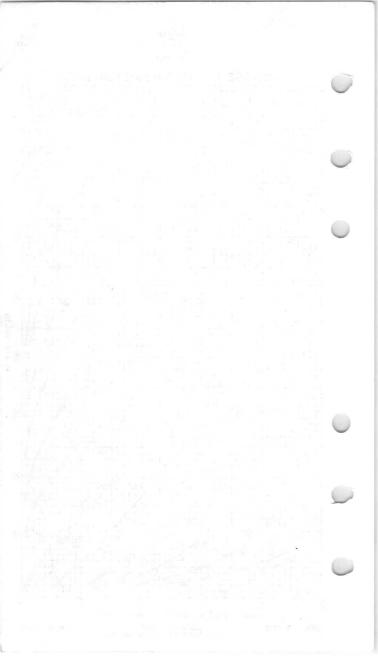
OPERATING CONSIDERATIONS

It is recommended that the cathode of the 6026 be connected directly to the heater.


The flexible leads of the 6026 are usually soldered to the circuit elements. Soldering of the connections should be made as far as possible from the glass button. If this precaution is not followed, the heat of the soldering operation may crack the glass seals and damage the tube.

-- Indicates a change.

DATA



APRIL 16, 1951

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-7640

Beam Power Tube

Dealli 1 O W C1 1 O D C
HIGH POWER SENSITIVITY RCA "DARK HEATER" WITH 5- TO 8-VOLT RANGE 85 WATTS CW INPUT (ICAS) UP TO 60 MC AT 175 MC AT 175 MC
CONTROLLED ZERO-BIAS CONTROLLED POWER OUTPUT PLATE CURRENT AT REDUCED HEATER VOLTAGE
For RF Power Amplifier and Oscillator Service and as an AF Power Amplifier and Modulator in Both Mobile and Fixed Equipment. The 6146B/8298A is Unilaterally Interchangeable with types 6146, 6146A, and 8298.
Electrical:
Heater, for Unipotential Cathode: Voltage (AC or DC) 6.3 volts Current at heater volts = 6.3 1.125 amp Minimum heating time 60 sec (See Special Performance Data for heater operation in stationary and mobile equipment)
Transconductance, for plate volts = 200, grid-No.2 volts = 200, and plate ma. = 100 . 7000 μ mhos Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 200, grid-No.2 volts = 200,
and plate ma. = 100 4.5 Direct Interelectrode Capacitances: Grid No.1 to plate 0.22 max. pf Grid No.1 to cathode & grid No.3
& internal shield, grid No.2, base sleeve, and heater 13.0 pf Plate to cathode & grid No.3 & internal shield, grid No.2,
base sleeve, and heater 8.5 pf
Mechanical:
Operating Position Any Maximum Overall Length 3-13/16" Seated Length 3-1/8" ± 1/8" Maximum Diameter 1-21/32" Weight (Approx.) 2.3 oz Bulb T12 Cap Small (JEDEC No.C1-1) Bases (Alternates):
Small-Wafer Octal with Sleeve:

8-Pin (JEDEC Group 1, No.B8-150) Small-Wafer Octal with External Barriers and Sleeve: 8-Pin (JEDEC Group 1, No. B9-159)

Basing Designation	on for BOTTOM	VIEW.			. 7CK	
Pin 1-Cathode, Grid No.; Internal	3,		G3,K(4)	F(5)G1		
Shield Pin 2-Heater		G	23/	I (e)		
Pin 3-Grid No.2 Pin 4-Same as Pi	in 1		77	[3]	,K 5	
Pin 5-Grid No.1 Pin 6-Same as P	in 1		HO T		н	
Pin 7 - Heater Pin 8 - Base Sleev Cap - Plate	/e		G3.K	BC		
Bulb Temperature (A	At hottest no	int				
on bulb surface).				260 max.	oC	
AF POWER A	MPLIFIER & M					0
			CS C	ICAS d		
Maximum Ratings, At	solute-Maxim	um Val	ues:			
DC Plate Voltage .		600	max. 7	50 max.	volts	
DC Grid-No. 2 Voltag		250	max. 2	50 max.	volts	
MaxSignal DC Plai		175	max. 2	20 max.	ma	
MaxSignal Plate	Input ^e	90	max. 1	20 max.	watts	
MaxSignal Grid-No	.2 Inpute .	3	max.	3 max.	watts	
Plate Dissipation ^e Peak Heater-Cathode Heater negative	······································	27	max.	35 max.	watts	
respect to cath	node	135	max. 1	35 max.	volts	
respect to cath		135	max. 1	35 max.	volts	
Typical Push-Pull (peration:					
	Values are j	or 2	tubes			
DC Plate Voltage . DC Grid-No.2 Voltage		600	7	50	volts	
DC Grid-No.2 Voltag DC Grid-No.1 Voltag		200	20	00	volts	
With fixed-bias s Peak AF Grid-No.1-t	0-	-47		18	volts	
Grid-No.1 Voltage	g	94		96	volts	
Zero-Signal DC Plat	e Current .	48		50	ma	
MaxSignal DC Plat MaxSignal DC Grid	e Current .	250	2	50	ma	
Current		14.8	12	.6	ma	
(Plate to plate) MaxSignal Driving		5600	720	00	ohms	
Power (Approx.). MaxSignal Power		0		0	watts	
Output (Approx.)		96	1	24	watts	0

Maximum Circuit Values (CCS or ICAS): Grid-No.1-Circuit Resistance							
	under Any Condition:" With fixed bias With cathode bias			: : :	0.1		megohm ommended
	AF POWER AMPLIFI	ER	& MOI	DULATOR	- Class	s AB2	
			C	CS	I	CAS	
	Maximum Ratings, Absolute		aximui	n Value	:s:		
	DC Plate Voltage DC Grid-No.2 Voltage MaxSignal DC Plate			max.		max.	volts
	Currente MaxSignal Plate Inpute MaxSignal Grid-No.2			max.		max.	ma watts
	Input ^e			max.		max.	watts watts
	Heater negative with respect to cathode. Heater positive with respect to cathode.			max.	W-102107	max.	volts
				max.	1)0	max.	VOILS
	Typical Push-Pull Operation			r 2 tub	0.00		
	DC Plate Voltage	14	500	600	600	750	volts
	DC Grid-No.2 Voltage ^f DC Grid-No.1 Voltage:		200	200	200	150	volts
	From fixed-bias source. Peak AF Grid-No.1-to-	٠	-46	-48	-47	-39	volts
	Grid No.1 Voltage Zero-Signal DC Plate	•	108	106	114	110	volts
	Current	•	50	40	50	40	ma
	Current		308	270	328	294	ma
	Current		26	27	26	28	ma
	Current		2.7	1.3	3.4	7.6	ma
	Effective Load Resistance (Plate to plate) MaxSignal Driving Power		3620	5200	4160	6050	ohms
	MaxSignal Driving Power (Approx.)k	٠	0.2	0.7	0.2	0.5	watt
	MaxSignal Power Output (Approx.)		100	110	130	148	watts
	Maximum Circuit Values (CC			AS):			
	Grid-No.1-Circuit Resistar With fixed bias With cathode bias					0 max. t recor	ohms mmended

LINEAR RF POWER AMPLIFIER — Class AB Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having

a minimum peak-to-aver	rage p	ower	ratio o	f 2	
	CC	CS	IC	AS	
Maximum Ratings, Absolute-Maxim	um Va	lues:			
DC Plate Voltage DC Grid-No.2 Voltage DC Plate Current at Peak		max. max.		max. volts	
of Envelope	27	max.	35	max. ma max. watts max. watts	
Grid-No.2 Dissipation Peak Heater-Cathode Voltage: Heater negative with	2	max.)	max. watts	
respect to cathode Heater positive with	135	max.	135	max. volts	
respect to cathode	135	max.	135	max. volts	
Typical Operation with "Two-Ton	e Modu	latio	n":		
		At 3	o Mc		
DC Plate Voltage	600		750	volts	
DC Grid-No.2 Voltage ⁿ			200	volts	
DC Grid-No.1 Voltage ⁿ Zero-Signal DC Plate Current	-47 24		-48 25	volts	
Effective RF Load Resistance DC Plate Current at Peak			3600	ohms	
of Envelope	125		125	ma	
Average DC Plate Current DC Grid-No.2 Current at	86		86	ma	
Peak of Envelope	7.4		6.3	ma	
Average DC Grid-No.2 Current Distortion Products Level:	5		3.9	ma db	
Third order	30		31	db	
Average			30.5	watts watts	
Maximum Circuit Values:					
Grid-No.1 Circuit Resistance under Any Condition:					
With fixed bias		30000	max.	ohms	
PLATE-MODULATED RF POWER AMP					
Carrier conditions per tub	e for	use v	vith a	maximum	
modulation factor of 1; at	freq	uencie	es up t	O DO MC	

ICAS

Maximum Ratings, Absolute-Maximum Values:

For maximum plate voltage and maximum plate input above 60 Mc, see Rating Chart I

DC Plate Voltage. 480 max. 600 max. DC Grid-No.2 Voltage. .

volts

volts

		CCS	ICAS	
	DC Grid-No.1 Voltage	-150 max.	-150 max.	volts
	DC Plate Current	145 max.	180 max.	
	DC Grid-No.1 Current	3.5 max.	4 max.	ma
	Plate Input	60 max.	85 max.	ma watts
	Grid-No. 2 Input	2 max.	2 max.	watts
	Plate Dissipation	18 max.	23 max.	watts
	Peak Heater-Cathode Voltage:	TO Max.	2) max.	Walts
	Heater negative with			
	respect to cathode	135 max.	135 max.	volts
7	Heater positive with	1)0 max.	1)0 max.	VO1 L3
	respect to cathode	135 max.	135 max.	volts
	respect to cathode	100 1111	1)0 max.	VUILS
	Typical Operation:			
	DC Plate Voltage	475	600	volts
	DC Grid-No.2 Voltage	165	175	volts
	DC Grid-No.1 Voltage:	100	1/3	VOI L3
	From a grid-No.1			
30	resistor of:			
	26000 ohms	-86	_	volts
	27000 ohms	-	-92	volts
	Peak RF Grid-No.1 Voltage	106	114	volts
	DC Plate Current	125	140	ma
	DC Grid-No.2 Current	8.5	9.5	ma
	DC Grid-No.1 Current (Approx.)	3.3	3.4	ma
	Driving Power (Approx.)	0.4	0.5	watt
	Power Output (Approx.)	42	62	watts
	Maximum Circuit Values (CCS or	ICAS):		
	Grid-No.1-Circuit Resistances .	30000	max.	ohms
	RF POWER AMPLIFIER & OSCILL	ATOR — Cla	ss C Telegrap	hv
	an			
	RF POWER AMPLIFIER —	Class C FM	Telephony	
		CCS	ICAS	
	Maximum Ratings, Absolute-Maxim	um Values:		
	At frequencies up to 60 Mc.	For maximu	im plate volta	ige
	and maximum plate input above	60 Mc, see	Rating Chart	II
	DC Plate Voltage	600 max.	750 max.	volts
	DC Grid-No.2 Voltage	250 max.	250 max.	volts
	DC Grid-No.1 Voltage	-150 max.	-150 max.	volts
	DC Plate Current	175 max.	220 max.	ma
	DC Grid-No.1 Current	3.5 max.	4 max.	ma
1	Plate Input	90 max.	120 max.	watts
	Grid-No. 2 Input	3 max.	3 max.	watts
	Plate Dissipation		35 max.	watts
	Peak Heater-Cathode Voltage:			
	Heater negative with			
		135 max.	135 max.	volts
		135 max.	135 max.	
	respect to cathode		135 max.	volts volts
	respect to cathode Heater positive with			

Typical Operation:

Typical operation.						
	CCS	ICAS				
As amplifier up to	60 Mc					
DC Plate Voltage DC Grid-No.2 Voltage ^t DC Grid-No.1 Voltage: ^u	. 600	750 200	volts volts			
From a grid-No.1 resistor of: 24000 ohms. 28000 ohms. Peak RF Grid-No.1 Voltage DC Plate Current. DC Grid-No.2 Current DC Grid-No.1 Current (Approx.) Driving Power (Approx.) Power Output (Approx.)	70 . 90 . 150 . 10 . 2.8 . 0.3 . 63	- -77 95 160 10 2.7 0.3	volts volts volts ma ma ma watt watts			
Typical Operation:						
As amplifier up to	175 Mc					
		100 105	- 11			
DC Plate Voltage. DC Grid-No.2 Voltage ^t DC Grid-No.1 Voltage:"	. 320	400 435 220 230				
From a grid-No.1 resistor of: 26000 ohms. 30000 ohms. 24000 ohms. Peak RF Grid-No.1 Voltage DC Plate Current. DC Grid-No.2 Current DC Grid-No.1 Current (Approx.) Driving Power (Approx.) Power Output (Approx.)	-52 65 170 12 2 2	-55 - -56 67 73 180 210 12 11 1.9 2.3 2 3 40 50	volts volts volts volts ma ma watts watts			
Maximum Circuit Values (CCS or ICAS):						
Grid-No.1-Circuit Resistance ^s) max.	ohms			
a With no external shield. b Subscript 1 indicates that grid-No.1 current does not flow during any part of the input cycle. c Continuous Commercial Service d Intermittent Commercial and Amateur Service. e Averaged over any audio-frequency cycle of sine-wave form. f Obtained preferably from a separate source or from the plate voltage						
supply with a voltage divider.						
9 The driver stage should be capable of sup class AB ₁ stage with the specified drivin	plying the	he No.1 grid e at low dis	is of the stortion.			
h The type of input coupling network used s resistance in the grid-No.1 circuit. Trans devices are recommended.	sformer o	r impedance	coupling			
Subscript 2 indicates that grid-No.1 curre the input cycle.	ent flows	during some	e part of			
Driver stage should be capable of supplying at low distortion to the No.1 grids of the	AB, sta	qe.				
M To minimize distortion, the effective res of the AB2 stage should be held at a low use of transformer coupling is recommended. the total dc grid-No.1-circuit resistance tube is operated at maximum ratings. For imum ratings, the dc grid-No.1-circuit r 100,000 ohms.	istance p value. In no c exceed operation	er grid-No. For this pur ase, howeve 30,000 ohms on at less	1 circuit rpose the r, should when the than max- high as			

 $^{\mathsf{n}}$ Obtained preferably from a separate, well-regulated source.

Referenced to either of the two tones and without the use of feedback to enhance linearity.

Obtained preferably from a separate source modulated with the plate supply, or from the modulated plate supply through a series resistor.

Obtained from grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor.

when grid No.1 is driven positive and the tube is operated at maximum ratings, the total dc grid-No.1-circuit resistance should not exceed the specified value of 30,000 ohms. If this value is insufficient to provide adequate bias, the additional required bias must be supplied by a cathode resistor or fixed supply. For operation at less than maximum ratings, the dc grid-No.1-circuit resistance may be as high as 100,000 ohms.

Obtained preferably from separate source, or from the plate-supply voltage with avoltage divider, or through a series resistor. A series grid-No.2 resistor should be used only when the tube is used in a circuit which is not keyed. Grid-No.2 voltage must not exceed 435 volts under key-up conditions.

 $^{\rm U}$ Obtained from fixed-supply, by grid-No.1 resistor, by cathode resistor, or by combination methods.

CHARACTERISTICS RANGE VALUES

Test No.		Note	Min.	Max.	
1.	Direct Interelectrode Capacitances: Grid No.1 to plate Grid No.1 to cathode &	1	-	0.22	pf
	grid No.3 & internal shield, base sleeve, grid No.2, and heater Plate to cathode & grid No.3 & internal shield,	1	12.0	15.0	pf
2. 3. 4.	base sleeve, grid No.2, and heater	2	7.3 46 330	9.5 94 - 5.5	pf ma ma ma

Note 1: With no external shield.

With heater voltage of 6.75 volts, dc plate voltage of 400 volts, dc grid-No.2 voltage of 200 volts, and dc grid-No.1 voltage of -94 volts.

With heatervoltage of 6.75 volts, dc plate voltage of 100 volts, dc grid-No.2 voltage of 200 volts, and dc grid-No.1 voltage of -100 volts. Grid No.1 is square-wave pulsed at 1000 kc to zero volts. Limit value is peak-pulse current. Note 3:

SPECIAL PERFORMANCE DATA

Stationary Equipment Operation:

	Min.	Design Center	Max.	
Heater, for Unipotential Cathod Voltage (AC or DC)* Current at 6.3 volts. Dynamic Grid-No.2 Current* Useful Power Output*	1.050	6.3	1.200 15	volts amp ma watts

- Y It is recommended that the design-center heater voltage be 6.3 volts; the heater power supply should not fluctuate more than 10% to insure long life.
- W In a single-tube, self-excited oscillator circuit, and with ac heater voltage of 6.3 volts, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-No.1 resistor of 24,000 ± 10% ofms, dc plate current of 150 max. ma., dc grid-No.1 current of 2.5 to 3 ma., and frequency of 15 Mc.

Mobile Equipment Operation:

mobile Equipment Operation:				
	Min.	Design Range	Max.	
Heater, for Unipotential Cathode:				
Voltage (AC or DC)*	-	6.0-7.5	-	volts
Current at 6.75 volts		-	1.230	amp
Dynamic Grid-No.2 Currenty	-	-	15	ma
Useful Power Output I'y	59			watts
Useful Power Output II		See Note	Z	

Overvoltage Heater Life Tests:

Continuous heater life tests are performed periodically on sample lots of tubes with 8 volts on the heater, all other electrodes "floating". Intermittent heater life tests are performed periodically on sample lots of tubes with II volts on the heater, a cycle of I minute "ON" and 4 minutes "OFF". After 1000 hours of the continuous heater life test and after 48 hours of the intermittent heater life test, the following tests are performed:

With heater voltage of 6.75 volts and \pm 100 dc volts between cathode and heater, the heater-cathode leakage current will not exceed 100 microamperes.

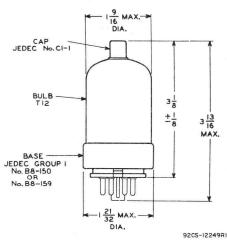
With ac or dc heater voltage of 6.75 volts, grid-No.1 volts = -200 and cathode, grid No.2, and plate grounded, the minimum grid-No.1 leakage resistance will be 10 megohms.

With ac or dc heater voltage of 6.75 volts, plate volts = -200, and cathode grid No.1 and grid No.2 grounded, the minimum plate leakage resistance will be 10 megohms.

- X It is recommended that the heater voltage operate within the range of 6.0 to 7.5 volts and within excursions from 5 to 8 volts in battery operation. See Besful Power Output Pest II and Overvoltage Pests.
- y In a single-tube, self-excited oscillator circuit, and with ac heater voltage of 6.3 volts, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-No.1 resistor of 24,000 ± 10% chms, dc plate current of 150 max. ma., dc grid-No.1 current of 2.5 to 3 ma., and frequency of 15 Mc.
- With conditions in note (y) above, reduce heater voltage to 5 volts. Useful power output will be at least 90% of the power output at heater voltage of 6.3 volts.

OPERATING CONSIDERATIONS

The maximum bulb temperature of 260° C is a tube rating and is to be observed in the same manner as other ratings. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. The latter is made by the Tempil Corporation, 132 W. 22nd Street, New York II, N.Y.

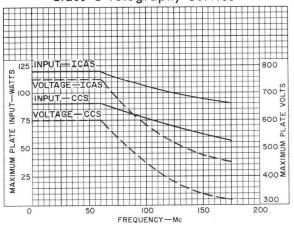

To insure adequate cooling it is essential that free circulation of air be provided around the tube. In mostcases, no additional air is required.

The plate shows no color when the 61468/8298A is operated at full ratings under either CCS or ICAS conditions.

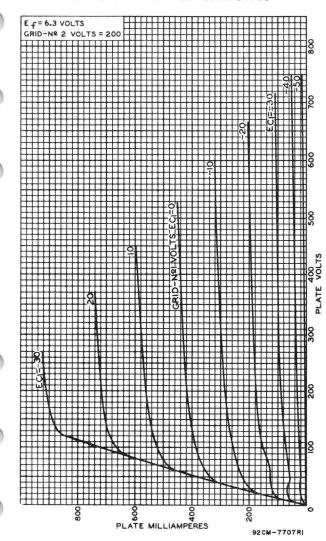
Connections to the plate should be made with a flexible lead to prevent any strain on the seal at the cap.

During standby periods in intermittent operation, it is recommended that the heater voltage be maintained at normal operating value when the period is less than 15 minutes, and that it be reduced to 80 per cent of normal when the period is between 15 minutes and 2 hours. For longer periods, the heater voltage should be turned off.

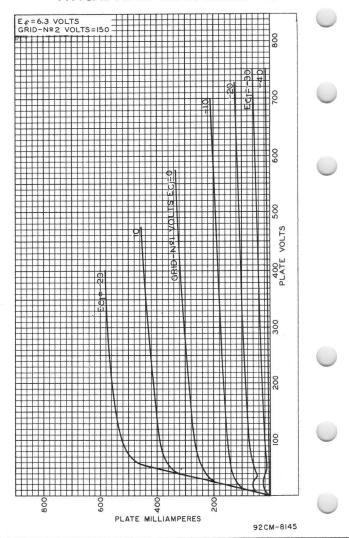
The maximum-rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.


DIMENSIONS IN INCHES

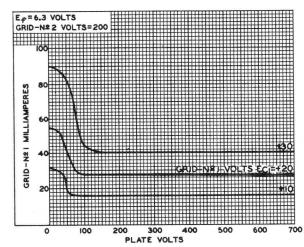
RATING CHART I Class C Telephony Service

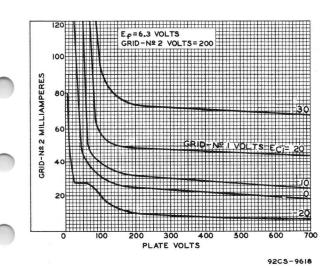

92CS-12244

RATING CHART II Class C Telegraphy Service

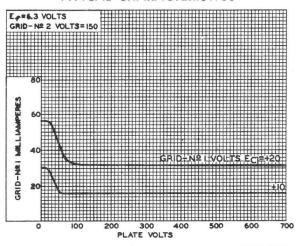


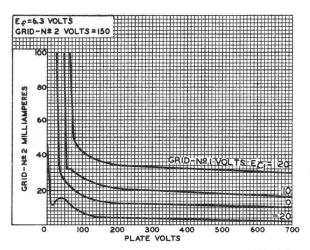
92CS-12243


TYPICAL PLATE CHARACTERISTICS


TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS





TYPICAL CHARACTERISTICS

9203-9619

92CS-9620

Beam Power Tube

Design

HIGH POWER SENSITIVITY

RCA "DARK HEATER" WITH 21- TO 31-VOLT RANGE

85 WATTS CW INPUT (ICAS)

50 WATTS CW INPUT (ICAS) AT 175 Mc

UP TO 60 Mc CONTROLLED ZERO-BIAS

PLATE CURRENT

CONTROLLED POWER OUTPUT AT REDUCED HEATER VOLTAGE

For RF Power Amplifier and Oscillator Service and as an AF Power Amplifier and Modulator in Both Mobile and Fixed Equipment. The 6159B is Unilaterally Interchangeable with Types 6159, 6159A.

The 6159B is the same as the 6146B/8298A except for the following items:

Electrical:

Heater, for Unipotential Cathode:	
Voltage (AC or DC) 26.5	volts
Current at heater volts = 26.5 0.3	amp
Minimum heating time 60	sec
Direct Interelectrode Capacitances: a	
Grid No.1 to plate 0.24 max.	pf

a With no external shield.

CHARACTERISTICS RANGE VALUES

Test No.		Note	Min.	Max.	
1	Direct Interelectrode				
	Capacitances: Grid-No.1 to plate	1	-	0.24	pf
Note 1: Wi	th no external shield.				

SPECIAL PERFORMANCE DATA

Stationary Equipment Operation:

	Min.	Center	Max.	
Heater, for Unipotential Cathode:				
Voltage (AC or DC)			-	volts
Current at 26.5 volts		-	0.32	amp
Useful Power Output	59	-	-	watts

Y It is recommended that the design-center heater voltage be 26.5 volts; the heater power supply should not fluctuate more than 10% to insure long life.

W In a single-tube, self-excited oscillator circuit, and with ac heater voltage of 26.5 volts, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-No.1 resistorof 24,000 ± 10% ohms, dc plate current of 150 max. ma., dc grid-No.1 current of 2.5 to 3 ma., and frequency of 15 Mc.

Mobile Equipment Operation:

			Min.		esi į ang		Max.	
Heater, for Unipotential Voltage (AC or DC)*				24	to	29	_	volts
Current at 26.5 volts.			0.28				0.32	amp
Useful Power Output I'y .			59		-		_	watts
Useful Power Output II.					See	e No	te Z	

It is recommended that the heater voltage operate within the range of 24 to 29 volts and within excursions from 21 to 31 volts in battery operation. See $\mathit{Bseful Power Output II}$ and $\mathit{Overvoltage Tests}$.

In a single-tube, self-excited oscillator circuit, and with ac heater voltage of 26.5 volts, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-Mo.1 resistor of 24,000 ± 10% ohms, dc plate current of 150 max. ma., dc grid-No.1 current of 2.5 to 3 ma., and frequency of 15 Mc.

With conditions in note (y) above, reduce heater voltage to 21 volts. Useful power output will be at least 90% of the power output at heater voltage of 26.5 volts.

Overvoltage Heater Life Tests:

Continuous heater life tests are performed periodically on sample lots of tubes with 31 volts on the heater, all other electrodes "floating". Intermittent heater life tests are performed periodically on sample lots of tubes with 43 volts on the heater, a cycle of 1 minute "ON" and 4 minutes "OFF". After 1000 hours of the continuous heater life test and after 48 hours of the intermittent heater life test, the following tests are performed:

With heater voltage of 26.5 volts and ± 100 dc volts between cathode and heater, the heater-cathode leakage current will not exceed 150 microamperes.

With ac or dc heater voltage of 26.5 volts, grid-No.1 volts = -200 and cathode, grid No. 2, and plate grounded, the minimum grid-No.1 leakage resistance will be 10 megohms.

With acordcheater voltage of 26.5 volts, plate volts = -200, and cathode grid No.1 and grid No.2 grounded, the minimum plate leakage will be 10 megohms.

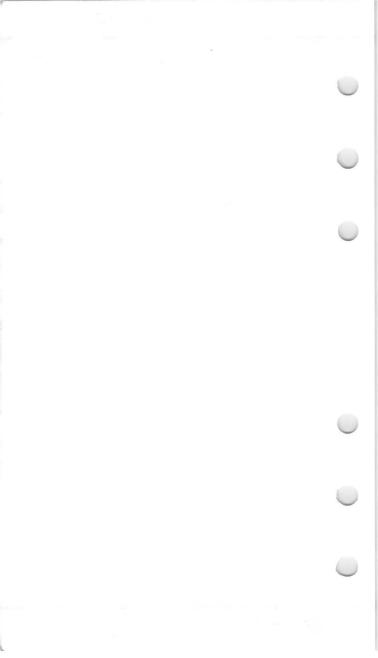
6159W/7357

Beam Power Tube

HIGH POWER SENSITIVITY

90 WATTS CW INPUT (ICAS) UP TO 60 Mc 60 WATTS CW INPUT (ICAS) AT 175 Mc

For Use Under Severe Shock and Vibration


The 6159 W/7357 is the same as the 6146 W/7212 except for the following items:

CHARACTERISTICS RANGE VALUES

 Note
 Min.
 Max.

 Heater Current.
 1
 0.280
 0.320
 amp

Note 1: With 26.5 volts ac on heater.

6|6| POWER TRIODE

FORCED-AIR COOLED

Useful with full input up to 900 Mc and with reduced input up to 2000 Mc

The 6161 supersedes type 5588 for new equipment design.

GENERAL DATA

	1
	Electrical:
	Heater, for Unipotential Cathode:
	Voltage*
	10.9 maxac or de vorts
	Current at 6.3 volts 3.4 amp
	Minimum heating time at 6.3 volts
١.	Amplification Factor for
7	grid volts = -15. and
	plate ma. = 250 25
	Direct Interelectrode Capacitances:
	Grid to plate§ 6 μμf
	Grid to cathode and heater§ 11 μμf
	Plate to cathode and heater ⁰ 0.19 $\mu\mu$ f
	Mechanical:
	Operating Position
	Overall Length
	Greatest Diameter
	Radiator Integral part of tube
	Mounting Special
	Terminal Connections (See Dimensional Outline):
	P
	G-Grid K-Cathode
)	G T
	H-Heater P-Plate
	K-∐-H
	Air Flow:
	The specified air flow for various plate dissipations.
6	as indicated in the tabulation below, should be delivered by
7	a blower onto the respective terminals and seals, and
	through the radiator before and during the application of
	any voltages. Heater power, plate power, and air may be removed simultaneously.
	Percentage of maximum-
	rated plate dissipation
	for each class of ser-
1	vice 100 80 60 %
	Minimum air flow 16 10 5.7 cfm
	Static pressure 0.85 0.4 0.16 in. of water
	*, §, O: See next page. Indicates a change.

	1 O W DIV	11110	DL	
The above flow with radiator of above incoming adequate to lim terminal, cathor maximum values. Radiator Temperatu at end adjacent Grid-Terminal Temp Cathode-Terminal Teal Temperature (temperature -air temper nit the temp de terminal ure (Measure to plate fla erature emperature	held corature. Derature, and sea d on core ange)	nstant at I35 The air flow of the radiat Is to their re 180 150 150	O C rise must be or, grid espective max. OC max. OC max. OC
RF POWER AMP	PLIFIER - C	lass B Tel	evision Servic	е
Synchronizing-leve	l conditions ;	ber tube un	less otherwise st	ecified
Maximum CCS® Ratin	gs, Absolut	e Values:		
DC PLATE VOLTAGE . DC PLATE CURRENT .				
DC GRID CURRENT: Negative value . Positive value . PLATE INPUT PLATE DISSIPATION.			. 0.100 max	. amp . watts
Typical Operation	in Cathode-	Drive Cir	cuit at 600 Mc	:
			Bandwidth of	6 Mc
DC Plate-to-Grid V DC Cathode-to-Grid Peak RF Cathode-to	l Voltage .		. 1600 . 100	volts volts
Synchronizing le Pedestal level . DC Plate Current:	evel		· 130 · 117	volts volts
Synchronizing le Pedestal level . DC Grid Current (A	evel		. 0.350 . 0.285	amp
Synchronizing le Pedestal level . Driver Power Outpu	evel		. 0.040 . 0.013	amp amp
Synchronizing le Pedestal level . Output-Circuit Eff Useful Power Outpu	iciency (Ap		. 40	watts watts %
Synchronizing le Pedestal level .	evel		325 •• 195 ••	watts watts
Typical Operation	in Cathode-	Drive Cir	cuit at 900 Mc	:
			Bandwidth de of	6 Mc
DC Plate-to-Grid V DC Cathode-to-Grid	/oltage I Voltage .		. 1600 . 100	volts volts
				- 1

→ Indicates a change.

6161

POWER TRIODE

	<u> </u>	
Peak RF Cathode-to-Grid Voltage: Synchronizing level	135	volts
Pédestal level	120	volts
Synchronizing level	0.350	amp
Pedestal level	0.280	amp
OC Grid Current (Approx.): Synchronizing level	0.030	amp
Pédestal level	0.010	amp
Synchronizing level	75 [⊕]	watts
Pedestal level	45	watts
Output-Circuit Efficiency (Approx.)	65	9
Synchronizing level	230	watts
Pedestal level	135	watts
BIAS-MODULATED RF POWER AMP Class C Television Serv		
Synchronizing-level conditions per tube unles		ified
Maximum CCS Ratings, Absolute Values:		
DC PLATE VOLTAGE	1600 max.	volts
DC GRID VOLIAGE (White level)	-300 max.	volts
DC PLATE CURRENT	0.350 max.	amp
Negative value	0.010 max.	amp
Positive value	0.100 max.	am
PLATE INPUT	560 max.	watts
PLATE DISSIPATION	250 max.	watts
Typical Operation in Cathode-Drive Circui	t at 600 Mc: ndwidth of 6	Иа
	1600	volts
DC Plate_to_Grid Voltage		VOIC.
DC Cathode-to-Grid Voltage:	1000	
DC Cathode-to-Grid Voltage: Synchronizing level	100	
OC Cathode-to-Grid Voltage: Synchronizing level Pedestal level	100 150	volt:
OC Cathode—to-Grid Voltage: Synchronizing level Pedestal level	100 150 230	volt:
DC Cathode-to-Grid Voltage: Synchronizing level Pedestal level	100 150 230 130	volt:
DC Cathode—to-Grid Voltage: Synchronizing level Pedestal level White level Peak RF Cathode—to-Grid Voltage CO Plate Current: Synchronizing level	100 150 230 130	volts volts volts
DC Cathode-to-Grid Voltage: Synchronizing level	100 150 230 130	volts volts volts
DC Cathode-to-Grid Voltage: Synchronizing level	100 150 230 130	volts volts volts am am
Pedestal level White level Peak RF Cathode-to-Grid Voltage. DC Plate Current: Synchronizing level Pedestal level DC Grid Current (Approx.): Synchronizing level. Pedestal level	100 150 230 130 0.350 0.250	volts volts volts amp am
DC Cathode—to-Grid Voltage: Synchronizing level	100 150 230 130 0.350 0.250 0.040 0.013	volts volts volts amma amma amma
DC Cathode—to-Grid Voltage: Synchronizing level. Pedestal level White level. Peak RF Cathode—to-Grid Voltage. DC Plate Current: Synchronizing level. Pedestal level DC Grid Current (Approx.): Synchronizing level. Pedestal level Driver Power Output (Approx.): Synchronizing level. Output—Circuit Efficiency (Approx.).	100 150 230 130 0.350 0.250	volts volts volts amman amman amman watts
DC Cathode—to-Grid Voltage: Synchronizing level	100 150 230 130 0.350 0.250 0.040 0.013 65* 89	volts volts volts amp amm amm watts
DC Cathode—to-Grid Voltage: Synchronizing level. Pedestal level White level. Peak RF Cathode—to-Grid Voltage. DC Plate Current: Synchronizing level. Pedestal level DC Grid Current (Approx.): Synchronizing level. Pedestal level Driver Power Output (Approx.): Synchronizing level. Output—Circuit Efficiency (Approx.).	100 150 230 130 0.350 0.250 0.040 0.013	volts volts volts amp amp amp amp amp

6/6/

Typical Operation in Cathode-Drive Circuit	at 900 Mc:	
	dwidth of 6 Mc	
DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage:	1600 volts	3
Synchronizing level	100 volts 150 volts 230 volts 135 volts	
Synchronizing level Pedestal level DC Grid Current (Approx.):	0.350 amp	
Synchronizing level	0.030 amp	1
Synchronizing level	75 [⊕] watts 65	
Synchronizing level	230 watts 135 watts	
PLATE-MODULATED RF POWER AMPLIFIER — C Carrier conditions per tube for use with a max. mo		
Maximum CCS® Ratings, Absolute Values: DC PLATE VOLTAGE DC GRID VOLTAGE. DC PLATE CURRENT DC GRID CURRENT. PLATE INPUT. PLATE DISSIPATION.	1300 max. volts -300 max. volts 0.210 max. am See Rating Char 270 max. watts 167 max. watts	5
Typical Operation in Cathode-Drive Circuit		
DC Plate-to-Grid Voltage	180 •• watt	
Typical Operation in Cathode-Drive Circuit		
DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage Peak RF Cathode-to-Grid Voltage. DC Plate Current DC Grid Current (Approx.) Driver Power Output (Approx.)	1400 volt 150 volt 200 volt 0.210 am 0.070 am 75 [®] watt	5 5 0 p
* § ○ • • * * • • • • **. ⊕: See next page.	→ Indicates a change	

Output-Circuit Efficiency (Approx.)		
Useful Power Output (Approx.)	60 120	% watts
RF POWER AMPLIFIER & OSCILLATOR — Class	C Telegraph	y 🗆
RF POWER AMPLIFIER — Class C FM Te	lephony	
Maximum CCS Ratings, Absolute Values:		
DC GRID VOLTAGE	1600 max. -300 max. .250 max. See Rating 400 max. 250 max.	volts volts amp Chart watts watts
Typical Operation as Amplifier in Cathode-Dr at 600 Mc:	ive Circuit	
DC Plate-to-Grid Voltage	1650	volts
From fixed supply of From cathode resistor of Peak RF Cathode-to-Grid Voltage	150 500 200 0.250 0.050 75 82 270	volts ohms volts amp amp watts watts
Typical Operation as Amplifier in Cathode-Di at 900 Mc:	rive Circuit	ī.
DC Plate-to-Grid-Voltage DC Cathode-to-Grid Voltage:	1650	volts
be eathede to all a voltage.	150	200
From fixed supply of	575 200 0.250 0.010 80† 60	volts ohms volts amp amp watts % watts
From cathode resistor of	575 200 0.250 0.010 80† 60 180	ohms volts amp amp watts
From cathode resistor of	575 200 0.250 0.010 80† 60 180	ohms volts amp amp watts
From cathode resistor of	575 200 0.250 0.010 80† 60 180	ohms volts amp amp watts watts

6/6/

	Doubler to 600 Mc	Doubler to 900 Mc	
DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage:	1760	1675	volts
From fixed supply of	260	175	volts
From cathode resistor of. Peak RF Cathode-to-	860	645	ohms
Grid Voltage	300	300	volts
DC Plate Current	0.250	0.250	amp
DC Grid Current (Approx.) . Driver Power Output	0.050	0.021	amp
(Approx.)	125	100	watts
(Approx.)	90	80	9
(Approx.)	180	140	watts

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current		3.05	3.75	amp
Amplification Factor	1,2	18	32	
Direct Interelectrode Capaci-				
tances:				
Grid to plate	-	5.6	6.6	μμf
Grid to cathode and heater	-	10.5	12.5	μμ
Plate to cathode and heater	3	0.12	0.26	μμf
Plate Voltage	1,4	500	850	volts
Plate Voltage	1,5	690	1140	volts
Grid Voltage	1,6	_	-165	volts
Peak Cathode Current	1,7	3.2		amp
Useful Power Output	1,8	225	-	watts

Note 1: With 6.3 volts ac on heater.

Note 2: With dc grid volts = -15, and dc plate voltage adjusted to give dc plate current of 250 ma.

Note 3: With external shield, as described under (°), connected to grid terminal.

Note 4: With dc grid volts = -10, and dc plate voltage adjusted to give dc plate current of 250 ma.

Note 5: With dc grid volts = -20, and dc plate voltage adjusted to give dc plate current of 250 ma.

Note 6: With dc plate volts = 1600, and dc grid voltage adjusted to give dc plate current of 1 ma.

Note 7: Designers should limit the maximum useable cathode current (plate current and grid current) to this value under any condition of operation.

Note 8: In a self-excited oscillator circuit with dc plate volts = 1600, dc plate ma. = 250, dc grid ma. = 50 to 75, grid resistor (ohms) = 2000 ± 10%, and frequency (Mc) = 15.

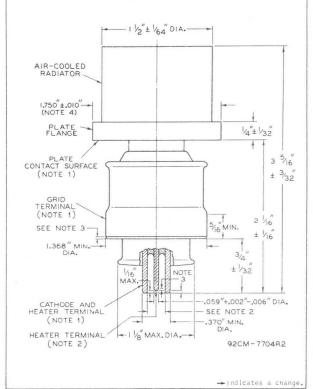
*, §, ○, •, •, #, #, ••, ⊕, E, **, ⊕, □, ^, †: See next page. → Indicate

→ Indicates a change.

DATA 3

- 6/6,
- Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.
- & Without external shield.
- With external flat shield 7-1/2" min. diameter located in plane of the grid terminal and perpendicular to axis of tube. Shield is connected to grid terminal.
- · Continuous Commercial Service.
 - Computed between half-power points and based on tube output capacitance only.
- The driver stage is required to supply tube losses, rf-circuit losses, and rf power added to plate input. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.
- This value includes 24 watts of circuit loss and 36 watts added to plate input.
- This value of useful power is measured at load of output circuit having indicated efficiency.
- This value includes 28 watts of circuit loss and 40 watts added to plate input.
- In cathode-drive, plate-modulated class C rf power amplifier service, the 6161 can be modulated 100% if the rf driver stage is also modulated 100% simultaneously. Care should be taken to insure that the driver-modulation and amplifier-modulation voltages are exactly in phase.
- ** This value includes 18 watts of circuit loss and 40 watts added to plate input.
- $\ensuremath{\mathfrak{B}}$ This value includes 23 watts of circuit loss and 40 watts added to plate input.
- Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115% of the carrier conditions.
- This value includes 18 watts of circuit loss and 45 watts added to plate input.
- † This value includes 23 watts of circuit loss and 45 watts added to plate input.

MAXIMUM RATINGS VS OPERATING FREQUENCY


FREQUENCY	900	1200	1400	1650	2000	Мс
MAXPERMISSIBLE PERCENTAGE OF MAXRATED PLATE VOLTAGE AND PLATE INPUT:			51			
Class B television Class C television.	100	80	71	62.5	62.5	%
biased-modulated Class C telephony.	100	80	71	62.5	62.5	%
plate-modulated Class C telegraphy Class C FM telephony	100 100 100	80 80 80	71 71 71	62.5 62.5 62.5	62.5 62.5 62.5	26 26 % 26 %

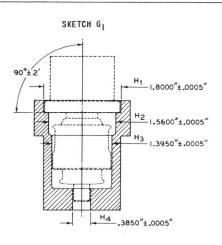
OPERATING CONSIDERATIONS

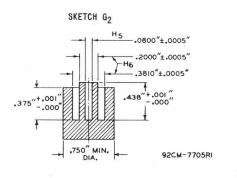
In tuning a cathode-drive rf amplifier, it must be remembered that variations in the load on the output stage will produce corresponding variations in the load on the driving stage. This effect will be noticed by the simultaneous increase in plate currents of both the output and driving stages.

During standby periods of less than 15 minutes, it is recommended that the heater voltage be reduced to 80% of normal to conserve life; for longer standby periods, the heater power should be turned off.

NOTE 1: WITH THE CYLINDRICAL SURFACES OF ITS GRID AND CATHODE TERMINALS CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH G1. THE FOUR CYLINDRICAL HOLES H1, H2, H3, and H4 HAVE AXES COINCIDENT WITHIN 0.0005", LENGTHS DETERMINED FROM THE DIMENSIONAL OUTLINE, AND SUCCESSIVELY SMALLER DIAMETERS AS SHOWN IN THE SKETCH.

THE PLATE FLANGE WILL BE ENTIRELY ENGAGED BY HOLE $\rm H_1$, AND THE CONTACT SURFACE OF THE PLATE FLANGE WILL SEAT ON THE SHOULDER BETWEEN HOLES $\rm H_1$ AND $\rm H_2$. THE PLANE SURFACE OF THIS SHOULDER IS $\rm 90^{\circ} \pm 2^{\circ}$ TO THE AXES OF THE HOLES. SEATING IS DETERMINED BY FAILURE OF A 0.005"-THICKNESS GAUGE, I/8" WIDE, TO ENTER MORE THAN I/16" BETWEEN THE SHOULDER SURFACE AND THE PLATE CONTACT SURFACE.

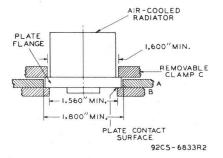

WITH THE TUBE PROPERLY SEATED AS DESCRIBED ABOVE, THE GRID TERMINAL WILL BE ENTIRELY ENGAGED BY HOLE $\rm H_3$, AND THE CATHODE TERMINAL WILL BE ENGAGED BY HOLE $\rm H_4$ TO A DEPTH OF AT LEAST 1/4".


NOTE 2: CONCENTRICITY OF THE HEATER TERMINAL WITH RESPECT TO THE CATHODE TERMINAL IS DETERMINED BY A GAUGE AS SHOWN IN SKETCH \mathbf{G}_2 . THE CYLINDRICAL HOLE \mathbf{H}_5 AND THE ANNULAR HOLE \mathbf{H}_6 HAVE AXES COINCIDENT WITHIN 0.0005". THE CATHODE TERMINAL AND THE HEATER TERMINAL WILL ENTER THIS GAUGE TO A DEPTH OF 3/8".

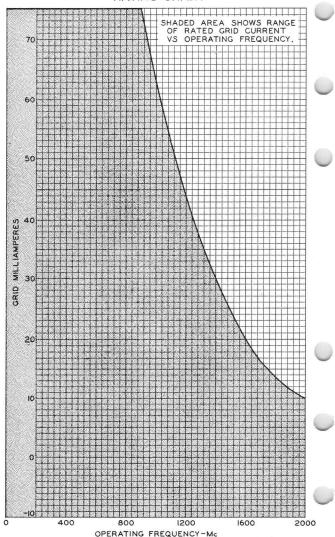
NOTE 3: MAY BE ROUNDED OR BEVELED NOT TO EXCEED 1/16".

NOTE 4: THE AVERAGE OF THE MINIMUM DIAMETER AND THAT MEASURED 90° FROMTHE MINIMUM WILL BE WITHIN THE SPECIFIED RANGE, AND THE DIFFERENCE BETWEEN THESE TWO MEASUREMENTS WILL NOT EXCEED .010".

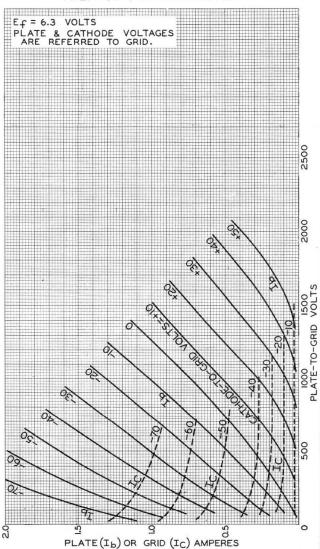
6l6l POWER TRIODE



6/6


POWER TRIODE

MOUNTING ARRANGEMENT FOR USE WITH COAXIAL-LINE-OR CAVITY CIRCUITS


RATING CHART

ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-832I

AVERAGE CHARACTERISTICS

ELECTRON TUBE DIVISION 92CL-777IRI

RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

Beam Power Tube

FORCED-AIR COOLED COAXIAL-ELECTRODE STRUCTURE
THORIATED-TUNGSTEN FILAMENT INTEGRAL RADIATOR
10-KW PLATE DISSIPATION IN CW OR TV SERVICE UP TO 220 Mc

GENERAL DATA

Electrical:

	Filament, Multistrand Thoriated Tungsten:	
١	Voltage (AC or DC) ^a	olts
1	Current at 5 volts 181	amp
	Minimum heating time	sec
	Cold resistance 0.0038	ohm
	Mu Factor, Grid No.2 to Grid No.1	
	for plate volts = 2000, grid-No.2	
	volts = 1000, and plate amperes = 2 10	
	Direct Interelectrode Capacitances:	
)	Grid No.1 to plate 0.6 max.	μμf
	Grid No.1 to filament 42	$\mu\mu f$
	Plate to filament ^b 0.08 max.	μμf
	Grid No.1 to grid No.2 60	μμf
	Grid No.2 to plate 24	$\mu\mu f$

Mechanical:

Operating Position			Ve	er	ti	cal	,	fi	1	ame	ent	t e	end	d	ıp.	or down
Maximum Overall Length.						×										11.63"
Maximum Diameter																
Weight (Approx.)		٠														15 lbs
Radiator									1	nte	eg	ra	1	oar	-t	of tube
Terminal Connections (Se	99	D.	me	on!	91	nna	1	01	it.	1 11	np	1 .				

P-Plate F-Filament

Air Flow:

Through radiator—The specified flow of incoming air at a temperature of 45°C for various plate dissipations, as indicated in the tabulation below, should be delivered by a blower through the radiator before and during the application of any voltages. The air should enter the radiator at its plate-terminal end (See Dimensional Outline). Filament power, plate power, grid-No.2 power, and air flow may be removed simultaneously.

Percentage of maximum-rated

plate	dissipation	for	each			
class	of service.			100	80	. 6
Minimum	air flow			350	270	20

Static pressure 3 2.1 1.3 in. of water

← Indicates a change.

cfm

_	0100	and the latest and th		
	To grid-No.2 terminal 50 min. To grid-No.1 terminal	cfm		
	and filament terminals 50 min.	cfm		
		00		
	Radiator Temperature (Measured on the	o _C		
	core at end away from incoming air) 180 max.			
	Glass Temperature (At hottest point) 180 max.	oC.		
	Seal Temperature:			
	Filament, grid No.1, grid			
	No.2, and plate 180 max.	oC		
	no.2, and prace			
	RF POWER AMPLIFIER — Class B Television Service			
	Synchronizing-level conditions per			
	tube unless otherwise specified			
	(Voltages are referred to cathode unless otherwise specif	ied)		
	Maximum CCSc Ratings, Absolute-Maximum Values:	-		
	54 to 216 Mc			
		1.		
		olts		
	DC GRID-No.2 (SCREEN-GRID) VOLTAGE 2000 max. vi	olts		
	DC PLATE CURRENT 4 max.	amp		
		atts		
		atts		
	PLATE DISSIPATION			
		atts		
	GRID-No.1 (CONTROL-GRID) DISSIPATION 300 max. w	alls		
->	-Typical Operation in Grid-Drive Circuit at 216 Mc:			
Bandwidth ^e of 8.5 Mc				
	The state of the s	1.		
	Do Traco forcago: 1	olts		
		olts		
	DC Grid-No.1 Voltage130 v	olts		
	Peak RF Grid-No.1 Voltage:			
		olts		
	Pedestal level 290 V	olts		
	DC Plate Current:			
	Synchronizing level 3.45	amp		
	Pedestal level 2.6	amp		
	DC Grid-No.2 Current (Pedestal level) 0.207	amp		
	DC Grid-No.1 Current (Approx.):	amp		
		amp		
	o) he he e e e e e e e e e e e e e e e e			
	Pedestal level 0.085	amp		
	Driver Power Output (Approx.):f			
		atts		
	reacotar royor	atts		
	Useful Power Output (Approx.):			
	Official contracting rotal and a second contracting rotal and	atts		
	Pedestal level 6800 w	atts		
	Table 1 Counties in Cathoda Drive Circuit et 216 Mes			
→ Typical Operation in Cathode-Drive Circuit at 216 Mc:				
	Bandwidth ^e of 8.5 Mc	1		
	DC Plate-to-Grid-No.1 Voltage 5885 v	olts		
		olts		
	→ Indicates a ch	ange.		

	DC Cathode-to-Grid-No.1 Voltage Peak RF Cathode-to-Grid-No.1 Voltage:	85	volts		
-		220	volts		
	Synchronizing level	//-			
7	Pedestal level	260	volts		
	DC Plate Current:				
	Synchronizing level	3.45	amp		
	Pedestal level	2.6	amp		
	DC Grid-No.2 Current (Pedestal level)	0.152	amp		
	DC Grid-No.1 Current (Approx.):	0.102	op		
	Synchronizing level	0.202	amp		
	Pedestal level	0.11	amp		
7	Deiver Dever Outsit (Assess).h	0.11	amp		
	Driver Power Output (Approx.):h	1000 i			
	Synchronizing level		watts		
	Pedestal level	700	watts		
	Useful Power Output (Approx.):				
	Synchronizing level	12000	watts		
	Pedestal level	6800	watts		
13					
	GRID-MODULATED RF POWER AMPL	IFIFR			
	Class C Television Service				
	Synchronizing-level condition	sper			
	tube unless otherwise speci	fied			
	Maximum CCSc Ratings, Absolute-Maximum Vals	uact.			
	Maximum 000 Ratings, Absolute-Maximum vati				
		54 to 216 Mc			
	DC PLATE VOLTAGE	6000 max.	volts		
	DC GRID-No.2 (SCREEN-GRID) VOLTAGE	2000 max.	volts		
	DC GRID-No.1 (CONTROL-GRID) VOLTAGE				
	(White level)	-1000 max.	volts		
	DC PLATE CURRENT	4 max.	amp		
	PLATE INPUT		watts		
	GRID-No.2 INPUT		watts		
	PLATE DISSIPATION	10000 max.	watts		
	GRID-No.1 DISSIPATION	300 max.	watts		
ma,	Typical Operation in Grid-Drive Circuit at	216 Mc:	-		
	Bandwidth e of 8.5 Mc				
	DC Plate Voltage		volts		
			volts		
	DC Grid-No.2 Voltage	1200	VOITS		
	DC Grid-No.1 Voltage:	400	1.		
	Synchronizing level		volts		
	Pedestal level		volts		
	White level		volts		
17	Peak RF Grid-No.1 Voltage	375	volts		
	DC Plate Current:				
	Synchronizing level	3.45	amp		
	Pedestal level	2.42	amp		
	DC Grid-No.2 Current (Pedestal level)	0.148	amp		
	DC Grid-No.1 Current (Approx.):	0.140	anp		
		0 175	ome		
-	Synchronizing level	0.175	amp		
	Pedestal level	0.095	amp		
1					
		→ Indicates a c	hange.		

-		
	Bandwidth ^e of 8.5 Mc	
	Driver Power Output (Approx.): f Synchronizing level	watts watts
	Synchronizing level	watts watts
	LINEAR RF POWER AMPLIFIER	
	Single-Sideband Suppressed-Carrier Service	
	Maximum CCSC Ratings, Absolute-Maximum Values:	
	Up to 60 Mc	
	DC PLATE VOLTAGE 6900 max. DC GRID-No.2 (SCREEN-GRID) VOLTAGE 2000 max.	volts volts
	MAX.—SIGNAL DC PLATE CURRENT 2.75 max. MAX.—SIGNAL DC GRID—No.1	amp
	(CONTROL—GRID) CURRENT 0.6 max. MAX.—SIGNAL PLATE INPUT 18000 max. MAX.—SIGNAL GRID—No.2 INPUT 400 max. PLATE DISSIPATION 10000 max.	watts watts
	Typical CCS Class AB, and AB, "Single-Tone" Operation at 6	SO Mc · k
	Class Class	70 Pic.
	AB_1 AB_2	
	DC Plate Voltage	volts volts volts amp ohms amp ohms amp volts watts
	PLATE-MODULATED RF POWER AMPLIFIER - Class C Teleph	ony
	Carrier conditions per tube for use	
	with a maximum modulation factor of 1	
	Maximum CCSc Ratings, Absolute-Maximum Values:	
	DC PLATE VOLTAGE. 5000 max.	volts volts volts amp amp watts
	PLATE DISSIPATION	watts

→ Indicates a change.

	Typical Operation in dilu-brive	CITCUIL:		
_			Up to 60 Mc	
0	DC Plate Voltage DC Grid-No.2 Voltage (Modulated DC Grid-No.1 Voltage Peak RF Grid-No.1 Voltage DC Plate Current DC Grid-No.2 Current (Approx.). Driver Power Output (Approx.) Useful Power Output (Approx.).	100%) P	4700 800 -280 485 1.56 0.217 0.15 180° 5500	volts volts volts volts amp amp watts watts
	RF POWER AMPLIFIER & OSCILL		s C Telegraph	yt
	RF POWER AMPLIFIER —		Telephony	
_				
	Maximum CCSc Ratings, Absolute-			•
	DC PLATE VOLTAGE		6900 max.	volts
	DC GRID-No.2 VOLTAGE		2000 max.	volts
	DC GRID-No.1 VOLTAGE		-1000 max.	volts
	DC PLATE CURRENT		2.75 max.	amp
	DC GRID-No.1 CURRENT		0.6 max.	amp
	PLATE INPUT		18000 max.	watts
	GRID-No.2 INPUT		400 max.	watts
	PLATE DISSIPATION		10000 max.	watts
	Typical Operation in Grid-Drive	Circuit:		-
	U	p to 60 Mc	At 216 Mc	
	DC Plate Voltage	6400	5800 5800	volts
	DC Grid-No.2 Voltage"	1200	1200 1200	volts
	DC Grid-No.1 Voltage*	-310	-130 -175	volts
	Peak RF Grid-No.1 Voltage	560	230 370	volts
	DC Plate Current	2.75	1.8 2.6	amp
	DC Grid-No.2 Current	0.3	0.1 0.267	amp
	DC Grid-No.1 Current (Approx.).	0.14	0.05 0.11	amp
-	Driver Power Output (Approx.)f.	75	300 w 750 x	
	Useful Power Output (Approx.).	11600	6000 9000	watts
	coord. Tonor output (Approxi,	11000	0000 0000	naces
	a Full rated filament voltage can be	applied safe	ly to the cold fi	lament.

Typical Operation in Grid-Drive Circuit:

It is not necessary to provide means for limiting the filament starting

With external, flat, metal shield 12" square having center hole $4-5/16^{\circ}$ diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2

C Continuous Commercial Service.

d For operation on VHF television channels 2 through 6, DC plate voltage may be increased to 6400 max. volts and plate input may be increased to 24000 maximum watts provided all other ratings are net.

e Computed between half-power points and based on tube output capacitance only.

The driver stage is required to supply tube losses and rf circuit losses. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

This value includes 700 watts of rf circuit loss at 216 Mc.

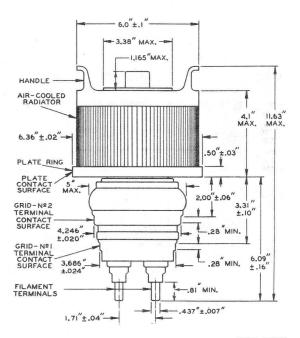
-Indicates a change.

6166

- The driver stage is required to supply tube losses, rf circuit losses, and rf power added to plate circuit. designed as indicated under (f). The driver stage should be
- This value includes 300 watts of rf circuit loss at 216 Mc, and 900 watts added to plate circuit.
- "Single-Tone Modulation" operation refers to that class of amplifier service in which the grid-No.1 input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.
- Adjusted to give indicated zero-signal plate current.
- These ratings hold for operation up to 60 Mc; for ratings at higher frequencies, see Maximum Ratings us Operating Frequency table.
- Obtained preferably from a separate source.
- Obtained preferably from a combination of 365-ohm grid-No.1 resistor and -170-volt fixed bias.
- 9 This value includes 50 watts of rf circuit loss at 30 Mc.
- Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions. Modulation
- Obtained preferably from a separate source, or from the plate-supply voltage with a voltage divider, or through a series resistor. A series grid-No.2 resistor should not be used if the 6166 or a preceding stage is keyed. In this case, the regulation of the source should be sufficient to prevent the grid-No.2 voltage from rising above 2000 volts under key-up conditions; and additional fixed grid-No.1 bias must be provided to limit the plate current.
- Obtained from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods
- This value includes 270 watts of rf circuit loss.
- This value includes 675 watts of rf circuit loss.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Filament Current	1	172	190	amp
Direct Interelectrode Capacitances:				
Grid No.1 to plate	2	-	0.6	μμf
Grid No.1 to filament	3	39	47	μμf
Grid No.1 to grid No.2	3	52	64	μμf
Grid No.2 to plate	3	21.2	25.8	$\mu\mu f$
Plate to filament	2		0.08	μμ
DC Grid-No.1 Voltage	1,4	_	-225	volts
Peak Grid-No.1 Current	1,5	-	1.5	amp
Peak Grid-No.1 Voltage	1,5	-	315	volts


- Note 1; With 5 volts ac or dc on filament.
- With external, flat, metal shield 12" square having center hole 4-5/16" diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2. All other electrodes are grounded.
- Without shield and all other electrodes grounded. Note 3:
- Note 4: With dc plate voltage of 6000 volts, dc grid-No.2 voltage of 1200 volts, and dc plate current of 20 ma.
- Note 5:

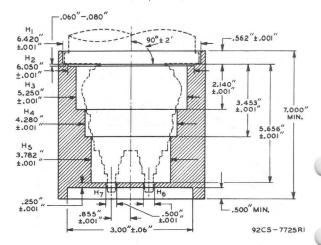
with dc plate voltage of 1500 volts, dc grid-No.2 voltage of 1200 volts, and instantaneous grid-No.1 voltage adjusted to give peak plate current of 11 amp.

-Indicates a change.

MAXIMUM RATINGS vs OPERATING FREQUENCY

FREQUENCY	60	220	Mc
MAXIMUM PERMISSIBLE PERCENTAGE OF MAXIMUM—RATED PLATE VOLTAGE AND PLATE INPUT:	10 251 N		
Class AB Single-Sideband Suppressed-Carrier Service	100	90	%
Class B Television Service Class C Television Service Class C Telephony,			to 216 Mg
Plate-Modulated	100	90	76
Class C Telegraphy and FM Telephony	100	90	%

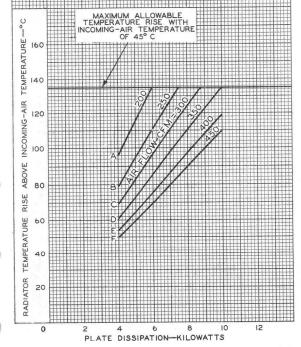
92CM-7716R2


→ Indicates a change.

WITH THE CYLINDRICAL SURFACES OF THE GRID-No.2 TERMINAL, GRID-No.1 TERMINAL AND THE FILAMENT TERMINALS CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH G1. THE FIVE CYLINDRICAL HOLES H1, H2, H3, H4, AND H5 HAVE AXES THAT ARE COINCIDENT WITHIN 0.001" AND HAVE SUCCESSIVELY SMALLER DIAMETERS AS SHOWN. THE CENTER HOLES H6 AND H7 ARE LOCATED ON A DIAMETER WITHIN \pm 0.001" AND THEIR AXES ARE PARALLEL TO THE AXES OF H1, H2, H3, H4, AND H5 WITHIN 00 \pm 21.

THE PLATE RING WILL BE ENTIRELY ENGAGED BY HOLE $\rm H_1$ AND WILL SEAT ON THE SHOULDER BETWEEN $\rm H_1$ AND $\rm H_2$. THE PLANE SURFACE OF THIS SHOULDER IS AT RIGHT ANGLES TO THE AXES OF THE HOLES WITHIN 0° \pm 2°. SEATING IS DETERMINED BY FAILURE OF A 0.020° THICKNESS GAUGE TO ENTER MORE THAN 1/16° BETWEEN SHOULDER SURFACE AND PLATE RING. SLOTS ARE PROVIDED TO PERMIT THIS MEASUREMENT.

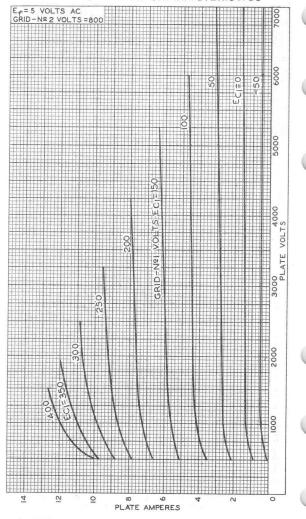
SKETCH G


COOLING REQUIREMENTS

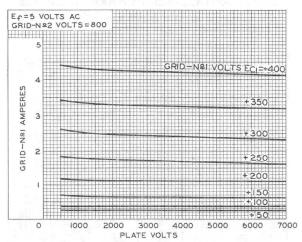
E_F= 5 VOLTS AC MAXIMUM RADIATOR TEMPERATURE=180° C

	CURVE	PRESSURE DRO
Ħ	Α	1.3
	В	1.8
Ħ	С	2.4
#	D	3
Ħ	E	3.7
H	F	4.5

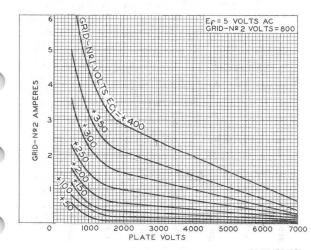
OP- CURVES TAKEN ACCORD-TER ING TO NAFM* STAND-ARDS-BULLETIN Nº 103


> *NATIONAL ASSOCIATION OF FAN MFGS., GENERAL MOTORS BLDG., DETROIT, MICH.

92CM-7728

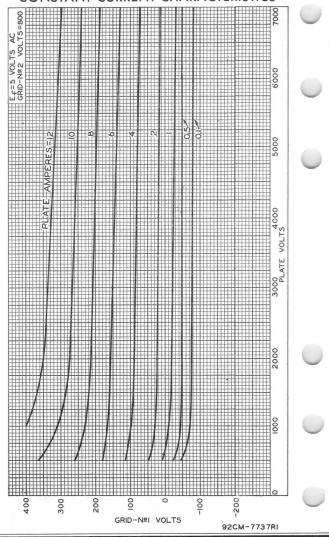


AVERAGE PLATE CHARACTERISTICS

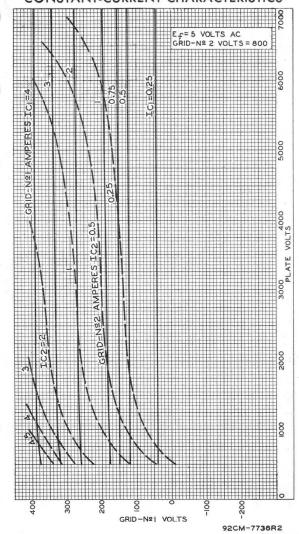


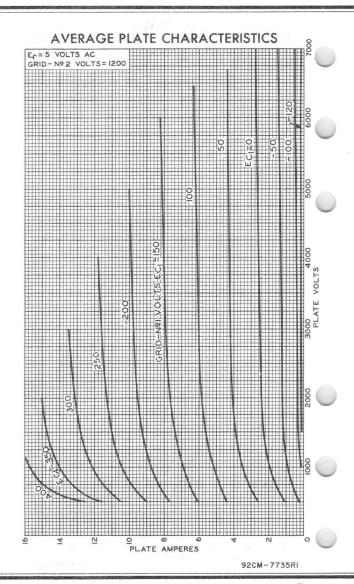
92CM-7736RI

AVERAGE CHARACTERISTICS

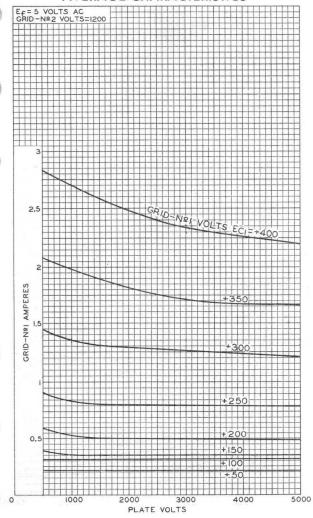


92CS-7744RI

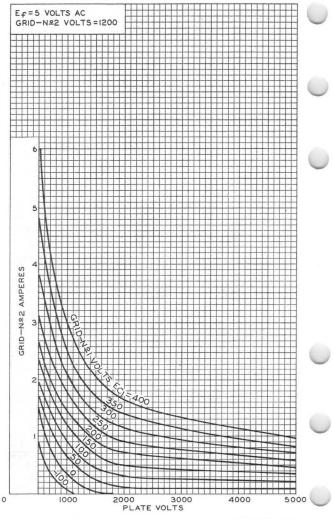



92CS-7743RI

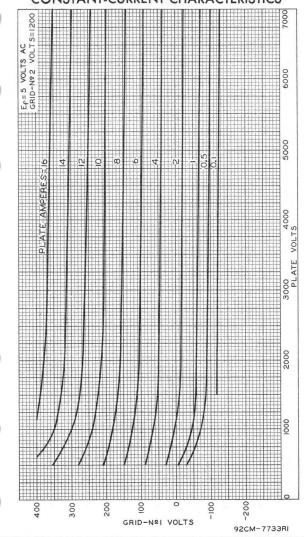
AVERAGE CONSTANT-CURRENT CHARACTERISTICS



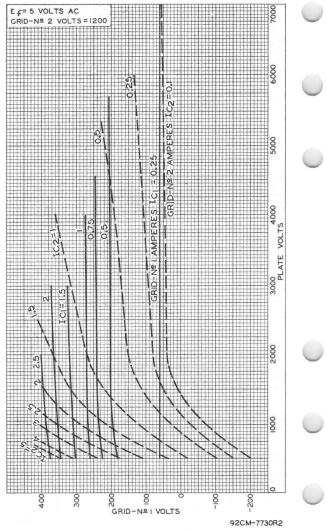
AVERAGE CONSTANT-CURRENT CHARACTERISTICS



AVERAGE CHARACTERISTICS



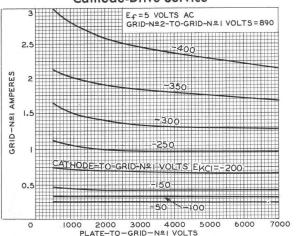
AVERAGE CHARACTERISTICS



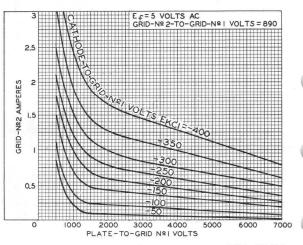
92CM-7739RI

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

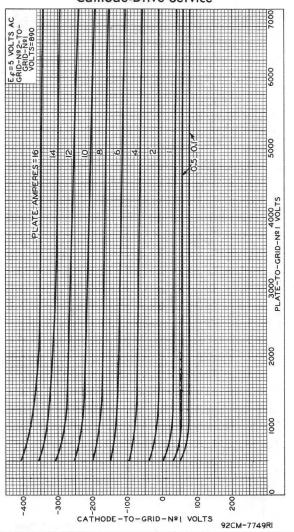


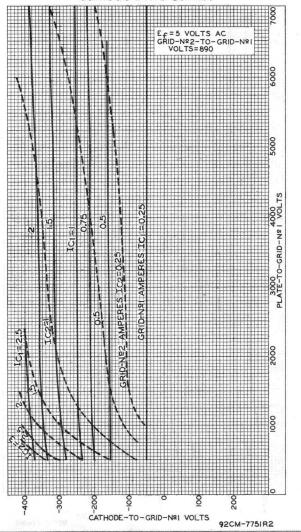
AVERAGE PLATE CHARACTERISTICS Cathode-Drive Service



92CM-7750RI

AVERAGE CHARACTERISTICS Cathode-Drive Service


92CS-7746RI


92CS-7752R3

AVERAGE CONSTANT-CURRENT CHARACTERISTICS Cathode-Drive Service

AVERAGE CONSTANT-CURRENT CHARACTERISTICS Cathode-Drive Service

Beam Power Tube

FORCED-AIR COOLED

CERAMIC-METAL SEALS COAXIAL-ELECTRODE STRUCTURE THORIATED-TUNGSTEN FILAMENT INTEGRAL RADIATOR 12-KW PLATE DISSIPATION IN CW OR TV SERVICE UP TO 220 Mc

Electrical:

Filament, Multistrand Thoriated Tungsten:			
Voltage (AC or DC)▲	5	± 5%	volts
Current at heater volts = 5	168		amp -
Minimum heating time	15		sec
Cold resistance 0.	.0038		ohm
Mu Factor, Grid No.2 to Grid No.1			
for plate volts = 2000, grid-No.2			
volts = 1000, and plate amperes = 2	10		
Direct Interelectrode Capacitances:			
Grid No.1 to plate		max.	pf
Grid No.1 to filament	42		pf
Plate to filament		max.	pf
Grid No.1 to grid No.2	65		pf ←

Mechanical:

Grid No.2 to plate. . .

Operating Position. . . . Vertical, filament end up or down Weight (Approx.).... Terminal Diagram (See Dimensional Outline):

G1 - Grid No.1 G2 - Grid No.2

P-Plate F-Filament

pf -

Thermal:

Air Flow:

Through radiator-The specified flow of incoming air at a t'emperature of 45° C for various plate dissipations, as indicated in the tabulation below, should be delivered by a blower through the radiator before and during the application of any voltages. The air should enter the radiator at its plate-terminal end (See Dimensional Outline). Filament power, plate power, grid-No.2 power, and air flow may be removed simultaneously.

Percentage of maximum-rated

(20)	0	-				
pla	te di	ssi	pat	ion	for	each

class of service.			100	83	67	50	%
Minimum air flow			550	350	230	175	cfm
Static pressure			6.6	3	1.6	1	in. of water

→ Indicates a change.

6166A/7007

	NAME OF THE PARTY OF
To grid-No.2 terminal 50 min. To grid-No.1 terminal	cfm
and filament terminals 50 min.	c fm
and Journal Deliminates	oc C
Theoming All Temperatures	
Radiator Temperature (Measured on the	00
core at end away from incoming air) 180 max.	oC
Terminal Temperature:	
Filament, grid No.1, grid	
No.2, and plate 180 max.	oC.
RF POWER AMPLIFIER — Class B Television Service	
Synchronizing-level conditions per	
tube unless otherwise specified	
(Voltages are referred to cathode unless otherwise specif	ied)
Maximum CCS* Ratings, Absolute-Maximum Values:	
Up to 220 Mc	
DC PLATE VOLTAGE	olts
	olts
DC PLATE CURRENT 4 max.	amp
	atts
	atts
	atts
GRID-No.1 DISSIPATION 300 max. w	atts
Typical Operation in Grid-Drive Circuit at 216 Mc:	
Bandwidth of 8.5 Mc	
DC Plate Voltage 5800	olts
	olts
	olts
	UILS
Peak RF Grid-No.1 Voltage:	1.4
Symposis 2 mg rever a reverse a	olts
reacotal revel	olts
DC Plate Current:	
Synchronizing level 3.45	amp
Pedestal level 2.6	amp
DC Grid-No.2 Current (Pedestal Level) 0.207	amp
DC Grid-No. 1 Current (Approx.):	
Synchronizing level 0.175	amp
Pedestal level 0.085	amp
Pedestal level 0.085 Driver Power Output (Approx.):	Control Pri
Synchronizing level 800° w	vatts
Official city of the control of the	vatts
Useful Power Output (Approx.):	acco
	vatts
	vatts
Pedestal level 6800 w	alls
Typical Operation in Cathode-Drive Circuit at 216 Mc:	
Bandwidth of 8.5 Mc	
	olts
DC Plate-to-Grid-No.1 Voltage 6400 v	UILO
bo riaco co arra nota rortago	olts
DC Grid-No.2-to-Grid-No.1 Voltage 800	

	Peak RF Cathode-to-Grid-No.1 Voltage:	
	Synchronizing level	volts
	Pedestal level 285	volts
	DC Plate Current:	
	Synchronizing level 3.65	amp
	Pedestal level 2.75	amp
	DC Grid-No.2 Current (Pedestal Level) 0.175	amp
	DC Grid-No.1 Current (Approx.): Synchronizing level 0.24	amp
		amp
	Pedestal level	1000
	Synchronizing level 1500 •	watts
	Pedestal level 850	watts
	Useful Power Output (Approx.):	
	Synchronizing level	watts
	Pedestal level 7900	Walls
	GRID-MODULATED RF POWER AMPLIFIER	
	Class C Television Service	
	Synchronizing-level conditions per	
	tube unless otherwise specified	
	Maximum CCS* Ratings, Absolute-Maximum Values:	
	Up to 220 Mc	
	DC PLATE VOLTAGE 7500 max.	volts
	DC GRID-No.2 VOLTAGE 2000 max.	volts
	DC GRID-No.1 VOLTAGE (White Level)1000 max.	volts
	DC PLATE CURRENT 4 max.	amp
	PLATE INPUT	watts watts
	GRID—No.2 INPUT	watts
	GRID-No.1 DISSIPATION 300 max.	watts
	Total Control to Control Delice Cleanit at CLC No.	
	Typical Operation in Grid-Drive Circuit at 216 Mc:	
	Bandwidth of 8.5 Ma	
	DC Plate Voltage	volts
	DC Grid-No.2 Voltage	VUILS
	Synchronizing level130	volts
	Pedestal level195	volts
	White level −350	volts
	Peak RF Grid-No.1 Voltage 375	volts
	DC Plate Current: Synchronizing level 3.45	amp
7	Pedestal level	amp
	DC Grid-No.2 Current (Pedestal Level) 0.148	amp
	DC Grid-No.1 Current (Approx.):	
	Synchronizing level 0.175	amp
_	Pedestal level 0.095 Driver Power Output (Approx.):	amp
	Synchronizing level 800	watts
	Pedestal level	watts
	remainant ritari	
	The state of the s	

0100-A/7007	
Bandwidth of 8.5 Mc	
Useful Power Output (Approx.): Synchronizing level	0
LINEAR RF POWER AMPLIFIER	
Single-Sideband Suppressed-Carrier Service	
Maximum CCS* Ratings, Absolute-Maximum Values:	
Up to 220 Mc	
DC PLATE VOLTAGE. 7500 max. volts DC GRID-No.2 VOLTAGE. 2000 max. volts MAXSIGNAL DC PLATE CURRENT. 2.8 max. amp MAXSIGNAL DC GRID-No.1 CURRENT. 0.6 max. amp MAXSIGNAL PLATE INPUT 20000 max. watts MAXSIGNAL GRID-No.2 INPUT 400 max. watts PLATE DISSIPATION 12000 max. watts	
Typical CCS Class AB ₂ "Single-Tone" Operation at 60 Mc:#	
DC Plate Voltage	
Carrier conditions per tube for use	
with a maximum modulation factor of 1 Maximum CCS* Ratings, Absolute-Maximum Values:	
DC PLATE VOLTAGE. 5500 max. volts	
Typical Operation in Grid-Drive Circuit:	
At 60 Mc DC Plate Voltage	0

11th to son Mc

Peak RF Grid-No.1 Voltage	550	volts
DC Plate Current	1.8	amp
DC Grid-No.2 Current	0.16	amp
DC Grid-No.1 Current (Approx.)	0.18 125‡	amp
Driver Power Output (Approx.)	125¥	watts
Useful Power Output (Approx.)	6000	watts

RF POWER AMPLIFIER & OSCILLATOR - Class C Telegraphy

RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCS* Ratings, Absolute-Maximum Values:

								000 -	110	
DC PLATE VOLTAGE									max.	
DC GRID-No.2 VOLTAGE.			300		0.00	100		2000	max.	volts
DC GRID-No.1 VOLTAGE.	ě			×				-1000	max.	volts
DC PLATE CURRENT										amp
DC GRID-No.1 CURRENT.										amp
PLATE INPUT										watts
GRID-No.2 INPUT										watts
PLATE DISSIPATION							٠	12000	max.	watts

Typical Operation in Grid-Drive Circuit:

				At 60 Mc	At 216 Mc	
DC Plate Voltage			0 000	6600	7000	volts
DC Grid-No.2 Voltage				1200	1200	volts
DC Grid-No.1 Voltage ^O				-310	-310	volts
Peak RF Grid-No.1 Voltage				560	560	volts
DC Plate Current				2.75	2.75	amp
DC Grid-No.2 Current				0.3	0.3	amp
DC Grid-No.1 Current (Appr	ОХ	.).		0.14	0.14	amp
Driver Power Output (Appro	X.) .		950	750▲▲	watts
Useful Power Output (Appro	×.) .		12000	10000	watts

- Full rated filament voltage can be applied safely to the cold filament. It is not necessary to provide means for limiting the filament starting current.
- With external flat metal shield 12" square having center hole 4-5/16" diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2.
- Continuous Commercial Service.
 - Computed between half-power points and based on tube output capacitance only.
 - The driver stage is required to supply tube losses and rf-circuit losses. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line-voltages, in components, in initial tube characteristics, and in tube characteristics during life.
- This value includes 700 watts of rf-circuit loss at 216 Mc.
- The driver stage is required to supply tube losses, rf-circuit losses, and rf power added to plate circuit. The driver stage should be designed as indicated in footnote $(\pmb{\phi})$.
- This value includes 470 watts of rf-circuit loss at 216 Mc and 1030
- watts added to plate circuit.
- *Single—Tone* operation refers to that class of amplifier service in which the grid—No.1 input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.

6166A/7007

* Adjusted to give indicated zero-signal plate current.

Obtained preferably from a separate source.

Obtained preferably from a combination of 365-ohm grid-No.1 resistor and -170-volt fixed bias.

This value includes 25 watts of rf-circuit loss.

Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audionfrequency envelope does not exceed 115 per cent of the carrier conditions.

Obtained preferably from a separate source, or from the plate supply voltage with a voltage divider, or through a series resistor. A series grid-No.2 resistor should not be used if the 6166A/7007 or a preceding stage is keyed. In this case, the regulation of the source should be sufficient to prevent the grid-No.2 voltage from rising above 2000 volts under key-up conditions; and additional fixed grid-No.1 biss must be provided to 1 limit the plate current.

Obtained from fixed supply, by grid—No.1 resistor, by cathode resistor,

or by combination methods.

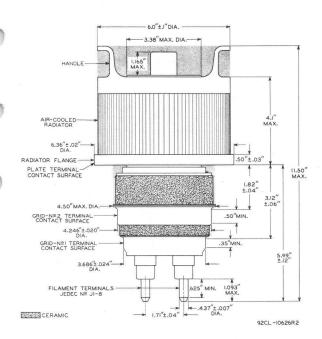
This value includes 20 watts of rf-circuit loss.

AA This value includes 675 watts of rf-circuit loss.

CHARACTERISTICS RANGE VALUES

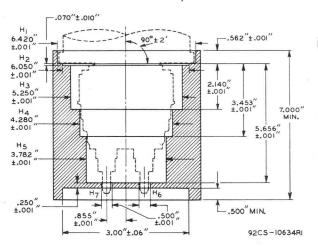
		Note	Min.	Max.	
-	Filament Current	1	165	183	amp
	Direct Interelectrode Capacitances:				
	Grid No.1 to plate	2	-	0.6	pf
	Grid No.1 to filament	3	39	47	pf
+	Grid No.1 to grid No.2	3	61.4	73.4	pf
+	Grid No.2 to plate	3	21.0	23.0	pf
	Plate to filament	2	-	0.08	pf
	DC Grid-No.1 Voltage	1,4	-	-225	volts
	Peak Grid-No.1 Current	1,5	-	1.5	amp
	Peak Grid-No.1 Voltage	1,5	-	315	volts
	Note 1: With 5 volts ac or dc on filament.				

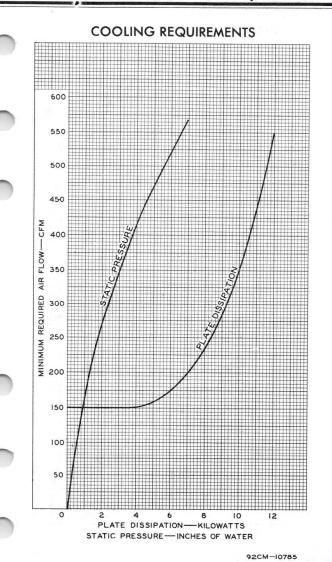
Note 2: With external, flat, metal shield 12" square having center hole 4-5/16" diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid-No.2. All other electrodes are grounded.


Note 3: Without shield and all other electrodes grounded.

Note 4: With dc plate voltage of 6000 volts, dc grid-No.2 voltage of 1200 volts, and dc plate current of 20 ma.

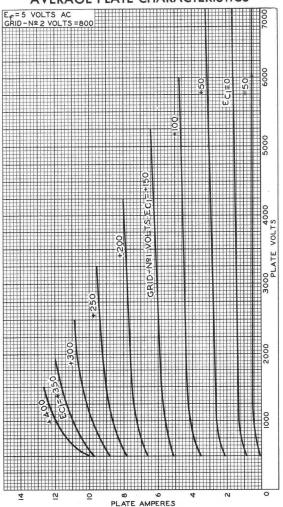
Note 5: With dc plate voltage of 1500 volts, dc grid-No.2 voltage of 1200 volts, and instantaneous grid-No.1 voltage adjusted to give peak plate current of 11 amp.


- Indicates a change.

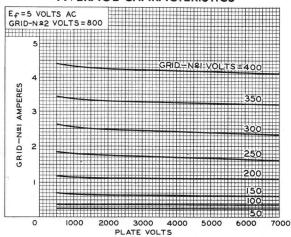


NOTE: WITH THE CYLINDRICAL SURFACES OF THE PLATE TERMINAL, GRID-NO.2 TERMINAL, GRID-NO.1 TERMINAL, AND FILAMENT TERMINALS CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH \mathbf{G}_1 . PROPER ENTRY OF THE TUBE IN THE GAUGE IS OBTAINED WHEN THE PLATE TERMINAL IS ENTIRELY ENGAGED BY HOLE \mathbf{H}_1 AND WILL SEAT ON THE SHOULDER IS AT RIGHT ANGLES TO THE AXES OF THE HOLES WITHIN O° \pm 2'. SEATING IS DETERMINED BY FAILURE OF A 0.020"-THICKNESS GAUGE TO ENTER MORE THAN 1/16" BETWEEN SHOULDER SURFACE AND PLATE TERMINAL. SLOTS ARE PROVIDED TO PERMIT THIS MEASUREMENT. KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

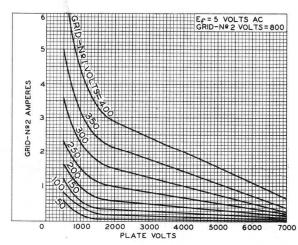
SKETCH GI



NOTE: THE FIVE CYLINDRICAL HOLES $\rm H_1$, $\rm H_2$, $\rm H_3$, $\rm H_4$ AND $\rm H_5$ HAVE AXES COINCIDENT WITHIN 0.001". THE HOLES $\rm H_6$ AND $\rm H_7$ HAVE AXES PARALLEL TO THE AXES OF $\rm H_1$, $\rm H_2$, $\rm H_3$, $\rm H_4$ AND $\rm H_5$ WITHIN 0° $\rm \pm 2$ ".

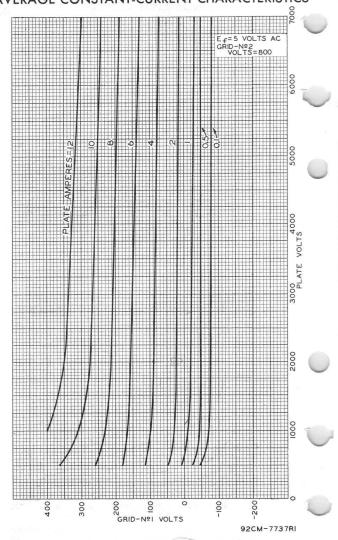


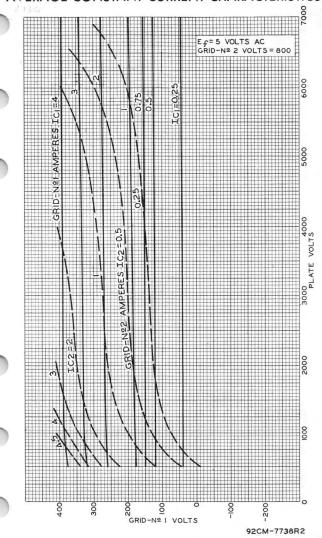
AVERAGE PLATE CHARACTERISTICS



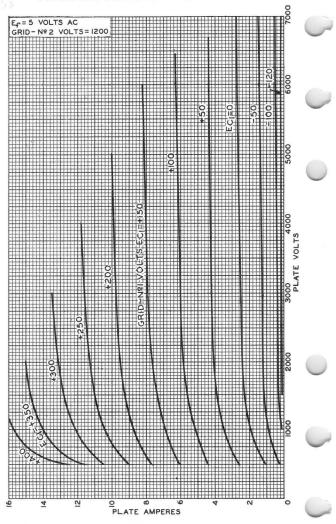
92CM-7736RI

AVERAGE CHARACTERISTICS

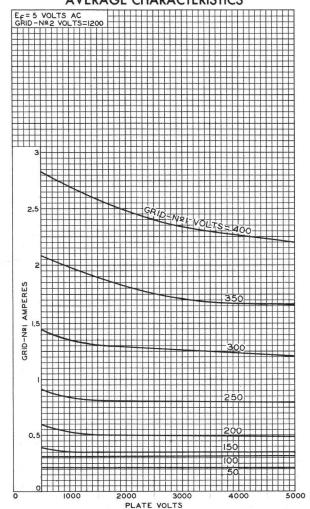

92CS-7744RI


92 CS-7743RI

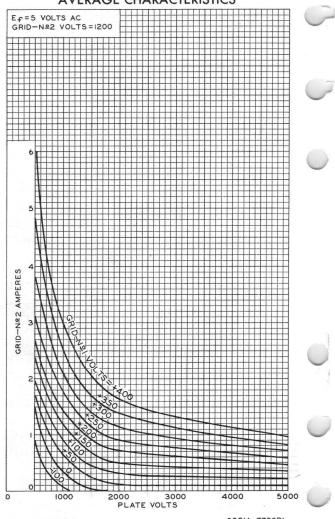
AVERAGE CONSTANT-CURRENT CHARACTERISTICS



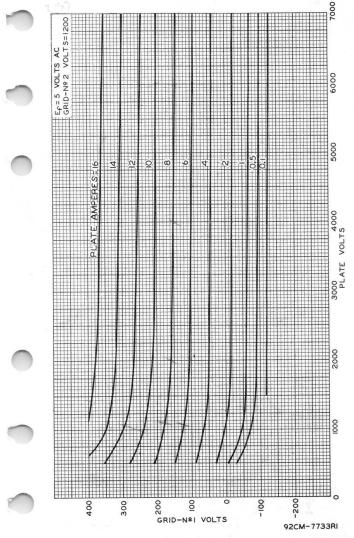
AVERAGE CONSTANT-CURRENT CHARACTERISTICS


AVERAGE PLATE CHARACTERISTICS

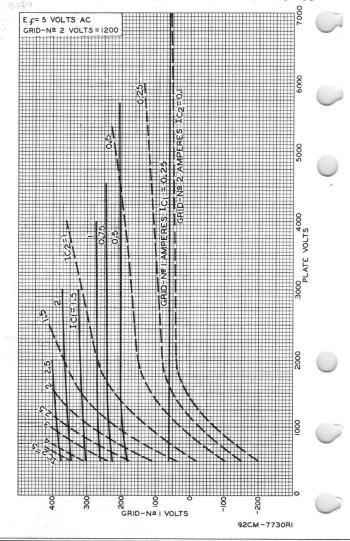
92CM-7735RI

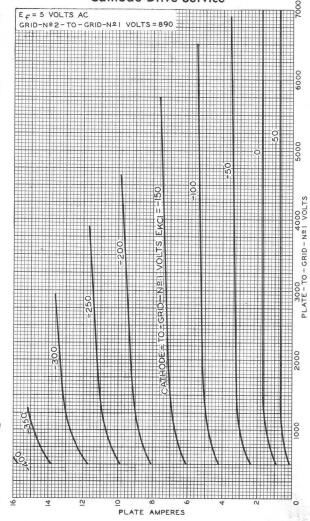


AVERAGE CHARACTERISTICS

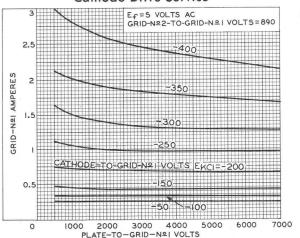


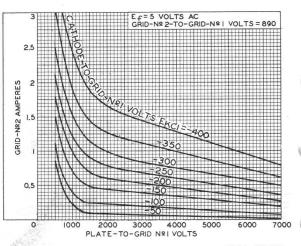
92CM-7740R2


AVERAGE CHARACTERISTICS

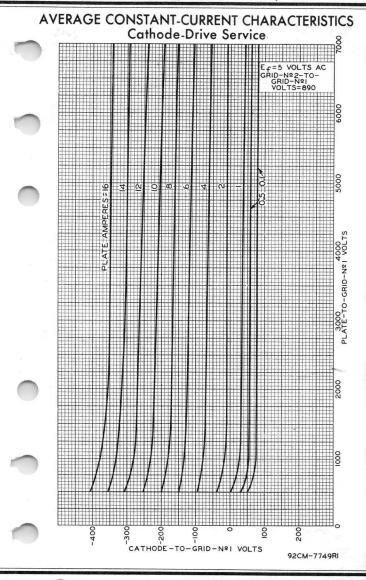

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

AVERAGE CONSTANT-CURRENT CHARACTERISTICS

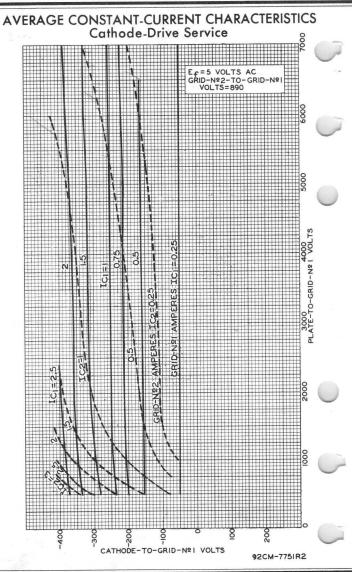

AVERAGE PLATE CHARACTERISTICS Cathode-Drive Service


92CM-7750RI

AVERAGE CHARACTERISTICS Cathode-Drive Service



92CS-7746RI



92CS-7752R3

Medium-Mu Triode

GLASS-METAL PENCIL TYPE

FAST WARM-UP TIME INTEGRAL PLATE RADIATOR

For Mobile or Aircraft Applications as a RF-Power Amplifier or Oscillator Tube with Full Input up to 500 Mc and with Reduced Input up to 1700 Mc

GENERAL DATA

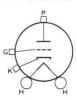
Electrical:

Heater, for Unipotential Cathode:

Voltage (AC or DC):			
Under transmitting conditions		$6.0 \pm 10\%$	volts
Under standby conditions	×	6.3 max.	volts
Current at 6 volts		0.280	amp
Amplification Factor		27	
Transconductance, for dc plate ma. = 27			
and dc plate volts = 200		7000	umhos

and dc plate volts = 200. Direct Interelectrode Capacitances:

				without	rith	
				External	External	
				Shield	Shielda	
Grid to plate				1.7	1.5	μμ
Grid to cathode .	100			2.8	-	μμf
Plate to cathode.				0.08 max.	_	μμ


Mechanical:

Operating Position. . . Dimensions and Terminal

Connections See Dimensional Outline Radiator. Integral part of tube Terminal Connections (See Dimensional Outline):

H-Heater

K - Cathode

G-Grid

P-Plate

Cooling:

In many applications, the 6263A does not require forced-air cooling. The radiator in combination with a connector having adequate heat conduction capability will generally provide adequate cooling under conditions of free circulation of air. The cooling must be sufficient to limit the plate-seal temperature to 175° C. When conditions do not provide adequate circulation of air, provision should be made to direct a blast of cooling air from a small blower through the radiator fins. The quantity of air should be sufficient to limit the plate-seal temperature to 175° C. See Curves.

020071				
Incoming-Air Temperature Plate-Seal Temperature (Measure plate seal)	d on	40 max. 175 max. 24 grams (0, Cinch No.54A or equ	°C .85 oz) 16325°, ivalent	
RF POWER AMPLIFIER AND OSCIL Key-down conditions per tube s				
		titude modulu	01011	
Maximum Ratings, Absolute-Maxim				
For altitudes up				
DC PLATE VOLTAGE. DC GRID VOLTAGE. DC PLATE CURRENT. DC GRID CURRENT. DC CATHODE CURRENT. PLATE INPUT. PLATE DISSIPATION PEAK HEATER—CATHODE VOLTAGE:	ccs ^e 330 max100 max. 40 max. 25 max. 55 max. 13.2 max. 8 max.	ICAS f 400 max100 max. 55 max. 25 max. 70 max. 22 max. 13 max.	volts volts ma ma watts watts	
Heater negative with respect to cathode	50 max.	50 max.	volts	
Heater positive with		50	1.0	
respect to cathode	50 max.	50 max.	volts	
Typical Operation as Oscillator	in Cathode	-Drive Circu	it:	
	At 500	o Mc		
	ccs ^e	$ICAS^{\dagger}$		
DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage DC Plate Current DC Grid Current (Approx.) Useful Power Output (Approx.)	330 30 35 11 5h	385 35 40 14 7 h	volts volts ma ma watts	
	At 170	oo Mc		
	ccs			
DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage DC Plate Current DC Grid Current (Approx.) Useful Power Output (Approx.)	27 ¹ 21 4	0 0 9	volts volts ma ma watt	
Typical Operation as RF Power A	mplifier in	1		
Ca	thode-Drive	Circuit at	500 Mc:	
DC Plate-to-Grid Voltage DC Cathode-to-Grid Voltage ⁹ . DC Plate Current DC Grid Current (Approx.) Driver Power Output (Approx.)	ccse 348 48 35 13 2.2	ICAS f 408 58 40 15 3 10h	volts volts ma ma watts	0
Useful Power Output (Approx.)	7 h	10 h	watts	

ICAS^f

330 max.

-100 max

volts

volts

Maximum Circuit Values:

DC PLATE VOLTAGE. .

DC GRID VOLTAGE

Grid-Circuit Resistance . . . 0.1 max. 0.1 max. megohm

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with maximum modulation factor of 1

Maximum Ratings, Absolute-Maximum Values:

For altitudes up to 60,000 feet

ccse

275 max.

-100 max

							ccce		TOAC	f	
Typical	Operation 1	on in	Ca	the	ode	e-D	rive C	ircuit	at 500	Mc:	
	pect to						50	max.	50	max.	volts
	pect to o				٠		50	max.	50	max.	volts
	ATER-CATI r negati			IA	at:						
	ISSIPATIO						5.5	max.	9	max.	watts
	NPUT						9	max.		max.	watts
DC CATH	ODE CURRI	ENT.					50	max.	60	max.	ma
DC GRID	CURRENT						25	max.	25	max.	ma
DC PLAT	E CURREN	Γ					33	max.	46	max.	ma

	CCZe	ICAS	
DC Plate-to-Grid Voltage	317	372	volts
DC Cathode-to-Grid Voltage9 .	42	52	volts
DC Plate Current	35	35	ma
DC Grid Current (Approx.)	13	12	ma
Driver Power Output (Approx.)	2.	2.4.	watts
Useful Power Output (Approx.)	6.7 ^h	8 h	watts

Maximum Circuit Values:

Grid-Circuit Resistance . . . 0.1 max. 0.1 max. megohm

- ${f a}$ A flat plate shield 1-1/4" diameter located parallel to the plane of the grid flange and midway between the grid flange and the radiator plate terminal. The shield is tied to the cathode.
- b Grayhill, Inc., 561 Hillgrove Avenue, LaGrange, Illinois.
- c Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago, Illinois. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier
- conditions.
- Continuous Commercial Service.
 - intermittent Commercial and Amateur Service. No Operating or "ON" period exceeds 5 minutes and every "ON" period is followed by an "OFF" or standby period of at least the same or greater duration.
- 9 From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor.
- $^{f h}$ This value of useful power is measured at load of output circuit having an efficiency of about 75 per cent.

CHARACTERISTICS	RANGE	VALUES	FOR	EQUIPMENT	DESIGN
-----------------	-------	--------	-----	-----------	--------

	Note	Min.	Max.		
Heater Current	1	0.265	0.295	amp	
Direct Interelectrode					
Capacitances:					
Grid to plate	-	1.45	1.95	$\mu\mu$ f	
Grid to cathode	-	2.45	3.35	μμf	
Plate to cathode	-	***	0.08	μμf	
Reverse Grid Current	1,2	-	0.5	μa	
Plate Current (1)	1,3	18	36	ma	
Plate Current (2)	1,4	No.	55	μa	
Amplification Factor	1,3	20	34		
Transconductance	1,3	5600	8400	μmhos.	
Heater-Cathode Leakage Current:					
Heater negative with					
respect to cathode	1,5	-	100	μa	
Heater positive with					
respect to cathode	1,6	-	100	μa	
Emission Voltage	1,7	-	10	volts	
Leakage Resistance:					
From grid to plate and					
cathode tied together	1,8	25	_	megohms	
From plate to grid and					
cathode tied together	1,9	25	-	megohms	
Power Output	1,10	6.5	-	watts	
Change in Power Output	11	-	0.5	watt	

Note 1: With 6.0 volts ac or dc on heater.

Note 2: With dc plate voltage of 200 volts, dc grid voltage of -2 5 volts, grid resistor of 0.5 megohm.

Note 3: With dc plate supply voltage of 200 volts, cathode resistor of 100 \pm 1% ohms, and cathode bypass capacitor of 1000 μf_{\ast}

Note 4: With dc plate voltage of 200 volts, dc grid voltage of -20 volts.

Note 5: With 50 volts dc between heater and cathode, heater negative with respect to cathode.

Note 6: With 50 volts do between heater and cathode, heater positive with respect to cathode.

Note 7: With dc voltage on grid and plate which are tied together adjusted to produce a cathode current of 30 ma.

Note 8: With grid 100 volts negative with respect to plate and cathode which are tied together.

Note 9: With plate 300 volts negative with respect to grid and cathode

Note 9: With plate 300 volts negative with respect to grid and cathode which are tied together.

Note 10: With dc plate voltage of 350 volts, grid resistor adjusted to

Note 10: With dc plate voltage of 350 volts, grid resistor adjusted to give a dc plate current of 50 milliamperes in a cavity-type oscillator operating at 500 ± 15 Mc and having an efficiency of approximately 75 per cent.

Note 11: At end of Power-Output test, reduce heater voltage to 5.0 volts and note change in power output.

SPECIAL TESTS & PERFORMANCE DATA

Low-Pressure Voltage Breakdown Test:

This test (similar to MIL-E-ID, paragraph 4.9.12.1) is performed on a sample lot of tubes from each production run. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 60,000 feet. Breakdown will not occur

when a 60 cycle rms voltage of 500 volts is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance:

This test (MIL-E-ID, paragraph 4.9.19.1) is performed on a sample lot of tubes from each production run under the following conditions:

Heater voltage of 6.0 volts, dc plate supply voltage of 200 volts, grid voltage of -3 volts, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 25 cycles per second at an acceleration of 2.5 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.

High-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.2) is performed on a sample lot of tubes from each production run. The tube is vibrated perpendicular to its axis, with no voltages applied to the tube. Vibration frequency is 40 to 60 cps and acceleration is 10 g. At the end of this test, tubes will not show temporary or permanent shorts or open circuits and will meet the following limits:

Heater-Cathode Leakage Current. 100 max. For conditions shown under Characteristics Range Values Notes 1,5 and 1,6.

Low-Frequency Vibration (rms) 100 max. For conditions shown above under Low-Frequency Vibration Performance.

Plate Current (2) 55 max. For conditions shown under Characteristics Range Values Notes 1.4.

Shorts and Continuity Test:

This test (MIL-E-ID, paragraph 4.7.5) is performed on all tubes from each production run. In this test, a tube is considered inoperative if it shows a permanent or temporary short or open circuit, an air leak, or reverse grid current in excess of I microampere for the conditions shown under Characteristics Range Values, Notes 1,2.

Glass-Seal Fracture Test:

This test is performed on a sample lot of tubes from each production run. Tubes are placed on supports spaced 15/16" \pm 1/64" apart with cathode cylinder resting on one support and plate cylinder resting on the other support at a point between the radiator fins and the plate flange. Tubes will withstand gradual application, perpendicular to tube axis, of a force of 60 pounds upon the grid flange without causing fracture of the glass insulation.

Heater Cycling Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.7) is performed on a sample lot of tubes from each production run. With 6.0 volts on heater and no voltage on plate and grid, the heater is cycled three minutes on and three minutes off for at least 2000 cycles. At the end of this test, tubes will not show temporary or permanent shorts or open circuits, and are required to meet the following limits:

Grid-Plate and Cathode Leakage Resistance. 25 min. megohms For conditions shown under *Characteristics Range Values* Notes 1,8.

Heater-Cathode Leakage Current. 150 max. μa For conditions shown under Characteristics Range Values Notes 1.5.

I-Hour Stability Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.1.a) is performed on a sample lot of tubes from each production run to insure that the tubes have been properly stabilized. Tubes are operated under the following conditions: heater voltage of 6.0 volts, plate dissipation of 2.5 to 3 watts. At the end of I hour, the change in transconductance value for each tube, referred to its initial transconductance reading, will not exceed 15% of the initial value, for conditions shown under Characteristics Range Values, Notes 1,3.

50-Hour Survival Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.1.a) is performed on a sample lot of tubes from each production run to insure a low percentage of early inoperatives. Life-test conditions are the same as those specified for 1-Hour Stability Life Performance except that all voltages are cycled at the rate of IIO minutes on and IO minutes off. At the end of 50 hours, the tubes are required to meet the following limits:

Power Output. 5 min. watts
For conditions shown under Characteristics Range Values
Notes 1,10.

Plate Current (2) 100 max. μa For conditions shown under *Characteristics Range Values* Notes 1,4.

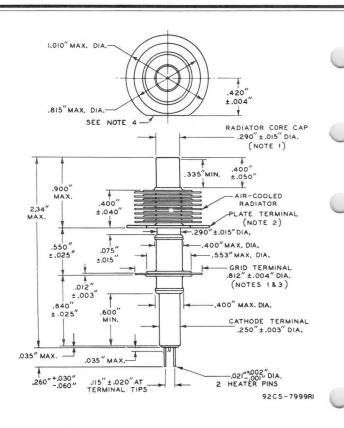
Shorts and Continuity Test specified above.

Intermittent Dynamic Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is life-tested in a cavity-type oscillator at 500 \pm 15 Mc under the following conditions:

Heater voltage of 6.0 volts, plate supply voltage of 400 volts, grid resistor is adjusted to give a dc plate current of 40 ma. and value is recorded, cathode resistor of 0 ohms, plate-circuit load resistance of 100 \pm 5 ohms, heater positive with respect to cathode by 50 volts, and plate-

seal temperature of 175° C min. Heater voltage is cycled at a rate of 110 minutes on and 10 minutes off.

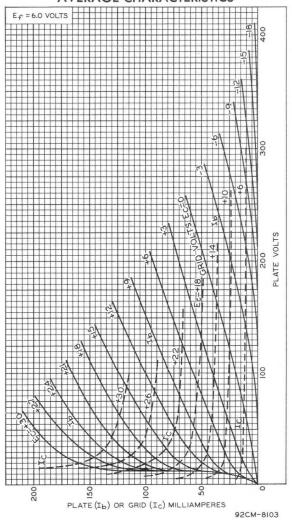

At the end of 500 hours, the tube will not show permanent shorts or open circuits and will be criticized for the total number of defects in the sample lot and for the number of tubes failing to meet the following limits:

Reverse Grid Current. I max. μa
For conditions shown under Characteristics Range Values
Notes 1.2.

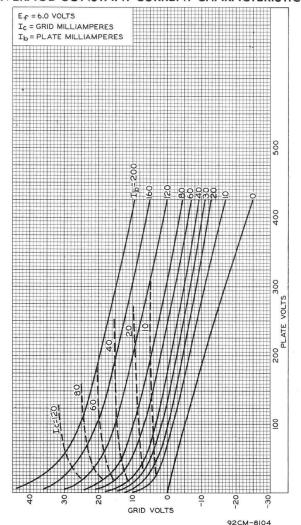
OPERATING CONSIDERATIONS

The *heater* leads of the 6263A should not be soldered to circuit elements. The heat of the soldering operation may crack the glass seals of the heater pins and damage the tube.

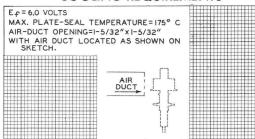
The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum values shown in the tabulated data.

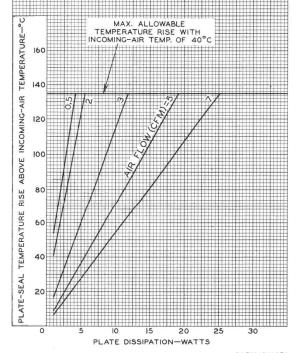

NOTE 1: ECCENTRICITY OF RADIATOR-CORE CAP WITH RESPECT TO THE CATHODE TERMINAL IS ONE-HALF THE TOTAL RUN-OUT DETERMINED BY CHUCKING THE CATHODE TERMINAL 0.050" TO 0.100" FROM CATHODE FLANGE, ROTATING THE TUBE, AND GAUGING THE TOTAL RUN-OUT AT A POINT 0.125" FROM THE END OF THE RADIATOR-CORE CAP. THE ECCENTRICITY WILL NOT EXCEED 0.030".

NOTE 2: TILT OF PLATE-TERMINAL FIN OF RADIATOR WITH RESPECT TO ROTATIONAL AXIS OF CATHODE CYLINDER IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE PLATE-TERMINAL FIN PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM THE STRAIGHT EDGE OF THE PLATE-TERMINAL FIN FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.025".


NOTE 3: TILT OF GRID-TERMINAL FLANGE WITH RESPECT TO ROTATIONAL AXIS OF CATHODE TERMINAL IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE GRID-TERMINAL FLANGE PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM ITS EDGE FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.025".

NOTE 4: THE STRAIGHT EDGE ON THE PERIMETER OF THE LARGE FIN (PLATE TERMINAL) IS PARALLEL TO A PLANE THROUGH THE CENTERS OF THE HEATER PINS AT THEIR SEALS WITHIN 15° .


AVERAGE CHARACTERISTICS



AVERAGE CONSTANT-CURRENT CHARACTERISTICS

COOLING REQUIREMENTS

92CM-8120R1

Medium-Mu Triode

GLASS-METAL PENCIL TYPE

FAST WARM-UP TIME INTEGRAL PLATE RADIATOR
STURDY COAXIAL-ELECTRODE STRUCTURE

For Mobile or Aircraft Applications as a Frequency-Multiplier, RF-Power-Amplifier, or Oscillator Tube

GENERAL DATA

Flectrical:

Heater, for Unipotential Cathode:

Voltage (AC or DC):

. Oi tage	1,10	01	001	•															
Under	tra	nsm	itti	ng	C	one	di.	tio	on:	s.					6	±	10%	volts	
Under	sta	ndby	/ CO	nd	it	ioi	15								6.3	ma	ix.	volts	
Current																		amp	
implifica:	tion	Fac	ctor												40				
ranscondi	ucta	nce	, fo	r	dc	p	la	te	m	a.	=	1	8.	5					

and dc plate volts = 200 6800

Direct Interelectrode Capacitances:

				Without	With	
				External	External	
				Shield	Shield	
Grid to plate				1.75	1.5	μμf
Grid to cathode.				2.95	-	μμ
Plate to cathode				0.07 max.	-	μμf

Mechanical:

Terminal Connections (See Dimensional Outline):

H - Heater
K - Cathode

G-Grid

P-Plate

umhos

Dimensions and Terminal

In many applications, the 6264-A does not require forced-air cooling. The radiator in combination with a connector having adequate heat conduction capability will generally provide adequate cooling under conditions of free circulation of air. The cooling must be sufficient to limit the plate-seal temperature to 175°C. When conditions do not provide adequate circulation of air, provision should be made to direct a blast of cooling air from a small blower through the radiator fins. The quantity of air should be sufficient to limit the plate-seal temperature to 175°C. See Curves.

District Name (Management	
Plate-Seal Temperature (Measured on plate seal)	0
RF POWER AMPLIFIER AND OSCILLATOR - Class C Telegraphy	
Key-down conditions per tube without amplitude modulation	
Maximum Ratings, Absolute-Maximum Values:	1
For Altitudes up to 60,000 ft	
CCS [★] ICAS	
DC PLATE VOLTAGE . 330 max. 400 max. volts DC GRID VOLTAGE100 max100 max. volts DC PLATE CURRENT . 40 max. 55 max. ma DC GRID CURRENT . 25 max. 25 max. ma DC CATHODE CURRENT . 555 max. 70 max. max PLATE INPUT . 13.2 max. 22 max. watts PLATE DISSIPATION . 8 max. 13 max. watts PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode . 50 max. 50 max. volts Heater positive with respect to cathode . 50 max. 50 max. volts	
Typical Operation as Oscillator in Cathode-Drive Circuit:	
At 500 Mc CCS* ICAS♥	
DC Plate-to-Grid Voltage 325 380 volts DC Cathode-to-Grid Voltage 25 30 volts DC Plate Current 35 35 ma DC Grid Current (Approx.) 11 13 ma Useful Power Output (Approx.)	; 1
At 1700 Mc	

Typical	Operation	as	RF	Power	Amplifier	in				
					Cathode-Dr	ive	Circuit	at	500	Mc:
					CCS*		ICAS♥			

DC Plate-to-Grid Voltage . . . DC Cathode-to-Grid Voltage . . . DC Plate Current

DC Grid Current (Approx.). . .

Useful Power Output (Approx.).

ccs*

263

13

	CCD	ICAD.	
DC Plate-to-Grid Voltage	342	395	volts
DC Cathode-to-Grid Voltage	42	45	volts
DC Plate Current	35	40	ma
DC Grid Current (Approx.)	13	15	ma
Driver Power Output (Approx.).	2.4.	3.	watts
Useful Power Output (Approx.).	7.5	104	watts

volts

volts ma

watt

ma

ICAS♥

350 max.

-140 max.

45 max.

25 max.

volts

volts

DATA 2

10-60

ma

ma

respect to cathode 50 max. 50 max. volts Heater positive with respect to cathode 50 max. 50 max. volts Typical Operation as Tripler to 510 Mc in Cathode-Drive Circuit: CCS* ICAS* DC Plate—to—Grid Voltage 410		DC CATHODE CURRENT
Typical Operation as Tripler to 510 Mc in Cathode-Drive Circuit: CCS* ICAS* DC Plate—to—Grid Voltage		Heater positive with
Cathode-Drive Circuit: CCS* ICAS* DC Plate—to—Grid Voltage		750,000 10 00111000 11 11 10 10 11 11 11 11
CCS* ICAS* DC Plate—to—Grid Voltage		
DC Plate—to—Grid Voltage		ABOUTEMBOOKS OF THE SECOND STATE SAME SAME SAME SAME SAME SAME SAME SAM
DC Grid Current (Approx.) 4.1 5.8 ma Driver Power Output (Approx.). 2.75 4.5 watts Useful Power Output (Approx.). 2.1 3.4 watts Maximum Circuit Values: Grid-Circuit Resistance 0.1 max. 0.1 max. megohm A flat plate shield 1-1/4" diameter located parallel to the plane of the grid flange and midway between the grid flange and the radiator plate terminal. The shield is tied to the cathode. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions. **Continuous Commercial Service.** Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Min. Max. Heater Current		DC Plate-to-Grid Voltage 410 472 volts DC Cathode-to-Grid Voltage 110 122 volts
Useful Power Output (Approx.). 2.1 3.4 watts Maximum Circuit Values: Grid-Circuit Resistance 0.1 max. 0.1 max. megohm A flat plate shield 1-1/μ" diameter located parallel to the plane of the grid flange and midway between the grid flange and the radiator plate terminal. The shield is tied to the cathode. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions. * Continuous Commercial Service. Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Min. Max. Heater Current		
Maximum Circuit Values: Grid-Circuit Resistance 0.1 max. 0.1 max. megohm A flat plate shield 1-1/4" diameter located parallel to the plane of the grid flange and midway between the grid flange and the radiator plate terminal. The shield is tied to the cathode. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115≰ of the carrier conditions. ★ continuous Commercial Service. Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75≴. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Nin. Max. Heater Current		
Grid-Circuit Resistance 0.1 max. Megohm A flat plate shield 1-1/4" diameter located parallel to the plane of the grid flange and midway between the grid flange and the radiator plate terminal. The shield is tied to the cathode. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions. * Continuous Commercial Service. Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Nin. Max. Heater Current		Useful Power Output (Approx.). 2.1 3.4 watts
A flat plate shield 1-1/4" diameter located parallel to the plane of the grid flange and midway between the grid flange and the radiator plate terminal. The shield is tied to the cathode. Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions. * Continuous Commercial Service. Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Nin. Nax. Heater Current		Maximum Circuit Values:
Modulation, essentially negative, may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions. * Continuous Commercial Service. Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. **CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN** **Note** Min.** Max.** Heater Current 1 0.265 0.295 ma Grid-to-Plate Capacitance 2.5 3.4 μμf Grid-to-Cathode Capacitance		Grid-Circuit Resistance 0.1 max. 0.1 max. megohm
Conditions. Continuous Commercial Service. Intermittent Commercial and Amateur Service. From a grid resistor, or from a suitable combination of grid resistor and fixed supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Min. Max. Heater Current		
From a grid resistor, or from a suitable combination of grid resistor and rived supply or grid resistor and cathode resistor. This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Nin. Max. Heater Current 1 0.265 0.295 ma Grid-to-Plate Capacitance 1.5 2 μμf Grid-to-Cathode Capacitance 2.5 3.4 μμf Plate-to-Cathode Capacitance 0.07 μμf		conditions.
This value of useful power is measured at load of output circuit having an efficiency of about 75%. CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Min. Max. Heater Current 1 0.265 0.295 ma Grid-to-Plate Capacitance 1.5 2 μμf Grid-to-Cathode Capacitance 2.5 3.4 μμf Plate-to-Cathode Capacitance 0.07 μμf		
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN Note Nin. Max. Heater Current 1 0.265 0.295 ma Grid-to-Plate Capacitance 2 μμf Grid-to-Cathode Capacitance		
Note Min. Max. Heater Current		This value of useful power is measured at load of output circuit having an efficiency of about 75\$.
Heater Current		CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN
Grid-to-Plate Capacitance 1.5 2 μμf Grid-to-Cathode Capacitance 2.5 3.4 μμf Plate-to-Cathode Capacitance 0.07 μμf		Note Min. Max.
1.010.00 0.10 0.1.01.01.1.1.1.1.1.1.1.1.		Grid-to-Plate Capacitance 1.5 2 μμf Grid-to-Cathode Capacitance 2.5 3.4 μμf Plate-to-Cathode Capacitance 0.07 μμf
	Salation	

RADIO CORPORATION OF AMERICA

Harrison, N. J.

Electron Tube Division

Grid-Circuit Resistance. . . 0.1 max. 0.1 max. megohm

FREQUENCY MULTIPLIER

For Altitudes up to 60,000 ft

CCS*

300 max.

-125 max.

33 max. 25 max.

Maximum Ratings, Absolute-Maximum Values:

Maximum Circuit Values:

DC PLATE VOLTAGE

DC GRID VOLTAGE. . . .

DC PLATE CURRENT . . DC GRID CURRENT. . .

6264-A

	Note	Min.	Max.		
Plate Current (1)	1,3	13	24	ma	
Plate Current (2)	1,4	_	55	μ a	
Amplification Factor	1,3	30	50		
Transconductance	1,3	5400	8200	μ mhos	
Heater-Cathode Leakage Current:					
Heater negative with	4 5		100	NO CONTRACT	
respect to cathode Heater positive with	1,5	-	100	μa	
respect to cathode	1.6		100	μa	
Emission Voltage		-	10	volts	
Leakage Resistance: From grid to plate and					
cathode tied together From plate to grid and	1,8	25	-	megohms	
cathode tied together	1,9	25	_	megohms	
Power Output	1,10	6.5	-	watts	
Change in Power Output	11	-	0.5	watt	

- Note 1: With 6 volts ac or dc on heater.
- Note 2: With dc plate voltage of 200 volts, dc grid voltage of -2 volts, grid resistor of 0.5 megohm.
- Note 3: With dc plate supply voltage of 200 volts, cathode resistor of 100 \pm 1% ohms, and cathode bypass capacitor of 1000 μ f.
- Note 4: With dc plate voltage of 200 volts, dc grid voltage of -12 volts, cathode resistor of 0 ohms.
- Note '5: With 50 volts dc between heater and cathode, heater negative
- with respect to cathode.

 Note 6: With 50 volts dc between heater and cathode, heater positive
- with respect to cathode.

 Note 7: With dc voltage on grid and plate which are tied together adjusted to produce a cathode current of 30 ma.
- Note 8: With grid 100 volts negative with respect to plate and cathode which are tied together.
- Note 9: With plate 300 volts negative with respect to grid and cathode which are tied together.
- Note 10: With dc plate voltage of 350 volts, grid resistor adjusted to give a dc plate current of 50 milliamperes in a cavity-type oscillator operating at 500 Mc and having an efficiency of approximately 75 per cent.
- Note 11: At end of Power-Oscillation test, reduce heater voltage to 5 volts and note change in power output.

SPECIAL TESTS & PERFORMANCE DATA

Low-Pressure Voltage Breakdown Test:

This test is performed on a sample lot of tubes from each production run. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 60,000 feet. Breakdown will not occur when an rms voltage of 500 volts is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance:

This test (MIL-E-ID, paragraph 4.9.19.1) is performed on a sample lot of tubes from each production run under the following conditions:

Heater voltage of 6 volts, dc plate supply voltage of 200 volts, grid voltage of -2 volts, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 25 cycles per second at an acceleration of 2.5 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.

High-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.2) is performed on a sample lot of tubes from each production run. The tube is vibrated perpendicular to its axis, with no voltages applied to the tube. Vibration frequency is 40 to 60 cps and acceleration is 10 g. At the end of this test, tubes will not show temporary or permanent shorts or open circuits and will meet the following limits:

Heater-Cathode Leakage Current. 100 max. μa For conditions shown under Characteristics Range Values Notes 1,5 and 1,6.

Low-Frequency Vibration (rms) 100 max. mv For conditions shown above under Low-Frequency Vibration Performance.

Plate Current (2) 55 max. μα
For conditions shown under Characteristics Range Values
Notes 1.4.

Shorts and Continuity Test:

This test (MIL-E-ID, paragraph 4.7.5) is performed on all tubes from each production run. In this test, a tube is considered inoperative if it shows a permanent or temporary short or open circuit, an air leak, or reverse grid current in excess of I microampere for the conditions shown under Characteristics Range Values, Notes 1,2.

Heater Cycling Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.7) is performed on a sample lot of tubes from each production run. With 6 volts on heater and no voltage on plate and grid, the heater is cycled three minutes on and three minutes off for at least 2000 cycles. At the end of this test, tubes will not show temporary or permanent shorts or opens, and are required to meet the following limits:

Grid-Plate and Cathode Leakage Resistance . 25 min. megohms For conditions shown under Characteristics Range Values Notes 1,8.

Heater-Cathode Leakage Current. 150 max. μ a For conditions shown under Characteristics Range Values Notes 1,5.

I-Hour Stability Life Performance:

This test is performed on a sample lot of tubes from each production run to insure that the tubes have been properly stabilized. Tubes are operated under the following conditions: heater voltage of 6 volts, plate dissipation of 2.5

6264-A

to 3 watts. At the end of I hour, the change in transconductance value for each tube, referred to its initial transconductance reading, will not exceed 15% of the initial value, for conditions shown under $\it Characteristics$ Range $\it Values$, $\it Notes$ 1,2.

50-Hour Survival Life Performance:

This test is performed on a sample lot of tubes from each production run to insure a low percentage of early inoperatives. Life-test conditions are the same as those specified for $\emph{1-Hour Stability Life Performance}$ except that all voltages are cycled at the rate of IIO minutes on and IO minutes off. At the end of 50 hours, the tubes are required to meet the following limits:

Power Output 5 min. watts
For conditions shown under Characteristics Range Values
Notes 1.7.

Shorts and Continuity Test specified above.

Intermittent Dynamic Life Performance:

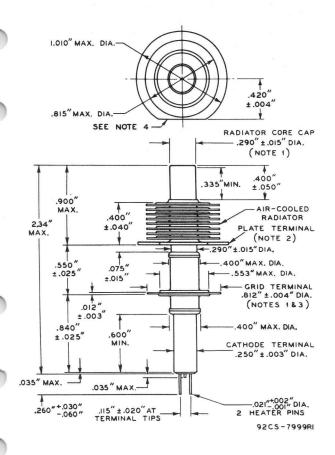
This test is performed on a sample lot of tubes from each production run to insure high quality of rf performance. Each tube is life-tested in a cavity-type oscillator at 500 ± 15 Mc under the following conditions:

Heater voltage of 6 volts, plate supply voltage of 400 volts, grid resistor is adjusted to give a dc plate current of 40 ma. and value is recorded, cathode resistor of 0 ohms, plate-circuit load resistance of 100 \pm 5 ohms, heater positive with respect to cathode by 50 volts, and plate-seal temperature of $175^{\rm O}$ C min. Heater voltage is cycled at a rate of 110 minutes on and 10 minutes off.

At the end of 500 hours, the tube will not show permanent shorts or open circuits and will be criticized for the total number of defects in the sample lot and for the number of tubes failing to meet the following limits:

Reverse Grid Current I max. μ a For conditions shown under Characteristics Range Values Notes 1,2.

Power Output 5 min. watts For conditions shown under Characteristics Range Values Notes 1,7.


OPERATING CONSIDERATIONS

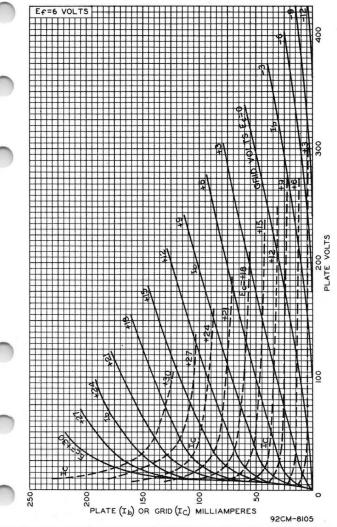
The heater leads of the 6264-A should not be soldered to circuit elements. The heat of the soldering operation may crack the glass seals of the heater pins and damage the tube.

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not

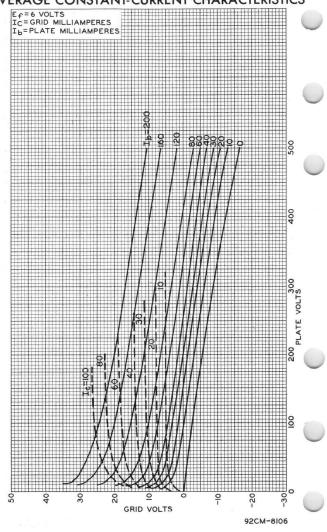
connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum values shown in the tabulated data.

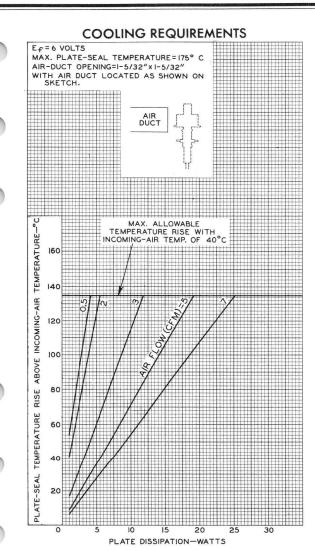
10-60

6264-A

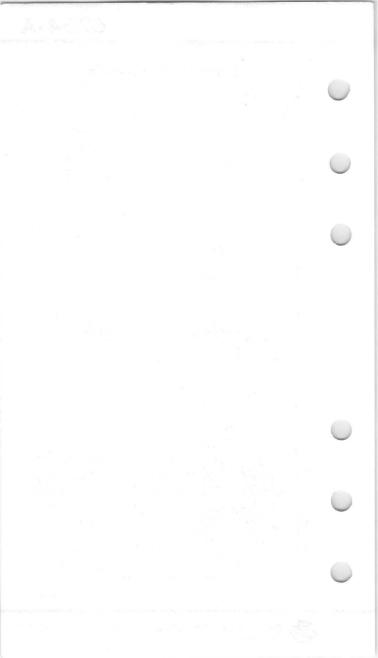

NOTE 1: MAXIMUM ECCENTRICITY OF CENTER LINE (AXIS) OF RADIATOR-CORE CAP OR GRID-TERMINAL FLANGE WITH RESPECT TO THE CENTER LINE (AXIS) OF THE CATHODE TERMINAL IS 0.015".

NOTE 2: TILT OF PLATE-TERMINAL FIN OF RADIATOR WITH RESPECT TO ROTATIONAL AXIS OF CATHODE CYLINDER IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE PLATE-TERMINAL FIN PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM THE STRAIGHT EDGE OF THE PLATE-TERMINAL FIN FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.025".


NOTE 3: TILT OF GRID-TERMINAL FLANGE WITH RESPECT TO ROTATIONAL AXIS OF CATHODE TERMINAL IS DETERMINED BY CHUCKING THE CATHODE TERMINAL, ROTATING THE TUBE, AND GAUGING THE TOTAL TRAVEL DISTANCE OF THE GRID-TERMINAL FLANGE PARALLEL TO THE AXIS AT A POINT APPROXIMATELY 0.020" INWARD FROM ITS EDGE FOR ONE COMPLETE ROTATION. THE TOTAL TRAVEL DISTANCE WILL NOT EXCEED 0.025".


NOTE 4: THE STRAIGHT EDGE ON THE PERIMETER OF THE LARGE FIN (PLATE TERMINAL) IS PARALLEL TO A PLANE THROUGH THE CENTERS OF THE HEATER PINS AT THEIR SEALS WITHIN 15°.

AVERAGE CHARACTERISTICS


AVERAGE CONSTANT-CURRENT CHARACTERISTICS

92CM-8120R1

Beam Power Tube

For Pulse-Modulator Service

GENERAL DATA

,		
Electrical:		
Heater, for Unipotential Cathode: Voltage (AC or DC)	6.3 ± 10% volts 1.25 amp	
ma. = 100	7000 μmhos 4.5	
Direct Interelectrode Capacitances: a Grid No.1 to plate	0.24 max. pf	
sleeve, and heater	13.0 pf	
Mechanical:		20
Operating Position. Overall Length. Seated Length Maximum Diameter. Weight (Approx.). Bulb. CapSm Bases (Alternates):	3-13/16" ± 1/8" 3-1/8" ± 1/8" 1-23/32" 2.3 oz	
Large-Wafer Octal with Sleeve: 8-Pin Micanol (JEDEC Group 1, No.B8-86 Large-Wafer Octal with External Barriers 8-Pin Micanol (JEDEC Group 1, No.B8-98 Basing Designation for BOTTOM VIEW	and Sleeve:	
(4) _П (5)	4 C Di- 1	

Pin 1-Cathode Grid No.3 Internal Shield Pin 2-Heater Pin 3-Grid No.2

Pin 4 - Same as Pin 1 Pin 5 - Grid No.1 Pin 6 - Same as Pin 1 Pin 7 - Heater Pin 8 - Base Sleeve Cap - Plate

MODULATOR — Rectangular-Wave Modulation

Maximum and Minimum CCSb Ratings, Absolute-Maximum Values:

For Duty Factor c between 0.001 and 1 and maximum averaging time of 10,000 µsec in any interval DC PLATE SUPPLY VOLTAGE d. See Rating

See Rating Chart I
Indicates a change.

ax. volts	max.	500 ∫-300	of	115%	:	/OLTAGE ^d .	INSTANTANEOUS PLATE DC GRID-No.2 SUPPLY DC GRID-No.1 SUPPLY	→
ax. volts ing Chart II ax. amp ax. amp ax. watts ax. watts ax. watt ting Chart I ax. volts ax. volts	max. max. max. max. Ratin max. max.	100 See 1 0.75 0.5 80 1.75 0.5 See		ath	to	NT. NT. VOLTAGE: n respect n respect	GRID-No.1 VOLTAGE: Instantaneous-nega Peak-positive valu PEAK PLATE CURRENT. PEAK GRID-No.2 CURRE PEAK GRID-No.1 CURRE PLATE INPUT	
ax. °C	max.	200					on bulb surface). Typical Operation:	
volts volts volts volts amp amp amp amp amp	± 5%				ige	Voltage . Voltage . Voltage . Volta	DC Plate Supply Volt DC Grid-No.2 Supply DC Grid-No.1 Supply Peak Positive Grid-N Plate Current: Peak. Average DC Grid-No.2 Current DC Grid-No.1 Current Load Resistance (R _L) non-inductive.	
obmo		20000					Maximum Circuit Valu	
ound. in microseconds the individual al. etween the two	ground e in m all the erval. betwe	"on" time	the lurat	eeve d as the co	fine of 0,00	Id and bas Service. 293 is de roseconds as the sum ring any 1 defined a	Grid-No.1-Circuit Re a Without external shie b Continuous Commercial C Duty Factor for the divided by 10.000 mie "Om" fime is defined pulses which occur du "Pulse Duration" is points on the pulse	

"Pulse Duration" is defined as the time interval between the two points on the pulse at which the instantaneous value is 70 per cent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

portion of the pulse.

For tube protection, it is essential that sufficient resistance be used in the plate supply circuit, the grid-No. 2 supply circuit, and the grid-No.1 supply circuit so that the short-circuit current is limited to 0.5 ampere in each circuit.

et 0.5 ampere in each circuit.

Averaged over any interval not exceeding 10,000 microseconds. Care should be used in determining the plate dissipation. A calculated value based on rectangular pulsescanbe considerably in error when the actual pulses have a finite rise and fall time. Plate dissipation should preferably be determined by measuring the bulb temperature under actual operating conditions; then, with the tube in the same socket and under the same ambient-temperature conditions, apply to the tube sufficient do input to obtain the same bulb temperature. This value of dc input is a measure of the plate dissipation.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	. 1	1.175	1.325	amp
Grid No.1 to plate			0.24	pf
Grid No.1 to cathode & grid No.3 & internal shield, grid No.2,				
base sleeve, and heater	. 2	12.0	15.0	pf
Plate to cathode & grid No.3 & internal shield, grid No.2,				
base sleeve, and heater		7.3	9.5	pf
Plate Current	. 3	46	94	ma
Grid-No.2 Current	. 3	0	5.5	ma
Peak Plate Current	. 1,4	2.4	-	amp

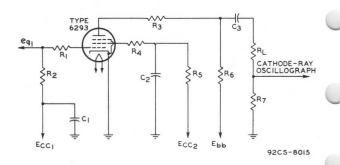
Note 1: With 6.3 volts ac on heater.


Note 2: With no external shield. Base sleeve (pin No.8) is grounded.

Note 3: With 6.3 volts ac on heater, dc plate voltage of 300 volts, dc grid—No.2 voltage of 200 volts, and dc grid—No.1 voltage of —33 volts.

Note 4: With the tube in the test circuit (below) under the following conditions: rectangular-wave modulation applied to grid No.1 pulse duration of 1 microsecond approx.; pulse repetition rate of 3000 cps approx.; do plate supply voltage of 2000 volts; do go of 300 cps approx. do plate supply voltage of 2001 volts; do go of 300 pps polities grid-No.1 supply voltage of 500 pps polities grid-No.1 supply voltage of 300 pps p

OPERATING CONSIDERATIONS


Plate shows no color when tube is operated at maximum CCS ratings.

92CS-7700R5

ALL DIMENSIONS IN INCHES.

TEST CIRCUIT

C₁: 0.1 \(\mu f\), 600 \(\mu\) dc C₂: 2 \(\mu f\), 600 \(\mu\) dc C₃: 0.25 \(\mu f\), 5000 \(\mu\) dc

Ecci: Grid-No.1 Supply Volt.

Ecc2: Grid-No.2 Supply Volt. Ebb: Plate Supply Voltage

E_{g1}: Rectangular-Wave Signal Voltage

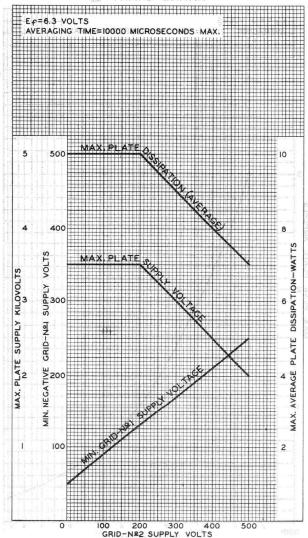
R₁: 20 ohms, I watt, non-inductive

R,: 3000 ohms, I watt

R₃: 10 ohms, 5 watts, non-inductive

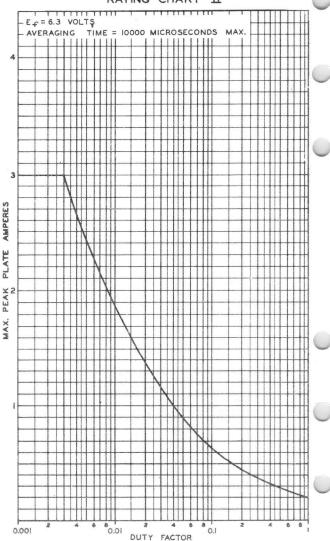
R₄: 25 ohms, | watt, non-inductive

R₅: 1000 ohms, 1 watt R₆: 10000 ohms, 50 watts


 R_7 : 30 ± 1% ohms,

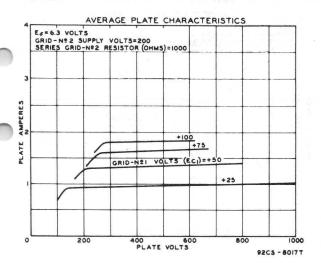
non-inductive
RL: For values, see Typical
Operation and Characteristics Range Values
(Note 4)

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.


RATING CHART I

6293

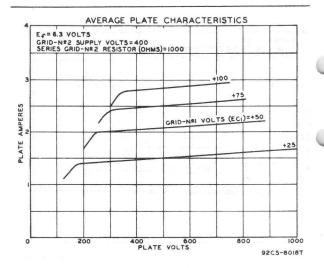
RATING CHART II

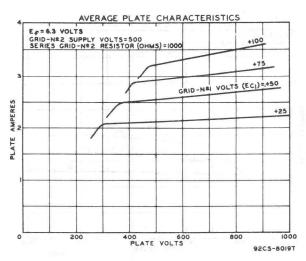

JUN. 8,1953


TUBE DEPARTMENT
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM - 8014

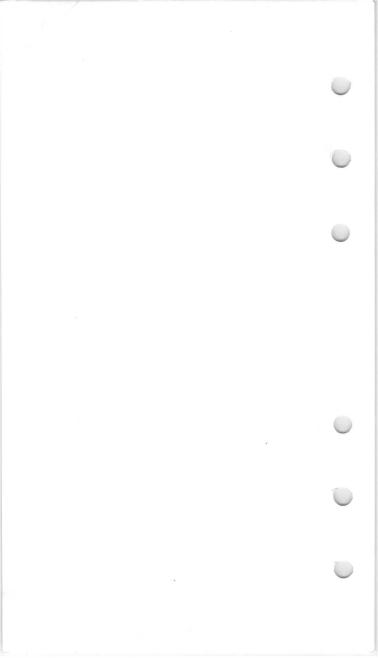
BEAM POWER AMPLIFIER





6293

BEAM POWER AMPLIFIER



VHF BEAM POWER TUBE

9 PIN MINIATURE TYPE

	Heater, for Unipotential Cathode:
	Voltage 12.6 ± 10% ac or dc volts
	Current 0.375 amp
	Except for heater rating, the 6417 is the same as the 5763.
m.	With 12.6 volts on heater of the 6417, the minimum heater
n	current is 0.345 ampere and the maximum heater current is
	0.405 ampere.
	1

UHF BEAM POWER TUBE WATER-COOLED ELECTRODES

GENERAL DATA

Electrical:

Filament*, 2-Section Multi-strand

Thoriated Tungsten:

1.35 av. volts Voltage per section (AC or DC) 1.50 max. Current per section at 1.35 volts . . amp

Starting current per section . . Must never exceed 1500 amperes even momentarily

Cold resistance per section 0.0002 Minimum heating time . 10 . See Circuits Supply circuits . . Supply Circuits

Mu-Factor, Grid No.2 to Grid No.1 for plate
volts=3000, grid-No.2 volts=800, and plate
amores= 4.

Direct Interelectrode Capacitances: Grid No.1 to plate . . 0.1 max. mut 335 *mu*f Input Output . μμf Internal Bypass Capacitors between

Grid No.2 and Cathode (Total)

15000

Mechanical:

Terminal Connections:

F1-Fil. Sect. No.1 & Water Conn. F2-Fil. Sect. No. 2 & Water Conn. G1 - RF Grid-No.1 Term. Contact

Surface G1w - DC Grid-No.1 & Water Conn.

Water Conn.

Water Conn. For location of Contact Su G2 - DC Grid-No. 2 & respective terminals, PW - DC Plate & see Dimensional Outline

Kp-RF Cath. Term. Contact Surface For Circuit Returns FM - Common Point of Fil. Sections

SA A

Mut

& Water Conn. P-RF Plate Term. Contact Surface

Water Conn.

. . . Tube axis vertical, with Mounting Position . . plate terminal either up or down . . 7-11/32" + 3/8" - 1/2" Overall Length

Maximum Diameter . . . Air Cooling:

Forced-air cooling of the ceramic bushing at the grid-No. I seal and at the plate seal is required only if the temperature of the ceramic bushing at either seal exceeds the specified maximum value of 150°C. Under such conditions, provision should be made for blowing air at the ceramic bushings through suitable openings in the coaxialcylinder cavity circuit.

*: See Operating Notes on conserving filament life.

UHF BEAM POWER TUBE

Water Cooling:

Water cooling of the filament-section blocks, rf cathode terminals, grid-No.1 block, grid-No.2 block, and plate is required. The water flow must start before application of any voltage and preferably should continue for several seconds after removal of all voltages. Interlocking of the water flow through each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate water flow.

Water Flow:	Min.	Typical gpm	Pressure Drop e psi
To Filament-Section- No.1 Block	{0.5	0.5	2 11
To Filament-Section- No.2 Block	{0.5	0.5	2
To Filament Mid-Tap Block	{0.5	0.5	2 10
To Grid-No.1 Block	{0.5	0.5 1.2	1 6
To Grid-No.2 Block	0.5	0.5	3 15
To Plate: For plate dissipation of 10 kw	4.5		3.5
For plate dissipation of	110.71	_	8.5
For plate dissipation of	11	_	16
For plate dissipation of 26 kw	14	_	25
Gauge Pressure at Any Inlet Ceramic Bushing Temperature Outlet Water Temperature (Any out Weight (Approx.)		150	max. psi max. oC max. oC lbs

RF POWER AMPLIFIER -- Class B Television Service

Synchronizing-level conditions per tube unless otherwise indicated

Maximum CCS Ratings, Absolute Values:

									Up to 1000 Mc	
DC	PLATE VOLT	AGE .							7000 max.	volts
DC	PLATE-SUPP	LY VOLT	AGE						8000 max.	volts
DC	GRID-No.2	(SCREEN	4) V	ATAC	GE				1000 max.	volts
									1100 max.	

MAY 3, 1954

C A A

UHF BEAM POWER TUBE

	DC PLATE CURRENT		7 max 0.5 max 49000 max 600 max	. amp . watts . watts
	2000	At 500 Mc	At 900 Mc	
7	Bandwidth [♠] of	7	7	Mc
	DC Plate Voltage	6000	6500	volts
	DC Grid-No.2 Voltage DC Grid-No.1 Voltage	950 -140	950 – 140	volts
	Peak RF Grid-No.1 Voltage:	-140	-140	VOILS
	Synchronizing level	160	160	volts
-	Pedestal level	100	100	volts
7	DC Plate Current:			
	Synchronizing level	6.9	6.8	amp
	Pedestal level DC Grid-No.2 Current:	5.3	5.2	amp
	Synchronizing level	0.75	0.6	amp
	Pedestal level	0.35	0.3	amp
	DC Grid-No.1 Current (Approx.):			8
	Synchronizing level	0.13	0.1	amp
	Driver Power Output (Approx.):	U	U	amp
	Synchronizing level	600	1000	watts
	Pedestal level	350	560	watts
	Output-Circuit Efficiency	0.5		
	(Approx.) Useful Power Output (Approx.):	85	80	per cent
	Synchronizing level	15000	12000	watts
	Pedestal level	8400	6700	watts
	PLATE-MODULATED RF POWER	AMPCla	ss C Telephor	ny
7	Carrier conditions per tube for use u	with a max.	modulation fact	tor of 1.0
	Maximum CCS Ratings, Absolute	Values.		
		v ************************************	Ut to	
			1000 Mc	
	DC PLATE VOLTAGE		. 4500 max	. volts
	DC GRID-No.2 (SCREEN) VOLTAGE		. 1000 max	. volts
	PEAK GRID-No.2 VOLTAGE	1	1200	
	(DC + AC Component DC GRID-No.1 (CONTROL-GRID) VOL		. 1200 max	
	DC PLATE CURRENT	IMUL	. 4.5 max	
	DC GRID-No.1 CURRENT		. 1 max	. amp
	PLATE INPUT		. 22500 max	. watts
	Between the half-power points as me	asured in t	he output circu	it.
			rouse section from a section for	
	●. ♣. ●: See next page.			
	, T, See next page.			

UHF BEAM POWER TUBE

RID-No.2 INPUT		. 400 max.	
ypical Operation:	At 400 Mc	At goo Mc	
OC Plate Voltage	600 -200 210 4.25	4250 600 -200 210 4	volts volts volts amp
OC Grid-No.2 Current OC Grid-No.1 Current (Approx.). Oriver Power Output (Approx.). Output-Circuit Efficiency	0.3 700	0.6 0.2 1000	amp amp watts
(Approx.) (Approx.)	80 7250		per cent watts
RF POWER AMPLIFIER	Class C Te	legraphy ⁰	
an	ıd		
RF POWER AMPLIFIER		lelephony	
aximum CCS® Ratings, Absolute	Values:		
		Up to 1000 Mc	
C PLATE VOLTAGE C PLATE-SUPPLY VOLTAGE C GRID-No.2 (SCREEN) VOLTAGE C GRID-No.2-SUPPLY VOLTAGE		. 1100 max.	volts volts volts
DC GRID—No.1 (CONTROL—GRID) VOL DC PLATE CURRENT C GRID—No.1 CURPENT PLATE INPUT PLATE DISSIPATION CONTROL OF THE PLATE OF T		6.5 max. 0.5 max. 45500 max. 600 max. 26000 max.	amp amp watts watts
DC PLATE CURRENT DC GRID—No.1 CURPENT PLATE INPUT RID—No.2 INPUT		6.5 max. 0.5 max. 45500 max. 600 max. 26000 max.	amp amp watts watts
NC PLATE CURRENT C GRID—No.1 CURPENT PLATE INPUT RID—No.2 INPUT PLATE DISSIPATION	At 400 Mc 6500 800 -140 160 6 0.5 0.2 400	6.5 max. 0.5 max. 45500 max. 600 max. 26000 max.	amp amp watts watts
CC PLATE CURRENT CC GRID-No.1 CURPENT PLATE INPUT RID-No.2 INPUT PLATE DISSIPATION ypical Operation: CC Plate Voltage CC Grid-No.2 Voltage† CC Grid-No.1 Voltage† CC Grid-No.1 Voltage CC Plate Current CC Grid-No.2 Current CC Grid-No.2 Current CC Grid-No.1 Current (Approx.) CC Grid-No.1 Current (Approx.)	At 400 Mc 6500 800 -140 160 6 0.5 0.2 400	6.5 max. 0.5 max. 45500 max. 600 max. 26000 max. At goo Mc 6500 800 -140 160 6.3 0 4 0.15 800	amm watts watts volts volts volts amm amm

MAY 3, 1954

TENTATIVE DATA 2

UHF BEAM POWER TUBE

Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

The driver stage is required to supply tube losses and rfcircuit losses. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

This value of useful power is measured at load of output circuit having indicated efficiency.

Obtained preferably from a separate source, or from the plate-supply voltage with a voltage divider, or through a series resistor. A series grid-No.2 resistor should not be used if the 6448 or a preceding stage is keyed. In this case, the regulation of the source should be sufficient to prevent the grid-No.2 voltage from rising above 1100 volts under key-up conditions; and additional fixed grid-No.1 bias must be provided to limit the plate current.

†† obtained from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Filament Current per Section .	1	900	1100	amp
Filament Current per Section .	2	960	1160	amp
Grid-No.1 Voltage	1.3	-	-160	volts
Useful Power Output	1,4	11000	-	watts
Power Gain	1,4,5	10	_	

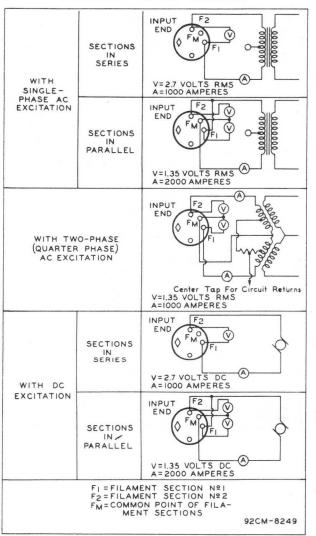
Note 1: With 1.35 volts ac per section.

Note 2: With 1.5 volts ac per section.

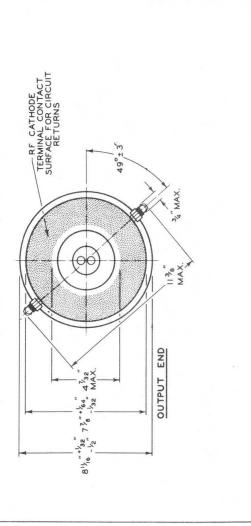
Note 3: With 2-phase excitation of the filament sections, dc plate voltage of 650 volts, dc grid-No.1 voltage adjusted to give a dc plate current of 0.5 ampers

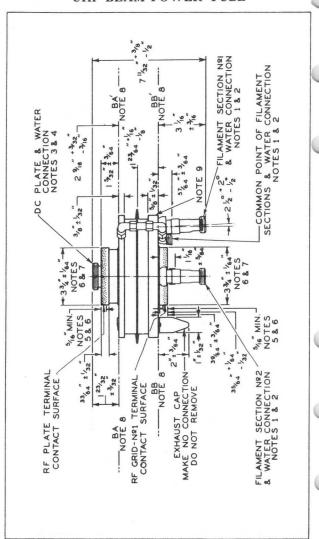
min z-phase excitation of the filament sections. In rf power amplifier circuit having bandwidth of 7 Mc as defined by the half-power points and with dc plate voltage of 7000 volts, dc grid-No.2 voltage of 800 volts, dc grid-No.1 voltage of -130 volts, drive adjusted to give dc plate current of 6.75 amperes, and frequency of 900 Mc. Note 4: With

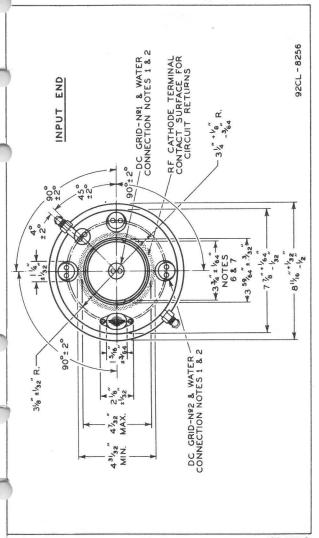
Note 5: With driving power measured at input to input-cavity circuit fed by transmission line having voltage-standing-wave ratio not greater than 2. Power gain is ratio of useful power output to greater than 2. driving power.


OPERATING NOTES

Instructions for conserving filament life of the 6448 and for the use of high-speed electronic protective devices with it are given in the technical bulletin. A copy of the technical bulletin for the 6448 will be supplied on request to Commercial Engineering, RCA, Harrison, N.J.


FILAMENT-SUPPLY CIRCUITS


UHF BEAM POWER TUBE



UHF BEAM POWER TUBE

UHF BEAM POWER TUBE

CAKO

RCA 6448

UHF BEAM POWER TUBE

NOTE 1: WATER CONNECTIONS FOR FILAMENT SECTIONS NO.1 AND NO.2, COMMON POINT OF FILAMENT SECTIONS, GRID NO.1, AND GRID NO.2 HAVE I" -16 AMERICAN STANDARD THREAD, FREE FIT (CLASS 2), 3/8" LONG, AND 2 HOLES 0.257" - 0.270" DIAMETER SPACED 7/16" ON CENTERS.

NOTE 2: THE HOLES IN THE INDICATED WATER CONNECTIONS OF NOTE I WILL ACCEPT THE PINS OF THE PLUG-AND-CYLINDER COMBINATION GAUGE SHOWN IN SKETCH ${\sf G}_1$.

NOTE 3: WATER CONNECTION FOR THE PLATE HAS 1-3/4"-16 AMERICAN STANDARD THREAD, FREE FIT (CLASS 2), 3/8" LONG, AND 2 HOLES 0.508"-0.522" DIAMETER SPACED 11/16" ON CENTERS.

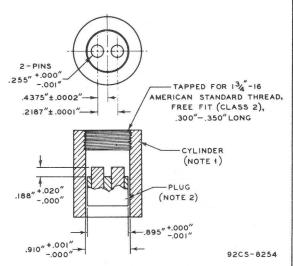
NOTE 4: THE HOLES IN THE PLATE WATER CONNECTION WILL ACCEPT THE PINS OF THE PLUG-AND-CYLINDER COMBINATION GAUGE SHOWN IN SKETCH ${\rm G}_2$.

NOTE 5: CONTACT LENGTH OF CIRCUIT CONNECTOR IS 5/16" MAX.

NOTE 6: THIS DIAMETER DIMENSION IS HELD ONLY OVER A LENGTH OF 5/16"; OVER REMAINDER OF LENGTH, THE DIAMETER MAY INCREASE TO 3-7/8" MAX.

NOTE 7: THE AXIS OF THE RF PLATE CONTACT SURFACE IS CO-INCIDENT WITH THE AXIS OF THE RF GRID-NO.I CONTACT SURFACE WITHIN 3/32".

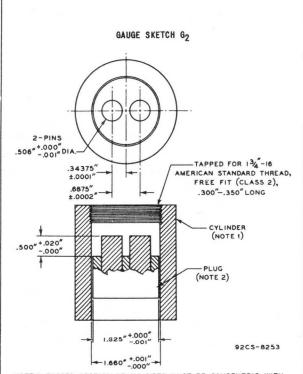
NOTE 8: THE CONTACT SURFACES BA-BA' AND BB-BB' ARE PARALLEL WITHIN 1/16".


NOTE 9: SERIAL NUMBER IS LOCATED ON THIS SURFACE BETWEEN DC GRID-NO.2 AND FILAMENT SECTION NO.1 CONNECTIONS.

CA AG

UHF BEAM POWER TUBE

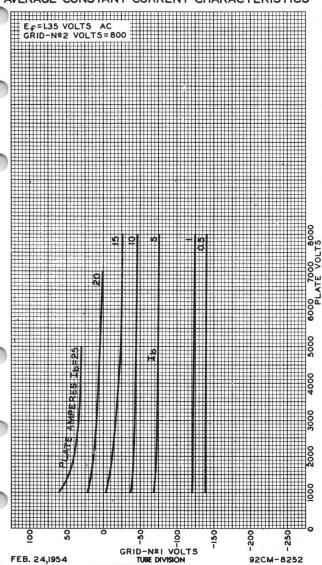
GAUGE SKETCH GI


NOTE 1: TAPPED SECTION OF CYLINDER MUST BE CONCENTRIC
WITH UNTAPPED SECTION OF CYLINDER WITHIN .002".

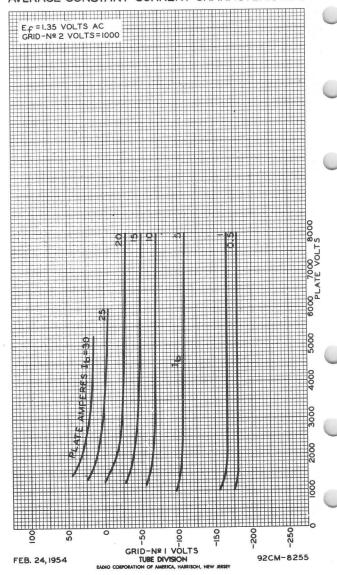
NOTE 2: PLUG SIDES & PIN SIDES MUST BE PARALLEL

WITHIN .001"

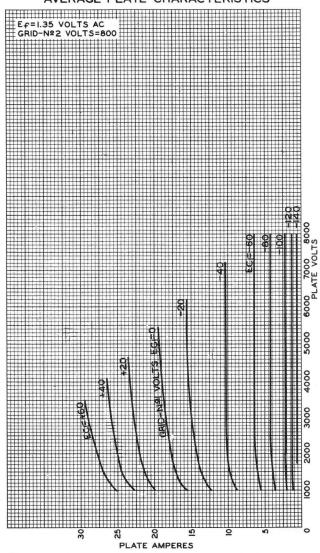
UHF BEAM POWER TUBE


NOTE 1: TAPPED SECTION OF CYLINDER MUST BE CONCENTRIC WITH UNTAPPED SECTION OF CYLINDER WITHIN .002".

NOTE 2: PLUG SIDES & PIN SIDES MUST BE PARALLEL WITHIN .001".


GRAGO.

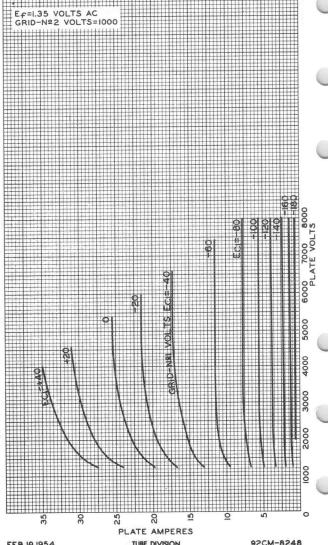
AVERAGE CONSTANT-CURRENT CHARACTERISTICS


AVERAGE CONSTANT-CURRENT CHARACTERISTICS

6448 AVERAGE PLATE CHARACTERISTICS

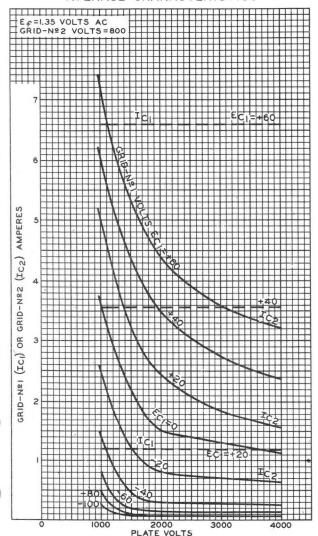
C N D

FEB.18,1954


TUBE DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8247

AVERAGE PLATE CHARACTERISTICS



FEB.19,1954

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY 92CM-8248

AVERAGE CHARACTERISTICS

FEB. 17, 1954

TUBE DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8245

CA AGO

AVERAGE CHARACTERISTICS

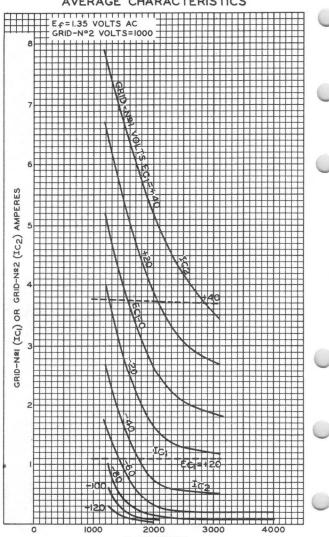


PLATE VOLTS

(%)

MAGNETRON FORCED-AIR COOLED

Fixed Frequency: 5400 ± 20 Mc

rixed Frequency: 5400 i 20 Mc	
GENERAL DATA lectrical:	
leater, for Unipotential Cathode: Voltage	amp ent
must never exceed I2 amperes, even momentari linimum Cathode Heating Time	
Anode Temperature Change (After warmup) 0.15	c/°C
echanical:	
Dimensions and Terminal Connections: See Dimensional Outline H - Heate K - Catho P - Anode	ode
onnector (For heater terminal and heater-cathode terminal) Uc in ite* No. 115 with built-in o	ca-
lounting Position	Any
for FinsAn air stream should be directed along the cooling toward the body of the tube. The stream may be obtained from a tangular nozzle about 3° x 1-1/2 located so that the plane the the 3° side is parallel with the plane of a cooling fin and so the nozzle is centered on the body of the tube. Adequate is should be provided so that the temperature of the anode block does exceed 150°C.	fins rec- ough that flow not
To Heater-Cathode TerminalAdequate flow should be provided to m tain the temperature of the heater-cathode terminal below 165°C.	ain-
/eight (Approx.)	
PULSED OSCILLATOR SERVICE	
laximum and Minimum Ratings, Absolute Values:	
For Duty Cycle of 0.001 max.	
PEAK ANODE VOLTAGE 16 max.	kv
PEAK ANODE CURRENT	amp
PEAK POWER INPUT	kw
Manufactured by Ucinite Division of United-Carr Fastener Corporat Newtonville 60, Massachusetts.	ion,
For atmospheric pressures greater than 40 centimeters of mercur 25°C. Operation at pressures lower than 40 centimeters of merc (altitudes higher than 16000 feet) may result in arcover with 0 sequent damage to the tube.	y at cury con-
TENTATIVE DA	TA

MAGNETRON

AVERAGE POWER INPUT													kw
PULSE DURATION OPERATION TIME IN A			•		٠	٠		٠	*	2.2	max.		μsec
100-MICROSECOND	NTER	RVAL			×	•	٠				max		μsec
RATE OF RISE OF VOL	TAGE	. PU	LSF			ķ	ĕ	d			max		/μsec /μsec
ANODE BLOCK TEMPERA	TURE									150	max		00
HEATER-CATHODE TERM										165			00
LOAD VOLTAGE STANDI	NG-V	VAVE	RA	ITA	0	٠				1.5	max		
Typical Operation≜				Ra	ti	0	Ec	ļua	al	To or		Than	1.05
A	lith	Duty	y (yc.	le	G	f	0.	000	28			
Heater Voltage													
Magnetic Field					ě	SL	PF	10	ed				
												with	
Peak Anode Voltage	(App	rox	.)		ě					15			kv
Peak Anode Current					ě					13.5			amp
Pulse Repetition Ra	ite.			*	٠					400			cps
Pulse Duration				*	٠			•		2			μsec
Maximum RF Bandwidt	h.			•	•		٠	•		1.5			Mc
Peak Power Output.			100		v		10		rwit.	85			kw

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Not	te Min.	Max.	
Heater Current	. 1	2.8	3.6	amp
Peak Anode Voltage		14	16	kv
Peak Power Output		3 75	-	kw
Pulses Missing From Total.		Δ –	0.25	9

Note 1: With 10.0 volts ac on heater.

Note 2: With peak anode current of 13.5 amperes, and heater voltage reduced to 9.1 volts.

Note 3: With peak anode voltage of approximately 15 kilovolts, anode block temperature of approximately 100°C, and maximum YSWR equal to or less than 1.05.

Note 4: Pulses are considered to be missing if the energy level at the operating frequency is,less—than 70 per cent of the normal value at a YSWR of 1.5, and with VSWR phase adjusted to produce maximum instability.

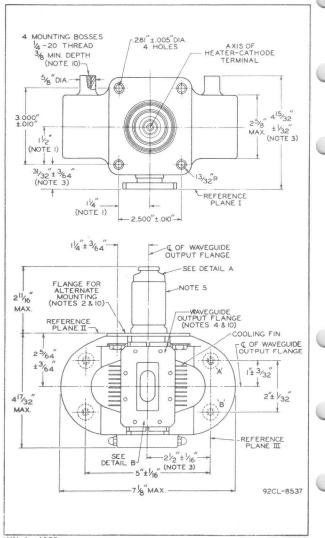
OPERATING CONSIDERATIONS

The waveguide output flange is designed for use with a standard $| \text{"} \times 2 \text{"} \text{ rectangular waveguide such as that designated by RETMA as WR 187, or that having the JAN designation RG-49/U, and mates with flanges such as Airtron <math display="inline">\blacksquare$ No.B54626 or equivalent.

A It is essential that the input circuit be designed so that if arcing occurs the energy per pulse delivered to the tube cannot greatly exceed the normal energy per pulse. To satisfy this requirement, it is recommended that pulsers of the discharging-network type be used.

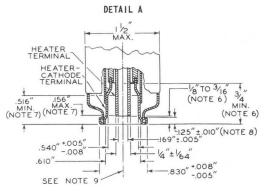
Manufactured by Airtron, Inc., Linden, N. J.

MAGNETRON

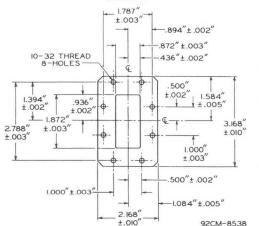

As soon as the 6521 begins to oscillate, the heater voltage should be reduced to 9.1 volts when it is operated under the typical operating conditions shown in the tabulated data. For other operating conditions, the heater voltage (E $_{\rm f}$) should be reduced depending on the average power input (P $_{\rm i}$) to the tube as follows:

P_i	(wat	tts)	E_f (volts)
up	to	90	10.0
90	to	130	9.9
130	to	180	9.5
180	to	220	9.1
220	to	256	8.9

MAGNETRON



MAY 1, 1955

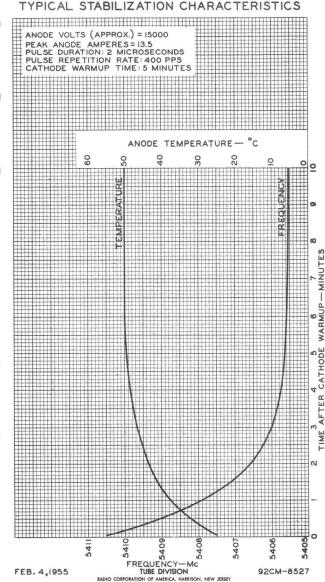

CE-8537A

DETAIL B

Reference plane I is defined as that plane against which the waveguide output flange abuts.

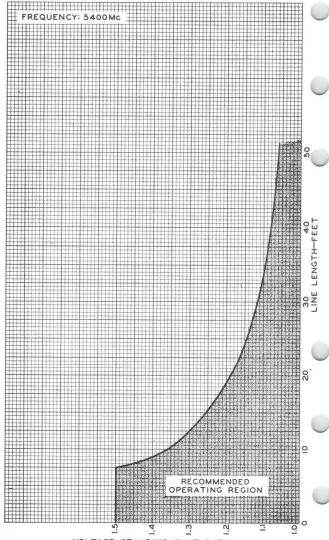
Reference plane II is defined as that plane perpendicular to reference plane I and touching the surface of the flange for alternate mounting.

Reference plane III is defined as that plane perpendicular to reference plane I and passing through the exact centers of holes 'A' and 'B'.

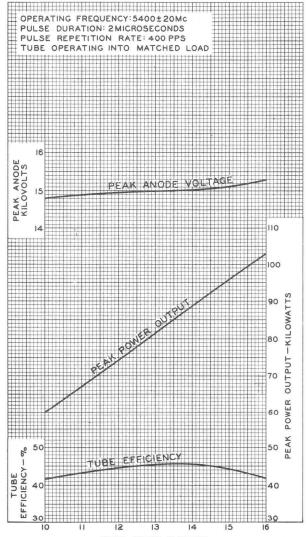


MAGNETRON

- **NOTE** 1: The axis of the heater-cathode terminal will be within the confines of a cylinder whose radius is 3/64" and whose axis is perpendicular to reference plane II at the specified location.
- **NOTE 2:** When resting on a smooth surface, this flange surface shall have a flatness such that a 0.050" thickness gauge I/8" wide shall not enter between the two surfaces, and it shall be perpendicular to reference plane I within $\pm 2^{\circ}$.
- NOTE 3: The tolerances include angular as well as lateral deviations.
- NOTE 4: With the waveguide output flange resting on a plane surface, a 0.005" thickness gauge 1/8" wide shall not enter between the two surfaces.
- **NOTE** 5: No part of the tube support fastened to the flange for alternate mounting should extend within the surface of a cylinder whose radius is 3/4" and whose axis is perpendicular to reference plane II at the specified location.
- **WOTE** 6: These dimensions define extremities of the 0.169" internal diameter of the cylindrical heater terminal.
- NOTE 7: These dimensions define extremities of the 0.540" internal diameter of the cylindrical heater-cathode terminal.
- NOTE 8: No part of the connector device for the heater and heater-cathode terminals should bear against the underside of this lip.
- **WOTE** 9: The heater terminal and heater-cathode terminal are concentric within 0.010".
- NOTE IO: Connection to the anode may be made through the mounting bosses, the flange for alternate mounting, or the waveguide output flange.


TYPICAL STABILIZATION CHARACTERISTICS

OPERATING REGION


VOLTAGE STANDING-WAVE RATIO

TUBE DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-8528

PERFORMANCE CHART

PEAK ANODE AMPERES

Ch.

TWIN BEAM POWER TUBE

Useful at frequencies up to 470 Mc

9.	Useful at frequencies up to 470 MC
	Unless Otherwise Specified, Values are on a Per-Tube Basis
	GENERAL DATA
	Electrical:
	Heater, for Unipotential Cathode: Voltage 6.3 ± 10%
	& 7), and heater 3.4 $\mu\mu f$
	Mechanical:
	Mounting Position
	Pin 1-Grid No.2 Pin 2-Grid No.1 of Unit No.2 Pin 3-Heater Pin 4-Cathode, Grid No.3, Internal Shield Pug (4) Pun Pun 6-Grid No.1 of Unit No.1 Pin 7-Grid No.2 Pun 1-Plate of Unit No.1 Pug-Plate of Unit No.1 Pug-Plate of Unit No.2 Pin 5-Heater
)	PLANE OF ELECTRODES OF EACH UNIT IS PARALLEL TO PLANE THROUGH AXIS OF TUBE AND AA*
	Bulb Temperature (At hottest point) 210 max. OC Cooling: Free circulation of air around the tube is required. In addition, some forced-air cooling will generally be required to prevent exceeding the specified maximum bulb temperature.
)	Each unit. With no external shield.

AF POWER AMPLIFIER & MODULATOR - Class AB2+

F75 115	ccso	ICASOO	
Maximum Ratings, Absolute Values:			
DC PLATE VOLTAGE	500 max. 300 max. 400 max. 150 max. 70 max. 20 max.	600 max. 300 max. 400 max. 150 max. 85 max. 25 max.	
to cathode	135 max.	135 max.	volts
Typical CCS Operation: DC Plate Voltage DC Grid-No.2 Voltage [♠] DC Grid-No.1 (Control-	400 200	500 200	volts
Grid) Voltage: From fixed-bias source	-23	-26	volts
Peak AF Grid-No.1-to-Grid-No.1 Voltage	72	70	volts
DC Plate Current: Zero-signal value Maxsignal value DC Grid-No.2 Current:	25 145	20 116	ma ma
Zero-signal value Maxsignal value DC Grid-No.1 Current:	0.1 10	0.1 10	ma ma
Maxsignal value	2.4	2.6	ma
Effective Load Resistance (Plate to plate)	7100	11100	ohms
(Approx.)♦	0.1	0.1	watt
MaxSignal Power Output (Approx.)	39	40	watts
Typical ICAS Operation: DC Plate Voltage DC Grid-No.2 Voltage*A DC Grid-No.1 (Control-	500 200	600 200	volts volts
Grid) Voltage: From fixed-bias source	-25	-26	volts

[†] Subscript 2 indicates that grid-No.1 current flows during some part of the input cycle.

**Averaged over any audio-frequency cycle of sine-wave form.

o, oo, 🏊 , 🕽 : See next page.

- 1				-			
	Typical ICAS Operation	(Co	nt'o	i):			
	Peak AF Grid-No.1-to-Gr	id-					
	No.1 Voltage				76	76	volts
	DC Plate Current:						
	Zero-signal value .				25	2:	L ma
N	MaxSignal value .				145	135	5 ma
7.	DC Grid-No.2 Current:			•	110	-/-	
	Zero-signal value .				0.1	0.1	L ma
	Maxsignal value .			•	10	13	
	DC Grid-No.1 Current:			•	10	-,	, , , , , ,
					2.9	3.3	3 ma
	Max.—signal value . Effective Load Resistan		• •	•	2.5	2.,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	2001 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ice			8900	11400	ohms
١	(Plate to plate).	٠.			0900	11400) Ullilla
7.	MaxSignal Driving Pow	/er			0.4	0	
	(Approx.)♥		• 9		0.1	0.	1 watt
	MaxSignal Power Outpu	ıt					
	(Approx.)				50	5	7 watts
		100					
	Maximum Circuit Values	(66	5 or	10	AS):		
	Grid-No.1-Circuit Resis	tan	ce:				
	With fixed bias					30000	max. ohms
	With cathode bias .					No	t recommended
j	PLATE-MODULATED PUSH-F	IIII	RF	POW	FR AM	P Class	C Telephony
- 8							
- 8	Carrier conditions per tube	e fo	T USE	wi	th a ma	x. modulatio	m factor of 1.0
- 8					C	CS^{0} I	CASOO
	Mayimum Datings 451	. + .	Val	100			
	Maximum Ratings, Absolu						100 M
	For max. plate voltage	ge a	and i	nax.	plat		ove 100 Mc,
	For max. plate voltage	ge a	and i	nax.			ove 100 Mc,
	For max. plate voltage	ge a	and i	nax.	plat Chart	I	ove 100 Mc,
h	For max. plate voltag	ge a	nd i Rati	nax.	plat Chart 400	I max. 50	
)	For max. plate voltages DC PLATE VOLTAGE	ee l	Rati	nax.	plat Chart 400 300	I max. 500 max. 300) max. volts
)	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.2 SUPPLY VOL	ee l	Rati	nax.	plat Chart 400 300	I max. 500 max. 300) max. volts) max. volts
)	For max. plate voltage s DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V	ee 1 OLT TAG	Rati	nax.	plat Chart 400 300 400	I max. 500 max. 300 max. 400) max. volts) max. volts
)	For max. plate voltages DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.2 SUPPLY VOL DC GRID-No.1 (CONTROL-CO	ee 1 OLT TAG	Rati	nax.	plat Chart 400 300 400	I max. 500 max. 300 max. 400 max200) max. volts) max. volts) max. volts
)	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.2 SUPPLY VOL DC GRID-No.1 (CONTROL-C DC PLATE CURRENT	ee 1 OLT TAG	Rati	nax.	plat Chart 400 300 400 -200 125	I max. 500 max. 300 max. 400 max200 max. 120) max. volts) max. volts) max. volts) max. volts
)	For max. plate voltage s DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-C DC PLATE CURRENT DC GRID-No.1 CURRENT	ee 1 OLT TAG	Rati	nax.	plat Chart 400 300 400 -200 125 4	I max. 50 max. 30 max. 40 max20 max. 12 max.	O max. volts O max. volts O max. volts O max. volts To max. volts To max. max To max. max
)	For max. plate voltages DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.2 SUPPLY VOL DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT	ee 1 OLT TAG	Rati	nax.	plat Chart 400 300 400 -200 125 4	I max. 50 max. 30 max. 40 max20 max. 12 max. max. 5	O max. volts O max. volts O max. volts O max. volts F max. ma F max. watts
)	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT DC GRID-No.1 CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT	ee 1 OLT TAG	Rati	nax.	plat Chart 400 300 400 -200 125 4 45 2	I max. 500 max. 300 max. 400 max200 max. 120 max. 5 max.	O max. volts O max. volts O max. volts O max. volts To max. ma A max. ma To max. watts
	For max. plate voltage s DC PLATE VOLTAGE	ee I	AGE SE O)	nax.	plat Chart 400 300 400 -200 125 4 45 2	I max. 500 max. 300 max. 400 max200 max. 120 max. 5 max.	O max. volts O max. volts O max. volts O max. volts To max. ma A max. ma To max. watts E max. watts
	For max. plate voltages DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) VOLTAGE OF CONTROLOGY DC GRID-No.1 (CONTROLOGY DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOLTAGE PEAK HEATER-CATHODE VOLTAGE PEAK HEATER-CATHODE VOLTAGE PEAK HEATER-CATHODE VOLTAGE DC PLATE VOLTAGE STANDARD VOLTAGE STANDARD VOLTAGE STANDARD VOLTAGE STANDARD VOLTAGE STANDARD VOLTAGE DC PLATE VOLTAGE STANDARD VOLTAGE	OLTAGGRID	AGE (COLT)	nax. ng	plat Chart 400 300 400 -200 125 4 45 2	I max. 500 max. 300 max. 400 max200 max. 120 max. 5 max.	O max. volts O max. volts O max. volts O max. volts To max. ma A max. ma To max. watts
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 SUPPLY VOL DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT PLATE INPUT GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOL Heater negative with	OLTAGGRID	AGE (COLT)	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5	I max. 500 max. 300 max. 400 max200 max. 120 max. max. max. max. 16.	O max. volts O max. volts O max. volts O max. volts O max. max. max 4 max. max 5 max. watts 7 max. watts
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT DC GRID-NO.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOL Heater negative with to cathode	ge a ee l'OLTAG	AGE SE:	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5	I max. 500 max. 300 max. 400 max200 max. 120 max. max. max. max. 16.	O max. volts O max. volts O max. volts O max. volts To max. ma A max. ma To max. watts
	For max. plate voltage s DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-C DC PLATE CURRENT DC GRID-No.1 CURRENT DC GRID-No.1 CURRENT PLATE INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOI Heater negative with to cathode Heater positive with	ge a ee l'OLTAG	AGE SE:	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5	I max. 500 max. 300 max. 400 max200 max. max. max. 5 max. 16.	O max. volts O max. volts O max. volts O max. volts To max. ma A max. ma To max. watts To max. watts To max. watts To max. watts
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) VOLTAGE DC GRID-No.1 (CONTROL-CONTROL	VOLTAG	AGE GE O) OLTA	nax. ng	plat 400 300 400 -200 125 4 45 2 13.5	I max. 500 max. 300 max. 400 max200 max. max. max. max. 16. max. 13	O max. volts O max. volts O max. volts O max. volts 5 max. ma 4 max. ma 5 max. watts 2 max. watts 5 max. volts 5 max. volts
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (SCREEN) V DC GRID-No.1 (CONTROL-C DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOL Heater negative with to cathode Heater positive with to cathode AP preferably obtained from a	VOLTAG	AGE GE O) OLTA	nax. ng	plat 400 300 400 -200 125 4 45 2 13.5	I max. 500 max. 300 max. 400 max200 max. max. max. max. 16. max. 13	O max. volts O max. volts O max. volts O max. volts 5 max. ma 4 max. ma 5 max. watts 2 max. watts 5 max. volts 5 max. volts
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE INPUT FRID-No.2 INPUT PLATE OLURENT PLATE OLURENT HEATE OLURENT HEATE OLURENT PLATE OLURENT HEATE OLURENT PLATE OLURENT HEATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT	VOLTIAGERIE V	AGE AGE GE: Spec Spec	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5 135	I max. 500 max. 300 max. 400 max. 120 max. 120 max. 120 max. 130 max. 130 from the pla	O max. volts O max. volts O max. volts O max. volts 5 max. ma 4 max. ma 5 max. watts 7 max. watts 5 max. volts 5 max. volts 5 max. volts te-voltage supply
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE INPUT FRID-No.2 INPUT PLATE OLURENT PLATE OLURENT HEATE OLURENT HEATE OLURENT PLATE OLURENT HEATE OLURENT PLATE OLURENT HEATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT	VOLTIAGERIE V	AGE AGE GE: Spec Spec	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5 135	I max. 500 max. 300 max. 400 max. 120 max. 120 max. 120 max. 130 max. 130 from the pla	O max. volts O max. volts O max. volts O max. volts 5 max. ma 4 max. ma 5 max. watts 7 max. watts 5 max. volts 5 max. volts 5 max. volts te-voltage supply
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (CONTROL-CO DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE INPUT FRID-No.2 INPUT PLATE OLURENT PLATE OLURENT HEATE OLURENT HEATE OLURENT PLATE OLURENT HEATE OLURENT PLATE OLURENT HEATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT PLATE OLURENT PLATE OLURENT APPEREADLY OLURENT PLATE OLURENT	VOLTIAGERIE V	AGE AGE GE: Spec Spec	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5 135	I max. 500 max. 300 max. 400 max. 120 max. 120 max. 120 max. 130 max. 130 from the pla	O max. volts O max. volts O max. volts O max. volts 5 max. ma 4 max. ma 5 max. watts 7 max. watts 5 max. volts 5 max. volts 5 max. volts te-voltage supply
	For max. plate voltage DC PLATE VOLTAGE DC GRID-No.2 (SCREEN) V DC GRID-No.1 (SCREEN) V DC GRID-No.1 (CONTROL-C DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOL Heater negative with to cathode Heater positive with to cathode AP preferably obtained from a	VOLTIAGERIE V	AGE AGE GE: Spec Spec	nax. ng	plat Chart 400 300 400 -200 125 4 45 2 13.5 135	I max. 500 max. 300 max. 400 max. 120 max. 120 max. 120 max. 130 max. 130 from the pla	O max. volts O max. volts O max. volts O max. volts 5 max. ma 4 max. ma 5 max. watts 7 max. watts 5 max. volts 5 max. volts 5 max. volts te-voltage supply

o, oo: See next page.

	C	CS°	IC	ASOO	
Typical Operation up to 100 Mc:					
DC Plate Voltage	400 200		500 200		volts volts
sistor having max. value of DC Grid-No.1 Voltage★	45000 -61		45000 ^J -61		ohms volts
From combination employing grid resistor of	6200 -45 100 7 2.5 0.2 31		6200 -45 100 7 2.5 0.2 40		ohms volts ma ma watt watts
Typical Operation at 462 Mc: DC Plate Voltage	300		300		volts
DC Grid-No.2 Voltage (Approx.) From an adjustable series resistor having max. value of DC Grid-No.1 Voltage*	200 45000 -60		240 25000 –60		ohms volts
From combination employing grid resistor of with fixed bias of DC Plate Current DC Grid-No.2 Current (Approx.)	15000 -45 75 4		15000 -45 95 5.5		ohms volts ma ma
DC Grid-No.1 Current (Approx.) Driver Power Output (Approx.). Useful Power Output(Approx.).	1 7 9		1 7 12		ma watts watts
Maximum Circuit Values: Grid-No.1-Circuit Resistance‡	30000	may	30000	may	ohms

PUSH-PULL RF POWER AMP. & OSCILLATOR--Class C Telegraphy and PUSH-PULL RF POWER AMPLIFIER -- Class CFM Telephony

CCSO

Maximum Ratings, Absolute Values:

ICAS00

For max. plate voltage and max. plate input above 100 Mc, see Rating Chart II

DC PLATE VOLTAGE . . . 500 max. volts 600 max. DC GRID-No.2 (SCREEN) VOLTAGE. 300 max. volts 300 max.

Obtained preferably from a separate source modulated along with the plate supply. or from the modulated plate supply through a series resistor. It is recommended that this resist roe adjustable to permit obtaining the desired operating plate current after initial tuning adjustments are completed. Obtained from a combination of grid-No.1 resistor with either fixed supply or cathode resistor. The combination of grid-No.1 resistor and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by bias-supply compensation.

0,00, #, ♣, ♣, ‡, □: See next page.

AUG. 16. 1954

TENTATIVE DATA 2

-		ccso	ICASº0	
-	DC GRID-No.2 SUPPLY VOLTAGE DC GRID-No.1 (CONTROL-GRID)	400 max.	400 max.	volts
	DC GRID-No.1 (CONTROL-GRID) VOLTAGE DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT GRID-No.2 INPUT PLATE DISSIPATION PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect to cathode to cathode to cathode	-200 max. 150 max. 4 max. 70 max. 3 max. 20 max.		watts watts volts
		-2-		
	Typical Operation up to 100 Mc: DC Plate Voltage	500 200 40000 -44 12000 330 120 8 3.7 0.2 46	600 200 40000 -44 12000 330 120 8 3.7 0.2 56	volts volts ohms volts ohms ohms ma ma watt watts
	Typical Operation as Amplifier a	t 462 Mc:		
	DC Plate Voltage	300 200	300 250	volts volts
	From an adjustable series resistor having max, value of . DC Grid-No.1 Voltage From grid resistor of From cathode resistor of DC Plate Current DC Grid-No.2 Current (Approx.)	-31 12000 240 120 3	20000 -38 12000 240 150 6	ohms volts ohms ohms ma ma
	DC Grid-No.1 Current (Approx.) .	sured at load	3.2 of output ci	

approximately 29 watts CCS and 36 watts ICAS.

key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115\$ of the carrier conditions. Connected to a 400-volt tap on suitable voltage divider across the plate-supply voltage.

At 100 Mc, useful power output measured at load of output circuit is approximately 43 watts CCS and 52 watts ICAS.

Typical operation as an oscillator at 462 Mc is the same as that shown for amplifier service except that the useful power output measured at load of output circuit is approximately 9 watts CCS and 13 watts ICAS. o, oo, t, ... Bee next page.

TWIN REAM POWER TURE

I WIN BEAM PO	JWER .	LORE	
	ccsº	ICAS ⁰⁰	
Driver Power Output (Approx.) Useful Power Output (Approx.)	7 16	7 20	watts watts
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance‡	30000	30000 max.	ohms
FREQUENCY TRIPLE	R - Class	С	
	CCSO	ICAS 00	
Maximum Ratings, Absolute Values:			
For max. plate voltage and max.	plate inp	ut above 100	Mc,
see Rating C			
DC PLATE VOLTAGE	400 max.	400 max.	volts
DC GRID-No.2 (SCREEN) VOLTAGE .	300 max.	300 max.	volts
DC GRID-No.2 SUPPLY VOLTAGE DC GRID-No.1 (CONTROL-GRID)	400 max.	400 max.	volts
VOLTAGE	-200 max.	-200 max.	volts
DC PLATE CURRENT	100 max.	115 max.	ma
DC GRID-No.1 CURRENT	4 max.	4 max.	ma
PLATE INPUT	36 max.	45 max.	watts
GRID-No.2 INPUT	3 max. 20 max.	3 max. 25 max.	watts
PEAK HEATER-CATHODE VOLTAGE:	20 max.	ZS Max.	walls
Heater negative with respect	125	12E may	1+a
to cathode	135 max.	135 max.	VOILS
to cathode	135 max.	135 max.	volts
Typical Operation as Tripler to 4	62 Mc:		
DC Plate Voltage	300	300	volts
DC Grid-No.2 Voltage (Approx.).	220	250	volts
From an adjustable series re-			
sistor having max. value of . ;		20000 -148	volts
DC Grid-No.1 Voltage	-148 51000	-148 51000	ohms
DC Plate Current	90	110	ma
DC Grid-No.2 Current (Approx.) .	5	6.5	ma
DC Grid-No.1 Current (Approx.)	2.9	2.9	ma

When grid No.1 is driven positive, the total dc grid-No.1-circuit resistance should not exceed the specified value of 30000 ohms. If this value is insufficient to provide adequate bias, the additional required bias must be supplied by a cathode resistor or fixed supply.

Obtained from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods.

o, oo, . See next page.

Obtained preferably from a separate source, or from the plate-supply voltage with a voltage divider, or through a series resistor. A series grid-No.2 resistor should be used only when the 6524 is used in a circuit which is not keyed. It is recommended that this resistor be adjustable to permit obtaining the desired operating plate current after initial tuning adjustments are completed. Grid-No.2 voltage must not exceed 400 volts under key-up conditions.

652 A

TWIN BEAM POWER TUBE

				CCSO	ICAS 00	
Driver	Power	Output	(Approx.) .	4	4	watts
Useful	Power	Output	(Approx.)	7	8.5	watts

Maximum Circuit Values:

Grid-No.1-Circuit Resistance‡‡ . 60000 max. 60000 max. ohms

Mata

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	. 1	1.175	1.325	amp
Mu-Factor, Grid No.2 to				
Grid No.1 (Each Unit)	1,2	7	10	
Direct Interelectrode				
Capacitances (Each Unit)	:			
Grid No.1 to plate	3	_	0.11	$\mu\mu$ f
Grid No.1 to cathode &				
grid No.3 & internal				
shield, grid No.2 (pins				
1 & 7), and heater	. 3	5.8	8.2	$\mu\mu$ f
Plate to cathode & grid				
No.3 & internal shield,				
grid No.2 (pins 1 & 7),				
and heater	. 3	2.6	4.2	μμτ

Note 1: With 6.3 volts ac on heater.

Note 2: With dc plate voltage of 200 volts, dc grid-No.2 voltage of 200 volts, and dc plate current of 50 ma.

Note 3: With no external shield.

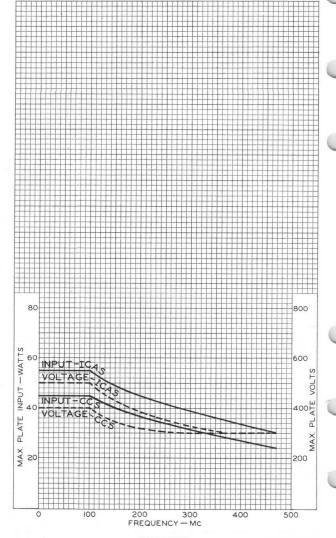
00 Intermittent Commercial and Amateur Service.

This value of useful power is measured at load of output circuit.

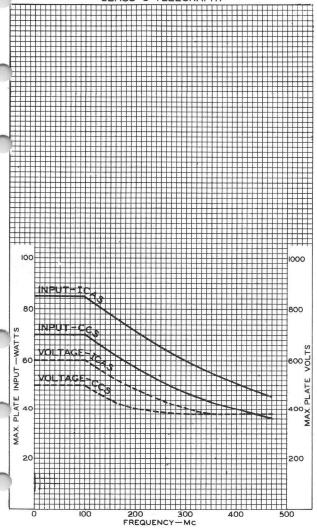
When grid No.1 is driven positive, the total dc grid-No.1-circuit resistance should not exceed the specified value of 60000 ohms. If this value is insufficient to provide adequate bias, the additional required bias must be supplied by a cathode resistor or fixed supply.

OPERATING CONSIDERATIONS

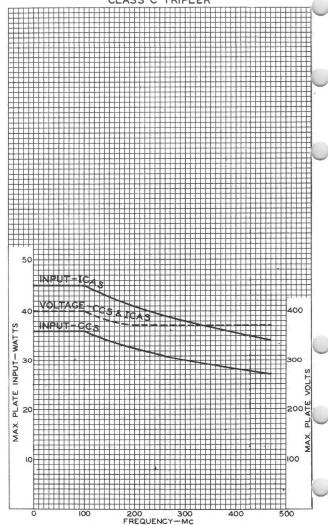
Shielding of the 6524 in rf service is required for stable operation. A convenient method of shielding is to mount the socket approximately 5/8" beneath a hole in the chassis plate so that when the 6524 is inserted in the socket, the internal shield (see Dimensional Outline) of the tube will be close to the edge of the hole and in the same plane as the chassis plate. This arrangement provides an effective shield to isolate the grid-No.l circuits from the plate circuits.

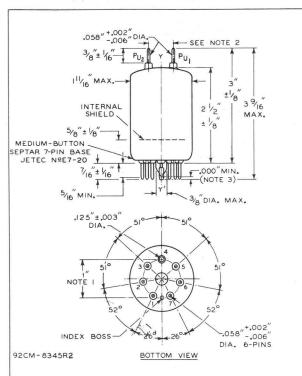

← Indicates a change.

O Continuous Commercial Service.



RATING CHART I CLASS C TELEPHONY



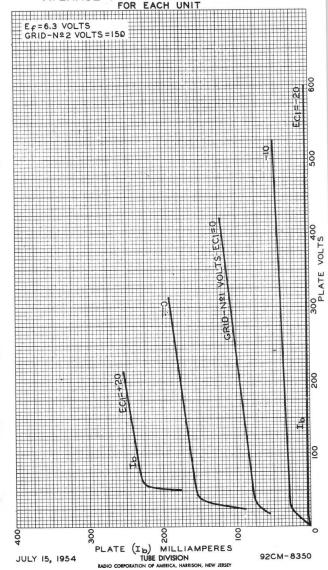

RATING CHART II CLASS C TELEGRAPHY

TWIN BEAM POWER TUBE

THE REFERENCE AXIS YY' IS DEFINED AS THE AXIS OF THE BASE-PIN GAUGE DESCRIBED IN NOTE 1.

For Notes, see next page.

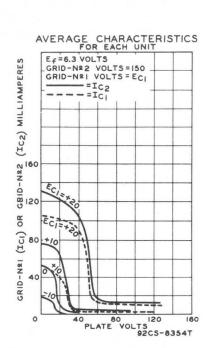
TWIN BEAM POWER TUBE

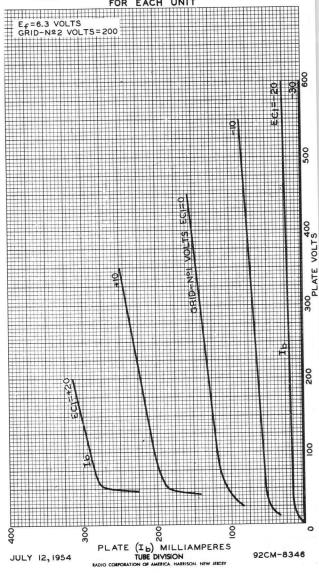

NOTE I: ANGULAR VARIATIONS BETWEEN PINS AND VARIATION IN PIN-CIRCLE DIAMETER ARE HELD TO TOLERANCES SUCH THAT PINS WILL ENTER TO A DISTANCE OF 0.375" A FLAT-PLATE BASE-PIN GAUGE HAVING SIX HOLES 0.0800" ± 0.0005" AND ONE HOLE 0.1450" ± 0.0005" ARRANGED ON A 1.0000" ± 0.0005" CIRCLE AT SPECIFIED ANGLES WITH TOLERANCE OF ± 5' FOR EACH ANGLE. GAUGE IS ALSO PROVIDED WITH A HOLE 0.500" ± 0.010" CONCENTRIC WITH PIN CIRCLE WHOSE CENTER IS ON THE AXIS YY'.

NOTE 2: THE PLATE LEADS WILL ENTER A FLAT-PLATE PLATE-LEAD GAUGE HAVING MINIMUM THICKNESS OF 0.375" AND HAVING TWO HOLES 0.1200" \pm 0.0005" WHOSE CENTERS ARE LOCATED AT A DISTANCE OF 0.343" \pm 0.001" FROM THE AXIS YY¹ AND WHOSE AXES ARE PARALLEL TO YY¹. THE PLANE THROUGH THESE AXES WILL BE $90^{\rm O}$ \pm 5¹ FROM THE PLANE THROUGH YY¹ AND PIN No.4.

NOTE 3: EXHAUST TIP WILL NOT EXTEND BEYOND THE PLANE WHICH

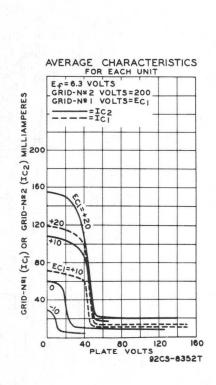
RCA 6524 Ch.

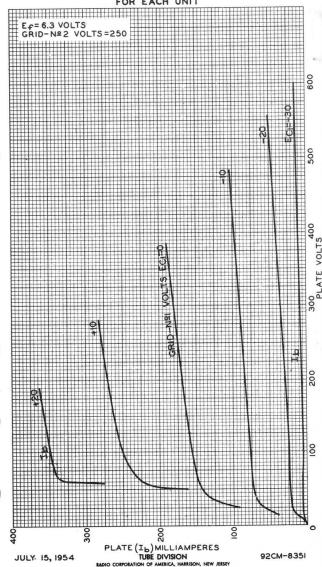

AVERAGE PLATE CHARACTERISTICS FOR EACH UNIT



CHARACTERISTICS CURVES

RCA) 6524

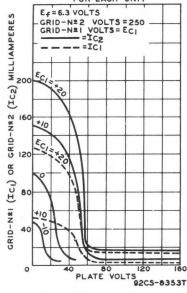

AVERAGE PLATE CHARACTERISTICS FOR EACH UNIT



CHARACTERISTICS CURVES

RCA 6524 C.S.

AVERAGE PLATE CHARACTERISTICS FOR EACH UNIT



CHARACTERISTICS CURVES

50

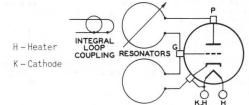
ohms

G-Grid

P-Plate

Fixed-Tuned Oscillator Triode

PENCIL TYPE WITH INTEGRAL RESONATORS For Radiosonde Service at 1680 Mc


GENERAL DATA

	ec			
_	CC	 1 (- 0	

Heater, for Unipotential Cathod	de	:				
Voltage range (AC or DC)					5.2 to 6.6ª	volts
Current at heater volts = 6.0						amp
Frequency (Approx.)				٠		Mc
Frequency Adjustment Range					±12 b	Mc
RF Coaxial Output Terminal:						

Mechanical:

Operating Position.										Any
Dimensions										See Dimensional Outline
										. Integral Part of Tube
Terminal Connection	S	(Se	ee	Di	ime	n	510	one	ıl	Outline):

Characteristic impedance (Approx.). . .

FIXED-TUNED OSCILLATOR SERVICE

Maximum	and	Minimum	Ratings,	$Absolute-{\it Maximum}$	Values:
---------	-----	---------	----------	--------------------------	---------

DC PLATE VOLTAGE.		**						120 max.	volts
DC PLATE CURRENT.								34 max.	ma
DC GRID CURRENT .								8 max.	ma
PLATE INPUT								4 max.	watts
PLATE DISSIPATION								3.6 max.	watts
AMB FNT-TEMPERATII								-55 to $+75$	oC

Operating Frequency Drift:

Maximum Frequency Drift:

For heater voltage range of 5.2 to 6.6 volts, plate voltage range of 95 to 117 volts, and ambient-temperature range of +22° to -40° C

+4 to -1

This range of heater voltage is for radiosonde applications in which the heater is supplied from batteries and in which the equipment design requirements of minimum size, light weight, and high efficiency are the primary considerations even though the average life expectancy of the 6562/5794A in such service is only a few hours.

As supplied, tubes are adjusted to 1680 ± 4 megacycles.

6562/5794A

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min. Av.	Max.
Heater Current	. 1	0.135 0.148	0.157 amp
Power Output	. 2,4	- 600	- mw
Power Output	. 3,4	300 -	- mw

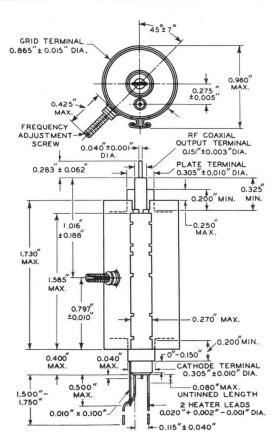
Note 1: With 5.2 volts ac on heater.

Note 2: With ac heater voltage of 6.6 volts, dc plate voltage of 117 volts, frequency of 1680 Mc, and grid resistor having resistance value within the range of 1300 to 2400 ohms, such that the dc plate current will not exceed 34 milliamperes. The value used for any individual tube is stamped on the tube and is one of the following standard values: 1300, 1500, 1800, 2200, or 2400 ohms.

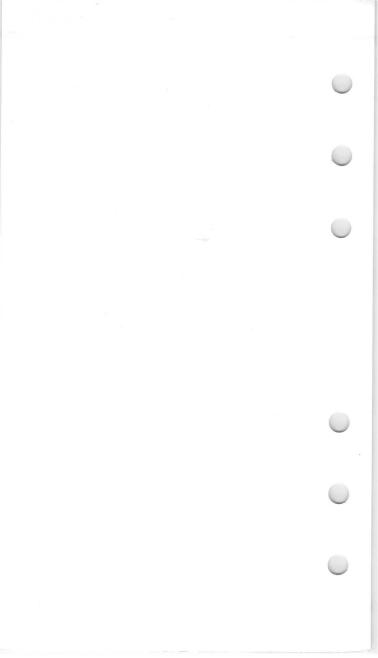
Note 3: With ac heater voltage of 5.2 volts, dc plate voltage of 95 volts, frequency of 1680 Mc, and grid-resistor value specified in Note 2 above. When this value of resistance is used, the dc plate current will not exceed 34 milliamperes under the specified operating conditions.

Note 4: Measured with a coaxial-type load having an impedance of approximately 50 ohms and adjusted for a maximum voltage standing wave ratio of 1.1.

OPERATING CONSIDERATIONS


The flexible heater leads of the 6562/5794A are usually soldered to the circuit elements. Soldering of these connections should not be made closer than $3/4^{\rm m}$ from the end of the tube (excluding cathode tab). If this precaution is not followed, the heat of the soldering operation may crack the glass seals of the leads and damage the tube. Under no circumstances should any of the electrodes be soldered to the circuit elements. Connections to the electrodes should be made by spring contact only.

The 6562/5794A should be supported by a suitable clamp around the metal shell either above or below the frequency-adjustment screw. It is essential, however, that the pressure exerted on the shell by the clamp be held to a minimum because excessive pressure can distort the resonators and result in a change of frequency.


The plate connection should have a flexible lead which will accommodate variations in the relative position of the plate terminal in individual tubes.

The 6562/5794A may be mechanically tuned by adjustment of the frequency-adjustment screw located on the metal shell of the tube. A clockwise rotation of the frequency-adjustment screw will decrease the frequency, while a counter-clockwise rotation will increase the frequency. The range of adjustment provided by the screw is \pm 12 Mc.

6562/5794A

92CM-8747RI

6806

BEAM POWER TUBE

COAXIAL-ELECTRODE STRUCTURE CERAMIC-METAL SEALS LOW DRIVE REQUIREMENTS

WATER-COOLED ELECTRODES INTEGRAL WATER DUCTS 28-KW TV OUTPUT AT 550 Mc

For use at frequencies from 225 to 1000 Mc

GENERAL	DATA
---------	------

GENERAL DATA
Electrical:
Filament, 2-Section Multistrand Thoriated Tungsten:
Voltage* per section (AC or DC) {1.25 min.º volts {1.35 typical volts {1.50 max. volts
Current per section at 1.35 volts 1000 amp
Starting current per section Must never exceed 1200
amperes, even momentarily
Cold resistance per section 0.00025 ohm
Minimum heating time 30 sec
Mu-Factor, Grid No.2 to Grid No.1 (Approx.) for plate volts = 9300, grid-No.2 volts = 950, and plate
amperes = 4.3 8
Direct Interelectrode Capacitances:
Grid No.1 to plate 0.1 max. μμ
Grid No.1 to filament and grid No.2. 365 $\mu\mu$
Plate to filament and grid No.2 30 μμ΄ Internal Bypass Capacitors between Grid No.2 and Cathode
(Approx., total) 18000 μμ
Mechanical:
Operating Position Tube axis vertical, wit

Operating Position	OII		•	•	•	•														or do
Overall Length .													7.	59'	1 .	+)	0.	38	" .	- 0.50
Maximum Diameter														10.00						11.3
Weight (Approx.)									,											28 1
Terminal Connect	ion	15	(See	2	Dir	nei	nsi	01	na	l	0u	tl	ine	2).	:				

F ₁ -Fil. Sect. No.1 & Water Conn.		F _M - Common Point of Fil. Sections
F ₂ - Fil. Sect. No.2		for DC Cir-
& Water Conn.		cuit Returns,
G ₁ - RF Grid-No.1	P PW	Ground,
Term. Contact	GI TIGE	& Water Conn.
Surface	CI A SEED OF	1 - III I late lelm.
G _{1w} - DC Grid-No.1 & Water Conn.	GIW CTT NATI	Contact Surfac
	" X > + > X	Pw-DC Plate & Water Conn.
G ₂ - DC Grid-No.2 & Water Conn.	KR KR	water conn.
Water Conn. Kp - RF Cath. Term.	F2 FM FI	
ng - ni catil. Term.		

Contact Surface For RF Circuit Returns

←Indicates a change.

Conn. Term. Surface &

Air Cooling:

Forced-air cooling of the ceramic bushing at the grid-No. I seal and at the plate seal may be required in order to limit the temperature of the ceramic bushing at either seal to the specified maximum value of 150° C. Under such conditions, provision should be made for blowing air at the ceramic bushings through suitable openings in the coaxial-cylinder cavity circuit.

Water Cooling:

Water cooling of the filament-section blocks, rf cathode terminals, grid-No.1 block, grid-No.2 block, and plate is required. The water flow must start before application of any voltages and preferably should continue for several seconds after removal of all voltages. Interlocking of the water flow through each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate water flow.

Water Flow:

	Absolute Min. Flow	Typical Flow	Differential for Typical Flow
Through filament-section-	gpm	gpm	psi
No.1 block	0.5	1.2	17 max.
No.2 block	0.5	1.2	17 max.
point connection	0.5	1.2	11 max.
Through grid-No.1 block .	0.5	1.2	9 max.
Through grid-No.2 block . Through plate in direction shown on Dimensional Outline:	0.5	1.2	17 max.
For plate dissipation up to 16 kw	12	14	{25 av. }
For plate dissipation of 20 kw	14	16	<pre>{32 av. 40 max.</pre>
For plate dissipation of 32 kw	20	22	{60 av. 75 max.
Gauge Pressure at Any Inlet Except Plate Inlet Gauge Pressure at Plate Inlet Ceramic-Bushing Temperature . Outlet-Water Temperature (Any Min. Plate-Water-Column Resis	outlet) .		70 max. °C

O,★,⊕: See next page.

Pressure #

6806

BEAM POWER TUBE

LINEAR RF POWER AMPLIFIER Class AB Single-Sideband Suppressed-Carrier Service

Crest of modulation conditions

Maximum CCS Ratings,	Absolute	Values: §
----------------------	----------	-----------

	225 to 1000 Mc	
TE VOLTAGE	9000 max. v	olts
TE-SUPPLY VOLTAGE	10000 max. v	olts
D-No.2 (SCREEN-GRID) VOLTAGE.	1250 max. v	olts
D-No.2 SUPPLY VOLTAGE	1350 max. v	olts
SIGNAL DC PLATE CURRENT	7 max.	amp
SIGNAL PLATE INPUT	60000 max. w	atts
SIGNAL GRID-No.2 INPUT	750 max. w	atts
DISSIPATION	35000 max. w	atts
ol CCS Operation:)3000 II	iax. w

Typical CCS Operation:

			· · · · · · · · · · · · · · · · · · ·
	At 550 Mc [⊕]		
volts	8000		Plate Voltage
volts	1200		Grid-No.2 Voltage
volts	-115		C Grid-No.1 (Control-grid)
VOILS			Voltage
amp	2.5		ero-Signal DC Plate Current
amp	6		xSignal DC Plate Current
			ero-Signal DC Grid-No.2
amp	0.15		Current (Approx.)
			axSignal DC Grid-No.2
amp	0.35		Current (Approx.)
			axSignal DC Grid-No.1
amp	0		Current (Approx.)
			axSignal Driver_Power
watts	90		Output (Approx.)*
			utput-Circuit Efficiency
%	90		(Approx.)
			axSignal Useful Power
watts	15000		Output (Approx.)

RF POWER AMPLIFIER - Class B Television Service

Synchronizing-level conditions per tube unless otherwise indicated

Maximum CCS Ratings, Absolute Values: 8

maximum ccs katings, Absolute values: 8		1
	225 to 1000 Mc	
DC PLATE VOLTAGE	9000 max.	volts
DC PLATE-SUPPLY VOLTAGE	10000 max.	volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE.	1100 max.	volts
DC GRID-No. 2-SUPPLY VOLTAGE	1200 max.	volts
DC PLATE CURRENT	8.25 max.	amp
CURRENT	0.5 max.	amp
o★∯•§⊕ ♣ ♣. ••: See next page.	→ Indicates a	change.

		225	to 1000 Mc	
	PLATE INPUT	3	000 max.	watts
	GRID-No. 2 INPUT (For black		ooo max.	Macco
	picture)*		750 max.	watts
	picture)*	36	000 max.	watts
-	Typical CCS Operation:	At 550 Mc €	At 800 Mc	
	Bandwidth [♠] of	7	7	Mc
	DC Plate Voltage	8500	8000	volts
	DC Grid-No.2 Voltage	1000	1000	volts
	DC Grid-No.1 Voltage	-140	-140	volts
	Peak RF Grid-No.1 Voltage:			
	Synchronizing level	180	180	volts
	Blanking level	140	140	volts
	DC Plate Current:			
	Synchronizing level	8	7.8	amp
	Blanking level	5.8	5.6	amp
	DC Grid-No. 2 Current			
	(Approx.):			
	Synchronizing level	0.75	0.75	amp
	Blanking level	0.55	0.55	amp
	DC Grid-No.1 Current			
	(Approx.):			
	Synchronizing level	0.4	0.35	amp
	Blanking level	0.15	0.13	amp
	Driver Power Output			-
	(Approx.):*		44	
	Synchronizing level	800#	1000##	watts
	Blanking level	450	550	watts
	Output-Circuit Efficiency	0.0	25	~
	(Approx.)	90	85	%
	Useful Power Output			
	(Approx.):	00000	100000	
-	Synchronizing level	28000	19000	watts
-	Blanking level	17000	11500	watts

PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephony

Carrier conditions per tube for use with a maximum modulation factor of 1 unless otherwise indicated

Maximum CCS Ratings, Absolute Values: §

	225 to 1000 Mc	
DC PLATE VOLTAGE	5500 max.	volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE. PEAK GRID-No.2 VOLTAGE (DC + max.	1000 max.	volts
modulation swing)	1350 max.	volts
VOLTAGE	-250 max.	volts
○★⊕ • § ⊕ • • • • * , * , # , ##: See next page.	→ Indicates a	a change.

6806

BEAM POWER TUBE

			22	5 to 1	000 Mc	
OC PLATE CURRENT				4.5	max.	amp
OC GRID-No.1 CURRENT				1	max.	amp
PLATE INPUT				25000		watts
GRID-No.2 INPUT					max.	watts
PLATE DISSIPATION				17000		watts
				17000	max.	watts
Typical CCS Operation:			4.		,	
			At	400 A		
DC Plate Voltage		•		5000		volts
DC Grid-No.2 Voltage●				800		volts
DC Grid-No.1 Voltage				-180		volts
Peak RF Grid-No.1 Voltage				210		volts
OC Plate Current				4.25		amp
DC Grid-No.2 Current (Approx.)				0.4		amp
DC Grid-No.1 Current (Approx.)				0.1		amp
DC Grid—No.1 Current (Approx.) Driver Power Output (Approx.) Dutput—Circuit Efficiency	•	•		300		watts
(Approx.)				90		9
Useful Power Output (Approx.)				10000	•	watts
RF POWER AMPLIFIER -			-	Telep	hony	
	Cla		: §			
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute	Val	ues	: §	25 to	1000 M c	
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE	Val	ues	: § 22	9000	1000 M c	volt
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE—SUPPLY VOLTAGE	Val	ues	: § 22	9000 10000	max.	volts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE—SUPPLY VOLTAGE DC GRID—No.2 (SCREEN—GRID) VOL	Val	ues	: § 22	9000 10000 1100	max. max. max.	volt: volt:
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE	Val	ues	: § 22	9000 10000 1100	max.	volts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC QRID—No.2 (SCREEN—GRID) VOL DC GRID—No.2 SUPPLY VOLTAGE. DC GRID—No.1 (CONTROL—GRID)	Val	ues	: § 22	9000 10000 1100 1200	max. max. max. max.	volt: volt:
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE-SUPPLY VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLD GRID-No.2 SUPPLY VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE	Val	ues	§	9000 10000 1100 1200 -250	max. max. max. max.	volts volts volts volts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE-SUPPLY VOLTAGE DC GRID-No.2 (SCREEN-GRID) VOLDC GRID-No.2 SUPPLY VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT	Val	ues	§	9000 10000 1100 1200 -250	max. max. max. max.	volts volts volts volts volts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE-SUPPLY VOLTAGE DC GRID-No.2 (SCREEN-GRID) VOLD DC GRID-No.1 (CONTROL-GRID) VOLTAGE DC PLATE CURRENT DC GRID-No.1 CURRENT DC GRID-No.1 CURRENT	Val	ues	22	9000 10000 1100 1200 -250 7	max. max. max. max. max. max.	volts volts volts volts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE-SUPPLY VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT DC PLATE CURRENT PLATE INPUT	Val	ues	22	9000 10000 1100 1200 -250 7 0.5	max. max. max. max. max. max. max. max.	volts volts volts volts amman watts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE—SUPPLY VOLTAGE DC GRID—No.2 (SCREEN—GRID) VOLD GRID—No.2 SUPPLY VOLTAGE. DC GRID—No.1 (CONTROL—GRID) VOLTAGE. DC PLATE CURRENT. DC GRID—No.1 CURRENT. DC GRID—No.1 CURRENT. DC GRID—No.1 CURRENT. GRID—No.2 INPUT	Val	ues	22	9000 10000 1100 1200 -250 7 0.5 60000 750	max. max. max. max. max. max.	volt: volt: volt: volt: am am
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE-SUPPLY VOLTAGE DC GRID-No.2 (SCREEN-GRID) VOLD DC GRID-No.1 (CONTROL-GRID) VOLTAGE DC PLATE CURRENT DC GRID-No.1 CURRENT DC GRID-No.1 CURRENT	Val	ues	22	9000 10000 1100 1200 -250 7 0.5 60000 750	max. max. max. max. max. max. max.	volts volts volts volts volts am am watts watts
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE. DC PLATE-SUPPLY VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLD DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC PLATE CURRENT. DC PLATE INPUT PLATE INPUT PLATE DISSIPATION.	Val	ues	22	9000 10000 1100 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max.	volt: volt: volt: volt: volt: amm amm watt: watt:
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE—SUPPLY VOLTAGE DC GRID—No.2 (SCREEN—GRID) VOLD GRID—No.2 (SUPPLY VOLTAGE.) DC GRID—No.1 (CONTROL—GRID) VOLTAGE DC PLATE CURRENT DC GRID—No.1 CURRENT DC GRID—No.1 CURRENT DC GRID—No.1 CURRENT PLATE INPUT GRID—No.2 INPUT PLATE DISSIPATION Typical CCS Operation:	Val	ues	400 A	9000 10000 1100 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: volt: amm amm watt: watt:
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE. DC PLATE—SUPPLY VOLTAGE. DC GRID—No.2 (SCREEN—GRID) VOLD DC GRID—No.1 (CONTROL—GRID) VOLTAGE. DC PLATE CURRENT. DC GRID—No.1 (CURRENT. DC GRID—No.1 (CURRENT. DC PLATE TURRENT. DC PLATE TURRENT. DC PLATE OURRENT. DC PLATE OURRENT. DC PLATE OF TORRENT. DC PLATE OF TORRENT. DC PLATE OF TORRENT. TYPICAL CCS Operation: DC Plate Voltage.	Val	ues	400 A	9000 10000 1100 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: amm amm watt: watt:
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE. DC PLATE—SUPPLY VOLTAGE. DC GRID—No.2 (SCREEN—GRID) VOL DC GRID—No.2 SUPPLY VOLTAGE. DC GRID—No.1 (CONTROL—GRID) VOLTAGE. DC PLATE CURRENT. DC GRID—No.1 CURRENT. PLATE INPUT GRID—No.2 INPUT PLATE DISSIPATION Typical CCS Operation: DC Plate Voltage. DC Grid—No.2 Voltaget	Val	ues	400 A 8500 1000	9000 10000 11000 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: volt: amm amm watt: watt: volt:
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE DC PLATE—SUPPLY VOLTAGE. DC GRID—No.2 (SCREEN—GRID) VOLD DC GRID—No.2 SUPPLY VOLTAGE. DC GRID—No.1 (CONTROL—GRID) VOLTAGE DC PLATE CURRENT DC PLATE CURRENT PLATE INPUT PLATE INPUT PLATE DISSIPATION Typical CCS Operation: DC Plate Voltage DC Grid—No.2 Voltage† DC Grid—No.1 Voltage† DC Grid—No.1 Voltage†	Val	ues	400 A 8500 1000 -175	9000 10000 1100 1200 -250 7 0.5 600000 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: volt: ammammy watt: watt: volt: volt
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE. DC PLATE—SUPPLY VOLTAGE. DC GRID—No.2 (SCREEN—GRID) VOLTAGE. DC GRID—No.1 (CONTROL—GRID) VOLTAGE. DC PLATE CURRENT. DC PLATE CURRENT. DC GRID—No.1 CURRENT. PLATE INPUT PLATE INPUT Typical CCS Operation: DC Plate Voltage. DC Grid—No.1 Voltage† DC Grid—No.1 Voltage .	Val	ues	400 A 8500 1000 -175 215	9000 10000 1100 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: amm amm watt: watt: volt: volt volt volt volt volt volt volt
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE. DC PLATE-SUPPLY VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC PLATE CURRENT. DC FLATE CURRENT. PLATE INPUT. GRID-No.1 CURRENT. PLATE DISSIPATION Typical CCS Operation: DC Plate Voltage. DC Grid-No.1 Voltage† DC Grid-No.1 Voltage DC Plate Current.	Val	ues	400 A 8500 1000 -175	9000 10000 1100 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: volt: ammammy watt: watt: volt: volt
RF POWER AMPLIFIER — Maximum CCS® Ratings, Absolute DC PLATE VOLTAGE. DC PLATE—SUPPLY VOLTAGE. DC GRID—No.2 (SCREEN—GRID) VOLTAGE. DC GRID—No.1 (CONTROL—GRID) VOLTAGE. DC PLATE CURRENT. DC PLATE CURRENT. DC GRID—No.1 CURRENT. PLATE INPUT PLATE INPUT Typical CCS Operation: DC Plate Voltage. DC Grid—No.1 Voltage† DC Grid—No.1 Voltage .	Val	ues	400 J 8500 1000 -175 215 6.75	9000 10000 1100 1200 -250 7 0.5 60000 750 35000	max. max. max. max. max. max. max. max.	volt: volt: volt: volt: amm amm watt: watt: volt volt ami

DC Grid-No.1 Current	At 400 Mc	At 900 Mc	
(Approx.)	0.2	0.25	amp
Driver Power Output (Approx.)	300	750	watts
Output-Circuit Efficiency (Approx.)	90	80	%
Useful Power Output (Approx.)	25000	13500	watts

To avoid undue thermal stresses in the filament, it is essential that the filament voltage be raised gradually to operating value in not less than 30 seconds. When the filament voltage is removed, it should be reduced gradually from the normal operating value to zero voltage in not less than 30 seconds.

Minimum operating value. The life of the tube can be conserved by operating the filament at the lowest power, within the operating filament-voltage range, which will enable the tube to provide the desired power output. Because the filament when operated near the maximum value provides emission in excess of any requirements within the tube ratings, the filament power must be reduced to a value that will give adequate but not excessive emission for any particular application. Good regulation of the filament power supply is in general economically advantageous from the viewpoint of tube life. During standbys, the filament may be operated at 1.08 volts.

Directly across cooled element at water connection for the indicated typical flow.

Continuous Commercial Service.

Maximum voltage ratings apply for pressures down to 25 inches of mercury (altitudes up to 5000 feet) at 25° C.

In the vicinity of 550 Mc, it may be necessary to provide means for balancing out a circumferential TE_{1.1} mode.

Obtained preferably from a separate source.

The driver stage is required to supply tube losses, rf-circuit losses, and rf "swamping-power" losses. "Swamping" may be required in practical circuit design to obtain the desired input-circuit bandwidth. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

This value of useful power is measured at load with output circuit having indicated efficiency.

* Continuous blanking level + sync pulses.

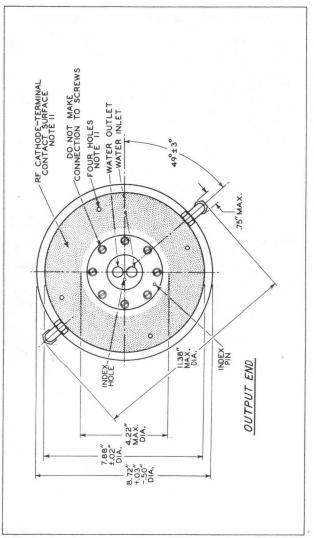
Between the half-power points as measured in the output circuit.

This value includes 300 watts of rf "swamping power".

This value includes 100 watts of rf "swamping power".

♣▲ For 100% modulation of plate voltage, and 50% modulation of grid-No.2

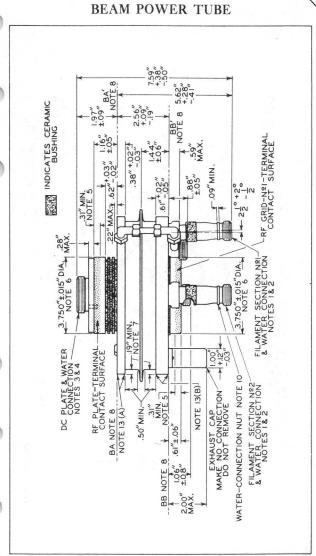
.. voltage.

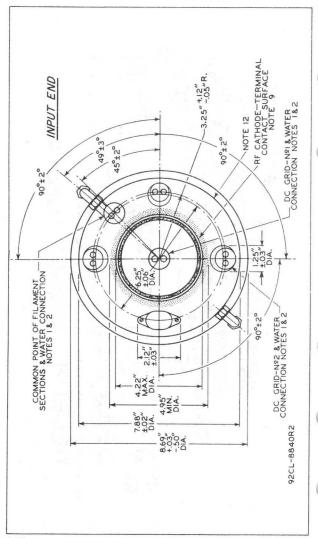

The driver stage is required to supply tube losses and rf-circuit losses. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics during life.

key-down conditionspertube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

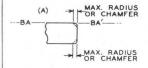
Obtained preferably from a separate source or from the plate-supply voltage with avoltage divider, or through a series resistor. A series grid-No.2 resistor should not be used if the 6806 or a preceding stage is keyed. In this case, the regulation of the source should be sufficient to prevent the grid-No.2 voltage from rising above 120 volts under key-up conditions; and additional fixed grid-No.1 bias must be provided to limit the plate current.

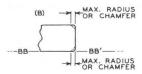
Obtained from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods.

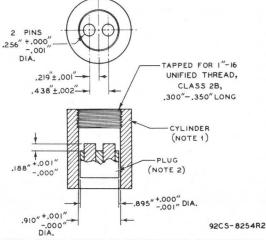

	CHARACTERI	STICS RANGE	VALU	ES FOR E	QUIPMENT	DESIGN	
				Note	Min.	Max.	
ilame	ent Current	ner Section	n	1	950		ami
	ent Current			2	985	1095	ami
	ent-Current						
	ween Section			1	-	30	am
	ent-Voltage		al				
	ween Section			3	-	0.075	vol
	No.1 Voltage			1.4	_	-180	volt
	Power Out			-, .		200	
	ss B Televis		-				
	ynchronizing		_				
	onditions.			1.5	27000	-	watt
	ss C Telegra			-,-			
	ey-down cond			1.6	22000	_	watt
	Gain			1,5,6,7	40		
Note 1	: With 1.35	volts rms per	filan	ment secti	on.		
Note 2	: With 1.5 v	olts rms per	filame	ent sectio	n.		
Note 3		amperes per f					
Note 4	= 8500. dc	se excitation grid-No.2 vo give a dc pla	ilts =	1000, and	dc grid-1	lo. 1 volt	e volt age ad
Note 5	amplifier half-power volts = 10 dc plate c	se excitation circuit having points and sold grid—Nourrent of 0.25 and plate	ng a b with d 0.1 vo ampe	andwidth c plate v ltage adju re, drive	of 7 Mc as olts = 875 isted to g adjusted t	defined 0, dc gr ive a zero to give s	by thid—No. —signation
Note 6	amplifier volts = 10 dc plate c	ase excitatio circuit, and 00, dc grid-No urrent of 0.2 7 amperes, 2	with o	dc plate v Itage adju ere, drive	olts = 850 usted to g adjusted	00, dc gr ive a zero	id-No. -signa
Note 7	by transm	ng power meas ission line an 1.5. Pow	havino	voltage-	-standing-	-wave ra	tio no



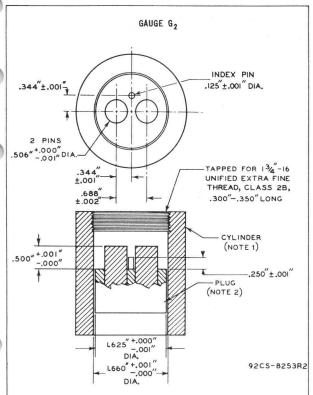
6806




- NOTE 1: TERMINAL HAS I" 16 UNIFIED THREAD CLASS 2A FIT, 0.38" LONG AND 2 HOLES 0.258" 0.270" DIAMETER SPACED 0.438" ON CENTERS.
- NOTE 2: THE HOLES IN THE FILAMENT, GRID-No.1, AND GRID-No.2 WATER-TERMINAL CONNECTIONS WILL ACCEPT THE PINS OF THE PLUG-AND-CYLINDER COMBINATION GAUGE ${\sf G}_1$.
- NOTE 3: THE WATER CONNECTION FOR THE PLATE HAS I-3/4" 16 UNIFIED EXTRA FINE THREAD, CLASS 2A FIT, 0.38" LONG, 2 HOLES 0.508" 0.522" DIAMETER SPACED 0.688" ON CENTERS AND AN INDEX HOLE 0.160" MAX. DIAMETER SPACED 0.344" FROM THE CENTER OF THE TERMINAL.
- NOTE 4: THE HOLES IN THE PLATE WATER CONNECTION WILL ACCEPT THE PINSOF THE PLUG-AND-CYLINDER COMBINATION GAUGE G_2 .
- NOTE 5: PRESSURE FROM CIRCUIT CONTACTS SHOULD BE EXERTED ONLY OVER 0.31" MAX. LENGTH OF DESIGNATED CONTACT AREAS OF THE PLATE OR GRID—No. I TERMINALS.
- NOTE 6: THE DIAMETER DIMENSION IS HELD ONLY OVER A LENGTH OF 0.31" MIN.
- NOTE 7: THIS DIMENSION APPLIES OVER A LENGTH OF 0.50" MIN. AS INDICATED.
- NOTE 8: THE CONTACT SURFACES, BA-BA' AND BB-BB', ARE PARALLEL WITHIN 0.06".
- NOTE 9: CONTACT OF THE INPUT-END RF CATHODE TERMINAL SHOULD NOT BE MADE AT A DIAMETER SMALLER THAN 4.22".
- NOTE 10: TO PREVENT EXCESSIVE STRESSON THE CERAMIC SEAL, A 15/16" OPEN-END WRENCH MUST BE USED TO PERMIT GRIPPING THE TERMINAL WHEN REMOVING OR TIGHTENING THE WATER CONNECTORS.
- NOTE | |: CONTACT OF THE OUTPUT-END RF CATHODE TERMINAL SHOULD NOT BE MADE AT A DIAMETER SMALLER THAN 4.22". THE PRESSURE EXERTED FOR THIS RF CONTACT SHOULD BE LIMITED TO THAT NECESSARY FOR GOOD ELECTRICAL CONTACT. THE MECHANICAL FORCE FOR THE CAVITY SUPPORT SHOULD BE MADE AT A DIAMETER NOT LESS THAN 4.22". ON THE OUTPUT-END RF CATHODE TERMINAL. THERE ARE FOUR EQUALLY SPACED O. 188"-DIAMETER HOLES ON A CIRCLE HAVING DIAMETER OF 6.75". THESE HOLES ARE FOR TUBE MANUFACTURING PURPOSES ONLY. ATTENTION IS CALLED TO THE EXISTENCE OF THESE HOLES SO THAT EQUIPMENT DESIGNERS CAN AVOID MAKING ELECTRICAL CONTACT AT POINTS WHICH ARE COINCIDENT WITH THESE HOLES. MECHANICAL CLAMPING DEVICES FOR THE OUTPUT CAVITY SHOULD BE DESIGNED SO AS TO EXERT THEIR CLAMPING FORCE ACROSS THE OUTER EDGE OF THE OUTPUT-HEADER FLANGE.
- NOTE 12: SERIAL NUMBER IS LOCATED ON THIS SURFACE BETWEEN DC GRID-No. 2 AND FILAMENT-SECTION-No. 1 CONNECTIONS.

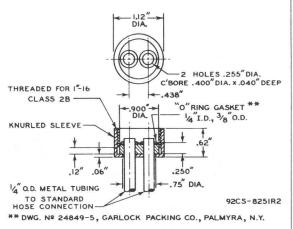


NOTE 13: CORNERS MAY BE ROUNDED OR CHAMFERED, AS INDICATED IN (A) AND (B), NOT TO EXCEED 0.05".

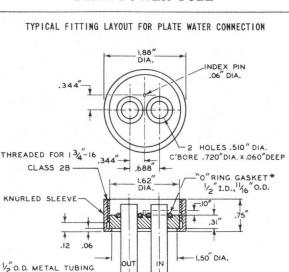


GAUGE G

NOTE 1: TAPPED SECTION OF CYLINDER MUST BE CONCENTRIC WITH UNTAPPED SECTION OF CYLINDER WITHIN .002".


NOTE 2: PLUG SIDES & PIN SIDES MUST BE PARALLEL WITHIN .001".

NOTE 1: TAPPED SECTION OF CYLINDER MUST BE CONCENTRIC WITH UNTAPPED SECTION OF CYLINDER WITHIN .002". NOTE 2: PLUG SIDES & PIN SIDES MUST BE PARALLEL WITHIN .001".

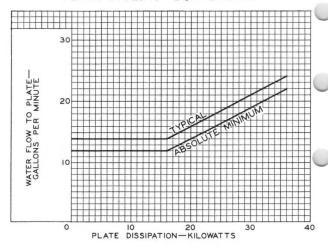


TYPICAL FITTING LAYOUT FOR ALL WATER CONNECTIONS OTHER THAN THAT FOR PLATE

For essential design tolerances, see Gauge G,

HOSE CONNECTION 92CS*DWG. № 24849-10, GARLOCK PACKING CO., PALMYRA, N.Y.

TO STANDARD


For essential design tolerances, see Gauge G_2

92CS-8250R2

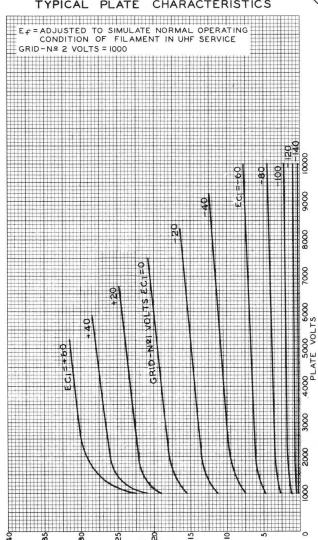
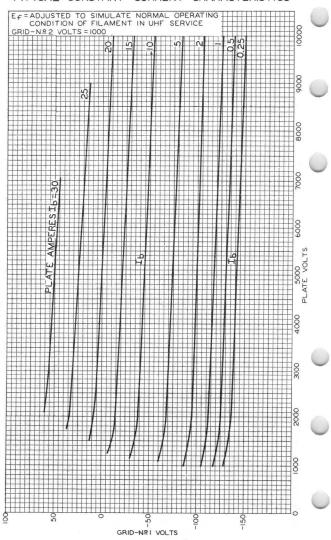
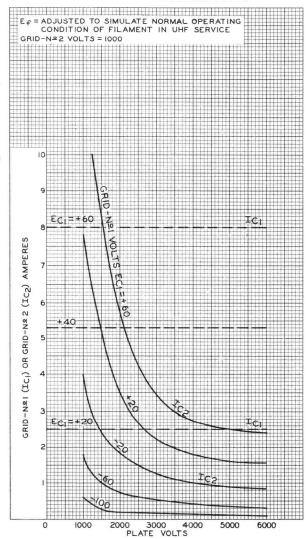
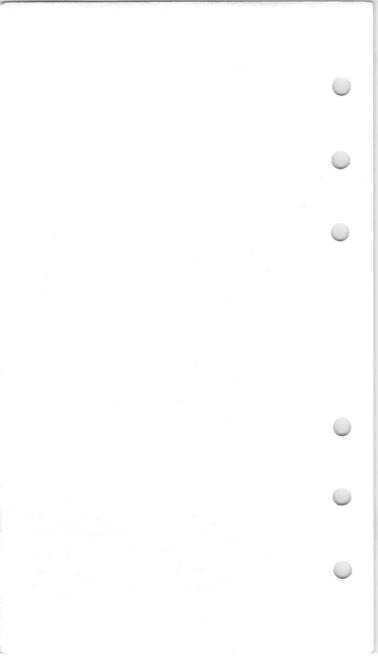


PLATE COOLING REQUIREMENTS


92CS-8929

TYPICAL PLATE CHARACTERISTICS





TYPICAL CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CHARACTERISTICS

Beam Power Tube

CERMOLOX TYPE

	-						
OXIDE-COATED CATHODE 80 WATTS CW POWER OUTPUT AT 400 MHz	40	WA			ED-AIR POWER AT 12	OUTF	PUT
E U C C U L L		, 0					
For Use in Compact Aircraft, Mobile,	an	d S	at	ion	ary Equ	11 pme	ent
ELECTRICAL							
United for University Outlied							
Heater, for Unipotential Cathode ^g							
Voltage (AC or DC)			2		∫6.3		
					6.9	max	V
Current at heater volts = 6.3					2.1		Α
Minimum heating time					60		S
Mu-Factor, Grid No.2 to Grid No.1					18		
Direct Interelectrode Capacitancesa			•		10		
					0 005		
Grid No.1 to plate					0.065	max	
Grid No.1 to cathode & heater							pF
Plate to cathode & heater		0.0	,		0.013	max	pF
Grid No.1 to grid No.2							pF
Grid No.2 to plate							pF
Grid No.2 to cathode & heater							
di id No.2 to catilode a lieater					0.45	IIIax	PΓ
MECHANICAL							
Operating Position					1.1.1	. 4	\n y
Overall Length	100				1.93	max	in
Greatest Diameter					1.265	max	in
Weight (Approx.)						2	OZ
Radiator		. In	tea	ral	part o	of tu	ube
For operation up to 400 MHz					K. 1995.		
Socket including Grid-No.2							
Bypass Capacitor Erie	b 2	0110	00	0	L		- C
bypass capacitor Elle		340.	-00	0,	C.F. U	, ,	וונ
DN124-152-1 Jettr	on	89.	-00	١,	or equ	ivale	ent
Grid-No.2 Bypass Capacitor	Eri	eb 2	292	6-0	00, 292	29-00	η,
					or equi	ivale	ent
For operation at high frequencies							
Soo Deefeered Menetics Assessed							

See Preferred Mounting Arrangement

TERMINAL DIAGRAM (See Dimensional Outline)

G1 - Grid No. 1-Terminal Contact Surface G2-Grid No.2-Terminal Contact Surface H-Heater-Terminal Contact Surface H, K - Heater-& Cathode-Terminal Contact Surface

P-Plate Terminal Contact

Surface

- Indicates a change.

THERMAL

THERMAL		
Terminal Temperature (Plate, Grid No.2, Grid No.1, cathode, and heater)	°C °C	0
AF POWER AMPLIFIER & MODULATOR—Class ABI		
Maximum CCS Ratings, Absolute-Maximum Values		
DC plate voltage 1000	V	
DC grid-No.2 (screen-grid) voltage 300	V	
Maxsignal dc plate current	mA	
Maxsignal plate input	W	
Maxsignal grid-No.2 input 4.5	W	
Plate dissipation	W	
Typical CCS Operation		7
Values are for 2 tubes		
,	14	
DC Plate Voltage	V	
DC Grid-No.1 (Control-Grid) Voltage15 -15	V	
From fixed-bias source	,	
Peak AF Grid-No.1-to-Grid-No.1 Voltage 30 30	٧	
Zero-Signal DC Plate Current 80 80	mA	
MaxSignal DC Plate Current 200 200	mA	
Zero-Signal DC Grid-No.2 Current 0 0	mA	
MaxSignal DC Grid-No.2 Current 20 20	mA	
Effective Load Resistance 4330 7000	Ω	
Plate to plate		
MaxSignal Driving Power (Approx.) 0 0	W	
MaxSignal Power Output (Approx.) 50 80	W	
Maximum Circuit Values		
Grid-No.1-Circuit Resistance Under Any Condition		
With fixed-bias 30000	Ω	
With cathode-bias Not recommen	ded	
AF POWER AMPLIFIER & MODULATOR — Class AB2 j		
Maximum CCS Ratings, Absolute-Maximum Values		
DC plate voltage 1000	٧	
DC grid-No.2 (screen-grid) voltage 300	V	
Maxsignal dc plate current	mΑ	
Maxsignal dc grid-No.1 (control grid) current 30	mΑ	
Maxsignal plate input	W	
Maxsignal grid-No.2 input 4.5	W	
Plate dissipation	W	
Typical CCS Operation		
Values are for 2 tubes		
DC Plate Voltage 650 850	٧	
DC Grid-No.2 Voltage 300 300	v	
DC Grid-No.1 Voltage	v	
From fixed-bias source		

	Peak AF Grid-No.1-to-Grid-No.1 Voltage 46 46	٧
	Zero-Signal DC Plate Current 80 80	mA
	MaxSignal DC Plate Current 355 355	mA
	Zero-Signal DC Grid-No.2 Current 0 0	mΑ
	MaxSignal DC Grid-No.2 Current 25 25	mΑ
	MaxSignal DC Grid-No.I Current 15	mΑ
	Effective Load Resistance 2450 3960	Ω
	Plate to plate	
	MaxSignal Driving Power (Approx.) 0.3 0.3	W
	MaxSignal Power Output (Approx.) 85 140	W
	LINEAR RF POWER AMPLIFIER, Class ABI	
	Single-Sideband Suppressed-Carrier Service	
	Peak envelope conditions for a signal having a minimum peak-t average power ratio of 2	0 -
	Maximum CCS Ratings, Absolute-Maximum Values	
1	Up to 1215	MHz
	DC plate voltage 1000	٧
	DC grid-No.2 voltage 300	٧
	DC grid-No.1 voltage 100	٧
	DC plate current at peak of envelope 350°	mΑ
	DC grid-No.1 current	mΑ
	Plate input	W
	Grid-No.2 Input 4.5	W
	Plate dissipation	W
	Typical CCS Operation with "Two-Tone" Modulation	
	At 30 MHz	
		W
	DC Plate Voltage 650 850	٧
	DC Grid-No.2 Voltage	V
	DC Grid-No.1 Voltage	mA
	Effective RF Load Resistance	Ω
	DC Plate Current at Peak of Envelope 100 100	mA
	Average DC Plate Current	mA
	DC Grid-No.2 Current at Peak of Envelope 8.2 4.2	mΑ
	Average DC Grid-No.2 Current 3.6 1.7	mA
	Peak-Envelope Driver Power Output (Approx.). 0.5 0.5	W
	Output-Circuit Efficiency (Approx.) 90 90	%
	Distortion Products Level	
	Third Order	dB
	Fifth Order 40 36	dB
	Useful Power Output (Approx.)	
þ	Average	W
	Peak envelope 25 40	W
	Maximum Circuit Values	
	Grid-No.1-Circuit Resistance	
	Under Any Condition	
	With fixed bias	Ω
	With fixed bias (In Class AB1 operation). 100000	Ω
1	With cathode bias Not recommen	
	Grid-No.2 Circuit Impedance See Footn	
	Plate Circuit Impedance See Footn	ote"

	NAME OF TAXABLE PARTY.	Name and Address of the Owner, where the Owner, which is the Own
P. 177 - 100-10 1770 - 177 - 1		
PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephon	y J	
Carrier conditions per tube for use with a maximum modulation factor	of 1	
Maximum CCS Ratings, Absolute-Maximum Values		
Up to 1215 MHz		
10 g 1 3000 4 5000 10 10 10 10 10 10 10 10 10 10 10 10	300	
DC plate voltage 800 DC grid-No.2 (screen-grid) voltage 300	V	
DC grid-No.1 (control-grid) voltage100	V	
DC plate current	mA.	
DC grid-No.1 current 30	mA	
Plate input	W	
Grid-No.2 input	W	
Plate dissipation 75	W	
Typical CCS Operation		
At 400 MHz		-
DC Plate Voltage 400 700	٧	
DC Grid-No.2 Voltage 200 250	٧	
DC Grid-No.1 Voltage20 -50	٧	
DC Plate Current 100 130	mA	
DC Grid-No.2 Current 5 10	mA	
DC Grid-No.1 Current 5 10	mΑ	
Driver Power Output (Approx.) 2 3 Useful Power Output (Approx.) 16 45	W	
	W	
Maximum Circuit Values		
Grid-No.I-Circuit Resistance Under Any Condition	0	
	7.7	
RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy		
and RF POWER AMPLIFIER — Class C FM Telephony		
Maximum CCS Ratings, Absolute-Maximum Values		
Up to 1215 MHz		
DC plate voltage 1000	٧	
DC grid-No.2 voltage	V	
DC grid-No.1 voltage100 DC plate current	mA	
DC grid-No.1 current 30 ^f	mΑ	
Plate input	W	
Grid-No.2 input 4.5	W	
Plate dissipation	W	
Typical CCS Operation		
At 400 MHz At 1215 MHz	Z	
DC Plate Voltage 400 900 900	٧	
DC Grid-No.2 Voltage 200 300 300	٧	
DC Grid-No. Voltage35 -30 -22	٧	
DC Plate Current 150 170 170 DC Grid-No.2 Current	mΑ	
DC Grid-No.2 Current	mA mA	
Driver Power Output (Approx.) 3 3 5	W	
Useful Power Output (Approx.) 23 80 40	W	
A CONTRACT CONTRACT OF THE STATE OF THE STAT		

Maximum Circuit Value

Under Any Condition	 . 30000 Ω

- a Measured with special shield adapter.
- b Erie Technological Products, Inc., 2206 West 15th Street, Erie, Pennsylvania,
- C E. F. Johnson Co., 299 10th Ave., S.W., Waseca, Minn. d Jettron Products, Inc., 56 Rt. 10, Hanover, N.J.
- e The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 180 mA. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 250 mA.
 - In applications where the frequency is less than 80 MHz and the bias is less than -50 volts, the maximum value is 40 mA.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section.

- 9 See Electrical Considerations Filament or Heater.
- h See Cooling Considerations Forced-Air Cooling.
- J See Classes of Service.
- k See Electrical Considerations Grid-No.2 Voltage Supply.
- M See Blectrical Considerations Plate Voltage Supply.

CHARACTERISTICS RANGE VALUES

		Note	Min	Max	
1.	Heater Current	1	1.84	2.26	A
2	Direct Interelectrode Capacitano	000			
2.		,65			
	Grid No.1 to plate	2	-	0.065	pF
	Grid No.1 to cathode & heater .	2	11.0	15.0	pF
	Plate to cathode & heater	2	-	0.013	pF
	Grid No.1 to grid No.2	2	15.0	20.0	pF
	Grid No.2 to plate	2	4.2	5.2	pF
	Grid No. 2 to cathode & heater .	2	0.20	0.45	pF
0		1 2	6	-15	٧
	Grid-No.1 Voltage	1,3	-6		10700
4.	Grid-No.1 Cutoff Voltage	1,4	1-1	-48	٧
5.	Grid-No.I Current	1,5	6	-	mΑ
6.	Reverse Grid-No. Current	1,3	-	8	MA
7.	Grid-No.2 Current	1,3	-8	+2.0	mA
8.	Peak Emission	1,6	-	300	peak
9.	Interelectrode Leakage				
	Resistance	7	1.0	-	$M\Omega$
10.		8	80	_	W
		(0.80)	2.5		

Note 1: With 6.3 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

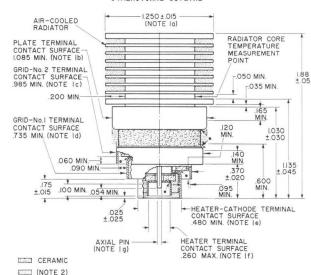
Note 3: With dc plate voltage of 1000 volts, dc grid-No.2 voltage of 300 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 115 mA.

Note 4: With dc plate voltage of 1000 volts, dc grid-No.2 voltage of 300 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 1 mA.

Note 5: With plate and grid-No.2 floating and dc grid-No.1 voltage of +2 volts.

Note 6: With grid No.1, grid No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse

duration is 2 microseconds, pulse repetition frequency is 60 pps, and duty factor is 0.00012. The voltage-pulse amplitude is adjusted until a peak cathode current of 10 amperes is obtained. After 1 minute at this value, the voltage-pulse amplitude will not exceed 300 volts (peak).

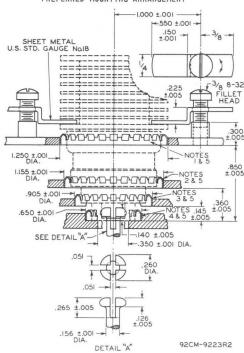

Note 7: With tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two adjacent electrodes as measured with a 200-volt Meggertype ohmmeter having an internal impedance of 1.0 megohm, will

be 1.0 megohm.

Note 8: In a single-tube, grid-drive coaxial-cavity class C amplifier circuit at 400 MHz and for conditions with 5.7 volts ac or dc on heater, dc plate voltage of 1000 volts, dc grid-No.2 voltage of 300 volts, grid-No.1 resistor adjustable between zero and 10000 ohms, dc plate current of 180 mA maximum, dc grid-No.1 current of 30 mA maximum and driver power output of 3 watts.

DIMENSIONAL OUTLINE

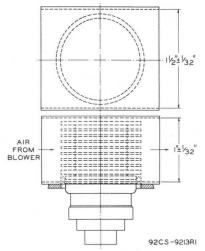
ELECTRODE-TEMPERATURE
 MEASUREMENT POINT

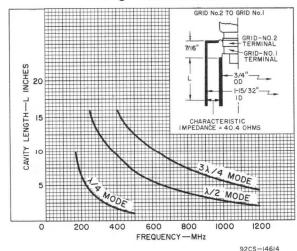

92CL-14666

Note I: The following diametrical space requirements accommodate the concentricity of the cylindrical surfaces of the radiator fins, axial pin, and each electrode terminal:

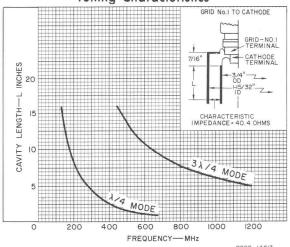
- a. Radiator Band 1.316"
- b. Plate Terminal 1.119"
- c. Grid-No.2 Terminal 1.019"
- d. Grid-No.1 Terminal 0.764"
- e. Heater-Cathode Terminal 0.519"
- f. Heater Terminal 0.240"
- q. Axial Pin 0.071"

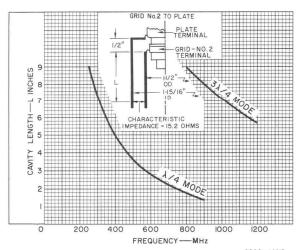
Note 2: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

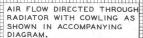

PREFERRED MOUNTING ARRANGEMENT

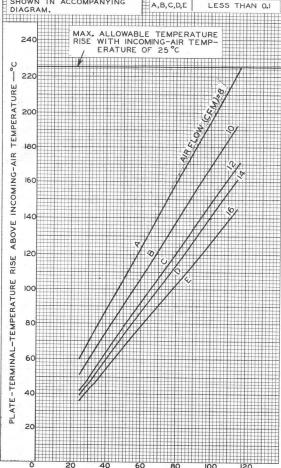

Note 1: Contact ring No.97-252 or finger stock No.97-380.
Note 2: Contact ring No.97-253 or finger stock No.97-380.
Note 3: Contact ring No.97-254 or finger stock No.97-380.
Note 4: Contact ring No.97-255 or finger stock No.97-380.
Note 5: The specified contact ring of preformed finger stock and finger stock No.97-380 provide adequate electrical contact,

and finger stock No.97-380 provide adequate electrical contact, but the finger stock No.97-380 is less susceptible to breakage than the specified contact ring. Both types are made by Instruments Specialties Co., Little Falls, N.J.

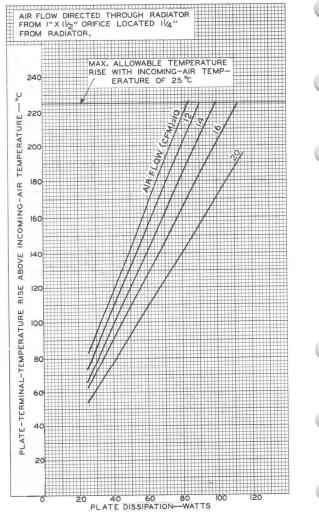

RECOMMENDED COWLING FOR DIRECTING AIR FLOW THROUGH RADIATOR


Tuning Characteristics


92CS-146I3


92CS-146I5

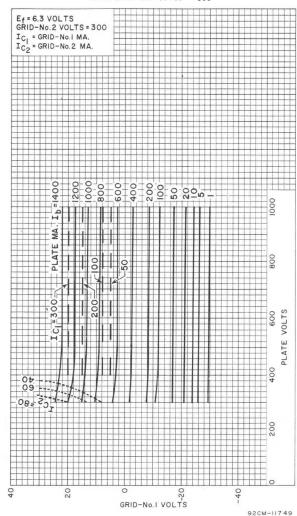
TYPICAL COOLING REQUIREMENTS With Cowling


PRESSURE DROP INCHES OF WATER

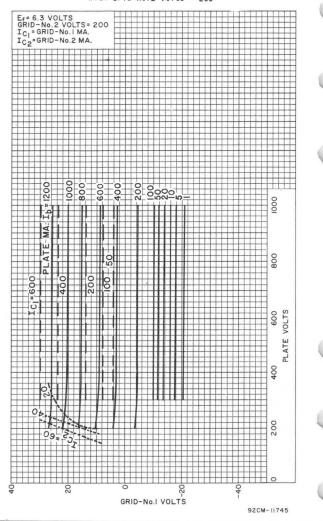
92CM-9219R1

PLATE DISSIPATION-WATTS

TYPICAL COOLING REQUIREMENTS Without Cowling



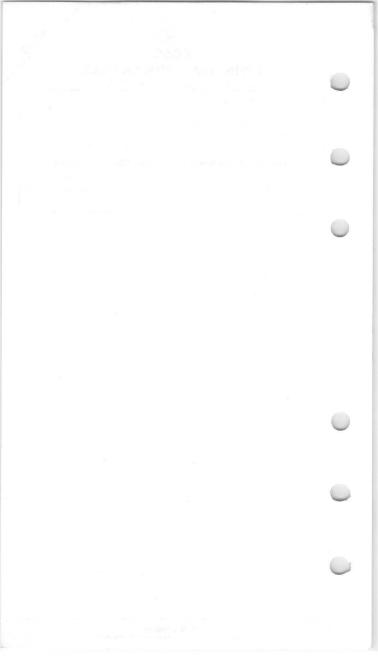
92CM-9220RI



Typical Constant-Current Characteristics

With Grid-No. Volts = 300

Typical Constant-Current Characteristics With Grid-No.2 Volts = 200



6850

TWIN BEAM POWER TUBE

Useful at frequencies up to 470 Mc

The 68 items:	350	is	th	i e	sa	me	as	t	he 65	24	exc	ept	for	the	fol	lou	ing
Heater Volt Curr	age	, .							12.6 0.625	± 6	10%	. :	::	ac (or do	. v	olts amp
	CHA	RAC	TEF	218	IT	CS	RAN	NGE	VALU	ES	FOR	EQU	IPME	NT DI	ESIGN	1	
										Λ	ote	A	lin.	Ма	x.		
Heater	Cu	rre	nt								1	0.	.588	0.6	63		amp
Note 1:	Wit	h 1	2.6	VC	1t	s a	c on	he	ater.								

TRAVELING-WAVE TUBE

LOW-NOISE AMPLIFIER TYPE

Useful over frequency range of 2700 to 3500 Mc

EN		DA	

lectrical	

Heater, for Unipotential Cathode:

Voltage 5ac or dc volts Current at 5 volts. . . . 0.65 Starting current: The maximum instantaneous starting cur-

rent must never exceed 4 amperes, even momentarily. Minimum Cathode Heating Time. 1 minute Frequency Range 2700 to 3500 Mc Cold Insertion Loss . 80 db

Mechanical:

Operating Position. Cooling Maximum Overall Length Metal-Shell Diameter. Weight (Approx.).																
	Operating Position															Any
	Cooling								•					Na	tu	ral
	Maximum Overall Length.													19	-3	/8"
	Metal-Shell Diameter								•	1	.3	75	11	± 0	.0	05"
	Weight (Approx.)												1	-1/	2	bs

Collector-Terminal Connector. . . Birnbach No.403 Banana Jack -RE Connectors: Input terminal. .Type N UG-18B/U Plug -Output terminal

.Type N UG-18B/U Plug -. Octal 8-Pin

BOTTOM VIEW

Pin 1 - Grid No.1 Pin 2 - No Connection

Pin 3-Helix Pin 4-Grid No.4

Pin 5-Grid No.3 Pin 6-Grid No.2 Pin 7-Heater Pin 8 - Heater.

Cathode

Maximum and Minimum Ratings, Absolute Values:

DC	COLLECTOR VOLTAGE.					500	max.	volts
DC	HELIX VOLTAGE					500	max.	volts
DC	GRID-No.4 VOLTAGE.					500	max.	volts
	GRID-No.3 VOLTAGE.					300	max.	volts
	GRID-No.2 VOLTAGE.					75	max.	volts
	GRID-No.1 VOLTAGE.					20	max.	volts
DĆ	COLLECTOR CURRENT.					500	max.	μa.
DC	HELIX CURRENT					5	max.▲	μa μa

MAGNETIC FIELD STRENGTH . 400 min. gausses PEAK RE POWER INPUT . . 100 max. watts AVERAGE RF POWER INPUT. 0.4 max. watt METAL-SHELL TEMPERATURE (At hottest point). . 175 max.

 $^{\rm A}$ During alignment of the tube in the magnetic-focusing field, the helix current may exceed this value for short periods, but should never exceed 25 μa .

•: See next page.

→ Indicates a change.

DATA

6861

TRAVELING-WAVE TUBE

Typical Operation at 3100	0 M	lc:				
DC Collector Voltage					400	volts
DC Helix Voltage					375	volts
DC Grid-No.4 Voltage					200	volts
DC Grid-No.3 Voltage					40	volts
DC Grid-No.2 Voltage (App	pro	X.) .		20	volts
DC Grid-No.1 Voltage					0	volts
DC Collector Current					150	μa
DC Helix Current					0.5	μa
DC Grid-No 1 Current)						,
DC Grid-No.3 Current					ooob 1.000	+ban 1 a
DC Grid-No.2 Current	٠				each less	than I µa
DC Grid-No.1 Current						
Magnetic-Field Strength†					525 ± 5%	gausses
Gain (Low level)					25	db
Power Output (Saturated)					1	mw
Noise Figure					6.5	db

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	min.	max.	1
Heater Current	1	0.45	0.85	amp
Input VSWR (Non-operating)	2	-	1.7	
Output VSWR (Non-operating)	2		2	
DC Helix Voltage	3	350	390	volts
DC Grid-No.4 Voltage	3	160		volts
DC Grid-No.3 Voltage	3	20	50	volts
Saturated Power Output	3	0.25	-	mw
Gain		20		db
Noise Figure	3	-	7	db

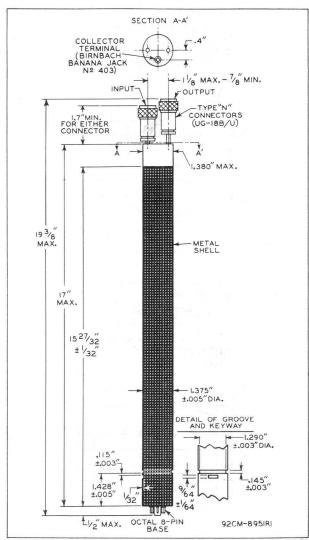
Note 1: With heater voltage of 5 volts.

Note 2: Measured at specified connector over the frequency range of 2700 to 3500 Mc.

Note 3: Adjusted for optimum noise figure with a magnetic field of 525 gausses, signal frequency of 3100 Mc, and heater voltage of 5 volts.

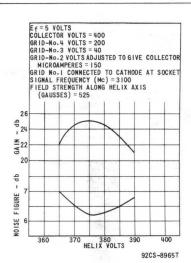
OPERATING CONSIDERATIONS

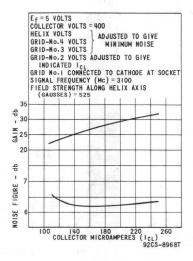
The magnetic field required for focusing the electron beam of the 6861 may be obtained from a solenoid or permanent magnet capable of providing a uniform field of 525 gausses over the length of the tube axis starting 2 inches from the groove near the base end of the metal shell and continuing for at least 9 inches along the tube axis.


For RCA Solenoid Type MW-4900.

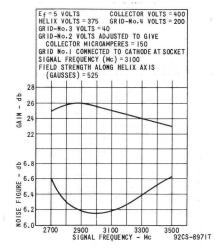
-Indicates a change.

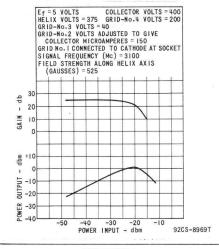
This value of field strength will focus the electron beam, but noise, figure will not be optimum.




TRAVELING-WAVE TUBE

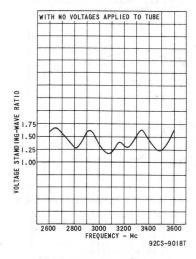
6861 NOISE-FIGURE CHARACTERISTICS




606

TRAVELING-WAVE TUBE

NOISE - FIGURE CHARACTERISTICS


SATURATION CHARACTERISTICS

686)

INPUT-MATCHING CHARACTERISTIC

6883B/8032A/8552

Beam Power Tube

HIGH POWER SENSITIVITY

RCA "DARK HEATER" WITH 12- TO 15-VOLT RANGE 50 WATTS CW INPUT (ICAS)

85 WATTS CW INPUT (ICAS) UP TO 60 Mc

AT 175 Mc CONTROLLED POWER OUTPUT

CONTROLLED ZERO-BIAS PLATE CURRENT

AT REDUCED HEATER VOLTAGE For RF Power Amplifier and Oscillator Service and as an

AF Power Amplifier and Modulator in Both Mobile and Fixed Equipment. The 6883B/8032A/8552 is Unilaterally Interchangeable with types 6883, 6883A, and 8032,

The 6883B/8032A/8552 is the same as the 6146B/8298A except for the following items:

Electrical:

Heater, for Unipotential Cathode:

Voltage (AC or DC). volts 12.6 Current at heater volts = 12.6. 0.562 amp Minimum heating time. 60 SAC Direct Interelectrode Capacitances: a

Grid No.1 to plate. 0.24 max. pf

CHARACTERISTICS RANGE VALUES

Test No.

Note Min. Max.

Direct Interelectrode 1 Capacitances:

Grid No.1 to plate. 1 0.24 pf

Note 1: With no external shield.

SPECIAL PERFORMANCE DATA

Stationary Equipment Operation:

Design Min. Center Max.

Heater, for Unipotential Cathode:

Voltage (AC or DC) V 12.6 volts Current at 12.6 volts. 0.525 amp -Useful Power Outputw. 59 watts

It is recommended that the design-center heater voltage be 12.6 volts; the heater power supply should not fluctuate more than 10 $\!\sharp$ to insure long life.

In a single-tube, self-excited oscillator circuit, and with ac heater voltage of 12.6 volts, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-No.1 resistor of 24,000 ± 10% ohms, dc plate current of 150 max. ma., dc grid-No.1 current of 2.5 to 3 ma., and frequency of 15 Mc.

- Indicates a change.

a With no external shield.

6883B/8032A/8552

Mobile Equipment Operation:

Design Min. Range Max.

Heater, for Unipotential Cathode:

- $^{\rm X}$ It is recommended that the heater voltage operate within the range of 12.0 to 15.0 volts and within excursions from 10 to 15 volts in battery operation. See $\mathit{Useful Power Output Test II}$ and $\mathit{Overvoltage Tests}$.
- y in a single-tube, self-excited oscillator circuit, and with ac heater voltage of 12.6 volts, dc plate voltage of 600 volts, dc grid-No.2 voltage of 200 volts, grid-No.1 resistor of 24,000 ± 10% ohms, dc plate current of 150 max. ma., dc grid-No.1 current of 2.5 to 3 ma., and frequency of 15 Mc.
- With conditions in note (y) above, reduce heater voltage to 10 volts. Useful power output will be at least 90% of the power output at heater voltage of 12.6 volts.

Overvoltage Heater Life Tests:

Continuous heater life tests are performed periodically on sample lots of tubes with 16 volts on the heater, all other electrodes "floating". Intermittent heater life tests are performed periodically on sample lots of tubes with 22 volts on the heater, a cycle of I minute "ON" and 4 minutes "OFF". After 1000 hours of the continuous heater life test and after 48 hours of the intermittent heater life test, the following tests are performed:

With heater voltage of 13.5 volts and \pm 100 dc volts between cathode and heater, the heater-cathode leakage current will not exceed 100 microamperes.

With ac or dc heater voltage of 13.5 volts, grid-No.1 volts = -200 and cathode, grid No.2, and plate grounded, the minimum grid-No.1 leakage resistance will be 10 megohms.

With ac ordc heater voltage of 13.5 volts, plate volts = -200, and cathode grid No.1 and grid No.2 grounded, the minimum plate leakage will be 10 megohms.

- Indicates a change.

Beam Power Tube

CERMOLOX TYPE

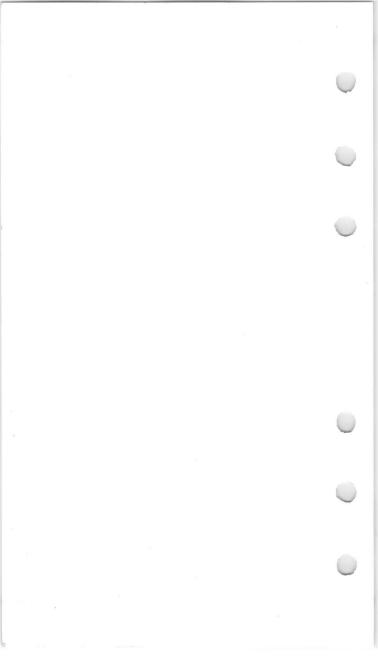
OXIDE-COATE	D CATHODE
80 WATTS CW	POWER OUTPUT
AT HOO MH-	•

FORCED-AIR COOLED 40 WATTS CW POWER OUTPUT AT 1215 MHz

For Use in Compact Aircraft, Mobile, and Stationary Equipment The 6884 is the same as the 6816 except for the following items:

Heater, for Unipotential Cathode

	1.00		00										26.5 typ	٧
Voltage	(A(or	DC,				•			•	٠		29.2 max	٧
Current	at	hear	ter	VC	Its	=	2	6.	5.				0.54	A -


CHARACTERISTICS RANGE VALUES

								Note	min.	max.	
Heater	Curren	t.						1	0.48	0.60	A ←
Useful									80	-	W

Note 1: With 26.5 volts ac or dc on heater.

Note 8: In a single-tube, grid-driven coaxial-cavity class C amplifier circuit at 400 MHz and for conditions with 24.0 volts ac or dc on heater, dc plate voltage of 1000 volts, dc grid-No.2 voltage of 300 volts, grid-No.1 resistor adjustable between zero and 10,000 ohms, dc plate current of 180 mA maximum, dc grid-No.1 current of 30 mA maximum, and driver power output of 30 watts.

✓ Indicates a change.

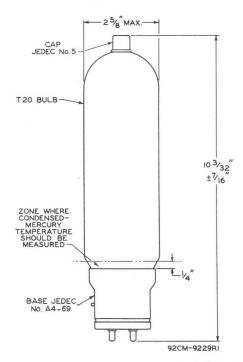
Half-Wave Mercury-Vapor Rectifier

The 6894 is the same as the 6895 except for the following items:

Mechanical:

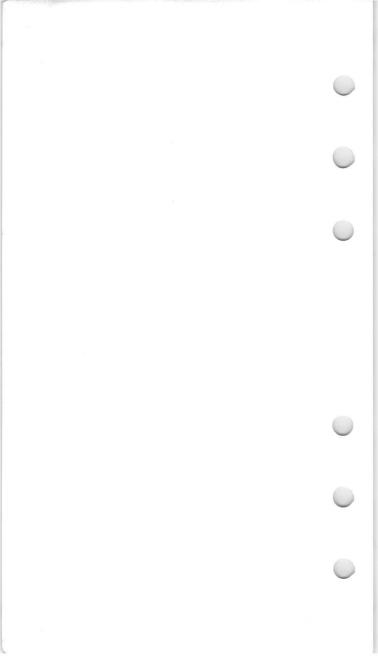
Overall Length. 10-3/32" ± 7/16" . . . Johnson No.123-211, or equivalent .Skirted Medium-Metal-Shell Jumbo 4-Pin 10-3/32" ± 7/16" with Bayonet (JEDEC No. A4-69)

Basing Designation on BOTTOM VIEW. .


Pin 1 - No Internal Connection Pin 2 - Filament.

Cathode

Shield



Pin 3 - No Internal Connection Pin 4 - Filament Cap - Anode

- Indicates a change.

69₈₉

SUPER-POWER SHIELDED-GRID BEAM TRIODE

COAXIAL-ELECTRODE STRUCTURE 500-KW CW POWER OUTPUT

Electrical:

WATER-COOLED ELECTRODES
INTEGRAL WATER DUCTS

Useful with full input up to 75 Mc

GENERAL DATA

- 1		
	Filament, Multistrand Thoriated Tur	ngsten:
	Voltage (Single-phase AC or DC) .	7.3 min. volts 7.8 max. volts
	Current at 7.3 volts	1040 amp
1	Current at 7.8 volts	
	Starting current Must	never exceed 1700 amperes, even momentarily
	Cold resistance	
	Minimum heating time Amplification Factor, for dc grid volts = -50 and dc plate voltage	60 seconds
	adjusted to give dc plate current	
	of 10 amperes	
	Grid to plate	12 μμt
	Grid to filament	1300 μμί
	Plate to filament	160 μμt
	Mechanical:	
	Operating PositionVert	
	Maximum Overall Length	
	Maximum Diameter	140 lbs
	Terminal Connections (See Dimension	nal Outline):
	F _C -Filament	K _{R2} -Flange

	Terminal
F.	-Filament
	Flange
	Terminal
KRI-	-Output-
14	Circuit-
	Return
	Terminal
P.	- Plate
	Terminal

Cylindrical

K_{R2} -Flange Input-Circuit-Return Terminal K_{R3} -Cylindrical Input-Circuit-Return Terminal G-Grid Terminal

Air Cooling:

It is important that the temperature of any external part of the tube should not exceed 150°C. In general, forcedair cooling of the ceramic bushings will not be required unless the 6949 is used in cavity-type circuits or in a confined space without free circulation of air. Under such conditions, provision should be made for blowing an adequate quantity of air at the ceramic bushings to limit their temperature to 150° C. Forced-air cooling of the output-

circuit-return terminal (K_{R_1}) and the flange input-circuit-return terminal (K_{R_2}) may be necessary to prevent exceeding the maximum temperature rating of 150°C, particularly at vhf frequencies.

Water Cooling:

Water cooling of the beam-forming cylinder, grid-terminal, and the plate is required. The water flow must start before application of any voltages and preferably should continue for several minutes after removal of all voltages. Interlocking of the water flow for each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate water flow. The use of distilled water is essential.

Water Flow:

	Min. Flow gpm	Flow gpm	Pressure Drop [⊕] for Typical Flow	Gauge Pres- sure
To plate (In direction			psi	psi
shown on Dimensional				
Outline): For plate dissipation				
up to 125 kw For plate dissipation	40	44	18	100
of 260 kw For plate dissipation	60	66	35	100
of 330 kw For plate dissipation	70	77	48	100
of 400 kw To grid-terminal	80	88	65	100
connector To beam—forming	1		-	-
cylinder Outlet Water Temperature		8 t)	9 70 max.	50 °C
Minimum Plate-Water-Column Ceramic-Bushing Temperatur Metal-Surface Temperature	n Resistan	ce . 1/2	megohm per dc plate v 150 max. 150 max.	

Fittings:

Fittings for the plate and beam-forming-cylinder water connections may be obtained from the Breco Division, Perfecting Service Co., 332 Atando Ave., Charlotte 6, North Carolina, USA.

⊕,□: See next page.

LINEAR RF POWER AMPLIFIER Single-Sideband Suppressed-Carrier Service

Crest of modulation conditions

Maximum CC	Ratings.	Absolute	Values:
------------	----------	----------	---------

	For altitudes up to 5,000 feet and frequencies up to 7	5 Mc
	DC PLATE VOLTAGE	volts
		amp
		watts
		amp
	PLATE DISSIPATION (Average) 400000 max.	watts
	Typical CCS Class B Operation at 10 Mc:	
		volts
	DC Grid Voltage (Approx.)*300	volts
		amp
	Effective RF Load Resistance 170	ohms
	"Single-Tone" Operation:⊕	-
	Maxsignal dc plate current 57	amp
	Max.—signal dc grid current 0.35	amp
	Maxsignal peak rf grid voltage 1900	volts
	Maxsignal driving power (Approx.) . 10000**	watts
	Max.—signal power output (Approx.) 600000	watts
	"Two-Tone" Operation:	
	Average dc plate current	amp
		amp
	Peak envelope rf grid voltage 1900	volts
	Average power output (Approx.) 300000	watts
	Peak envelope power output (Approx.). 600000	watts
	1 - 0 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1111
	RF POWER AMPLIFIER — Class C Telegraphy##	nger I
	and	-
	RF POWER AMPLIFIER — Class C FM Telephony	1.4
	Maximum CCS Ratings Absolute Values:	
MAX.—SIGNAL DC PLATE CURRENT	s No	
		volts
		volts
		amp
		watts
		Walts
	Typical CCS Operation at 425 Kc:	
	DC Plate Voltage 17500	volts
	DC Grid Voltage*	volts
	Peak RF Grid Voltage 2000	volts
	DC Plata Current	000

DC Plate Current. DC Grid Current .

⊕ □, •, *, ⊕, **, ₩, Å: See next page.

40

amp amp

6949

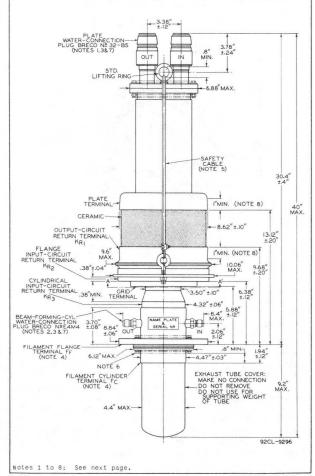
SUPER-POWER SHIELDED-GRID BEAM TRIODE

Driving Power (Approx.)		2000	watts
Useful Power Output (Approx.)		500000	watts

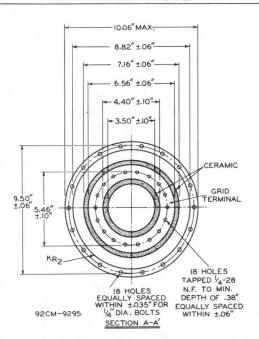
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

				Note	Min.	Max.	
Filament Current				1	870	1100	amp
Amplification Factor.				1,2	48	74	
Direct Interelectrode							-
Grid to plate				-	-	20	
Grid to filament				-	1150	1550	puf
Plate to filament .				-	140	170	μμ

Note 1: With 7.3 volts ac on filament.


Note 2: For dc grid volts = -50 and dc plate voltage adjusted to give dc plate current of 10 amperes.

- Directly across cooled element for the indicated typical flow.
- At tube inlets.
- Continuous Commercial Service.
- Obtained from a fixed supply. Value should be adjusted to give indicated value of zero-signal plate current.
- Single-Tone" operation refers to that class of amplifier service in which the grid-No.1 input consists of a monofrequency of signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.
- ** Includes tube losses, circuit losses, and "swamping power" losses.
 - "Two-Tone" operation refers to the simultaneous amplification of the two equal—amplitude, radio-frequency signals resulting from modulation of a single-sideband, suppressed—carrier transmitter by two audiofrequency signals of equal amplitude. The data shown for "Two-Tone" modulation refer to the case in which the peak amplitude of the resultantrf grid signal is equal to the "Max.—Signal Peak RF Grid—No.1 Voltage" as specified under "Single—Tone" modulation.
- ## Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audiofrequency envelope does not exceed 115% of the carrier conditions.
- Obtained from fixed supply.
- Additional driving power is required at frequencies where circuit losses become significant.


OPERATING CONSIDERATIONS

A high-speed, electronic protective device must be used to remove the plate voltage within a few microseconds in the event of abnormal operation such as internal arcing. The protective device employed to remove the plate voltage in any installation must be approved by the RCA Electron Tube Division. In addition, the grid circuit should be provided with overload relays which will act to remove within a period of 0.1 second all grid power in the event of excessive grid-current flow. Inquiries concerning a high-speed, electronic protective device for removal of plate voltage from the 6949 may be addressed to Commercial Engineering, Electron Tube Division, RCA, Harrison, N.J.

The 6949 can be operated with maximum ratings at frequencies up to 75 Mc and with reduced ratings to higher frequencies. The capabilities of the 6949 for operation at higher frequencies and at higher powers have not yet been determined but requests for information on specific applications will be welcomed.

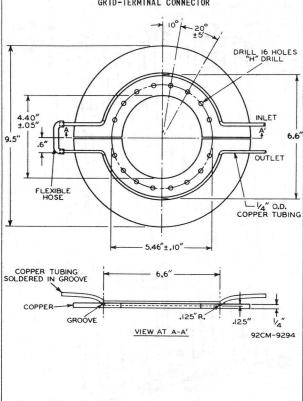
NOTE I: SOCKET NO.412-BS 1-1/2" FOR THIS PLUG MAY BE OBTAINED FROM BRECO DIVISION, PERFECTING SERVICE CO., 332 ATANDO AVE. CHARLOTTE 6, N.C.

NOTE 2: SOCKET NO.4EF4 1/2" (WITH FEMALE PIPE-THREAD CONNECTION) OR SOCKET NO.4EM4 1/2" (WITH MALE PIPE-THREAD CONNECTION) MAY BE OBTAINED FROM SUPPLIER INDICATED IN NOTE 1.

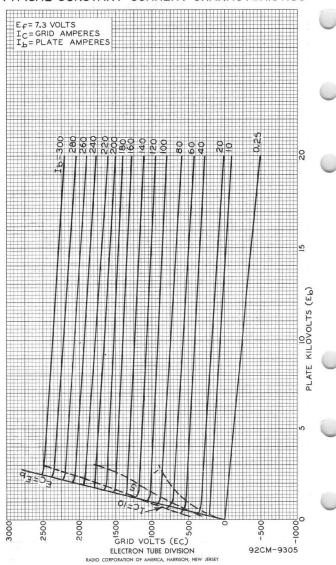
NOTE 3: DIRECTION OF WATER FLOW THROUGH TUBE MUST BE IN DIRECTION INDICATED BY MARKINGS AT WATER CONNECTIONS.

NOTE 4: USE FOR FILAMENT POWER ONLY. INPUT-CIRCUIT RETURN SHOULD BE MADE TO BOTH INPUT-CIRCUIT-RETURN TERMINALS (K_{R_2} & K_{R_3}); OUTPUT-CIRCUIT RETURN SHOULD BE MADE TO OUTPUT-CIRCUIT-RETURN TERMINAL (K_{R_1}).

NOTE 5: REMOVE THIS CABLE BEFORE OPERATING TUBE AND KEEP CABLE FOR FUTURE TUBE HANDLING.


NOTE 6: DO NOT TAMPER WITH THESE BOLTS.

Notes 7 & 8: See next page.


NOTE 7: INLET WATER CONNECTIONS (IN) ARE BOTH ON SAME SIDE OF TUBE AND TO THE RIGHT WHEN TUBE IS VIEWED WITH NAME PLATE TOWARD OBSERVER.

NOTE 8: THIS AREA IS SUBJECT TO A MAXIMUM TAPER OF 0.060" TOTHE INCH. THE MAXIMUM DIAMETER ALONG THIS TAPER WILL BE ON THE END TOWARD THE CERAMIC.

DETAILS OF SUGGESTED WATER-COOLED GRID-TERMINAL CONNECTOR

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Beam Power Tube

2 MEGAWATTS PEAK POWER OUTPUT IN SHORT-PULSE SERVICE AT 425 Mc

PULSE LENGTH TO 15 MICROSECONDS LOW FILAMENT POWER FOR AIRBORNE USE

LIQUID COOLED

For Grid-Driven, Plate-Pulsed Amplifier Applications at Frequencies from 174 to 600 Mc

	1.	0	^	+	-	٠.	00	. 1	

Electrical:						
Filamentary Cathode, Multistrand, Matri	X-	Ту	pe,	Oxide	-Coate	ed:
Voltage: a						
Maximum, with dc or 60 cps						
ac excitation		¥		1.00		/olt
Maximum, with 400 cps				. 05		7
ac excitation	•	*		1.05	V	olts
Typical, with dc or 60 cps				0 05		
ac excitation				0.95	1	volt
Current:						
Typical operation value at						
0.95 volt, with 60 cps excitation			ğ.	495		amp
Minimum time to reach operating						
filament voltage	٠			30	seco	onds
Minimum time at normal operating						
filament voltage before other				0.0		
voltages are applied				90	seco	onds
Mu-Factor, Grid No.2 to Grid No.1		٠		1		
Direct Interelectrode Capacitances:				0 15		-
Grid No.1 to plate				0.15	max.	pf
Grid No.1 to grid No.2 and cathode .				500		pf
Plate to cathode and grid No.2	٠		•	30		pf
Grid No.2 to cathode				10000	Table Control of	
(Including bypass capacitors)	•	•	•	18000	max.	pf

Mechanical:

TO THE TO THE TENT OF THE TENT	
Operating Position Tube axis vertical, either end up	
Overall Length 8.62" ± 0.31"	
Maximum Diameter	
Weight (Approx.)	
Terminal Connections (See Dimensional Outline):	
F-Insulated Filament Ter-	

minal and Coolant Connection
FR-Uninsulated Filament Terminal
for DC Circuit Returns and
Coolant Connection
G1-RF Grid-No.1 Terminal

Contact Surface G_{lw} -DC Grid-No.1 and Coolant Connection

FR F G2 - DC Grid-No.2 and Coolant Connection KR - RF Cathode Terminal Contact Surface for Circuit Returns

P-RF Plate Terminal Contact Surface
Pw-DC Plate and Coolant Connection

- Indicates a change.

Thermal:

Ceramic-Insulator Temperature.						100	150 max.	oC
Metal-Surface Temperature	180			×			100 max.	oC
Minimum Storage Temperature,								
without cooling liquid in								
coolant ducts	٠		9	ŝ			-65 min.	
External Gas Pressure		•		š	•	٠	60 max.	psia

Air Cooling for Insulators and Contact Areas:

It is important that the temperature of any external part of the tube not exceed the value specified. In general, forced—air cooling of the ceramic insulators and the adjacent contact areas may be required if the tube is used in a confined space without free circulation of air. Under such conditions, provision should bemade for blowing an adequate quantity of air across the ceramic insulators and adjacent terminal areas to limit their maximum temperature to the value specified.

Liquid Cooling:

Liquid cooling of the filament block, dc cathode block, grid-No.1 block, grid-No.2 block, and plate is required. When tube operation under low ambient temperatures is required, the recommended coolant is inert liquid FC75 (Made by the Fluorochemical Division, Minnesota Mining and Manufacturing Co., 900 Bush Avenue, St. Paul 6, Minnesotal but ethylene glycol mixed with water in the proportion of 60% ethylene glycol to 40% water by weight can be used. When the environmental temperature permits, the coolant may be water; the use of distilled water or filtered deionized water is essential. The liquid flow must start before application of any voltages and preferably should continue for several seconds after removal of all voltages. Interlocking of the liquid flow through each of the cooled elements with all power supplies is recommended to prevent tube damage in case of failure of adequate liquid flow.

Flow:

Liquid Pressure at any outlet...... 100 max. psi Water Flow:

water from.				
	А	bsolute Min. Flow	Typical Flow	Max. Pressure Differential for Typical Flow
		gpm	g pm	psi
Through Filament block		0.5	0.8	8
Through dc cathode block		0.5	0.8	8 6 8
Through grid-No.1 block		0.5	0.8	6
Through grid-No.2 block Through plate:	٠	0.5	0.8	8
For plate dissipations up to 5 kw (Av.)		5	7	5
For plate dissipations of 5kw to 8 kw (Av.)		8	10	10
Resistivity of Water at 25°	C		1	min. megohm-cm

-			-						
		At	solu Min. Flou		- /	pica Flow	for T	renti	al
			gpm			gpm		si	
	Water Temperature from any outlet Storage Temperature						70 max. See foo	tnote	°C
	FC75 Flow:								
	Through filament block Through dc cathode block Through grid-No.1 block Through grid-No.2 block Through plate: For plate dissipation up		1.0 1.0			1.2 1.2 1.2 1.2		20 20 14 20	
	to 5 kw (Average)		10			12		20	
	For plate dissipations of 5 kw to 8 kw (Average) Outlet-Liquid FC75 Temperatu		20			24		80	
	from any outlet						70 max.		oC
	Storage Temperature with liq FC75 in Coolant Courses						-65 min.		ОС
	Liquid FC75 Temperature for Tube Operation						-25 min.		°C
	Ethylene-Glycol-Water Soluti								
	Through filament block					1.2		18	
	Through dc cathode block					1.2		18	
	Through grid-No.1 block Through grid-No.2 block Through plate in direction		1.0			1.2		12 18	
	shown on <i>Dimensional Outli</i> For plate dissipation up								
	to 5 kw (Average)		6			8		7	
	For plate dissipations o 5 kw to 8 kw (Average) . Outlet-Solution Temperature		16			18		40	
	from any outlet						60 max.		oC
	Min. Plate-Solution-Column Resistance at 25° C						10 min.	megol	nms
	Storage Temperature with Sol in Coolant Courses						-45 min.		oC
	Solution Temperature for Tube Operation								°C
							-20 11111.		C
	PULSED For frequencies from 174					and a	maximum "	ON"	
	time as specified in an								
	Maximum Ratings, Absolute-Ma	xin	num I	<i>lalu</i>	es:				
	"ON" Ti	те	15	μse	0		70 μsec		
	Peak Positive-Pulse Plate Voltage ^e	٠	5500	00 m	ax.	. 3	0000 max.	vo	lts

"ON" 3	Tim	e	15 μs	ес	70 µs	sec	
Peak Positive-Pulse Grid-No.2 Voltage ^{f,g} DC or Peak Negative-Pulse			2200	max.	2200	max.	volts
Grid-No.1 Voltage			400	max.	400	max.	volts
Peak Plate Current			80	max.	30	max.	amp
Peak Grid-No.2 Current			15	max.	3	max.	amp
Peak-Rectified							
Grid-No.1 Current			15	max.	3	max.	amp
DC Plate Current			0.320	max.	0.500	max.	amp
DC Grid-No.2 Current			0.060	max.	0.060	max.	amp
DC Grid-No.1 Current			0.060	max.	0.060	max.	amp
Plate Input (Average)			16000	max.	9000	max.	watts
Plate Dissipation (Average)					5000	max.	watts

Typical Plate-Pulsed Operation:

In Class B service at 425 Mc with a rectangular waveshape pulse.

		-			7		
Pulse	u	vic	lth		13 µsec	60 µsec	
Duty	fo	ict	01	-	0.004	0.018	
Peak Positive-Pulse							
					50000	19000	volts
Plate Voltage	•	•		•	30000	13000	VOICS
Peak Positive-Pulse					1000	1700	volts
Grid-No.2 Voltage ^f					1800	1700	VOILS
Peak Negative-Pulse							
Grid-No.1 Voltage ^h					325	250	volts
Peak Plate Current					75	25	amp
Peak Grid-No.2 Current .					8	1	amp
Peak Rectified							
Grid-No.1 Current					10	0.5	amp
DC Plate Current					0.3	0.45	amp
DC Grid-No.2 Current					0.03	0.02	amp
DC Grid-No.1 Current					0.04	0.01	amp
Peak Driver Power		•	•	•	0.01	0.01	amp
					20000	2000	
Output (Approx.)							watts
Useful Peak Power Output				. 4	2000000	225000	watts

Because the filament, when operated near the maximum voltage value, provides emission in excess of any requirements within tube ratings, during operation of the tube, the filament voltage should be reduced to a value that will give adequate but not excessive emission. Careful attention to maintaining the value of filament voltage consistent with adequate emission will conserve the voltage consistent with adequate emission will conserve in the voltage consistent to the voltage of the threads. This procedure is essential for accurate measurement of the filament voltage. At 400 cycles some heating of the filament leads and rf cathode terminal (cathode header) occurs; this condition is not detrimental to tube operation or tube life.

This pressure is related to the output-cavity pressurization as required to prevent corona or external arc-over.

c Measured directly across cooled element for the indicated typical flow.

The tube coolant ducts must be free of water before storage or ship-ment of the tube to prevent damage from freezing.

The magnitude of any spike on the plate voltage pulse should not exceed its peak value by more than #900 volts, and the duration of any spike when measured at the peak-value level should not exceed 10% of the maximum *0** time. The output cavity must be pressurized as required toprevent corona or external arc-over at the ceramic insulator.

- The magnitude of any spike on the grid-No.2 voltage pulse should not exceed its peak value by more than 250 volts, and the duration of any spike when measured at the peak-value level should not exceed 10% of the maximum "ON" time.
- A negative dc voltage of 300 volts maximum may be applied to grid No.2 to prevent any tube conduction between pulses.
- h The grid-No.1 voltage may be a combination of fixed and self bias obtained from a series grid resistor.

CHARACTERISTICS RANGE VALUES

	Note	Min.	Max.	
Filament Current	j	460	530	amp
Input Strap-Resonant Frequency	k	222	250	Mc
Output Strap-Resonant Frequency	k	230	250	Mc
Direct Interelectrode Capacitances:				
Grid No.1 to plate	m	_	0.15	pf
Grid No.2 to cathode	-	10000	18000	pf

 $^{
m j}$ At filament voltage of 0.95 volt and ac filament excitation at 60 cps.

k The frequency range of the sweep generator is varied to produce the resonance curve observed on the oscilloscope and the UHF Marker Oscillator frequency is varied so that the pip is observed at the peace of the resonance curve. The resonant frequency is read on the frequency meter.

 $^{
m m}$ Measured with special shield adapter.

COOLING CONSIDERATIONS

System

The liquid-cooling system consists, in general, of a source of cooling liquid, a liquid regeneration loop, a heat exchanger, a feed-pipe system which carries the liquid to the filament section blocks, to the filament common-point connection, to the grid-No.1 block, to the grid-No.2 block, and to the plate connections of the tube, and provision for interlocking the liquid flow through each of the cooling courses with the power supplies.

It is essential that the insulating tubing between the cooling-system piping and each of the cooling courses have good insulating qualities and be of sufficient length to minimize leakage currents and/or electrolysis effects. The minimum plate liquid column resistance should be 10 megohms at 25° C.

The piping system must be arranged so that direction of coolant flow through the plate coolant connection is in accord with the markings on the plate coolant connection (see Dimensional Outline) to insure adequate cooling. Through each of the other coolant connections, the liquid flow may be in either direction. Series or parallel arrangement of the coolant ducts is permissible so long as the specified flow, pressure, and outlet temperature ratings are observed. Caution: The feed-pipe system should be so designed that all of the cooling liquid indicated by the flow meter at each outlet passes through the associated coolant duct within the tube, and is not shunted inadvertently by any other path.

A test as to proper design and functioning of the feed-pipe system can be made by plugging the inlet and outlet holes of the fitting at each cooling connection.

Under these conditions, and with all voltages removed from the tube, no liquid flow should be indicated by the flow meter for any connection when the coolant valve is fully opened.

Precautions

Proper functioning of the coolant system is of the utmost importance. Even a momentary failure of the liquid flow will damage the tube. In fact, without coolant, the heat of the filament alone is sufficient to cause serious harm. It is, therefore, necessary to provide a method of preventing operation of the tube in case the coolant supply should fail. This may be done by the use of coolant-flow interlocks which open the power supplies when the flow through any element is insufficient or ceases. The coolant flow must start before application of any voltages and preferably should continue for several seconds after removal of all voltages.

The absolute minimum coolant flow required through the filament section blocks, the filament common-point connections, the grid-No.1 block the grid-No.2 block, and to the plate together with pressure differentials across the cooled elements, is given in the tabulated data. The use of an outlet coolant thermometer and a coolant flow meter at each of the outlets is recommended. Under no circumstances should the temperature of the coolant from any outlet ever exceed the maximum value given for the coolant inthe tabulated data.

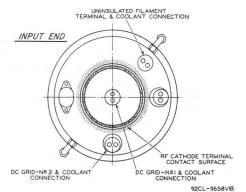
In spite of the usual precautions taken to eliminate contamination of the coolant by oil, dust, etc., some impurities are likely to enter the fluid. The use of astrainer with at least 60-mesh screen is recommended in the coolant supply line as near to the tube as possible to trap any foreign particles likely to impair the coolant flow through the tube ducts. Also, a regeneration loop followed by a submicron filter should be employed. For example, a regeneration loop having a 10-to-20-gallon-per-hour capacity will ordinarily be adequate for use with a cooling system containing about 20 gallons.

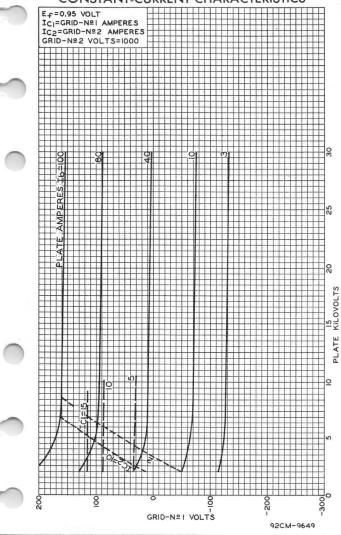
When the tube is used in equipment under conditions such that the ambient temperature is below 0 $^{\rm O}$ C, precautions should be taken to prevent freezing of the water in the tube ducts.

FOR ADDITIONAL INFORMATION ON THIS TYPE IN-CLUDING INPUT AND OUTPUT CAVITY DRAWINGS, WRITE FOR TECHNICAL BULLETIN AVAILABLE FROM:

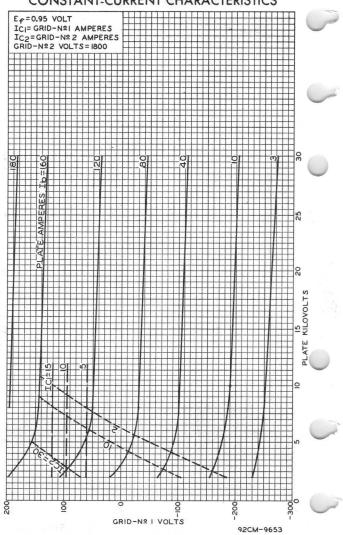
Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey

SIMPLIFIED DIMENSIONAL OUTLINE' RF CATHODE TERMINAL CONTACT SURFACE CONNECTION TO SCREWS HOLE COOLANT OUTLET COOLANT INLET 8.72 +.03 -.50 DIA 11.25" MAX. INDEX OUTPUT END INDICATES CERAMIC BUSHING DC PLATE & COOLANT RF PLATE TERMINAL CONTACT SURFACE 8.62* EXHAUST CAP MAKE NO CONNECTION DO NOT REMOVE


 $^{^{}m r}$ A detailed Dimensional Outline and associated Gauge Drawings are given in the Technical Bulletin available upon request.


RF GRID-NºI TERMINAL CONTACT SURFACE
COOLANT-CONNECTION NUT

INSULATED FILAMENT TERMINAL & COOLANT CONNECTION


92CL-9658VIA

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

1000

MAGNETRON

SERVO-TUNABLE TYPE

FORCED-AIR COOLED

INTEGRAL MAGNET

For use as a pulsed oscillator at frequencies between 8500 and 9600 Mc

GENERAL	DATA
---------	------

Mechanical.

Piccine	inicai																				
Opera	ating	Po:	si	ti	on															. A	ny
Dimer										. 5	See	1	Dir	ner	151	01	nal	0	ut	lin	ı e
Air F																					

Through Ducts--An air stream should be directed through each of the cooling ducts provided on the tube. Adequate flow should be provided so that the temperature of the anode block does not exceed 150° C.

PULSED-OSCILLATOR SERVICE

Maximum and Minimum Ratings, Absolute Values:

For duty cycle up to 0.0011 maximum

PEAK	ANODE	VOL	TAG	E												23	max.	kv
PEAK	ANODE	CUR	REN	T												27.5	max.	amp
PEAK	POWER	INP	UT.													630	max.	kw
AVERA	AGE PO	WER	INP	UT												0.63	max.	kw
PULSE	DURA	TION									÷					2.75	max.	μsec
	PEAK PEAK AVER	PEAK ANODE PEAK POWER AVERAGE PO	PEAK ANODE CUR PEAK POWER INP AVERAGE POWER	PEAK ANODE CURREN PEAK POWER INPUT® AVERAGE POWER INP	PEAK ANODE CURRENT PEAK POWER INPUT. AVERAGE POWER INPUT	PEAK ANODE CURRENT . PEAK POWER INPUT. AVERAGE POWER INPUT.	PEAK ANODE CURRENT PEAK POWER INPUT AVERAGE POWER INPUT	PEAK ANODE CURRENT PEAK POWER INPUT AVERAGE POWER INPUT	PEAK ANODE CURRENT PEAK POWER INPUT AVERAGE POWER INPUT	PEAK ANODE CURRENT PEAK POWER INPUT AVERAGE POWER INPUT	PEAK ANODE CURRENT PEAK POWER INPUT AVERAGE POWER INPUT	PEAK ANODE CURRENT	PEAK ANODE CURRENT	PEAK ANODE CURRENT	PEAK ANODE CURRENT	PEAK ANODE VOLTAGE PEAK ANODE CURRENT PEAK POWER INPUT AVERAGE POWER INPUT PULSE DURATION	PEAK ANODE CURRENT	PEAK ANODE CURRENT 630 max. PEAK POWER INPUT

: See next page.

1008

RATE OF RISE OF VOLTAGE PULSE: For pulse duration of 1 µsec or less		225 max. 70 min.	kv/μsec kv/μsec
For pulse duration greater than 1 μ sec			kv/μsec kv/μsec
ANODE-BLOCK TEMPERATURE HEATER-CATHODE-TERMINAL TEMPERATURE. LOAD-VOLTAGE STANDING-WAVE RATIO		150 max.	°C
Typical Operation [#] with Load-Voltage Equal to or Less th	nan 1.05		
With duty cycle of	f 0.001		
Heater Voltage See Peak Anode Voltage	Operat:	ing Consid	derations kv
Peak Anode Current		27.5	amp
Pulse-Repetition Rate	400	4000	cps
Pulse Duration	2.5	0.25	μsec
phasing of 1.5 VSWR Side Lobes with worst phasing	0.5	5	Mc
of 1.5 VSWR	8	10	db
Pulling Figure at VSWR of 1.5	10	10	Mc
Pushing Figure	0.2	0.2	Mc/amp
Thermal Factor for any 30° range of anode-block temperature			
between -55° C and 150° C	0.2	0.2	Mc/°C
Servo-Drive-Shaft Torque	6	6	oz-in.
Frequency Deviation due to			
tuning backlash	8	8	Mc
Peak Power Output (Approx.)	220	220	kw

For atmospheric pressure greater than 600 millimeters of mercury in the vicinity of the heater-cathode stem. Operation at pressures lower than 600 millimeters of mercury may result in arc-over across the stem with consequent damage to the tube. The waveguide must always be pressurized to a minimum of 15 psi absolute to prevent arcing, especially when there is a mismatched load. Arcing in the waveguide due to lack of pressure can damage the tube.

It is essential that the input circuit be designed so that if arcing occurs the energy per pulse delivered to the tube cannot greatly exceed the normal energy per pulse. To satisfy this requirement, it is recommended that pulsers of the discharging-network type be used.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

14		Note	Min.	Max.	
Heater Current		1	2.8	3.5	amp
Peak Anode Voltage		2	20	23	kv
Peak Power Output		3	180	_	kw
Pulses Missing from Total.		4,5	-	0.25	%

Notes 1 to 5: See next page.

9-58

MAGNETRON

With 13.75 volts ac or dc on heater. Note 1:

With peak anode current of 27.5 amperes. For heater voltage, Note 2: see Operating Considerations.

With peak anode current of 27.5 amperes corresponding to a peak Note 3: anode voltage in the order of 22 kv, anode-block temperature of 115° C approx., pulse duration of 2.5 microseconds, and maximum load-voltage standing-wave ratio equal to or less than 1.05. For heater voltage, see Operating Considerations.

Pulses are considered to be missing if the energy level at the operating frequency is less than 70 per cent of the normal value. Note 4:

With peak anode current of 27.5 amperes corresponding to a peak anode voltage in the order of 22 kv, anode-block temperature of 1150 c approx., pulse duration of 0.25 microsecond, load-voltage standing-wave ratio of 1.5 adjusted in phase to produce maximum instability. For heater voltage, see Operating Note 5: Considerations.

DEFINITIONS

Smooth Peak Value. The maximum value of a smooth curve drawn through the average of the fluctuation over the top of a voltage or current pulse. Pulse Width. The time interval between the two points of the current pulse at which the current is 50 per cent of the smooth peak value.

Rate of Rise of Voltage Pulse. The steepest slope of the voltage-pulse leading edge above 50 per cent of the smooth peak value. Measurement of the rate of rise of voltage should be made using a capacitance divider with an input capacitance not exceeding 6 $\mu\mu f$. An oscilloscope of sufficient bandpass, such as the Tektronix 517 or equivalent, should be used.

OPERATING CONSIDERATIONS

Mounting of the 7008 should be accomplished by means of the mounting flange which may be positioned to operate the tube in any orientation. This flange is made to permit use of the 7008 in applications requiring a pressure seal. Care should be taken by the equipment designer to insure that the tube is mounted on a surface having adequate flatness so as to avoid possible distortion of the mounting flange when it is bolted to the mounting surface. Captive 1/4" - 20 bolts are provided at the corners of the mounting flange for mounting the magnetron. These four mounting bolts are held in position during shipment of the 7008 by plastic sleeving which also serves to protect the bolt threads.

Fastening the JAN RG-51/U waveguide to the waveguide output flange of the tube is accomplished in the following manner. A JAN UG-52A/U choke flange or equivalent should be modified by drilling out the screw threads from the four mounting holes in the choke flange using a No.15 drill. This operation will permit four size 8-32 bolts inserted throughthe flange mounting holes, to engage the threaded waveguide output flange of the tube. It is recommended that the choke flange be sufficiently tight to avoid arcing and other contact effects. Before the choke flange is fastened to the waveguide output flange of the tube, the user should make certain that the waveguide window is entirely free of dust to prevent possible arcing with consequent damage to the tube

1008

A conduit should be attached to each of the inlet-air duct flanges provided on the tube. The conduits should be made of flexilbe, non-magnetic material. Rubber hose or stainless-steel hose is suitable. Fastening of the conduits requires two non-magnetic 6-32 screws at each duct. Adequate flow of cooling air should be provided through the ducts to maintain the temperature of the anode block below 150°C c under any condition of operation. Failure to provide adequate cooling will impair tube life. Cooling of the heater-cathode terminal may be required under some conditions to maintain the temperature of this terminal below 165°C.

A mechanical drive may be connected to the drive shaft of the 7008 by using a flexible coupling drilled for a 3/16"-diameter shaft and held in place by a setscrew. When the magnetron is installed in radar equipment which has a frequency index dependent upon rotation of the drive shaft, both the index and the 7008 tuner indicator should be adjusted to the same frequency before the drive coupling is connected to the drive shaft.

The heater terminal and the heater-cathode terminal require the use of a connector with flexible leads such as the Ucinite* No. 115364 with built-in capacitor, or equivalent. Unless flexible leads are used, the heater and heater-cathode seals may be damaged.

A heater starter should be used to raise the voltage gradually and to limit the instantaneous starting current through the heater when the circuit is first closed. The starter may be either a system of time-delay relays cutting resistance out of the circuit, a high-reactance heater transformer, or a simple rheostat. Regardless of the method of control, it is important that the maximum instantaneous starting current never exceed, even momentarily, a value of 12 amperes. Exceeding this value may damage the heater.

After the heater voltage is raised to its rated value of 13.75 volts, allow the cathode to warm up for at least 2-1/2 minutes to make sure that the cathode reaches operating temperature. When the cathode has reached full operating temperature, high-voltage pulses, negative with respect to anode (ground), can be applied to the heater-cathode terminal. As soon as the 7008 begins to oscillate, the heater voltage (Ef) should be reduced in accordance with the following formulas, depending on the average power input (Pi) to the tube:

P; up to 450 watts:
$$E_f = 13.75 \left(1 - \frac{P_i}{450}\right)$$
 volts

Pi greater than 450 watts: Ef = 0 volts

When the 7008 is oscillating, the cathode is subjected to considerable electron bombardment which raises the temperature of the cathode. The magnitude of such heating is a

Manufactured by Ucinite Division of United-Carr Fastener Corporation, Newtonville 60, Massachusetts.

1000

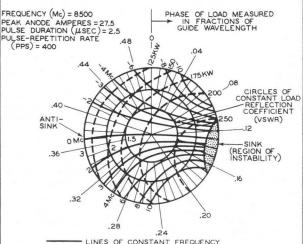
MAGNETRON

function of the total dissipation and must be compensated by reduction of heater voltage in order to prevent overheating of the cathode. Failure to start the tube at rated heater voltage and to reduce the heater voltage as soon as oscillation starts may adversely affect tube life.

The heater should be protected against input pulse power by placing a suitable capacitor in shunt with the heater leads as near the heater-cathode stem as possible in order to limit the magnitude of the transient voltages which may develop across the heater. This capacitor may be incorporated in the design of the connector for the heater terminal and heater-cathode terminal.

The anode-circuit return should be made to the heater-cathode terminal. If the anode-circuit return is made to the heater terminal, all of the anode current will flow through the heater and may cause heater burnout.

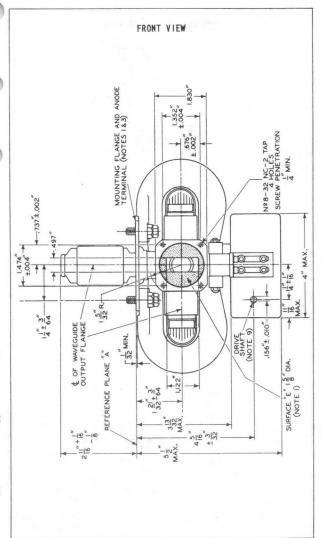
The frequency of the 7008 may be preset by turning the drive shaft until the setting of the indicator is reached corresponding to the desired frequency. For precise tuning adjustment, the final indicator setting should be approached using a counterclockwise direction of rotation which is the direction of increasing frequency.


Revolutions of the servo-drive shaft are not indicated directly by the indicator. Approximately 160 revolutions of the drive shaft are required to tune through the 8500-to-9600-Mc range. A tuning rate of 200 megacycles per second can be achieved. Typical servo-drive-shaft torque is 6 ounce-inches throughout the temperature range of -55° to 150° C. Mechanical stops are provided at each end of the tuning range. Torque applied to these stops and the starting torque must not exceed 192 ounce-inches (I foot-pound) including inertial effects.

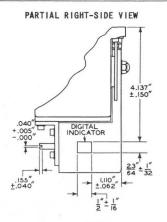
Our engineers are ready to assist you in circuit applications of the RCA-7008. For further information, write to Commercial Engineering, RCA, Harrison, New Jersey, giving complete details as to the proposed service.

MAGNETRON

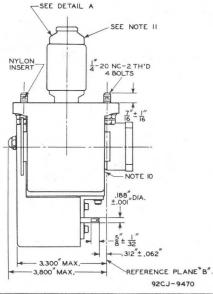
RIEKE DIAGRAM



LINES OF CONSTANT FREQUENCY
LINES OF CONSTANT PEAK POWER OUTPUT
92CM-9629

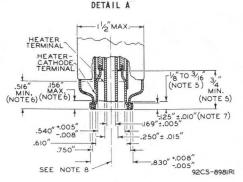

1000

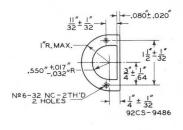
MAGNETRON



(RCA) 7008

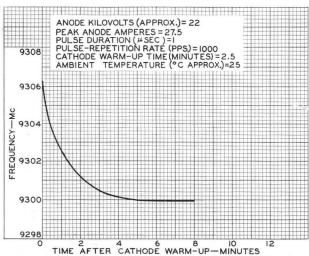
MAGNETRON

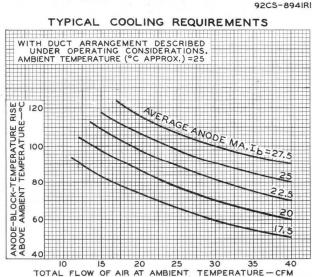

LEFT-SIDE VIEW



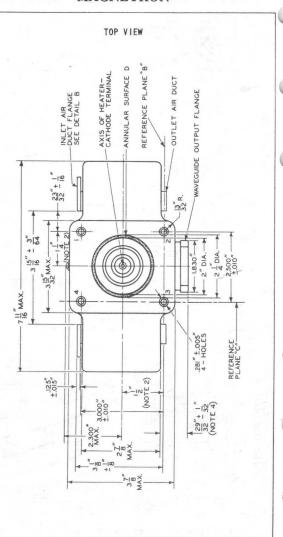
DETAIL B

REFERENCE PLANE A IS DEFINED AS THE PLANE THROUGH THAT PORTION OF THE MOUNTING FLANGE DESIGNATED AS ANNULAR SURFACE D.

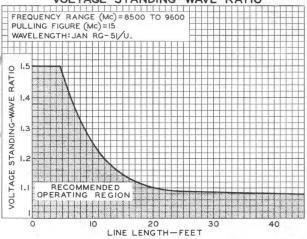

REFERENCE PLANE B IS DEFINED AS THE PLANE WHICH IS PERPENDICULAR TO PLANE A AND PASSES THROUGH THE EXACT CENTERS OF MOUNTING-FLANGE HOLES No. 2 & No. 3 WHICH HAVE THE SPECTIFIED BOLTS INSERTED THROUGH THEM.

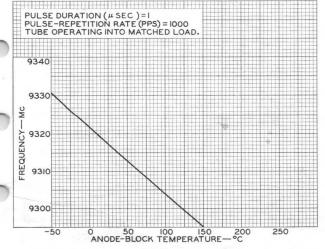

REFERENCE PLANE C IS DEFINED AS THE PLANE WHICH IS PER-PENDICULAR TO PLANE A & PLANE B AND PASSES THROUGH THE EXACT CENTER OF MOUNTING-FLANGE HOLES NO.3 & No.4 WHICH HAVE THE SPECIFIED BOLTS INSERTED THROUGH THEM.

- NOTE 1: SURFACE E OF THE WAVEGUIDE OUTPUT FLANGE, AND THE ENTIRE MOUNTING FLANGE ARE MADE SO THAT THEY MAY BE USED TO PROVIDE A HERMETIC SEAL.
- NOTE 2: THE AXIS OF THE HEATER-CATHODE TERMINAL WILL BE WITHIN THE CONFINES OF A CYLINDER WHOSE RADIUS IS 3/64" AND WHOSE AXIS IS PERPENDICULAR TO REFERENCE PLANE A AT THE SPECIFIED LOCATION.
- NOTE 3: ALL POINTS ON MOUNTING FLANGE WILL LIE WITHIN 0.015" ABOVE OR BELOW REFERENCE PLANE A.
- NOTE 4: THE LIMITS INCLUDE ANNULAR AS WELL AS LATERAL DEVIATIONS.
- NOTE 5: THESE DIMENSIONS DEFINE EXTREMITIES OF THE 0.169" INTERNAL DIAMETER OF THE CYLINDRICAL HEATER TERMINAL.
- NOTE 6: THESE DIMENSIONS DEFINE EXTREMITIES OF THE 0.540" INTERNAL DIAMETER OF THE CYLINDRICAL HEATER-CATHODE TERMINAL.
- NOTE 7: NO PART OF THE CONNECTOR DEVICE FOR THE HEATER AND HEATER-CATHODE TERMINALS SHOULD BEAR AGAINST THE UNDERSIDE OF THIS LIP.
- NOTE 8: THE HEATER TERMINAL AND THE HEATER-CATHODE TER-MINAL ARE CONCENTRIC WITH 0.010".
- $\ensuremath{\mathsf{HOTE}}$ 9: CLOCKWISE ROTATION OF DRIVE SHAFT DECREASES FREQUENCY.
- ${\tt NOTE}$ 10: ANODE TEMPERATURE MEASURED AT JUNCTION OF WAVEGUIDE AND ANODE BLOCK.
- NOTE II: TEMPERATURE OF HEATER-CATHODE TERMINAL MEASURED HERE.

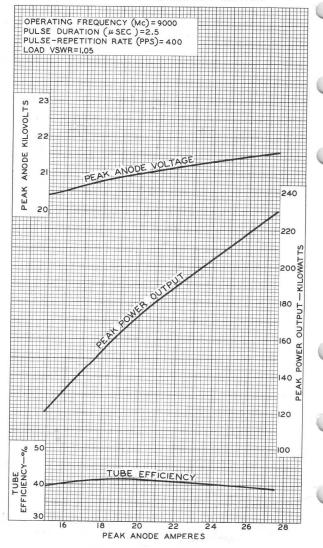


YPICAL STABILIZATION CHARACTERISTIC

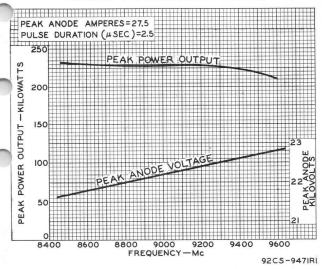



1000

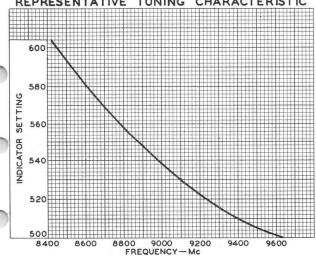
EFFECT OF LENGTH OF TRANSMISSION LINE BE-TWEEN OUTPUT FLANGE AND LOAD ON ALLOWABLE VOLTAGE STANDING-WAVE RATIO


92CS-9469RI

TYPICAL THERMAL-FACTOR CHARACTERISTIC



TYPICAL PERFORMANCE CURVES





TYPICAL PERFORMANCE CURVES

REPRESENTATIVE TUNING CHARACTERISTIC

Beam Power Tube

FORCED-AIR COOLED COAXIAL-ELECTRODE STRUCTURE 370 WATTS CW OUTPUT UP TO 150 Mc UNIPOTENTIAL CATHODE 140 WATTS CW OUTPUT AT 500 Mc COMPACT DESIGN INTEGRAL RADIATOR

For Use at Frequencies up to 500 Mc

GENERAL DATA

Electrical:

Heater for Unicetantial Cathodas

Plate to cathode, grid No.2, and heater. . .

							neater, for unipotential Cathoge
6 volts	± 10%	6.0					Voltage (AC or DC)a
amp		2.6					Current at heater volts = 6.0
sec		30					Minimum heating time
						,	Mu-Factor, Grid No.2 to Grid No.
							for grid-No.2 volts = 300 and
		5		8	8		grid-No.2 ma. = 50
						S:D	Direct Interelectrode Capacitano
μμf		0.03			*		Grid No.1 to plate
						,	Grid No.1 to cathode, grid No.
uu.f		16	1000		12	27 2	and heater

Mechanical:

Operating Position	(4)		×				×	¥						×	Any	
Maximum Overall Length.				×											2.404"	
Maximum Seated Length .		×												٠,	1.850"	
Maximum Diameter			*		100	900									1.640"	
Weight (Approx.)			ě					ŝ							. 4 oz	
Radiator			×					11	nte	egi	ra		pa	rt	of tube	
Socket					. 1	ii		sy:	ste	em	S	oc	ke'	t,	such as	
								Jo	ohi	15	on	No	0.	12	4-110-1°	

(Supplied with Air Chimney) . . . Special 8-Pin BOTTOM VIEW

RADIATOR

) [(5) RING

Pin 1 - Grid No. 2d Pin 2-Cathode Pin 3-Heater Pin 4 - Cathode Pin 5 - Do Not Use

Pin 6 - Cathode

Pin 7 - Heater

Pin 8 - Cathode Base Index Plug-Grid No.1 Radiator - Plate

Ring Terminale -Grid No.2

μμf

Air Flow:

Through indicated air-system socket-This fitting directs the air over the base seals; past the grid-No.2 seal, glass envelope, and plate seal; and through the radiator to provide effective cooling with minimum air flow. When the tube is operated at maximum plate dissipation for each class of service, a minimum air flow of 5.6 cfm

- Indicates a change.

through the system is required. The corresponding pressure drop is 0.45 inch of water. These requirements are for operation at sea level and at an ambient temperature of 20° C. At higher altitudes and ambient temperatures, the air flow must be increased to maintain the respective seal temperatures and the plate temperature within maximum ratings.

Without air-system socket-If an air-system socket is not used, it is essential that adequate cooling air be directed over the base seals, past the envelope, and through the radiator. Under these conditions and with the tube operating at maximum plate dissipation for each class of service, a minimum air flow of 5.3 cfm must pass through the radiator. The corresponding pressure drop is 0.28 inch of water. These requirements are for operation at sea level and at an ambient temperature of 20° C. At higher altitudes and ambient temperatures, the air flow must be increased to maintain the respective seal temperatures and the plate temperature within maximum ratings.

Plate Temperature (Measured or of plate surface at junction		250 may	00
Temperature of Plate Seal			oC.
Temperature of Base Seals and Grid-No.2 Seal	 	 175 max.	oC

AF POWER AMPLIFIER & MODULATOR - Class AB, f Maximum CCS9 Ratings. Absolute-Maximum Values:

Haringe, Hosobare Marinam Paraes.
DC PLATE VOLTAGE 2000 max. volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE 400 max. volts
MAXSIGNAL DC PLATE CURRENTh 250 max. ma
GRID-No.2 INPUT ^h
PLATE DISSIPATION ^h 250 max. watts
PEAK HEATER-CATHODE VOLTAGE:
Heater negative with respect to cathode 150 max. volts
Heater positive with respect to cathode 150 max. volts

Typical CCS Operation:

Values are for 2 tubes

DC Plate Voltage DC Grid-No.2 Voltage	800 300	1000 300	1500 300	2000 300	volts volts
DC Grid-No.1 (Control- Grid) Voltage	-40	-43	-50	-50	volts
Grid-No.1 Voltage	80	86	100	100	volts
Zero-Signal DC Plate Current.	210	165	100	100	ma
MaxSignal DC Plate Current. Zero-Signal DC Grid-No.2	435	450	456	470	ma
Current	0	0	0	0	ma
Current	76	52	42	36	ma

	Effective Load Resistance (Plate to plate) MaxSignal Driving Power	4400	4250	6570	8760	ohms
	(Approx.)	0	0	0	0	watts
	(Approx.)	170	230	400	580	watts
	Maximum Circuit Values:					
	Grid-No.1-Circuit Resistance	(Per ti	ube) .	. 0.1	max.	megohm
	AF POWER AMPLIFIER &	MODULA	TOR —	Class	AB ₂ j	
	Maximum CCSg Ratings, Absolut	e-Maxin	num Val	ues:	2	
	DC PLATE VOLTAGE DC GRID-No.2 (SCREEN-GRID) VO MAXSIGNAL DC PLATE CURRENT GRID-No.2 INPUT	LTAGE.	thode.	. 200 . 40 . 25 . 1 . 25	0 max. 0 max. 0 max. 2 max. 0 max. 2 max.	volts volts ma watts watts watts volts
	Heater positive with respec	t to ca	athode	. 15	0 max.	volts
	Typical CCS Operation:					
	Values are DC Plate Voltage	for 2 800	1000	1500	2000	volts
	DC Grid-No.2 Voltage DC Grid-No.1 Voltage Peak AF Grid-No.1-to-	300 -40	300 -45	1500 300 -50	300 -50	volts
	Grid-No.1 Voltage	90	98	106	106	volts
	Zero-Signal DC Plate Current. MaxSignal DC Plate Current.	210 500	166 493	100 500	100 500	ma ma
	Zero-Signal DC Grid-No.2 Current	0	0	0	0	ma
	MaxSignal DC Grid-No.2 Current	80	58	46	36	ma
	Effective Load Resistance (Plate to plate)	3140	3950	5970	8100	ohms
	MaxSignal Driving Power (Approx.)	0.15	0.15	0.2	0.2	watt
	MaxSignal Power Output	215	270	440		
	(Approx.)	215	270	440	630	watts
	RF POWER AMPLIFIER - C	lass B	Telev	ision S	Service	
	Synchronizing-le					
	tube unless ot Maximum CCSg Ratings, Absolute					
	Maximum 000- Ratings, Australia	-Maxim	um vai		216 M	c
)	DC PLATE VOLTAGE DC GRID-No.2 (SCREEN-GRID) VOI DC GRID-No.1 (CONTROL-GRID) VC DC PLATE CURRENT (AVERAGE)* .			. 125 . 40 25	0 max. 0 max. 0 max. 0 max.	volts volts volts ma

GRID—No.2 INPUT	node.	12 max 2 max 250 max 150 max	watts watts volts	
Typical CCS Operation:				
With bandwidth of	5 Mc			
DC Plate Voltage	300	1000 1250 300 300 -65 -70) volts	
Synchronizing level Pedestal level		95 100 70 75		
Synchronizing level Pedestal level	335 245	330 305 240 230		
Synchronizing level		45 45 15 10		
Synchronizing level Pedestal level	4	20 25		
Synchronizing level Pedestal level		8 4.7 5.5		
Synchronizing level		200 250 110 140		

LINEAR RF POWER AMPLIFIER

Single-Sideband Suppressed-Carrier Service

Maximum Ratings, Absolute-Maximum Values: Up to 500 Mc Up to 150 Mc CCS9 ICAS TO CCS 9 DC PLATE VOLTAGE. . 2000 max. 2250 max. 1250 max. volts DC GRID-No.2 (SCREEN-GRID) VOLTAGE . . 400 max. 400 max. 400 max. volts MAX.-SIGNAL DC 250 max. PLATE CURRENT . . 250 max. 280 max. GRID-No.2 INPUT . . 12 max. 12 max. 12 max. watts PLATE DISSIPATION . 250 max. 250 max. 300 max. PEAK HEATER-CATHODE VOLTAGE: Heater negative with respect 150 max. 150 max. 150 max. volts to cathode. . . Heater positive with respect to cathode. . . 150 max. 150 max. 150 max. volts Indicates a change.

		Manager W.		AL AVOID STREET		
	Typical Class AB, "Single-Ton	e" On	eration	un to I	50 Mc -	n 🛧
	Typical Viass Ab Vingic-Ton	ор	CCS	up to 1	ICAS "	
	DC Plate Voltage			1800	2000	volts
	DC Grid-No.2 Voltage	300	300	300	300	volts
	DC Grid-No.1 (Control-		= 0	= 0		2.
	Grid) Voltage	-50		-50	-48	volts
	Zero-Signal DC Plate Current.	. 50	50	50	60	ma
	Zero-Signal DC Grid-No.2			0	0	
	Current	. 0		0	0	ma
7	Effective RF Load Resistance.			4140	4270	ohms
	MaxSignal DC Plate Current.	. 225	225	225	250	ma
	MaxSignal DC Grid-No.2	. 11	11	11	9	m 0
	Current	. 11	11	11	9	ma
	No.1 Voltage	50	50	50	48	volts
	Max.—Signal Driving Power		30	50	40	VOICS
	(Approx.)	. 0	0	0	0	watts
	MaxSignal Power Output					nacco
	(Approx.)	. 115	200	250	290	watts
	W 1 41 11 W 1 1 1000		• 1			
	Maximum Circuit Values (CCS of	or ICA	5):			
	Grid-No.1-Circuit Resistance	under	Any Cor	ndition:		
	With fixed bias			. 2500	0 max.	ohms
	With cathode bias			Not	recon	mended
	PLATE-MODULATED RF POWER A	MDITE	IED (lace C	Talank	onv
					тетері	iony
	Carrier conditi with a max. mod					
	Maximum CCS Ratings, Absolut	e-Max	ımum Val	ues:		
			Up to	-	to	
			150 Mc	500	Mc	
	DC PLATE VOLTAGE		1600 max	. 1000	max.	volts
	DC GRID-No.2 (SCREEN-GRID)					
	VOLTAGE		300 max	. 300	max.	volts
	DC GRID-No.1 (CONTROL-GRID)					
	VOLTAGE		-250 max		max.	volts
	DC PLATE CURRENT		200 max		max.	ma
	GRID-No.2 INPUT		10 max		max.	watts
	GRID-No.1 INPUT		2 max		max.	watts
	PLATE DISSIPATION		165 max	. 165	max.	watts
	PEAK HEATER-CATHODE VOLTAGE: Heater negative with					
	respect to cathode		150 max	150	max.	volts
	Heater positive with		100 1110	. 100	max.	VO1 63
	respect to cathode		150 max	. 150	max.	volts
						7.0 (E) (F) (E) (E)
	Typical CCS Operation:					
	Up t	0 150	Mc			
	DC Plate Voltage		110 may 100 may	1200	1600	volts
1	DC Grid-No.2 Voltage (Modulat	ted .		1200	1000	+0163
	approx. 55%) •			250	250	volts
				← Indic	ates a	change.
_				DESCRIPTION OF THE PARTY OF THE	NAME OF TAXABLE PARTY.	and the same of th

		-		
1	DC Grid-No.1 Voltage ^r 118	-118	volts	
	Peak AF Grid-No.2 Voltage (For 100% modulation)180	200	volts	
			volts	
	Peak RF Grid-No.1 Voltage 136	136		
	DC Plate Current 200	200	ma	
	DC Grid-No.2 Current 23	23	ma	
	DC Grid-No.1 Current (Approx.) 5	5	ma	
- 1	Driving Power (Approx.) 2	3	watts	
	Power Output (Approx.)	230	watts	
	Tower output (Approx.) 150	200	Walts	
	At 165 Mc			
1	DC Plate Voltage 400 600 800	1000	volts	
	DC Grid-No.2 Voltage			
	(Modulated approx. 55%) 9 250 250 250	250	volts	
-	DC Grid-No.1 Voltage90 -95 -100	-105	volts	
	Peak AF Grid-No.2 Voltage	100	, , , , ,	
	(For 100% modulation) 140 150 160	170	volts	
	Peak RF Grid-No.1 Voltage 110 120 120	125	volts	
	DC Plate Current 200 200 200	200	ma	
[DC Grid-No.2 Current 40 35 25	20	ma	
1	DC Grid-No.1 Current (Approx.). 7 8 10	15	ma	
	Driving Power (Approx.) 1 1 1.5	2	ma	
	Power Output (Approx.) 55 80 100	140	watts	
	Total output (Approxi) I I I I I oo oo 100		114440	
1	Maximum Circuit Values:			
(Grid-No.1-Circuit Resistance			
	under Any Condition	may	ohms	
	under Any Condition	max.	OTHIS	
	RF POWER AMPLIFIER & OSCILLATOR - Class C Tel-			
		egraph	y S	
	and	egraph	y ^s	
	and RF POWER AMPLIFIER — Class C FM Telephor		ıy ^s	
,	RF POWER AMPLIFIER — Class C FM Telepho		ıy ^s	
,	RF POWER AMPLIFIER — Class C FM Telepho Maximum CCS ⁹ Ratings, Absolute-Maximum Values:	ny	ıy ^s	
)	RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS ⁹ Ratings, Absolute-Maximum Values: Up to 150	ny to	y ^s	
)	RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS ⁹ Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500	to Mc		
	RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS ⁹ Ratings, Absolute-Maximum Values: Up to 150	to Mc	volts	
[RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS ⁹ Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500	to Mc		
[RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS ⁹ Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500 DC PLATE VOLTAGE 2000 max. 1250	to Mc max.		
]	RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS ⁹ Ratings, Absolute-Maximum Values: ### Up to 150 150 Mc 500 DC PLATE VOLTAGE	to Mc max.	volts	
]	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS ⁹ Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500 DC PLATE VOLTAGE	to Mc max.	volts	
]	RF POWER AMPLIFIER — Class C FM Telephot Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500 DC PLATE VOLTAGE	to Mc max.	volts	
]	RF POWER AMPLIFIER	to Mc max. max. max.	volts volts volts ma	
1	RF POWER AMPLIFIER	to Mc max. max. max. max.	volts volts volts ma watts	
[[[()	RF POWER AMPLIFIER - Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 Mc 500	to Mc max. max. max. max. max.	volts volts volts ma watts watts	
]	RF POWER AMPLIFIER	to Mc max. max. max. max.	volts volts volts ma watts	0
]	RF POWER AMPLIFIER - Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500	to Mc max. max. max. max. max.	volts volts volts ma watts watts	0
]	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 Nc 500	to Mc max. max. max. max. max. max. max.	volts volts volts ma watts watts watts	0
]	RF POWER AMPLIFIER - Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 Mc 500	to Mc max. max. max. max. max. max. max.	volts volts volts ma watts watts	0
]	RF POWER AMPLIFIER - Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500	to Mc max. max. max. max. max. max.	volts volts volts ma watts watts volts	0
]	RF POWER AMPLIFIER - Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500	to Mc max. max. max. max. max. max.	volts volts volts ma watts watts watts	0
	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500 Max. 300	to Mc max. max. max. max. max. max.	volts volts volts ma watts watts volts	
	RF POWER AMPLIFIER - Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500	to Mc max. max. max. max. max. max.	volts volts volts ma watts watts volts	0
	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500 Max. 300	to Mc max. max. max. max. max. max.	volts volts volts ma watts watts volts	
	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS Ratings, Absolute - Maximum Values : Up to 150 150 Mc 500	to Mc max. max. max. max. max. max. max. max.	volts volts volts wats watts watts volts volts	
	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS Ratings, Absolute-Maximum Values: Up to 150 150 Mc 500 150 Mc 500	to Mc max. max. max. max. max. max. max. ax. max.	volts volts volts watts watts watts volts volts	
	RF POWER AMPLIFIER — Class C FM Telephon Maximum CCS Ratings, Absolute - Maximum Values : Up to 150 150 Mc 500	to Mc max. max. max. max. max. max. max. max.	volts volts volts wats watts watts volts volts	

	DC Grid-No.1 Voltage. -88 -88 volt Peak RF Grid-No.1 Voltage 110 110 volt DC Plate Current. 250 250 mm DC Grid-No.2 Current 24 24 mm DC Grid-No.1 Current (Approx.) 8 mm 8 mm Driving Power (Approx.) 1.5 2.5 watt Power Output (Approx.) 260 370 watt	s a a a s
0	### 165 Mc DC Plate Voltage 600 750 1000 1250 volt DC Grid-No.2 Voltage 250 250 250 250 volt DC Grid-No.1 Voltage75 -80 -80 -90 volt Peak RF Grid-No.1 Voltage 91 96 95 106 volt DC Plate Current 200 200 200 200 m DC Grid-No.2 Current 37 37 31 20 m DC Grid-No.1 Current (Approx.) . 11 11 10 11 m Driving Power (Approx.) 1 1 1 1.2 watt Power Output (Approx.) 85 110 150 195 watt	s s s a a a s
	At 500 Mc with coaxial cavity DC Plate Voltage 600 800 1000 1250 volt DC Grid-No.2 Voltage 250 250 250 280 volt DC Grid-No.1 Voltage110 -110 -115 volt DC Plate Current 170 200 200 200 m DC Grid-No.2 Current (Approx.) 6 7 7 5 m DC Grid-No.1 Current (Approx.) 15 20 25 30 watt Useful Power Output (Approx.) 50 95 120 140 watt	s a a a s
	Maximum Circuit Values: Grid-No.1-Circuit Resistance under Any Condition	
	Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions after the cathode and resultant short life with cylindrical shield JEDEC No.321 surrounding radiator; and with cylindrical shield JEDEC No.321 surrounding the grid-No.2 ring terminal. Both shields are connected to ground. C Available from E.F. Johnson Co., Waseca, Minn. For use at lower frequencies. For use at higher frequencies. Subscript 1 indicates that grid-No.1 current does not flow during any	ed.h-
	part of the input cycle. 9 Continuous Commercial Service. Averaged over any audio-frequency cycle of sine-wave form. Subscript 2 indicates that grid-No.1 current flows during some part of the input cycle. k Averaged over any frame. The driver stage is required to supply tube losses and rf-circuit	
	The driver stage is required to supply tupe losses and of-circuitosses. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in linivoltage, in components, in initial tube characteristics, and in tube characteristics during life. Intermittent Commercial and Amateur Service. "Single-Tone" operation refers to that class of amplifier service in which the grid-No.2 input consists of a monofrequency of signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.	

Preferably obtained from a fixed supply.

Obtained from grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current Direct Interelectrode	1	2.3	2.9	amp
Capacitances:			0.05	£
Grid No.1 to plate	2	-	0.05	μμτ
Grid No.1 to cathode, grid				
No.2, and heater	2	14.5	17.0	μμf
Plate to cathode, grid				
No.2, and heater	2	4.0	4.8	$\mu\mu f$
Grid-No.1 Voltage	1,3,4,5	-32	-46	volts
Grid-No.2 Current	1,3,4,5	-5	3	ma
Power Output	4,5,6	100	-	watts

Note 1: With 6.0 volts on heater.

Note 2: With cylindrical shield JEDEC No.320 surrounding radiator; and with a cylindrical shield JEDEC No.321 surrounding the grid-No.2 ring terminal. Both shields are connected to ground.

Note 3: With dc plate volts = 1000, dc grid-No.2 volts = 300, and grid-No.1 voltage adjusted to give plate current of 150 milliamperes.

Note 4: With forced-air cooling as specified under GENERAL DATA for $Air-System\ Socket.$

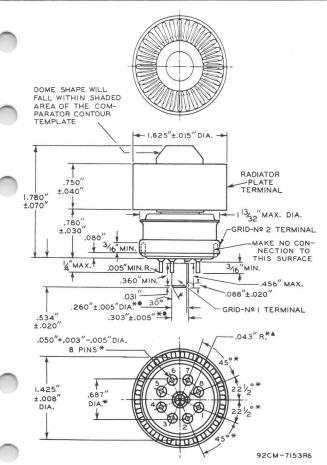
Note 5: Heater voltage must be applied for at least 30 seconds before application of other voltages.

Note 6: With heater volts = 5.5, dc plate volts = 1000, dc grid-No.2 volts = 250, dc grid-No.1 volts = -90, maximum dc grid-No.1 milliamperes = 20, grid-No.1 signal voltage adjusted to give dc plate current of 200 milliamperes, and a frequency of 475 Mc.

SPECIAL PERFORMANCE DATA

Interelectrode Leakage:

This test is destructive and is performed on a sample lot of tubes from each production run under the following conditions: ac heater volts = 6.6, no voltage on other elements, and specified forced-air cooling for $Air-System\ Socket$. At the end of 500 hours, with tube at 25° C, and with no voltage applied to heater, the minimum resistance between indicated electrodes as measured with a 500-volt Megger-type ohmmeter having an internal impedance of 2.5 megohms, will be:


Grid	No. I	and	Grid No.	2	\times		*			×	10	min.	megohms	
Grid	No. I	and	Cathode	120		*					10	min.	megohms	
Grid	No.2	and	Cathode								10	min.	megohms	

→ Indicates a change.

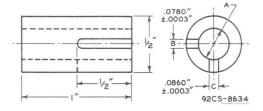
The dc grid-No.2 voltage must be modulated approximately 55% in phase with the plate modulation in order to obtain 100% modulation of the 7034/4X150A. The use of a series grid-No.2 resistor or reactor may not give satisfactory performance and is therefore not recommended.

Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

GRID-No.! PLUG DIMENSIONS ARE MEASURED BY THE USE OF THE SERIES OF GAUGES SHOWN IN SKETCHES \mathbf{G}_1 AND \mathbf{G}_2 . IN THE FOLLOWING INSTRUCTIONS FOR THE USE OF THESE GAUGES, "GO" INDICATES THAT THE ENTIRE GRID-No.! PLUG KEY WILL ENTER THE GAUGE; AND "NO-GO" INDICATES THAT THE GRID-No.! PLUG KEY WILL NOT ENTER THE GAUGE MORE THAN I/16". INSTRUCTIONS FOR THE USE OF THE GAUGES FOLLOW:

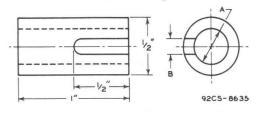
▲. *: See next page.

GAUGES $G_1 - I$, $G_1 - 2$, $G_1 - 3$, AND $G_1 - 4$:

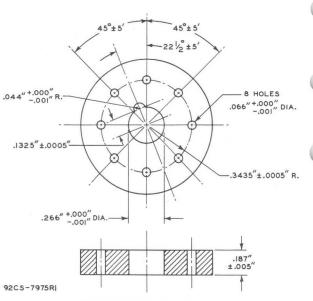

USING ONLY SLOT C, TRY THESE GAUGES IN NUMERICAL ORDER UNTIL ONE IS FOUND THAT WILL ACCEPT THE ENTIRE GRID-No.I PLUG. USING THE FIRST GAUGE THUS FOUND, IT WILL NOT BE POSSIBLE TO INSERT THE GRID-No.I PLUG IN SLOT B.

• GAUGES G_2-I , G_2-2 , AND G_3-3 :

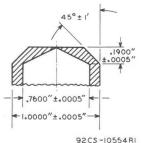
THE GRID-No.1 PLUG WILL BE REJECTED BY GAUGES $\rm G_2-I$ AND $\rm G_2-2$, BUT WILL BE ACCEPTED BY GAUGE $\rm G_2-3$.

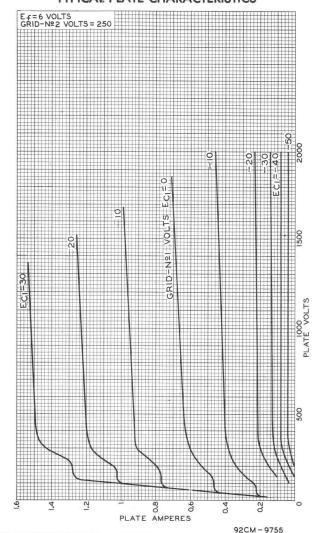

* BASE-PIN POSITIONS ARE HELD TO TOLERANCES SUCH THAT THE ENTIRE LENGTH OF THE PINS WILL, WITHOUT UNDUE FORCE, PASS INTO AND DISENGAGE FROM THE FLAT-PLATE GAUGE SHOWN IN SKETCH ${\bf G}_3$.

GAUGE SKETCH GI

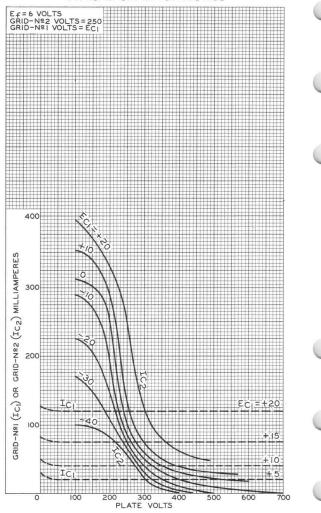

Gauge	Dimension A						
G ₁ -I	.2575" + .0000"						
G ₁ -2	.2600" + .0000"						
G ₁ -3	.2625" + .0000"						
G ₁ -4	.2650" + .0000"						

GAUGE SKETCH G2


Gauge	Dimension								
	A	В							
G ₂ -I	.2550" + .0000	.125'							
G ₂ -2	.2980" + .0000	none							
G ₂ -3	.3080" + .0000								

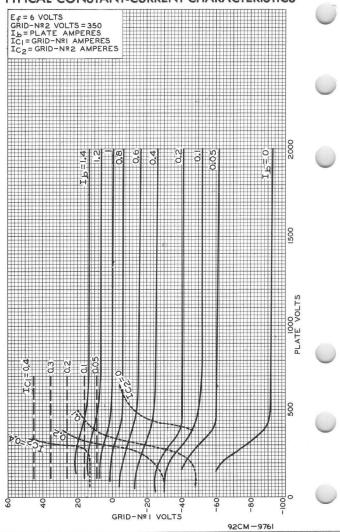


TOLERANCES ARE NOT CUMULATIVE


COMPARATOR CONTOUR TEMPLATE

TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS


92CM-9756

TYPICAL CONSTANT-CURRENT CHARACTERISTICS E_f = 6 VOLTS GRID-Nº2 VOLTS = 250 I_b = PLATE AMPERES I_{C|} = GRID-Nº1 AMPERES IC2=GRID-Nº2 AMPERES 11 P 0 GRID-NºI VOLTS

92CM-9760

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

7035/4X150D

Beam Power Tube

FORCED-AIR COOLED

COAXIAL-ELECTRODE STRUCTURE UNIPOTENTIAL CATHODE COMPACT DESIGN 370 WATTS CW CUTPUT UP TO 150 MC 140 WATTS CW OUTPUT AT 500 MC INTEGRAL RADIATOR

For Use at Frequencies up to 500 Mc

The 7035/4%150D is the same as the 7034/4%150A except for the following items:

Heater, for Unipotential Cathode:

Voltage (AC or DC)^a 26.5 ± 10% volts Current at heater volts = 26.5. 0.58 amp

Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	1	0.50	0.62	amp
Direct Interelectrode				
Capacitances:				
Grid No.1 to plate	2	-	0.05	$\mu\mu f$
Grid No.1 to cathode, grid				
No.2, and heater	2	14.5	17.0	$\mu\mu$ f
Plate to cathode, grid				
No.2, and heater	2	4.0	4.8	$\mu\mu f$
Grid-No.1 Voltage				volts
Grid-No.2 Current	1,3,4,5	-5	3	ma
Power Output	4,5,6	100	-	watts

Note 1: With 26.5 volts on heater.

Note 2: With cylindrical shield having inside diameter of 1-13/16" completely surrounding radiator, and insulated from the top and sides of it by a 1/16" thickness of insulating material; and with a cylindrical shield having inside diameter of 1.460" and length of 5/16" surrounding the grid-No.2 ring terminal and insulated from it. Both shields are connected to ground.

Note 3: With dc plate volts = 1000, dc grid-No.2 volts = 300, and grid-No.1 voltage adjusted to give plate current of 150 milliamperes.

Note 4: With forced-air cooling as specified under GENERAL DATA for Air-System Socket.

Note 5: Heater voltage must be applied for at least 30 seconds before application of other voltages.

Note 6: With heater volts = 24.5, dc plate volts = 1000, dc grid-No.2 volts = 250, dc grid-No.1 volts = -90, maximum dc grid-No.1 milliamperes = 20, grid-No.1 signal voltage adjusted to give dc plate current of 200 milliamperes, and a frequency of 475 Mc.

SPECIAL PERFORMANCE DATA

Interelectrode Leakage:

This test is destructive and is performed on a sample lot of tubes from each production run under the following conditions: ac heater volts = 29.1, no voltage on other elements,

- Indicates a change.

7035/4X150D

the end of 500 hours, with tube at 25°C, and with no voltage applied to heater, the minimum resistance between indicated electrodes as measured with a 500-volt Megger-type ohmmeter having an internal impedance of 2.5 megohms, will be:

Grid No.1 and grid No.2 10 min. megohms

Grid No.1 and cathode 10 min. megohms

Grid No.2 and cathode 10 min. megohms

and specified forced-air cooling for Air-System Socket.

Beam Power Tube

FORCED-AIR COOLED AT MAXIMUM RATINGS 500 WATTS CW INPUT (ICAS) UP TO 60 Mc 335 WATTS CW INPUT (ICAS) UP TO 175 Mc

GENERAL DATA

	GENERAL PATA	
	Electrical:	
	Heater, for Unipotential Cathode: Voltage (AC or DC) 6.3 ± 10% volts	
	Current at 6.3 volts 2.85 amp	
	Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 300, grid-No.2 volts =	
	300, and plate ma = 150	
	Direct Interelectrode Capacitances (Approx.):a	
3	Grid No.1 to plate 0.6 μμf Grid No.1 to grid No.2 &	
	internal shield	
	Grid No.1 to cathode and heater 8.5 $\mu\mu$ f	
	Grid No.2 & internal shield	
	to plate 9.5 μμf Grid No.2 & internal shield	
	to cathode and heater 2.0 $\mu\mu$ f	
	Plate to cathode and heater 0.2 µµf	
	Mechanical:	
	Operating Position	
	Maximum Overall Length	
	Seated Length	
	Weight (Approx.) 6 oz	
	Bulb	•
	Socket Johnson Nos. 122-247 or 122-248 , or equivalent	
	Base Jumbo-Button Septar 7-Pin (JEDEC No.E7-46) BOTTOM VIEW	

Pin 5-Grid No.2. Internal Shield Pin 6-Grid No.1 Pin 7-Grid No.2, Internal Shield P-Plate

Thermal:

Cooling--Free circulation of air around the tube is required. Under operating conditions at maximum ratings, some forcedair cooling will be required from a small fan to prevent exceeding the specified maximum bulb temperature.

Bulb Temperature (At hottest point on bulb surface). . .

OC 250 max.

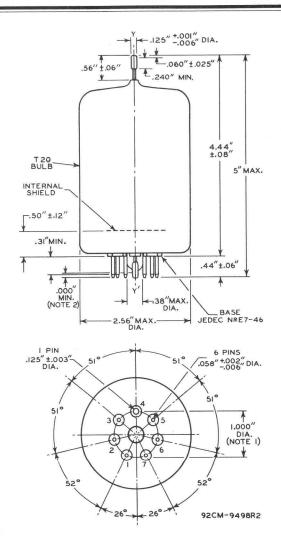
- Indicates a change.

_			
	AF POWER AMPLIFIER & MODULATOR - Class AB1c		
	CCS ^d ICAS ^e		
	Maninum Datings (I - 1 - 1 - 1 - 1 - 1 - 1 - 1		
	Maximum Ratings, Absolute-Maximum Values:		
	DC PLATE VOLTAGE 1500 max. 2000 max.	volts	
	DC GRID-No.2 VOLTAGE 400 max. 400 max.	volts	
	MAXSIGNAL DC PLATE CURRENT . 350 max. 350 max.	ma	
	MAXSIGNAL PLATE INPUTf 300 max. 400 max.	watts	
	MAXSIGNAL GRID-No.2 INPUT 20 max. 20 max.	watts	
	PLATE DISSIPATION 100 max. 125 max.	watts	
	PEAK HEATER-CATHODE VOLTAGE:		
	Heater negative with		
	respect to cathode 135 max. 135 max.	volts	
	Heater positive with		
	respect to cathode 135 max. 135 max.	volts	
	Typical Operation:		
	Values are for 2 tubes		
		1.	
	DC Plate Voltage 1500 2000	volts	
	DC Grid-No.2 Voltage ⁹ 400 400	volts	
	DC Grid-No.1 Voltage ^h 65 -65	volts	
	Peak AF Grid-No.1-to-		
	Grid-No.1 Voltage 120 120	volts	
	Zero-Signal DC Plate		
	Current 60 60	ma	
	MaxSignal DC Plate Current 400 400	ma	
	MaxSignal DC Grid-No.2		
	Current 70 70	ma	
	Effective Load Resistance		
	(Plate to plate) 8700 12000	ohms	
	MaxSignal Driving		
	Power (Approx.) 0 0	watts	
	MaxSignal Power Output		
	(Approx.) 410 560	watts	
	(1)		
	A SANDAR		
	LINEAR RF POWER AMPLIFIER - Class AB C		
	Single-Sideband Suppressed-Carrier Service		
	CCS ^d ICAS ^e		
	Maximum Ratings, Absolute-Maximum Values:		
	Up to 60 Mc		
	DC PLATE VOLTAGE 1500 max. 2000 max.	volts	
		volts	
	DC GRID-No.2 VOLTAGE 400 max. 400 max. MAXSIGNAL DC PLATE CURRENT 350 max. 350 max.		
		ma	
	MSXSIGNAL PLATE INPUT 300 max. 400 max.	watts	
	MAX.—SIGNAL GRID—No.2 INPUT 20 max. 20 max.	watts	
	PLATE DISSIPATION 100 max. 125 max.	watts	
	PEAK HEATER-CATHODE VOLTAGE:		
	Heater negative with	wel+-	1
	respect to cathode 135 max. 135 max.	volts	
	Heater positive with	vol+c	
	respect to cathode 135 max. 135 max.	volts	

	Typical Operation for "Single-T	one Modulat	ion": ^j	
	At 60	o Mc		
	DC Plate Voltage	1500	2000	volts
	DC Grid-No.2 Voltageg	400	400	volts
	DC Grid-No.1 Voltageh	-65	-65	volts
	MaxSignal Peak RF Grid-			
	No.1 Voltage	60	60	volts
_	Zero-Signal DC Plate Current .	30	30	ma
	MaxSignal DC Plate Current . MaxSignal Grid-No.2	200	200	ma
	Current	35	35	ma
	Effective RF Load Resistance.	4350	6000	ohms
	MaxSignal Driver Power			
	Output (Approx.)	4	4	watts
	Output-Circuit Efficiency			
	(Approx.)	90	90	%
	MaxSignal Useful Power	a see la		
	Output (Approx.)	185 k	250 k	watts
	LINEAR RF POWER AM			-
	Single-Sideband Suppr	essed-Carri	er Service	
	High-Mu Triod	e Connection	₇ m	
		CCS ^d	ICAS e	
	Maximum Patings Abastuta Vania	Walnas.		
	Maximum Ratings, Absolute-Maxim			
	Up to			
	DC PLATE VOLTAGE	1500 max.	2000 max.	volts
	MAX. SIGNAL DC PLATE CURRENT. MAX.—SIGNAL DC GRID CURRENT	350 max.	350 max.	ma
	(Combined Grids No.1 &			
	No.2)	200 max.	200 max.	ma
	MAXSIGNAL PLATE INPUT	300 max.	450 max.	watts
	PLATE DISSIPATION	100 max.	125 max.	watts
	PEAK HEATER-CATHODE VOLTAGE:			
	Heater negative with	105	105	2.
	respect to cathode Heater positive with	135 max.	135 max.	volts
	respect to cathode	135 max.	135 max.	volts
		1)0 max.	1)0 max.	¥01 C3
	Typical Operation:			
_	In cathode-drive	circuit at	60 Mc	
	with "Single-To	ne Modulat	ion"J	
	DC Plate-to-Grids No.1 &			
	No.2 Voltage	1350	1750	volts
	DC Grids No.1.& No.2	0	0	1.
	Voltage Zero-Signal DC Plate Current.	0	0	volts
	Effective RF Load	30	44	ma
	Resistance	3800	5100	ohms
	MaxSignal DC Plate Current.	200	200	ma
			← Indicates a	change.
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

			T) ETERORISE									
	20%		Х.									
Max.—Signal DC Grid Current (Combined Grids No.1 & No.2). 140	140	ma										
MaxSignal Peak RF Cathode- to-Grids-No.1 & No.2 Voltage. 50	50	volts										
MaxSignal Driver Power Output (Approx.) h 15	15	watts										
Output-Circuit Efficiency (Approx.)90	90	%										
MaxSignal Useful Power Output (Approx.) 160k	210 k	watts										
PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephony												
Carrier conditions per tube j												
with a maximum modulation fact												
CCS [₫]	ICAS e											
Maximum Ratings, Absolute-Maximum Values:												
For maximum plate voltage and max												
input above 60 Mc see Ratin												
DC PLATE VOLTAGE 1000 max.	1200 max.	volts										
DC GRID-No.2 VOLTAGE 400 max.	400 max.	volts volts										
DC GRID-No.1 VOLTAGE300 max. DC PLATE CURRENT 280 max.	-300 max. 280 max.	ma										
DC GRID-No.1 CURRENT 250 max.	30 max.	ma										
PLATE INPUT	335 max.	watts										
GRID-No.2 INPUT 13.5 max.	13.5 max.	watts										
PLATE DISSIPATION 67 max. PEAK HEATER-CATHODE VOLTAGE:	83 max.	watts										
Heater negative with respect to cathode 135 max. Heater positive with	135 max.	volts										
respect to cathode 135 max.	135 max.	volts										
Typical Operation:												
At 60 Mc												
DC Plate Voltage 1000	1200	volts										
DC Grid-No.2 Voltage ^P 400	400	volts										
DC Grid-No.1 Voltage¶130	-130	volts										
Peak RF Grid-No.1 Voltage 145 DC Plate Current 250	150 275	volts ma										
DC Plate Current 250 DC Grid-No.2 Current 20	20	ma										
DC Grid-No.1 Current (Approx.) 5	5	ma										
Driver Power Output												
(Approx.) ^{n,r}	5	watts										
(Approx.) 90 Useful Power Output (Approx.). 165k	90 240 k	% watts										
At 175 Mc		*										
DC Plate Voltage 700	820	volts										
DC Grid-No.2 Voltage 400	400	volts										
DC Grid-No.1 Voltage ^q 130	-130	volts										
DC Plate Current 250	275	ma										
DC Grid-No.2 Current 8	8	ma										

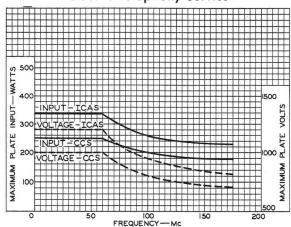
		-		
00	Cold No 1 Compant (Assess	6	6	ma
	Grid-No.1 Current (Approx.). ver Power Output	O	O	IIIa
	Approx.) n, r	8	8	watts
Out	put-Circuit Efficiency	O	· ·	
	Approx.)	85	85	%
Use	eful Power Output (Approx.).	105 k	135 k	watts
Max	imum Circuit Values:			
		20000	20000	
Gri	d-No.1-Circuit Resistance ^s .	30000 max.	30000 max.	ohms
	RF POWER AMPLIFIER & OSCILL	.ATOR — Cla nd	ss C Telegrap	hy t
	RF POWER AMPLIFIER —		Telephony	
	KI TONEK AND ETT TEK	CCS ^d	ICAS*	
- May	imum Datings Abl-t- Wi		ICAD	
Max	kimum Ratings, Absolute-Maxi			
	For maximum plate vol			
1	input above 60 Mc,			
	PLATE VOLTAGE	1250 max.	1500 max.	volts
	GRID-No.2 VOLTAGE	400 max.	400 max.	volts
	GRID-No.1 VOLTAGE	-300 max.	-300 max.	volts
	PLATE CURRENT	340 max. 25 max.	340 max. 30 max.	ma ma
	ATE INPUT	375 max.	500 max.	watts
	ID-No.2 INPUT	20 max.	20 max.	watts
	ATE DISSIPATION	100 max.	125 max.	watts
	AK HEATER-CATHODE VOLTAGE:			
ŀ	Heater negative with	105	105	1.
1	respect to cathode Heater positive with	135 max.	135 max.	volts
	respect to cathode	135 max.	135 max.	volts
-		2)0 max.	170	, , , , ,
Ty	pical Operation:			
	At (50 Mc		
		CCS	ICAS e	
DC	Plate Voltage	1000	1250 1500	volts
DC	Grid-No.2 Voltagey	400	400 400	volts
	Grid-No.1 Voltage*		-100 -100	volts
	ak RF Grid-No.1 Voltage	125	120 125	volts
	Plate Current Grid-No.2 Current	330 20	300 330 18 20	ma ma
	Grid-No.1 Current	20	16 20	IIId
	(Approx.)	5	5 5	ma
	iver Power Output			
	(Approx.)**	4	4 4	watts
	tput-Circuit Efficiency (Approx.)	90	90 90	%
	eful Power Output	30	30 30	/0
	(Approx.)	215 k	255k 340k	watts
		75 Mc		
DC		665	875 1000	volts
	Plate Voltage	400	400 400	volts
00	51.55.10.2 TOTTage	400	.00	,0,03
		THE PARTY OF THE PARTY OF THE		-


DC Grid-No.1 Voltage						-100	-100	-100	volts	
DC Plate Current						335	300	335	ma	
DC Grid-No.2 Current						8	7	8	ma	
DC Grid-No.1 Current (Approx.)						5	5	5	ma	-
Driver Power Output (Approx.)						8	7	8	watts	
Output-Circuit Effici	е	ncy	1			0.5	0.5	0.5	~	
(Approx.)			•	٠	•	85	85	85	%	
(Approx.)						130 k	170 k	215 k	watts	
Maximum Circuit Value										

Maximum Circuit Values:

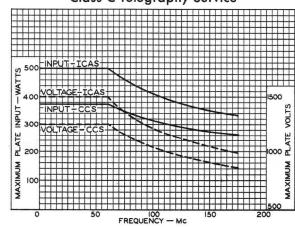
Grid-No.1-Circu	it							
Resistance ^s .							30000 max.	ohms

- a Without external shield.
- E.F. Johnson Company, Waseca, Minnesota. The separate shield rings furnished with these sockets should be discarded since these rings do not accommodate the 7094.
- C Subscript 1 indicates that grid-No.1 current does not flow during any part of the input cycle.
- d Continuous Commercial Service.
- e Intermittent Commercial and Amateur Service.
- f Averaged over any audio-frequency cycle of sine-wave form.
- 9 Obtained preferably from a fixed supply.
- h Obtained from a fixed supply.
- *Single-Tone Modulation* operation refers to that class of amplifier service in which the grid-No.1 input consists of a monofrequency rs signal having constant amplitude. This signal is produced in a singleside-band suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.
- This value of useful power is measured at load of output circuit having indicated efficiency.
- M Grids No.1 and No.2 connected together.
- Driver stage is required to supply tube losses and rf circuit losses. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components, in initial tube characteristics, and intube characteristics during life.
- Obtained preferably from a separate source modulated along with the plate supply, or from the modulated plate supply through a series resistor. It is recommended that this resistor be adjustable to permit obtaining the desired operating plate current after initial tuning adjustments are made.
- 9 Obtained from a grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor. The combination of grid resistor and fixed supply has the advantage of not only protecting the tube from damage through loss of excitation but also of minimizing distortion by blas-supply compensation.
- Indicated values are for operation at 60 Mc. Less driver power output is required at frequencies below 60 Mc.
- When grid No.1 is driven positive the total dc grid-No.1-circuit resistance should not exceed the specified maximum value of 30000 ohms. If this value is insufficient to provide adequate bias, the additional When grid No.1 required bias must be supplied by a cathode resistor or fixed supply.
- t
 Key-down conditions per tube without amplitude modulation. Amplitude
 modulation essentially negative may be used if the positive peak of the
 audio-frequency envelope does not exceed 115% of the carrier conditions. Amplitude of the
- Obtained preferably from a separate source or from the plate-voltage supply with a voltage divider. If a series resistor is used, it should be adjustable to permit obtaining the desired operating plate current after initial tuning adjustments are completed. Grid-No. 2 voltage must not exceed 500 volts under key-up conditions.
- Obtained from a grid-No.1 resistor, or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor.

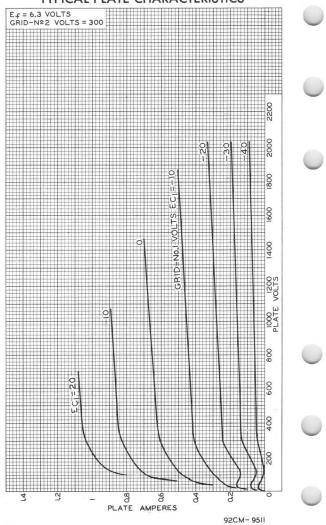


THE REFERENCE AXIS Y-Y' IS DEFINED AS THE AXIS OF THE BASE PIN GAUGE DESCRIBED IN NOTE I:

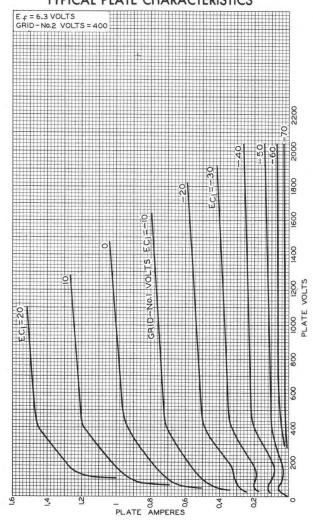
<code>WOTE 1:</code> ANGULAR VARIATIONS BETWEEN PINS AND VARIATION IN PIN-CIRCLE DIAMETER ARE HELD TO TOLERANCES SUCH THAT PINS WILL ENTER TO A DISTANCE OF 0.375" A FLAT-PLATE BASE-PIN GAUGE HAVING SIX HOLES 0.0800" \pm 0.0005" AND ONE HOLE 0.1450" \pm 0.0005" ARRANGED ON A 1.0000" \pm 0.0005" DIAMETER CIRCLE AT SPECIFIED ANGLES WITH TOLERANCE OF \pm 5' FOR EACH ANGLE, GAUGE IS ALSO PROVIDED WITH A HOLE 0.500" \pm 0.010" CONCENTRIC WITH PIN CIRCLE WHOSE CENTER IS ON THE AXIS Y-Y'.


NOTE 2: EXHAUST TIP WILL NOT EXTEND BEYOND THE PLANE WHICH PASSES THROUGH THE ENDS OF THE THREE LONGEST PINS.

RATING CHART I Class C Telephony Service

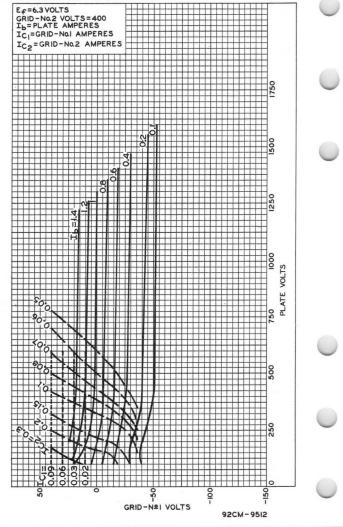

92CS-9492

RATING CHART II Class C Telegraphy Service

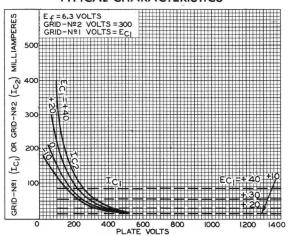


92CS - 949I

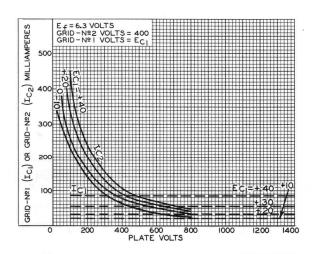
TYPICAL PLATE CHARACTERISTICS



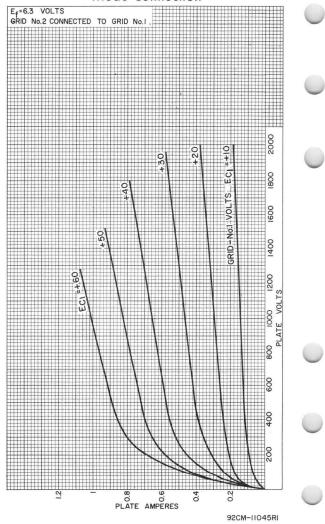
TYPICAL PLATE CHARACTERISTICS

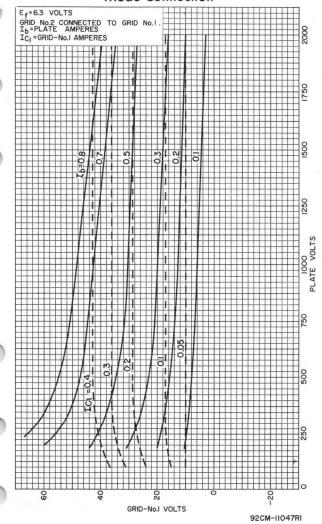


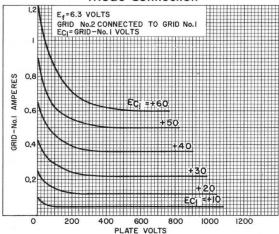
92CM-9502RI


AVERAGE CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CHARACTERISTICS


92CS-950IRI


92CS-9500RI


TYPICAL PLATE CHARACTERISTICS Triode Connection

TYPICAL CONSTANT-CURRENT CHARACTERISTICS Triode Connection

TYPICAL CHARACTERISTICS Triode Connection

92CS-11046RI

Magnetron

TUNABLE TYPE

FORCED-AIR COOLED

INTEGRAL MAGNET

For Pulsed-Oscillator Applications at Frequencies between 8500 and 9600 Mc

GENERAL DATA
Electrical:
Heater, for Unipotential Cathode: Voltage (AC or DC)
Minimum Cathode Heating Time
Mechanical:
Operating Position Any Dimensions See <i>Dimensional Outline</i> Air Flow:
To $Fins$ —An air stream should be directed along the cooling fins toward the body of the tube. Adequate flow should be provided so that the temperature of the anode block does not exceed 150° C.
To Heater-Cathode Terminal Adequate flow should be provided to maintain the temperature of the heater-cathode terminal below 165° C.
Waveguide Output Flange Mates with Modified JAN UG-52A/U Flange
Heater & Heater-Cathode Connector with built-in capacitor Jettron No.9000-Ca, or Ucinite No.115364b
Tuning Shaft with Associated Calibrated Indicator: Revolutions (Approx.) to cover full range of 8500 to 9600 Mc 8-1/2 Maximum torque (Absolute) at tuning-range stops 200 oz-in. Typical torque between -55° and +150° C (Approx.)

PULSED OSCILLATOR

Maximum and Minimum Ratings, Absolute-Maximum Values:

		For du	ty	fa	ctor	up	to	0.	0011	maximum
PFAK	ANODE	VOI TAGE			S 5		2 100		0.0	23 max.

PEAK ANODE	VOLTAGE.			÷			¥	23	max.	kv
PEAK ANODE	CURRENT.							27.5	max.	amp
PEAK POWER	INPUT° .							630	max.	kw
AVERAGE PO	WER INPUT							0.63	max.	kw
PULSE DURA								2.6	max.	USEC

RATE OF RISE OF VOLTAGE PULSE	ř	{200 max. 70 min.	kv/μsec kv/μsec
ANODE-BLOCK TEMPERATURE			
HEATER-CATHODE-TERMINAL TEMPERATURE		165 max.	oC (
LOAD-VOLTAGE STANDING-WAVE RATIO		1.5 max.	

Typical Operation:d

With load-voltage standing-wave ratio equal to or less than 1.05, except as noted, and with duty factor of 0.001

Heater Voltage See			
Peak Anode Voltage	22	22	kv
Peak Anode Current	27.5	27.5	amp
Pulse-Repetition Rate	400	4000	pps
Pulse Duration	2.5	0.25	usec
RF Bandwidth with worst phasing			1.0000000000000000000000000000000000000
of 1.5 VSWR	0.5	5	Mc
Side Lobes with worst phasing	0.0	0	1110
of 1.5 VSWR	8	10	db
Pulling Figure at VSWR of 1.5	10	10	Mc
Pushing Figure	0.2	0.2	Mc/amp
Thermal Factor for any 30° range			
of anode-block temperature			
between -55°C and 150°C	0.2	0.2	Mc/°C
Servo-Drive-Shaft Torque	6	6	oz-in.
Frequency Deviation due to			
tuning backlash	8	8	Mc
Peak Power Output (Approx)	230	230	
Peak Power Output (Approx.)	230	200	kw

Manufactured by Jettron Products, Hanover, New Jersey.

Manufactured by Ucinite Division of United-Carr Fastener Corporation, Newtonville 60, Massachusetts.

For atmospheric pressure greater than 600 millimeters of mercury in the vicinity of the heater-cathode stem. Operation at pressures lower than 600 millimeters of mercury may result in arc-over across the stem with consequent damage to the tube. The waveguide must always be pressurized to a minimum of 15 psi absolute to prevent arcing, especially when there is a mismatched load. Arcing in the waveguide due to lack of pressure can damage the tube

d
It is essential that the input circuit be designed so that if arcing occurs the energy per pulse delivered to the tube cannot greatly exceed the normal energy per pulse. To satisfy this requirement, it is recommended that pulsers of the discharging-network type be used.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	 1	2.9	3.3	amp
Peak Anode Voltage	 2	20	23	kv
Peak Power Output	 3	200	L	kw
Pulses Missing from Total .	 4,5	_	0.25	%

Note 1: With 13.75 volts ac or dc on heater.

Note 2: With peak anode current of 27.5 amperes. For heater voltage, see Operating Considerations.

Note 3: With peak anode current of 27.5 amperes corresponding to a peak anode voltage in the order of 22 kv, anode-block temperature of 115° C approx., pulse duration of 2.5 microseconds, and maximum load-voltage standing-wave ratio equal to or less than 1.05. For heater voltage, see Operating Considerations.

Note 4: Pulses are considered to be missing if the energy level at the operating frequency is less than 70 per cent of the normal value.

Note 5: With peak anode current of 27.5 amperes corresponding to a peak anode voltage in the order of 22 kv, anode-block temperature of 115° C approx., pulse duration of 0.25 microsecond, and load-voltage standing-wave ratio of 1.5 adjusted in phase to produce maximum instability. For heater voltage, see *Operating Considerations.*

OPERATING CONSIDERATIONS

The high voltage at which the 7111 is operated is very dangerous. Great care should be taken in the design of apparatus to prevent the operator from coming in contact with the high voltage. Precautions include the enclosing of high-potential terminals and the use of interlocking switches to break the primary circuit of the power supply when access to the equipment is required.

Fastening the JAN RG-51/U waveguide to the waveguide output flange of the tube is accomplished in the following manner. A JAN UG-52A/U choke flange or equivalent should be modified by drilling out the screw threads from the four mounting holes in the choke flange using a No.15 drill. This operation will permit four size 8-32 bolts inserted through the flange mounting holes to engage the threaded waveguide output flange of the tube.

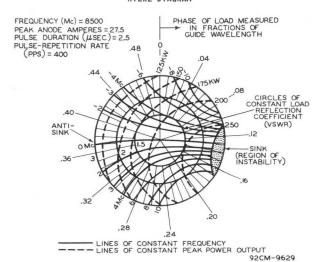
Cooling of the anode block is accomplished by directing a separate stream of clean air through each set of cooling fins toward the anode block. The two streams are provided from two 3/4"-diameter ducts placed 1/2" to 3/4" from the fins.

After the heater voltage is raised gradually to its rated value of 13.75 volts, allow the cathode to warm up for at least 2-1/2 minutes to make sure that the cathode reaches operating temperature. When the cathode has reached full operating temperature, high-voltage pulses, negative with respect to anode (ground), can be applied to the heater-cathode terminal. As soon as the high-voltage pulses are applied, the heater voltage (E_{F}) should preferably be reduced in accordance with the following formula, depending on the average power input (P_{F}) to the tube:

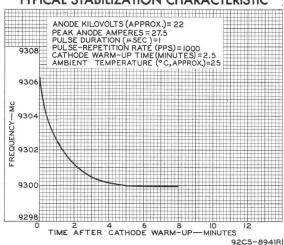
P₁ up to 450 watts:
$$E_f = 13.75 \left(1 - \frac{P_1}{450} \right)$$
 volts
P₁ greater than 450 watts: $E_f = 0$ volts

In those cases where this type is used as replacement for the fixed-frequency type 4J50, it is permissible to apply the following formula which is specified for reducing the heater voltage on the 4J50.

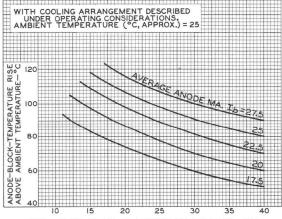
$$P_{i}$$
 up to 100 watts: E_{f} = 13.75 volts P_{i} greater than 100 watts: E_{f} = 14 $\left(1 - \frac{P_{i}}{1120}\right)$ volts


For standby operation, during which the high-voltage pulses are not applied to the tube, the heater voltage should be restored to 13.75 volts.

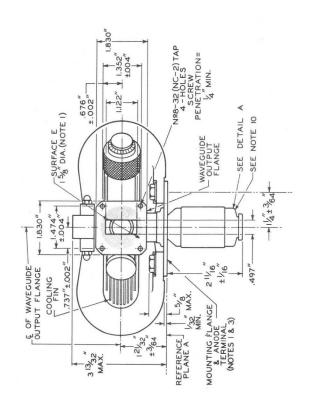
 Tuning is accomplished by pushing in on the knurled tuning knob and turning it until the desired setting of the calibrated indicator is reached. Releasing the knob allows a spring to disengage it from the tuning mechanism. The design of the 71ll provides an essentially constant operating frequency without requiring a positive mechanical lock even though the tube is subjected to vibration.

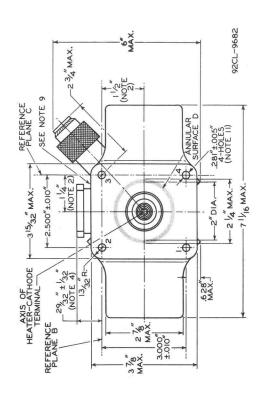

For precise tuning adjustment, the final indicator setting should be approached using the same direction of rotation of the tuning shaft. There is little frequency drift after changing tuner setting.

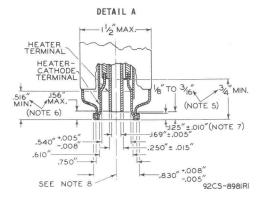
Our engineers are ready to assist you in circuit applications of the RCA-7111. For further information, write to Commercial Engineering, RCA, Harrison, New Jersey, giving complete details as to the proposed service.


RIEKE DIAGRAM

TYPICAL STABILIZATION CHARACTERISTIC




TYPICAL COOLING REQUIREMENTS



TOTAL FLOW OF AIR AT AMBIENT TEMPERATURE-CFM

92CS-9688RI

REFERENCE PLANE A IS DEFINED AS THE PLANE THROUGH THAT PORTION OF THE MOUNTING FLANGE DESIGNATED AS ANNULAR SURFACE D.

REFERENCE PLANE B IS DEFINED AS THE PLANE WHICH IS PERPENDICULAR TO PLANE A AND PASSES THROUGH THE EXACT CENTERS OF MOUNTING-FLANGE HOLES 2 AND 3.

REFERENCE PLANE C IS DEFINED AS THE PLANE WHICH IS PERPENDICULAR TO PLANE A AND PLANE B AND PASSES THROUGH THE EXACT CENTERS OF MOUNTING-FLANGE HOLES 3 AND 4.

NOTE I: SURFACE E OF THE WAVEGUIDE OUTPUT FLANGE AND THE ENTIRE SURFACE OF THE MOUNTING FLANGE ARE MADE SO THAT THEY MAY BE USED TO PROVIDE A HERMETIC SEAL.

NOTE 2: THE AXIS OF THE HEATER-CATHODE TERMINAL WILL BE WITHIN THE CONFINES OF A CYLINDER WHOSE RADIUS IS 3/64" AND WHOSE AXIS IS PERPENDICULAR TO REFERENCE PLANE A AT THE SPECIFIED LOCATION.

NOTE 3: ALL POINTS ON THE MOUNTING FLANGE WILL LIE WITHIN 0.015" ABOVE OR BELOW REFERENCE PLANE A.

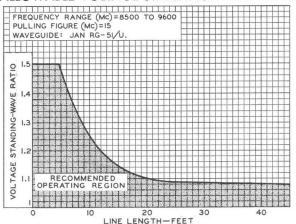
NOTE 4: THE LIMITS INCLUDE ANGULAR AS WELL AS LATERAL DEVIATIONS.

NOTE 5: THESE DIMENSIONS DEFINE EXTREMITIES OF THE 0.169" INTERNAL DIAMETER OF THE CYLINDRICAL HEATER TERMINAL.

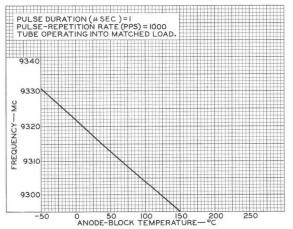
NOTE 6: THESE DIMENSIONS DEFINE EXTREMITIES OF THE 0.540" INTERNAL DIAMETER OF THE CYLINDRICAL HEATER-CATHODE TERMINAL.

NOTE 7: NO PART OF THE CONNECTOR DEVICE FOR THE HEATER AND HEATER-CATHODE TERMINALS SHOULD BEAR AGAINST THE UNDERSIDE OF THIS LIP.

NOTE 8: THE HEATER TERMINAL AND THE HEATER-CATHODE TERMINAL ARE CONCENTRIC WITHIN 0.010".

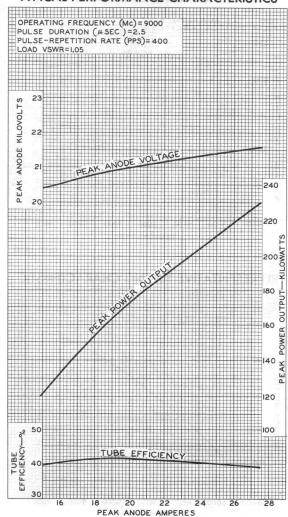

NOTE 9: ANODE TEMPERATURE MEASURED AT JUNCTION OF WAVE-GUIDE AND ANODE BLOCK.

NOTE 10: CATHODE TEMPERATURE MEASURED HERE.

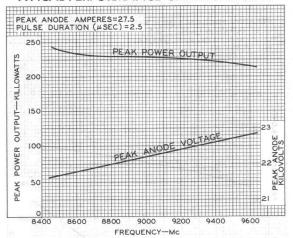

NOTE 11: THE ENDS OF THE MOUNTING STUDS MUST NOT PENETRATE THROUGH THE MOUNTING HOLES MORE THAN 1-3/32" FROM
THE MOUNTING-FLANGE SURFACE.

EFFECT OF LENGTH OF TRANSMISSION LINE BETWEEN OUTPUT FLANGE AND LOAD ON ALLOWABLE VOLTAGE STANDING-WAVE RATIO

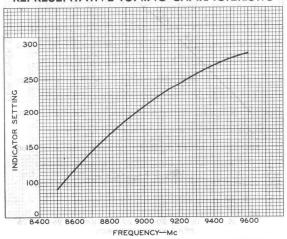
92CS-9469RI


TYPICAL THERMAL-FACTOR CHARACTERISTIC

92CS-9285RI


TYPICAL PERFORMANCE CHARACTERISTICS

92CM-9468RI



TYPICAL PERFORMANCE CHARACTERISTICS

92CS-9690

REPRESENTATIVE TUNING CHARACTERISTIC

92CS-9691

Beam Power Tube

FORCED-AIR COOLED

400 WATTS CW OUTPUT TO 175 Mc CERAMIC-METAL SEALS COAXIAL-ELECTRODE STRUCTURE 250 WATTS CW OUTPUT AT 500 Mc COMPACT DESIGN INTEGRAL RADIATOR

For Use at Frequencies up to 500 Mc

The 7203 is unilaterally interchangeable with the 4X250B and bilaterally interchangeable with the 4CX250B.

GENERAL DATA

Electrical:

	Heater, for Unipotential Cathode:	
	Voltage (AC or DC) 6.0 ± 10% v	olts
	Current at heater volts = 6.0 2.6	amp
1	Minimum heating time	sec
	Mu-Factor, Grid No.2 to Grid No.1,	000
	for grid-No.2 volts = 300 and	
	grid-No.2 ma. = 50 5.0	
	Direct Interelectrode Capacitances: b	-
	Grid No.1 to plate 0.03	mut
	Grid No.1 to cathode, grid No.2;	
	and heater 16.0	mut
	Plate to cathode, grid No.2,	
	and heater 4.4	puf

Mechanical:

	Operating Position Any
	Maximum Överall Length
	Maximum Seated Length
	Maximum Diameter
	Weight (Approx.) 4 oz
	Radiator Integral part of tube
	Socket Air-System Socket, such as SK-600° and
į.	SK-606 Air Chimney ^c : or 124-110-1 ^d

(Supplied with Air Chimney) . . . Special 8-Pin

BOTTOM VIEW

RADIATOR

(5) RING

Pin 1-Grid No. 2e Pin 2 - Cathode Pin 3 - Heater

Pin 4 - Cathode

Pin 5 - Do Not Use Pin 6 - Cathode

Pin 7 - Heater

Pin 8 - Cathode Base Index Plug-Grid No.1

Radiator - Plate Ring Terminal f -Grid No. 2

Air Flow:

Through indicated air-system socket-This fitting directs the air over the base seals; past the grid-No. 2 seal, envelope, and plate seal; and through the radiator to

-Indicates a change.

provide effective cooling with minimum air flow. When the tube is operated at maximum plate dissipation for each class of service, a minimum air flow of 3.8 cfm through the system is required. The corresponding pressure drop is approximately 0.3 inch of water. These requirements are for operation at sea level and at an ambient temperature of 20°C. At higher altitudes and ambient temperatures, the air flow must be increased to maintain the respective seal temperatures and the plate temperature within maximum ratings.

Without air-system socket—If an air-system socket is not used, it is essential that adequate cooling air be directed over the base seals, past the envelope, and through the radiator. Under these conditions and with the tube operating at maximum plate dissipation for each class of service, a minimum air flow of 3.6 cfm must pass through the radiator. The corresponding pressure drop is approximately 0.1 inch of water. These requirements are for operation at sea level and at an ambient temperature of 20°C. At higher altitudes and ambient temperatures, the air flow must be increased to maintain the respective seal temperatures and the plate temperature within maximum ratings.

Plate	Temperature	(Measured	on base
and	of plata sur	faco at in	unction.

end of plate surface at junction		1
with fins)	250 max.	oC
Temperature of Plate Seal, Grid-No.2		
Seal, and Base Seals	250 max.	O.C.

AF POWER AMPLIFIER & MODULATOR - Class AB, 9

Maximum CCSh Ratings, Absolute-Maximum Values:

DC PLATE VOLTAGE			max.	volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE.		400	max.	volts
MAXSIGNAL DC PLATE CURRENT		250	max.	ma
GRID-No.2 INPUTJ		12	max.	watts
PLATE DISSIPATIONJ		250	max.	watts
PEAK HEATER-CATHODE VOLTAGE:				
Heater negative with				
respect to cathode		150	max.	volts
Heater positive with				
respect to cathode		150	max.	volts

Typical CCS Operation:

Values are for 2 tubes

values are jor	2 Luoe	2			
DC Plate Voltage	1000 350	1500 350	2000 350	volts	
Voltage	-55	-55	-55	volts	
Peak AF Grid-No.1-to-Grid-No.1 Voltage	94 166 500	94 166 500	94 166 500	volts ma ma	

						_
	Zero-Signal DC Grid-No.2					
	Current	0	0	0	ma	
	MaxSignal DC Grid-No.2 Current (Approx.)	10	8	8	ma	
	Effective Load Resistance (Plate to plate)	3300	6000	8700	ohms	
	Max.—Signal Driving Power (Approx.)	0	0	0	watts	
	MaxSignal Power Output (Approx.)	220	400	590	watts	
	Maximum Circuit Values:					
	Grid-No.1-Circuit Resistance (Per	tube) .	0.1	max.	megohm	
	RF POWER AMPLIFIER - Class	B Televi	ision Se	ervice		
	Synchronizing-level c					
	tube unless otherwi Maximum CCS ^h Ratings, Absolute-Max					
		man ra		216 Mc		
	DC PLATE VOLTAGE			max.	volts	
	DC GRID-No.2 (SCREEN-GRID) VOLTAGE			max.	volts	
	DC GRID-No.1 (CONTROL-GRID) VOLTAGI	Ε	-250	max.	volts	
	DC PLATE CURRENT (AVERAGE) k		250	max.	ma	
	GRID-No.2 INPUT		12	max.	watts	
	GRID-No.1 INPUT		2	max.	watts	
	PLATE DISSIPATION		250	max.	watts	
	Heater negative with respect to c			max.	volts	
	Heater positive with respect to co	athoue.	130	max.	volts	
	Typical CCS Operation: With bandwidth	of E Wo				
				2000	11111	
	DC Plate Voltage	1000		2000	volts	
	DC Grid-No.2 Voltage	350	350	350	volts	
	DC Grid-No.1 Voltage	-60	-65	-70	volts	
	Peak RF Grid-No.1 Voltage:	65	71	76	volts	
	Synchronizing level	52	57	62	volts	
	DC Plate Current:	JZ	37	02	VUILS	
	Synchronizing level	355	360	360	ma	
	Pedestal level	250	250	250	ma	
	DC Grid-No.2 Current:					
	Synchronizing level	27	29	29	ma	
	Pedestal level	4	0	0	ma	
	DC Grid-No.1 Current:	2	5	5	mc	
	Synchronizing level	0	0		ma	
	Pedestal level	U	U	0	ma	
0	Driving Power (Approx.):1	0.4	1.2	1.2	watta	
	Synchronizing level	0.4	1.2	1.2	watts	
	Power Output (Approx.):	U	U	U	watts	
	Synchronizing level	160	300	440	watts	
	Pedestal level	90	170	250	watts	
NE SERVE	· · · · · · · · · · · · · · · · · · ·	No. of Concession, Name of Street, or other Designation, Name of Street, Name		TO STATE OF THE PARTY OF THE PA		100

DC Plate Current at Peak of Envelope

Average DC Plate Current. . . DC Grid-No.2 Current at Peak of Envelope . .

Maximum CCSh Ratings. Absolute-Maximum Values:

LINEAR RF POWER AMPLIFIER Single-Sideband Suppressed-Carrier Service

	maximum cos katings, Ausotute-Maxi	mum y co	ues.			
			Up to	500 Mc		
	DC PLATE VOLTAGE DC GRID-No.2 (SCREEN-GRID) VOLTAGE. MAXSIGNAL DC PLATE CURRENT GRID-No.2 INPUT		400 250 12	max. max. max.	volts volts ma watts	
	PLATE DISSIPATION		150	max. max.	watts volts volts	
	A STATE OF THE STA			1110474	V 0 1 C 0	
	Typical CCS Class AB, "Single-Tone"	opera	LIOII.			
	At frequencies up	to 175	Mc			
	DC Plate Voltage	1000 350	1500 350	2000 350	volts	
	Voltage	-55	-55	-55	volts	
	Zero-Signal DC Plate Current Zero-Signal DC Grid-No.2	83	83	83	ma	
	Current	0	0	0	ma	
	Effective RF Load Resistance	1650	3000	4350	ohms	
	MaxSignal DC Plate Current MaxSignal DC Grid-No.2	250	250	250	ma	
	Current	5	4	4	ma	
	Voltage	47	47	47	volts	
	(Approx.)	0	0	0	watts	
	(Approx.)	110	200	295	watts	
	Maximum Circuit Values:					
	Grid-No.1-Circuit Resistance under any condition:					
	For fixed-bias operation For cathode-bias operation		25000 No		ohms mended	
-	-Typical CCS Operation with "Two-Tor	ne Modu	lation"	: P		
			t 30 Mc			
	DC Plate Voltage DC Grid-No.2 Voltage ⁿ DC Grid-No.1 Voltage ^q Zero-Signal DC Plate Current. Effective RF Load Resistance.	1000 350 -55 83 1650	1500 350 -55 83 3000	2000 350 -55 83 4350	volts volts volts ma ohms	

30 -Indicates a change.

ma

ma

250

30

30

	Average DC Grid-No.2 Current 6 9.5 15 Average DC Grid-No.1 Current 0 0 0 Peak-Envelope Driver Power	ma ma
7	(Approx.)	watt
	(Approx.) 95 95 95	%
	Distortion Products Level: Third Order	db
	Fifth Order 40 38 35 Useful Power Output (Approx.):	db
)	Average	
	Maximum Circuit Values:	
5	Grid-No.1-Circuit Resistance under any condition: For fixed-bias operation	
	PLATE-MODULATED RF POWER AMPLIFIER — Class C Telepho	ny
	Carrier conditions per tube for use with a maximum modulation factor of 1	
	Maximum CCS f Ratings, Absolute-Maximum Values:	
	Up to 500 Mc	
	DC PLATE VOLTAGE 1500 max.	volts
		volts
		volts
	DC PLATE CURRENT 200 max.	ma
		watts
		watts
	PEAK HEATER-CATHODE VOLTAGE:	volts
		volts
	Typical CCS Operation:	
19	At frequencies up to 175 Mc	
	DC Plate Voltage	volts
	approx. 55%) t 250 250 250	volts
		volts
		volts
1	DC Plate Current 200 200 200	ma
7	DC Grid-No.2 Current 32 31 31 DC Grid-No.1 Current (Approx.) 6 6 6	ma ma
	Driving Power (Approx.)10.7 0.7 0.7	watt
		watts
	Maximum Circuit Values:	
-	Grid-No.1-Circuit Resistance	
	under any condition	ohms

RF POWER AMPLIFIER & OSCILLATOR - Class C Telegraphy and

RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCS Ratings, Absolute-Maximum Values:

	Up to 500 Mc
DC PLATE VOLTAGE	2000 max. volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE.	300 max. volts
DC GRID-No.1 (CONTROL-GRID) VOLTAGE	250 max. volts
DC PLATE CURRENT	250 max. ma
GRID-No.2 INPUT	
GRID-No.1 INPUT	
PLATE DISSIPATION	
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with respect to catho	ode . 150 max. volts
Heater positive with respect to catho	ode . 150 max. volts

Typical CCS Operation:

At frequencies	up	to	175	Mc	
----------------	----	----	-----	----	--

DC Plate Voltage	500	1000	1500	2000	volts
DC Grid-No.2 Voltage					volts
DC Grid-No.1 Voltage					volts
Peak RF Grid-No.1 Voltage	109	109	109	109	volts
DC Plate Current	250	250	250	250	ma
DC Grid-No.2 Current	48	45	36	30	ma
DC Grid-No.1 Current (Approx.).	12	12	11	11	ma
Driving Power (Approx.)	1	1	1	1	watt
Power Output (Approx.)	65	180	290	400	watts

At frequency of 500 Mc with coaxial cavity

DC	Plate Vol	tage				×			2000	volts
DC	Grid-No.2	Voltage.							300	volts
DC	Grid-No.1	Voltage.							-90	volts
	Plate Cur									ma
DC	Grid-No.2	Current.							10	ma
	Grid-No.1									ma
	iver Power									watts
	aful Power									watts

Maximum Circuit Values:

Grid-No.1-Circu	it Resistance	е			
under any con-	dition		 	. 25000 max.	ohms

- Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.
- With cylindrical shield JEDEC No.320 surrounding radiator; and with a cyll drical shield JLDEC No.321 surrounding the grid-No.2 ring terminal. Both shields are connected to ground.
- Available from Eitel-McCullough, Inc., San Bruno, California.
- Available from E. F. Johnson Co., Waseca, Minnesota.
- For use at lower frequencies.
- For use at higher frequencies.
- Subscript 1 indicates that grid-No.1 current does not flow during any part of the input cycle.
- Continuous Commercial Service.

j Averaged over any audio-frequency cycle of sine-wave form.

Averaged over any frame.

The driver stage is required to supply tube losses and rf-circuit losses. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

Single-Tone operation refers to that class of amplifier service in which the grid-No.2 input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-sidebald suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.

Preferably obtained from a fixed supply.

P "Two-Tone Modulation" operation refers to that class of amplifier service in which the input consists of two equal monofrequency f signals having constant amplitude. These signals are produced in a single-sideband suppressed-carrier system when two equal-and-constantamplitude audio frequencies are applied to the input of the system.

q Obtained from a fixed supply.

 $^{\mathbf{r}}$ Without the use of feedback to enhance linerity.

Measured at load of output circuit having indicated efficiency.

t The dc grid-No.2 voltage must be modulated approximately 55% in phase with the plate modulation in order to obtain 100% modulation of the 7203. The use of a series grid-No.2 resistor or reactor may not give satisfactory performance and is therefore not recommended.

Ubtained from grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor.

Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	1	2.3	2.9	amp
Capacitances: Grid No.1 to plate Grid No.1 to cathode,	2	-	0.06	μμf →
grid No.2, and heater Plate to cathode, grid No.2,	2	14.2	17.2	$\mu\mu$ f
and heater	2	4.0	4.8	щи
	1,3,4,5	-32	-46	volts
Grid-No.2 Current	1,3,4,5	-7	3	ma
Useful Power Output	4,5,6	225	-	watts

Note 1: With 6.0 volts on heater.

Note 2: With cylindrical shield JEDEC No.320 surrounding radiator; and with acylindrical shield JEDEC No.321 surrounding the grid-No.2 ring terminal. Both shields are connected to ground.

Note 3: With dc plate volts = 1000, dc grid-No.2 volts = 300, and grid-No.1 voltage adjusted to give plate current of 150 ma.

Note 4: With Forced-Air Cooling as specified under GENERAL DATA— Air-System Socket.

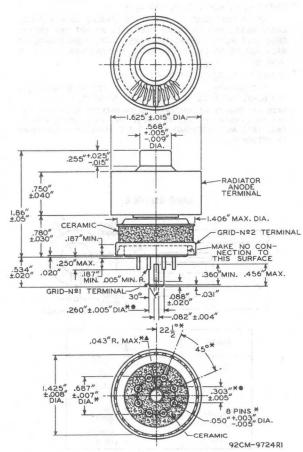
Note 5: Heater-voltage must be applied for at least 30 seconds before application of other voltages.

Note 6: With heater volts = 5.5, dc plate volts = 2000, dc grid-No.2 volts = 300, dc grid-No.1 volts = -90, dc grid-No.1 ma. = 25 maximum, grid-No.1 signal voltage adjusted to produce dc plate current of 250 ma., and coaxial-cavity amplifier-circuit operating frequency (Mc) = 475.

- Indicates a change.

SPECIAL TESTS & PERFORMANCE DATA

Interelectrode Leakage:


This test is destructive and is performed on a sample lot of tubes from each production run under the following conditions: ac heater volts = 6.6, no voltage on other elements, and specified forced-air cooling for AirAirSocket. At the end of 500 hours, with tube at 25 $^{\circ}$ C, and with no voltage applied to heater, the minimum resistance between indicated electrodes as measured with a 500-volt Megger-type ohmmeter having an internal impedance of 2.5 megohms, will be:

Grid	No.1	and	grid No	. 2		-			100	10	min.	megohms
												megohms
Grid	No.2	and	cathode							10	min.	megohms

OPERATING CONSIDERATIONS

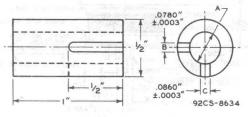
The socket for the 7203 should be of a type (such as is indicated in the tabulated data) which permits adequate aircooling of the tube. Although the base will fit a conventional lock-in socket, the latter does not permit adequate cooling and its use is therefore not recommended.

The plate connection is made by means of a metal band or spring contacts to the cylindrical surface of the radiator. It is essential that the contact areas be kept clean to minimize rf losses especially at the higher frequencies.

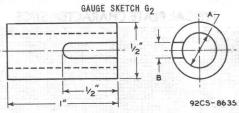
GRID-No.1-PLUG DIMENSIONS ARE MEASURED BY THE USE OF THE SERIES OF GAUGES SHOWN IN SKETCHES G_1 AND G_2 . IN THE FOLLOWING INSTRUCTIONS FOR THE USE OF THESE GAUGES "GO" INDICATES THAT THE ENTIRE GRID-No.1-PLUG KEY WILL ENTER THE GAUGE; AND "NO-GO" INDICATES THAT THE GRID-No.1-PLUG KEY WILL ENTER THE GAUGE MORE THAN 1/16". INSTRUCTIONS FOR THE USE OF THE GAUGES FOLLOW:

A, *: See next page.

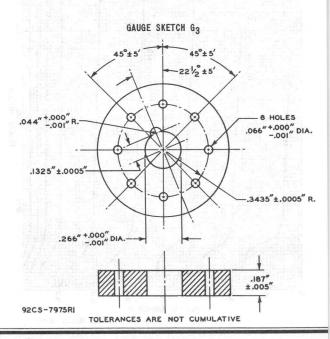
▲ GAUGES G₁-1, G₁-2, G₁-3, AND G₁-4:

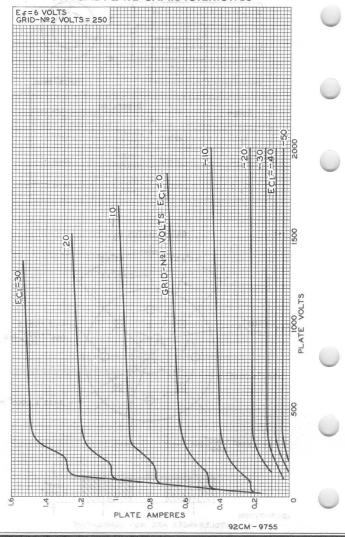

USING ONLY SLOT C, TRY THESE GAUGES IN NUMERICAL ORDER UNTIL ONE IS FOUND THAT WILL ACCEPT THE ENTIRE GRID-No.! PLUG. USING THE FIRST GAUGE THUS FOUND, IT WILL NOT BE POSSIBLE TO INSERT THE GRID-No.! PLUG IN SLOT B.

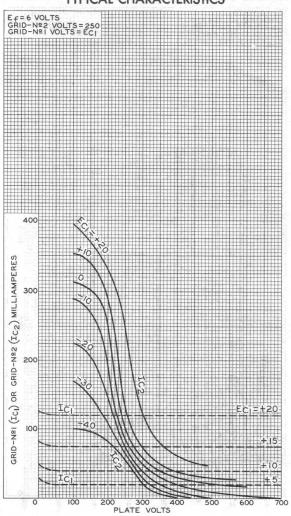
GAUGES G_2-1 , G_2-2 , AND G_2-3 :


THE GRID-No.1 PLUG WILL BE REJECTED BY GAUGES $\rm G_2-1$ AND $\rm G_2-2$, BUT WILL BE ACCEPTED BY GAUGE $\rm G_2-3$.

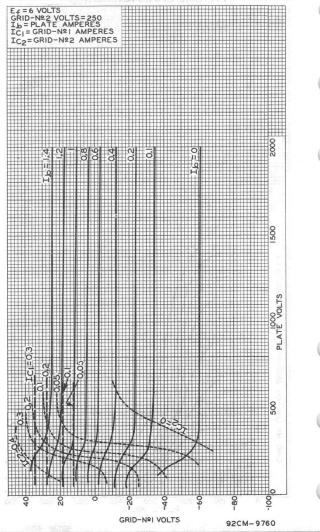
* BASE-PIN POSITIONS ARE HELD TO TOLERANCES SUCH THAT THE ENTIRE LENGTH OF THE PINS WILL, WITHOUT UNDUE FORCE, PASS INTO AND DISENGAGE FROM THE FLAT-PLATE GAUGE SHOWN IN SKETCH ${\rm G}_3$.


GAUGE SKETCH G

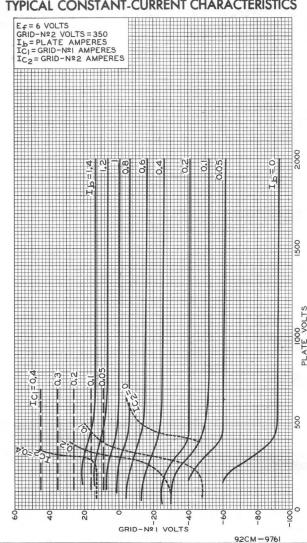

Gauge	Dimension A
G ₁ -I	.2575" + .0000"
G ₁ -2	.2600" + .0000"
G ₁ -3	.2625" + .0000"
G ₁ -4	.2650" + .0000"


^	Dimension											
Gauge	A	В										
G ₂ -1	.2550" + .0000"	.125"										
G ₂ -2	.2980" + .0000"	none										
G ₂ -3	.3080" + .0000"	none										

TYPICAL PLATE CHARACTERISTICS



TYPICAL CHARACTERISTICS



92CM-9756

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

7204/4CX250F

Beam Power Tube

FORCED-AIR COOLED

CERAMIC-METAL SEALS 400 WATTS CW OUTPUT TO 175 Mc 250 WATTS CW OUTPUT AT 500 Mc COAXIAL-ELECTRODE STRUCTURE COMPACT DESIGN

INTEGRAL RADIATOR

For Use at Frequencies up to 500 Mc

The 7204 is unilaterally interchangeable with the 4X250F and bilaterally interchangeable with the 4CX250F.

The 7204 is the same as the 7203/4CX250B except for the following items:

Heater, for Unipotential Cathode:

Voltage (AC or DC)a . . . $.26.5 \pm 10\%$ volts Current at heater volts = 26.5.

Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	1	0.50	0.62	amp
Capacitances: Grid No.1 to plate Grid No.1 to cathode, grid	2	_	0.06	μμf
No.2, and heater	2	14.2	17.2	$\mu\mu$ f
No.2, and heater	2	4.0	4.8	μμξ
Grid-No.1 Voltage	1,3,4,5	-32	-46	volts
Grid-No.2 Current			3	ma
Jseful Power Output		225		watts

Note 1: With 26.5 volts on heater.

With cylindrical shield JEDEC No.320 surrounding radiator; and with a cylindrical shield JEDEC No.321 surrounding the grid-No.2 ring terminal. Both shields are connected to ground. Note 2:

With dc plate volts = 1000, dc grid-No.2 volts = 300, and grid-No.1 voltage adjusted to give plate current of 150 ma. Note 3:

Note 4: With Forced-Air Cooling as specified under GENERAL DATA - Air-System Socket.

Heater voltage must be applied for at least 30 seconds before application of other voltages. Note 5:

with heater volts = 24.3, dc plate volts = 2000, dc grid-No.2 volts = 300, dc grid-No.1 volts = -90, dc grid-No.1 ma. = 25 maximum, grid-No.1 signal voltage adjusted to produce dc plate current of 250 ma., and coaxial-cavity amplifier-circuit operating frequency (Mc) = 475 Note 6:

SPECIAL TESTS & PERFORMANCE DATA

Interelectrode Leakage:

This test is destructive and is performed on a sample lot of tubes from each production run under the following condi-

- Indicates a change.

7204/4CX250F

tions; ac heater volts = 29.1, no voltage on other elements, and specified forced-air cooling for $Air-System\ Socket$. At the end of 500 hours, with tube at 25° C, and with no voltage applied to heater, the minimum resistance between indicated electrodes as measured with a 500-volt Megger-type ohmmeter having an internal impedance of 2.5 megohms, will be:

Grid No.1 and grid No.2 10 min. megohms
Grid No.1 and cathode 10 min. megohms
Grid No.2 and cathode 10 min. megohms

Beam Power Tube

CERAMIC-METAL SEALS UNITIZED-ELECTRODE DESIGN FORCED-AIR COOLED

COAXIAL-ELECTRODE STRUCTURE INTEGRAL RADIATOR 2500 WATTS CW INPUT MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE

55

16

1.4 max.

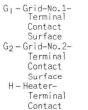
Useful with Full Ratings at Frequencies up to 1215 Mc

GENERAL DATA

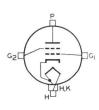
Electrical:

Heater, for Matrix-Type, Oxide-Coated, Unipotential Cathode:

Voltage (AC or DC) ^a	volts
Current at heater volts = 5.5 17.3	amp ←
Minimum heating time at heater volts = 5.5 5 Mu-Factor, Grid No.2 to Grid No.1	minutes
for plate volts = 2500, grid-No.2 volts = 600, and plate ma. = 600 17	
Direct Interelectrode Capacitances:	
Grid No.1 to plate ^b 0.17 max.	μμf
Grid No.1 to cathode & heater 42	$\mu\mu$ f


Plate to cathode & heaterbc. . . . 0.017 max.

Grid No.1 to grid No.2


Grid No.2 to plate

Grid No.2 to cathode & heater . . . Markaniani.

Mechanic	ai:																					
Operation	g Posi	tion					÷	,	8				ž	×						Ar	٦y	
Overall	Length	٠							÷							- 3	3.	241	±	0.10)"	
Greatest	Diame	eter	(Se	ee	Di	men	si	ono	ıl	04	tl	in	ie)			- 3	3.	721	±	0.03	3" .	*
Radiator							100					. 1	nt	ec	ra	1	p.	ar	0	ftul	oe.	
Terminal	Conne	ectic	ns	(S	ee	Di	me	nsi	0	nal	0	ut	li	ne):							
	Operation Overall Greatest Weight (Radiator	Overall Length Greatest Diame Weight (Approx Radiator	Operating Position Overall Length Greatest Diameter Weight (Approx.) . Radiator	Operating Position . Overall Length Greatest Diameter (Se Weight (Approx.) . Radiator	Operating Position Overall Length Greatest Diameter (See Weight (Approx.) Radiator	Operating Position Overall Length Greatest Diameter (See Di Weight (Approx.) Radiator	Operating Position Overall Length Greatest Diameter (See Dimen Weight (Approx.)	Operating Position														

Surface

Cathode-Terminal Contact Surface P-Plate-Terminal Contact Surface

H.K-Heater- &

Thermal:

Air Flow:

Through radiator-Adequate air flow to limit the plate-seal temperature to 250° C should be delivered by a blower

- Indicates a change.

μμf.

μμf

μμf

μμf

through the radiator before and during the application of heater, plate, grid-No.2, and grid-No.1 voltages. Typical values of air flow directed through the radiator versus percentage of maximum rated plate dissipation for each class of service are shown in accompanying Typical-Cooling-Requirements curves. Plate power, grid-No.2 power, heater power, and air flow may be removed simultaneously.

To grid-No.2, grid-No.1, cathode, and heater seals—A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these seals so that its temperature does not exceed the specified maximum value of 250°C. An air flow of 10 cfm is usually adequate.

Seal Temperature (Plate, grid No.2, grid No.1, cathode, and heater) 250 max. °C

LINEAR RF POWER AMPLIFIER Single-Sideband Suppressed-Carrier Service

Maximum CCSd Ratings, Absolute-Maximum Values:

UP to 1215 MC
2500 max. volts
1000 max. volts
1 max. amp
0.2 max. amp
2500 max. watts
50 max. watts
1500 max. watts

Typical CCS Class AB, "Single-Tone" Operation:

DC Plate Voltage			<i>Up</i> tο 2250	60 Mc 2500	volts
DC Grid-No.2 Voltage ^f				700	volts
DC Grid-No.1 Voltage			-50	-50	volts
Zero-Signal DC Plate Current		360	0.2	0.2	amp
Zero-Signal DC Grid-No.2 Current			0	0	amp
Effective RF Load Resistance		10	1100	1100	ohms
MaxSignal DC Plate Current			0.9	1	amp
-MaxSignal DC Grid-No.2 Current			0.045	0.045	amp
MaxSignal DC Grid-No.1 Current	100		0	0	amp
MaxSignal Peak RF Grid-No.1 Voltage			50	50	volts
MaxSignal Driving Power (Approx.) .			0	0	watts
MaxSignal Power Output (Approx.)			1000	1250	watts

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with maximum modulation factor of 1

Maximum CCSd Ratings, Absolute-Maximum Values:

				UP to 1215 MC
DC	PLATE VOLTAGE	 	120	 2000 max. volts
	GRID-No.2 (SCREEN-GRID)			
				- Indicates a chânge

	DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT DC GRID-No.1 CURRENT PLATE INPUT. GRID-No.2 INPUT. PLATE DISSIPATION.			-300 0.85 0.2 1700 35 1000	max. max. max. max.	volts amp amp watts watts watts
	Typical CCS Operation:					
	In grid-drive circuit	t a	t 600	Mc		
0	DC Plate Voltage	:		1800 500 -30 0.75 0.015 0.04 50 650	2000 500 -30 0.83).015 0.04 55 800	volts volts volts amp amp amp watts watts
	Maximum Circuit Values:					
	Grid-No.1-Circuit Resistance under any condition			50001	max.	ohms
	RF POWER AMPLIFIER & OSCILLATOR	_ (Class	s C Tel	egraph	y ^m
	and RF POWER AMPLIFIER — Class	s C	FM 7	Telepho	ny	
	RF POWER AMPLIFIER — Class				ny	
			Valu	es:		
	RF POWER AMPLIFIER — Class	num	Valu	es: Up to : 2500 1000 -300 1 0.2 2500 50	max. max.	volts volts volts amp amp watts watts
	RF POWER AMPLIFIER — Class Maximum CCS ^d Ratings, Absolute-Haxim DC PLATE VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC GRID-No.1 CURRENT. PLATE INPUT. GRID-No.2 INPUT.	num	Valu	es: Up to : 2500 1000 -300 1 0.2 2500 50	max. max. max. max. max. max. max. max.	volts volts volts amp amp watts watts
	RF POWER AMPLIFIER — Class Maximum CCS ^d Ratings, Absolute-Maxim DC PLATE VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC GRID-No.1 CURRENT PLATE INPUT. GRID-No.2 INPUT. PLATE DISSIPATION.	num	Valu	es: 2500 1000 -300 1 0.2 2500 50 1500	max. max. max. max. max. max. max. max.	volts volts volts amp amp watts watts
	RF POWER AMPLIFIER — Class Maximum CCS ^d Ratings, Absolute-Maxim DC PLATE VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC GRID-No.1 CURRENT. PLATE INPUT. GRID-No.2 INPUT. PLATE DISSIPATION. Typical CCS Operation:	num	Valu	es: 2500 1000 -300 1 0.2 2500 50 1500	max. max. max. max. max. max. max. max.	volts volts volts amp amp watts watts
	RF POWER AMPLIFIER — Class Maximum CCS ^d Ratings, Absolute-Maxim DC PLATE VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC GRID-No.1 CURRENT PLATE INPUT. GRID-No.2 INPUT. PLATE DISSIPATION. Typical CCS Operation: In grid-drive circuit DC Plate Voltage. DC Grid-No.2 Voltage ⁿ . DC Grid-No.1 Voltage ^p . DC Plate Current DC Plate Current DC Grid-No.1 Current (Approx.) Driver Power Output (Approx.)	num	Valu	es: 2500 1000 -300 1 1 0.2 2500 500 1500	2500 500 -30 1 0.02 0.07	volts volts volts amp amp watts watts watts volts volts volts amp amp watts
	RF POWER AMPLIFIER — Class Maximum CCS ^d Ratings, Absolute-Haxim DC PLATE VOLTAGE. DC GRID-No.2 (SCREEN-GRID) VOLTAGE. DC GRID-No.1 (CONTROL-GRID) VOLTAGE. DC PLATE CURRENT. DC GRID-No.1 CURRENT. PLATE INPUT. GRID-No.2 INPUT. PLATE DISSIPATION. Typical CCS Operation: In grid-drive circuit DC Plate Voltage. DC Grid-No.2 Voltage ⁿ . DC Grid-No.1 Voltage ^p . DC Grid-No.1 Current DC Grid-No.2 Current DC Grid-No.1 Current DC Grid-No.1 Current (Approx.) Driver Power Output (Approx.) Useful Power Output (Approx.)	num	Valu	es: 2500 1000 -300 1 1 0.2 2500 500 1500	2500 max. max. max. max. max. max. max. max.	volts volts volts amp amp watts watts watts volts volts volts amp amp watts

7213

- Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.
- b With external, flat, metal shield having diameter of 8" and center hole approximately 3" in diameter provided with spring fingers that connect the shield to grid-No.2 terminal. Shield is located in plane of grid-No.2 terminal perpendicular to the tube axis.
- With external, flat, metal shield having diameter of 8" and center hole approximately 2-3/8" in diameter provided with spring fingers that connect the shield to grid-No.1 terminal. Shield is located in plane of grid-No.1 terminal perpendicular to the tube axis.
- Continuous Commercial Service.
- *Single-Tone* operation refers to that class of amplifier service in which the grid-No.1 input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.
- * Preferably obtained from a fixed supply.
- ${f g}$ Obtained preferably from a separate source modulated along with the plate supply.
- h Obtained from grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor.
- j The driver stage is required to supply tube losses and rf-circuit losses. It should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.
- k This value of useful power is measured in load of output circuit.

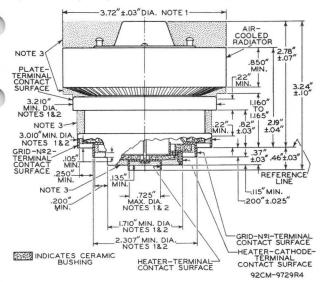
 If this value is insufficient to provide adequate bias, the additional required bias must be supplied by a cathode resistor or fixed supply.
- M Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.
- $^{\sf N}$ Obtained preferably from a fixed supply, or from the plate-supply voltage with a voltage divider.
- $^{f p}$ Obtained from fixed supply, by grid-No.1 resistor, by cathode resistor, or by combination methods.

SPECIAL TESTS & PERFORMANCE DATA

Design samples of the 7213 have been subjected to the following tests without adverse effects.

Variable-Frequency Vibration Performance:

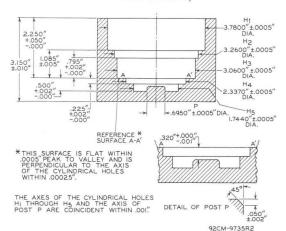
This test was performed (per MIL-E-IC⁹, paragraph 4.9.20.3) under the following conditions: heater volts = 5.5, plate-supply volts = 450, grid-No.2 volts = 300, grid-No.1 voltage varied to give a plate current of 10 milliamperes, and plate load resistor (ohms) = 2000. The tubes were vibrated in each of 3 positions through frequency range from 10 to 50 to 10 cycles per second. The vibrating frequency had a fixed amplitude of 0.040 inch (total excursion of 0.080 inch). During the test, the tubes did not show an rms output voltage across the plate load resistor in excess of 500 millivolts. At the end of this test, the tubes did not show tap or permanent interelectrode shorts or defects that would cause the tubes to be inoperable. The tubes exhibited no pronounced mechanical resonance during this test.


Military Specification, Electron Tubes and Crystal Rectifiers, 3 October 1955.

- Indicates a change.

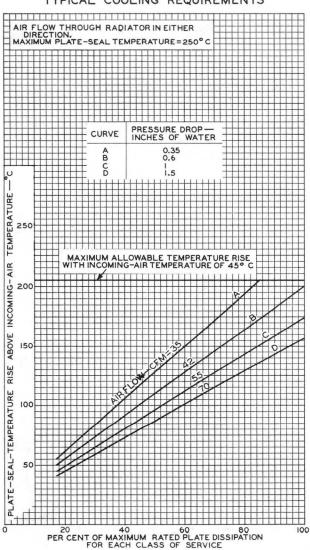
Fatigue Performance:

In this test (per MIL-E-IC, paragraph 4.9.20.6), the tubes were rigidly mounted and subjected to 2.5 g vibrational acceleration at 25 cycles per second for 32 hours in each of three positions with heater volts = 5.5. At the end of this test, the tubes did not show permanent or temporary shorts or open circuits, and passed all electrical tests.

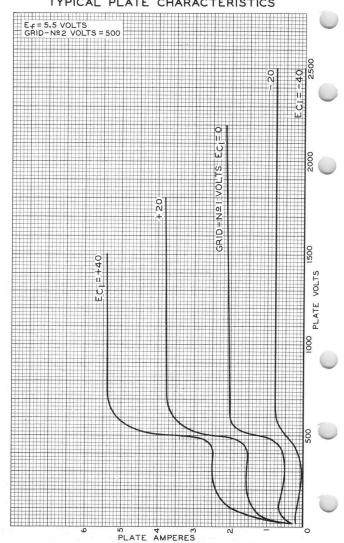


NOTE 1: WITH THE CYLINDRICAL SURFACES OF THE RADIATOR BAND, PLATE TERMINAL, GRID-NO.2 TERMINAL, GRID-NO.1 TERMINAL, HEATER-CATHODE TERMINAL, AND HEATER TERMINAL CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH GI. PROPER ENTRY OF THE TUBE IS OBTAINED WHEN THE GRID-NO.2 TERMINAL IS SEATED ON THE SHOULDER A-A'. THE TUBE IS PROPERLY SEATED ON THE SHOULDER WHEN A O.010"-THICKNESS GAUGE 1/8" WIDE WILL NOT ENTER MORE THAN 1/16" BETWEEN THE SHOULDER SURFACE AND THE GRID-NO.2 TERMINAL. THE GAUGE IS PROVIDED WITH SLOTS TO PERMIT MAKING MEASUREMENT OF SEATING OF GRID-NO.2 TERMINAL ON SHOULDER A-A'.

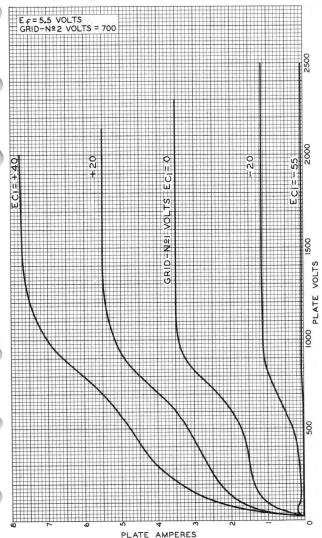
NOTE 2: THE DIAMETER OF EACH TERMINAL ISHELD TO INDICATED VALUES ONLY OVER THE INDICATED MINIMUM LENGTH OF ITS CONTACT SURFACE.


NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

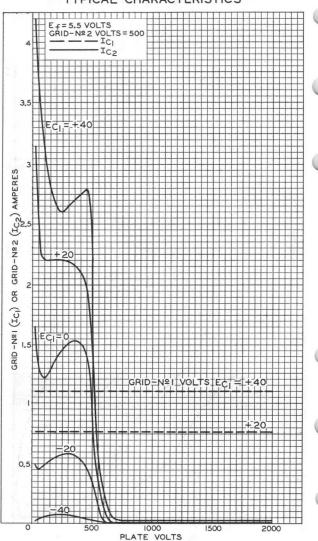
GAUGE SKETCH G



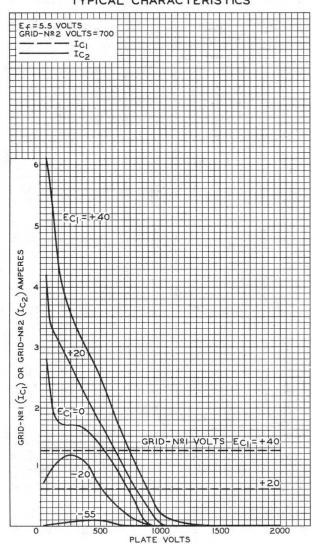
TYPICAL COOLING REQUIREMENTS



TYPICAL PLATE CHARACTERISTICS



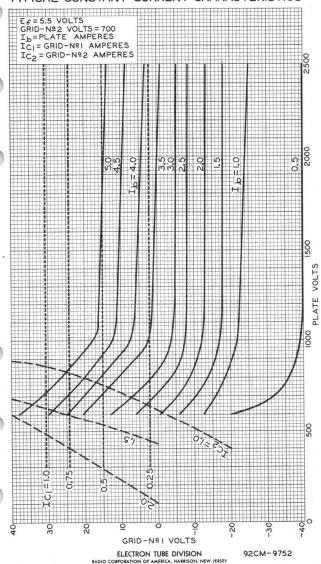
TYPICAL PLATE CHARACTERISTICS

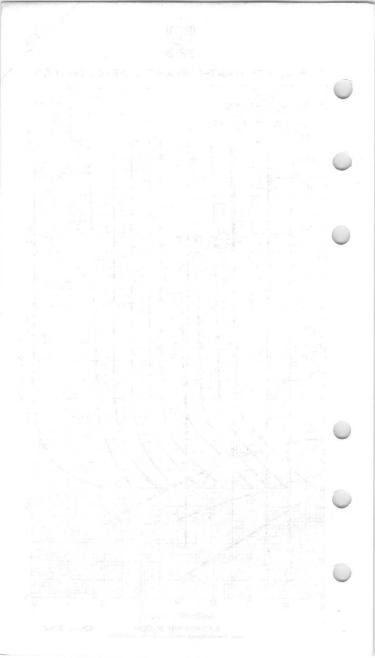

TYPICAL CHARACTERISTICS

120

TYPICAL CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS


ELECTRON TUBE DIVISION
RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY


92CM-9744

123

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Beam Power Tube

CERAMIC METAL SEALS
UNITIZED-ELECTRODE DESIGN
FORCED-AIR COOLED

COAXIAL-ELECTRODE STRUCTURE INTEGRAL RADIATOR 180 KW PEAK-PULSE POWER

1.4 max.

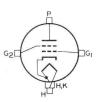
MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE

For Pulsed RF Amplifier Service with Full Ratings at Frequencies up to 1215 Mc

GENERAL DATA

Electrical:

	Heater, for Matrix—Type, Oxide— Coated, Unipotential Cathode: Voltage (AC or DC) ^a	volts volts
	Current at heater volts = 5.5 17.3	amp
ħ.	Minimum heating time at	3656-16
7	heater volts = 5.5 5 m	inutes
	Mu-Factor, Grid-No.2 to Grid No.1	
	for plate volts = 2500, grid-No.2	
	volts = 600, and plate ma. = 600 19	
	Direct Interelectrode Capacitances:	
	Grid No.1 to plate ^b 0.17 max.	μμf
	Grid No.1 to cathode & heater 42	μμf
	Plate to cathode & heater ^{b, c} 0.017 max.	μμf
	Grid No.1 to grid No.2 55	μμf
	Grid No.2 to plate 16	$\mu\mu$ f


Mechanical:

Operating Position	Any
Overall Length	± 0.10"
Greatest Diameter (See Dimensional Outline) 3.72" :	
Weight (Approx.)	. 2 lbs
Radiator Integral part of	of tube
Terminal Connections (See Dimensional Outline):	

Grid No. 2 to cathode & heaterc. . .

G_I - Grid-No.1-Terminal Contact Surface G₂ - Grid-No.2-Terminal Contact Surface

H-Heater-Terminal Contact Surface

Cathode-Terminal Contact Surface P-Plate-Terminal Contact Surface

H.K-Heater- &

← Indicates a change.

μμf

Thermal:

Air Flow:

Through radiator -- Adequate air flow to limit the plate seal temperature to 250° C should be delivered by a blower through the radiator before and during the application of heater, plate, grid-No.2, and grid-No.1 voltages. Typical values of air flow directed through the radiator versus percentage of maximum rated plate dissipation for each class of service are shown in accompanying Typical Cooling-Requirements curves. Plate power, grid-No.2 power, heater power, and air flow may be removed simultaneously.

To grid-No.2. grid-No.1. cathode, and heater seals-A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these seals so that its temperature does not exceed the specified maximum value of 250° C. An air flow of 10 cfm is usually adequate.

Seal Temperature (Plate, grid No.2, grid No.1, cathode, and heater) 250 max. 00

GRID-PULSED RE AMPLIFIER

Maximum CCSd Ratings, Absolute-Maximum Values:

For maximum "on" time e of 10 microseconds.

			U	p to 1215 Mc
DC PLATE VOLTAGE	,			5000 max. volts
DC GRID-No.2 (SCREEN-GRID) VOLTAGE.				
DC GRID-No.1 (CONTROL-GRID) VOLTAGE				
DC PLATE CURRENT DURING PULSE				18 max. amp
DC PLATE CURRENT				0.2 max. amp
GRID-No.2 INPUT (Average)				50 max. watts
GRID-No.1 INPUT (Average)				30 max. watts
PLATE DISSIPATION (Average)				1500 max. watts

Typical Operation:

In class C cathode-drive circuit with rectangular-wave bulses at 1215 Mc and with duty factor of 0.01

DC Plate Voltage	٠.						1720					4500	volts	
DC Grid-No.2 Voltage.			Ċ		i				ì	·			volts	
DC Grid-No.1 Voltage.												-80	volts	
DC Plate Current duri	ng	pı	11:	se								11	amp	
DC Plate Current												0.11	amp	
DC Grid-No.2 Current.												0.005	amp	
DC Grid-No.1 Current.												0.01	amp	
Driver Power Output a														
of pulse (Approx.)9												4.5	kw	
Useful Power Output a	it	pea	ak											
of pulse (Approx.).		100	190		o.	121	000	100		12	101	20	kw	

PLATE- AND SCREEN-PULSED RF AMPLIFIER

Maximum CCSd Ratings, Absolute-Maximum Values:

For maximum "on" time e of 10 microseconds

				U	p to 1	215 M	c
	PEAK POSITIVE-PULSE PLATE VOLTAGE . PEAK POSITIVE-PULSE GRID-No. 2	•	٠		10000	max.	volts
	(SCREEN-GRID) VOLTAGE				1200	max.	volts
	DC GRID-No.1 (CONTROL-GRID) VOLTAGE				-300	max.	volts
١	DC PLATE CURRENT DURING PULSE				18	max.	amp
	DC PLATE CURRENT				0.2	max.	amp
	GRID-No.2 INPUT (Average)				50	max.	watts
	GRID-No.1 INPUT (Average)					max.	watts
	PLATE DISSIPATION (Average)				1500	max.	watts

Typical Operation:

In class C cathode-drive circuit with rectangular-wave pulses at 1215 Mc and with duty factor f of 0.01

10000	volts
1000	volts
-80	volts
18	amp
0.18	amp
0.009	amp
0.016	amp
11	kw
65	kw
	1000 -80 18 0.18 0.009 0.016

- a Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.
- b With external, flat, metal shield having diameter of 8°, and center hole approximately 3° in diameter provided with spring fingers that connect the shield to grid-No.2 terminal. Shield is located in plane of grid-No.2 terminal perpendicular to the tube axis.
- With external, flat, metal shield having diameter of 8*, and center hole approximately 2-3/8* in diameter provided with spring fingers that connect the shield to grid-No.1 terminal. Shield is located in plane of grid-No.1 terminal perpendicular to the tube axis.
- d Continuous Commercial Service.
- e " 0π " time is defined as the sum of the durations of the individual pulses which occur during any 1000-microsecond interval.
 - Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70 per cent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
- f Duty factor for the 7214 is defined as the "on" time in microseconds divided by 1000 microseconds.
- The driver stage is required to supply tube losses, rf-circuit losses, and in cathode-drive circuits, the rf power added to the plate input. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

SPECIAL TESTS & PERFORMANCE DATA

Design samples of the 7214 have been subjected to the following tests without adverse effects.

Variable-Frequency Vibration Performance:

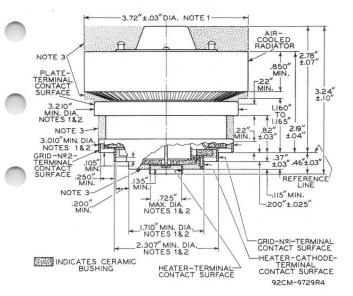
This test was performed (per MIL-E-ID^h, paragraph 4.9.20.3) under the following conditions: Heater voltage of 5.5 volts, plate supply voltage of 450 volts, grid-No.2 voltage of 300 volts, grid-No.1 voltage varied to give a plate current of IO milliamperes, and plate load resistor of 2000 ohms. The tubes were vibrated in each of 3 positions through frequency range from IO to 50 cycles per second and back to IO cycles per second. The vibrating frequency had a fixed amplitude of 0.040 inch (total excursion of 0.080 inch). During the test, the tubes did not show an rms output voltage across the plate load resistor in excess of 500 millivolts.

At the end of this test, the tubes did not show tap or permanent interelectrode shorts or defects that would cause the tubes to be inoperable. The tubes exhibited no pronounced mechanical resonance during this test.

Fatigue Test:

In this test (per MIL-E-ID, paragraph 4.9.20.6), the tubes were rigidly mounted and subjected to 2.5 g vibrational acceleration at 25 cycles per second for 32 hours in each of three positions with 5.5 volts applied to the heater. At the end of this test, the tubes did not show permanent or temporary shorts or open circuits, and passed all electrical tests.

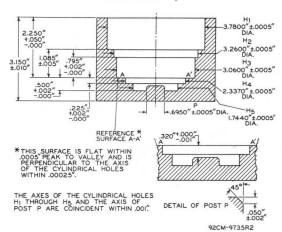
OPERATING CONSIDERATIONS


The maximum seal temperature of 250° C is a tube rating and is to be observed in the same manner as other ratings. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. The latter is made by the Tempil Corporation, I32 W. 22nd Street, New York II, New York in the form of liquid and stick.

The rated plate and grid-No.2 voltages of this tube are extremely dangerous to the user. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.

 $^{
m h}$ 31 March 1958, Military Specification, Electron Tubes and Crystal Rectifiers.

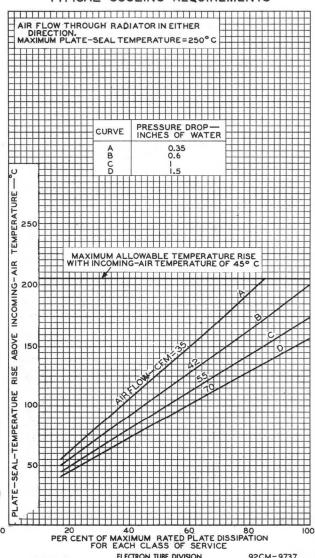
- Indicates a change.

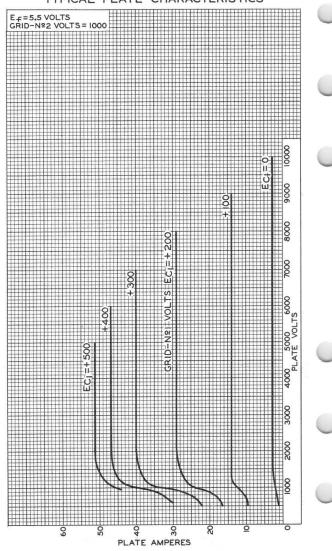


NOTE 1: WITH THE CYLINDRICAL SURFACES OF THE RADIATOR BAND, PLATE TERMINAL, GRID-No.2 TERMINAL, GRID-No.1 TER-MINAL, HEATER-CATHODE TERMINAL, AND HEATER TERMINAL CLEAN, SMOOTH, AND FREE OF BURRS. THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH G1. PROPER ENTRY OF THE TUBE IS OBTAINED WHEN THE GRID-No. 2 TERMINAL IS SEATED ON THE SHOULDER A-A'. THE TUBE IS PROPERLY SEATED ON THE SHOULDER WHEN A 0.010"-THICKNESS GAUGE 1/8" WIDE WILL NOT ENTER MORE THAN 1/16" BETWEEN THE SHOULDER SURFACE AND THE GRID-No.2 TER-THE GAUGE IS PROVIDED WITH SLOTS TO PERMIT MAKING MINAL. MEASUREMENT OF SEATING OF GRID-No.2 TERMINAL ON SHOULDER A-A!.

NOTE 2: THE DIAMETER OF EACH TERMINAL IS HELD TO INDI-CATED VALUES ONLY OVER THE INDICATED MINIMUM LENGTH OF ITS CONTACT SURFACE.

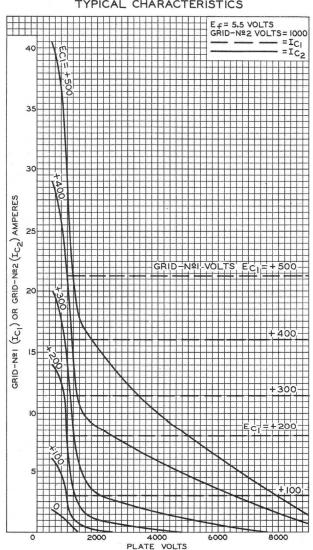
NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.


GAUGE SKETCH G


12/4

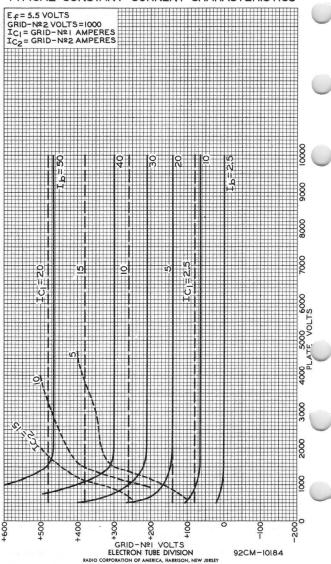
TYPICAL COOLING REQUIREMENTS

TYPICAL PLATE CHARACTERISTICS



ELECTRON TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY

92CM-10186



TYPICAL CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Beam Power Tube

Ruggedized Cermolox Forced-Air Cooled Integral Radiator 80 Watts CW Power Output at 400 MHz 40 Watts CW Power Output at 1215 MHz For Applications in Which Dependable Performance Under Severe Shock and Vibration is Essential ELECTRICAL Heater for Matrix-Type Oxide-Coated Unipotential Cathode:9 Voltage (ac or dc)...... $6.3 \pm 10\%$ Current at 6.3 volts...... 3.2 A 1 Minimum heating time minute Mu-Factor, Grid No.2 Direct Interelectrode Capacitances a: Grid No.1 to plate 0.065 max. pF Grid No.1 to cathode & heater 14 pF Plate to cathode & heater...... 0.019 pF Grid No.1 to grid No.2 19 pF Grid No.2 to plate 4.5 pF Grid No.2 to cathode & heater 1.30 pF MECHANICAL Terminal Connections See Dimensional Outline For operation up to 400 MHz Socket, including Grid-No.2 Bypass Capacitor Erie b 2948-000, E.F. Johnson c DN124-152-1, Jettrond 89-001, or equivalent Grid-No.2 Bypass Erie^b 2926-000. Capacitor 2929-001, or equivalent For operation at high frequencies

See Accompanying Preferred Mounting Arrangement

.... Integral part of tube

THERMAL

Terminal Temperature (Plate,	
grid No.2, grid No.1, cathode,	
and heater)	250 max. °C
Plate-Core Temperature	250 max. °C
Air Flowth	

Through radiator — Adequate air flow to limit the radiator core temperature to 250° C should be delivered by a blower across the radiator before and during the application of plate, grid-No.2, and grid-No.1 voltages. Typical values of air flow directed across the radiator versus plate dissipation are shown in two graphs under Typical Cooling Requirements.

To Plate, Grid-No.2, Grid-No.1, Cathode, and Heater Terminals — A sufficient quantity of air should flow across each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

 $\label{eq:During Standby Operation} During \ \text{Standby Operation} - \text{Cooling air is not normally required} \ \text{when only heater voltage is applied to the tube}.$

Plate power, grid-No.2 power, heater power, and air flow may be removed simultaneously.

At sea level cooling requirements with air flow directed across the radiator with cowling as indicated may be met by use of blowers and associated motors manufactured by Rotron Mfg. Co., Inc., Woodstock, N.Y., or equivalent.

AF POWER AMPLIFIER & MODULATOR - Class AB 1

${f Maximum\ CCS\ Ratings},\ Absolute ext{-}Maximum\ Values:$	
DC Plate Voltage 1000 max.	volts
DC Grid-No.2 Voltage 300 max.	volts
MaxSignal DC Plate Current 180 max.	mA
MaxSignal Plate Input 180 max.	watts
MaxSignal Grid-No.2 Input 4.5 max.	watts
Plate Dissipation	watts

Typical CCS Operation:				
Values are for 2 tubes				
DC Plate Voltage	650	850	volts	
DC Grid-No.2 Voltage	300	300	volts	
DC Grid-No.1 Voltage:				
From fixed-bias source	-15	-15	volts	
Peak AF Grid-No.1-to-Grid-No.1 Voltage .	30	30	volts	
DC Grid-No.2 Voltage	300 -15	-15	volts	

	Zero-Signal DC Plate Current	80	80	mA	
	MaxSignal DC Plate Current	200	200	mA	
	Zero-Signal DC Grid-No.2 Current	0	200	mA	
7	MaxSignal DC Grid-No.2 Current	20	20	mA	
	Effective Load Resistance	20	20	11124	
	(Plate to plate)	4330	7000	ohms	
	MaxSignal Driving Power (Approx.)	0	000	watt	
	MaxSignal Power Output (Approx.)	50	80	watts	
h .	MaxSignal I owel Output (Approx.)	50	00	wates	
	Maximum Circuit Values:				
	Grid-No.1-Circuit Resistance under Any Co	ondition	:		
	With fixed bias	30,000	max.	ohms	
	With cathode bias	Not re	comm	ended	
	Willi Cathode Dias	. 110010	COIIIII	chaca	
)				i	
	AF POWER AMPLIFIER & MODULATO			2	
	${f Maximum\ CCS\ Ratings}, Absolute-Maximum$	Values:			
	DC Plate Voltage	1000	max.	volts	
			max.		
	DC Grid-No.2 Voltage		max.	mA	
	MaxSignal DC Grid-No.1 Current		max.	mA	
	MaxSignal Plate Input			watts	
	•				
	MaxSignal Grid-No.2 Input			watts	
	Plate Dissipation	. 115	max.	watts	
	Typical CCS Operation:				
	Values are for 2 tubes				
	DC Plate Voltage	650	850	volts	
h .	DC Grid-No.2 Voltage	300	300	volts	
7	DC Grid-No.1 Voltage:				
	From fixed-bias source	-15	-15	volts	
	Peak AF Grid-No.1-to-Grid-No.1 Voltage .	46	46	volts	
	Zero-Signal DC Plate Current	80	80	mA	
	MaxSignal DC Plate Current		355	mA	
6	Zero-Signal DC Grid-No.2 Current MaxSignal DC Grid-No.2 Current	$\frac{0}{25}$	0 25	mA mA	
	MaxSignal DC Grid-No.1 Current	15	25 15	mA	
	Effective Load Resistance	19	13	11124	
	(Plate to plate)	2450	3960	ohms	
	MaxSignal Driving Power (Approx.)	0.3	0.3	watt	
	MaxSignal Power Output (Approx.)	85	140	watts	
1	maxDigital I Owel Output (ApplOx.)	00	140	., 4000	
7					

PLATE-MODULATED RF POWER AMPLIFIER — Class C Telephony i

Carrier conditions per tube for use with a max. modulation factor of 1.0

Maximum	CCS	Ratings,	$Absolute\hbox{-}Maximum$	Values
---------	-----	----------	---------------------------	--------

									Up to 1215 MHz:
DC Plate Voltage									800 max. volts
DC Grid-No.2 Voltage									300 max. volts
DC Grid-No.1 Voltage									
DC Plate Current									150 max. mA
DC Grid-No.1 Current.									30 max. mA
Plate Input				٠		٠			120 max. watts
Grid-No.2 Input									3 max. watts
Plate Dissipation			ž		٠				75 max. watts

Typical CCS Operation:

		At 400 MHz:	
DC Plate Voltage		400 700 vol	ts
DC Grid-No.2 Voltage		200 250 vol	ts
DC Grid-No.1 Voltage		−20 −50 vol	ts
DC Plate Current		100 130 m	\mathbf{A}
DC Grid-No.2 Current		5 10 m	$_{1}A$
DC Grid-No.1 Current		5 10 m	\mathbf{A}
Driver Power Output (Approx.)		2 3 wat	ts
Useful Power Output (Approx.)		16 45 wat	ts

Maximum Circuit Values:

maximom encon valous			
Grid-No.1-Circuit Resista	ance		
under Any Condition .		30,000 max.	ohms

RF POWER AMPLIFIER & OSCILLATOR -

Class C Telegraphy

RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCS Ratings, Absolute-Maximum Values:

								CP to 1210 miles
DC Plate Voltage	٠							1000 max. volts
DC Grid-No.2 Voltage								300 max. volts
DC Grid-No.1 Voltage								-100 max. volts
DC Plate Current								180 max. mA
DC Grid-No.1 Current.								30° max. mA
Plate Input								180 max. watts
Grid-No.2 Input								4.5 max. watts
Plate Dissipation								115 max. watts

NEW YORK DELECTION				
	Typical CCS Operation:			
	At 40	0 MHz	At 121	5 MHz
	DC Plate Voltage 400	900	900	volts
	DC Grid-No.2 Voltage 200	300	300	volts
	DC Grid-No.1 Voltage35	- 30	-22	volts
	DC Plate Current 150	170	170	mA
	DC Grid-No.2 Current 5	1	1	mA
	DC Grid-No.1 Current	10	4	mA
	Driver Power Output (Approx.) 3	3	5	watts
	Useful Power Output (Approx.) 23	80	40	watts
	Maximum Circuit Values:			
	Grid-No.1-Circuit Resistance			
	under Any Condition	. 30,0	00 max	. ohms
	LINEAR RF POWER AMPLI Single-Sideband Suppressed-Carr	FIER,	vice	
	Peak envelope conditions for a s			
	a minimum peak-to-average power			
	Maximum CCS Ratings, Absolute-Maximum	Value	s:	
		Upt	o 1215	MHz
	DC Plate Voltage	1000	max.	volts
	DC Grid-No.2 Voltage	300	max.	volts
	DC Grid-No.1 Voltage	-100	max.	volts
	DC Plate Current at Peak of Envelope	250	c max.	mA
	DC Grid-No.1 Current	30	max.	mA
	Plate Input	180	max.	watts
	Grid-No.2 Input	4.5	max.	watts
	Plate Dissipation	115	max.	watts
	Typical CCS Operation with "Two-Tone"	Modul	ation:	
		A	t 30 MF	Ιz
	DC Plate Voltage	650	850	volts
	DC Grid-No.2 Voltage	300	300	volts
			-18.5	volts
	Zero-Signal DC Plate Current	40	-16.5 40	mA
	Effective RF Load Resistance	2200	3500	ohms
	DC Plate Current at Peak	2200	3300	Offins
	of Envelope	100	100	mA
	Average DC Plate Current	75	75	mA
	DC Grid-No.2 Current at Peak			
	of Envelope	8.2	4.2	mA
	Average DC Grid-No.2 Current	3.6	1.7	mA
	Peak-Envelope Driver Power Output			
	(Approx.)	0.5	0.5	watt

Output-Circuit Efficiency (Approx.)	90	90	%
Distortion Products Level:			
Third Order	35	30	dB
Fifth Order	40	36	dB
Useful Power Output (Approx.):			
Average	12.5	20	watts
Peak envelope	25	40	watts
Maximum Circuit Values:			
Grid-No.1-Circuit Resistance			
Under Any Condition:			
With fixed bias	25000	max.	ohms
With fixed bias (In Class AB1			
operation)	100000	max.	ohms
With cathode bias	Not	recomn	nended
Grid-No.2 Circuit Impedance k	100	00 max	. ohms

a Measured with special shield adapter.

The following footnotes apply to the RCA $Transmitting\ Tube\ Operating\ Considerations$ given at front of this section.

- ${\bf 9}\ {\rm See}\ Electrical\ Considerations} {\bf \hbox{--}} {\rm Filament}\ {\rm or}\ {\rm Heater}.$
- h See Cooling Considerations-Forced Air Cooling.
- i See Classes of Service.
- k See Electrical Considerations-Grid No.2 Voltage Supply.

b Erie Technological Products, Inc., 2206 West 15th Street, Erie, Pennsylvania

c E.F. Johnson Co., 299 10th Ave., S.W., Waseca, Minn.

d Jettron Products, Inc., 56 Rt. 10, Hanover, N.J.

The maximum dc plate current at peak of envelope is 250 mA dc for a signal having a minimum peak-to-average power ratio of 2. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 250 mA. The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in Single-Tone operation, is 180 mA.

f In applications where the frequency is less than 80 MHz and the bias is less than -50 volts, the maximum value is 40 mA.

CHARACTERISTICS RANGE VALUES

	Note	Min.	Max.	
1. Heater Current	1	2.90	3.55	A
2. Direct Interelectrode Capacitan	ces:			
Grid No.1 to plate	2	_	0.065	pF
Grid No.1 to cathode &				
heater	2	11.8	15.2	pF
Plate to cathode &				
heater	2	_	0.019	pF
Grid No.1 to grid No.2	2	17.3	21.9	pF
Grid No.2 to plate	2	4	5.1	pF
Grid No.2 to cathode				
& heater	2	_	1.30	pF
3. Grid-No.1 Voltage	1,3	6	-18	volts
4. Reverse Grid-No.1 Current	1,3	_	-20	μA
5. Grid-No.2 Current	1,3	-8	+2.0	mA
6. Peak Emission	1,4	-	300	peak volts
7. Interelectrode Leakage				
Resistance	5	1.0	_	megohm

Note 1: With 6.3 volts ac or dc on heater.

8. Useful Power Output

Note 2: Measured with special shield adapter.

Note 3: With dc plate voltage of 1000 volts, dc grid-No.2 voltage of 300 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 115 mA.

85

Note 4: With grid No.1, grid No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse duration is 2 microseconds, pulse repetition frequency is 60 pps, and duty factor is 0.00012. The voltage-pulse amplitude is adjusted until a peak cathode current of 10 amperes is obtained. After 1 minute at this value, the voltage-pulse amplitude will not exceed the value specified.

Note 5: With tube at 20° to 30°C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two adjacent electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1.0 megohm, will exceed the value specified.

watts

Note 6: In a single-tube, grid-driven coaxial-tuned amplifier circuit at 400 MHz and for conditions with 5.7 volts ac or dc on heater, dc plate voltage of 1000 volts, dc grid-No.2 voltage of 300 volts, grid-No.1 voltage adjustable for dc plate current of 180 mA maximum, dc grid-No.1 current of 30 mA maximum and driver power output of 3 watts maximum.

SPECIAL TESTS AND PERFORMANCE DATA

The environmental conditions shown for the tests below are those applied directly to the tube. Extreme care must be used in the design of the mountings to minimize mounting resonances.

50g, 11-Millisecond Shock Test:

This test is performed on samples of tubes to determine the ability of the tube to withstand the specified long-duration impact acceleration. Tubes are held rigid in six different positions in a medium impact shock machine and are subjected to three blows in each position.

At the end of this test, tubes are required to meet the limits for items 3 and 4 under *Characteristics Range* Values.

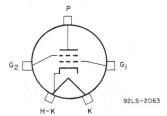
500g, Nominal 3/4-Millisecond Shock Test:

This test is performed on samples of tubes to determine the ability of the tube to withstand the specified impact acceleration. Tubes are held rigid in four different positions in a high-impact shock machine and are subjected to five blows in each positions.

At the end of this test, tubes are required to meet the limits for items 3 and 4 under *Characteristics Range* Values

5-2000 Hz Variable Frequency Vibration Test:

This test is performed on samples of tubes to determine the ability of the tube to withstand variable frequency vibration. With heater voltage of 6.3 volts ac or dc, dc plate supply voltage of 300 volts, dc grid-No.2 voltage of 250 volts, grid-No.1 voltage adjusted to give dc plate current of 10 mA, and plate load resistor of 2000

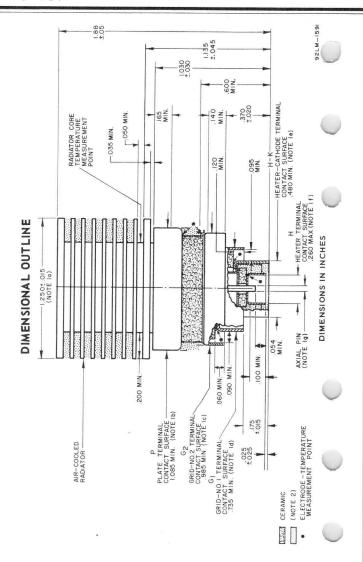

ohms. This tube is vibrated along each of three mutually perpendicular axes over an 8-minute sweep consisting of:

- **a.** 5-10 Hz with fixed double amplitude of 0.080 inch $\pm 10\%$.
- **b.** 10-15 Hz at fixed acceleration of 0.41 g \pm 10%.
- c. 15-75 Hz with fixed double amplitude of 0.036 inch \pm 10%.
- d. 75-2000 Hz at fixed acceleration of 0 g \pm 10%.

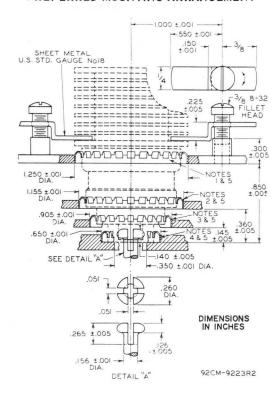
During the above vibration tests, tubes will show an rms output voltage in excess of 15 volts.across the plate load resistor in the 5-2000 hertz range.

At the end of this test, tubes are required to meet the limits for items 3 and 4 under *Characteristics Range* Values.

TERMINAL DIAGRAM



NOTES FOR DIMENSIONAL OUTLINE


Note 1: The following diametrical space requirements accommodate the concentricity of the cylindrical surfaces of the radiator fins, axial pin, and each electrode terminal:

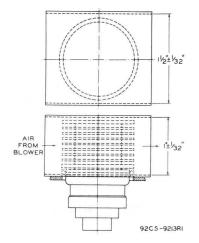
- a. Radiator Band 1.316"
- b. Plate Terminal 1.120"
- c. Grid-No.2 Terminal 1.020"
- d. Grid-No.1 Terminal 0.765"
- e. Heater-Cathode Terminal 0.520"
- f. Heater Terminal 0.240"
- g. Axial Pin = 0.072"

Note 2: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

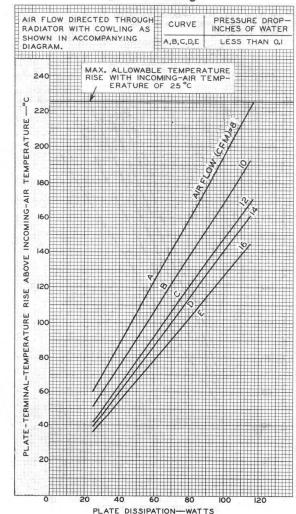
PREFERRED MOUNTING ARRANGEMENT

Note 1: Contact ring No.97-252 or finger stock No.97-380.

Note 2: Contact ring No.97-253 or finger stock No.97-380.

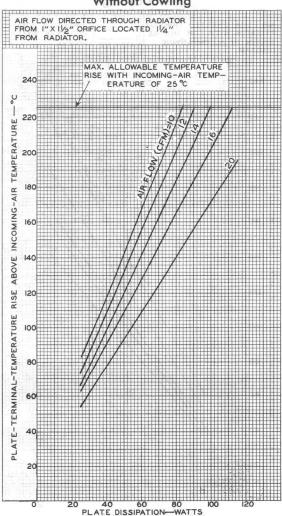

Note 3: Contact ring No.97-254 or finger stock No.97-380.

Note 4: Contact ring No.97-255 or finger stock No.97-380.

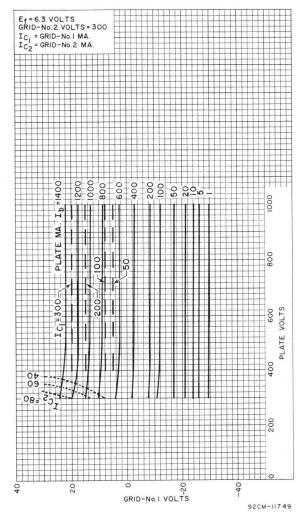

Note 5: The specified contact ring of preformed finger stock and finger stock No.97-380 provide adequate electrical contact, but the finger stock No.97-380 is less susceptible to breakage than the specified contact ring. Both types are made by Instruments Specialties Co., Little Falls, N.J.

RECOMMENDED COWLING

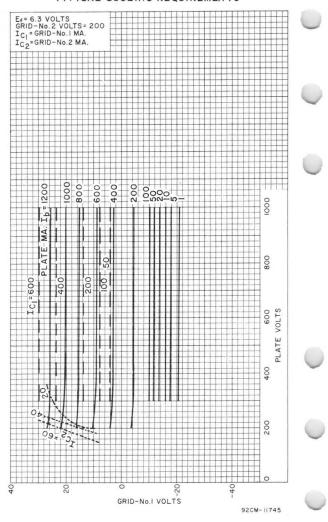
For Directing Air Flow Through Radiator



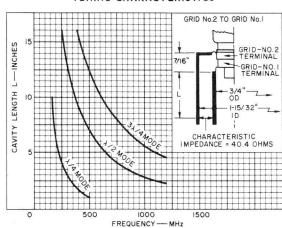
TYPICAL COOLING REQUIREMENTS With Cowling

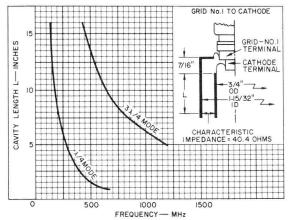

92CM-9219RI

TYPICAL COOLING REQUIREMENTS Without Cowling

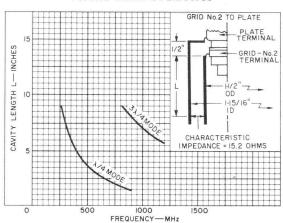


92CM-9220RI


TYPICAL COOLING REQUIREMENTS


TYPICAL COOLING REQUIREMENTS

TUNING CHARACTERISTICS



92CS-14833

92CS-14834

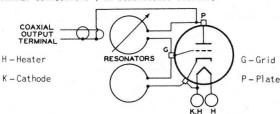
TUNING CHARACTERISTICS

92CS-14835

Tunable Oscillator Triode

PENCIL TYPE WITH INTEGRAL RESONATORS

For Radiosonde Service at Frequencies between 1660 and 1700 Mc


GENERAL DATA

C 1	ec		001	
	ec	r 1	Ca	

	Heater, for Unipotential Cathode:	
	Voltage range (AC or DC) 5.2 to 6.6 [▲]	volts
9	Current at 6 volts 0.16	amp
	Frequency (Approx.)	Mc
	Tuning Range 1660 to 1700	Mc
	RF Coaxial Output Terminal:	
	Characteristic impedance (Approx.) . 50	ohms
	Tuning Screws (2):	
	Maximum Torque (Absolute)	
ħ.	at tuning-range stops 6.5	oz-in.

Mechanical:

Operating Position								×	
									.See Dimensional Outline
									Integral part of tube
									0.8 oz
Terminal Connection	ns (Se	e	Di	me	15	101	na	l Outline):

UHF OSCILLATOR - Class C

Maximum and Minimum Ratings, Absolute-Maximum Values:

At frequencies between 1660 and 1700 Mc and altitudes up to 100,000 feet

	**						 	, ,	 ,
	DC PLATE-TO-GR	ID VO	LTA	GE					130 max. volts
7.	DC PLATE CURRE								34 max. ma
	DC GRID CURREN	T							8 max. ma
	PLATE INPUT								4 max. watts
	PLATE DISSIPAT								3.6 max. watts
	AMBIENT-TEMPER	ATURE	RAI	NGE					-55 to +75 °C

Typical Operation as Cathode-Driven Oscillator:

At frequency of	1000	1080	1700	MC
Heater Voltage	6	6	6	volts
DC Plate-to-Grid Voltage		124	123	volts

At frequency of			1660	1680	1700	Mc	
DC Cathode-to-Grid Voltage .	•		7.5	6.75	6	volts	6
From grid resistor of DC Cathode Current							-
DC Grid Current Useful Power Output (Approx.			5		6	ma mw	
	, -						

Circuit Values:

Grid-Circuit	Resistance.					{2400 1300	max. min.	ohms ohms	

- This range of heater voltage is for radiosonde applications in which the heater is supplied from batteries and in which the equipment design requirements of minimum size, light weight, and high efficiency are the primary considerations even though the average life expectancy of the 7533 in such service is only a few hours.
- As supplied, tubes are adjusted to 1680 ± 4 Mc.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

			Note	Min.	Max.	
Heater Current			1	0.135	0.157	amp
Grid Resistor			2	1300	2400	ohms
Useful Power Output (1).			3	250	-	mw
Plate Current (1)			4	-	34	ma
Useful Power Output (2).			5	250	-	mw
Plate Current (2)			6	_	34	ma
Useful Power Output (3).			7	270	-	mw

- Note 1: With 5.2 volts on heater.
- Note 2: With heater voltage of 6.6 volts, dc plate supply voltage of 117 volts, plate load resistor of 50 ohms, frequency aljusted to 1660 +3 -1 MC., output VSWR of 1.1 maximum, and grid resistor adjusted to give plate current as close as possible to, but not exceeding 33 ma. Record Grid-Resistor value.
- Note 3: With frequency and grid-resistor value of Note 2, decrease heater voltage and plate supply voltage to 5.2 volts and 95 volts, respectively, and measure Useful Power Output.
- Note 4: With heater voltage of 6.6 volts, plate supply voltage of 117 volts, plate load resistor of 50 ohms, using same value of grid resistor as determined in Note 2, frequency adjusted to 1700 +1 -3 Mc., and output VSWR of 1.1 maximum.
- Note 5: Same as Note 4, except heater voltage and plate supply voltage are 5.2 volts and 95 volts, respectively.
- Note 6: Same as Note 4, except frequency is adjusted to 1680 \pm 4 Mc with VSWR of 1.1 maximum.
- Note 7: Same as Note 6, except heater voltage and plate supply voltage values are 5.2 volts and 95 volts, respectively.

SPECIAL TESTS & PERFORMANCE DATA

Low-Pressure Voltage Breakdown Test:

This test (similar to MIL-E-ID, paragraph 4.9.12.1) is performed on a sample lot of tubes from each production run. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 100,000 feet. Arcing will not occur when an rms voltage of 200 volts is applied between the plate terminal and the grid terminal and heater-cathode terminal tied together.

High-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.2) is performed on a sample lot of tubes from each production run. The tube is vibrated in two planes, parallel and perpendicular respectively to its axis, with no voltages applied to the tube. Vibration frequency is 50-to-60 cps and acceleration is 10 q. At the end of this test, tubes will not show temporary or permanent shorts or open circuits.

Shorts and Continuity Test:

This test (similar to MIL-E-ID, paragraph 4.7.5) is performed on all tubes from each production run. In this test, a tube is considered inoperative if it shows a permanent or temporary short or open circuit.

Temperature-Frequency Performance:

This test is performed on a sample lot of tubes from each production run to determine the ability of this tube type to maintain the oscillator frequency without significant change when ambient temperature and operating voltages are reduced gradually during a given time interval. Tube under test is operated with a heater voltage of 6.6 volts, dc plate supply voltage of 117 volts, plate load resistor of 50 ohms, oscillator frequency of 1680 \pm 4 Mc, output VSWR of I.I maximum, dc plate current of not more than 34 ma. obtained by adjusting the value of the grid resistor between 1300 and 2400 ohms, and at an ambient temperature of approximately 22° C for a period of 5 minutes. Record Oscillator Frequency. The ambient temperature is then gradually reduced to -40° C during a 30-minute operating period. Both the heater voltage and plate supply voltage are reduced simultaneously so that during the final 15minute interval of this test period the heater voltage is 5.2 volts and the plate supply, voltage is 95 volts. Any change in frequency will not be more than +4 Mc or -1 Mc from the recorded initial test value. The rate of frequency change during this test will not exceed 2 Mc in any 15-second interval.

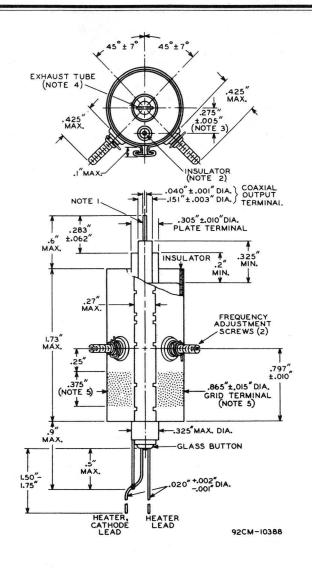
5-Hour Radiosonde Life Performance:

This test is performed on a sample lot of tubes from each production run under conditions of maximum-rated plate dissipation to insure excellent performance in radiosonde applications. Each 'tube tested is operated for 5 hours under the following conditions: heater voltage of 6.6 volts, dc plate supply voltage of 117 volts, plate load resistor of 50 ohms, dc plate current of 34 ma., obtained by adjusting the grid-resistor value between 1300 and 2400 ohms, oscillator frequency of 1680 \pm 4 Mc and output VSWR of I.I maximum. At the end of 5 hours, the tubes will not show permanent shorts or open circuits, and will meet the following limits:

Useful Power Output (3) 210 min. mw For conditions shown under Characteristics Range Values,

Notes 6,7.

Change in Useful Power
Output (3) From Initial Value 30 max. %
For conditions shown under Characteristics Range Values,
Notes 6.7.


OPERATING CONSIDERATIONS

The flexible heater leads of the 7533 may be soldered to the circuit elements, but not closer than 3/4" from the surface of the glass button. Otherwise the heat of the soldering operation may crack the glass button and damage the tube.

Support for the 7533 should be provided by a suitable clamp around the metal shell of the tube, preferably in the indicated zone shown on the Dimensional Outline. Care must be taken to avoid clamping so tightly as to cause distortion of the resonator cavity with resultant change in operating frequency.

Connections to the grid terminal and to the plate terminal should be made by means of spring contacts only. Under no circumstances should connections be soldered to these terminals.

Accurate frequency adjustment in the 1660-to-1700-Mc operating range together with minimum frequency drift, may be obtained by using both tuning screws. Alternately turn each tuning screw not more than one-half turn at a time, in a clockwise direction to lower the frequency. Repeat this procedure until the desired lower frequency adjustment is reached. To reach a higher frequency, follow the same procedure except that the tuning screws are turned in a counterclockwise direction.

7533

NOTE : THE AXES OF THE INNER AND OUTER CONDUCTORS OF THE COAXIAL OUTPUT TERMINAL COINCIDE WITHIN 0.010".

NOTE 2: THE END OF THE INSULATOR IN THE COAXIAL OUTPUT TERMINAL ALIGNS WITH THE EDGE OF THE OUTER CONDUCTOR (0.151" ± 0.003" DIAMETER) WITHIN 0.005".

NOTE 3: DISTANCE BETWEEN CENTER LINE OF PLATE TERMINAL AND CENTER LINE OF INNER CONDUCTOR (0.040" ± 0.001" DIAMETER).

NOTE 4: ORIENTATION OF PINCH-OFF IS NOT CONTROLLED.

NOTE 5: STIPPLED REGION (WHICH EXTENDS AROUND TUBE)
INDICATES RECOMMENDED CLAMPING AND CONTACT AREA.

High-Mu Triode

CERAMIC-METAL PENCIL TYPE

FAST WARM-UP TIME STURDY COAXIAL-ELECTRODE STRUCTURE

For Use as a Low-Noise-Amplifier Tube in Receiver Applications up to 1500 Mc

under Severe Shock and Vibration	
GENERAL DATA	
Electrical:	4
Heater, for Unipotential Cathode: Voltage (AC or DC)	
(ohms) = 0, load resistor (ohms) =	
10, and heater volts = 6.3 10 sec Amplification Factor 80 Transconductance for dc plate ma. = 13, dc plate volts = 125, and cathode	1
resistor (ohms) = 50	ò
Direct Interelectrode Capacitances: Grid to plate	
Mechanical:	
Operating Position	2
Heater—terminals connector Amerac ^b No.1018—88 ^c , Grayhilld No.22-5, or equivalent	
Socket for operation up to about	
550 Mc(Including heater- terminals connector) Jettron ^e No.CD7010, or equivalent	

← Indicates a change.

.J-V-M^f No.D-7980 Series, Resdel⁹ No.10 Series, or equivalent

Cavities (Including heaterterminals connector). . .

Terminal Connections (See Dimensional Outline):

H - Heater K - Cathode

G-Grid P-Plate

RADIO-FREQUENCY AMPLIFIER - Class A

Maximum CCSh Ratings, Absolute-Maximum Values:

For altitudes up to 100,000 feet and frequencies up to 1500 Mc

								250	max.	volts
								-50	max.	volts
								25	max.	ma
								2.5	max.	watts
TA	GE	:								
				•				50	max.	volts
								50	max.	
		•	÷					225	max.	oC
	TAI	TAGE	TAGE:	TAGE:	TAGE:	TAGE:	TAGE:	TAGE:	-50 25 2.5 TAGE: 50	-50 max. 25 max. 2.5 max. 7AGE: 50 max.

Typical CCSh Operation in Cathode-Drive Circuit:

At 550 Mc At 800 Mc At 1100 Mc

DC Plate-to-Grid Voltage.	125	125	150	volts
Cathode Resistor	50	50	50	ohms
Input-Signal-Level Range.	-70 to -20	-70 to -20	-70 to -20	dbm
DC Plate Current		13	13.5	ma
Power Gain	16.5	18	16	db
Bandwidth	5	5	10	Mc
Noise Figure	6.5	8.5	12.5	db

Maximum Circuit Values:

Grid-Circuit Resistance:

Grid	circuit Resistance.						
For	fixed-bias operation				. Not	recor	nmended
For	cathode-bias operation.				0.25	max.	meaohm

- a Without external shield.
- Amerac, Inc., Dunham Road, Beverly, Massachusetts.
- c For use with cavities.
- d Grayhill, Inc., 561 Hillgrove Avenue, LaGrange, Illinois.
- e Jettron Products, Inc., 56 Route 10, Hanover, N.J.
- f J-V-M Microwave Co., 9300 W. 47th St., Brookfield, Illinois. Indicated No. applies to a series of cavities covering range from 220 up to 1000 Mc and above.
- 9 Resdel Engineering Corp., 330 South Fair Oaks Avenue, Pasadena, California. This series of cavities covers the range from 215 to 2325 Mc.
- h Continuous Commercial Service.

-Indicates a change.

High-Mu Triode

CERAMIC-METAL PENCIL TYPE FAST WARM-UP TIME STURDY COAXIAL-ELECTRODE STRUCTURE

For Use at Frequencies up to 5000 Mc in Cathode-Drive Circuits under Severe Shock and Vibration

	GENERAL DATA		
	Electrical:		•
	Heater, for Unipotential Cathode: Voltage (AC or DC) Current at heater volts = 6.3 Cathode Warm-Up Time (Average) to reach 80% of operating plate current for dc plate supply volts = 80, grid volts = 0, cathode resistor (ohms)	6.3 ± 10% volts 0.225 amp	
<i>y</i>	= 0, load resistor (ohms) = 10, heater volts = 6.3	10 sec 70	
	resistor (ohms) = 50	16000 μ mhos	
	Grid to plate	2.4	
	Mechanical:		
	Operating Position See Weight (Approx.)	Dimensional Outline 0.3 oz	
	Cavities (Including heater- terminals connector) Amerac No J-V-	Jettron ^e No.CD7010, or equivalent	•

→ Indicates a change.

or equivalent

Terminal Connections (See Dimensional Outline):

H - Heater K - Cathode

G-Grid P-Plate

Retween

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy^h

RF POWER AMPLIFIER — Class C FM Telephony

Maximum CCS^j Ratings, Absolute-Maximum Values:

At frequencies up to 5000 Mc and altitudes:

				Up to 80,000 feet	80,000 and 100,000 feet	
	DC PLATE VOLTAGE			250 max.	200 max.	volts
	DC GRID VOLTAGE			-50 max.	-50 max.	volts
	DC CATHODE CURRENT			25 max.	25 max.	ma
	DC GRID CURRENT		٠	6 max.	6 max.	ma
	PLATE DISSIPATION			2.5 max.	2.5 max.	watts
PEAK HEATER—CATHODE VOLTAGE: Heater negative with						
	respect to cathode Heater positive with		٠	50 max.	50 max.	volts
	respect to cathode			50 max.		volts
	PLATE-SEAL TEMPERATURE	100	٠	225 max.	225 max.	°C

Typical CCS^j Operation in Cathode-Drive Circuit:

As oscillator

At At At At At At

			500 Mc			3000 Mc			
DC Plate-to-Grid Voltage DC Cathode-to-Grid			205	203	151	125	200	200	volts
Voltage From a grid			5	3	1	0.1	0.26	-	volts
resistor of DC Cathode Current.			21		250 24	500 20	130 23	100 25	ohms ma
DC Grid Current Useful Power Output	×	٠	5	5	4	0.2	2		ma
(Approx.)	v		1.6	1.3	0.5	0.15	0.1	0.03	watts

→Indicates a change.

As amplifier	
	At At
	500 1000
	Mc Mc
DC Plate-to-Grid Voltage	. 204 185 volts
DC_Cathode-to-Grid Voltage	. 4 10 volts
From a grid resistor of	. 800 2000 ohms . 21 24 ma
DC Cathode Current	. 21 24 ma . 5 5 ma
Driver Power Output (Approx.)	. 0.2 0.2 watt
Useful Power Output (Approx.)	. 2.2 1.4 watts
Maximum Circuit Values:	
Grid-Circuit Resistance	. 0.25 max. megohm
di la circuit nesistance	· v.zo max. megomi
FREQUENCY DOUBLER C	lass C
Maximum CCS ^j Ratings, Absolute-Maximum	
At frequencies up to 2000 Mc	
At frequencies up to 2000 me t	Between
Ut to	
80,000 f	the state of the s
DC PLATE VOLTAGE 250 mag	x. 200 max. volts
DC GRID VOLTAGE50 mag	
DC CATHODE CURRENT 22 ma:	
DC GRID CURRENT 6 ma: PLATE DISSIPATION 2.5 ma;	
PEAK HEATER-CATHODE VOLTAGE:	A. 2.5 max. wates
Heater negative with	
respect to cathode 50 mag	x. 50 max. volts
Heater positive with	EO may 1112
respect to cathode 50 ma PLATE—SEAL TEMPERATURE 225 ma	
Typical CCS ^j Operation in Cathode-Driv	
υρ t 550 M	
	207 218 181 volts
DC Cathode-to-Grid Voltage 18	7 18 6 volts
From a grid resistor of 3600 2	
DC Cathode Current 20	18 21 19 ma
DC Grid Current 5 Driver Power Output	3 5 3 ma
(Approx.) 0.8	0.2 0.8 0.2 watt
Useful Power Output	75 00 04
(Approx.) 1.3 0	.75 0.9 0.4 watts
Maximum Circuit Values:	
Grid-Circuit Resistance	. 0.25 max. megohm

FREQUENCY TRIPLER - Class C

Maximum CCS^j Ratings, Absolute-Maximum Values:

At frequencies up to 2000 Mc and altitudes:

Between

	Up to	80,000 and	
	80,000 feet	100,000 feet	
DC PLATE VOLTAGE	250 max. -50 max. 20 max. 6 max. 2.5 max.	200 max. -50 max. 20 max. 6 max. 2.5 max.	volts volts ma ma watts
Heater negative with respect to cathode Heater positive with respect to cathode PLATE-SEAL TEMPERATURE	50 max. 50 max. 225 max.	50 max. 50 max. 225 max.	volts
Typical CCS ^j Operation in Catho	ode-Drive Ci	rcuit.	
	645 Mc	100112	
DC Plate-to-Grid Voltage. DC Cathode-to-Grid Voltage. From a grid resistor of. DC Cathode Current. DC Grid Current. Driver Power Output (Approx.) Useful Power Output (Approx.)	9	202 240 27 15 000 25000 19 13 3 0.6 0.6 0.2 0.7 0.4	volts volts ohms ma ma watt watt
Up to	1000 Mc		
DC Plata to Crid Valtage		205 185	volte

DC Plate-to-Grid Voltage					205	185	volts
DC Cathode-to-Grid Voltage.					30	10	volts
From a grid resistor of .					10000	14000	ohms
DC Cathode Current					19	12	ma
DC Grid Current					3	0.7	ma
Driver Power Output (Approx.)		100	Del:	0.6	0.2	watt
Useful Power Output (Approx.)	٠	٠		0.4	0.15	watt

Maximum Circuit Values:

Grid-Circuit Resistance 0.25 max. megohm

-Indicates a change.

Without external shield.

Amerac, Inc., Dunham Road, Beverly, Massachusetts.

For use with cavities.

d Grayhill, Inc., 561 Hillgrove Avenue, LaGrange, Illinois.

Jettron Products, Inc., 56 Route 10, Hanover, N.J.

J-V-M Microwave Co., 9300 W. 47th St., Brookfield, Illinois. Indicated No. applies to a series of cavities covering range from 220 to 3500 Mc.

⁹ Resdel Engineering Corp., 330 South Fair Oaks Avenue, Pasadena, California. This series of cavities covers the range from 215 to 2325 Mc.
Key-down conditions per tube without amplitude modulation. Modulation

h Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio frequency envelope does not exceed 115 per cent of the carrier conditions.

j Continuous Commercial Service.

	CH	ARACTERISTICS	RANGE	VALUES	FOR	EQU I PMEI	NT DESI	GN -
					Note	Min.	Max.	
	Heater Co Direct In Capaci	nterelectrode			1	0.205	0.245	amp
	Grid to	o plate o cathode			-	1.5 3.6	2.7	μμ f μμ f
		to cathode			-	2.0	0.04	μμ
	Heater-Ca	athode Leakage negative with		ent:			0.04	μμι
	resp	ect to cathode positive with	e	100	1,2	-	30	μ a
	Leakage I	ect to cathode Resistance:			1,3	_	30	μa
)	cath From p	rid to plate a ode connected late to grid a	togeth and		1,4	100	-	megohms
		ode connected		ner.	1,5	100	-	megohms
		Grid Current.	* * *		1,6	-	0.3	μa
		Voltage ation Factor.			7 1,8	- 55	4 85	volts
		ductance	\cdot \cdot	* *	1,8	12500	19500	µmhos
		rrent (1)			1,8	9	19	ma
		rrent (2)		* *	1,9	4 7	50	μ a
	Power Ou				1,10	1.7	0 2	watts
	-	n Power Outpu			1,11	_	0.2	Watt
	Note 1:	With 6.3 volts					******	
	Note 2:	With 60 volts of with respect to	cathod	e.			5	
	Note 3:	with 60 volts of with respect to	cathod	e.				
	Note 4:	With grid 100 v which are conne	cted to	gether.				
	Note 5:	With plate 300 which are conne	cted to	gether.				
1	Note 6:	With dc plate volts, grid res	voltage istor o	e of 20 f 0.5 me	0 volt egohm.	s, dc gr	id volta	age of -2
	Note 7:	With dc voltage adjusted to pro volts on heater	duce a					
	Note 8:	With dc plate : of 50 ohms, and	supply cathod	voltage e bypass	of 12 s capac	5 volts,	cathode 1000 µf.	resistor
	Note 9:	With dc plate volts.	1,50					
)	Note 10:	In a single-tub a frequency of voltage of 250 grid voltage ad	e, catho approx. volts, justed	ode-driv 550 ± 10 input-s to produ	ve ampl Mc, an signal uce a d	lifler cir id with do power of ic plate o	cuit ope plate t 0.2 wat current o	erating at to cathode t, and dc of 20 ma.
	Note 11:	Reduce heater value from tha exceed indicate	voltage t obtai	to 5.7	volts	Change	in Pow	er-Output

SPECIAL TESTS & PERFORMANCE DATA

Low-Pressure Voltage-Breakdown Test:

This test (similar to MIL-E-ID, paragraph 4.9.12.1) is performed on a sample lot of tubes every 90 days. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 100.000 feet. Breakdown will not occur when a 60-cycle rms voltage of 300 volts is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.19.1) is performed on a sample lot of tubes from each production run under the following conditions: Heater voltage of 6.3 volts, dc plate supply voltage of 125 volts, cathode resistor of 50 ohms, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 40 cycles per second at an acceleration of 10 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.

At the end of this test, the tubes will not show permanent shorts or open circuits and will meet the following test limit:

Heater Current. 300 max. ma
For conditions shown under Characteristics Range Values,
Note 1.

Variable-Frequency Vibration Performance:

This test (similar to MIL-E-ID, paragraph 4.9.20.3) is performed on a sample lot of tubes from each production run. Tube operating conditions are the same as for Low-Frequency Vibration Performance. The tubes are vibrated perpendicular to the major axis through a frequency range from 5 to 500 cps and back. From 5 to 50 cps, the tubes are vibrated at a constant displacement of 0.0400 \pm 0.0025 inch. From 50 to 500 cps, the tubes are vibrated at a constant acceleration of 10 \pm 2 g. Total time to complete a sweep cycle is 10 \pm 5 minutes. During the test, the tubes will not show an rms output voltage across the plate load resistor in excess of 150 millivolts.

Each tube is vibrated for 60 seconds at the frequency which gives maximum vibrational noise output. If, at the end of 60 seconds, the vibrational noise output is still increasing, the test is continued until there is no further increase.

The rms output voltage across the plate load resistor as a result of the vibration of the tube will not exceed the specified limit at any time during the test.

At the end of the test, the tubes will not show permanent sharts or open circuits and will meet the following test limit:

Heater Current. 300 max. ma For conditions shown under *Characteristics Range Values*, *Note* 1.

→ Indicates a change.

Shock Test:

This test (similar to MIL-E-ID, paragraph 4.9.20.5) is performed on a sample lot of tubes from each production run. Tubes are held rigid and are subjected in three different positions to an impact acceleration of 500 g, 5 blows in each position.

At the end of this test, tubes will not show permanent shorts or open circuits and will meet the following limits:

Heater-Cathode Leakage Current. . . 60 max. μa For conditions shown under Characteristics Range Values, Notes 1.2.

Low-Frequency Vibration Output. . . . 200 max. mv For conditions shown above under Low-Frequency Vibration Performance.

Change in Transconductance. -20 max. %
From initial value for conditions shown under Characteristics Range Values, Notes 1,8.

Fatigue Vibration Test:

This test (similar to MIL-E-ID, paragraph 4.9.20.6) is performed on a sample lot of tubes from each production run. Tubes are rigidly mounted and subjected to 2.5 g vibrational acceleration in two positions (XI, YI) for 32 hours each. At the end of this test, tubes are required to meet the limits specified for the *Shock Test*.

Shorts and Continuity Test:

This test (similar to MIL-E-ID, paragraph 4.7.3) is performed on all tubes from each production run. Voltage applied between adjacent elements of the tube under test will be between 20 and 70 volts dc or peak ac. Plate and cathode terminals are tied together and connected to the grid terminal through the shorts test equipment. Tubes are tapped with a rubber tapper three times in each of three mutually perpendicular directions. If a short indication is obtained, the tapping cycle is repeated two times for verification. Acceptance criteria is based on the "Resistance vs. Time Duration" curve shown in paragraph 4.7.7 of MIL-E-ID, Amendment 5.

At the end of this test, the tubes will not show permanent shorts or open circuits and will meet the following limit:

Heater Current. 300 max. ma
For conditions shown under Characteristics Range Values,
Note 1.

Ceramic-Seal-Fracture Test:

This test is performed on a sample lot of tubes every 90 days. With cathode- and plate-cylinder-supports spaced $15/16'' \pm 1/64''$, and with the grid flange centered between these supports, the tubes will withstand the gradual application of a force of 30 pounds, perpendicular to the axis of the tubes,

upon the grid flange, without causing fracture of the ceramic insulation.

Seal Strain Test:

This test (similar to MIL-E-ID, paragraph 4.9.6.3) is performed on a sample lot of tubes every 90 days. Tubes are tested by first immersing in water having a temperature of at least 97° C for at least 15 seconds and then immersing immediately in water at not more than 5° C for 5 seconds. After drying for 48 hours at room temperature, the tubes will meet the following test limit:

Heater Current. 300 max. ma
For conditions shown under Characteristics Range Values,
Note 1.

Heater-Cycling Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.7) is performed on a sample lot of tubes from each production run. With 6.3 volts on heater and no voltage on plate or grid, the heater is cycled three minutes on and three minutes off for at least 2000 cycles.

At the end of this test, tubes will not show permanent shorts or open circuits and are required to meet the following limits:

Heater Current. 300 max. ma For conditions shown under Characteristics Range Values, Note 1.

Heater-to-Cathode Leakage Current . . 60 max. μ a For conditions shown under Characteristics Range Values, Notes 1,3.

Grid-to-Cathode Leakage Resistance. . 50 min. megohms For conditions shown under Characteristics Range Values, Notes 1,4.

I-Hour Stability Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.1a) is performed on a sample lot of tubes from each production run to insure that the tubes have been properly stabilized. Tubes are operated under the following conditions:

Heater voltage of 6.3 volts, plate supply voltage of 215 volts, and cathode resistor of 150 ohms.

At the end of I hour, the change in transconductance value for each tube, referred to its initial transconductance reading, will not exceed 15% of the initial value, for conditions shown under Characteristics Range Values, Notes 1,8.

In addition, the tubes will not show permanent shorts or open circuits and will meet the following limit:

Heater Current. 300 max. ma For conditions shown under Characteristics Range Values, Note 1.

100-Hour Survival Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.1b) is performed on a sample lot of tubes from each production run to insure a low percentage of early inoperatives. Life-test conditions are the same as those specified for 1-Hour Stability Life Performance except that all voltages are cycled at the rate of IIO minutes on and IO minutes off.

At the end of 100 hours, the tubes will not show permanent shorts or open circuits and will meet the following limits:

Heater Current. 300 max. ma
For conditions shown under Characteristics Range Values,
Note 1.

Transconductance. 9000 min. μmhos For conditions shown under Characteristics Range Values, Notes 1, 8.

Plate Current (2) 50 max. μa For conditions shown under Characteristics Range Values, Notes 1.0.

500- and 1000-Hour Dynamic Life Performance:

This test (similar to MIL-E-ID, paragraph 4.11.3.2) is performed on a sample lot of tubes from each production run to insure high-quality rf performance. Each tube is lifetested as a class C amplifier in special cavity at 550 ± 10 Mc under the following conditions: Heater voltage of 6.3 volts; plate supply voltage of 250 volts; cathode resistor adjusted to give plate current of 25 ma.; and grid-circuit resistance adjusted to give grid current of 6 ma., heater positive with respect to cathode by 67.5 volts, and plate-seal temperature of 225° C. Heater voltage is cycled at a rate of 100 minutes on and 10 minutes off.

At the end of 500 hours, the tubes will not show permanent shorts or open circuits, and will be criticized for total number of tubes failing to pass the following limits:

Heater Current. 300 max. ma
For conditions shown under Characteristics Range Values,
Note 1.

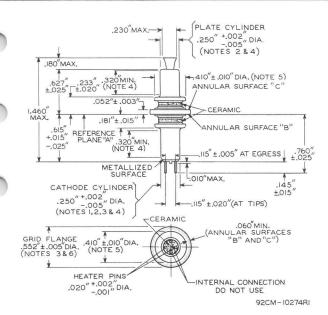
Leakage Resistance:

From grid to plate and

cathode connected together. . . . 60 min. megohms

From plate to grid and

cathode connected together. . . 60 min. megohms For conditions shown under Characteristics Range Values, Notes 1,4, and 1,5.


At the end of 1000 hours, the tubes will not show permanent shorts or open circuits and will be criticized for total number of tubes failing to pass the following limits:

Heater Current. 300 max, ma For conditions shown under Characteristics Range Values, Note 1.

OPERATING CONSIDERATIONS

Connections to the cathode cylinder, grid flange, and plate cylinder should be made by flexible spring contacts. The connectors should make firm, large-surface contact, yet must be sufficiently flexible to insure that no part of the tube is subjected to excessive strain.

The cathode should preferably be connected to one side of the heater. When, in some circuit designs, the heater is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximumrated values shown in the tabulated data.

REFERENCE PLANE "A" IS DEFINED AS THAT PLANE AGAINST WHICH ANNULAR SURFACE "B" OF THE GRID FLANGE ABUTS.

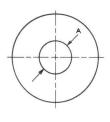
ANNULAR SURFACE "B" IS ON THE SIDE OF THE GRID FLANGE TOWARD THE CATHODE CYLINDER.

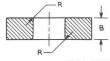
ANNULAR SURFACE "C" IS ON THE SIDE OF THE GRID FLANGE TOWARD THE PLATE CYLINDER.

NOTE 1: WITH ANNULAR SURFACE "B" RESTING ON REFERENCE PLANE "A". THE AXIS OF THE CATHODE CYLINDER WILL BE WITHIN 2° OF A LINE PERPENDICULAR TO REFERENCE PLANE "A".

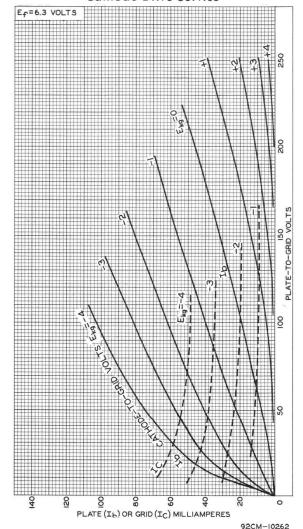
NOTE 2: THE AXES OF THE PLATE CYLINDER AND CATHODE CYLINDER WILL COINCIDE WITHIN 0.010".

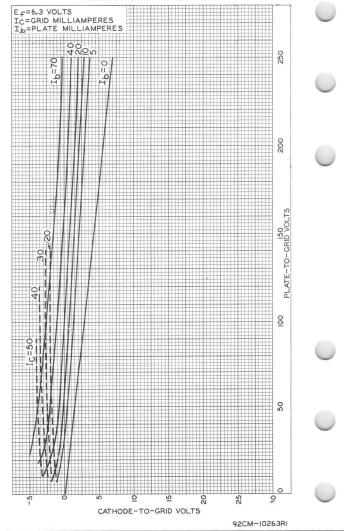
NOTE 3: THE AXES OF THE CATHODE CYLINDER AND GRID FLANGE WILL COINCIDE WITHIN 0.005".


NOTE 4: THE DIAMETER ALONG THE 0.320" MINIMUM LENGTH IS MEASURED WITH "GO" AND "NO-GO" RING GAUGES ${\sf G_1}$ -1 AND ${\sf G_1}$ -2, RESPECTIVELY.

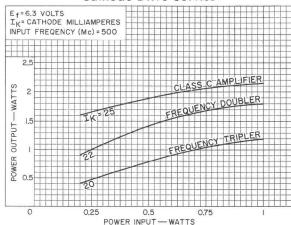

NOTE 5: THIS DIAMETER IS MEASURED WITH "GO" AND "NO-GO" GAUGES $\rm G_2-I$ AND $\rm G_2-2$, RESPECTIVELY.

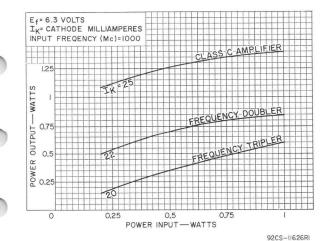
NOTE 6: THIS DIAMETER IS MEASURED WITH "GO" AND "NO-GO" GAUGES $\rm G_3-I$ and $\rm G_3-2$, respectively.

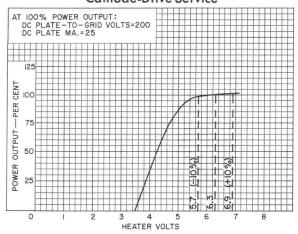



92CS-10370

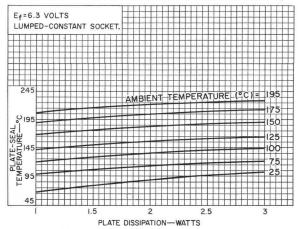
Cours	Type		Dimension	
Gauge	Туре	Diameter A	Thickness B	Radius R
G ₁ -1	GO	0.25200"+0.00000"	0.320"+0.001"	0.003" MAX.
G ₁ -2	NO-GO	0.24500"+0.00007"	-	-
G ₂ -1	GO	0.42000"+0.00000"	-	_
G ₂ -2	NO-GO	0.40000"+0.00007"	-	-
G ₃ -1	GO	0.55700"+0.00000"	-	-
G ₃ -2	NO-GO	0.54700"+0.00007"	_	_


AVERAGE CHARACTERISTICS Cathode-Drive Service


AVERAGE CONSTANT-CURRENT CHARACTERISTICS Cathode-Drive Service


TYPICAL POWER-OUTPUT CHARACTERISTICS Cathode-Drive Service

92CS-11625RI



TYPICAL POWER-OUTPUT CHARACTERISTICS With Variation in Heater Voltage Cathode-Drive Service

92CS-II624RI

PLATE-SEAL-TEMPERATURE CHARACTERISTICS

92CS-II488

Traveling-Wave Tube

HELIX-TRANSMISSION-LINE TYPE FREQUENCY RANGE INTEGRAL PERIODIC- 1700-2300 Mc (S-Band) PERMANENT-MAGNET TYPE
For Use as an Output Amplifier in Radio Relay Systems
Electrical: Heater, for Unipotential Cathode: Voltage (AC or DC)
Minimum Cathode Heating Time. 3 minutes Frequency Range
At 240 volts ac
Mechanical:
Operating Position. Any Operating Altitude. 10000 feet Maximum Overall Length. 20-1/2" Maximum Height. 3-7/8" Maximum Width. 3-1/8" Maximum Shell Diameter. 1-5/8" Weight (Approx.). 6-1/2 pounds Connectors:
RF Input Type N Plug (UG-18 B/U) RF Output Type N Plug (UG-18 B/U) Terminal Leads Spade Lugs (Amphenol a No.32419, or equivalent)
Thermal:
Collector Temperature b
RF POWER AMPLIFIER
Maximum Ratings, Absolute-Maximum Values:
DC Collector Voltage. 3000 max. volts DC Helix Voltage. 2500 max. volts DC Grid-No.2 Voltage. 1700 max. volts DC Collector Current. 80 max. ma DC Helix Current. 3 max. ma DC Grid-No.2 Current. 0.2 max. ma RF Power Input. 5 max. watts
Typical Operation at 2000 Mc:
DC Collector Voltage 2000 volts DC Helix Voltage 2250

DC Grid-No.2 Voltage.						1450	volts
DC Collector Current.						70	ma
DC Helix Current						0.8	ma
DC Grid-No.2 Current.						0.1	ma
Input VSWR						1.2:1	
Output VSWR							
RF Power Input						30	mw
Saturated Power Output	t.					20	watts

Amphenol Electronics Corporation, 1830 South 54th Avenue, Chicago 50, Illinois.

CHARACTERISTICS RANGE VALUES

					Note	Min.	Max.	
Heater Current					1		2	amp
DC Collector Voltage.					2,3	1650	2400	volts
DC Helix Voltage						1900	2400	volts
DC Grid-No.2 Voltage.					3	1150	1600	volts
DC Collector Current.					3	60	75	ma
DC Helix Current					3	-	1.1	ma
DC Grid-No.2 Current.					-		0.2	ma
Input VSWR					-		1.4:1	
Output VSWR					-	-	1.5:1	
Saturated Power Output						18	-	watts

Note 1: With heater volts = 6.3.

Note 2: Normally the collector voltage is 250 volts below the helix voltage, but may be equal to the helix voltage or any value between these points.

Note 3: Specific operating value is supplied with each tube.

OPERATING CONSIDERATIONS

The magnetic field required to focus the electron beam in the 7642 is supplied by integral periodic permanent magnets. Although the periodic-magnet structure is difficult to demagnetize and has little stray field, care should be taken to prevent the presence of any appreciable external transverse magnetic field which might cause defocusing of the electron beam within the tube. Magnetic material should be kept at least eight inches away from the tube.

Impedance match between the 7642 rf power output and the load should have a voltage standing wave ratio (VSWR) no greater than 2:1. With VSWR's in excess of this value, oscillations may occur causing permanent damage to the tube. Tubes should not be operated without a termination.

Forced-air cooling of the collector is necessary whenever collector current is flowing. Failure to observe this precaution may result in permanent damage to the tube. It is recommended that the forced-air cooling be applied when the heater power is applied.

A thermostatic switch is mounted on the collector of the 7642 which opens when the collector temperature exceeds

The thermostatic switch will open when collector temperature exceeds 225° C.

a safe limit. It is recommended that the thermostatic switch be used in an interlock circuit in the power supply for the collector, helix, and grid-No.2 voltages. The thermostatic switch will carry 6 amperes at 125 volts ac or 3 amperes at 240 volts ac.

The power supply should incorporate a helix-current overload protective device to prevent damage to the tube in the event of loss of collector voltage. Such a condition would cause the entire electron beam current to flow to the helix and thereby overheat that electrode. If it is desired to remove all voltages by a single control, the time-constant values of the power supply should be chosen so that the helix voltage decays faster than the collector voltage.

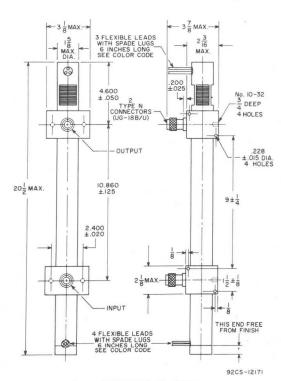
As the grid-No.2 voltage increases from zero to the operating value, the helix current may reach as high as 10 ma in the vicinity of 200 to 600 volts on grid No.2, then will fall below 2 ma at the proper operating grid-No.2 voltage. The helix supply should have adequate regulation to handle this transient during the turn-on procedure. In order to protect the tube, the helix supply should also have an interlock to open the circuit if the helix current exceeds 3 ma longer than a few milliseconds.

Mounting. The 7642 may be mounted in any position by means of bolts through either set of holes in the two mounting blocks.

Electrical connections are made to the 7642 by means of the seven leads with spade type lugs. These color-coded, flexible, insulated leads are identified on the $Dimensional\ Outline$. RF input and output connections are made to type N plugs (UG-18 B/U) on the tube (see $Dimensional\ Outline$). The collector is connected to the capsule and is normally grounded.

The rated values for collector voltage, helix voltage, and grid-No.2 voltage are high enough to be dangerous to the user. Care should be taken during adjustment of circuits, especially when exposed circuit parts are at a high dc potential.

STARTING PROCEDURE


Voltages should be applied to the 7642 in the following sequence: Apply the heater voltage and allow tube to warm-up for 3 minutes minimum. Then apply the collector voltage as specified on the tube label. Next, apply the helix voltage as specified on the tube label. Finally, increase the grid-No.2 voltage in a few milliseconds to obtain the collector current specified onthe tube label. The three power supplies can becontrolled by one switch provided there is a sufficient delay in application of the grid-No.2 voltage to allow the collector and helix voltages to stabilize first.

TURN-OFF PROCEDURE

To turn offthe tube, remove the electrode voltages in the following sequence. First reduce the grid-No.2 voltage, then remove the helix voltage, collector voltage, and heater voltage

in that order. The three power supplies can be controlled by one switch provided the grid-No.2 voltage decays faster than the collector and helix voltages.

DIMENSIONS IN INCHES

COLOR CODE OF LEADS

HEATER.												Brown
HEATER.	C	ATH	101	DE,	1	GRI	D	No	. 1			Yellow
HELIX .											. (Orange
GRID No.	. 2											.Blue
COLLECTO	OR.	. 0	SHE	ELL								Black
THERMOS"	TA:	TIC	3	SWI	Т	СН	(2	2)				White

Beam Power Tube

CERAMIC-METAL SEALS COAXIAL-ELECTRODE STRUCTURE "ONE-PIECE" ELECTRODE DESIGN INTEGRAL RADIATOR FORCED-AIR COOLED 1250-WATTS CW INPUT UP TO 1215 Mc

MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE

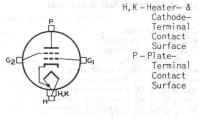
For Use under Severe Shock and Vibration

GENERAL DATA

Electrical:

Unipotential Cathode:
Voltage (AC or DC)* 6.3 ± 10% volts
Current at heater volts = 6.3 7.85
Minimum heating time 120 sec
Mu-Factor, Grid No.2 to Grid No.1
for plate volts = 225, grid-No.2
volts - 225 and plate ma - 100 13

Direct Interelectrode Capacitances: b Grid No.1 to plate.


Heater for Matrix-Type Oxide-Coated

Grid No.1 to cathode	& heate	r.				29		μμf
Plate to cathode & he								μμf
Grid No.1 to grid No.	2					37		μμ
Grid No.2 to plate	04 4 63		- :	-	-	5.3		μμf
Crid No 2 to cathoda							mark	£

Mechanical:

Operating Positio	n.																100	-	. 1	lny.
Overall Length															2	.3	4"	±	0.0	06"
Greatest Diameter	(Se	e D	im	ens	sic	one	ıl	Ou	tl	in	e)				2	.0	6"	±	0.0	3"
Weight (Approx.).					į.													: :	3/4	16
Radiator																				
Terminal Connecti	ons	(S	ee	D	ime	en:	si	one	ıl	01	ut	li	ne	1:						

G	-Grid-No.1-
	Terminal
	Contact
	Surface
Go	-Grid-No.2-
_	Terminal
	Contact
	Surface
Н	-Heater-
	Terminal
	Contact
	Surface

Cathode-Terminal Contact Surface Plate-Terminal Contact Surface

Air Flow:

Air flow may be removed simultaneously with all voltages. Through radiator-Adequate air flow to limit the platecore temperature to 250° C should be delivered by a blower through the radiator during the application of plate, grid-No.2, and grid-No.1 voltages. Typical values

Indicates a change.

of air flow directed through the rad	iator to maintain the
plate core (See Dimensional Outline)	at 250° C with an in-
coming air temperature of 25° C and	with no restrictions
at the plate-contact flange are:	

Plate Dissipation	Air	Flow	Static Pressure
(watts)	(cubic	ft/min)	(inches of water)
100		2	0.04
300		4	0.14
600		[Page	0.66
700		16	0.96

To grid-No.2, grid-No.1, cathode, and heater terminals— A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these terminals so that no terminal temperature exceeds the specified maximum value of 250°C. An air flow of 2.5 cfm is usually adequate. Forced-air cooling of heater and cathode terminals is usually required during stand-by (heater only) operation.

AF POWER AMPLIFIER & MODULATOR

Maximum CCS^c Ratings, Absolute-Maximum Values:

DC PLATE VOLTAGE	 	3000 max.	volts
DC GRID-No.2 VOLTAGE			
MAXSIGNAL DC PLATE CURRENT	 	500 max.	ma
MAXSIGNAL GRID-No.1 CURRENT			
MAXSIGNAL PLATE INPUT			
MAXSIGNAL GRID-No.2 INPUTd	 	25 max.	watts
PLATE DISSIPATION	 	600 max.	watts

Typical CCS Push-Pull Operation:

0 01 . 11 11

Values are for 2 tubes

DC Plate Voltage 2/00 3000 volts	
DC Grid-No.2 Voltage 450 450 volts	
DC Grid-No.1 Voltage	
from fixed-bias source40 -40 volts	
Peak AF Grid-No.1-to-Grid-No.1 Voltage 80 80 volts	
Zero-Signal DC Plate Current 200 200 ma	
MaxSignal DC Plate Current 900 1000 ma	
Zero-Signal DC Grid-No.2 Current 0 0 ma	
MaxSignal DC Grid-No.2 Current 6 5 ma	
Effective Load Resistance	
(Plate to plate) 6000 6400 ohms	
Max.—Signal Driving Power (Approx.) 0 0 watts	
MaxSignal Power Output (Approx.) 1400 1600 watts	

Maximum Circuit Values:

G	rid-No	.1-Ci	rcui	t R	es	is	ta	nce	9	un	de	r	any	1	COL	nd	it	ion:		
	With	fixed	bia	s.	ē.		٠.											15000	max.	ohms
	With	catho	de b	ias				**					*					Not	recomm	ended

LINEAR RF POWER AMPLIFIER

Single-Sideband Suppressed-Carrier Service

Maximum CCS ^c Ratings, Absolute-Maximum Values:	
Up to 1215 Mc	
DC PLATE VOLTAGE. 2500 max. volt DC GRID-No.2 VOLTAGE. 1200 max. volt MAX.—SIGNAL DC PLATE CURRENT. 500 max. m MAX.—SIGNAL DC GRID—No.1 CURRENT. 100 max. m MAX.—SIGNAL DC GRID—No.1 CURRENT. 1250 max. watt MAX.—SIGNAL PLATE INPUT 25 max. watt PLATE DISSIPATION 600 max. watt	s na na s
Typical CCS "Single-Tone" f Operation:	
In grid-drive circuit at 30 Mc	
DC Plate Voltage. 2250 2500 volt DC Grid-No.2 Voltage. 450 450 volt DC Grid-No.1 Voltage. 37 37 volt Zero-Signal DC Plate Current. 160 160 m Zero-Signal DC Grid-No.2 Current. 0 0 m Effective RF Load Resistance. 2500 2700 ohm MaxSignal DC Plate Current. 450 500 m MaxSignal DC Grid-No.2 Current. 4 4 m MaxSignal DC Grid-No.1 Current. 0.05 0.05 m Output-Circuit Efficiency (Approx.) 90 90 MaxSignal Driver Power Output (Approx.) 1 1 wat MaxSignal Useful Power Output (Approx.) 580 680 wat	s s ia
Typical CCS Operation with "Two-Tone Modulation" k	4
In grid-drive circuit at 30 Mc	
DC Plate Voltage. 2250 2500 volt DC Grid-No.2 Voltage. 450 450 volt DC Grid-No.1 Voltage. -37 -37 volt	S
Zero-Signal DC Plate Current. 160 160 m Effective RF Load Resistance. 2500 2700 ohm DC Plate Current at peak of envelope. 450 500 m Average DC Plate Current. 315 350 m DC Grid-No.2 Current at peak of envelope 3 4 m Average DC Grid-No.2 Current. 1.8 2.5 m Average DC Grid-No.1 Current. 0.005 0.05 m Peak-Envelope Driver Power (Approx.) 1 1 wat 0utput-Circuit Efficiency (Approx.) 90 90 90 Distortion Products Level: 31 -31 -31 d Fifth Order -36 -36 d d Useful Power Output (Approx.): 290 340 watt Peak Envelope 580 680 watt	saaaaat % bb s
Effective RF Load Resistance	saaaaat % bb s

← Indicates a change.

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony

Carrier conditions per tube for use with a maximum modulation factor of 1

Maximum CCSc Ratings, Absolute-Maximum Values:

							U	p to	1215 M	C	
DC PLATE VOLTAGE								2000	max.	volts	
DC GRID-No.2 VOLTAGE	Ε.							1200	max.	volts	
DC GRID-No.1 VOLTAGE	Ε.							-250	max.	volts	
DC PLATE CURRENT								500	max.	ma	ž
DC GRID-No.1 CURREN	Γ.							100	max.	ma	1
PLATE INPUT								1000	max.	watts	
GRID-No.2 INPUT								17	max.	watts	
PLATE DISSIPATION .											

Typical CCS Operation:

In cathode-drive circuit at 40	o Mc
DC Plate Voltage	1800 2000 volts
DC Grid-No.2 Voltage ⁿ	
DC Grid-No.1 Voltage	-45 -35 volts
DC Plate Current	450 500 ma
DC Grid-No.2 Current	6 8 ma
DC Grid-No.1 Current (Approx.)	
Output-Circuit Efficiency (Approx.)	
Driver Power Output (Approx.) ¶	35. 35. watts
Useful Power Output (Approx.)	500 600 watts

Maximum Circuit Values:

Grid-No.1-C	ircuit Res	ista	nce					Month.
under any	condition				 	 15000	max.	ohms

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy

RF POWER AMPLIFIER — Class C FM Telephony

Maximum CCSC Ratings, Absolute-Maximum Values:

						U	p to	1215 M	C
DC PLATE VOLTAGE		į.	٠.				2500	max.	volts
DC GRID-No.2 VOLTAGE.							1200	max.	volts
DC GRID-No.1 VOLTAGE.							-250	max.	volts
DC PLATE CURRENT									
DC GRID-No.1 CURRENT.							100	max.	ma
PLATE INPUT							1250	max.	watts
GRID-No.2 INPUT							25	max.	watts
PLATE DISSIPATION							700	max.	watts

Typical CCS Operation:

In cathode-drive circuit at 4	100 M	1c
-------------------------------	-------	----

DC Plate Voltage.							2250	2500	volts	
DC Grid-No.2 Volt	age ⁸						400	400	volts	
DC Grid-No.1 Volta										
DC Plate Current.							450	500	ma	
DC Grid-No.2 Curr									ma	

0		ma % atts
	In cathode-drive m circuit at 1215 Mc	
	DC Grid-No.2 Voltages 400 v DC Grid-No.1 Voltage. -50 v DC Plate Current. 500 DC Grid-No.2 Current. 6 DC Grid-No.1 Current (Approx.) 10 Output-Circuit Efficiency (Approx.) 70 Driver Power Output (Approx.) 80 w	olts olts olts ma ma ma atts
	Maximum Circuit Values:	

Grid-No.1-Circuit Resistance under any condition:

For fixed-bias operation. 15000 max. ohms For cathode-bias operation. Not recommended

- Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.
- Measured with special shield adapter.
- Continuous Commercial Service.
- d Averaged over any audio-frequency cycle of sine-wave form.
- Preferably obtained from a fixed supply.
- T single-Tone" operation refers to that class of amplifier service in which the grid-No.1 input consists of a monofrequency of signal having constant amplitude. This signal is produced in a single-sideband suppressed-carrier system when a single audio frequency of constant amplitude is applied to the input of the system.
- 9 This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.
- h Driver power output represents circuit losses and is actual power measured at the input to grid-No.1 circuit used. The tube driving power is zero watts.
- Jack This value of useful power is measured in load of output circuit.

 In two-Tone-Modulation operation refers to that class of amplifier service in which the input consists of two monofrequency of signals having equal peak amplitude.
- With maximum signal output used as a reference, and without the use of feedback to enhance linearity.
- Cathode is at dc ground potential.
- $^{\mbox{\it I\hspace{-.07cm} n}}$ Obtained preferably from a separate source modulated along with the plate supply.
- Dotained from grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor.
- ^q Driver power output includes circuit losses and feed-through power. It is the actual power measured at input to drive circuit.
- Key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115 per cent of the carrier conditions.
- Obtained preferably from a fixed supply, or from the plate supply voltage with a voltage divider.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	. 1		8.3	amp
Capacitances:				
Grid No.1 to plate	. 2	-	0.11	μμξ
Grid No.1 to cathode & heater .	. 2	26	32	μμf
Plate to cathode & heater	. 2	-	0.011	μμf
Grid No.1 to grid No.2		34	41	μμf
Grid No.2 to plate	. 2	4.3	6.3	μμf
Grid No.2 to cathode & heater .	. 2		1.1	μμί
Reverse Grid-No.1 Current	. 1,3	-	-50	μa
Peak Emission Current	. 1,4	80	-	amp
Interelectrode Leakage Resistance		8	-	megohms
Grid-No.1 Cutoff Voltage	. 1,6		-87	volts

Note 1: With 6.3 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

Note 3: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 400 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 240 ma.

Note 4: For conditions with 6.3 volts on heater; grid No.1, grid No.2 and plate lied together; and pulse-voltage source of 850 peak volts connected between plate and cathode. Pulse duration is 2 microseconds, pulse-repetition frequency is 60 pps, and duty factor is 0.00012. Read peak emission current after 1 minuter.

Note 5: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-yolt Megger-type ohmmeter having an internal impedance of 1 megohm, will be 8 megohms.

Note 6: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 400 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 5 ma.

SPECIAL TESTS & PERFORMANCE DATA

Resonances in the tube mountings used in the following tests can cause the specified environmental conditions to produce greatly amplified effects. Extreme care must, therefore, be used in the design of the mountings to minimize resonances. Design details of mountings used by the RCA Electron Tube Division to perform these tests may be obtained from RCA Commercial Engineering, Harrison, N.J., on request.

50-g, II-Millisecond Shock Test:

This test is performed on sample lots of tubes to determine the ability of the tube to withstand the specified long—duration impact acceleration. Tubes are held rigid in six different positions in a Medium—Impact Shock Machine and are subjected to three blows in each position. At the end of this test, tubes will not show permanent or temporary shorts or open circuits.

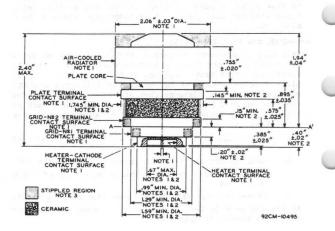
500-g, Nominal 3/4-Millisecond Shock Test:

This test is performed on sample lots of tubes to determine the ability of the tube to withstand the specified impact acceleration. Tubes are held rigid in four different

- Indicates a change.

positions in a High-Impact Shock Machine and are subjected to five blows in each position. At the end of this test, tubes will not show permanent or temporary shorts or open circuits.

5-to-2000 cps Vibration Test:

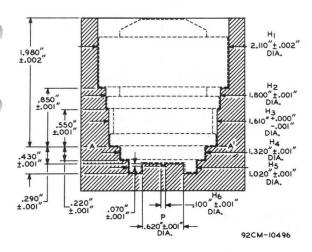

This test is performed on sample lots of tubes to determine the ability of the tube to withstand variable-frequency vibration. With heater voltage of 6.3 volts ac or dc, dc plate supply voltage of 300 volts, dc grid-No.2 voltage adjusted to give dc plate current of 10 ma., and plate load resistor of 2000 ohms, the tube is vibrated along each of three mutually perpendicular axes over an 8-minute cycle consisting of:

- a. 5-to-10 cps with fixed double amplitude of 0.080 inch \pm 10%.
- b. 10-to-15 cps at fixed acceleration of 0.41 g \pm 10%.
- c. 15-to-105 cps with fixed double amplitude of 0.036 inch \pm 10%.
- d. 105-to-2000 cps at fixed acceleration of 20 g \pm 10%. At the end of this test, tubes will not show permanent or temporary shorts or open circuits.

OPERATING CONSIDERATIONS

A suggested mounting arrangement for the 7650 is shown in the accompanying drawing along with a layout of the associated contacts. Flexible connectors are required for the plate, grid-No.2, grid-No.1, cathode, and heater contact surfaces.

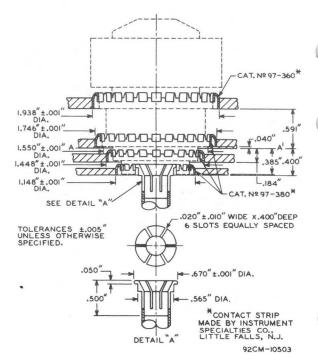
The maximum-rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.

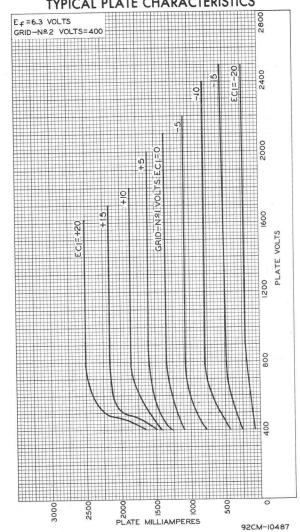


NOTE 1: WITH THE CYLINDRICAL SURFACES OF THE RADIATOR BAND, PLATE TERMINAL, GRID-NO.2 TERMINAL, GRID-NO.1 TERMINAL, HEATER-CATHODE TERMINAL, AND HEATER TERMINAL CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH G1. PROPER ENTRY OF THE TUBE IS OBTAINED WHEN THE GRID-NO.2 TERMINAL IS SEATED ON THE SHOULDER WHEN A O.010" THICKNESS GAUGE 1/8" WIDE WILL NOT ENTER MORE THAN 1/16" BETWEEN THE SHOULDER SURFACE AND THE GRID-NO.2 TERMINAL. THE GAUGE IS PROVIDED WITH SLOTS TO PERMIT MAKING MEASUREMENT OF SEATING OF GRID-NO.2 TERMINAL ON SHOULDER A-A'.

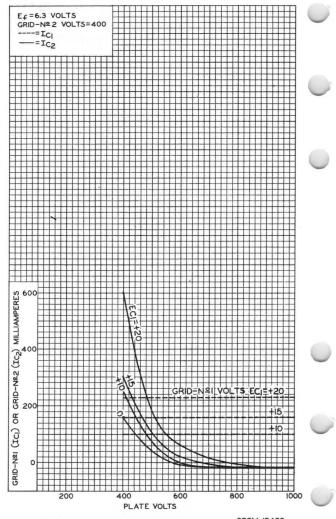
NOTE 2: THE DIAMETER OF EACH TERMINAL IS HELD TO INDICATED VALUES ONLY OVER THE INDICATED MINIMUM LENGTH OF ITS CONTACT SURFACE.

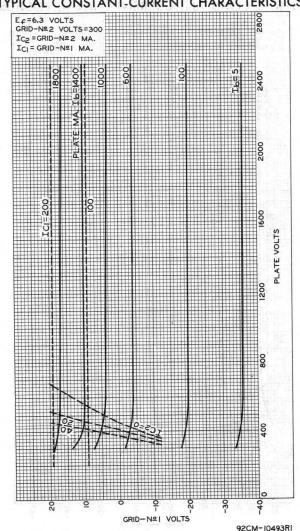
NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES. DIAMETERS OF STIPPLED AREAS ABOVE AIR-COOLED RADIATOR, PLATE-TERMINAL CONTACT SURFACE, AND GRID-No.2-TERMINAL CONTACT SURFACE SHALL NOT BE GREATER THAN 1TS ASSOCIATED DIAMETER.

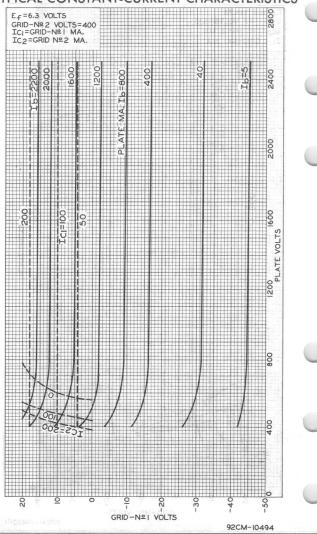

SKETCH G


SURFACE A-A' IS FLAT WITHIN 0.0005" PEAK TO VALLEY AND IS PERPENDICULAR TO THE AXIS OF THE CYLINDRICAL HOLES WITHIN 0.00025".

THE AXES OF THE CYLINDRICAL HOLES $\rm H_1$ THROUGH $\rm H_6$ AND THE AXIS OF POST P ARE COINCIDENT WITHIN 0.001".


SUGGESTED MOUNTING ARRANGEMENT & LAYOUT OF ASSOCIATED CONTACTS


TYPICAL PLATE CHARACTERISTICS

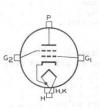

TYPICAL CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Beam Power Tube

COAXIAL-ELECTRODE STRUCTURE CERAMIC-METAL SEALS INTEGRAL RADIATOR "ONE-PIECE" ELECTRODE DESIGN 27-KW PEAK-PULSE POWER INPUT UP TO 1215 Mc FORCED-AIR COOLED MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE


For Use under Severe Shock and Vibration

	GENERAL DATA
	Electrical:
	Heater, for Matrix-Type, Oxide- Coated, Unipotential Cathode:
	Voltage (AC or DC)
	Current at heater volts = 6.3 7.5 amp
	Minimum heating time 120
	Mu-Factor, Grid No.2 to Grid No.1
)	for plate volts = 225, grid-No.2
	volts = 225, and plate ma. = 100 13
	Direct Interelectrode Capacitances: a
	Grid No.1 to plate 0.13 max. μμf
	Grid No.1 to cathode & heater 29 μμf
	Plate to cathode & heater 0.01 max. µµf
	Grid No.1 to grid No.2 38 μμf
	Grid No.2 to plate 6.5
	Grid No.2 to cathode & heater 0.8 max. μμf
	Mechanical:
	Operating Position
	Createst Diameter (See Diameter 1 2 41:) 2 06" + 0

Operating Position Any
Overall Length
Greatest Diameter (See Dimensional Outline) 2.06" ± 0.03"
Weight (Approx.)
Radiator Integral part of tube
Terminal Connections (See Dimensional Outline):

	Terminal
	Contact
	Surface
G2	- Grid-No.2-
	Terminal
	Contact
	Surface
H	- Heater-
	Terminal
	Contact
	Surface

GI-Grid-No.1-

H.K-Heater- & Cathode-Terminal Contact erminal

Air Flow:

Air flow may be removed simultaneously with all voltages.

Through radiator-Adequate air flow to limit the plate-core temperature to 2500 C should be delivered by a blower through the radiator during the application of heater, plate, grid-No.2, and grid-No.1 voltages. Typical values of air flow directed through the radiator to maintain the

plate core (See	Dimensional	Out	line) at	250°	Cw	ith	an
incoming air tem								
at the plate-con	tact flange a	re:						

Plate Dissipation	Air	Flow	Static Pressure
(watts)	(cubic	ft/min)	(inches of water)
100			
300	FIGURE 198	4	0.14
600	- 1	1	0.66

To Grid-No.2, Grid-No.1, Cathode, and Heater Terminals—A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these terminals so that no terminal temperature exceeds the specified maximum value of 250°C. An air flow of 2.5 cfm is usually adequate. Forced-air cooling of heater and cathode terminals is usually required during standby (heater only) operation.

Plate-Core Temperature	250 max.	oC.
Terminal Temperature (Plate, Grid	No.2,	
Grid No.1, Cathode, and Heater)	250 max.	oC

GRID-PULSED RF AMPLIFIER and GRID-AND-SCREEN-PULSED RF AMPLIFIER

Maximum CCSb Ratings, Absolute-Maximum Values:

For maximum "on" time c of 10 microseconds

DC PLATE VOLTAGE				
DC GRID-No.2 VOLTAGE				1200 max. volts
DC GRID-No.1 VOLTAGE				-250 max. volts
DC PLATE CURRENT DURING PULSE				9 max. amp
DC PLATE CURRENT				0.5 max. amp
GRID-No.2 INPUT (Average)				25 max. watts
GRID-No.1 INPUT (Average)				10 max. watts
PLATE DISSIPATION (Average) .				600 max. watts

Typical Operation:

In grid-pulsed cathode-drive^d circuit with rectangularwave pulse at 1215 Mc and with duty factor^e of 0.01

	wave pulse at 1215 Mc and with	aut	y jactor	OJ	0.01
	DC Plate Voltage			4000	volts
+	►Peak-Positive Grid-No.2 Voltage		800	1000	volts
	DC Grid-No.1 Voltage		-100	-120	volts
	DC Plate Current during pulse			9	amp
	DC Plate Current			0.2	amp
	DC Grid-No.2 Current		0.005	0.006	amp
	DC Grid-No.1 Current		0.02	0.02	amp
	Output-Circuit Efficiency (Approx.)		80	80	%
	Driver Power Output at peak				
	Driver Power Output at peak of pulse (Approx.) f	auc.	5.2	6.3	kw
	Useful Power Output at peak				
	of pulse (Approx.)		159	20	g kw

→ Indicates a change.

Ub to 1215 Mc

In grid-and-screen-pulsed cathode-drived circuit with re	c-
tangular-wave pulses at 1215 Mc with duty factor of o.	01
DC Plate Voltage	volts
	olts
DC Grid-No.1 Voltage 0	volts
DC Plate Current during pulse 8 9	
DO ITACO DALLOTE EEL TING PEROD I	amp
DC Plate Current 0.145 0.165	amp
DC Grid-No.2 Current 0.003 0.006	amp
DC Grid-No.1 Current 0.017 0.017	amp
Output-Circuit Efficiency (Approx.) 80 80	%
Driver Power Output at peak	
of pulse (Approx.) 2.4 2.9	kw
Useful Power Output at peak	
of pulse (Approx.)	kw
DIATE AND CODEEN DUICED OF AMPLIEUE	
PLATE-AND-SCREEN-PULSED RF AMPLIFIER	
Maximum CCS ^b Ratings, Absolute-Maximum Values:	
For maximum "on" time c of 10 microseconds	
Up to 1215 Mc	
PEAK POSITIVE-PULSE PLATE VOLTAGE 8000 max.	volts
	volts
	volts
ou ditto tiota to attitude to the time to	amp
	amp
	watts
	watts
	watts
PLATE DISSIPATION (Average)	walts
Typical Operation:	
In cathode-drive d circuit with rectangular-wave	
pulses at 1215 Mc and with duty factor of 0.01	
Peak Positive-Pulse	
	volts
Peak Positive-Pulse	*0100
	volts
	volts
or of the more for tage	VOILS
DC Plate Current	
during pulse 8 9 8 9	amp
DC Plate Current 0.09 0.1 0.09 0.1	amp
DC Grid-No.2 Current 0.003 0.008 0.003 0.004	amp
DC Grid-No.1 Current 0.015 0.016 0.019 0.02	amp
Output-Circuit	~
Efficiency (Approx.) 80 80 80 80	%
Driver Power Output at	
peak of pulse (Approx.) f. 1.8 2.2 4.5 5.3	kw
Useful Power Output at	
peak of pulse (Approx.). 229 289 309 399	kw
a Measured with special shield adapter.	

b Continuous Commercial Service.

C "On" time is defined as the sum of the durations of all the individual pulses which occur during any 1000-microsecond interval. An increase in

RCA

dc plate current during the pulse may be permissible at shorter "on" times, and a decrease is usually required at longer "on" times.

Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70, per cent of the peak value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

d Cathode is at dc ground potential.

e Duty factor is defined as the ratio of "on" time to total elapsed time in any 1000-microsecond interval.

f Driver power output includes circuit losses and feed-through power.
It is actual power measured at input to tube drive circuit. It will a vary with frequency of operation and driver circuitry.

9 This value of useful power is measured in load of output circuit.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Λ	Vote	Min.	Max.	
Heater Current	· s:	1	6.9	8.3	amp
Grid No.1 to plate Grid No.1 to cathode & heater Plate to cathode & heater		2	26		μμf μμf μμf
Grid No.1 to grid No.2 Grid No.2 to plate		2	35 5.5	42 7.5	μμf μμf
Grid No.2 to cathode & heater . Reverse Grid-No.1 Current			-	0.8 -50	μa
Peak Emission Voltage Interelectrode Leakage Resistance Grid-No.1 Cutoff Voltage		5	8	850 - -170	volts megohms volts

Note 1: With 6.3 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

Note 3: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 400 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 240 ma.

Note 4: For conditions with 6.3 volts on heater; grid No.1, grid No.2, and plate tied together; and pulse—voltage source connected between plate and cathode. Pulse duration is 2 microseconds, pulse—repetition frequency is 60 pps, and duty factor is 0.00012. The voltage-pulse amplitude is adjusted until a peak cathod current of 80 amperes is obtained. After 1 minute at this value, the voltage—pulse amplitude will not exceed 850 volts (peak)

Note 5: Under conditions with tube at 20° to 30° c for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1 megohm, will be 8 megohms.

Note 6: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 400 volts, and a dc grid-No.1 voltage adjusted to give a dc plate current of 5 ma.

SPECIAL TESTS & PERFORMANCE DATA

Resonances in the tube mountings used in the following tests can cause the specified environmental conditions to produce greatly amplified effects. Extreme care must, therefore, be used in the design of the mountings to minimize resonances. Design details of mountings used by the RCA Electron Tube Division to perform these tests may be obtained from RCA Commercial Engineering, Harrison, N. J., on request.

- Indicates a change.

50-g, II-Millisecond Shock Test:

This test is performed on sample lots of tubes to determine the ability of the tube to withstand the specified long-duration impact acceleration. Tubes are held rigid in six different positions in a Medium-Impact Shock Machine and are subjected to three blows in each position. At the end of this test, tubes will not show permanent or temporary shorts or open circuits.

500-g, Nominal 3/4-Millisecond Shock Test:

This test is performed on sample lots of tubes to determine the ability of the tube to withstand the specified impact acceleration. Tubes are held rigid in four different positions in a High-Impact Shock Machine and are subjected to five blows in each position. At the end of this test, tubes will not show permanent or temporary shorts or open circuits.

5-to-2000 cps Vibration Test:

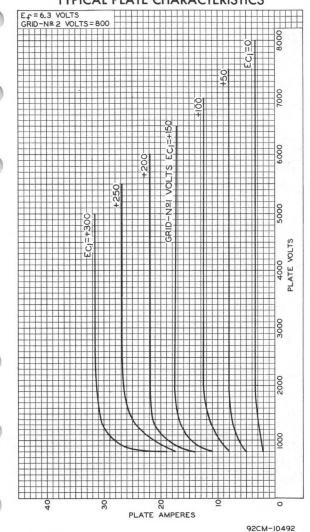
This test is performed on sample lots of tubes to determine the ability of the tube to withstand variable-frequency vibration. With heater voltage of 6.3 volts ac or dc, dc plate supply voltage of 300 volts, dc grid-No.2 voltage adjusted to give dc plate current of 10 ma., and plate load resistor of 2000 ohms. The tube is vibrated along each of three mutually perpendicular axes over an 8-minute cycle consisting of:

- a. 5-to-10 cps with fixed double amplitude of 0.08 inch \pm 10%.
- b. 10-to-15 cps at fixed acceleration of 0.41 g \pm 10%.
- c. 15-to-105 cps with fixed double amplitude of 0.036 inch \pm 10%.
- d. 105-to-2000 cps at fixed acceleration of 20 g \pm 10%.

At the end of this test, tubes will not show permanent or temporary shorts or open circuits.

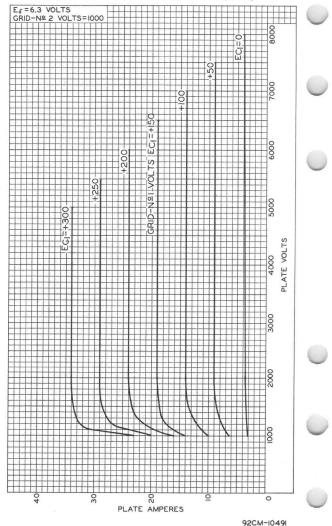
OPERATING CONSIDERATIONS

A suggested mounting arrangement for the 7651 is shown in the accompanying drawing along with a layout of the associated contacts. Flexible connectors are required for the plate, grid-No.2. grid-No.1, cathode, and heater contact surfaces.

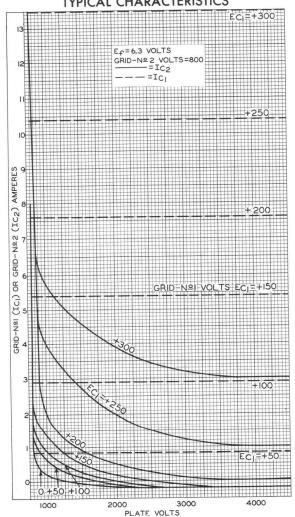

The maximum-rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.

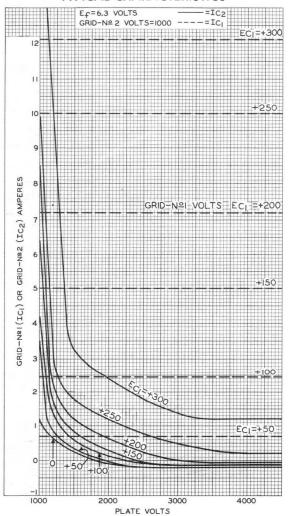
← Indicates a change

DIMENSIONAL OUTLINE,
GAUGE DRAWING, and
SUGGESTED MOUNTING ARRANGEMENT
& LAYOUT OF ASSOCIATED CONTACTS
shown under Type 7650 also apply to the 765!


The second property of the second property of

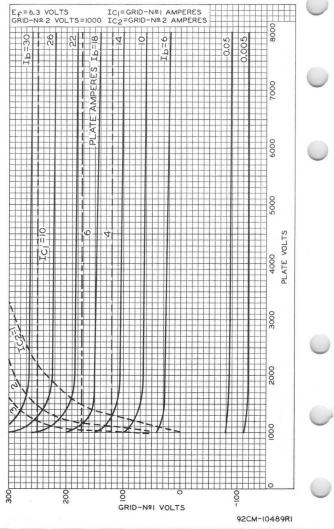
TYPICAL PLATE CHARACTERISTICS




TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



92CM-1050IRI

TYPICAL CONSTANT-CURRENT CHARACTERISTICS ICI=GRID-NºI AMPERES Ef=6.3 VOLTS GRID-Nº 2 VOLTS=800 IC2=GRID-Nº 2 AMPERES 8000 =0.005 0.05 00 41 E-AMPERES AT 7 3000 GRID-NºI VOLTS

92CM-10490RI

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Beam Power Tube

52.5-WATTS CW INPUT CERAMIC-METAL SEALS "ONE-PIECE" ELECTRODE DESIGN 27-WATTS CW OUTPUT AT 400 Mc CONDUCTION COOLED 15-WATTS CW OUTPUT AT 1200 Mc

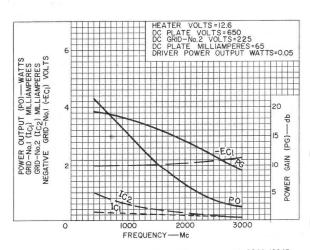
	COAXIAL-ELECTRODE STRUCTURE 3.2-WATTS CW OUTPUT AT 3000 Mc
	UNIPOTENTIAL CATHODE
-	GENERAL DATA
	Electrical:
	Heater, for Unipotential Cathode: Voltage (AC or DC) ^a
	Mechanical:
	Operating Position
0	G_1 - Grid-No.1- Terminal Contact Surface G_2 - Grid-No.2- Terminal Contact Surface H - Heater- Terminal Contact Surface H - Heater- Terminal Contact Surface Surface Surface United Surface Surface Surface

Thermal:

Terminal Temperatur	re (Plat	e, grid	No	.2	,				
grid No.1, catho		heater).				250	max.	oC
Cooling, Conductio	n:								

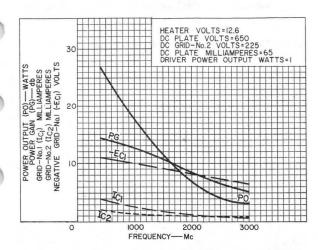
The plate terminal must be thermally coupled to a constanttemperature device (heat sink-solid or liquid) to limit the plate terminal to the specified maximum value of 250° C. The grid-No.2, grid-No.1, cathode, and heater terminals may also require coupling to the heat sink to limit their respective terminal temperature to the specified maximum value of 250° C.

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy and

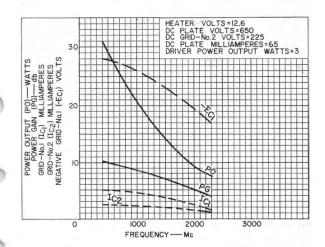

RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCSc Ratings, Absolute-Maximum Values:

DC PLATE VOLTAGE									150	max.	VOITS	
DC GRID-No.2 VOLTAG	E.								250	max.	volts	
DC GRID-No.1 VOLTAG	E.								-100	max.	volts	
DC PLATE CURRENT	- 30	36	200						70	max.	ma	
DC GRID-No.1 CURREN												ź
PLATE INPUT	-			ě				•	52.5	max.	watts	Q
GRID-No.2 INPUT									2	max.	watts	-
PLATE DISSIPATION .									d			


Typical CCS Operation in Cathode-Drive Circuit:

Shown Graphically in the following three Charts 92CS-10945, -10944, and -10942

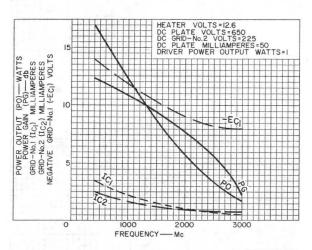


92CS-10945

92CS-10944

92CS-10942

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony


Carrier conditions per tube for use with a maximum modulation factor of 1

Maximum CCSc Ratings, Absolute-Maximum Values:

DC PLATE VOLTAGE						750	max.	volts	
DC GRID-No.2 VOLTAGE.						250	max.	volts	
DC GRID-No.1 VOLTAGE.						-100	max.	volts	
DC PLATE CURRENT						60	max.	ma	
DC GRID-No.1 CURRENT.									á
PLATE INPUT						45	max.	watts	Q
GRID-No.2 INPUT									1
PLATE DISSIPATION									

Typical CCS Operation in Cathode-Drive Circuit:

Shown Graphically in the following Chart 92CS-10943

92CS-10943

AF POWER AMPLIFIER & MODULATOR

and
LINEAR RF POWER AMPLIFIER
Single-Sideband Suppressed-Carrier Service

Maximum CCSc Ratings, Absolute-Maximum Values:

		- '									
DC PLATE VO									max.	volts	3
DC GRID-No.										volts	1
MAXSIGNAL											4
MAXSIGNAL											
MAXSIGNAL	PLATE	INP	JTe.					52.5	max.	watts	

MAX.—SIGNAL GRID—No.2 INPUTe 2 max. watts PLATE DISSIPATION e d	
RF POWER AMPLIFIER - Class B Telephony	
Maximum CCSC Ratings. Absolute-Maximum Values:	
DC PLATE VOLTAGE. 750 max. volts DC GRID-No.2 VOLTAGE. 250 max. volts DC PLATE CURRENT. 35 max. ma DC GRID-No.1 CURRENT. 8 max. ma PLATE INPUT 52.5 max. watts	
GRID-No.2 INPUT 2 max. watts PLATE DISSIPATION	č.
Maximum Circuit Values	
under any condition 30000 max.f ohms	8
a Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life. b Measured with special shield adapter.	
Continuous Commercial Service.	
maximum prace dissipation is a function of the maximum prace hipti- efficiency of the class of service, and the effectiveness of the cooling system. See Cooling, Conduction under General Data, and also Cooling Considerations.	
Averaged over any audio-frequency cycle of sine-wave form for Ar rower	
f if this value is insufficient to provide adequate bias, the additional required bias must be supplied by a cathode resistor or fixed supply.	
CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN	
Note Min. Max.	
Heater Current	
Grid No.1 to plate 2 - 0.025 μμf Grid No.1 to cathode & heater 2 8.5 10.3 μμf	
production and the second seco	
Grid-No.1 Cutoff Voltage 1.425 volts	
Grid-No.2 Current 1,3 -3 2 ma	
Positive Grid-No.1 Voltage 1,5 0 14 volts	
Transconductance 1,6 7500 - μ mhos	
Fransconductance μ mhos Note 1: With 12.6 volts ac or dc on heater.	
	RF POWER AMPLIFIER — Class B Telephony Maximum CCS° Ratings, Absolute—Haximum Values: DC PLATE VOLTAGE

7801

- Note 5: With dc plate voltage of 300 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage of -100 volts. Rectangular pulses, pulse duration of 4500 to 5000 microseconds and pulse-repetition frequency of 10 to 12 pps. The positive-pulse grid-No.1 voltage is adjusted to give a plate current of 300 ma. at leading edge of pulse.
- Note 6: With dc plate voltage of 300 volts, dc grid-No.2 voltage of 150 volts, dc grid-No.1 voltage adjusted to give a dc plate current of 35 ma.

COOLING CONSIDERATIONS

The conduction-cooling system consists, in general, of a constant-temperature device (heat sink) and suitable heat-flow path (coupling) between the heat sink and tube. Careful consideration should be given to the design of a heat-flow path through a coupling device having high thermal conductivity.

Thermal conductivity may be calculated from the equation:

$$K = \frac{W}{A \cdot \frac{(T_2 - T_1)}{A}} \tag{1}$$

where:

K = thermal conductivity of the material

W = power transfer in watts

A = area measured at right angles to the direction of the flow of heat in square inches

 $T_1, T_2 = temperature in degrees Centigrade of planes or surfaces under consideration$

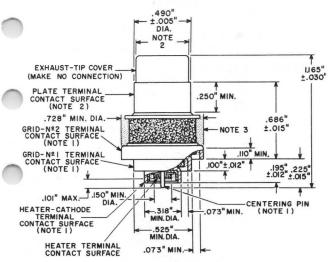
E = length of heat path in inches through coupling material to produce temperature gradient

 ${\bf 9}$ Thermal conductivity is defined as the time rate of transfer of heat by conduction, through unit thickness, across unit area for unit difference of temperature. It is measured in watts per square inch for a thickness of one inch and a difference of temperature of 1° C.

For a given system Equation (I) must be integrated to consider changes in area (A) dependent on the coupling configuration and changes in thermal conductivity (K) dependent on various coupling materials and interfaces/ Equation (I) may now be reduced to the following:

$$K_{S} = \frac{W_{P}}{T_{2} - T_{1}} \tag{2}$$

where:

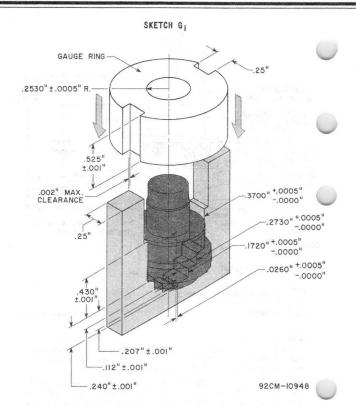

 K_s = thermal conductance of the system

Wp = maximum permissible plate dissipation in watts

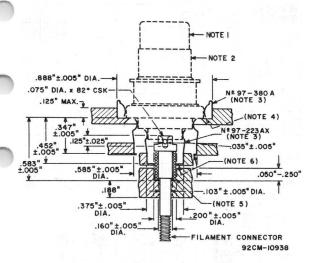
T₂ = temperature in degrees Centigrade at tube terminal

T₁ = temperature in degrees Centigrade of heat sink

STIPPLED REGION NOTE 3


CERAMIC

92CM-I0939RI


NOTE 1: WITH THE CYLINDRICAL SURFACES OF THE GRID-No. 2 TERMINAL, GRID-No. I TERMINAL, HEATER-CATHODE TERMINAL, AND CENTERING PIN CLEAN, SMOOTH, AND FREE OF BURRS, THE TUBE WILL ENTER A GAUGE AS SHOWN IN SKETCH G1.

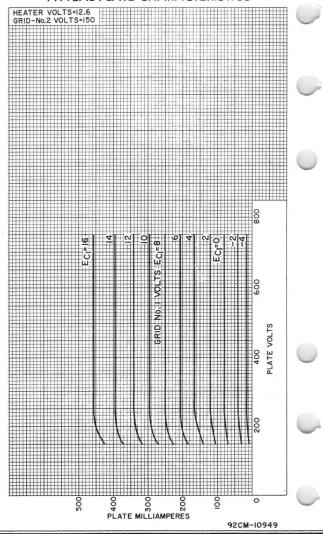
NOTE 2: WITH THE TUBE SEATED IN GAUGE AND WITH THE PLATE TERMINAL CLEAN, SMOOTH, AND FREE OF BURRS, THE GAUGE RING WILL SLIP OVER PLATE TERMINAL SHOWN IN SKETCH G1 AND NOT EXTEND ABOVE GAUGE. THE TUBE WILL ROTATE 360° FREELY AND WILL NOT EXTEND ABOVE GAUGE RING.

KEEP ALL STIPPLED REGIONS CLEAR, DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

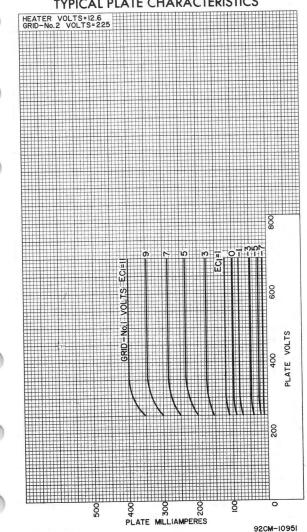
SUGGESTED MOUNTING ARRANGEMENT & LAYOUT OF ASSOCIATED CONTACTS

NOTE 1: MAKE NO CONNECTION.

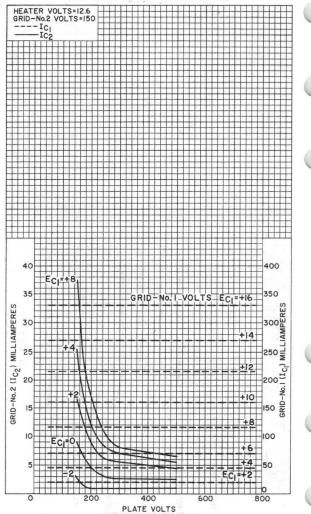
NOTE 2: IF A CLAMP IS USED, IT MUST BE ADJUSTABLE IN A PLANE NORMAL TO THE MAJOR TUBE AXIS TO COMPENSATE FOR VARIATIONS IN CONCENTRICITY BETWEEN THE PLATE TERMINAL AND THE REMAINING CONTACT TERMINALS.


NOTE 3: MADE BY INSTRUMENTS SPECIALTIES COMPANY, LITTLE FALLS. NEW JERSEY.

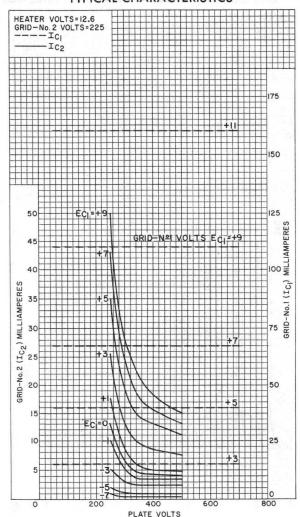
NOTE 4: SEAT TUBE SUCH THAT GRID-No.2 TERMINAL EDGE MAKES A POSITIVE STOP ON SHOULDER.


NOTE 5: SPRING IS 0.600 INCH IN LENGTH AND 30 TURNS PER INCH OF 0.015-INCH-DIAMETER STEEL MUSIC WIRE.

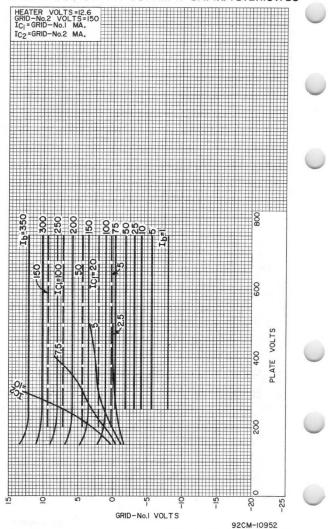
NOTE 6: FINGER STOCK TO SEAT ON 0.013-INCH LIP.

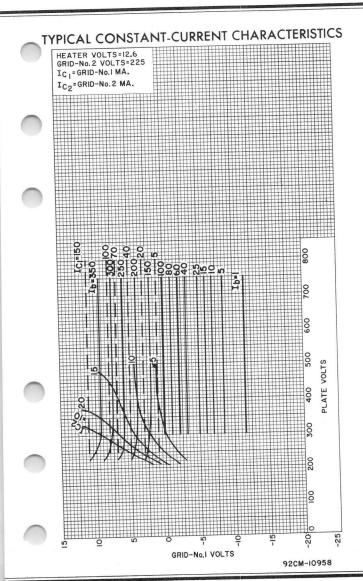

TYPICAL PLATE CHARACTERISTICS

TYPICAL PLATE CHARACTERISTICS



TYPICAL CHARACTERISTICS


92CM-10950


TYPICAL CHARACTERISTICS

92CM-10954

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Super-Power Triode

10 MW SHORT-PULSE POWER, 5 MW LONG-PULSE POWER

CERAMIC-METAL SEALS DOUBLE-ENDED CONSTRUCTION COAXIAL-ELECTRODE STRUCTURE

INTEGRAL WATER DUCTS 17.00 INCHES MAX. LENGTH 24.00 INCHES MAX. DIAMETER

WATER COOLED

For Use as a Plate-Pulsed Amplifier at Frequencies up to 300 MHz, for Long Range Search Radar, Pulsed Transmission in Communications Service, and Particle Accelerator Service.

ELECTRICAL											
Filamentary Cathode Multistrand Thoriated Tungsten ^m —											
Current (DC): Typical operating value	1										
before plate voltage is supplied 60 s Voltage (DC):b	6										
Typical range value for prescribed operating current											
Grid to plate	=										
MECHANICAL											
Operating Position Tube axis vertical, either end up Overall Length 17.00 max ir Maximum Diameter 24.00 max ir Terminal Connections See Dimensional Outline Weight	1										
Uncrated											
Ceramic-Bushing Temperature	C										
Absolute Differential Typ. Min. for Typ. Flow Flow Flow g/m g/m psi											
To plate, total flow for two parallel input and output coolant courses: For platedissipation up to											
50 kW (Average) 40 35 5											
For plate dissipation of 150 kW (Average)100 90 30											
	paditi.										

Water	Flow	(cont'd)
-------	------	----------

, ,			Pressure
		Absolute	Differential
	Typ.	Min.	for Typ.
	Flow	Flow	FlowC
	g/m	g/m	psi
For plate dissipation of			
300 kW (Average)	160	150	45
To upper grid coolant course	3	2	25 max
To lower grid coolant course	3	2	25 max
To grid-cathode coolant course	35	30	30 max
Resistivity of water at 25° C:			
Plate and grid water			min MΩ-cm
_Grid-cathode water		5	min MΩ-cm
Water temperature from any out	let .	70	max °C
External gas pressure ^d		65	max psig
Gauge pressure at an inletd .		90	max psig
TERMINAL RIVERSIA	10 11		

TERMINAL DIAGRAM (Bottom View)

GUORF	_	Upper	RF	Grid	Output
		Termi	na		

GLIRF - Lower RF Grid Input Terminal GLORF - Lower RF Grid Output

Terminal
PLRF - Lower RF Plate Terminal
PURF - Upper RF Plate Terminal

FI - Filament Terminal (Inner) FO - Filament Terminal (Outer) KURF - Upper RF Cathode Terminal KLRF - Lower RF Cathode Terminal

GUIRF - Upper RF Grid Input Terminal

GLORF GLIRF KLRF FO FI GURF

PLRF PURF

PLATE-PULSED AMPLIFIER-Class Bq

For frequencies up to 300 MHz, and a maximum "ON" time e of 2200 microseconds in any 34000-microsecond interval

Absolute-Maximum Ratings

Peak Positive-Pulse Plate Voltagef) kV
Peak Negative Grid Voltage) V
Peak Plate Current 300	
Peak Cathode Current ^g 600	
DC Plate Current	
DC Cathode Current ^g) A
Plate Input (Average)	7 kW
Plate Dissipation (Average) 300) kW

Typical Operation

In a cathode drive circuit, with rectangular-waveshape pulses, with duty factor h of 0.06 pulse duration of 2000 microseconds, and at a frequency of 250 MHz

Peak	Pos	i +	ive-Pu	100
rean	F U S	1 L	I ve-ru	156

Plate-to-Grid Voltage	f			·		×		×		34	kV
Peak Cathode-to-Grid Vo	ItageJ.	*	×			v			10	100	٧
Peak Plate Current					×				100	265	Α

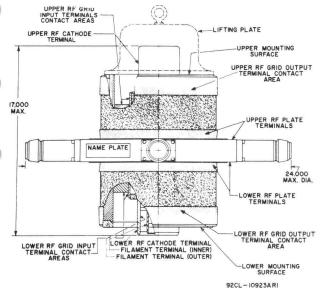
Peak Cathode Current ^g	400 A 15.6 A 25 A 150 kW 5 MW
Absolute-Maximum Ratings	
For frequencies up to 300 MHz and a maximum "ON" microseconds in any 2500-microsecond inte	time ^e of 25
Peak Positive-Pulse Plate Voltage Feak Negative Grid Voltage Peak Plate Current Peak Cathode Current De Cathode Current De Cathode Current Plate Input (Average).	5.5 A
Typical Operation	
In a cathode-drive circuit, with rectangular-waves at 250 MHz with duty factor of 0.006, and of 25 microseconds	hape pulses, pulse
Peak Cathode-to-Grid Voltagej 3 Peak Plate Current 2 Peak Cathode Currentg 4 DC Plate Current 2 DC Cathode Currentg 2 Peak Driver Power Outputk 2	60 34 kV 00 100 V 80 260 A 30 400 A .8 2.6 A 5 4.5 A 00 150 kW 10 5 MW
CHARACTERISTICS RANGE VALUES	
Input Strap-Resonant Frequency	in Max 90 140 MHz 40 280 MHz
a The specified maximum filament current is a maximum ratin, not be exceeded, even momentarily, during operation of the specified of the sp	g which should the tube. The

- not be exceeded, even momentarily, during operation of the tube. The life of the tube can be conserved by operating the filament at the lowest current which will enable the tube to provide the desired power output. Because the filament when operated near the maximum value usually provides because the fill ament when operated hear the maximum value usually provides emission in excess of any requirements within the tube ratings, the fillament current should be reduced to a value that will give adequate but not excessive emission for any particular application. Good requalation of the fillament current is, in general, economically advantageous from the viewpoint of the tube life.
- b Measured between KLRF and KURF (See Terminal Diagram).
- C Measured directly across cooled element for the indicated typical flow.
- d With the gauge located in an area where the maximum pressure external to the gauge is one atmosphere absolute.
- e "ON" time is defined as the sum of the duration of all individual pulses which occur during the indicated interval. Pulse duration is defined as which occur during the indicated interval. Pulse duration is defined as the time interval between the two points onthe pulse at which the instantaneous value is 50% of the peak power value. The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.
 - The magnitude of any spike on the plate voltage pulse should not exceed its peak value by more than 10%, and the duration of any spike when measured at the peak-value level should not exceed 5% of the pulse du-ration as defined in note(e). The peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse.

- 9 Peak or average cathode current is the total of the peak or average plate current and the peak or average rectified grid current. (Pulses are not coincident, hence they cannot be added arithmetically).
- h Duty factor is the product of the pulse duration and repetition rate.

Preferably obtained from a cathode bias resistor.

k The driver stage is required to supply tube losses, rf circuit losses, and rf power added to the plate circuit. The driver stage should be designed to provide an excess of power above the indicated value to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.


The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at the front of this section.

- $^{
 m m}$ See Electrical Considerations Filament or Heater.
- N See Cooling Considerations Forced-Air Cooling.
- P See Cooling Considerations Liquid Cooling.
- 9 See Classes of Service.

FOR ADDITIONAL INFORMATION ON THIS TYPE, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FORRCA SUPER POWER TUBES, ICE-279A AVAILABLE FROM:

Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey

SIMPLIFIED DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

A detailed Dimensional Outline and associated Gauge Drawings are given in the Technical Bulletin available upon request.

60

W

Beam Power Tube

CERMOLOX Matrix-Type Cathode Conduction Cooled Linear RF Power Amplifier Ruggedized 80 Watts CW Power Output at 400 MHz 40 Watts CW Power Output at 1215 MHz

ELECTRICAL

Heater for Matrix-Type, Oxide-Coated,

Unipotential Cathode:

to Grid No.1 . . .

MAXIMUM CCS RATINGS, Absolute-Maximum Values

Up to 1215 MHz

 DC Plate Voltage
 1000
 V

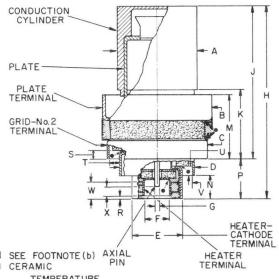
 DC Grid-No.2 Voltage
 300
 V

 DC Grid-No.1 Voltage
 -100
 V

 DC Plate Current
 180
 mA

 MECH ANICAL
 Operating Position
 Any

 Weight (Approx.)
 2 oz (0.06 kg)


THERMAL

Terminal Temperature (Plate, grid No.2, grid No.1, cathode,

See Dimensional Outline for temperature-measurement points.
 Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

DIMENSIONAL OUTLINE

TEMPERATURE MEASUREMENT POINT

92LM-2067VI

DI- MEN- SION	INCHES	MILLIMETERS	DI- MEN- SION	INCHES	MILLIMETERS
A	0,900 ±.005	22.86 ± .1	M	0.66 ± .02	16.76 ± .51
В	1.085 Min.	27.56 Min.	N	0.175 ± .015	4.45 ± .38
C	0.985 Min.	25.02 Min.	P	0.37 ±.02	9.40 ± .51
D	0.735 Min.	18.67 Min.	R	0.025 ± .025	0.64 ± .64
E	0.480 Min.	12.32 Min.	S	0.06 Min.	1.52 Min.
F	0.260 Max.	6.60 Max.	Т	0.09 Min.	2.29 Min.
G	0.062 Max.	1.57 Max.	U	0.12 Min.	3.05 Min.
Н	1.88 ± .05	47.75 ± 1.27	V	0.095 Min.	2.41 Min.
J	1.51 ± .03	38.35 ± .76	w	0.10 Min.	2.54 Min.
K	0.730 ± .02	18.54 ± .51	X	0.054 Min.	1.37 Min.

Beam Power Tube

CERMOLOX

Oxide-Coated Cathode Conduction Cooled

80 Watts CW Power Output at 400 MHz

Linear RF Power Amplifier 40 Watts CW Power Output at 1215 MHz

ELECTRICAL

Heater for Oxide-Coated Unipotential Cathode:

MAXIMUM CCS RATINGS, Absolute-Maximum Values

 Up to 1215 MHz:

 DC Plate Voltage
 1000
 V

 DC Grid-No.2 Voltage
 300
 V

 DC Grid-No.1 Voltage
 -100
 V

 DC Grid-No.1 Voltage
 -100
 V

 DC Plate Current
 180
 mA

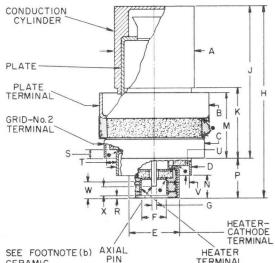
 Plate Dissipation
 115
 W

MECHANICAL

Operating Position Any Weight (Approx.) 2 oz (0.06 kg) THERMAL ^a

and heater). 250 max. °C

Plate-Core Temperature 250 max. °C


 $^{\mbox{\scriptsize a}}$ See Dimensional Outline for temperature measurement points.

b Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

Terminal Temperature (Plate, grid No.2, grid No.1, cathode,

DIMENSIONAL OUTLINE

CERAMIC

TERMINAL

TEMPERATURE MEASUREMENT POINT

92LM-2067VI

DI- MEN- SION	INCHES	MILLIMETERS	DI- MEN- SION	INCHES	MILLIMETERS
A	0.900 ± .005	22.86 ± .1	M	$0.66 \pm .02$	16.76 ± .51
В	1.085 Min.	27.56 Min.	N	$0.175 \pm .015$	4.45 ± .38
C	0.985 Min.	25.02 Min.	P	$0.37 \pm .02$	9.40 ± .51
D	0.735 Min.	18.67 Min.	R	$0.025 \pm .025$	0.64 ± .64
E	0.480 Min.	12.32 Min.	S	0.06 Min.	1.52 Min.
F	0.260 Max.	6.60 Max.	Т	0.09 Min.	2.29 Min.
G	0.062 Max.	1.57 Max.	U	0.12 Min.	3.05 Min.
Н	1.88 ± .05	47.75 ± 1.27	V	0.095 Min.	2.41 Min.
J	1.51 ± .03	38.35 ± .76	W	0.10 Min.	2.54 Min.
K	$0.730 \pm .02$	18.54 ± .51	X	0.054 Min.	1.37 Min.

Beam Power Tube

CERAMIC-METAL SEALS "ONF-PIECE" FLECTRODE DESIGN CONDUCTION COOLED COAXIAL-ELECTRODE STRUCTURE

52.5-WATTS CW INPUT 27-WATTS CW OUTPUT AT 400 Mc 15-WATTS CW OUTPUT AT 1200 Mc 3.2-WATTS CW OUTPUT AT 3000 Mc

UNIPOTENTIAL CATHODE

The 7870 is	the same	as the	7801	excep	t f	or	the	follo	wing	items:
Heater, fo										7
Voltage	(AC or D	()a						6.3 ±	10%	volts
Current	at heate	r volts	5 = 6	.3			. 1	1		amp

a Because the cathode is subjected to considerable back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should be reduced depending on operating conditions and frequency to prevent overheating the cathode and resultant short life.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

	Note	Min.	Max.	
Heater Current	1	0.88	1.1	amp -
Direct Interelectrode Capacitances:				
Grid No.1 to plate	2	-	0.025	$\mu\mu f$
Grid No.1 to cathode & heater	2	8.5	10.3	μμf
Plate to cathode & heater	2	-	0.004	μμξ
Grid No.1 to grid No.2	2	14	20.6	μμ
Grid No.2 to plate	2	2.1	2.5	μμξ
Grid No.2 to cathode & heater	2	-	0.18	μμ
Grid-No.1 Voltage	1,3	-1	-10	volts
Grid-No.1 Cutoff Voltage	1,4	_	-25	volts
Grid-No.2 Current	1,3	-3	2	ma
Positive Grid-No.1 Voltage	1.5	0	14	volts
Transconductance	1.6	7500	_	umhos
				,

- Note 1: With 6.3 volts ac or dc on heater.
- Note 2: Measured with special shield adapter.
- With dc plate voltage of 750 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 35 ma. Note 3:
- With dc plate voltage of 750 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 1 ma. Note 4:
- With dc plate voltage of 300 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage of -100 volts. Rectangular pulses, pulse duration of 4500 to 5000 microseconds and pulse-repetition frequency of 10 to 12 pps. The positive-pulse grid-No.1 voltage is adjusted to give a plate current of 300 ma. at leading edge of pulse. Note 5:
- With dc plate voltage of 300 volts, dc grid-No.2 voltage of 150 volts, dc grid-No.1 voltage adjusted to give a dc plate current of 35 ma. Note 6:

◆Indicates a change.

edul revvoil month

TREAD WO STING CO.ST BLANCO.ST BLANC

And the second s

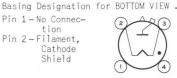
TO AND THE THE WAS TO THE TOWARD SO THE PERSON AND

to make the control of the control o

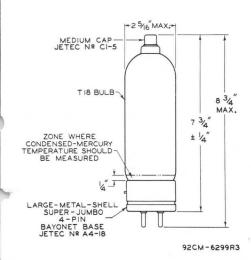
In the second of the second of

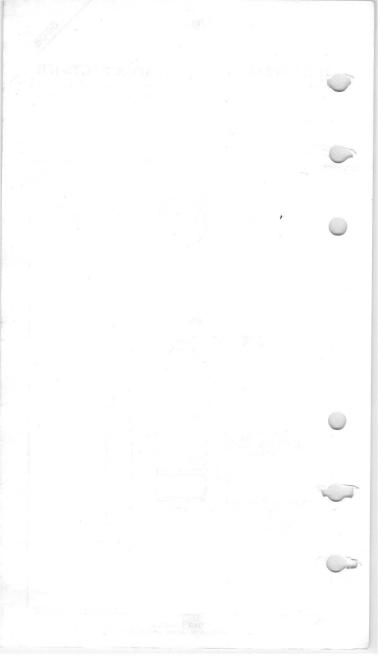
Some on the particle case in the state of the section of the state of

8000


HALF-WAVE MERCURY-VAPOR RECTIFIER

The 8008 is the same as the 872-A except for the following items:


Mechanical:	
Maximum Overall Length 8-3/4"	
Seated Length	•
Veight (Approx.) 6.8 oz -	•
Base Large-Metal-Shell Super-Jumbo 4-Pin-	•
with Bayonet (JETEC No.A4-18)	


Pin 1 - No Connection

Pin 2-Filament, Cathode Shield

Pin 3-Filament Pin 4 - No Connection Cap - Anode

60/3·A

HALF-WAVE VACUUM RECTIFIER

CEN	CDAL	DATA
UER	ERAL	VAIA

Electrical:

Filament, Thoriated Tungsten:

					Min.	Av.	Max.	1
								ac volts
Current	at 2.50	volts	÷		4.7	5.0	5.3	amp

Mounting Position . . Any, preferably vertical with base down

Mechanical:

Maximum Overall	Len	gth.												6-1/16"
Seated Length .											. !	5-9	/32"	± 5/32"
Maximum Diamete	r													2-1/16"
Weight (Approx.														
Bulb														
Cap Ski	rted	Med	ium	wi	th	Ro	lle	ed	Edg	je	(11	ETE	C No	. C1-19)
Base		Med	ium	-Sh	el	1 5	Smal	1	4-F	Pin	(.	JET	EC N	o. A4-9)
Basing Design	ation	n fo	rB	OTT	OM	VI	FW.		8	101			8 8	4P

Pin 1 - Filament

Pin 2 - No Connection

Pin 3 - No Connec-

Pin 4 - Filament Cap - Plate

HALF-WAVE RECTIFIER

Maximum Ratings, Absolute Values:

PEAK PLATE	V	OL	TA	4GE									
Forward											40000	max.	volt
Inverse											40000	max.	volt

Average						×	20	max.	ma
Fault					900		500	max.	ma
PLATE DISSIPATION							12	max.	watts

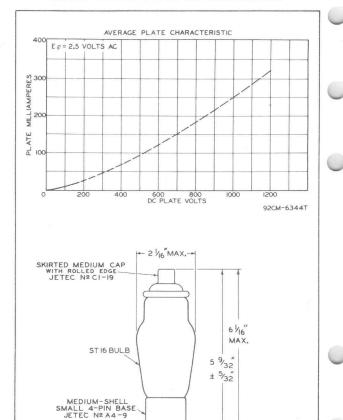
OPERATING CONSIDERATIONS

Filament and $plate\ voltage$ may be applied simultaneously to the 8013-A.

The bulb of the 8013-A should be cleaned regularly. Accumulation of dust or other foreign matter on the bulb will cause leakage and, as a result, probably tube failure.

X-rays are produced during normal operation of the 8013-A. These rays can constitute a health hazard unless the tube is adequately shielded for X-ray radiation. Although relatively simple shielding should prove adequate, make sure it provides the required protection to the operator.

 $^{\rm A}{\rm This}$ value may be increased to 55000 volts when the 8013-A is immersed in oil.


← Indicates a change.

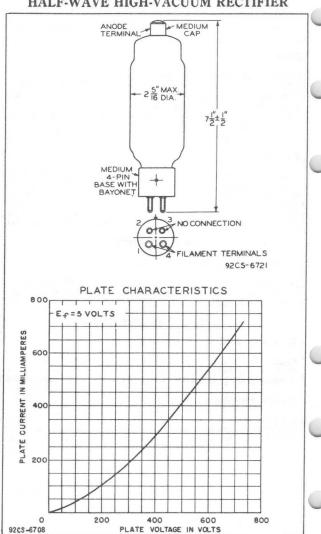
ma

8013-1

8013-A

HALF-WAVE VACUUM RECTIFIER

92CM-6423R3



HALF-WAVE HIGH-VACUUM RECTIFIER

	DATA
	Electrical:
)	Filament, Thoriated Tungsten: Voltage 5 volts Current 5.5 - 6.5 Direct Interelectrode Capacitance: Anode to Filament 1.4
)	Mechanical:
	Mounting Position. Vertical, Base Down Overall Length 7-1/2" ± 1/2" Maximum Diameter 2-5/16" Bulb T-18 Cap Medium Base Medium 4-Pin, Bayonet
	RECTIFIER SERVICE
	Maximum Ratings, Absolute Values:
	PEAK INVERSE ANODE VOLTAGE 4,0000 max. volts PEAK ANODE CURRENT 750 max. ma. AVERAGE ANODE CURRENT 100 max. ma.
	SURGE - LIMITING DIODE SERVICE
	Maximum Ratings, Absolute Values:
)	FILAMENT VOLTAGE
	Typical Operation:
)	Filament Voltage 5.5 . volts Peak Forward Anode Voltage 10000 . volts Minimum Peak Anode Current 2 amp

HALF-WAVE HIGH-VACUUM RECTIFIER

MAY 1, 1946

TUBE DIVISION RADIO CORPORATION OF AMERICA, HARRISON, NEW JERSEY CE-6721-6708

Beam Power Tube

CERAMIC-METAL SEALS
CONDUCTION COOLED

COAXIAL-ELECTRODE STRUCTURE UNIPOTENTIAL CATHODE

For Use in Low-Voltage Mobile Equipment at Frequencies up to 500 Mc

	GENERAL DATA	
_	Electrical:	
	Heater, for Unipotential Cathode: Voltage range (AC or DC) ^a 12.0 to 15.0 volts Current (Approx.) at 13.5 volts 1.3 amp Minimum heating time 60 sec Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 250, grid-No.2)
	volts = 200, plate amperes = 1.2.	f f f f
	Mechanical:	
	Operating Position. Any Maximum Overall Length. 2.26' Seated Length 1.920" ± 0.065' Diameter. 1.426" ± 0.010' Weight (Approx.) 2 oz Socket. Mycalex° No.CP464-2, or equivalent Base. Large-Wafer Elevenar 11-Pin with Ring (JEDEC No.E11-81) (JEDEC No.E11-81)	ii ii z t
	Terminal Connections (See Dimensional Outline): BOTTOM VIEW	
	Pin 1-Cathode Pin 2-Grid No.2 Pin 3-Grid No.1 Pin 4-Cathode Pin 5-Heater Pin 6-Heater	
	Pin 7-Grid No.2 Pin 8-Grid No.1 Pin 9-Cathode Pin 10-Grid No.2 Pin 11-Grid No.1 Pin 11-Grid No.1 Pin 12-Grid No.1 Pin 13-Grid No.1 Pin 13-Grid No.1	
	Thermal: Terminal Temperature (All terminals) 250 max.	С
	Plate Core Temperature (See Dimensional Outline) 250 max.	С
		eses a

Cooling, Conduction:

The plate-terminal (cylinder) must be thermally coupled to a constant temperature device (heat-sink—solid or liquid) to limit the plate terminal to the specified maximum value of 250° C. The grid No.2, grid No.1, cathode, and heater terminals may also require coupling to the heat sink to limit their respective terminal temperature to the specified maximum value of 250° C.

LINEAR RF POWER AMPLIFIER

Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2

Maximum CCS Ratings, Absolute-Maximum Values:

	Up to 500 Mc
DC PLATE VOLTAGE	 2200 max. volts
DC GRID-No.2 VOLTAGE	 400 max. volts
DC GRID-No.1 VOLTAGE	-100 max. volts
DC PLATE CURRENT AT PEAK OF ENVELOPE.	450° max. ma
DC GRID-No.1 CURRENT	100 max. ma
PLATE DISSIPATION	100 ^f max. watts
GRID-No.2 DISSIPATION	 8 max. watts
PEAK HEATER-CATHODE VOLTAGE:	
Heater negative with	
respect to cathode	 150 max. volts
Heater positive with	
respect to cathode	 150 max. volts

Typical CCS Operation with "Two-Tone Modulation":

Typical CGS Operation with "Two-Tone Modulat	ion":	
	At 30 Mc	
DC Plate Voltage	700	volts
DC Grid-No.2 Voltage ⁹	250	volts
DC Grid-No.1 Voltage ⁹	-20	volts
Zero-Signal DC Plate Current	100	ma
	1420	ohms
DC Plate Current:	1120	011110
Peak of envelope	205	ma
Average	150	ma
DC Grid-No.2 Current:		
Peak of envelope	16	ma
Average	10	ma
Average DC Grid-No.1 Current	1 h	ma
Peak-of-Envelope Driver Power		
Output (Approx.) j	0.3	watt
Output-Circuit Efficiency (Approx.)	95	%
Distortion Products Level:k		
Third order	30	db
Fifth order	35	db
Useful Power Output (Approx.):		
Peak of envelope	80 ^m	watts
Average	40m	watts

	Maximum Circuit Values:			
	Grid-No.1-Circuit Resistance			
	under any condition:			
	With fixed bias	25000	max.	ohms
	With fixed bias (In Class-AB ₁			
	operation)	100000		ohms
	With cathode bias		recom	
	Grid-No.2-Circuit Impedance	10000		ohms
	Frate-circuit impedance	n		
	RF POWER AMPLIFIER & OSCILLATOR — Cla	iss C Te	legrap	hy
	and	T - 1 1 -		
	RF POWER AMPLIFIER — Class C FM		ny	
	Maximum CCS Ratings, Absolute-Maximum Valu	es:		
_		Up to	500 Mc	
	DC PLATE VOLTAGE	2200	max.	volts
	DC GRID-No.2 VOLTAGE	400	max.	volts
	DC GRID-No.1 VOLTAGE	-100	max.	volts
	DC PLATE CURRENT	300	max.	ma
	DC GRID-No.1 CURRENT	100	max.	ma
	GRID-No.2 DISSIPATION	8	max.	watts
	PLATE DISSIPATION	100	max.	watts
	PEAK HEATER-CATHODE VOLTAGE:			
	Heater negative with	150		volts
	respect to cathode	130	max.	VOILS
	respect to cathode	150	max.	volts
	respect to cathode	100	max.	VO1 C3
	Typical CCS Operation:			
	In grid-drive circuit			
	at frequency of 50	175	470	Mc
	DC Plate Voltage 500 700 500	700	700	volts
	DC Grid-No.2 Voltage 160 175 200	200	200	volts
	DC Grid-No.1 Voltage10 -10 -30	-30	-30	volts
	DC Plate Current 300 300 300	300	300	ma
	DC Grid-No.2 Current 25 25 30		10	ma
	DC Grid-No.1 Current 50 50 40 Driver Power Output	40	20	ma
	(Approx.) P 1.2 1.2 3	3	5	watts
	Useful Power Output:		0	Watts
	Typical 85 ^m 110 ^m 70 ^l	105 ^m	85 ^m	watts
	For minimum useful-			
7	power output see			
	Characteristics Range	ac.	120	
	Values, Test No.8	Vo.9	No. 10	
	Maximum Circuit Values:			
	Grid-No.1-Circuit Resistance			
_	under any condition:			
	With fixed bias	25000	max.	ohms
	Grid-No.2-Circuit Impedance	10000) max.	ohms
	Plate-Circuit Impedance		n	

8072

- Because the cathode is subjected to back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater voltage obtained at minimum supply voltage conditions (all other voltages constant) the tube performance just starts to show some degradation; e.g., at 470 Mc, heater volts = 12.5 (Approx.).
- b Measured with special shield adapter.
- Mycalex Corporation of America, 125 Clifton Boulevard, Clifton, New Jersey.
- d For use at higher frequencies.
- The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 ma. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 ma.
- f Maximum plate dissipation is limited by the maximum plate core temperature and the cooling system to maintain tube operation below the specified maximum plate core temperature. With simple low-cost cooling techniques, maximum plate dissipation may be only about 100 watts; with more sophisticated cooling techniques, maximum plate dissipation may be as high as 300 watts.
- g Obtained preferably from a separate, well-regulated source.
- h This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.
- Driver power output represents circuit losses and is the actual power measured at input to grid-No.1 circuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.
- k With maximum signal output used as a reference, and without the use of feedback to enhance linearity.
- The value of useful power is measured at load of output circuit.
- n The tube should see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes.
 - P Driver power output includes circuit losses and is the actual power measured at the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.

CHARACTERISTICS RANGE VALUES

Test	No.	Note	Min.	Max.		
1.	Heater Current	1	1.15	1.45	amp	
2.	Direct Interelectrode Capacitances:	2				
	Grid No.1 to plate	_	-	0.13	μμf	
	Grid No.1 to cathode .	-	14.3	17.7	μμf	
	Plate to cathode	-	0.0065	0.0155	μμf	
	Grid No.1 to grid No.2	_	19.8	24.2	μμf	
	Grid No.2 to plate	-	5.7	7.1	μμf	
	Grid No.2 to cathode .		2.6	3.6	μμf	
	Cathode to heater		2.5	4.1	μμ f	
3.	Grid-No.1 Voltage	1,3	-8	-19	volts	
4.	Reverse Grid-No.1					
	Current	1,3	_	-25	μа	
5.	Grid-No.2 Current	1,3	-7	+6	ma	
6.	Peak Emission	1,4	13		peak amp	
7.	Interelectrode Leakage					
0	Resistance	5	1	-	megohm	
8.	Useful Power Output	1,6	90	_	watts	
9.	Useful Power Output	1,7	85	-	watts	
10.	Useful Power Output	1,8	75	-	watts	
11.	Cutoff Grid-No.1 Voltage	1,9	-	-44	volts	

Note 1: With 13.5 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

Note 3: With dc plate voltage of 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 ma.

Note 4: For conditions with grid No.1, grid No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse duration is 2.5 microseconds and pulse repetition frequency is 60 pps. The voltage-pulse amplitude is 200 volts peak. After 1 minute at this value, the current-pulse amplitude will not be less than the value specified.

Note 5: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200volt Megger-type ohmmeter having an internal impedance of 1 megohm, will be 1 megohm.

Note 6: In a CW grid-driven, conduction-cooled amplifier circuit at 50 Mc and for conditions: dc plate voltage of 700 volts, grid-No.1 voltage of -10 volts, driver power output of 1.2 watts, and grid-No.2 voltage varied to obtain a plate current of 300 ma.

Note 7: In a CW grid-driven, conduction-cooled amplifier circuit at 175 Mc and for conditions: dc plate voltage of 700 volts, grid-No.1 voltage of -30 volts, driver power output of 3 watts, and grid-No.2 voltage varied to obtain a plate current of 300 ma.

Note 8: In a CW grid-driven, conduction-cooled amplifier circuit at 470 Mc and for conditions: dc plate voltage of 700 volts, grid-No.1 voltage of -30 volts, driver power output of 5 watts, and grid-No.2 voltage varied to obtain a plate current of 300 ma.

Note 9: With dc plate voltage of 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage varied to obtain a plate current of 5 ma.

COOLING CONSIDERATIONS

The conduction-cooling system consists, in general, of a constant temperature device (heat sink) and suitable heat-flow path (coupling device) between the heat sink and tube. Primary consideration of the system should be given to the design of a heat-flow path (coupling device) with high thermal conductivity.

Thermal conductivity q may be calculated from the equation:

$$K = \frac{W}{A \cdot (T_2 - T_1)} \tag{1}$$

where;

K = thermal conductivity of the material

W = power transfer in watts

A = area measured at right angles to the direction of the flow of heat in square inches

 T_1, T_2 = temperature in degrees Centigrade of planes or surfaces under consideration

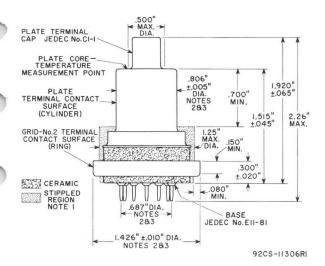
L = length of heat path in inches through coupling material to produce temperature gradient

 $^{^{\}rm q}$ Thermal conductivity is defined as the time rate of transfer of heat by conduction, through unit thickness, across unit area for unit difference of temperature. It is measured in watts per square inch for a thickness of one inch and a difference of temperature of 10 c.

For a given system Equation (I) must be integrated to consider changes in area (A) dependent on the coupling configuration and changes in thermal conductivity (K) dependent on various coupling materials and interfaces. Equation (I) may now be reduced to the following:

$$K_{S} = \frac{W_{P}}{T_{2} - T_{1}} \tag{2}$$

where;

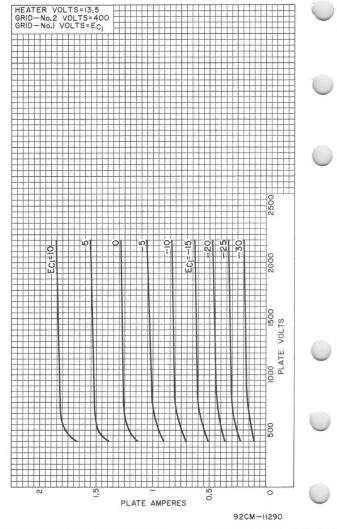

 K_S = thermal conductance of the system

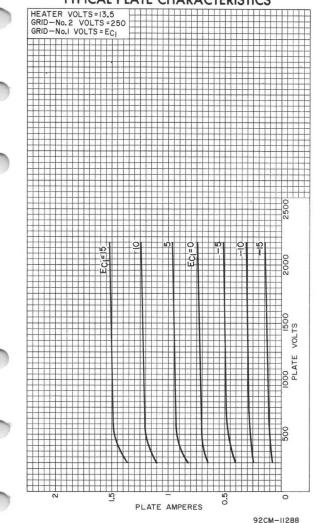
 W_{p} = maximum permissible plate dissipation in watts

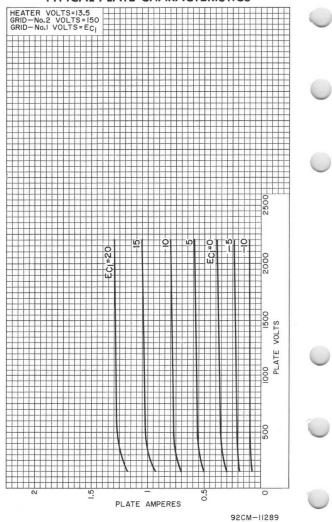
T₂ = temperature in degrees Centigrade at tube terminal

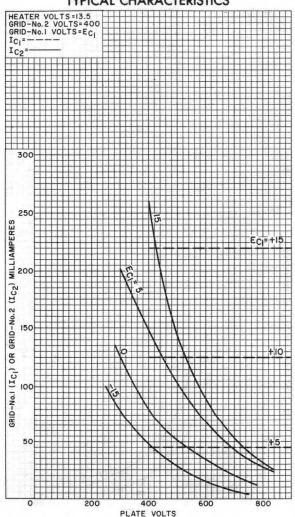
Note: This value may never exceed the specified maximum rating for terminal temperature.

T₁ = temperature in degrees Centigrade of heat sink

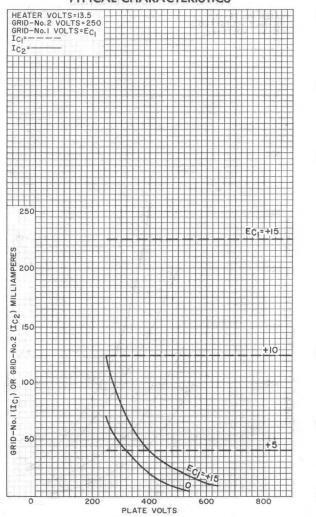


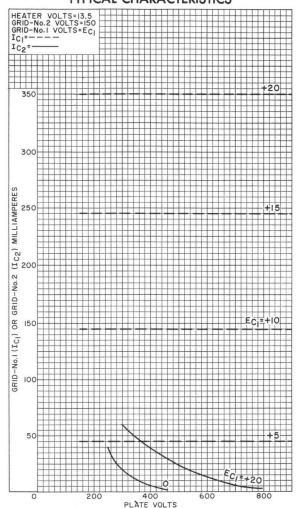

NOTE 1: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

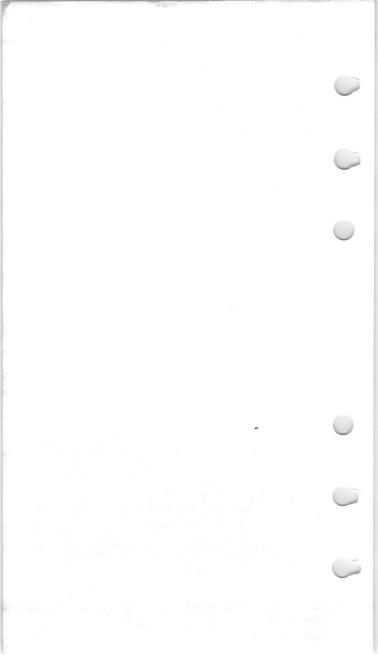

NOTE 2: THE DIAMETERS OF THE PLATE TERMINAL CONTACT SURFACE, GRID-No.2 TERMINAL CONTACT SURFACE, AND PIN CIRCLE TO BE CONCENTRIC WITHIN THE FOLLOWING VALUES OF MAXIMUM FULL INDICATOR READING:


Plate Terminal Contact Surface
to Grid-No.2 Terminal Contact Surface...0.030"
Plate Terminal Contact Surface
to Pin Circle.....0.040"

NOTE 3: THE FULL INDICATOR READING IS THE MAXIMUM DEVI-ATION IN RADIAL POSITION OF A SURFACE WHEN THE TUBE IS COMPLETELY ROTATED ABOUT THE CENTER OF THE REFERENCE SUR-FACE. IT IS A MEASURE OF THE TOTAL EFFECT OF RUN-OUT AND ELLIPTICITY.






92CM-11293RI

92CM-11291

Beam Power Tube

FORCED-AIR COOLED

CERAMIC-METAL SEALS
COAXIAL-ELECTRODE STRUCTURE
UNIPOTENTIAL CATHODE

170 WATTS PEP OUTPUT AT 30 MHz 235 WATTS CW OUTPUT AT 470 MHz INTEGRAL RADIATOR

Full Ratings up to 500 MHz

ELECTRICAL

Heater, for Unipotential Cathode					
Voltage (AC or DC) $^{\mathbf{a}}$				$13.5 \pm 10\%$	٧
Current at 13.5 volts					Α
Minimum heating time				60	S
Mu-Factor, Grid No. 2 to Grid No.	١.			12	
Plate volts = 450, grid No. 2 vo					
325, plate A = 1.2					

Direct Interelectrode Capacitancesb

Cathode to heater. . .

Grid No.	Lto	plate .							0.13 max	pF
Grid No	1 to	cathode							16	pF
Plate to	cat	hode				,			0.011	pF
Grid No.	1 to	grid No	. 2						24	pF⊸
Grid No.	2 to	plate .							6.5	pF
Grid No.:										pF ◀

MECHANICAL

Operating Position		100														Any
Maximum Overall Length															2.196	in
Seated Length				*							1	. 85	50	\pm	0.065	in
Greatest Diameter											1	. 46	60	\pm	0.015	in-
Weight (Approx.)													÷		. 3	OZ
Socket		M	ус	al	ex ^c	С	No	. CI	P4	64.	-2	, (or	e	quival	ent

Socket Mycalex^C No.CP464-2, or equivalent Base Large-Wafer Elevenar II-Pin with Ring (JEDEC No.EII-81)

· TERMINAL DIAGRAM (Bottom View)

Pin	1 - Cat hode		RADIATOR	Pi
Pin	2-Grid No.2	RING (6)	the same	Pi
	3-Grid No.1		40	RADI
	4 - Cathode	4)//	(8)	
	5 - Heater		X	R
	6 - Heater	3177	4 19	
	7 - Grid No.2		1	
	8 - Grid No.1	6	100	
Pin	9 - Cathode	(1)	(11)	

Pin 10 - Grid No.2 Pin 11 - Grid No.1 RADIATOR - Plate Terminal

RING^d - Grid-No.2 Terminal Contact Surface

THERMAL

Terminal	Temperati	ire (All	Te	rmi	na	als	s)					250	C
Radiator	Core Temp	perature											
See Di	mensional	Outline.								0		250	oc

Air Flow
See accompanying Typical Cooling Requirements curve.

← Indicates a change.

LINEAR RF POWER AMPLIFIER

Single-Sideband	Suppressed-Carrier	Service
-----------------	--------------------	---------

Peak envelope conditions for a singlehaving a minimum peak-to-average power ratio of 2

Maximum CCS Ratings, Absolute-Maximum Values

																Up to 500 MHz	
DC	Plate	Vol	tage													2200	٧
	Grid-I															400	V
DC	Grid-I	No. I	Vol:	tag	е.							×				-100	٧
DC	Plate	Cur	rent	at	Pe	ak	0	f	En	ve	0	ре				450e	mA
DC	Grid-I	No. I	Cur	ren	t.											100	mA
Pla	te Di	ssip	ation	n .									ï			150	W
Gri	d-No.	2 Di	ssip	atio	on.											8	W
Pea	k Hea	ter-	Cath	ode	Vo	1t	ag	е									
Н	eater	neg	ativ	e w	ith	n	es	ре	ct	to) (cat	h	bc	ê.	150	V
Н	eater	pos	itiv	e w	ith	r	es	ре	ct	to) (cat	the	bc	٥.	150	٧

Typical CCS Operation with "Two-Tone Modulation"

.,,,					
			At 30	MHz	
DC Plate Voltage			1000	1500	٧
DC Grid-No.2 Voltage [†] DC Grid-No.1 Voltage [†]			250	250	٧
DC Grid-No.1 Voltage [†]			-20	-20	٧
Zero-Signal DC Plate Current			100	100	mA
Effective RF Load Resistance			2270	3800	Ω
DC Plate Current					
Peak of envelope			210	210	mA
Average				160	mA
DC Grid-No.2 Current					
Peak of envelope			10	10	mA
Average				7	mA
Average DC Grid-No. Current			0.059	0.059	mA
Peak-of-Envelope Driver Power					
Output (Approx.)h			0.3	0.3	W
Output-Circuit Efficiency (Approx.			90	85	%
Distortion Products Level	/		12,100	1000	7-
Third order			35	35	dB
Fifth order			40	40	dB
Useful Power Output (Approx.)					
Peak of envelope			110k	170k	W
Average			55 ^K	85 K	W

Maximum Circuit Values

Grid-No	o. I-Cir	cuit Re	sis	tano	ce Ur	de	rA	nv	Co	ond	it	ior	1		
														25000	Ω
With	fixed b	ias (Ir	01	ass	AB ₁	0	pe	ra	tic	n)				100000	Ω
With	cathod	e bias.											Not	recommen	ded
Grid-No	2-Cir	cuit Ir	ped	anc	e									10000	Ω
Plate-	Circuit	Impeda	nce											m	

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy

RF POWER AMPLIFIER — Class C FM Telephony Maximum CCS Ratings, Absolute-Maximum Values

	Up to 500	MHz
→ DC Plate Voltage	1800	٧
DC Grid-No.2 Voltage	400	٧
DC Grid-No.1 Voltage	-100	٧
→ DC Plate Current	250	mA
DC Grid-No.I Current	100	mA
← Grid-No.2 Input	5	W
→ Plate Dissipation	105	W
Peak Heater-Cathode Voltage		
Heater negative with respect to cathode	150	V
Heater positive with respect to cathode	150	٧

Typical CCS Operation

>	In grid-drive circuit at frequency of			50			470		MH z
	DC Plate Voltage		700	1000	1500	700	1000	1500	٧
	DC Grid-No.2 Voltage		175	200	200	200	200	200	٧
	DC Grid-No. I Voltage		-10	-30	-30	-30	-30	-30	٧
	DC Plate Current		300	300	300	300	300	300	mA
	DC Grid-No. 2 Current		25	20	20	10	10	5	mA
	DC Grid-No. I Current		50	40	40	30	30	30	mA
	Driver Power Output								
	(Approx.) ⁿ	ž	1.2.	2.	2.	5	5	5	W
	Useful Power Output.		120k	175k	275 ^k	100p	165 ^p	235 ^p	W
		10		0:	+ W-1.				

Maximum Circuit Values

drid-No. 1-Ciruit Resistance under Any	Condition
With fixed bias	25000 max Ω
Grid-No.2-Circuit Impedance	10000 max Ω
Plate-Circuit Impedance	m

Crid No I Ciruit Posistanos Under Any Condition

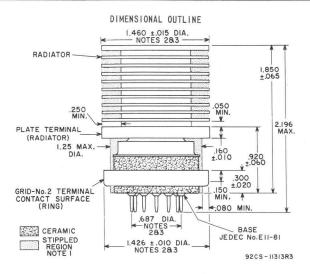
- Because the cathode is subjected to back bombardment as the frequency is increased with resultant increase intemperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater voltage obtained at minimum supply voltage conditions (all other voltages constant) the tube performance just starts to show some degradation; e.g., at 470 Miz, heater volts = 12.5 (Approx.).
- b Measured with special shield adapter.
- Mycalex Corporation of America, 125 Clifton Boulevard, Clifton, New Jersey.
- d For use at higher frequencies.
- The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 mA. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 mA.
 - Obtained preferably from a separate, well regulated source.
- 9 This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.
- Driver power output represents circuit losses and is the actual power measured at input to grid-No.l circuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.
 - With maximum signal output used as a reference, and without the use of feedback to enhance linearity.
- This value of useful power is measured at load of output circuit.
 → Indicates a change.

- The tube should see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes.
- Driver power output includes circuit losses and is the actual power measured as the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.
- Measured in a typical coaxial-cavity circuit.

CHARACTERISTICS RANGE VALUES

Test	No.			Note	Min	Max		
I. He	ater Current			1	1.15	1.45	Α	
2. Di	rect Interelectrode							
C	apacitances			2				6
	Grid No.1 to plate			-	-	0.13	pF	-
	Grid No.1 to cathode			-	14.3	17.7	pF	
	Plate to cathode		×	-	0.0065	0.0155	pF	
	Grid No.1 to grid No.2.			-	20.8	25.2	pF	
	Grid No.2 to plate				5.7	7.1	pF	
	Grid No.2 to cathode			-	2.0	3.0	pF	
	Cathode to heater			-	2.5	4.1	pF	
3. Gr	id-No.1 Voltage			1,3	-8	-19	٧	1
4. Re	verse Grid-No. Current			1,3	-	-25	μA	-
5. Gr	id-No.2 Current			1,3	-7	+6	mA	
	ak Emission				13	-	peak A	
7. In	terelectrode Leakage							
R	esistance	ž		5	1	-	$M\Omega$	

Note 1: With 13.5 volts ac or dc on heater.

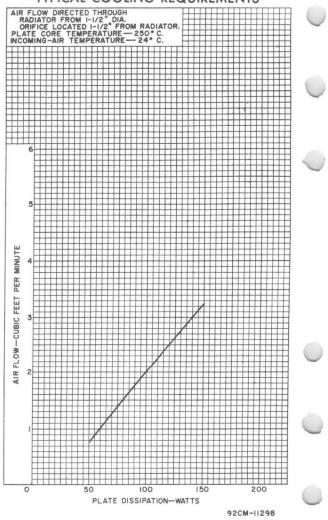

Note 2: Measured with special shield adapter.

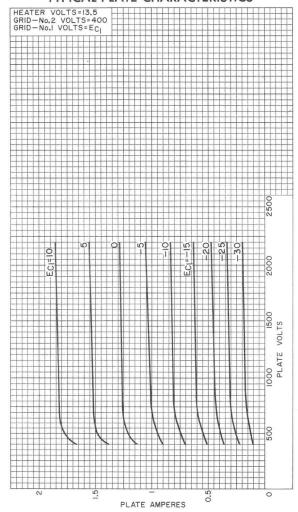
Note 3: With dcplate voltage at 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dcplate current of 185 mA.

Note 4: For conditions with grid No.1, grid No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse duration is 2.5 microseconds and pulse repetition frequency is 60 p/s. The voltage-pulse amplitude is 200 volts peak. After 1 minute at this value, the current-pulse amplitude will not be less than the value specified.

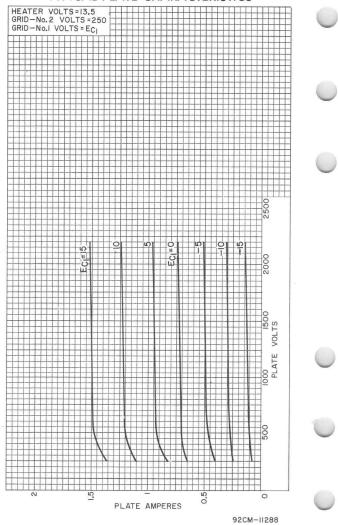
Note 5: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1 megohm, will be 1 megohm.

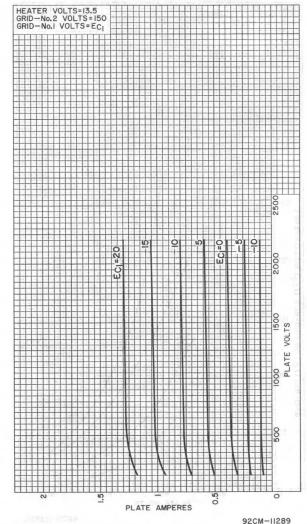
DIMENSIONS IN INCHES

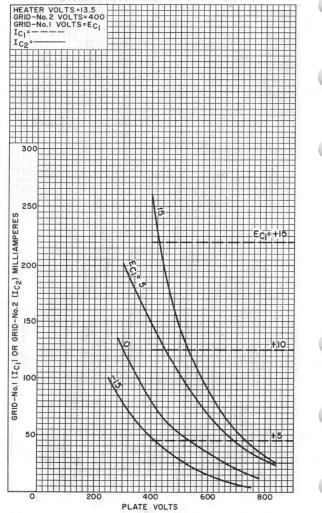

Note I: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

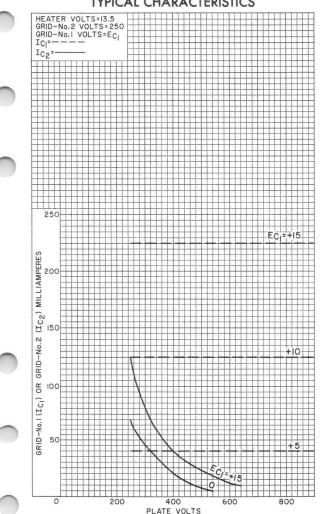

Note 2: The diameters of the radiator, grid-No. 2 terminal contact surface, and pin circle to be concentric within the following values of maximum full indicator reading:

Radiator to Grid-No. 2								
Terminal Contact Surface		÷	ŝ	٠		0.030	inch	max
Radiator to Pin Circle	×	¥.				0.040	inch	max
Grid-No. 2 Terminal Contact								
Surface to Pin Circle .	ų.	2			÷	0.030	inch	max

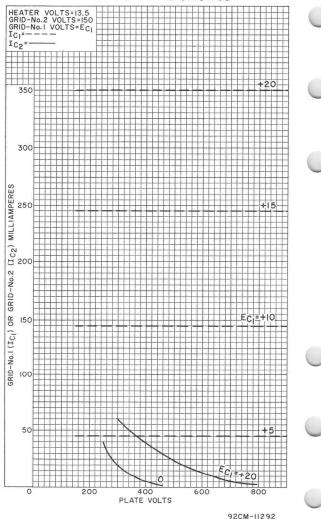

Note 3: The full indicator reading is the maximum deviation in radial position of a surface when the tube is completely rotated about the center of the reference surface. It is a measure of the total effect of run-out and ellipticity.


TYPICAL COOLING REQUIREMENTS





92CM-11290



92CM-11291

pF

pF

pF

Beam Power Tube

FORCED-AIR COOLED CERAMIC-METAL SEALS COAXIAL ELECTRODE STRUCTURE UNIPOTENTIAL CATHODE

Grid No. 2 to plate .

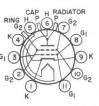
Cathode to heater.

Grid No.2 to cathode

INTEGRAL RADIATOR 380 WATTS PEP OUTPUT AT 30 MHz ABI 570 WATTS PEP OUTPUT AT 30 MHz AB2 300 WATTS CW OUTPUT AT 470 MHz

For Use as an RF Power Amplifier, Oscillator, Regulator, Distributed Amplifier or Linear RF Power Amplifier in Mobile or Fixed Equipment

	F	OT.	DI	CAL
CI	- [U I	пл	CAL


NA.	Heater, for Unipotential												
7	Voltage (AC or DC)a					*		*			13.5	± 10%	٧
	Current at 13.5 volts.												A
	Minimum heating time .										60		S
	Mu-Factor, Grid No. 2 to (Gr	id	N	0.	١.					12		
	Plate volts = 450, grid-												
	plate amperes = 1.2												
	Direct Interelectrode Car	oa	ci	tai	nce	es	b						
N.	Grid No.1 to plate									·	0.13	max	pF
р.	Grid No.1 to cathode .							į.			16		pF
	Plate to cathode												pF
	Grid No.1 to grid No.2												pF

MECHANICAL

Operating F	Positi	on .					×								×						Any
Maximum Ove	erall	Leng	gth				×								×				2	.26	in
Seated Leng	gth				*										1.	9:	20	\pm	0.	065	in
Diameter .															1.	6	25	\pm	0.	015	in
Weight (App																					
Socket			. E	rie	e c	No	0.	980	02-	-00	00	aı	nd	98	301	-	000),	Jo	hns	on d
	No.	24-3	311	-1	10,	, 1	Μу	ca	le	x e	No	0. (CPL	161	1-2	2,	or	e	qui	val	ent
Grid No. 2 B	Bypass	Cap	pac	it	or	ă.	Ŷ		. 1	Er	ie'	1	No.	29	943	3-1	00:	2,	Jo	hns	on d

No. 124-121, or equivalent Base . . Large-Wafer Elevenar II-Pin with Ring (JEDEC No. EII-81) TERMINAL DIAGRAM (Bottom View)

1 - Cathode Pin 2-Grid No. 2 Pin 3-Grid No.1 Pin 4 - Cat hode Pin 5 - Heater Pin 6-Heater Pin 7 - Grid No. 2 8 - Grid No. 1 Pin 9 - Cathode Pin 10 - Grid No. 2

CAP - Plate Terminal RADIATOR - Plate Terminal RING-Grid-No. 2 Terminal Contact

Pin 11 - Grid No.1

2.6

3.4

Surface (For use at higher frequencies)

THERMAL

	Temperature (All				250 ma	х °С
-	Core Temperature				250 ma	v 0r

Air Flow (See accompaying Typical Cooling Requirements curve).

LINEAR RF POWER AMPLIFIER

Single-Sideband Suppressed-Carrier Service
Peak envelope conditions for a signal hawing
a minimum peak-to-average power ratio of 2

a minimum peak-to-average power ratio of 2

Maximum CCS Ratings, Absolute-Maximum Values

→ DC Plate Voltage

Up to 30 N Up to 500																3000 [†] 2200	V	
															Up	to 500	MHz	
DC Grid-No.2	2 Volt	ane														400	V	4
DC Grid-No.																-100	v	-
DC Plate Curi																450g	mÅ	
DC Grid-No.																100	mA	
Plate Dissi																400	W	
Grid-No. 2 D																8	W	
Peak Heater-																±150	v	
					-													
Typical CC	S Ope	rati	on	a	3	0 1	MHZ	W	١t	h	" [WO	- 1	one	Mod	lulatio	n"	- 4
															AB1	AB_{2}		-
DC Plate Vo	ltage													1	2000	2500	٧	
DC Grid-No.															400			
DC Grid-No.	I Volt	age							0	ċ						-35		
Zero-Signal															100			
Effective R															3050			
DC Plate Cu		i ne	313	La	110		•	•	•	•		•	•	,	0000	3300	2.6	
															335	400	mΑ	
Peak of e															250			
Average. DC Grid-No.:								*		٠					250	2/5	IIIA	
															10	6	mΑ	
Peak of e Average.															7			
Average DC														-	0.05			
Peak-of-Env														(0.3		1111	
Output-Circ															90			
Distortion						HPF	11 0	٠.		•	•	•			50	30	10	
Third ord															29	j 28	dB	
Fifth ord															32			
Useful Powe								•	•	•	•	•	•		02	02	u D	
Peak of e															380	570	W	-6
Average.															190		W	-
Average.															100	200	***	
			MAY	1 m	ıım	101	rci	111	· v	2	1116	25						

Maximum Circuit Values

Grid-No. I Circuit Kesistance un	ae	r Al	пу	60	naı	τı	on.			
With fixed bias									25000	Ω
With fixed bias (In Class-AB ₁	00	er	at	ion) .				100000	Ω
With cathode bias										
Grid-No.2-Circuit Impedancem									10000	Ω
Plate-Circuit Impedance									n	

PLATE-MODULATED RF POWER AMPLIFIER - Class C Telephony^r
Carrier conditions per tube for use with a maximum modulation factor of 1

	Maximur	n cc	C Da	+in	0.0	Abcoluto-Maxim	m Val	1100		
er	conditions	per	tube	for	use	with a maximum mode	ilation	factor	of	

							Up to 500	MHz	
DC Plate Voltage							1800	V	-
DC Grid-No.2 Voltage							400	٧	
DC Grid-No. Voltage							-100	٧	

DC Plate Current
Grid-No.2 Input 5 W
Plate Dissipation 280 W
RF POWER AMPLIFIER & OSCILLATOR - Class C Telegraphy
and RF POWER AMPLIFIER - Class C FM Telephony ^r
Maximum CCS Ratings, Absolute-Maximum Values
Up to 500 MHz
DC Plate Voltage
DC Grid-No.2 Voltage
DC Grid-No.1 Voltage100 V
DC Plate Current
Grid-No.2 Dissipation 8 W
Plate Dissipation
Peak Heater-Cathode Voltage ±150 V
Typical CCS Operation
In grid-drive circuit at 50 MHz
DC Plate Voltage 700 1000 1500 2000 V DC Grid-No.2 Voltage 175 200 200 V
DC Grid-No.2 Voltage 175 200 200 200 V DC Grid-No.1 Voltage10 -30 -30 -30 V
DC Plate Current 300 300 300 300 mA
DC Grid-No.2 Current 25 20 20 20 mA
DC Grid-No.1 Current 50 40 40 30 mA Driver Power Output (Approx.) 1.2 2 2 2 W
Useful Power Output
In grid-drive circuit at 470 MHz
DC Plate Voltage 700 1000 1500 2000 V
DC Grid-No.2 Voltage 200 200 200 200 V
DC Grid-No.I Voltage30 -30 -30 V DC Plate Current 300 300 300 300 mA
DC Grid-No.2 Current 10 10 5 5 mA
DC Grid-No.I Current 30 30 30 30 mA
Driver Power Output (Approx.) 5 5 5 5 W
Useful Power Output 100 165 235 300 W
Maximum Circuit Values
Grid-No.l Circuit Resistance Under Any Condition With fixed bias
Grid-No.2-Circuit Impedance 10000 Ω
Plate-Circuit Impedance
a Because the cathode is subjected to back bombardment as the frequency is
increased with resultant increase in temperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater
pecause the cathode is subjected to back bombardment as the frequency is increased with resultant increase in temperature, the heater voltage should, for optimum life, be reduced to a value such that at the heater voltage obtained at minimum supply voltage conditions (all other volt- ages constant) the tube performance just starts to show some degradation; e.g., at 470 MHz, heater volts = 12,5 (approx.)
e.g., at 470 MHz, heater volts = 12.5 (approx.). b Measured with special shield adapter.
C Erie Technological Products, Inc., 645 West 12th Street, Erie, Pa.
d E. F. Johnson Co., 1921 10th Ave. S.W. Waseca, Minn.
Mycalex Corporation of America, 775 Clifton Boulevard, Clifton.
⁷ For operation above 2200 plate volts, the tube shall see an effective plate-supply impedance of no less than 750 ohms. A fault current

limiting resistor of no less than 15 ohms is to be used between the output filter capacitance and the tube plate. The plate-supply-output-filter capacitance is to be no greater than 10 μ F.

- 9 The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 mA. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 mA.
- h This value represents the approximate grid-No.I current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.
- J The value of third order distortion product level shown may be improved by approximately 5 dB by utilizing an unbypassed, non-inductive 20-ohm resistor between the cathode and ground; a slight increase in drive power will be required.
- A fault current limiting resistor of no less than 20 ohms is to be used between the bias supply output filter capacitance and the tube grid-No.1. The bias supply output filter capacitance is to be no greater than 150 µF.
- A fault current limiting resistor of no less than 320 ohms is to be used between the screen output filter capacitance and the tube screen. The screen supply output filter capacitance is to be no greater than 80 $\mu {\rm F}$.
- n The tube should see an effective plate supply impedance which limits the peak current through the tube under surge conditions to 15 amperes.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section.

- P See Electrical Considerations Filament or Heater.
- 9 See Cooling Considerations Forced-Air Cooling.
- See Classes of Service.

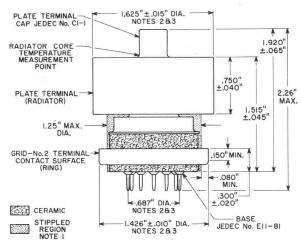
CHARACTERISTICS RANGE VALUES

	OTTAIL TO TELL TO THOSE					
Tes	t No.		Note	Min	Max	
1.	Heater Current	v	1	1.15	1.45	A
2.	Direct Interelectrode Capacitan	ice	S			
	Grid No.1 to plate	×	2	-	0.13	pF
	Grid No.1 to cathode	÷	2	14.3	17.7	pF
	Plate to cathode		2	0.0065	0.0155	pF
	Grid No.1 to grid No.2	×	2	20.8	25.2	pF
	Grid No.2 to plate	×	2	5.7	7.1	pF
	Grid No.2 to cathode	×	2	2.0	3.0	pF
	Cathode to heater	*	2	2.5	4.1	pF
3.	Grid-No.1 Voltage	v	1,3	-8	-19	V
	Reverse Grid-No. Current			-	-25	μA
5.	Grid-No.2 Current		1,3	-7	+6	mA
6.	Peak Emission	ÿ.	1,4	13	-	peak A
7.	Interelectrode Leakage Resistan	се	5	50	-	$M\Omega$
	Zero Bias Plate Current		1,6	1	1.8	A

Note 1: With 13.5 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

Note 3: With dc plate voltage at 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 mA.


Note 4: For conditions with grid No.1, grid No.2, and plate tied together; and pulse voltage source connected between plate and cathode. Pulse duration is 2.5 microseconds and pulse repetition frequency is 60 p/s. The voltage-pulse amplitude is 200 volts peak. After I minute at this value, the current-pulse amplitude will not be less than the value specified.

Note 5: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two electrodes as measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1 megohm, will be no less than the value specified.

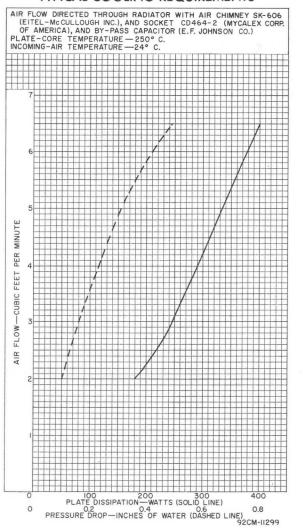
Note 6: With dc plate voltage of 450 volts, dcgrid No. 2 voltage of 400 volts, dc grid No. 1 voltage of - 100 volts, griddrive voltage to zero. With pulse duration of 4500 to 5000 µs and pulse repetition frequency is 10 to 12 p/s.

→ Indicates a change.

92CS-II304RI

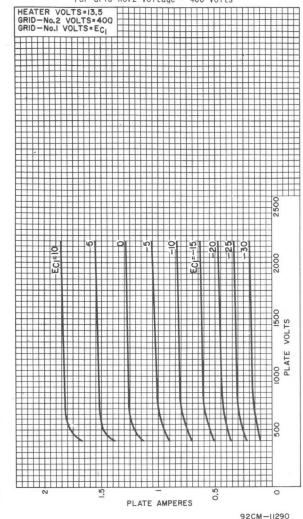
NOTE I: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR VOLUMES.

NOTE 2: THE DIAMETERS OF THE RADIATOR, GRID-No.2 TERMINAL CONTACT SURFACE, AND PIN CIRCLE TO BE CONCENTRIC WITHIN THE FOLLOWING VALUES OF MAXIMUM FULL INDICATOR READING:


Radiator to Grid-No.2

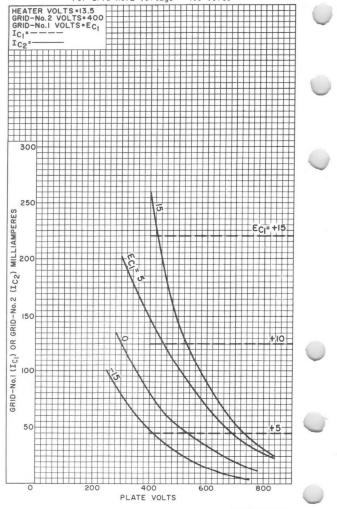
Terminal Contact Surface. 0.030" max. Radiator to Pin Circle. 0.040" max. Grid-No.2 Terminal Contact

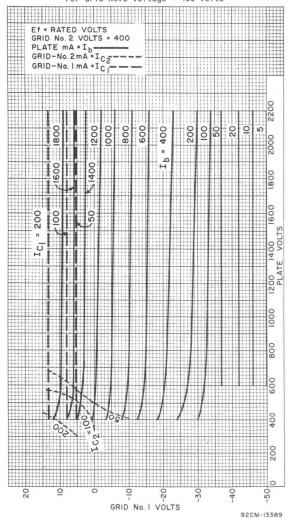
Surface to Pin Circle 0.030" max.


NOTE 3: THE FULL INDICATOR READING IS THE MAXIMUM DEVI-ATION IN RADIAL POSITION OF A SURFACE WHEN THE TUBE IS COMPLETELY ROTATED ABOUT THE CENTER OF THE REFERENCE SURFACE. IT IS A MEASURE OF THE TOTAL EFFECT OF RUN-OUT AND ELLIPTICITY.

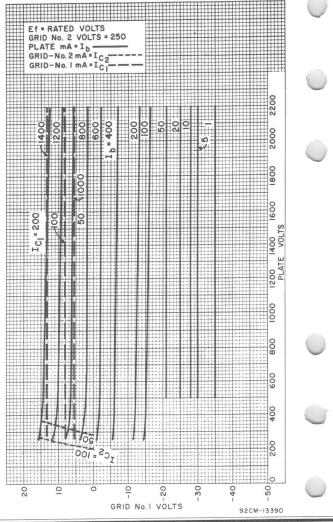
TYPICAL COOLING REQUIREMENTS

TYPICAL PLATE CHARACTERISTICS


For Grid-No.2 Voltage = 400 Volts


TYPICAL CHARACTERISTICS

For Grid-No.2 Voltage = 400 Volts


TYPICAL CONSTANT-CURRENT CHARACTERISTICS

For Grid-No.2 Voltage = 400 Volts

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

For Grid-No.2 Voltage = 250 Volts

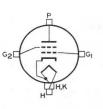
Beam Power Tube

CERAMIC-METAL SEALS
"ONE-PIECE" ELECTRODE DESIGN

COAXIAL-ELECTRODE STRUCTURE
INTEGRAL RADIATOR

2 MEGAWATT MAXIMUM PEAK POWER INPUT UP TO 500 MC MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE

For use at Frequencies up to 500 Mc


GENERAL DATA

Electrical:

Heater, for Matrix-Type, Oxide-Coated, Unipotential Cathode^a

						aximum	
	Voltage (AC or DC)		2	2		23	volts
	Current at heater volts = 22	,		×	12.6		amp
	Minimum heating time	,			5		minutes
7	Mu-Factor, Grid No.2 to Grid No.1						
	for plate volts = 5000, grid-No.2						
	volts = 1400, and plate ma. = 500	,			25		
	Direct Interelectrode Capacitances:						
	Grid No.1 to plateb				0.3	max.	pf
	Grid No.1 to cathode & heater				100		pf
	Plate to cathode & heater b, c				0.03	max.	pf
	Grid No.1 to grid No.2				110		pf
	Grid No.2 to plate			٠	24		pf
	Grid No.2 to cathode & heater				1.5	max.	pf
	Mechanical:						
	Operating Position Maximum Overall Length						Any . 7.24"

G₁ - Grid-No-1-Terminal Contact Surface G₂ - Grid-No.2-Terminal Contact Surface H - Heater-Terminal Contact Surface

H,K-Heater- & Cathode-Terminal Contact Surface P-Plate-Terminal Contact Surface

Thermal:

Air Flow:

Through radiator—Adequate air flow to limit the plate-core temperature to 250°C should be delivered by a blower through the radiator before and during the application of heater, plate, grid-No.2, and grid-No.1 voltages. Typical

values of air flow directed through the radiator versus plate dissipation are shown in accompanying Typical-Cooling-Requirements curve.

To Plate, Grid-No.2, Grid-No.1, Cathode, and Heater Terminals— A sufficient quantity of air should be allowed to flow past each of these terminals to prevent their temperature from exceeding the specified maximum value of 250°C.

Plate power, grid-No.2 power, heater power, and the forced-air flow may be removed simultaneously.

PULSED RF AMPLIFIER

Maximum CCSe Ratings, Absolute-Maximum Values:

For maximum "on" time f of 10 microseconds in any 2000-microsecond interval and frequencies up to 500 Mc

		lts
	15000 max. vo	ilts
POSITIVE-PULSE GRID-No.2 VOLTAGE:		ic i
Peak		lts
DC	2500 max. vo	ilts
NEGATIVE-PULSE GRID-No.1 VOLTAGE:		
Peak	(C)	lts
DC	500 max. vo	ilts
DC-PULSE PLATE CURRENT	80 max. a	mps
DC PLATE CURRENT	0.5 max.	amp
GRID-No.2 INPUT (Average)	150 max. wa	tts
GRID-No.1 INPUT (Average)		tts
PLATE DISSIPATION (Average)	10000 max. wa	tts

Maximum Circuit Values:

Grid-No.1-Circuit Resistance
under any condition 2000 max. ohms

a See Operating Considerations.

b With external flat metal shield 8" diameter having center hole 4" diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2 and ground.

with external flat metal shield 8" diameter having center hole 3-3/8" diameter. Shield is located in plane of the grid-No.1 terminal, perpendicular to the tube axis, and is connected to grid No.1 and ground.

d See Operating Considerations and also Dimensional Outline for temperaturemeasurement points.

e Continuous Commercial Service.

f "On" time is defined as the sum of the durations of all the individual pulses which occur during the interval. An increase in dc plate current during the pulse may be permissible at shorter "on" times, and a decrease is usually required at longer "on" times. Pulse duration is defined as the time interval between the two points on the pulse at which the instantaneous value is 70 per cent of the peak value. Peak value is defined as the maximum value of a smooth curve through the average of the fluctuations over the top portion of the pulse. Duty factor is defined as the ratio of "on" time to total elapsed time in any interval.

Pressurization may be required when the tube is used at high altitudes and plate voltages near the maximum rating to prevent flash-over at the tube seals.

CHARACTERISTICS RANGE VALUES

	Note	Min.	Max.	
Heater Current	1	11.7	13.5	amp
Direct Interelectrode Capacitances:				
Grid No.1 to plate		_	0.3	pf
Grid No.1 to cathode & heater		91	113	pf
Plate to cathode & heater	2,3	-	0.03	pf
Grid No.1 to grid No.2		99	121	pf
Grid No.2 to plate		21	26	pf
Grid No.2 to cathode & heater	3	-	1.5	pf
Grid-No.1 Voltage	1,4	-27	-61	volts
Grid-No.1 Cutoff Voltage	1,5	-	-95	volts

Note 1: With 22 volts ac or dc on heater.

With external flat metal shield 8" diameter having center hole 4" diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2 and ground. Note 2:

With external flat metal shield 8" diameter having center hole 3-3/8" diameter. Shield is located in plane of the grid-No.1 terminal, perpendicular to the tube axis, and is connected to Note 3: grid No.1 and ground.

With dc plate voltage of 5000 volts, dc grid-No.2 voltage of 1500 volts, and dc grid-No.1 voltage adjusted to give a plate current of 500 ma. Note 11.

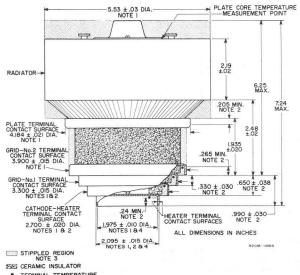
With dc plate voltage of 5000 volts, dc grid-No.2 voltage of 1500 volts, and dc grid-No.1 voltage adjusted to give a plate current of 20 ma. Note 5:

OPERATING CONSIDERATIONS

Heater

The heater of the 8184 should be operated at constant voltage rather than constant current. The rated heater voltage of 22 volts should be applied for 5 minutes to allow the cathode to reach normal operating temperature before voltages are applied to the other electrodes. Good regulation of the heater voltage is in general economically advantageous from the viewpoint of tube life; in no case should the voltage fluctuations be more than 5%.

Temperature

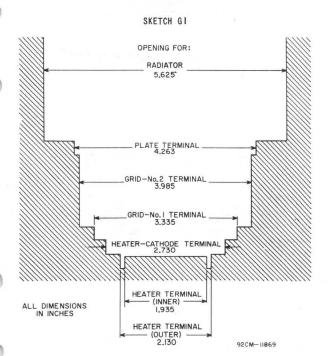

The maximum terminal temperature of 250° C is a tube rating and is to be observed in the same manner as other ratings. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. The latter is made in the form of liquid and stick by the Tempil Corporation, 132 West 22nd Street, New York II, N.Y.

Standby Operation

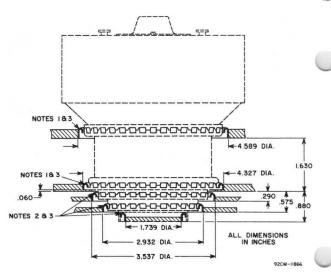
During long or frequent standby periods, the 8184 may be operated at decreased heater voltage to conserve life. It is recommended that the heater voltage be reduced to 80% of normal during standby periods up to 2 hours. For longer periods. the heater voltage should be turned off.

Precautions

The maximum-rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any highpotential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.


TERMINAL TEMPERATURE
MEASUREMENT POINT

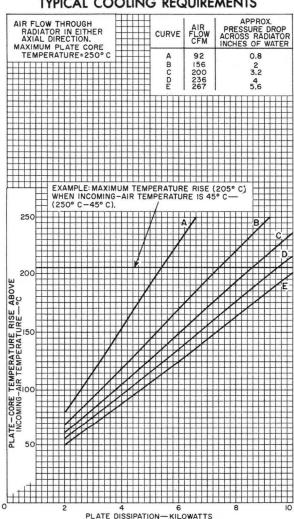
NOTE 1: SEE SKETCH GI FOR THE MAXIMUM DIAMETRICAL SPACE REQUIRED BY THE 8184 BASED UPON THE DIAMETER AND ECCENTRI-CITY OF RADIATOR BAND AND OF EACH RING TERMINAL.


NOTE 2: THE DIAMETER OF THE TERMINAL IS HELD TO THE INDICATED VALUE ONLY OVER THE CONTACT SURFACE LENGTH. CONTACT SURFACE LENGTH OF THE HEATER, HEATER-CATHODE, AND GRID-No. I TERMINALS EXTENDS FROM THE EDGE OF ITS TERMINAL TO THE PLANE COINCIDENT WITH THE EDGE OF THE ADJACENT LARGER TERMINAL.

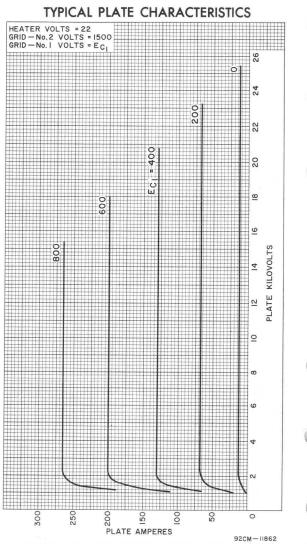
NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR REGIONS.

NOTE 4: THE HEATER TERMINAL IS DIMENSIONED FOR INSIDE DIAMETER AND OUTSIDE DIAMETER TO PROVIDE A CHOICE OF CONTACT MOUNTING; THE DIMENSIONS SHALL NOT BE CONSIDERED CONCURRENTLY.

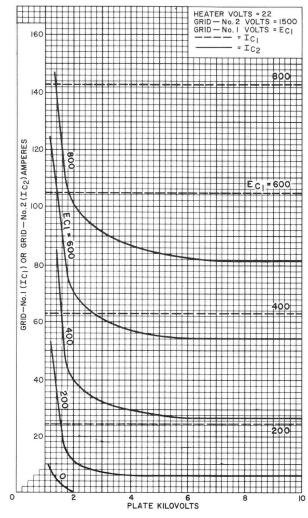
SUGGESTED MOUNTING ARRANGEMENT & LAYOUT OF ASSOCIATED CONTACTS

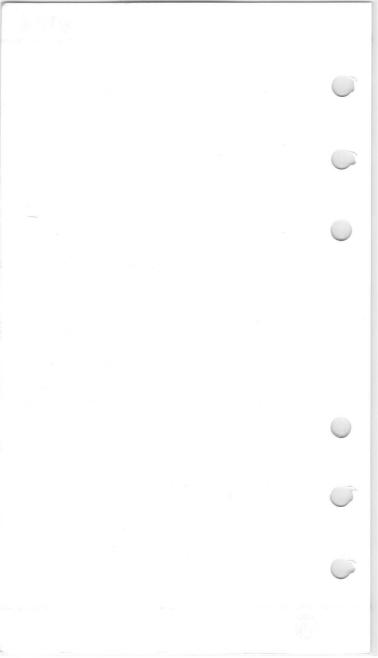

NOTE 1: FINGER STOCK NO.97-310.

NOTE 2: FINGER STOCK NO.97-139.


NOTE 3: SPECIFIED FINGER STOCK IS MADE BY INSTRUMENT

SPECIALITIES COMPANY, LITTLE FALLS, NEW JERSEY.


TYPICAL COOLING REQUIREMENTS


TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS

Power Triode

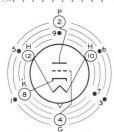
NUVISTOR TYPE

ALL-CERAMIC-AND-METAL CONSTRUCTION

For Class C RF Power Amplifier and Oscillator Service, DC Pulse-Amplifier and Frequency-Multiplier Tube Applications, Including Use in Equipment in which Ability to Withstand Severe Mechanical Shock and Vibration, Compactness, and Exceptional Uniformity of Characteristics are Primary Requirements.

Electrical:

Heater Characteristics and Ratings: Voltage (AC or DC)	6.3 ± 0.6	volte
Current at 6.3 volts	0.160	amp
Peak heater-cathode voltage		
(CCSa or ICASb conditions):		
Heater negative with respect to cathode.	100 max.	volts
Heater positive with respect to cathode.		
Direct Interelectrode Capacitances (Approx.):	TOO max.	VO1 (3
Direct interelectrode capacitances (Approx.):		
Grid to plate	2.2	pf
Input: G to (K,S,H)	4.2	pf
Output: P to (K,S,H)	1.6	pf
Cathode to plate	0.26	pf
	1.5	pf


Mechanical:

Operating Position.

Type of	C	at	hoc	de														Co	oa:	tec	1	Un	ipo	ter	ntia
Maximum	1 0	ve	ral	1	Le	eng	gth	٦.											÷					0.	800
Maximum																									
Maximum	n D	iar	met	er																				0.	440
Weight	(A	pp	rox	(.)																			1.	9 0	ram
Envelop	e.																			Me	et	al	St	el1	MT
Socket.						. 5	See	9	Soi	ck	e t	8	C	nn	re	cto	2	In	ı f	orn	na	ti	on	for	- RC
								N	1/7)	15	t.o	r	Tul	500		at	f	ror	nt	of	F.	th	is	Sec	tio

Base. . . Medium Ceramic-Wafer Twelvar 5-Pin (JEDEC No.E5-65) Basing Designation for BOTTOM VIEW. 12AC

Pin 1c - Do Not Use Pin 2 - Plate 3° - Do Not Use Pin 4 - Grid 5c - Do Not Use Pin Pin Pin 6° - Do Not Use 7°-Do Not Use Pin Pin 8 - Cathode Pin 9c - Do Not Use Pin 10 - Heater Pin 11 - Omitted Pin 12 - Heater

INDEX=LARGE LUG

= SHORT PIN; IC-DO NOT USE

Characteristics, Class A Amplifier:	
DC Plate Supply Voltage. 75 150 volts Grid Supply Voltage. 0 0 volts Cathode Resistor 100 560 ohms Amplification Factor 35 30 Plate Resistance (Approx.) 2700 5000 ohms Transconductance 13000 6000 μmhos Plate Current 11.5 7 ma Grid Voltage (Approx.) for plate μa = 10 -6.5 -15 volts	0
RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy	
and	
RF POWER AMPLIFIER — Class C FM Telephony	
Maximum Ratings, Absolute-Maximum Values:	
For operation at frequencies up to 250 Mc	
CCS ICAS	
DC Plate Supply Voltage 400° max. 400° max. volts DC Plate Voltage 250° max. 300° max. volts DC Grid Voltage:	
Negative-bias value 100 max. 100 max. volts Positive-bias value 0 max. 0 max. volts Peak-Positive Grid Voltage 5 max. 5 max. volts	
Peak-Positive Grid Voltage 5 max. 5 max. volts DC Cathode Current 25 max. 30 max. ma DC Grid Current 5 max. 6 max. ma	
Plate Dissipation 1.5 max. 1.8 max. watts	
Typical CCS Operation:	
As rf power amplifier in cathode-drive circuit at 160 Mc	
DC Plate-to-Grid Voltage 155 volts DC Cathode-to-Grid Voltage 14 volts From a grid resistor of 2700 ohms DC Cathode Current 21 ma DC Grid Current 5 ma Driver Power Output (Approx.) 0.4 watt Useful Power Output (Approx.) 1.55f watts	
As rf oscillator at 160 Mc	
DC Plate Voltage	0

Maximum Circuit Values:

Grid-Circuit Resistance (CCS or ICAS conditions): 9
For fixed-bias or cathode-bias operation. , 50000 max. ohms

125 volts -70 volts

250 Mc

FREQUENCY MULTIPLIER

Maximum	Ratings,	Absol	ute-	Maximum	Values	
	For ope	ration	at	frequenc	ies up	to
					000	

		CC.	5	7	CAS	
DC Plate Supply Voltage		7.0	-		-	volts
DC Plate Voltage		250€	max.	250	max.	volts
DC Grid Voltage:						
Negative-bias value			max.	200	max.	volts
Positive-bias value		0	max.	0	max.	volts
Peak-Positive Grid Voltage		5	max.	5	max.	volts
DC Cathode Current	100	20	max.	24	max.	ma
DC Grid Current		3	max.	4	max.	ma
Plate Dissipation		1.3	max.	1.5	max.	watts

Typical CCS Operation:

		AS	1	001	uo.	le1	J	10	m	00)	10	10	00	MO	
DC	Plate	Voltage														
DC	Grid 1	Voltage.									2					

From a grid resistor	of.						18000	ohms
DC Cathode Current							22	ma
DC Grid Current								
Driver Power Output (A								
Useful Power Output (A								

Maximum Circuit Values:

Grid-Circuit Resistance (CCS or ICAS conditions):9 For fixed bias or cathode-bias operation . 50000 max. ohms

DC PULSE AMPLIFIER

Maximum Ratings, Absolute-Maximum Values: Peak Positive-Pulse Plate Voltage

Peak Positive-Pulse Plate Voltage	500e	max.	volts
DC Plate Voltage	250 e	max.	volts
DC Grid Voltage:			
Negative-bias value	100	max.	volts
Positive-bias value	0	max.	volts
Peak Positive Grid Voltage	5	max.	volts
DC Grid Current	5	max.	ma
DC Cathode Current	18	max.	ma
Peak Cathode Current:			
For duty factors up to 1 per cent	250	max.	ma
For duty factors between 1 and 50			

. . . . See Pulse Rating Chart per cent . Plate Dissipation. 1 max.

Maximum Circuit Values:

Grid-Circuit Resistance:						
For fixed-bias operation .				0.5	max.	megohm
For cathode-bias operation				1	max.	megohm

a Continuous Commercial Service.

Intermittent Commercial and Amateur Service. No operating or "ON" period exceeds 5 minutes and every "ON" period is followed by an "OFF" or stand-by period of the same or greater duration. ${\bf C}$ Pins 1,3,5,6,7, and 9 are of a length such that their ends do not touch the socket insertion plane.

- d Key-down conditions per tube without amplitude modulation. Modulation, essentially negative, may be used if the positive peak of the audiorfrequency envelopedoes not exceed 115 per cent of the carrier conditions.
- Under no circumstances should this absolute-maximum value be exceeded. For nigh-altitude operation the maximum permissible plate supply voltage and plate voltage for the 8203 are dependent on atmospheric pressure. See accompanying graph of Low-Pressure Voltage-Breakdown Characteristics of Musistor Triode Base.
- Measured at load of output circuit.
- 9 For operation at metal-shell temperature of 150°C. For operation at other metal-shell temperatures, see accompanying Grid-CircuitResistance Rating Chart. Metal-shell temperatures are measured in Zone "A" as shown on accompanying Dimensional Outline.

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN

Heater Current Direct Interelectrode	٠	٠			Note 1	Min. 0.150	Max. 0.170	amp
Capacitances: Grid to plate	•				2 2 2 2 1,3 1,4 1,5 6,7	1.8 3.8 1.4 0.20 1.2 5.0 4000 - 10 20	2.6 4.6 1.8 0.32 1.8 9.5 50 8000 0.1 -	pf pf pf pf pf pf ma µa µmhos µa ma
Heater negative with respect to cathode.					1,8	-	5	μα
Heater positive with respect to cathode. Leakage Resistance:					1,8	-	5	μα
Between grid and all other electrodes tied together Between plate and all other electrodes	(*)	*	×		1,9	1000	_	megohms
tied together Useful Power Output					1,10 1,11	1000	-	megohms watt
Peak Cathode Emission Current (Pulsed)				·	1,12	250	-	ma

Note 1: With ac or dc heater volts = 6.3.

Note 2: Measured in accordance with EIA Standard RS-191-A.

Note 3: With dc plate supply volts = 150, dc grid supply volts = 0, cathode resistor (ohms) = 560, cathode-bypass capacitor (μ f) = 1000, and metal shell connected to ground.

Note 4: With dc plate volts = 150, dc grid volts = -15, and metal shell connected to ground.

Note 5: With dc plate supply volts = 100, dc grid supply volts = 1.7 grid-circuit resistance (megohm) ≤ 1 (the internal resistance of the current meter used for this measurement), and metal shell connected to ground.

- Note 6: With ac or dc heater volts = 5.5.
- Note 7: With dc plate supply volts = 50, dc grid supply volts = -5.7, 66-cps grid-signal volts (rms) = 7.5, dc resistance of transformer secondary winding in grid circuit ≤ 2 ohms, grid-voltage-supply bypass capacitor (µf) = 100, and metal shell connected to ground Acemissan in measured as the dc component of plate current at
- Note 8: With dc heater-cathode volts = 100.
- Note 9: With grid 100 volts negative with respect to all other electrodes tied together, and metal shell connected to ground.
- Note 10: With plate 300 volts negative with respect to all other electrodes tied together, and metal shell connected to ground.
- Note 11: Measured at load in 250-Mc rf amplifier circuit with dc plate supply volts = 150, grid resistor (ohms) = 4700, driver power output (milliwatts) = 350, and plate milliamperes = 20.
- Note 12: With dc plate supply volts = 250 and dc grid supply volts = -20. The grid is driven with pulse voltage, as follows: peak volts between grid and negative end of cathode resistor = 5, pulse repetition rate = 1000, pulse duration = 10 µs, pulse rise time ≤ 1 µs, and time of fall ≤ 1 µs. Peak cathode current is measured with a high impedance oscilloscope or equivalent device connected across a 1-ohm cathode resistor.

SPECIAL TESTS

Shock:

Peak Impact Acceleration. 1000 g This test is performed on a sample lot of tubes to determine the ability of the tube to withstand the specified Peak Impact Acceleration. Tubes are held rigid in each of four positions (X_1 , X_2 , Y_1 , and Y_2) in a Navy-Type, High-Impact (Flyweight) Shock Machine, and, with tube electrode voltages applied, are subjected to 20 blows (5 in each position) at the specified Peak Impact Acceleration.

At the end of this test, tubes are criticized for Shorts and Continuity, Change in Transconductance, Reverse Grid Current, Heater-Cathode Leakage Current, and Variable-Frequency Vibration.

Variable-Frequency Vibration:

This test is performed on a sample lot of tubes operated under the conditions specified in CHARACTERISTICS RANGE VALUES for Transconductance, with the addition of a plate-load resistor of 2000 ohms. During operation, tube is vibrated in the XI position through the frequency range of 3000 to 15000 cycles per second with a constant vibrational acceleration of Ig. During the test, tube must not show an rms output voltage across the plate-load resistor in excess of:

25 millivolts over the frequency range of 3000 to 6000 cps 500 millivolts over the frequency range of 6000 to 15000 cps Post-Impact and Post-Sweep-Frequency Fatigue Vibration limits:

35 millivolts over the frequency range of 3000 to 6000 cps 700 millivolts over the frequency range of 6000 to 15000 cps

Sweep-Frequency Fatigue Vibration:

This test is performed on a sample lot of tubes with only heater voltage of 6.3 volts applied. During operation, the tube is rigidly mounted and is vibrated through the frequency range of 5 to 500 cps and back to 5 cps. One such vibration sweep cycle takes approximately 15 minutes. The tubes are vibrated for a period of 3 hours along each of 3 mutually perpendicular axes for a total of 9 hours. The longitudinal axis of the tube is coincident with one of the 3 axes. The vibrations are applied as follows:

- a From 5 to 50 cps with a constant peak-to-peak displacement of 0.080 inch.
- b From 50 to 500 cps with a constant acceleration of 10 g.
- c From 500 to 50 cps and then to 5 cps follows the procedure shown in a and b, but in reverse.

At the end of this test, tubes are criticized for Shorts and Continuity, Change in Transconductance, Reverse Grid Current, Heater-Cathode Leakage Current, and Vibration-Frequency-Vibration.

Low-Pressure Voltage Breakdown:

This test is performed on a sample lot of tubes to determine the ability of the tube to withstand high-altitude (low-air-pressure) conditions. Tubes are operated with 250 rms volts applied between the plate and all other electrodes and metal shell connected together. The tubes must not break down or show evidence of corona when subjected to air pressure equivalent to an altitude of 100,000 feet (8.0 \pm 0.5 mm Hg):

Shorts and Continuity:

This test is performed on a sample lot of tubes from each production run. Tubes are subjected to the Thyratron-Type Shorts Test described in MIL-E-ID, Amendment 2, Paragraph 4.7.7, except that tapping is done by hand with a soft rubber tapper (Specifications for this tapper will be supplied on request). The areas of acceptance and rejection for this test are shown in the accompanying graph, Sharts-Test Acceptance Limits. Tubes are criticized for permanent or temporary shorts and open circuits.

Intermittent Conduction Life (1000 hours):

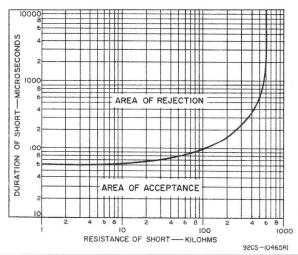
This test is performed on a sample lot of tubes from each production run to assure the high quality of individual tubes and to prevent epidemic failures due to excessive changes in tube characteristics. Tubes are operated with heater voltage of 6.3 volts cycled IIO minutes on and IO minutes off, and plate dissipation = 1.5 watts (approx.), at a shell temperature of 1500 C.

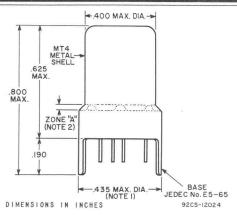
Tubes are criticized at 2 hours, 20 hours, and 100 hours for Inoperatives $^{\rm h}$ and Transconductance, and at 500 hours and 1000 hours for Inoperatives $^{\rm h}$ and Useful Power Output at 250 Mc.

Oscillator Life (1000 hours):

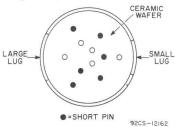
This test is performed on a sample lot of tubes to assure satisfactory operation of the tube as a 250-Mc oscillator. Tubes are operated with heater volts = 6.3 and plate dissipation = 1.4 watts.

Tubes are criticized at 500 and 1000 hours for Inoperatives h and Useful Power Output at 250 Mc.

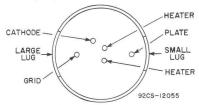

Grid Pulse Life (1000 hours):


This test is performed on a sample lot of tubes from each production lot. Tubes are operated with heater voltage of 6.3 volts cycled 110 minutes on and 10 minutes off, dc plate supply volts = 300, dc grid supply volts = -20, grid resistor (ohms) = 47, and plate-load resistor (ohms) = 330. The grid is driven with pulse voltage, as follows: peak grid-to-cathode volts = 5, pulse repetition rate = 1000, pulse duration = $10 \mu s$, pulse rise time < 1 μ s, and time of fall < 2 μ s.

Tubes are tested at 500 hours and 1000 hours for Inoperativesh and Peak Cathode Emission Current (Pulsed).

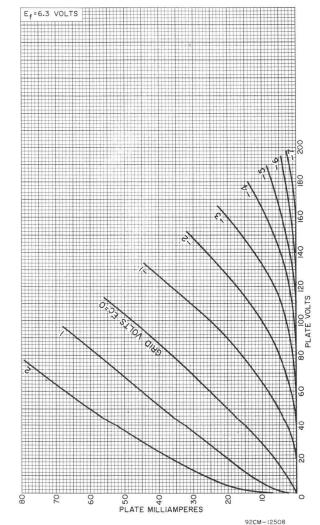

 \boldsymbol{h} An inoperative is defined as a tube having a discontinuity, permanent short, or air leak.

SHORTS-TEST ACCEPTANCE LIMITS



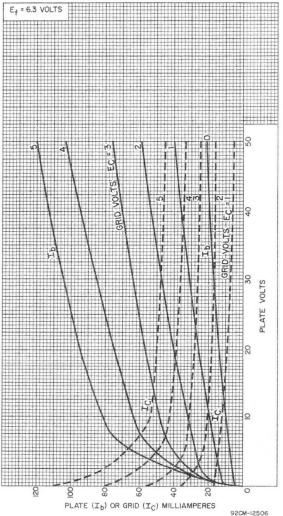
BOTTOM VIEW Showing Arrangement of All II Base Pins

MODIFIED BOTTOM VIEW
With Element Connections Indicated
and Short Pins Not Shown

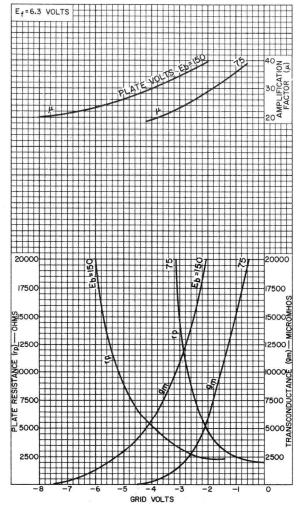


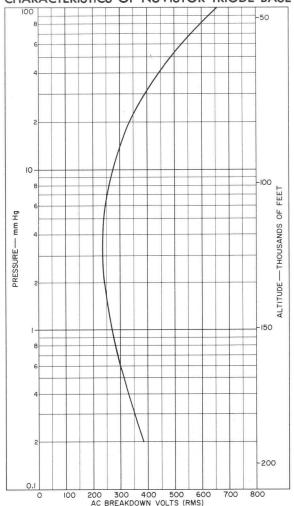
Note I: Maximum outside diameter of 0.440" is permitted along 0.190" lug length.

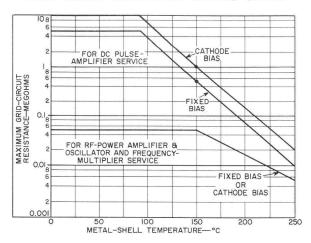
Note 2: Metal-shell temperature should be measured in zone "A".



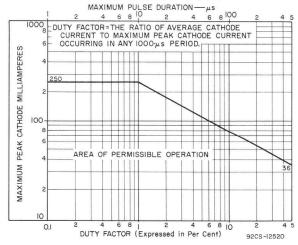
AVERAGE PLATE CHARACTERISTICS

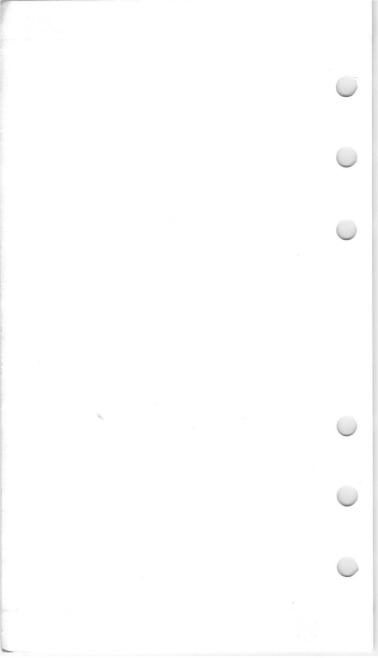



AVERAGE CHARACTERISTICS


AVERAGE CHARACTERISTICS

LOW-PRESSURE VOLTAGE-BREAKDOWN CHARACTERISTICS OF NUVISTOR TRIODE BASE




GRID-CIRCUIT-RESISTANCE RATING CHART

92CS-1252I

PULSE RATING CHART

Beam Power Tube

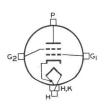
FORCED-AIR COOLED INTEGRAL RADIATOR MATRIX-TYPE CATHODE

CERMOLOX® HIGH GAIN-BANDWIDTH PRODUCTS 340 WATTS CW POWER OUTPUT AT 400 Mc 105 WATTS CW POWER OUTPUT AT 1215 Mc

For Compact Aircraft, Mobile, and Stationary Equipment Applications in the UHF Frequency Range

GENERAL DATA

- 9	-	0000	- 1		ca	1 -


Electrical:	
Heater, for Matrix-Type, Oxide- Coated, Unipotential Cathode:	volts
Current at heater volte = 6 3	
	amp
	sec
Mu-Factor, Grid No.2 to Grid No.1	
for plate volts = 250, grid-No.2	
volts = 250, and plate ma. = 100	
Direct Interelectrode Capacitances: b	
Grid No.1 to plate 0.065 max.	pf
	pf
	pf
	# 100 CO
Grid No.1 to grid No.2	pf
Grid No.2 to plate 3.2	pf
Grid No.2 to cathode & heater 1.30 max.	pf
)	Coated, Unipotential Cathode: Voltage (AC or DC)a 6.3 Current at heater volts = 6.3 3.2 Minimum heating time 60 Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 250, grid-No.2 volts = 250, and plate ma . = 100 18 Direct Interelectrode Capacitances: Grid No.1 to plate

Mechanical:

Operating Position	n							200			Any
Overall Length									2.	.620"	± 0.090"
Greatest Diameter											
Weight (Approx.).											4 oz
Radiator											
Terminal Connection	ons	(See	e Di	men	sio	nal	Out	line	: (:		

G ₁ - Grid-No.1-
Terminal
Contact
Surface
G2 - Grid-No.2-
Terminal
Contact
Surface
H-Heater-
Terminal

Contact Surface

Cathode-Terminal Contact Surface P-Plate-Terminal Contact Surface

H, K - Heater- &

Thermal:

	Plate, Grid No.2, Grid No.1,	
V	Cathode, and Heater Temperature ^c 250 max.	oC
7.	Radiator Core Temperature ^c 250 max.	oC

Air Flow:

Through radiator — Adequate air flow to limit the radiator core temperature to 250°C should be delivered by a blower through the radiator before and during the application of plate, grid-No.2, and grid-No.1 voltages. Typical values of air flow directed through the radiator versus plate dissipation are shown in accompanying Typical-Cooling-Requirements curve.

To Plate, Grid-No.2, Grid-No.1, Cathode, and Heater Terminals — A sufficient quantity of air should be directed at the heater terminal and allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

During Standby Operation — Cooling air is not usually required when only heater voltage is applied to the tube.

Plate Power, Grid-No.2 Power, Heater Power, and Air Flow — These may be removed simultaneously.

At Sea Level — Cooling requirements, with air flow directed through the radiator as shown in accompanying Typical-Cooling-Requirements curve, may be met by use of the following blowers and associated motors manufactured by Rotron Manufacturing Company Incorporated, Woodstock, New York, or equivalent: For 100% Plate Dissipation:

Blower Model No.	KS-2501	AS-2501	AXIMAX I	AXIMAX I	
Motor Model No.	165AS	323JS	464YS	49915	
Phase (ϕ)	1	3	. (-	3	
Frequency (cps)	60	60	400	400	
Voltage (v)	115	220	115	200	
For 80% Plate Dissipation	:				
Blower Model No.	KS-201	AS-201	AXIMAX I	AXIMAX I	
Motor Model No.	92AS	323JS	464YS	499JS	
Phase (ϕ)	1	3	1	3	
Frequency (cps)	60	60	400	400	
Voltage (v)	115	220	115	200	
For 60% Plate Dissipation	:				
Blower Model No.	KS-1504	AS-1504	AXIMAX I	AXIMAX I	d
Motor Model No.	92AS	323JS	464YS	499JS	
Phase (ϕ)	1	3	Ĺ	3	
Frequency (cps)	60	60	400	400	
Voltage (v)	115	220	115	200	

RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy and RF POWER AMPLIFIER — Class C FM Telephony

Maximum CCS^d Ratings, Absolute-Maximum Values:

DC PLATE VUL	IAGE								2500	max.	volts	
DC GRID-No.2	VOLTAGE.	*			×	÷			400	max.	volts	
DC GRID-No.1	VOLTAGE.				×				-200	max.	volts	
DC PLATE CUR	RENT								250	max.	ma	
DC GRID-No.1										max.	ma	
GRID-No.2 IN	PUT ^e		*1				100	Del.	10		watts	
PLATE DISSIP	ATION					÷			300	max.	watts	

Typical CCS Operation:

In cathode-drive circuit

)	Frequency	400	1215	Mc
	DC Plate Voltage	2500	1250	volts
	DC Grid-No.2 Voltage	250	300	volts
	DC Grid-No.1 Voltage ^f	-15	-30	volts
	DC Plate Current	250	250	ma
	DC Grid-No.2 Current	2	1	ma
Ĺ	DC Grid-No.1 Current	15	7	ma
)	Driver Power Output (Approx.) 9	5	10	watts
	Output-Circuit Efficiency	90	60	%
	Useful Power Outputh	340j	105	watts
	Maximum Circuit Values:			
	Grid-No.1 Circuit Resistance	30000	max.	ohms
	Grid-No.2 Circuit Impedance	10000	max.	ohms
)	Plate Circuit Impedance	k		

- a See Operating Considerations under Heater.
- b Measured with special shield adapter.
- $^{\mathbf{C}}$ See Operating Considerations under Temperature and also Dimensional Outline for temperature measurement points.
- d Continuous Commercial Service.
- e See Operating Considerations under Grid No.2.
- f Obtained preferably from fixed supply and grid-No.1 resistor. Sufficient voltage should be provided from fixed supply to protect the tube in case of drive loss.
- 9 Driver power output includes circuit losses and is the actual power measured at the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.
- h Measured in a typical coaxial-cavity circuit.
- j For Minimum Useful Power Output value, see Characteristics Range Values, Test No.8.
- k See Operating Considerations under Precautions.

CHARACTERISTICS RANGE VALUES

	Test No.	Note	Min.	Max.	
	1. Heater Current	1	2.90	3.55	amp
	Direct Interelectrode Capacitances:				
	Grid No.1 to plate	2	-	0.065	pf
	Grid No.1 to cathode & heater	2	13.5	16.5	pf
	Plate to cathode	-			
)	& heater	2	(man)	0.019	pf
	Grid No.1 to grid No.2	2	16.8	22.2	pf pf
	Grid No.2 to plate	2	2.7	3.7	pf
	Grid No.2 to cathode				
	& heater	.2	-	1.30	pf
	Grid-No.1 Voltage	1.3	-6.5	-20.5	volts
	4. Grid-No.1 Cutoff Voltage	1.4	-	-65	volts
í.	Reverse Grid-No.1 Current	1,3	-	-20	μa
7	6. Grid-No.2 Current	1,3	-8	+2	ma

Test No.	Note	Min.	Max.	
7. Interelectrode Leakage Resistance: Between plate and all				
other electrodes Between any two elec-	5	10	-	megohms
trodes except plate	5	1	-	megohm
8. Useful Power Output	6	300	_	watts

- Note 1: With 6.3 volts ac or dc on heater.
- Note 2: Measured with special shield adapter.
- Note 3: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of 300 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 120 ma.
- Note 4: With dc plate voltage of 2500 volts, dc grid-No.2 voltage of #00 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 2.5 ma.
- Note 5: Under conditions with tube at 20° to 30° C without any voltages applied to the tube, the resistance between the two electrodes is measured with a 200-volt Megger-type ohmmeter having an internal impedance of 1.0 megohm.
- Note 6: In a single-tube, cathode-driven coaxial-cavity class C amplifier circuit at 400 Mc and for conditions with 5.7 volts ac or dc on heater, dc plate voltage of 2500 volts and driver power output of 5 watts, dc grid-No.2 voltage of 250 volts, grid-No.1 voltage and tuning circuit are adjusted for maximum power output with plate current not to expeed 250 ma and grid-No.1 current not to exceed 20 ma.

OPERATING CONSIDERATIONS

Heater

The heater of the 8226 should be operated at constant voltage rather than constant current. The rated heater voltage of 6.3 volts should be applied for 60 seconds to allow the cathode to reach normal operating temperature before voltages are applied to other electrodes.

The life of the cathode can be conserved by operating at the lowest heater supply voltage which will give the desired performance. Good regulation of the heater supply voltage is, in general, economically advantageous from the viewpoint of tube life; in no case should the voltage fluctuations be more than 5%. This recommendation is particularly applicable at the higher operating frequencies.

Temperature

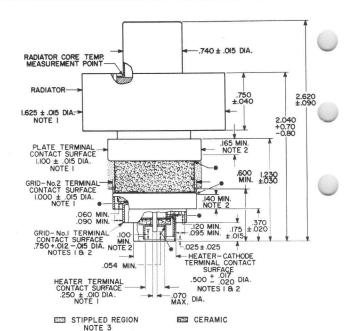
The maximum radiator core or electrode temperature of 250° C is a tube rating and is to be observed in the same manner as other ratings. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. This paint is manufactured in the form of liquid or stick by the Tempil Corporation, 132 West 22nd Street, New York II, N.Y.

Grid No. 2

Grid-No.2 current is composed of a positive-current component resulting from cathode emission to grid No.2 and a negative-current component resulting from secondary emission phenomena. Because it is the net result of these component currents which is read on a meter in the grid-No.2 circuit, grid-No.2 dissipation cannot be accurately determined. Operation similar to conditions given under *Typical Operation* in the tabulated data section will minimize the possibility of exceeding maximum grid-No.2 input rating.

The grid-No.2 circuit must be capable of maintaining the proper grid-No.2 voltage in the presence of moderate negative dc current as well as normal values of positive current. Complete protection can be achieved by the use of a well-regulated power supply, a grid-No.2-to-ground impedance that is low enough to prevent gradual build-up of grid-No.2 voltage and/or catastrophic build-up (runaway) under negative current conditions, and a current overload relay to protect the grid No.2 against positive or negative currents of the order of one-tenth the required plate current.

Standby Operation


During long or frequent standby periods, the 8226 may be operated at decreased heater voltage to conserve life. It is recommended that the heater voltage be reduced to 80% of normal during standby periods up to 2 hours. For longer periods, the heater voltage should be turned off.

Precautions

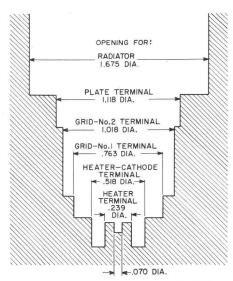
In beam power tubes with closely spaced electrodes, such as the 8226, extremely high voltage gradients occur even with moderate tube operating voltages. Any arc-over between electrodes may be destructive. A series impedance in the plate lead is recommended. The resultant plate impedance giving a plate-voltage-supply regulation of no better than 10% is usually sufficient.

Protective devices should be used to protect not only the plate but also grid No.2 against overload. In order to prevent excessive plate current flow and resultant overheating of the tube, the common ground lead of the plate circuit should be connected inseries with the coil of an instantaneous overload relay. This relay should be adjusted to remove the dc plate voltage and dc grid-No.2 voltage when the average value of plate current reaches a value slightly higher than normal plate current. A protective device in the grid-No.2 supply should remove the grid-No.2 voltage when the dc grid-No.2 current reaches a value slightly higher than normal.

The rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock levice should function to break the primary circuit of the high-voltage supplies when any gate or door of the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.

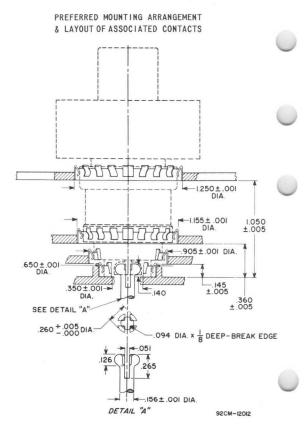
ELECTRODE-TEMPERATURE MEASUREMENT POINT

92CM-12011


ALL DIMENSIONS IN INCHES

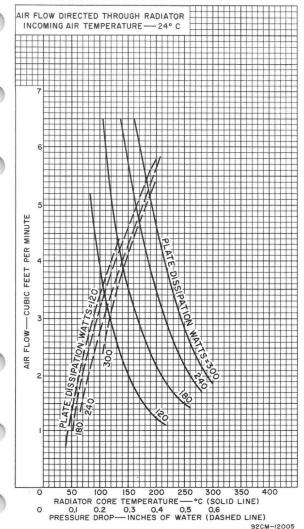
NOTE I: SEE SKETCH G: FOR THE MAXIMUM DIAMETRICAL SPACE REQUIRED BY THE 8226 BASED UPON THE DIAMETER AND ECCENTRICITY OF RADIATOR BAND AND OF EACH RING TERMINAL.

NOTE 2: THE DIAMETER OF THE TERMINAL IS HELD TO THE INDI-CATED VALUE ONLY OVER THE CONTACT SURFACE LENGTH. THE CONT TACT SURFACE LENGTH OF THE HEATER-CATHODE AND GRID-NO. I TERMINALS EXTENDS FROM THE EDGE OF ITS TERMINAL TO THE PLANE COINCIDENT WITH THE EDGE OF THE ADJACENT LARGER TERMINAL

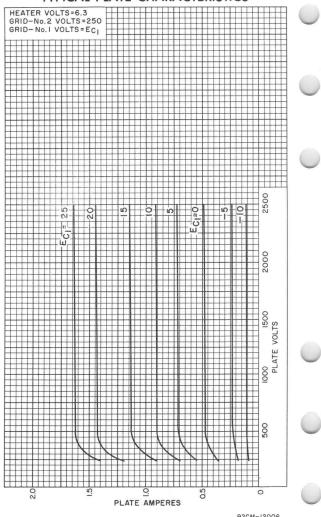

NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR REGIONS.

SKETCH GI

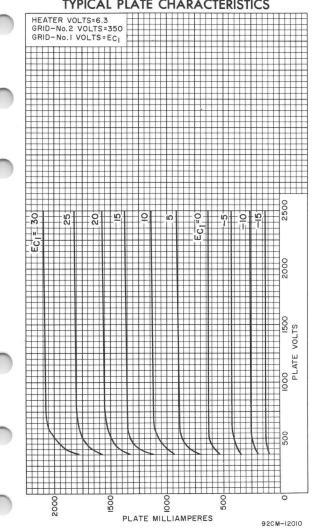
92CS-12004

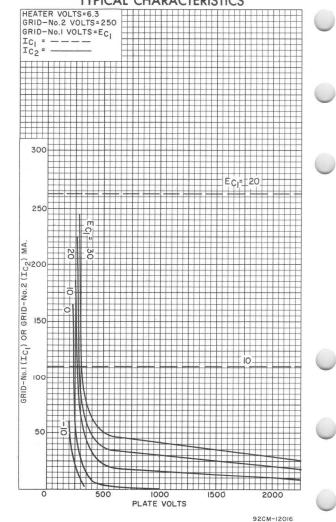

ALL DIMENSIONS IN INCHES

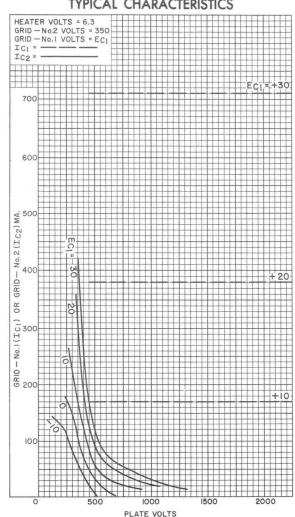
ALL DIMENSIONS IN INCHES


NOTE: ALL FINGER STOCK (No.97-380) MADE BY INSTRUMENT SPECIALTIES COMPANY, LITTLE FALLS, NEW JERSEY.

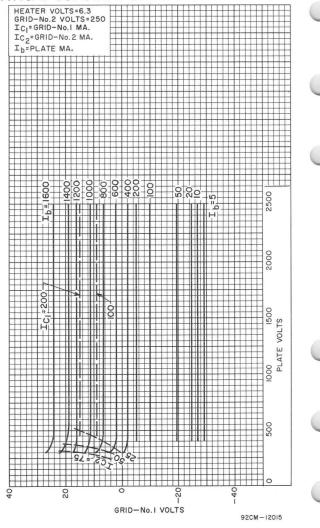
TYPICAL COOLING REQUIREMENTS




TYPICAL PLATE CHARACTERISTICS

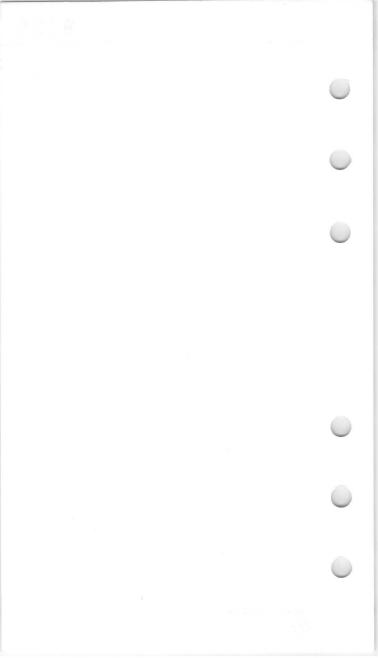

TYPICAL PLATE CHARACTERISTICS

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

92CM-12013


TYPICAL CONSTANT-CURRENT CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS HEATER VOLTS=6.3 GRID-No.2 VOLTS=350 ICI=GRID-No.1 MA. IC2=GRID-No. 2 MA. Ib=PLATE MA. 800 2050 500 500 001

GRID-No.1 VOLTS

92CM-12007

Traveling-Wave Tube
HELIX-TRANSMISSION-LINE TYPE NF = 4.5 db FREQUENCY RANGE, 2320-2680 Mc 31-db GAIN LOW-NOISE AMPLIFIER TYPE SOLENOID FOCUSING
For Use in Input Stage of Radar, Scatter Propagation, and Other Microwave Receivers, and in IF Amplifiers
Electrical:
Heater, for Unipotential Cathode: Voltage (AC or DC) $5.0 \pm 5\%$ volts Current at heater volts = 5.0 0.65 amp Starting current
Minimum cathode heating time
Mechanical:
Operating Position
Input terminal
Pin 1-Grid No.1 Pin 2-No Connection Pin 3-Helix Pin 4-Grid No.4 Pin 5-Grid No.3 Pin 6-Grid No.2 Pin 7-Heater Pin 8-Heater, Cathode
Maximum and Minimum Ratings, Absolute-Maximum Values:
DC Collector Voltage. 800 max. volts DC Helix Voltage. 500 max. volts DC Grid-No.4 Voltage. 500 max. volts

W. SAW	and the state of t	COLUMN TO SERVICE STREET		a with	V100
CA			RATION	OF	A
	Electronic C	omponents	and Devices		Н

DC Grid-No.3 Voltage. DC Grid-No.2 Voltage.

DC Grid-No.1 Voltage.

DC Collector Current.

DC Helix Current. . .

DC Cathode Current. . .

Magnetic Field Strength .

volts

volts

volts

gauss

μа

μа

μа

max.

max.

max.

max.

max.

min.

300

75

500

5c max.

K	Power Inp Peak Average .													max.	watts watts	
Me	etal-Shell (At hottes	Temperat	ure											max.	oC	
T	pical Opera	ation at	25	00	Mo	c:										
D	Collector	Voltage												600	volts	
D	Helix Vol	tage												375	volts	
D	Grid-No.4	Voltage												325	volts	
D	Grid-No.3	Voltage												70	volts	
D	Grid-No.2	Voltage	(A	pp	ro	×.								10	volts	
	Grid-No.1													10	volts	
	Collector													150	μa	
	Helix Cur													0.5	μa	
	Grid-No.4															
	Grid-No.3									e	ach	1	les	ss than	n 1 μ a	
	Grid-No.2															
	Grid-No.1															
Ma	agnetic Fie	ld Stren	gth										•		gauss	
G	ain (Low le	vel)												31	db	
P	ower Output	(Satura	ted).										1.0	mw	
N	oise Figure													4.5	db	

Connection to the collector terminal may be made with a banana-ypp plug similar to a Raytheon Test Jack 27-1594G21 fitted with an insulator from HH Smith Type 211 banana plug.

b Both rf-input and rf-output terminals employ semi-rigid 50-ohm coaxial lines.

C During alignment of the tube in the magnetic focusing field, the helix current may exceed this value for short periods, but should never exceed 10 µa.

d This value of field strength will focus the electron beam, but noise figure will not be optimum.

e Typical peak value for RCA Solenoid, Type MW4901 (See Characteristics of RCA-NW4901 Solenoid).

CHARACTERISTICS RANGE VALUES

							Note	Min.	Max.	
Heater Current Input VSWR:	 ٠		٠				1	0.45	0.85	amp
Non-operating								-	1.3	
Operating			•	٠	٠	٠	1,4	-	1.5	
Output VSWR:										
Non-operating							2	-	1.5	
Operating								-	3	
DC Helix Voltage							1,4	335		volts
DC Grid-No.4 Voltage.							1,4	150	400	volts
DC Grid-No.3 Voltage.								25	100	volts
Saturated Power Outpi								1.0	-	mw
Small-Signal Gain								28	34	db
Noise Figure								-	5.0	db

Note 1: With heater voltage of 5.0 volts.

Note 2: With no electrode voltages applied.

Any tube having a non-operating input VSWR higher than 1.3 but less than 1.5 may be considered acceptable if the operating VSWR is less than 1.5. Note 3:

With electrode voltages and magnetic focusing field adjusted for minimum noise figure at 2500 Mc. Note 4:

OPERATING CONSIDERATIONS

The rated values for collector voltage, helix voltage, grid-No.4 voltage, and grid-No.3 voltage are high enough to be dangerous to the user. Care should be taken during adjustment of circuits, especially when exposed circuit parts are at high dc potential.

The power supply for the 8379 should be capable of holding ripple voltage sufficiently low to prevent phase distortion, and should have adequate regulation to prevent a change in operating conditions which might increase the noise figure. Provision should be made for monitoring helix current, collector current, and cathode current.

The rated heater voltage of 5.0 volts should be applied for at least I minute to allow the cathode to reach normal operating temperature before voltages are applied to the other electrodes.

The magnetic field required for focusing the electron beam of the 8379 may be obtained from a solenoid such as the RCA-MW4901 or equivalent. The field must have a distribution as shown in Characteristics of RCA-MW4901 Solenoid. A uniform field provided by a solenoid or permanent magnet of at least 800 gauss starting 2 inches from the groove near the base end of the metal shell and continuing for at least nine inches along the tube axis can provide equivalent focusing.

Initial Alignment Procedure

Apply rated heater voltage to the 8379 for one minute. Then connect operating voltages as shown under Typical Operation to all other tube electrodes except grid No.2. Grid-No.2 voltage may then be applied, and increased until cathode current reaches approximately 50 microamperes.

If the tube is incorrectly aligned within the magnetic field, some of the beam current will be drawn to the helix and increase the helix current. The axial alignment of the 8379 within the magnetic focusing field should then be adjusted to produce a minimum value of helix current. Grid-No.2 voltage should then be increased until collector current is approximately 150 microamperes. Readjust alignment of the tube and magnetic focusing field until a minimum value of helix current is again obtained. Helix current of the 8379 when properly aligned in the magnetic focusing field is usually less than

one microampere. Collector current should be checked to see if it is essentially the same as cathode current. Such a condition is another indication that the tube is properly aligned in the magnetic field. If a solenoid is used to supply the magnetic focusing field, check the solenoid current and readjust it, if necessary, to obtain the specified field-strength value.

The above alignment procedure need not be repeated so long as the adjustments are not disturbed.

Lowest-Noise-Figure Adjustment Procedure

In order to operate the 8379 at the lowest noise figure, it is necessary to adjust the electrode voltages as follows: With the 8379 connected in its circuit, and with either noise input or signal input, adjust the helix voltage to give maximum output at the operating frequency. This value of helix voltage simultaneously produces optimum tube gain and lowest noise figure. Next, with no input signal, vary dc grid-No.1, grid-No.3, and grid-No.4 supply voltages alternately until the receiver output reaches a minimum value. The voltages are now adjusted to operate the 8379 at its lowest noise figure for the particular frequency to which the equipment is tuned. If the strength of the magnetic focusing field changes, it will be necessary to repeat the above adjustment procedure with regard to grid-No.1, grid-No.3, and grid-No.4 voltage.

Preamplifier in Radar Receivers

In the usual type of radar system, a portion of the transmitter pulse leaks through the TR tube to the crystal mixer in the receiver, overloads the crystal, and gradually impairs its performance. If, however, the crystal is preceded by the 8379 in a preamplifier stage, the traveling-wave tube serves as a crystal-protection device because of its saturation characteristic. See accompanying Saturation Characteristics curve. From this curve, it will be noted that the saturated power output of the 8379 is about I milliwatt which will not harm the crystal. Therefore, the spike-leakage limit of the TR tube can be eased and thus eliminate the need for supplying "keep-alive" voltage to the TR tube. Furthermore, the ability of the 8379 to withstand an rf peak power input of as much as 500 watts or an average power input of as much as I watt makes it possible to employ a TR tube with lower attenuation.

Additional advantages offered by the 8379 in a preamplifier stage include: (1) reduction of the overall noise figure of the radar receiver; (2) improved receiver recovery time; (3) better TR tube life, and (4) reduction of local oscillator radiation. All of these advantages contribute to improved radar-system operation.

Phase-Sensitive Applications

When the 8379 is used in phase-sensitive radar system or in a microwave relay system where frequency-modulated information is amplified, even a small amount of phase distortion

can adversely affect performance. The following table shows for each tube electrode the values of rms ripple voltage which will cause a peak-to-peak change in rf phase of approximately I degree.

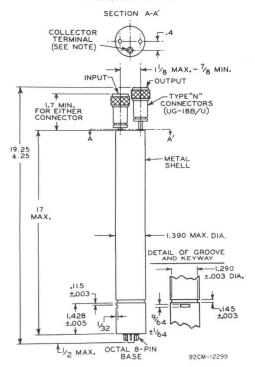
Tube	Typical Operating	Approx. RMS Ripple Volts For Peak-to-Peak
Electrode	DC Volts	Phase Shift of I ^O
Grid No. 1	10	0.1
Grid No. 2	10	0.1
Grid No.3	70	0.5
Grid No.4	325	3.5
Helix	375	0.024
Collector	600	6.7

For the RCA Solenoid Type MW4901 operated at 90 volts dc, a peak-to-peak change in rf phase of approximately !⁰ will be caused by an rms ripple voltage of 7.7 volts.

Input Matching Considerations

In general, the voltage standing wave ratio (VSWR) will increase as the electron-beam current of the tube is increased. This "hot VSWR" is a direct function of gain and can be attributed to reflections of the amplified wave at a discontinuity along the slow-wave structure. In contrast, the VSWR with no voltages applied to the tube, is referred to as the "cold VSWR". This "cold VSWR" determines the transfer of input signal energy to the helix and, therefore, the noise figure of the 8379 is not degraded by the "hot VSWR". In general, it will be found that when the input to the 8379 is adjusted for optimum matching under "cold" conditions, the same adjustment will provide optimum matching under "hot" conditions. A typical input matching characteristic is given in the accompanying curve for the 8379 under "cold" conditions.

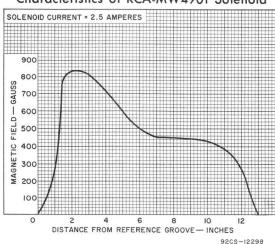
Notes On Associated Microwave Circuitry.

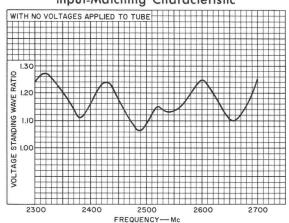

A low-noise traveling-wave tube used in a superheterodyne circuit will cause a 3 db degradation in noise figure unless a filter is used at the output of the traveling-wave tube to remove noise generated at the image frequency.

Whenever the output of the 8379 is connected to a filter, signals in the reject band of the filter are reflected back into the tube. As these signals travel back through the tube, they suffer little attenuation until they are absorbed by the attenuator. Should there be appreciable reflection from the attenuator or another discontinuity inside the traveling-wave tube, oscillations may occur, depending on the gain within the tube from the attenuator or discontinuity to the output end of the tube.

The 8379 is designed to be short-circuit stable, i.e., the power reflected from a short-circuited output termination will be insufficient to cause oscillation when the 8379 is operating at a normal value of beam current. If the beam current is increased sufficiently above this value, the gain of the tube will increase until oscillation takes place.

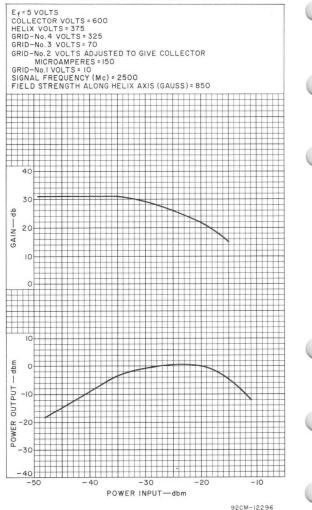
When a high-gain microwave amplifier tube such as the traveling-wave tube is employed, special care must be taken to prevent distortion of oscillations resulting from feedback through circuitry external to the tube. Some types of filters may show satisfactory attenuation characteristics in and near the frequency band of interest. However, oscillations can still occur due to "holes" in the filter characteristic at frequencies outside the band of interest. Attenuation of filters should therefore be checked over wide bands and the holes, if any, can be filled by supplementary, simple filters.


DIMENSIONAL OUTLINE


DIMENSIONS IN INCHES

Note: Special Banana Jack--Mates with Raytheon Test Jack 27-1594621 fitted with an insulator from an HH Smith Type 211 Banana Plug.

Characteristics of RCA-MW4901 Solenoid



Input-Matching Characteristic

92CS-12295

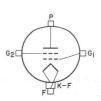
Saturation Characteristics

Beam Power Tube

CERMOLOX®

FORCED-AIR COOLED HIGH GAIN-BANDWIDTH PRODUCTS
INTEGRAL RADIATOR 10000 WATTS CW POWER OUTPUT
THORIATED-TUNGSTEN MESH FILAMENT AT 400 Mc

For Compact Aircraft, Mobile, and Stationary Equipment Applications in the UHF Frequency Range


ment Applications in the UHF Frequency Range	
Electrical: Filamentary Cathode, Thoriated-Tungsten Cylindrical-Mesh Type:	
Voltage (AC or DC)	
Current: Typical value at 8.5 volts 88 am Maximum value for start-	р
ing, even momentarily	
Mu-Factor, Grid No.2 to Grid No.1 for plate volts = 7000, grid-No.2 volts	
= 1350, and plate ma. = 500 30 Direct Interelectrode	
	f
Grid No.1 to grid No.2 88 p Grid No.2 to plate 20 p	f
Grid No.2 to filament ^a 1.5 max. p	f

Mechanical:

Operat	ing Posi	ition.				100					101		*							. An
Maximu	ım Överal	11 Ler	ngt	h.			90					200							6	. 188
Maximu	ım Diamet	er						Se	ee	Di	me	ns	10	no	ıl	Ou	tli	ne) 6	.170
Weight	(Approx	<.)				180													12	1 bs
	or																			
Termin	nal Conne	ection	15	(Se	ee	D_1	me	ens	ii	ono	ıl	01	it	lin	ie.) :				

G_1	-Grid-No.1-
	Terminal Contact
0	Surface
⁶ 2	-Grid-No.2- Terminal
	Contact
	Surface
F	-Filament-
	Terminal
	Contact

Surface

K-F - Cathode-Filament Terminal Contact Surface P - Plate-Terminal Contact Surface

Thermal:

Terminal Temperature (Plate.

grid No.2, grid No.1, cathode-

filament, and filament)..... Plate-Core Temperature . .

Air Flow:

250 max. 250 max. OC

Through radiator - Adequate airflow to limit the plate-core temperature to 250° C should be delivered by a blower through the radiator before and during the application of filament, plate, grid-No.2, and grid-No.1 voltages. Typical values of air flow directed through the radiator are shown in accompanying Typical-Cooling-Requirements curve as a function of plate dissipation.

To Plate, Grid-No.2, Grid-No.1, Cathode-Filament, and Filament Terminals - A sufficient quantity of air should be allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

During Standby Operation - Cooling air is required to the Cathode-Filament and Filament Terminals when only filament voltage is applied to the tube.

During Shutdown Operation - Air flow should continue for a few minutes after all electrode power is removed.

At Sea Level - Cooling requirements as shown in accompanying Typical-Cooling-Requirements curve, may be met by use of the following blowers and associated motors manufactured by Rotron Mfg. Co., Inc., Woodstock, N.Y., or equivalent: For 100% Plate Dissipation: Blower Model No. AS-704 KS-704

blowel wodel No.	A3-104	13-704	_	13-000	
Motor Model No.	255JS	452AS	_	209JS	
Phase (ϕ)	3	1	-	3	
Frequency (cps)	60	60		400	
Voltage (v)	208	115	-	115	
For 80% Plate Dissipat	ion:				
Blower Model No.	AS-601	KS-601	PS-4502	PS-4502	
Motor Model No.	266JS	413AS	358AS	209JS	
Phase (ϕ)	3	1	1	3	
Frequency (cps)	60	60	400	400	

Motor Model No.	266JS	413AS	358AS	209JS
Phase (ϕ)	3	1	1	3
Frequency (cps)	60	60	400	400
Voltage (v)	208	115	115	115
For 60% Plate Dissipat	ion:			
Blower Model No.	AS-4506	KS-4506	PS-3503	NS-301
Motor Model No.	139JS	364AS	450AS	587JS
Phase (ϕ)	3	1	1	3
Frequency (cps)	60	60	400	400
Voltage (v)	208	115	115	115

RF POWER AMPLIFIER & OSCILLATOR - Class C Telegraphy and

RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCSb Ratings, Absolute-Maximum Values:

For frequencies up to 500 Mc

DC Plate Voltage. 7000 max. DC Grid-No.2 Voltage. . 1500 max.

volts volts

DS 606

DC Grid-No.1 Voltage	-		SAC SHEET STREET
In Cathode-Drive Circuit at 400 Mc DC Plate Voltage		DC Plate Current. 4 max. DC Grid-No.1 Current. 1.2 max. Grid-No.1 Input ^c . 150 max. Grid-No.2 Input ^c . 300 max. Plate Dissipation 10000 max.	amp amp watts watts
DC Plate Voltage		Typical GGS Operation:	
DC Plate Voltage		In Cathode-Drive Circuit at 400 Mc	
Grid-No.1-Circuit Resistance 5000 max. ohms Grid-No.2-Circuit Impedance		DC Plate Voltage. 6500 DC Grid-No.2 Voltaged 1200 DC Grid-No.1 Voltagee -30 DC Plate Current. 3.5 DC Grid-No.2 Current. 0.05 DC Grid-No.1 Current. 0.53 Driver Power Outputf (Approx.) 600 Output-Circuit Efficiency 78	volts volts amp amp amp watts
Grid-No.1-Circuit Resistance 5000 max. ohms Grid-No.2-Circuit Impedance	-	W	
Continuous Commercial Service. Grid input represents the power dissipated in the grid electrode. The grid input is not necessarily the product of the dc grid voltage and the "metered" grid current. For example, see Grid No.2 under Operating Considerations. Obtained from a fixed supply. Obtained from a grid-No.1 resistor or from a combination of grid-No.1 resistor with either fixed supply or cathode resistor. The driver stage is required to supply tube losses and rf circuit losses. It should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, components, initial tube characteristics, and tube characteristics during life. Grid No.2 under Operating Considerations. CHARACTERISTICS RANGE VALUES Test No. Note Min. Max. 1. Filament Current. 1 84 92 amp 2. Direct Interelectrode Capacitances: Grid No.1 to plate. 2 - 0.4 pf Grid No.1 to filament - 78 94 pf Plate to filament - 2,3 - 0.07 pf Grid No.1 to grid No.2 - 80 96 pf Grid No.1 to grid No.2 - 80 96 pf Grid No.2 to plate 18 22 pf Grid No.2 to plate 18 22 pf Grid No.2 to filament - 3 - 1.5 pf 3. Peak Grid-No.1 Voltage. 1,4 - 125 volts Note 1: With 8.5 ac volts on filament.		Grid-No.1-Circuit Resistance 5000 max. Grid-No.2-Circuit Impedance 9	ohms
Test No. Note Min. Max. 1. Filament Current. 1 84 92 amp 2. Direct Interelectrode Capacitances: Capacitances: 0 0 94 pf Grid No.1 to plate. 2 0.4 pf 94 pf Grid No.1 to filament - 78 94 pf Grid No.1 to grid No.2 - 80 96 pf Grid No.2 to plate. - 18 22 pf Grid No.2 to filament 3 - 1.5 pf 3. Peak Grid-No.1 Voltage. 1,4 - 125 volts Note 1: With 8.5 ac volts on filament. 3 - 1.5 volts		Continuous Commercial Service. Grid input represents the power dissipated in the grid electrode grid input is not necessarily the product of the dc grid volta the "metered" grid current. For example, see Grid No.2 under Ope Considerations. Ditained from a fixed supply. Obtained from a grid-No.1 resistor or from a combination of gri resistor with either fixed supply or cathode resistor. The driver stage is required to supply tube losses and rf cc losses. It should be designed to provide an excess of power aboundicated values to take care of variations in line voltage, compointial tube characteristics, and tube characteristics during light See Grid No.2 under Operating Considerations.	d-No.1
Test No. Note Min. Max. 1. Filament Current. 1 84 92 amp 2. Direct Interelectrode Capacitances: Capacitances: 0 0 94 pf Grid No.1 to plate. 2 0.4 pf 94 pf Grid No.1 to filament - 78 94 pf Grid No.1 to grid No.2 - 80 96 pf Grid No.2 to plate. - 18 22 pf Grid No.2 to filament 3 - 1.5 pf 3. Peak Grid-No.1 Voltage. 1,4 - 125 volts Note 1: With 8.5 ac volts on filament. 3 - 1.5 volts			
1. Filament Current		CHARACTERISTICS RANGE VALUES	
1. Filament Current		Test No. Note Min Mar.	
Grid No.1 to filament		1. Filament Current	
Grid No.2 to plate 18 22 pf Grid No.2 to filament 3 - 1.5 pf 3. Peak Grid-No.1 Voltage 1,4 - 125 volts Note 1: With 8.5 ac volts on filament.		Grid No.1 to filament 78 94 Plate to filament 2,3 - 0.07	pf pf
Grid No.2 to filament 3 - 1.5 pf 3. Peak Grid-No.1 Voltage 1,4 - 125 volts Note 1: With 8.5 ac volts on filament.			
The state of the s		Grid No.2 to filament 3 - 1.5 3. Peak Grid-No.1 Voltage 1,4 - 125 Note 1: With 8.5 ac volts on filament.	pf volts
Note 2: With external flat metal shield 8" in diameter having a center hole 4" in diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2.		NOTE 2: WITH EXTERNAL THAT MENTAL SHIELD 8" IN GLAMETER HAVING AU HOLE 4" IN GLAMETER HAVE AND AU HOLE	grid- nected

- Note 3: With external flat metal shield 8" in diameter having a center hole 3-3/8" in diameter. Shield is located in plane of the grid-No.1 terminal, perpendicular to the tube axis, and is connected to grid No.1.
- Note 4: With dc plate voltage of 1750 volts, dc grid-No.2 voltage of 1200 volts, and instantaneous grid-No.1 voltage adjusted to give peak plate current of 10 amperes.

OPERATING CONSIDERATIONS

Filament

The rated filament voltage of 8.5 volts should be applied for 15 seconds to allow the cathode to reach normal operating temperature before voltages are applied to other electrodes.

The life of the cathode can then be conserved by adjusting to the lowest nominal filament supply voltage which will give the desired performance. Good regulation of the filament supply voltage about this value is, in general, economically advantageous from the view-point of tube life. The supply regulation should not exceed $\pm\,5\%$. This recommendation is particularly applicable at the higher operating frequencies.

Temperature

The maximum plate core or terminal temperature of 250° C is a tube rating and is to be observed in the same manner as other ratings. The temperature may be measured with temperature-sensitive paint, such as Tempilaq. This paint is manufactured in the form of liquid or stick by the Tempil Corporation, 132 W. 22nd Street, New York II, N.Y.

Grid No.2

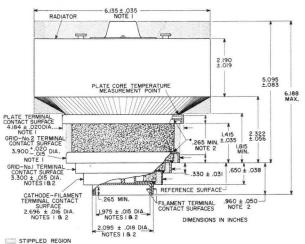
Grid-No.2 current is composed of a positive-current component resulting from cathode emission to grid No.2 and a negative-current component resulting from secondary-emission phenomena. Because it is the net result of these component currents which is read on a meter in the grid-No.2 circuit, grid-No.2 dissipation can not be accurately determined. Operation similar to conditions given under *Typical Operation* in the tabulated data section will minimize the possibility of exceeding maximum grid-No.2 input rating.

The grid-No.2 circuit must be capable of maintaining the proper grid-No.2 voltage in the presence of moderate negative dc current as well as normal values of positive current. Complete protection can be achieved by the use of a well-regulated power supply, a grid-No.2-to-ground impedance that is lowenough to prevent gradual build-up of grid-No.2 voltage and/or catastrophic build-up (runaway) under negative-current conditions, and a current-overload relay to protect the grid No.2 against positive or negative currents of the order of one-tenth the required plate current.

Plate

In beam power tubes with closely spaced electrodes, such as the 8437, extremely high voltage gradients occur even with moderate tube operating voltages. Any arc-over between elec-

trodes may be destructive. A series impedance in the plate lead is recommended. The resultant plate impedance giving a plate-voltage-supply regulation of no better than 10% is usually sufficient.


Standby Operation

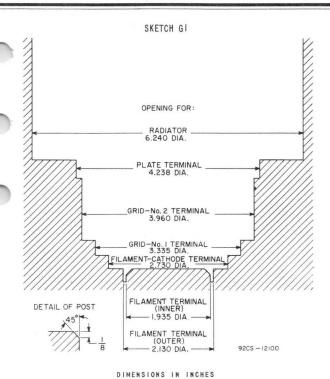
During long or frequent standby periods, the 8437 may be operated at decreased filament voltage to conserve life. It is recommended that the filament voltage be reduced to 80% of normal during standby periods up to 2 hours. For longer periods, the filament voltage should be turned off.

Precautions

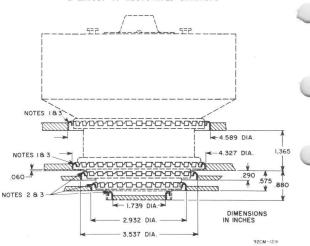
Protective devices should be used to protect the plate and grid No.2 against overload. Excessive plate-current flow and resultant over-heating of the tube can be prevented by connection of the common ground lead of the plate circuit in series with the coil of an instantaneous overload relay. This relay should be adjusted to remove the dc plate voltage and dc grid-No.2 voltage when the average value of plate current reaches a value slightly higher than normal plate current. A protective device in the grid-No.2 supply should remove the grid-No.2 voltage when the dc grid-No.2 current reaches a value slightly higher than normal.

The rated plate and grid-No.2 voltages of this tube are extremely dangerous. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especially all parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock device should function to break the primary circuit of the high-voltage supplies when any gate or door of the protective housing is opened, and should prevent the closing of the primary circuit until the door is again locked.

STIPPLED REGION NOTE 3


EEE CERAMIC INSULATOR TERMINAL TEMPERATURE
MEASUREMENT POINT

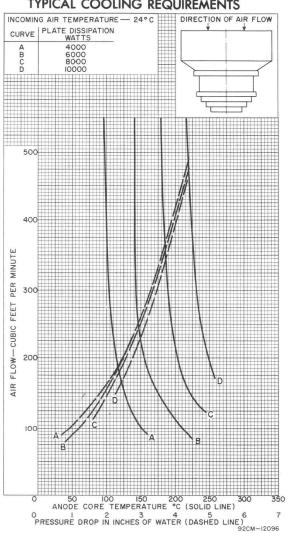
92CS-1213I


NOTE 1: SEE SKETCH G1 FOR THE MAXIMUM DIAMETRICAL SPACE REQUIRED BY THE 8437 BASED UPON THE DIAMETER AND ECCEN-TRICITY OF RADIATOR BAND AND OF EACH RING TERMINAL.

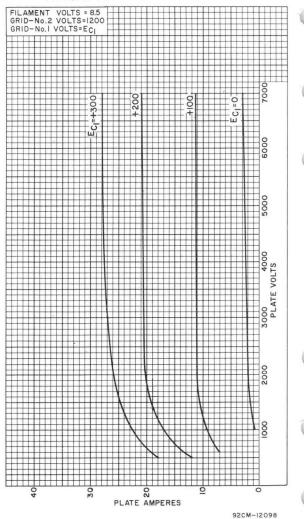
NOTE 2: THE DIAMETER OF THE TERMINAL IS HELD TO THE IN-DICATED VALUE ONLY OVER THE CONTACT SURFACE LENGTH. THE CONTACT SURFACE LENGTH OF THE FILAMENT, CATHODE-FILAMENT, AND GRID-No. I TERMINALS EXTENDS FROM THE EDGE OF ITS TERMINAL TO THE PLANE COINCIDENT WITH THE EDGE OF THE ADJACENT LARGER TERMINAL.

NOTE 3: KEEP ALL STIPPLED REGIONS CLEAR. DO NOT ALLOW CONTACTS OR CIRCUIT COMPONENTS TO PROTRUDE INTO THESE ANNULAR REGIONS.

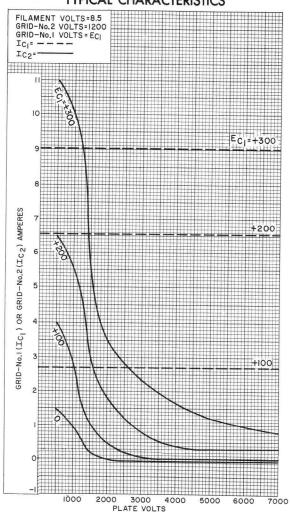
PREFERRED MOUNTING ARRANGEMENT & LAYOUT OF ASSOCIATED CONTACTS



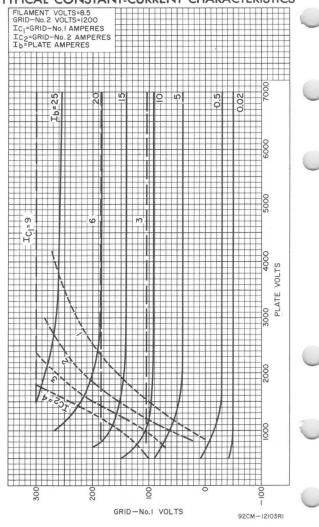
NOTE 1: FINGER STÓCK No. 97-310.


NOTE 2: FINGER STOCK No.97-139.

NOTE 3: SPECIFIED FINGER STOCK IS MADE BY INSTRUMENT SPECIALTIES CO., LITTLE FALLS, N.J.


TYPICAL COOLING REQUIREMENTS

TYPICAL PLATE CHARACTERISTICS



TYPICAL CHARACTERISTICS

92CM-12101RI

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Beam Power Tube

LESS THAN I-SECOND WARM-UP FOR USE IN LOW-VOLTAGE MOBILE EQUIPMENT UP TO 500 Mc COAXIAL-ELECTRODE STRUCTURE CERAMIC-METAL SEALS CONDUCTION COOLED

For Use as an RF Power Amplifier, Oscillator, Regulator, Distributed Amplifier, or Linear RF Power Amplifier in Mobile or Stationary Equipment

Electrical:

Filamentary	Cathode,	Woven-Wire-
Mesh Type	. Oxide-C	oated:

Voltage	(AC or D	C)					2.9	volts
	at 2.9 v							amp
Minimum	heating	time.					less than 1ª	sec

Mu-Factor, Grid No.2 to Grid No.1

	rate voits - 200, grid-no.2	
·volts	= 200, and plate amperes = 1.2 .	11
Direct	Interelectrode Capacitances: b	

Grid No.1	to	plate.				٠	*		0.13	max.	b.
Grid No.1	to	cathod	e.						16		p.
Plate to	cat	hode							0.03	max.	D.
Grid No.1	to	grid N	0.	2.	*				22		p.
Grid No. 2	to	plate.							7		b.
Grid No. 2	to	cathod	e.						3		p

Mechanical:

Operating Posit	ion.						ě												. Ar	ıy
Maximum Överall	Len	gth	١.		,														2.26	3"
Seated Length .											14			1	.9	20'	±	0	.065	5"
Diameter		÷												1	. 4.	26'	+	0	.010)"
Weight (Approx.)																		2 (DZ
Socket					Ε.	F		Jol	nn	501	7	Co	. с	N	0.	124	-3	11	-100),

Mycalex No.CP464-2, or equivalent Grid-No.2 Bypass Capacitor. E. F. Johnson Co. No.124-113-1, or equivalent

Base. Large-Wafer Elevenar 11-Pin with Ring (JEDEC No.E11-81)

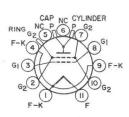
Terminal Connections (See Dimensional Outline):
BOTTOM VIEW

Pin 1-Filament-Cathode Pin 2-Grid No.2

Pin 3-Grid No.1

Pin 4-Same as Pin 1

Pin 5-No Internal Connection


Pin 6-No Internal Connection Pin 7-Grid No.2

Pin 8-Grid No.1 Pin 9-Same as Pin 1

Pin 10 - Grid No.2 Pin 11 - Filament

Cap - Plate-Terminal Connection
Cylinder - Plate-Terminal
Contact Surface

Ring^e - Grid No.2 Terminal Contact Surface

Thermal:

Terminal Temperature									
(All Terminals)			*			250	max.	°C	
Plate Core Temperature	-								
Dimensional Outline)		÷				250	max.	O.C.	

Cooling, Conduction:

The plate terminal must be thermally coupled to a constant temperature device (heat sink-solid or liquid) to limit the plate terminal temperature to the specified maximum value of 250° C. The grid-No.2, grid-No.1, and filament terminals may also require coupling to the heat sink to limit their respective terminal temperature to the specified maximum value of 250° C.

LINEAR RF POWER AMPLIFIER Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2

Maximum CCS Ratings, Absolute-Maximum Values:

									Up to 500 Mc
DC Plate Voltage					•	×			2200 max. volts
DC Grid-No.2 Voltage.			41						400 max. volts
DC Grid-No.1 Voltage.						0.1			-100 max. volts
DC Plate Current at Pe	ak	(
of Envelope		ě							450 ^f max. ma
DC Grid-No.1 Current.	÷		•					8	100 max. ma
Plate Dissipation	×	*		100	100	*			100 9 max. watts
Grid No.2 Input		*							8 max. watts

Typical CCS Operation with "Two-Tone Modulation":	
At 30 Mc	
DC Plate Voltage 700	volts
DC Grid-No.2 Voltage ⁿ 250	volts
DC Grid-No.1 Voltage ^h	volts
Zero-Signal DC Plate Current 100	ma
Effective RF Load Resistance	ohms
DC Plate Current at Peak	
of Envelope 205	ma
Average DC Plate Current 150	ma
DC Grid-No.2 Current at	
Peak of Envelope	ma
Average DC Grid-No.2 Current 10	ma
Average DC Grid-No.1 Current 1.0j	ma
Peak-Envelope Driver Power	
Output (Approx.) k 0.3	watt
Output-Circuit Efficiency (Approx.) 95	%
Distortion Products Level: m	
Third order 30	db
Fifth order	db
Useful Power Output (Approx.):	
Average	watts
Peak envelope	watts

	Maximum Circuit Values: Grid-No.1-Circuit Resistance Under Any Condition: With fixed bias	ohms ohms nended ohms
	RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraph and	ıy
	RF POWER AMPLIFIER — Class C FM Telephony	
	Maximum CCS Ratings, Absolute-Maximum Values:	
9	Up to 500 Mc	
	DC Plate Voltage. 2200 max. DC Grid-No.2 Voltage. 400 max. DC Grid-No.1 Voltage. -100 max. DC Plate Current. 300 max. DC Grid-No.1 Current. 100 max. Grid-No.2 Input. 8 max. Plate Dissipation. 100 max.	volts volts volts ma ma watts
	Typical CCS Operation:	
	In Grid-Drive Circuit at 50 Mc	
	DC Plate Voltage. 500 700 DC Grid-No.2 Voltage. 160 175 DC Grid-No.1 Voltage. -10 -10 DC Plate Current. 300 300 DC Grid-No.2 Current. 25 25 DC Grid-No.1 Current. 50 50 Driver Power Output (Approx.) 9 1.2 1.2 Useful Power Output 85 110	volts volts volts ma ma watts watts
	In Grid-Drive Circuit at 175 Mc	
	DC Plate Voltage. 500 700 DC Grid-No.2 Voltage. 200 200 DC Grid-No.1 Voltage. -30 -30 DC Plate Current. 300 300 DC Grid-No.2 Current. 30 20 DC Grid-No.1 Current. 40 40 Driver Power Output (Approx.) 9 3 3 Useful Power Output 70 105 105 105 105 105 105 105 105 105 10	volts volts volts ma ma watts watts
	In Grid-Drive Circuit at 470 Mc	
	DC Plate Voltage. 700 DC Grid-No.2 Voltage. 200 DC Grid-No.1 Voltage. -30 DC Plate Current. 300 DC Grid-No.2 Current. 10 DC Grid-No.1 Current. 20	volts volts volts ma ma ma

Tn	Grid-Dri	210 Ca	manit	~+	170	Ma

Driver	Power	Output	()	Ap.	pr	OX.	.)	۹.				×	8		5	watts
Useful	Power	Output	×	٠				8	٠	٠	ş	×			85n	watts

Maximum Circuit Values:

Grid-No.1-C	ircuit	Resistance
Under Any	Condit	ion:

With fixed bias . 25000 max. Grid-No.2 Circuit Impedance . 10000 max. ohms Plate Circuit Impedance . .

Measured with special shield adapter.

E.F.Johnson Co., 1921 10th Ave. S.W., Waseka, Minnesota.

Mycalex Corp. of America, 125 Clifton Blvd. Clifton, N.J. е

For use at higher frequencies.

- The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 ma. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 ma.
- Maximum plate dissipation is limited by the maximum plate core temperature and the cooling system to maintain tube operation below the specified maximum plate core temperature. With simple low-cost cooling techniques, maximum plate dissipation may be only about 100 watts; with more sophisticated cooling techniques, maximum plate dissipation may be as high as 300 watts.

 ${\sf h}$ Obtained preferably from a separate well-regulated source.

- This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid-No.1 is driven to zero volts at maximum signal.
- Oriver power output represents circuit losses and is the actual power measured at input to grid-Mo.1 circuit. The actual power required depends on the operating frequency and the circuit used. The tube driv-The actual power required deing power is approximately zero watts.

Referenced to either of the two tones, and without the use of feedback to enhance linearity.

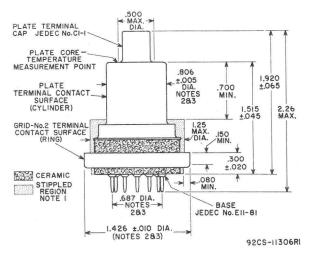
This value of useful power is measured at load of output circuit.

The tube should see an effective plate supply impedance which limits the peak-current through the tube under surge conditions to 15 amperes.

9 Driver power output includes circuit losses and is the actual power measured at the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.

CHARACTERISTICS RANGE VALUES

				Note	Min.	Max.		
	Filament Current			1	3.6	5.6	amp	7
2.	Direct Interelectrode							J
	Capacitances:							
	Grid No.1 to plate	9	×	2	-	0.13	pf	
	Grid No.1 to cathode			2	14	18.5	pf	
	Plate to cathode	~		2	-	0.03	pf	
	Grid No.1 to arid No.2.			2	18	24	pf	
	Grid No.2 to plate			2	5.7	8.0	nf	
	Grid No.2 to cathode			2	2.0	4.0	nf	1
3.	Grid-No.1 Voltage			1.3	-6	-24	volts	1
	Grid-No.2 Current				-7	+8	ma	



The heating time required for adequate cathode emission is a function of the filament voltage and the impedance of the filament-voltage supply. It may be drastically reduced by employing a suitably designed overvoltage control circuit.

Note 1: With 2.9 volts (AC or DC) on filament.

Note 2: Measured with special shield adapter.

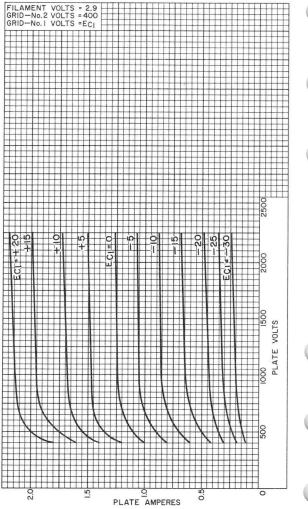
Note 3: With dc plate voltage of 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 ma.

DIMENSIONS IN INCHES

Note I: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

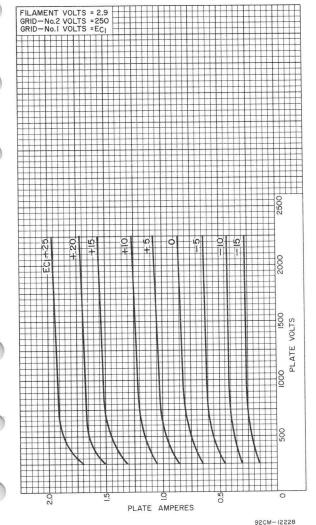
Note 2: The diameters of the plate terminal contact surface, grid-No.2 terminal contact surface, and pin circle to be concentric within the following values of maximum full indicator reading:

Plate terminal contact surface to grid-No.2 terminal contact surface. . . . 0.030" Plate terminal contact surface

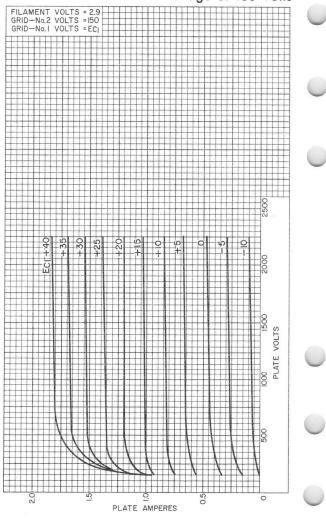

to pin circle. 0.040" Grid-No.2 terminal contact surface

Note 3: The full indicator reading is the maximum deviation in radial position of a surface when the tube is completely rotated about the center of the reference surface. It is a measure of the total effect of run-out and ellipticity.

to pin circle.

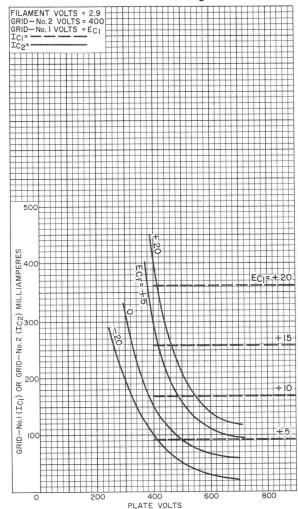

. . 0.030"

TYPICAL PLATE CHARACTERISTICS At a Constant Grid-No.2 Voltage of 400 Volts

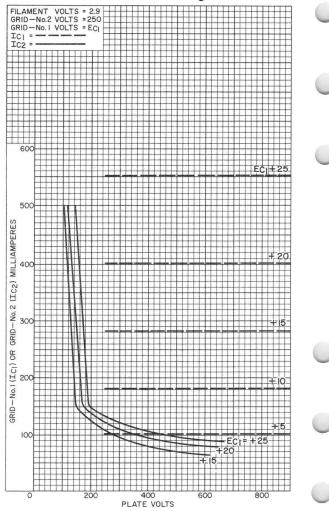


92CM-12225

TYPICAL PLATE CHARACTERISTICS At a Constant Grid-No.2 Voltage of 250 Volts

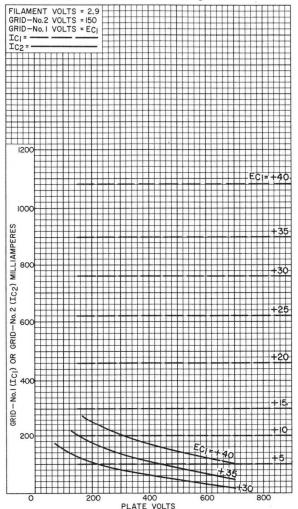


TYPICAL PLATE CHARACTERISTICS At a Constant Grid-No.2 Voltage of 150 Volts

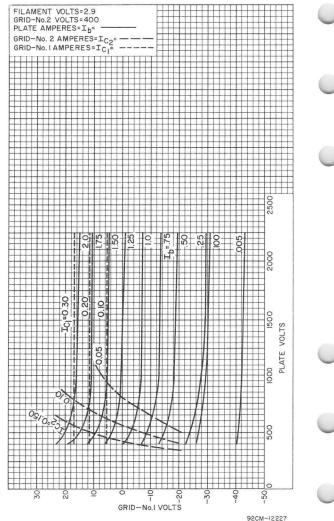


92CM-12234

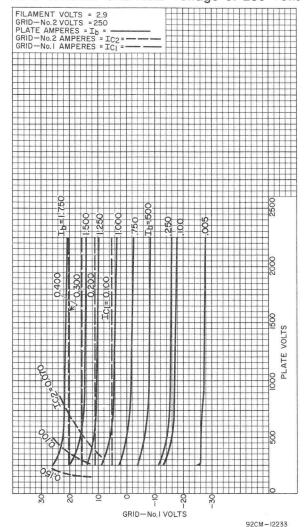
TYPICAL CHARACTERISTICS At a Constant Grid-No.2 Voltage of 400 Volts



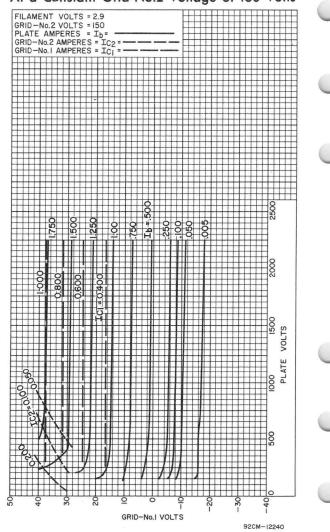
TYPICAL CHARACTERISTICS At a Constant Grid-No.2 Voltage of 250 Volts


92CM-12229

TYPICAL CHARACTERISTICS At a Constant Grid-No.2 Voltage of 150 Volts


92CM-12241

TYPICAL CONSTANT-CURRENT CHARACTERISTICS At a Constant Grid-No.2 Voltage of 400 Volts



TYPICAL CONSTANT-CURRENT CHARACTERISTICS At a Constant Grid-No.2 Voltage of 250 Volts

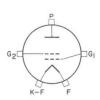
TYPICAL CONSTANT-CURRENT CHARACTERISTICS At a Constant Grid-No.2 Voltage of 150 Volts

Beam Power Tube

CERMOLOX® THORIATED-TUNGSTEN MESH FILAMENT INTEGRAL LOUVERED-FIN RADIATOR FORCED-AIR COOLED

> 5500 WATTS UHF TV OUTPUT AT 890 Mc 5500 WATTS CW OUTPUT AT 900 Mc

Also Useful in Applications Intended for UHF TV Service in Stationary and Portable Equipment, such as AF Power Amplifiers or Modulators, Plate-Modulated RF Power Amplifiers in Class-C Telephony Service, AM or Single-Sideband Linear RF Power Amplifiers, Hard-Tube Modulators, Pulsed-RF Amplifiers, Regulators, or other Special Services


Electrical:

Filamentary Cathode, Thoriated Tungsten Mesh Type: ^c	
Voltage (AC or DC) $\begin{cases} 4 \\ 5 \end{cases}$.5 typ. volts
Current:	
At 4.5 volts	.25 typ. amp
	300 max. amp
Cold resistance 0.0	
	15 sec
Mu-Factor, Grid No.2 to Grid No.1	10 366
for plate volts = 1200, grid-No.2	
volts = 900, and plate amperes = 8	16
Direct Interelectrode Capacitances:	10
Crid No. 1 to plate a	22
	.32 max. pf
Grid No.1 to filament	65 pf
Plate to filament ^{a,b})40 max. pf
Grid No.1 to grid No.2	70 pf
Grid No.2 to plate	13 of
Grid No.2 to filament ^b 2	2.0 max. pf

Mechanical:

Operating Position. Vertical, either end up Maximum Överall Length. . . . Maximum Diameter (See Dimensional Weight (Approx.). K-F - Cathode-

Surface Go-Grid-No.2-Terminal Contact Surface F-Filament-Contact Surface

Filament P-Plate-

Thermal:

	emperature (Fi 2, grid No.1,		de-							
filament	and filament)	×				8	ä	250	max.	oC
Plate-Core	Temperature.									oC
Air Flow: d										

Through radiator — Adequate air flow to limit the plate-core temperature to 250°C should be delivered by a blower through the radiator before and during the application of filament, plate, grid-No. 2, and grid-No. I voltages.

To Plate, Grid-No.2, Grid-No.1, Cathode-Filament, and Filament Terminals — A sufficient quantity of air should be allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C.

 $\it During\ Standby\ \it Operation\ --$ Cooling air is required when only filament voltage is applied to the tube.

During Shutdown Operation — Air flow should continue for a few minutes after all electrode power is removed.

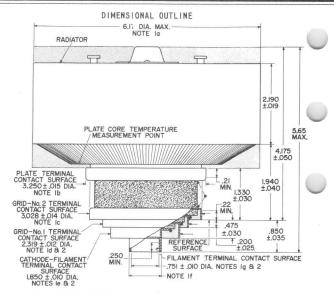
RF POWER AMPLIFIER - Class B Television Service^c

Synchronizing-level conditions per tube unless otherwise specified

Max i mum	CCS	Ratings,	Absolute-Maximum Values:
-----------	-----	----------	--------------------------

DC Plate Voltage					100	×			7000	volts
DC Grid-No.2 Voltage.			×	ĸ		×		(41)	1500	volts
DC Plate Current										
Plate Dissipation										
Grid-No.2 Input										
Grid-No.1 Input						*			100	watts

Typical CCS Operation:


DC Plate Voltage.

In a cathode-drive circuit at 890 Mc and bandwidth of 8.5 Mc

be frate voltage														3700	VUIL3	
DC Grid-No.2 Voltage.		*	100	100	(4)	*	*	(*)	18.5	*	100	100	(*)	1000	volts	
DC Grid-No.1 Voltage.														-40	volts	
DC Plate Current:																
Synchronizing level										*		100		2.9	amp	
Pedestal level														2.2	amp	
DC Grid-No.2 Current:																
Synchronizing level						2	8			ž.				0.015	amp	
Pedestal level															amp	
DC Grid-No.1 Current:															557455544	
Synchronizing level	100							:00						0.375	amp	
Pedestal level															amp	
Driver Power Output:																
Synchronizing level										,			(00)	600	watts	
Pedestal level														335	watts	
Output Circuit Efficie	end	СУ				×	*			¥				80	%	

5700 volts

7	0,10110110110110110110110110110110110110	watts watts
	RF POWER AMPLIFIER & OSCILLATOR — Class C Telegraphy	е
	RF POWER AMPLIFIER - Class C FM Telephonye	
	Maximum CCS Ratings, Absolute-Maximum Values:	
	DC Plate Voltage. 7000 DC Grid-No.2 Voltage. 1500 DC Grid-No.1 Voltage. -100 DC Plate Current. 3 DC Grid-No.1 Current. 0.65 Grid-No.1 Inputf. 100	volts volts volts amp amp watts
h		watts
7	Maximum Circuit Values:	
	Grid-No.1-Circuit Resistance 5000	- 1
	Grid-No.2-Circuit Resistance	ohms
	Plate-Circuit Impedance See N	
	Typical CCS Operation:	
	In Cathode-Drive Circuit at 900 Mc	
	DC Grid-No.2 Voltage. 1000 DC Grid-No.1 Voltage. -85 DC Plate Current. 2.7 DC Grid-No.2 Current. 0.025 DC Grid-No.1 Current. 0.200 Driver Power Output 900 Output-Circuit Efficiency 72 Useful Power Output 5500	volts volts volts amp amp amp watts watts
	 With external flat metal shield 8" in diameter having a center had in diameter. Shield is located in plane of the grid-No.2 tern perpendicular to the tube axis, and is connected to grid No.2. With external flat metal shield 8" in diameter having a center 2-3/8" in diameter. Shield is located in plate of the grid-No.1 nal, perpendicular to the tube axis, and is connected to grid No. 	ole 3" minal, r hole termi-
	The following footnotes apply to the RCA Fransmitting Tube Oper Considerations given at front of this section. C see Electrical Considerations — Filament or Heater. d See Cooling Considerations — Forced-Air Cooling. e see Classes of Service. f See Electrical Considerations — Grid-No.1 Voltage Supply.	rating
	9 See Electrical Considerations — Grid-No.2 Voltage Supply. h See Electrical Considerations — Plate Voltage Supply.	

STIPPLED REGION NOTE 3

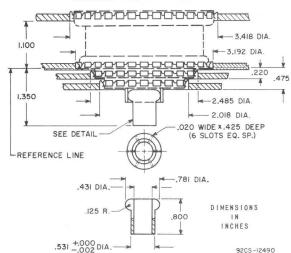
EZZ CERAMIC INSULATOR

 TERMINAL TEMPERATURE MEASUREMENT POINT

92CL-13039

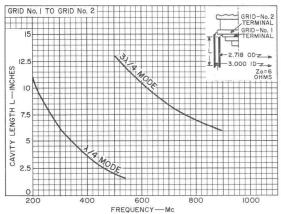
DIMENSIONS IN INCHES

Note I: Concentricity between the various diameters is such that the tube will enter a gauge having suitably spaced concentric apertures and posts of the following diameters:

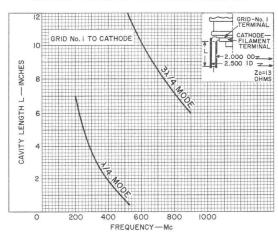

- a. Radiator 6.240
- b. Plate Terminal 3.288
- c. Grid-No.2 Terminal 3.061
- d. Grid-No.1 Terminal 2.338
- e. Cathode-Filament Terminal 1.878
- f. Filament Terminal (OD) 0.908
- q. Filament Terminal (ID) 0.722

Note 2: The diameter of the terminal is held to the indicated value only over the contact surface length. The contact surface length of the filament, cathode-filament, and grid-No.I terminals extends from the edge of its terminal to the plane coincident with the edge of the adjacent larger terminal.

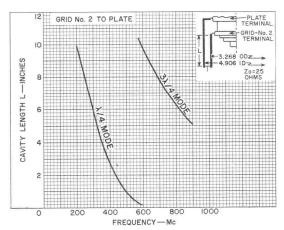
Note 3: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.



PREFERRED MOUNTING ARRANGEMENT

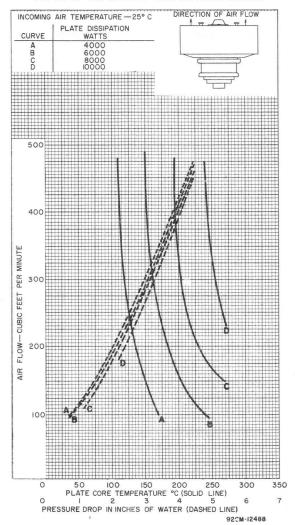

Note: All finger stock No.97-380, made by Instrument Specialties Co., Little Falls, N.J.

CAVITY TUNING CHARACTERISTICS

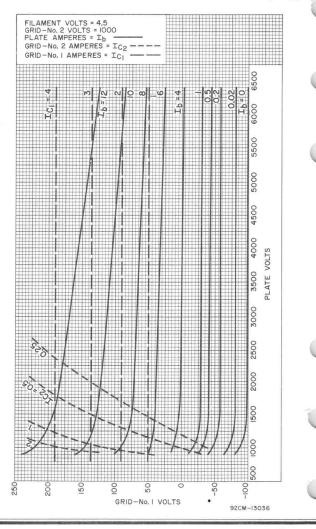


92CS-I3035

CAVITY TUNING CHARACTERISTICS



92CS-13033


92CS-13034

TYPICAL COOLING CHARACTERISTICS

TYPICAL CONSTANT-CURRENT CHARACTERISTICS

Super-Power Klystron

FIVE-RESONATOR, FIXED-TUNED, MAGNETICALLY-FOCUSED
WATER-COOLED TYPE
21-MEGAWATT PEAK PULSE OUTPUT AT 2856 Mc/s

For RF-Pulsed Amplifier in S-Band Linear Accelerator Service

ELECTRICAL

Heater, for Matrix-Type Oxide-Coated

Unipotential Cathode Voltage (AC or DC)
See accompanying Electrical Considerations
Current:
Typical value at 15 volts
Starting value, even momentarily 30 max A
Cold resistance 0.15 Ω
Heating time (Minimum)
At normal operating current before applying
beam voltage
Pump
See accompanying Electrical Considerations
Direct Interelectrode Capacitances
/
Anode to cathode 50 pF
With corona shield and in permanent magnet
Frequency (Center) 2856 Mc/s Phase Sensitivity to Beam Voltage 6 deg/per cent of beam-
Phase Sensitivity to Beam Voltage 6 deg/per cent of beam-
voltage change
MEGHANIGAL
MECHANICAL
Operating Position Vertical, cathode end down
Maximum Overall Length
Maximum Diameter See accompanying Dimensional Outline
Cooling Connections
Inlet
Outlet
Inlet

THERMAL

Metal Surface Temperature	
At O-ring groove on cathode cylinder	100 max °C
All other metal surfaces	150 max °C
Ambient Oil Temperature	100 max °C
Electron-gun-assembly bath	
Window Band Temperature	90 max °C
Through 10-32 NF tapped hole in window	
cover to accommodate thermocouple	
Temperature-Measurement Points See	accompanying

Dimensional Outline

Oil Immersion

Oil immersion of the electron gun assembly is required. The tube must be lowered into an oil bath to the level shown on the $Dimensional\ Outline$. The oil bath must be of sufficient volume to limit the surface of the electron gun assembly to a temperature below 100° C. Transformer oil with high insulating properties, such as $GE10C^{b}$ or equivalent, must be used.

Water Coolingf

Water cooling of the internal structure is required. The water flow must start before application of any voltage in order to purge the system of bubbles and should continue for several minutes after removal of voltage. Interlocking of the water flow with the power supply is recommended to prevent tube damage in case of failure of adequate water flow.

For Collector Dissipation	Typ. Flow	Absolute Min. Flow	Max. Pressure Differential for Typ. Flow
kW	gpm	gpm	psi
of 78	11	10	30
Resistivity of	water at 250	0	I min MO-cm

of 78	11		10				3	0
Resistivity of	water at 25°	С.				1	min	MΩ-cm
Water temperati	ure at outlet					70	max	oC
Max. water pres	ssure at inlet		141			100	max	psi

PULSED RF AMPLIFIER9

Absolute-Maximum Ratings

For a maximum dc pulse "ON" time of 3.2 microseconds in any 2700-microsecond interval, and rf load vacuum pressure of 10^{-7} Torr.

Peak Beam Voltage ^c	 260 k	٧
Peak Inverse Beam Voltage	 50 k	V
Peak Beam Current	 270	A
Peak Input Beam Power	 68 M	W
Average Input Beam Power	 78 k	W

Typical Operation

With rectangular	waveshape pu	lses, rf	pulse o	duty factor	of
0.0009, rf pulse	duration of	2.5 µs	center	ed within a	dc
pulse duration of	f 3.2 μ s, and	at a fre	equency	of 2856 Mc	Is.

Peak Beam Voltage								250	200	kV
Peak Beam Current									170	A
Driving Power Output								105	150	W
At peak of pulsed							×			
Useful Power Output At peak of pulse			•			•		21 e	12 ^e	MW
Power Gain								53	49	dB
Phase Modulation										
By heater magnetic fi	e	d.						0.14	0.1	deg
By change in beam vol	ta	age						6	5.5	deg/%
Amplitude Modulation								0.12	0.05	%
By noise and heater n	nac	ine	ti	fi	01	d				

Maximum Circuit Value

1.5:1

a Varian Associates, 611 Hansen Way, Palo Alto 2, Calif.

b Manufactured by General Electric Co.

- C The magnitude of any spike on the beam voltage pulse should not exceed its peak value by more than 5%, and the duration of the spike when measured at the peak value level should not exceed 0.15 µs.
- d Input VSWR at the tube input connection must not exceed 1.5:1.

e At a load VSWR not exceeding 1.2:1.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at front of this section.

f See Cooling Considerations — Liquid Cooling. For more detailed information on cooling systems see Application Guide for RCA Super Power Tubes, ICE-279A. A copy of this guide may be obtained by writing to RCA, Commercial Engineering, Harrison, N.J.

9 See Classes of Service.

CHARACTERISTICS RANGE VALUES

	Note	Min	Max	
Heater Current				
Peak Beam Current	. 1,2	237	263	Α
Note I: With 15 volts ac or dc on heater.				
Note 2: With beam voltage of 250 kilovolt	S.			

ACCESSORIES

For RCA-8568 SUPER-POWER KLYSTRON

The following tabulated accessories are shown in position on the accompanying Assembly Drawing

RCA	Type	No.		

AJ2106 Set of X-radiation Shields (Includes AJ2107 through AJ2113)

AJ2107	Upper	Collector	X-radiation	Shield
AJ2108	Lower	Collector	X-radiation	Shield
1.12109	Outle	Water Di	ne Y-radiati	on Shield

Description

RCA Type No.

HOA TYPE HOL	Description	
AJ2110	Window X-radiation Shield	
AJ2111	Waveguide X-radiation Shield	
AJ2112	Inlet Water Pipe X-radiation Shield	
AJ2113	Aluminium "Spool" Casting X-radiation Shield	
AJ2114	Permanent Magnet	
AJ2115	Corona Shield	
AJ2116	Sputter-Ion-Pump Magnet and Bracket Assembly	
AJ2117	Electromagnet	
AJ2119	Aluminum Waveguide-Flange Gasket	
AJ2120	Copper Waveguide-Flange Gasket	
AJ2121	Male Waveguide Flange	
AJ2122	O-ring, uniform dash number 441 Buna N	
AJ2123	Waveguide-Flange Hardware (Includes 10 sets of $3/8$ -16 x 2-1/4 hex head bolts, $3/8$ -16 nuts, and 0.625 OD x 0.390 ID x 1/16 washers)	

Description

OPERATING CONSIDERATIONS ELECTRICAL

X-Radiation Warning

Because the 8568 is designed to be operated at peak voltages as high as 260 kilovolts, shielding of the tube for X-radiation is necessary to protect against possible injury to operating personnel.

A set of X-radiation shields to reduce X-radiation to a level not to exceed 3 milliroentgens/hour at a distance of 36 inches from the major tube axis is available as an accessory, RCA-AJ2106. The shields are available individually or in a set.

Heater Voltage

The life of the cathode can be conserved by adjusting to the lowest heater supply voltage that will give the desired performance. In a klystron, however, the heater voltage must not be reduced to a level that will cause an excessive reduction in beam current; otherwise, the cathode may be damaged.

A recommended procedure for adjusting heater voltage during life for maximum life expectancy is as follows:

- 1. Set the heater voltage at the recommended value.
- Set the beam voltage at the maximum operating voltage during adjustment.
- Reduce the heater voltage in 0.5-volt steps with 20-minute stabilization periods between each step.
- 4. Monitor the beam current continually.

CAUTION

With the beam voltage held constant, the beam current must never drop more than three amperes. If the three-ampere drop is exceeded, TURN OFF BEAM VOLTAGE IMMEDIATELY.

- Lower the heater voltage until the beam current is reduced two amperes.
- 6. Increase heater voltage approximately ten percent of the minimum value of heater voltage noted in step 5 above. If the heater voltage supply is regulated, increase heater voltage approximately five percent of the minimum value of heater voltage noted in step 5 above.

Sputter Ion Pump

The sputter ion pump on the 8568 is a variant of the RCA-VC2119; the only difference is in the vacuum system connection.

The RCA-VX2201 Control Unit is a power supply designed especially for the VC2119 Series sputter ion pumps.

PM Magnetic Field

For applications using permanent-magnet-focused 8568's, care must be taken that the magnetic field is not distorted by effects of other ferromagnetic materials. In general, such materials should be located at least three feet from the magnet.

MECHANICAL

Handling

Raise the tube and magnet by using a hoist attached to three eyebolts on the top flange of the magnet, or by three eyebolts which can be screwed into the 1/2"-13 tapped holes located on the top flange of the aluminum "spool" casting. See Dimensional Outline for eyebolt locations.

CAUTION

Do not rest the tube on the corona shield or heater contact.

Rest the tube in an appropriate stand on the lower side of the bottom flange of the aluminum "spool" casting. The tube can also rest on the three locating "buttons" when so equipped.

Mounting

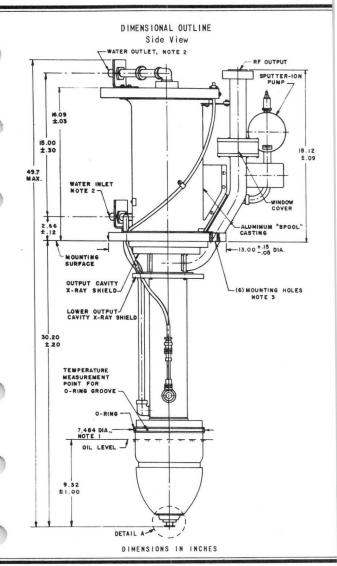
For equipment design, the tube is mounted by resting the lower side of the bottom flange of the aluminum "spool" casting on the focusing magnet.

Connections

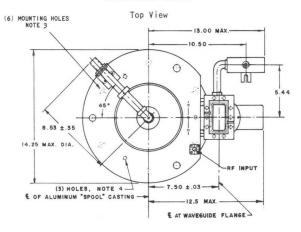
The output waveguide of the 8568 contains an rf window to close the vacuum envelope of the tube.

CAUTION

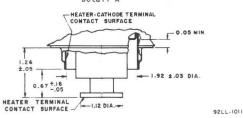
External pressure (load side) applied to the rf window must not exceed 10-7 Torr during operation. otherwise the tube may be damaged.


In certain cases, it may be desirable to pressurize rather than evacuate to load side of the window to prevent damage to the tube.

The window must be kept clean of any foreign material. When the load waveguide is not connected to the tube, the plastic cover supplied for shipping should be used to cover the tube waveguide flange.


A male waveguide flange, RCA-AJ2121, a non-reusable gasket, RCA-AJ2119 (aluminum) or RCA-AJ2120 (copper), and ten sets of nuts, bolts, and washers, RCA-AJ2123, can be used to provide a vacuum-tight waveguide seal. The nuts should be evenly tightened, with a torque wrench in increments of 1/8 to 1/4turn each cycle. The final torque must not exceed 100 poundinches. The copper gasket should be selected if the oxidation rate of the aluminum is excessive. Power supply voltage connections to the tube are made with a corona shield, RCA-AJ2115.

FOR ADDITIONAL INFORMATION ON THIS TYPE, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FOR RCA SUPER POWER TUBES, 1CE-279A AVAILABLE FROM:


> Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey

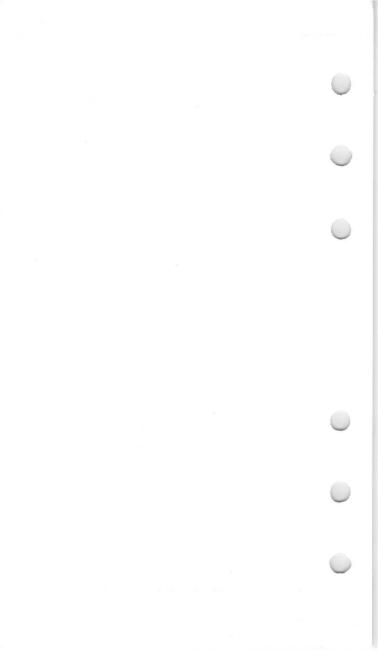
DIMENSIONAL OUTLINE

Detail A

DIMENSIONS IN INCHES

Note I: Recommended diameter of O-ring sealing surface. Note 2: 1/2-14 external American Standard taper pipe thread (Male).

Note 3: Six (6) mounting holes, 9/16 inch diameter through the 13.00-inch diameter flange. Equally spaced on a bolt circle of 11.56 inch diameter.


Note 4: Three (3) holes, 1/2-13 NC, equally spaced on a bolt circle of 10.00 inches for lifting eyebolts.

ASSEMBLY DRAWING AJ2107 -AJ2121 AJ2119 OR AJ2120 AJ2109 -AJ2108 AJ2116 口印 **AJ2110** AJ2II2 AJ2III AJ2113 AJ2114 OR AJ2117 AJ2122

92LL-1012

- AJ2115

Super-Power Beam Power Tube

2 MEGAWATTS PEAK POWER OUTPUT IN SHORT-PULSE SERVICE AT 425 MHz

PULSE LENGTH TO 15 MICROSECONDS LOW FILAMENT POWER
FOR AIRBORNE USE

LIQUID COOLED

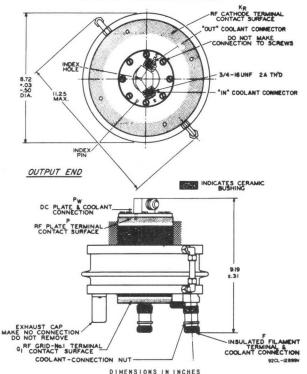
For Grid-Driven, Plate-Pulsed Amplifier Applications at Frequencies from 174 to 600 MHz in Long-Range Search Radar and in Pulsed Communications Applications

The 8587 is the same as the 6952 except for the following items:

MECHANICAL

Overall Length. 9.19 \pm 0.31 i

COOLING CONSIDERATIONS a


To inspect the plate coolant course: (1) Remove the 8 screws from the plate terminal. Lift the plate-terminal assembly carefully out of the tube. This assembly should come out easily. (2) Remove the 0-ring from the moat. (3) Inspect the internal structure of the plate coolant course with the aid of a convenient light source.

- (a) When water or ethylene-glycol-water solution is used, the plate-terminal assembly may stick in (1) above due to excessive deposit build-up. If so, clean the plate coolant course before further attempting to remove the assembly. In (3) above determine if there is a flaky or adherent deposit on the structure. If a deposit is observed, it should be removed. Such a deposit generally consists of copper oxide (usually black) which can be removed by cleaning as above.
- (b) When liquid coolant FC75 is used, determine if there are any particles. Remove any particles. In general, the metal surface of the coolant course should not exhibit any heavy deposits or oxide coatings.
- (4) Replace the 0-ring in the moat. Orient the plate-terminal assembly so that it is in its original position (refer to the index pin of the tube for orientation) and then seat it. Replace the 8 screws. Tighten the screws in succession until snug.

a See Cooling Considerations-Liquid Cooling, under RCA Transmitting Tube Operating Considerations given at front of this section.

SIMPLIFIED DIMENSIONAL OUTLINE'

A detailed Dimensional Outline and associated Gauge Drawings are given in the Technical Bulletin available upon request.

FOR ADDITIONAL INFORMATION ON THIS TYPE INCLUDING INPUT AND OUTPUT CAVITY DRAWINGS, WRITE FOR TECHNICAL BULLETIN AND APPLICATION GUIDE FOR RCA SUPER POWER TUBES, ICE-279A. AVAILABLE FROM:

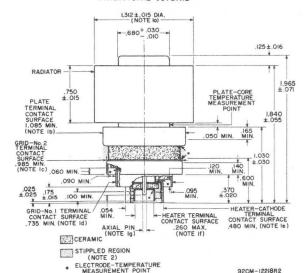
> Commercial Engineering Electronic Components and Devices Radio Corporation of America Harrison, New Jersey

Beam Power Tube

CERMOLOX® RUGGEDIZED TYPE INTEGRAL RADIATOR 40 WATTS CW POWER OUTPUT AT 1215 Mc/s FORCED-AIR COOLED MATRIX-TYPE, OXIDE-COATED, UNIPOTENTIAL CATHODE

For Use in Compact Aircraft, Mobile, and Stationary Equipment The 8596 is the same as the 7457 except for the following items: MECHANICAL

Maximum Overall Length . . . Maximum Diameter 1.327 in . . .


THERMAL

Plate, Grid No.2, Grid No.1, Cathode, and OC. Heater Temperature 250 max Plate-Core Temperature 250 max

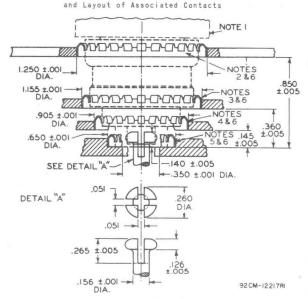
CHARACTERISTICS RANGE VALUES

Note Min Max Zero Bias Plate Current 1.7 390 mΑ NOTE 7: With dc plate volts = 300, dc grid-No.2 volts = 150, dc grid No.1

DIMENSIONAL OUTLINE

DIMENSIONS IN INCHES

For notes, see next page.


92CM-12218R2

NOTE 1: The following diametrical space requirements accommodate the concentricity of the cylindrical surfaces of the radiator band, axial pin, and each electrode terminal:

- a. Radiator Band 1,376 inch b. Plate Terminal - 1.119 inch
- c. Grid-No. 2 Terminal 1.019 inch
- d. Grid-No.1 Terminal 0.764 inch
- 0.519 inch
- e. Heater-Cathode Terminal f. Heater Terminal - 0.238 inch q. Axial Pin - 0.071 inch
- NOTE 2: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

PREFERRED MOUNTING ARRANGEMENT

DIMENSIONS IN INCHES

NOTE I: If a clamp is used, it must be adjustable in a plane normal to the major tube axis to compensate for variations in concentricity between the radiator cylinder and the contact terminals.

NOTE 2: Contact ring No. 97-252 or finger stock No. 97-380.

NOTE 3: Contact ring No. 97-253 or finger stock No. 97-380.

NOTE 4: Contact ring No. 97-254 or finger stock No. 97-380.

NOTE 5: Contact ring No. 97-255 or finger stock No. 97-380.

NOTE 6: The specified contact ring of preformed finger stock and finger stock No. 97-380 provide adequate electrical contact, but the finger stock No. 97-380 is less susceptible to breakage than the specified contact ring. Both types are made by instruments specialties Co., Little Falls, N. J.

Power Triode

	TYPE

	RONMENTAL	TECTO	
CIAA I	RUMMENIAL	IESIS	

Operating Position. . .

LIFE TEST

For Cathode-Drive, Low-Level Class-C RF-Power-Amplifier, Oscillator, or Frequency-Multiplier Applications to 1.2 Gc/s in Aircraft, Industrial, Military, and Other Equipment Operating Under Conditions of Severe Shock and Vibration.

ELECTRICAL CHARACTERISTICS

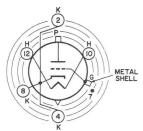
Bogey Values

Heater Voltage (AC or DC)			Ef	6.3	٧
Heater Current at Ef = 6.3	٧.		1+	150	mA
Heater Input			Pf	0.95	W
Direct Interelectrode Capa					
Without external shield					
Input: K to (G,S,H)			C;	6.0	pF
Output: P to (G,S,H) .			c'o	1.2	pF
Heater to cathode			Chr	1.4	pF

Class A_I Amplifier

For following characteristics, see Conditions

Amplification Factor			**	60	70	
				• •		
Plate Resistance (Approx.).			rn	6300	5400	Ω
Transconductance			gm	9500	13000	μ mho
DC Plate Current			Ib.	9	11.5	mA
Cutoff DC Grid Voltage for			b			
$I_b = 10 \mu A \dots \dots$			Ec(co)	-	-5	٧
^-	 : 1	 				


Conditions

		-						
Heater Voltage					Ef	6.3	6.3	٧
Plate Supply Voltage.					Ebb	150	110	٧
Grid Supply Voltage .					Ecc	0	0	٧
Cathode Resistor	٠		•		Rk	150	47	Ω

MECHANICAL CHARACTERISTICS

Type of Cathode	Coated Uninotential
Minimum Overall Length (I_m)	0.985 in
Maximum Seated Length (I _{Sm})	0.780 in
Maximum Diameter (d _m)	0.440 in
Weight (Approx.)	2.2 q
Dimensional Outline	JEDEC No.4-6
Envelope	JEDEC MT4
Top Cap ^a	
Base ^b Medium-Ceramic-Wafer Twelvar	5-Pin (JEDEC E5-79)

Pin 2 - Cathode Pin 4 - Cathode Pin 7° - Do Not Use Pin 8 - Cathode Pin 10 - Heater Pin 12 - Heater Metal Shell - Grid Top Cap - Plate

INDEX = LARGE LUG • = SHORT PIN-IC

ABSOLUTE MAXIMUM RATINGS

For Low-Level Class-C RF-Power-Amplifier, Oscillator, or Frequency-Multiplier Tube Operation at frequencies up to 1.2 Gc/s CCS^d $ICAS^e$

Plate Supply Voltage.				100	Ebb	500	500	٧
DC Plate Voltage					Eb	250	300	٧
Grid Voltage								
Peak positive value					ecm	4	5	٧
DC positive value .			2.00		Ec	0	0	٧
DC negative value .					Ec	-100	-100	٧
Peak Heater-Cathode Vo	011	tag	ge		ehkm	±100	±100	٧
Heater Voltage, AC or	DO	3.			Ef	5.7 to 6.9	5.7 to 6.9	٧
Instantaneous Voltage	980			:00		See Brea	kdown-Volta	ige
Between top cap or I							ristics Cur	
Average Grid Current.					Ic(av)	5	6	mA
Average Cathode Curren	nt	ì			Ik(av)	25	30	mA
Plate Dissipation					Pb	2.5	2.7	W
Envelope Temperature.					TE	200	200	oc

MAXIMUM CIRCUIT VALUES

	CCS	ICAS
1101 110		

Grid-Circuit Resistance Rg(ckt)
For fixed-bias or cathode-

For TE \leq 150° C See Grid-Circuit-Resistance

Rating Chart

TYPICAL OPERATION - CCS

Ac	Cathode-Drive	DE	Power	Amnl	ifio
AS	Cathode-prive	KF	rower	AMDI	ITIE

Frequency	2 Gc/s
Heater Voltage Ef 6.3 6.	3 V
DC Plate-to-Grid Voltage Ebg 180 18	
DC Cathode-to-Grid Voltage Ekg 5.5 5.	5 V
From grid resistor of Ra 1200 120	0 Ω
	O mA
Average Grid Current	4 mA
Driving Power (Approx.) Pa 150 25	O mW
Useful Power Output (Approx.)g Po 1.4 1.	2 W
As RF Oscillator	
Frequency f	Gc/s
Heater Voltage Ef 6.3	V
DC Plate Voltage Eb 180	V
DC Grid Voltage Ec -5.5	v
From grid resistor of Ra 1200	Ω
Average Plate Current	mA
Average Grid Current	mA
Useful Power Output (Approx.)g Po 1.25	W

Output Frequency	1	Gc/s
Heater Voltage Ef	6.3	٧
DC Plate-to-Grid Voltage Ebq	180	٧
DC Cathode-to-Grid Voltage Ekg	8.5	٧
From grid resistor of Ra	1200	Ω
Average Plate Current lb(av)	18.5	mA
Average Grid Current	3	mA
Driving Power (Approx.) Pa	300	mW
Useful Power Output (Approx.)g Po	0.7	W

Designed to mate with "1/4-inch" connector generally available from your local RCA Distributor.

Designed to mate with Cinch Mfg. Co. socket No.133 65 10 041, Cinch-Jones Sales-Division Distributor socket Designation 5NS-3, or equivalent.

C Pin 7 is of a length such that its end does not touch the socket insertion plane.

d Continuous Commercial Service.

e Intermittent Commercial and Amateur Service. No operating or ON period exceeds 5 minutes and every ON period is followed by an OFF or standby period of the same or greater duration.

Measured on metal shell in Zone "A" (See Dimensional Outline).

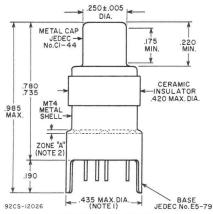
9 Measured at load.

INITIAL CHARACTERISTICS LIMITS

	Note	Min	Max	
Heater Current	. 1	140	160	mA
Direct Interelectrode Capacitances	2			
Cathode to plate		-	0.046	pF
Input: K to (G,S,H)		5.0	7.0	pF
Output: P to (G,S,H)		0.9	1.5	pF
Heater to cathode		1.1	1.7	pF
Amplification Factor	. 3	50	90	

Transcond Plate Cur Plate Cur Cutoff Pl Useful Po Total Gri	Note Min Max Min Max Min Mi	
Heater-Ca Leakage R Between elect Between elect	thode Leakage Current 8 - ±5 AA leasistance in grid and all other trodes connected together 9 5 - GΩ in plate and all other trodes connected together 10 10 - GΩ ves	0
Note I:	With $E_f = 6.3 \text{ V}$.	
Note 2:	Measured without external shield.	
Note 3:	With E_f = 6.3 V, E_{bb} = 110 V, E_{cc} = 0 V, R_k = 47 Ω , C_k = 1000 μf .	
Note 4:	With Ef=6.3 V, Ebb = 150 V, Ecc = 0 V, Rk = 150 Ω , C_k = 1000 μf .	
Note 5:	With $E_f = 6.3 \text{ V}$, $E_b = 150 \text{ V}$, $E_c = -7 \text{ V}$.	
Note 6:	Measured at load in cathode-drive rf-power-amplifier circuit with f = 1 Gc/s, Ef = 6.3 V, Ebg = 175 V, Ekg = 6 V from Rg = 1200 Ω , $I_{b(av)}$ = 23 mA max, $I_{c(av)}$ = 5 mA max, P_g = 150 mW, circuit tuned for maximum $P_o(useful)$.	
Note 7:	With $E_f = 6.3$ V, $E_b = 150$ V, $E_{cc} = -1.3$ V, $R_g = 0$ Ω .	
Note 8:	With $E_f = 6.3 \text{ V}$, $E_{hk} = \pm 100 \text{ V}$.	
Note 9:	With $E_f = 6.3 \text{ V}$, $E_{g-all} = -100 \text{ V}$.	
Note 10:	With $E_f = 6.3 \text{ V}$, $E_{p-all} = -300 \text{ V}$.	
Note II:	Tubes are criticized for Shorts, Discontinuities,	
	and Air Leaks.	0
	ENVIRONMENTAL TESTS	
Pook Impo	High-Impact, Short-Duration Shock	
Duration	of approximate half-sine-wave	
mechanic	cal-shock pulse 0.8 ± 0.2 ms	
Ef = 6.3	Conditions during Test By V, $E_{bb} = 150$ V, $E_{cc} = -1.3$ V, $R_g = 50$ k Ω , $E_{hk} = 100$ V	
Post-Shoc	ck Limits and Rejection Criteria Min Max	
	±15 % ±0.1 μA	
lhk		
ERpm (V	/ariable-Frequency-Vibration Test	
	to 6 kc/s	0
6 t	o 15 kc/s	

	Low-Impact, Long-Duration Shock
	Peak Impact Acceleration 50 g
	Duration of approximate half-sine-
	wave mechanical-shock pulse II ± 2 ms
	Condition during Test No tube-element voltages are applied.
	Post-Shock Limits and Rejection Criteria
	Same as those specified above for the
	High-Impact, Short-Duration Shock Test
	Sweep-Frequency-Vibration Fatigue
	Vibration-Frequency Range (Overall) 5 to 500 to 5 c/s
	Peak Displacement (5 to 50 and 50 to 5 c/s). 0.040 in Peak-to-peak value 0.080 in
	Peak Vibrational Acceleration
	(50 to 500 to 50 c/s)
h	Period of I sweep cycle (Approx.) (5 to 500 to 5 c/s)
7	(5 to 500 to 5 c/s)
	Along each of 3 mutually perpendicular
	axes
	Operating Condition during Test Ef = 6.3 V
	Post-Sweep-Frequency-Vibration-Fatigue
	Limits and Rejection Criteria
	Same as those specified above for the High-Impact, Short-Duration Shock Test
	Variable-Frequency Vibration
	Vibration-Frequency Range (Overall) 3 to 15 kc/s Peak Vibrational Acceleration in X ₁ position g
	Period of I sweep cycle (3 to 15 kc/s) 7
	Operating Conditions during Test
	$E_f = 6.3 \text{ V}$, $E_{bb} = 150 \text{ V}$, $E_{cc} = 0 \text{ V}$, $R_k = 150 \Omega$, $R_p = 2 k\Omega$ Limits
	ERpm over vibration-frequency range of:
	3 to 6 kc/s
1	6 to 15 kc/s
	1155 75070
	LIFE TESTS
	Heater Cycling Duration of Test 2000 cycles
	Operating Conditions
	Ef = 8.5 V cycled 1 minute ON and 2 minutes
100	OFF, E _{hk} = -180 V continuously ON Rejection Criteria
	Heater-cathode shorts, and heater and cathode
	discontinuities

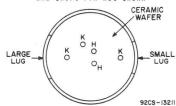

Intermittent Operation (2, 20, 100, 500, and 1000 Hours)

Operating Conditions

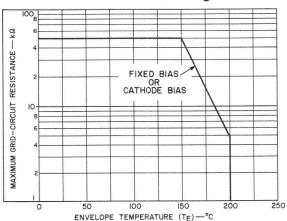
 $E_f=6.3$ cycled 110 minutes ON and 10 minutes OFF, $E_{bb}=150\,$ V, $E_{cc}=0$ V, $R_g=50\,$ k $\Omega,$ $P_b=2.4$ W, $T_E=150^{\circ}$ C min

End-Point Limits At | 2 and 20 | 100 500 1000 h Min Max Min Max Min Max Min Max 1gm . . 6700 μmh o ±10 $\Delta 1$ gm/t. W Polusefull. 0.9 -0.2 lc. . . μA

DIMENSIONAL OUTLINE JEDEC No.4-6

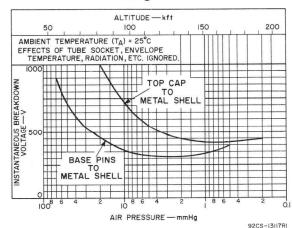

DIMENSIONS IN INCHES

Note I: Maximum outside diameter of 0.440" is permitted along 0.190" lug length.

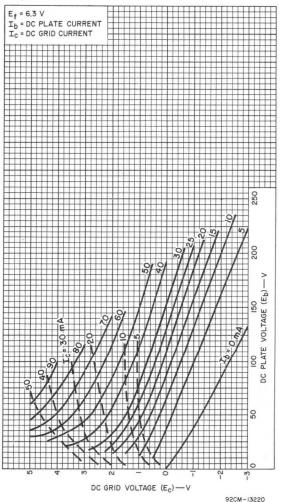

Note 2: Envelope temperature should be measured in zone "A".

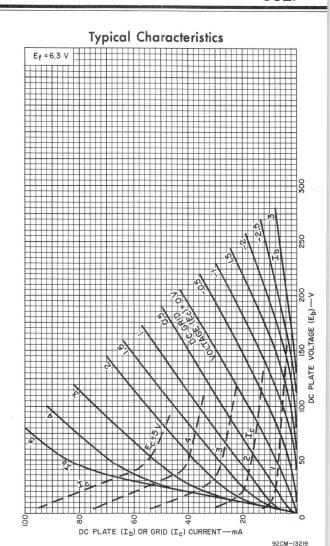
MODIFIED BOTTOM VIEW

With Element Connections Indicated and Short Pin Not Shown

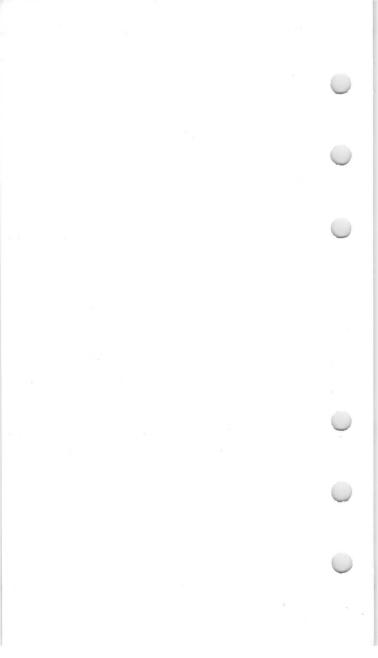


Grid-Circuit-Resistance Rating Chart




92CS-13119RI

Breakdown-Voltage Characteristics



Typical Constant-Current Characteristics

High Power Magnetron

Ceramic-Metal Construction

CW Oscillator 30 Kilowatts at 915 MHz 80% Efficiency Liquid Cooled

AJ2134V1, or equivalent

MAGNETRON

FLECTRICAL

Filament, Tungsten Coil
AC Supply Voltage
Current at 12.5 volts 115 A
Starting Current Must never exceed 250
amperes, even momentarily
Cold resistance
Minimum heating time at normal
filament voltage before anode
voltage is applied
Center Frequency 915 ± 15 MHz
Focusingb Electromagnet, using AJ2134,

MECHANICAL

Operating Position								V	eı	t	ic	al	Ι,	е	it	he	er	end up
Maximum Overall Length							×											18.25"
Maximum Diameter															×			4.94"
Terminal Connections .							Se	ee	I) i	m	e	ns	sic	or	ıa	l	Outline
Weight (Approx.)	**		٠	٠	٠	*		٠	٠	•	•	٠	*	ř	•	•		16 lbs

THERMAL

Ceramic-Insulator Temperature Metal-Surface Temperature						÷	150	max.	°C
Metal-Surface Temperature							100	max.	°C

Air Cooling

It is important that the temperature of any external part of the tube should not exceed the specified values. Uniform forcedair cooling of the output ceramic dome is required; with an RCA-AJ2134 or -AJ2134V1 Waveguide Adapter, approximately 20 cfm at 2.5 inches of water is adequate. Forced-air cooling of filament-terminal stem is also required. Approximately 5 cfm at 2 inches of water is required when using the RCA-AJ2137 Filament Connector. The air flow must start before application of the filament voltage and preferably should continue for several minutes after removal of the voltage. Interlocking of the air flow with the filament power supply is recommended to prevent tube damage in case of failure of adequate air flow.

Liquid Cooling

Liquid cooling of the anode is required. The liquid flow must start before application of the filament voltage and preferably

should continue for several minutes after removal of the voltage. Interlocking of the liquid flow with the filament power supply is recommended to prevent tube damage in case of failure of adequate liquid flow. When the liquid is water, the use of distilled or filtered deionized water is essential.

For information on the cooling system and quality of water, see Cooling Considerations under RCA Transmitting Tube Operating Considerations at front of this section.

Typical Water Flow to tube for 6 kW Anode
Dissipation
Pressure Drop, at 3 gpm
Maximum Outlet Water Temperature 70 °C
Maximum Inlet Water Pressure

CW OSCILLATOR
Absolute-Maximum Ratings
DC ANODE VOLTAGE ^c
ANODE CURRENT
ANODE DISSIPATION
LOAD VSWRd
At a Power Output of 30 kW 1.1:1
At a Power Output of 25 kW 2.5:1
At a Power Output of 20 kW 3.0:1
Typical Operation at 915 MHz
AC Filament Voltage 11.7 11.4 11.4 V
Filament Current a 105 100 100 A
DC Anode Voltage 7.0 12.5 12.6 kV
Anode Current 2.0 2.4 2.8 A
DC Electromagnet Current 1.8 3.1 3.1 A
Useful Power Outpute 10 25 30 kW
Efficiency,

^aThe filament is subjected to back bombardment during operation. This will increase the filament temperature and shorten tube life if left uncorrected. Therefore, the filament current should be reduced under operating conditions to a value that will give the same "hot filament resistance" as when no rf power is being generated. The operating filament current must be established in the following manner:

- (1) With no anode voltage applied, set the filament current to 115 amperes without exceeding the starting current of 250 amperes. Calculate the "hot filament resistance" after the filament has stabilized (approximately 5 minutes) by dividing the applied filament voltage by the filament current.
- (2) Apply power to the electromagnet (See Magnetron Operating Considerations, Electromagnet Operation), and then apply the desired anode voltage.

- (3) Reduce the filament current in approximate 5-ampere steps until the "hot filament resistance" is the same as that calculated in Step 1. See Typical Operation data for approximate operating current.
- (4) To restart the magnetron after the anode voltage has been removed, reset the filament current to 115 amperes, apply anode voltage and after the tube is generating power, reduce the filament current to the operating value determined in Step 3.

^bThe magnetic field must be turned "on" before application of the anode voltage and turned "off" only after removal of the anode voltage. For further details, see Wave guide Adapter.

The anode is normally grounded.

d Refer to Typical Rieke Diagram for the effects of load VSWR on power output and frequency.

eAt a load VSWR not exceeding 1.1:1.

MAGNETRON OPERATING CONSIDERATIONS

For considerations common to all RCA super-power tubes, see Application Guide for RCA Super Power Tubes, ICE-279A. Additional considerations specifically for the 8684 are given below.

Use of RF-Gasket

The rf connection between the magnetron and waveguide adapter is made by an rf gasket, RCA-AJ2138 or equivalent.

Harmonic Radiation Shielding

Harmonic energy may be radiated through the high-voltage and filament insulators. An rf shielded enclosure or suitable absorbing material may be required to reduce the harmonic radiation to acceptable levels.

Electromagnet Operation

To establish the electromagnet coil current when a tube is first installed, it is recommended that the electromagnet coil current be set at a value that will keep the magnetron anode current cut off when the anode voltage is applied. The typical electromagnet coil current necessary to achieve anode current cutoff with various anode potentials is shown in Fig.2. In no case should the coil current exceed 4.0 amperes. After the anode voltage has been applied, the electromagnet coil current should be gradually reduced to give the required magnetron rf power output. The magnetron anode current and rf power output will increase slowly as the magnet coil current is gradually reduced.

When the tube is restarted after it has been shut down, the electromagnet coil current may be reset at the value determined above provided the coil is not connected in series with the magnetron anode supply. See Wave-Guide Adapter, Operating Considerations for electromagnet and tube operation with the coil connected in series with the magnetron anode supply.

RF-RADIATION WARNING

Because the 8684 is designed to generate high rf power levels at high frequencies, care must be taken to protect personnel from possible injury due to rf-radiation leakage.

Care must be exercised by the equipment designer and tube operator to insure that the rf seals obtained between the tube RF Output Terminal Contact Surface (See Dimensional Outline) and Waveguide Adapter, between waveguide flanges, and between the waveguide and rf probes are adequate to limit the rf leakage radiation to safe values.

CONNECTORS

RCA-AJ2137 is a connector for contacting the filament terminal of the magnetron. It contains a duct to permit forced-air cooling of the filament terminal, filament insulator, and the filament-cathode connector. This connector includes a 10-inch long braided lead with connector lug for 3/8-inch bolt.

RCA-AJ2136 is a connector for contacting the filament-cathode terminal of the magnetron. This connector includes a 10-inch long braided lead with connector lug for 3/8-inch bolt.

RCA-AJ2136V1 is a variant of the AJ2136 described above. It features a molded material which suppresses spurious radiation from the high-voltage insulator area of the magnetron.

AJ2137 AC or DC Current (typical)	115	A
Pressure Drop, at air flow of 5 ft ³ /min	2 inc of wa	
AC or DC Current (typical)	115	A
AC or DC Current (typical) Spurious Radiation Attenuation:	115	A
Minimum	10 12	dB dB

WAVEGUIDE ADAPTER

RCA-AJ2134 and AJ2134V1 Waveguide Adapters include the necessary electromagnet and rf circuitry for coupling rf energy from the 8684 to WR975 waveguide. The AJ2134 and the AJ2134V1 are identical except for the waveguide connector flange.

ELECTRICAL

DC Coil Voltage		0.00										0.00			39	V
Coil Current at 39 vo	lts .														. 3.0	A
Voltage Transients A	cross	E	lec	etro	om	ag	gne	et					N	1u	st ne	ver
		ex	cee	ed !	50	0	VC	olt	s,	e	ve	n	m	on	nentar	ily

MECHANICAL

h	Maximum Overall Length
7	Maximum Height
	Maximum Width
	Mounting Bracket See Assembly Outline
	Electromagnet Electrical Terminal
	Connection See Assembly Outline
	Electromagnet Coolant Connections See Assembly Outline
	Weight (Approx.)
Th.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

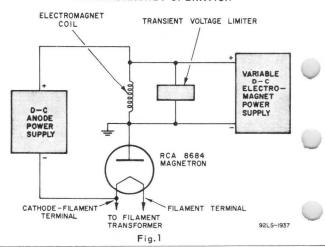
Liquid Cooling THERMAL

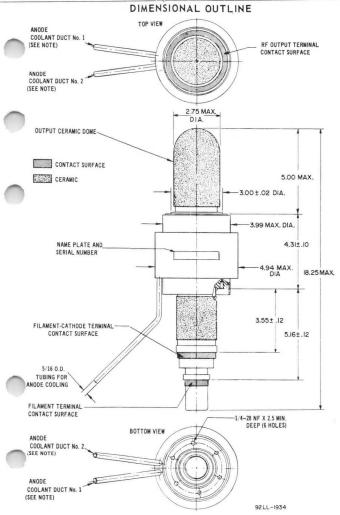
Liquid Cooling of the electromagnet coil is required. The liquid flow must start before application of the electromagnet voltage and preferably should continue for several minutes after removal of the voltage. Interlocking of the liquid flow with the electromagnet and the magnetron high voltage supply is recommended to prevent damage to the electromagnet and/or tube in case of failure of adequate liquid flow.

Typical Water Flow for coil dissipation	on	(of					
140 watts							().25 gpm
Maximum Pressure Drop, at 0.25 gpm								10 psi
Maximum Outlet Water Temperature .								. 70 °C
Maximum Inlet Water Pressure								100 psig

Absolute-Maximum Ratings

DC Electromagnet Voltage	e f	F										50	V
DC Electromagnet Power										19	90	wat	tts


f A shunt protection circuit such as provided by a thyrite is recommended for protecting the electromagnet from high voltage transients.


WAVEGUIDE ADAPTER OPERATING CONSIDERATIONS

See RCA-8684 Ratings for Typical Operation and Magnetron Operating Considerations. The electromagnet may be operated with a separate current-regulated power supply or it may be connected in series with the anode of the RCA-8684 magnetron, as shown in Fig.1, to minimize the sensitivity of the rf power output to anode voltage variations. In the series connected mode a separate power supply must also be connected to the electromagnet to (1) allow setting the coil current to the level required for proper tube operation (2) allow slight compensation for changes in the electromagnet coil resistance due to heat, and (3) permit the application and interruption of the magnetron anode voltage without creating excessive transient voltages across unprotected electromagnet coils.

To prevent damage to a non-protected electromagnet in the series connected mode, the magnetron anode voltage must neither be applied nor removed without first increasing the electromagnet coil current to a level that will keep the magnetron anode current cut off. The typical electromagnet coil current necessary to achieve anode current cutoff with various anode potentials is shown in Fig.2. Once the anode voltage is applied, the electromagnet coil current may be reduced to the required level by adjusting the output of the electromagnet supply. The magnetron anode current and rf power output will increase slowly as the coil current is gradually reduced.

SERIES CONNECTED POWER SUPPLY FOR ELECTROMAGNET OPERATION

NOTE: Recommended direction of anode coolant flow: Duct #1 is "IN" and Duct #2 is "OUT" when tube is operated with Output Ceramic Dome UP. With Output Ceramic Dome DOWN, the flow should be reversed.

ACCESSORIES

RCA Type No.

Description

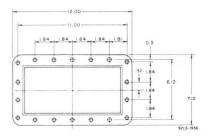
AJ2134

Waveguide Adapter; mates with EIA Standard CRP975F(WR975) Waveguide Flange.

AJ2134V1 Waveguide Adapter; mates with Alternate Waveguide Flange (See Flange on Assembly Outline.)

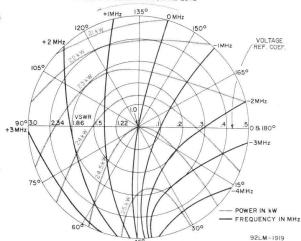
AJ2135 Magnetic Pole Piece AJ2136 Filament-Cathode Connector AJ2136V1 Filament-Cathode Connector with Molding

AJ2137 Filament Connector

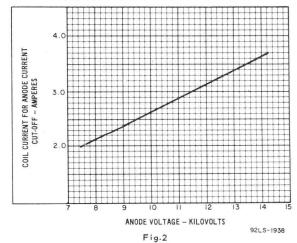

AJ2138 RF Gasket

Accessory Kit including -AJ2135. AJ2140

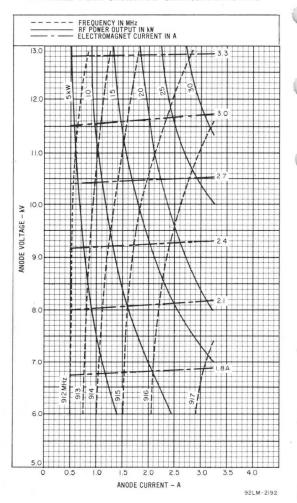
-AJ2136, -AJ2137 Accessory Kit including -AJ2135, AJ2141 -AJ2136V1, -AJ2137


AJ2134 Waveguide Adapter flange mates with EIA standard CRP975F (WR975) waveguide flange

AJ2134V1 Waveguide Adapter flange mates with alternate flange shown below


TYPICAL RIEKE DIAGRAM

ANGULAR WAVELENGTH TOWARD LOAD



Note: The zero degree reference point is located at the plane of the waveguide connector flange on RCA-AJ2134 or -AJ2134V1 Waveguide Adapter.

COIL CURRENT vs. ANODE VOLTAGE

TYPICAL PERFORMANCE CHARACTERISTICS

Pencil Tube Fast Warmup Time Pre-Tinned Heater Pins Ceramic Metal, High-Mu Triode Sturdy Coaxial-Electrode Structure GENERAL Heater, for Unipotential Cathode: Voltage (AC or DC) 6.3 \pm 10% Current at 6.3 volts 0,225 A Cathode Warmup Time (Average) to reach 80% of operating power output as RF oscillator 5 8 Amplification Factor 70 Transconductance, for dc plate current of 14 milliamperes, dc plate voltage of 125 volts, and cathode resistor of 50 ohms 16,000 uS Direct Interelectrode Capacitances: 2.1 pF Grid to cathode and heater 4.4 pF Plate to cathode and heater 0.04 max. pF Any Dimensions and Terminal Connections See Dimensional Outline Weight (Approx.)...... 0.3 oz Sockets: Heater-Terminals Connector Grayhill No.22-5, or equivalent Socket for operation up to about 550 MHz (Including heater-terminals connector)..... Jettron^b No.CD7010. or equivalent Cavities (Including heater-MCL, Inc.f or equivalent RF POWER AMPLIFIER & OSC. - Class C Telegraphy 9 RF POWER AMPLIFIER - Class C FM Telephony

Maximum CCSh Ratinas, Absolute-Maximum Values up to 5 GHz: For Altitudes up to 100,000 feet 250 max. -50 max. V DC Cathode Current 25 max. mA 6 max. mA 0.25 max. MQ

Management of the second secon		Design Colored		AND REPORT OF THE PARTY OF THE		Constant State		ile mille aviavalities
Plate Dissi ation					2.5 ma	ax.	W	
Plate-Seal Temperati	ıre				225 m	ax.	$^{\rm o}$ C	
Peak Heater-Cathode	Volta	ge:						
Heater negative w	ith							
respect to cath	ode .				50 ma	ex.	V	
Heater positive w					50 ma	245	V	
respect to cath								
Typical CCS Operatio							ce:	6
	At 500	At	At	At	At 4,150	At)	
	MHz	MHz	MHz	MHz	MHz	MHz	,	
DC Plate-to-Grid					200	200		
Voltage	205	203	151	125	200	200	V	
DC Cathode-to-Grid Voltage	5	3	1	0.1	0.26		V	
	J	J	1	0.1	0.20			
From a grid resistor of 1	1,000	600	250	500	130	100	Ω	
DC Cathode Current	21	24	24	20	23	25	mA	
DC Grid Current	5	5	4	0.2	2	_	mA	
Useful Power Out-								
put (Approx.)	1.6	1.3	0.5	0.15	0.1	0.03	W	
Typical CCS Operation	n as A	Amplifi	er in C	athod	e-Drive	Servi	ce:	
					At	At		
					500	1,000)	
DC Plate-to-Grid Vol	tage				MH z 204	MH z 185	V	
DC Cathode-to-Grid	-				4	10	V	
From a grid resist					-	2,000	Ω	
DC Cathode Current					21		mA	
DC Grid Current					5		mA	
Drive Power Input (A					0.2	0.2	W	~
Useful Power Output					2.2	1.4	W	
OSCILIT OWEL OULPAR	(IIPPI				2.2			
FREQUENCY DOU	BI FF	- CI	aee C					
Maximum CCSh Rating						to 2 (GHz	
For A	ltitude	s up to	100,0	uu jee	e t			
DC Plate Voltage					250 ma	ax.	V	
DC Grid Voltage					-50 m	ax.	V	
DC Cathode Current					22 ma	ax.	mA	
DC Grid Current					6 ma		mA	
Grid Resistor					0.25 ma	ax.	МΩ	
	president disc		Sheeness.	STORESTON	Name and Address of the Owner, where	DESCRIPTION OF THE PERSON OF T	Several	RESPONDED TO SERVICE

	Plate Dissipation	2.5 max.	W
	Plate-Seal Temperature	225 max.	°C
	Peak Heater-Cathode Voltage:	220	
	Heater negative with		
	respect to cathode	50 max.	V
	Heater positive with respect to cathode	50 max.	V
	Typical CCS Operation as Doubler in Catho		ce:
	At 550 MHz	At 1,000 MHz	
	DC Plate-to-Grid Voltage 193 207	218 181	V
	DC Cathode-to-Grid Voltage . 18 7	18 6	V
	From a grid resistor of 3,600 2,300	3,600 2,000	Ω
	DC Cathode Current 20 18	21 19	mA
	DC Grid Current 5 3	5 3	mA
	Drive Power Input (Approx . 0.8 0.2	0.8 0.2	W
	Drive Power Output (Approx.) 1.3 0.75	0.9 0.4	W
	FREQUENCY TRIPLER - Class C		
	Maximum CCSh Ratings, Absolute-Maximum V	alues i up to 2	GHz:
	For Altitudes up to 100,000		
	DC Plate Voltage	250 max.	V
	DC Grid Voltage	-50 max.	V
	DC Cathode Current	20 max.	mA
	DC Grid Current	6 max.	mA
	Grid Resistor	0.25 max.	МΩ
	Plate Dissipation	2.5 max.	W
	Plate-Seal Temperature	225 max.	$^{\mathrm{o}}\mathrm{C}$
	Peak Heater-Cathode Voltage:		
	Heater negative with respect to cathode	50 max.	V
	Heater positive with respect to cathode	50 max.	V
	Typical CCS Operation as Tripler in Cath		ice:
	At	At	
	DC Plate-to-Grid Voltage 645 MHz 202 240	1,000 MHz 205 185	V
	DC Cathode-to-Grid Voltage . 27 15	30 10	V
	From a Grid Resistor of 9,000 25,000	10,000 14,000	Ω
	DC Cathode Current 19 13	19 12	mA
	DC Grid Current 3 0.6	3 0.7	mA
	Drive Power Input (Approx.) . 0.6 0.2	0.6 0.2	W
	Useful Power Output (Approx.) 0.7 0.4	0.4 0.15	W
200			AND THE PERSON NAMED IN

CHARACTERISTICS RANGE VALUES

CHARACTER ISTICS RA	HOL TAL	ULJ			
Heater Current	Note 1	Min. 0.205	Max. 0.245	A	
Capacitances: Grid to plate		1.5	2.7	pF	
Grid to cathode		3.6	5.0	pF	
Plate to cathode	_	_	0.04	pF	
Heater-Cathode Leakage Current:					
Heater negative with respect to cathode	1,2	_	30	μΑ	,
Heater positive with respect to cathode.	1,3	-	30	μΑ	
Leakage Resistance: From grid to plate and cathode con- nected together From plate to grid	1,4	100	-	мΩ	
and cathode con- nected together	1,5	100	_	мΩ	
Reverse Grid Current	1,6	_	0.3	μA	
Emission Voltage	7	-	4	V	
Amplification Factor	1,8	55	85		
Transconductance	1,8	12,500	19,500	μS	
Plate Current (1)	1,8	9	19	mA	
Plate Current (2)	1,9	-	50	μΑ	
Power Output	1,10	1.7	-	W	
Change in Power Output.	1,10,11	_	0.2	W	
Note 1: With 6.3 volts ac Note 2: With 60 volts dc b negative with resp	etween hea	ater and ca	•		
Note 3: With 60 volts dc b			tnode, nea	ater	
Note 4: With grid 100 vol				late	
Note 5: With plate 300 vo	olts negati h are conne	ve with re	spect to		
Note 6: With dc plate vol of -2 volts, grid	tage of 200 resistor of	0 volts, do 0.5 megoh	grid volt m.		
Note 7: With dc voltage nected together a current of 30 mil	and adjuste	d to produ	ce a cath	ode	

Note 8: With dc plate-supply voltage of 125 volts, cathode resistor of 50 ohms, and cathode bypass capacitor of 1,000 microfarads.

heater.

- Note 9: With dc plate voltage of 125 volts and dc grid voltage of -5 volts.
- Note 10: In a single-tube, cathode-drive amplifier circuit operating at a frequency of approximately 550 ± 10 MHz, and with dc plate-to-cathode voltage of 250 volts, input-signal power of 0.2 watt, and dc grid voltage adjusted to produce a dc plate current of 20 milliamperes.
- Note 11: Reduce heater voltage to 5.7 volts. Change in Power
 Output value from that obtained with 6.3 volts on
 heater will not exceed indicated value.
- Grayhill, Inc., 561 Hillgrove Ave., LaGrange, Ill.
- b Jettron Products, Inc., 56 Route 10, Hanover, N.J.
- Fidelitone Microwave, Inc., JVM Division, 6415 N. Ravens-wood Ave., Chicago, Ill. Indicated number applies to a series of cavities covering the range from 220 to 3500 MHz.
- d Resdel Engineering Corp., 990 South Fair Oaks Ave., Pasadena, Calif. This series of cavities covers the range from 215 to 2325 MHz.
- Applied Microwave Laboratory, Inc., 106 Albion St., Wake-field, Mass.
- f Microwave Cavity Laboratory, Inc., 10 Beach Ave., LaGrange, Ill.
- ⁹ Key-down conditions per tube without amplitude modulation. Modulation essentially negative may be used if the positive peak of the audio frequency envelope does not exceed 115 per cent of the carrier conditions.

Continuous Commercial Service.

SPECIAL TESTS AND PERFORMANCE DATA Low-Pressure Voltage Breakdown Test

This test (similar to MIL-E-1) is performed on a sample lot of tubes every 90 days. Tubes are tested in a chamber at an air pressure equivalent to an altitude of 100,000 feet. Breakdown will not occur when a 60-Hz rms voltage of 300 volts is applied between the plate cylinder and grid flange.

Low-Frequency Vibration Performance

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run under the

following conditions: Heater voltage of 6.3 volts, dc plate-supply voltage of 125 volts, cathode resistor of 50 ohms, and plate load resistor of 10,000 ohms. The tubes are vibrated in a plane perpendicular to the tube axis at 40 Hz at an acceleration of 10 g. The rms output voltage across the plate load resistor as a result of vibration of the tube will not exceed 100 millivolts.

At the end of this test the tubes will not show permanent shorts or open circuits and will meet the following test limit:

Negative Grid Current (-I_C) 1 max. μA

For conditions shown under $\it Characteristics\ Range\ Values$, $\it Note\ 1$.

Variable-Frequency Vibration Performance

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run. Tube operating conditions are the same as for Low-Frequency Vibration. The tubes are vibrated perpendicular to the major axis through a frequency range from 5 to 500 Hz and back. From 5 to 50 Hz, the tubes are vibrated at a constant displacement of 0.0400 ± 0.0025 inch. From 50 to 500 Hz, the tubes are vibrated at a constant acceleration of 10 ± 2 g. Total time to complete a sweep cycle is 10 ± 5 minutes. During the test, the tubes will not show an rms output voltage across the plate load resistor in excess of 150 millivolts.

Each tube is vibrated for 60 seconds at the frequency which gives maximum vibrational noise output. If, at the end of 60 seconds, the vibrational noise output is still increasing, the test is continued until there is no further increase.

The rms output voltage across the plate load resistor as a result of the vibration of the tube will not exceed the specified limit at any time during the test.

At the end of the test the tubes will not show permanent shorts or open circuits and will meet the following test limit:

Negative Grid Current (-I_C) 1 max. μA

For conditions shown under *Characteristics Range Values*, *Note 1*.

Shock Test

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run. Tubes are held rigid and are subjected in three different positions to an impact acceleration of 500 g, 5 blows in each position.

At the end of this test, tubes will not show permanent shorts or open circuits and will meet the following limits:

Negative Grid Current (- I_C) 1 max. μA

For conditions shown under $Characteristics\ Range\ Values$, Note 1.

Heater-Cathode Leakage Current 60 max. μA

For conditions shown under *Characteristics Range Values*, *Notes 1*, 3.

Low-Frequency Vibration Output 200 max. mV

For conditions shown above under Low-Frequency $Vibration\ Performance$.

Change in transconductance -20 max. %

From initial value for conditions shown under Characteristics Range Values, Notes 1, 8.

Fatigue Vibration Test

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run. Tubes are rigidly mounted and subjected to 2.5 g vibrational acceleration in two positions (X1, Y1) for 32 hours each. At the end of this test, tubes are required to meet the limits specified for the *Shock Test*.

Shorts and Continunity Test

This test (similar to MIL-E-1) is performed on all tubes from each production run. Voltage applied between adjacent elements of the tube under test will be between 20 and 70 volts dc or peak ac. Plate and cathode terminals are tied together and connected to the grid terminal through the shorts test equipment. Tubes are tapped with a rubber tapper three times in each of three mutually perpendicular directions. If a short indication is obtained, the tapping cycle is repeated two times for verification. Acceptance criteria is based on the "Resistance vs. Time Duration" curve shown in MIL-E-1.

At the end of this test, the tubes will not show permanent shorts or open circuits and will meet the following limit:

Negative Grid Current (- I_C) 1 max. μA For conditions shown under *Characteristics Range* Values, Note 1.

Ceramic Seal Fracture Test

This test is performed on a sample lot of tubes every 90 days. With cathode- and plate-cylinder-supports spaced $15/16 \pm 1/64$ inch $(23.812 \pm 3.96$ mm), and with the grid flange centered between these supports, the tubes will withstand the gradual application of a force of 30 pounds (13.6 kilograms), perpendicular to the axis of the tubes, upon the grid flange, without causing fracture of the ceramic insulation.

Seal Strain Test

This test (similar to MIL-E-1) is performed on a sample lot of tubes every 90 days. Tubes are tested by first immersing in water having a temperature of at least 97° C for at least 15 seconds and then immersing immediately in water at not more than 5° C for 5 seconds.

After drying for 48 hours at room temperature, the tubes will meet the following test limits:

Negative Grid Current (-I_C) 1 max. µA For conditions shown under *Characteristics Range Values*, *Note 1*,

Heater-Cycling Life Performance

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run. With 6.3 volts on heater and no voltage on plate or grid, the heater is cycled three minutes on and three minutes off for at least 2.000 cycles.

At the end of this test, tubes will not show permanent shorts or open circuits, and are required to meet the following limits:

Negative Grid Current (-I_C) 1 max. μA

For conditions shown under *Characteristics Range Values*, *Note 1*.

Heater-to-Cathode Leakage Current 30 max. μA For conditions shown under *Characteristics Range* Values, Notes 1, 3.

Grid-to-Cathode Leakage Resistance . . . 50 min. MΩ For conditions shown under *Characteristics Range* Values, Notes 1, 4.

1-Hour Stability Life Performance

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run to insure that the tubes have been properly stabilized. Tubes are operated under the following conditions: Heater voltage of 6.3 volts, plate-supply voltage of 215 volts, and cathode resistor of 150 ohms.

At the end of 1 hour, the change in transconductance value for each tube, referred to its initial transconductance reading, will not exceed 15 percent of the initial value, for conditions shown under *Characteristics Range Values*, *Notes 1*, 8.

In addition the tubes will not show permanent shorts or open circuits and will meet the following limit:

Negative Grid Current (-I_C) 1 max. μA

For conditions shown under ${\it Characteristics\ Range\ Values}$, ${\it Note\ 1.}$

100-Hour Survival Life Performance

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run to insure a low percentage of early inoperatives. Life-test conditions are the same as those specified for 1-Hour Stability Life Performance except that all voltages are cycled at the rate of 110 minutes on and 10 minutes off.

At the end of 100 hours, the tubes will not show permanent shorts or open circuits and will meet the following limits:

Negative Grid Current (-I_C) 1 max. μA

For conditions shown under Characteristics Range Values, Note 1.

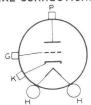
Plate Current (2) 50 max. µA For conditions shown under *Characteristics Range* Values, Notes 1, 9.

500- and 1000- Hour Dynamic Life Performance

This test (similar to MIL-E-1) is performed on a sample lot of tubes from each production run to insure high-quality rf performance. Each tube is life-tested as a Class C amplifier in special cavity at 550 ± 10 MHz under the following conditions: Heater voltage of 6.3 volts; plate-supply voltage of 250 volts; cathode resistor adjusted to give plate current of 25 milliamperes; and grid-circuit resistance adjusted to give grid current of 6 milliamperes, heater positive with respect to cathode by 67.5 volts, and plate-seal temperature of 225° C. Heater voltage is cycled at a rate of 110 minutes on and 10 minutes off.

At the end of 500 hours, the tubes will not show permanent shorts or open circuits, and will be criticized

No.	
3	Negative Grid Current (-I $_{\mbox{\scriptsize C}})$ 1 max. $\mbox{$\mu$A}$
	For conditions shown under Characteristics Range
	Values, Note 1.
	Leakage Resistance:
	From grid to plate and
7	cathode connected together 60 min, $M\Omega$ From plate to grid and
	cathode connected together 60 min. MΩ
	For conditions shown under Characteristics Range Values, Notes 1, 4, and 1, 5.
	Power Output 1.5 min. W
7	For conditions shown under Characteristics Range
	Values, Notes 1, 10.
	At the end of 1,000 hours, the tubes will not show
	permanent shorts or open circuits and will be criticized
	for total number of tubes failing to pass the following
	limits:
	Negative Grid Current (- I_C) 1 max. μA For conditions shown under <i>Characteristics Range</i>
	Values, Note 1.
	Power Output
	Values, Notes 1, 10.
h	OPERATING CONSIDERATIONS
7	Connections to the cathode cylinder, grid flange,
	and plate cylinder should be made by flexible spring
	contacts. The connectors should make firm large-sur-
	face contact, yet must be sufficiently flexible to in-
	sure that no part of the tube is subjected to excessive
7	strain.
	The cathode should be connected to one side of
	the heater. In some circuit designs, when the heater

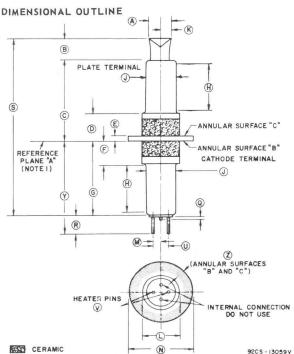

is not connected directly to the cathode, precautions must be taken to hold the peak heater-cathode voltage to the maximum rated values shown in the tabulated

for total number of tubes failing to pass the following

limits:

data.

TERMINAL CONNECTIONS



H: Heater Pin

K: Cathode Cylinder
(Adjacent to Heater Pins)

G: Grid Flange

P: Plate Cylinder (Adjacent to pinch-off)

Reference plane "A" is defined as that plane against which annular surface "B" of the grid flange abuts.

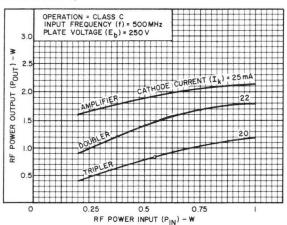
Annular surface "B" is on the side of the grid flange toward the cathode cylinder.

Annular surface "C" is on the side of the grid flange toward the plate cylinder.

OUTLINE DIMENSION	S AND NOTES
-------------------	-------------

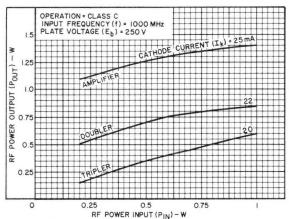
c	Incl	nes	Millim	N .	
Symbol	Min.	Max.	Min.	Max.	Notes
A	-	0.230	_	5.84	
В	-	0.180	-	4.57	
C	0.555	0.605	14.10	15.36	
D	0.165	0.205	4.19	5.20	
E	0.049	0.055	1.245	1.397	
F	0.120	0.150	3.05	3.81	- 75
G	0.535	0.575	13.59	14.60	
H	0.320	-	8.13	_	4
J	0.245	0.252	6.223	6.401	1-4
K	_	0.115	_	2.92	
L	0.335	0.355	8.51	9.01	
M	0.048	0.068	1.22	1.72	
N	0.547	0.557	13.894	14.148	3,5
Q	-	0.010	-	0.254	
R	0.095	0.125	2.41	3.17	
S	_	1.360	_	34.54	
U	0.095	0.135	2.41	3.42	
V	0.020	0.030	0.508	0.762	
Y	0.650	0.700	16.51	17.78	111
\mathbf{Z}	0.060		1.52	_	

NOTE 1: With annular surface "B" resting on reference plane "A", the axis of the cathode cylinder will be within 2° of a line perpendicular to reference plane "A".

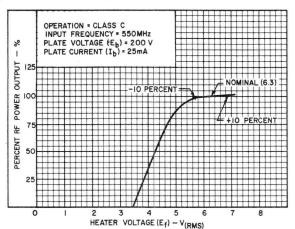

NOTE 2: The axes of the plate cylinder and cathode cylinder will coincide within 0.010".

NOTE 3: The axes of the cathode cylinder and grid flange will coincide within 0.005".

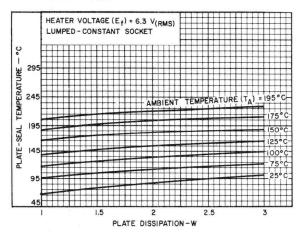
NOTE 4: The diameter along the 0.320" minimum length is measured with "go" and "no-go" ring gauges G1-1 and G1-2, respectively.


NOTE 5: This diameter is measured with "go" and "no-go" gauges G3-1 and G3-2, respectively.

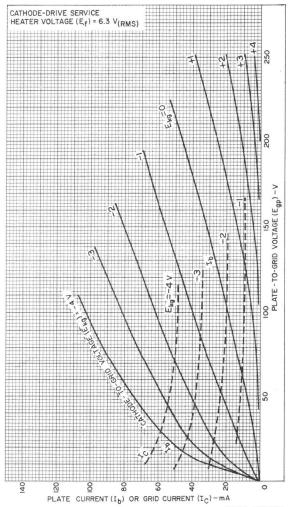
TYPICAL POWER OUTPUT vs. POWER INPUT (500-MHz INPUT)


92CS-11625R2

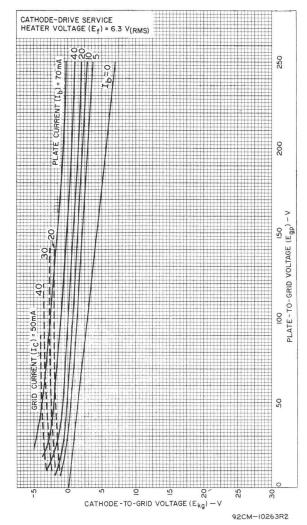
TYPICAL POWER OUTPUT vs. POWER INPUT (1,000-MHz INPUT)

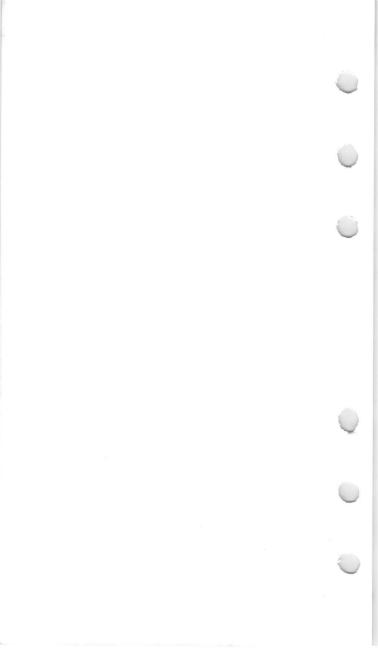

92CS-11626R2

TYPICAL POWER OUTPUT vs. HEATER VOLTAGE (550-MHz OPERATION)


92CS-II624R2

TYPICAL PLATE-SEAL TEMPERATURE vs. PLATE DISSIPATION




92CS-11488RI

AVERAGE PLATE OR GRID CURRENT CHARACTERISTICS vs. PLATE-TO-GRID VOLTAGE FOR CATHODE DRIVE SERVICE

AVERAGE CONSTANT-CURRENT CHARACTERISTICS FOR CATHODE DRIVE SERVICE

VHF-TV Amplifier Tube 1000W Peak Sync. Output in VHF-TV Service

CERMOLOX®

Ruggedized, Reliable Forced-Air Cooled

Full Input to 400 MHz

Matrix Oxide Cathode

ELECTRICAL

Heater-Cathode:

Type	Unipotential, Oxide Coated, Matrix Type
Voltage (ac or dc)	6.3 typ. V
Current at 6.3 volts .	
Minimum Heating Time .	120 s
Mu-Factor, (Grid No.2 to	Grid No.1) 13

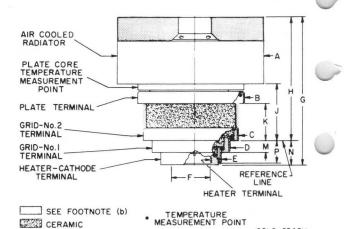
GRID-MODULATED RE POWER AMPLIFIER-CLASS C TELEVISION SERVICE

Maximum CCS Ratings, Absolute-Maximum Values Up to 21	6 MHz
DC Plate Voltage	V
DC Grid No. 2 Voltage 750	V
DC Grid No. 1 Voltage (white level)250	V
DC Plate Current	mA
Grid No. 2 Input	W
Plate Dissipation	W
Grid No. 1 Current	mA

MECHANICAL

Operating Position .																	Any
Weight (Approx.) .											:	3/	4	It)	(0	.3 kg)

THERMAL^a


Grid No.1, Cathode-Heater		 	 250 max. °C
Plate-Core Temperature	 	 	 250 max. °C

^a See Dimensional Outline for temperature measurement points. b Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J. 07029.

Seal Temperature^C (Plate, Grid No.2,

DIMENSIONAL OUTLINE

MEASUREMENT POINT

92LS-2540V

VHF-TV Amplifier Tube 1350W Peak Sync. Output in VHF-TV Service

CERMOLOX® Sturdy, Reliable

Full Input to 400 MHz Matrix Oxide Cathode

ELECTRICAL

Heater-Cathode:

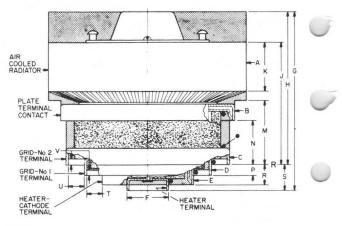
Type Unipotential, Oxide Co			
	5.5	typ.	V
Voltage ^a (ac or dc)	5.8	max.	V
Current (@ 5.5 V)	17.3		Α
Minimum heating time	180		S
Mu Factorb	6.5		

GRID-MODULATED RF POWER AMPLIFIER-CLASS C TELEVISION SERVICE

MAXIMUM CCS RATINGS, Absolute-Maximum Values:

	Up to 400	MHz
DC Plate Voltages	3500	V
DC Grid-No. 2 Voltages	1000	V
DC Plate Current	1.25	A
Grid-No. 2 Input	50	W
Plate Dissipation	1500	W
Grid-No. 1 Current	200	mA

AFOLIA NILOA I


MECHANICAL																	
Operating Position																Any	1
Weight (Approx.)												2	lb	S	(0.9) kg)

THERMAL^a

Seal Temperature		250	max.	oC
Plata Cara Tampar	atura	250	may	00

^a See *Dimensional Outline* for temperature measurement points. b Keep all stippled regions clear. In general do not allow contacts to protrude into these annular regions. If special connectors are required which may intrude on these regions, contact RCA Power Tube Application Engineering, Lancaster, Pa., for guidance.

Detailed performance and application information is available through your RCA Sales Office, Distributor, RCA Commercial Engineering, Harrison, N.J. 07029.

NOTE 2

R.L. (2)

CERAMIC INSULATOR

TEMPERATURE MEASUREMENT POINT

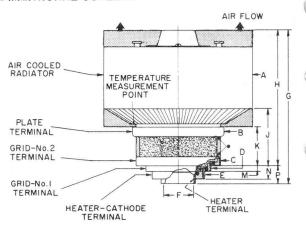
92CS-17684

DIMENSION	INCHES	MILLIMETERS (94.49 ± .76)Dia.	
A	3.72 ± .03		
B Min.	3.210	(81.54) Dia.	
C Min.	3.010	(76.45) Dia.	
D Min.	2.307	(58.60) Dia.	
E Min.	1.710	(43.41) Dia.	
F Max.	0.725	(18.41) Dia.	
G	3.24 ± .10	(82.3 ± 2.5)	
Н	2.78 ± .07	(70.61 ± 1.78)	
J	2.19 ± .04	(55.63 ± 1.02)	
K Min.	0.85	(21.59)	
М	1.160 + .005	(29.464 ^{+ .127} ₀₀₀)	
N	0.82 ± .03	$(20.83 \pm .76)$	
P	0.200 ± .025	(5.08 ± .63)	
R	0.37 ± .03	(9.40 ± .76)	
S	0.46 ± .03	(11.68 ± .76)	
T Min.	0.200	(5.08)	
U Min.	0.250	(6.35)	
V Min.	0.105	(2.66)	

Beam Power Tube

CERMOLOX

5,000 Watts PEP Output 10,000 Watts Output
Full Input to 400 MHz Telegraphy or FM Telephony
Sturdy, Reliable, Thoriated Tungsten, Mesh Filaments


•			
ELECTRICAL			
Filamentary Cathode:			
Type Thoriated-Tungsten Mesh			
Voltage (ac or dc) 5.7 typ-6.0 max. V			
Current:			
Typical value at 5.7 volts 125			
Maximum value for starting			
even momentarily			
Cold Resistance 0.005 Ω			
Minimum heating time 15 s			
Mu-Factor (Grid No.2 to Grid No.1) 10			
MAXIMUM CCS RATINGS, Absolute-Maximum Values:			
Up to 400 MHz			
DC Plate Voltage 7000 V			
DC Grid-No.2 Voltage 1500 V			
DC Plate Current at Peak of Envelope 40 A			
Plate Dissipation 5.0 kW			
MECHANICAL			
Operating Position Vertical, either end up			
Weight (Approx.)			
THERMAL			

THERMAL^a
Seal Temperature ... 250 max. °C
Plate-Core Temperature ... 250 max. °C

See Dimensional Outline for temperature measurement points.
Keep all stippled regions clear. Do not allow contact or circuit components to intrude into these annular volumes.

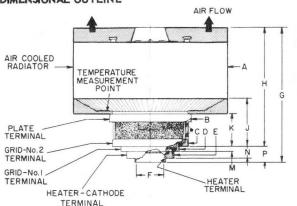
Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, NJ 07029.

DIMENSIONAL OUTLINE

SEE FOOTNOTE(b)

* TEMPERATURE MEASUREMENT POINT

92LM-2542V


DIMENSION	INCHES	MILLIMETERS
A Dia.	4.570 Max.	116.07 Max.
B Dia.	3.235 Min.	82.17 Min.
C Dia.	3.014 Min.	76.52 Min.
D Dia.	2.307 Min.	58.60 Min.
E Dia.	1.840 Min.	46.74 Min.
F Dia.	1.210 Max.	30.73 Max.
G	4.795 ± .080	121.79 ± 2.03
Н	4.140 ± .050	105.16 ± 1.27
J	1.940 ± .040	49.28 ± .101
K	1.330 ± .030	$33.78 \pm .76$
M	0.200 ± .025	$5.08 \pm .63$
N	$0.475 \pm .035$	12.06 ± .88
P	$0.650 \pm .030$	16.51 ± .76

Beam Power Tube

	CERMOLOX 10,000 Watts PEP Output 15,000 Watts Output Full Input to 400 MHz Telegraphy or FM Telephony Sturdy, Reliable, Thoriated Tungsten, Mesh Filaments
	ELECTRICAL
7	Filamentary Cathode:
	Type Thoriated-Tungsten Mesh
	Voltage (AC or DC) 5.7 typ6.0 max. V
	Current:
and the same	Typical value at 5.7 volts 125 A
	Maximum value for starting
	even momentarily
	Cold Resistance 0.005 Ω
	Minimum heating time 15 s
	Mu-Factor, (Grid-No.2 to Grid-No.1) 10
	MAXIMUM CCS RATINGS, Absolute-Maximum Values:
	Up to 400 MHz
	DC Plate Voltage 8000 V
	DC Grid-No.2 Voltage 1650 V
	DC Plate Current at Peak of Envelope 4.0 A
	Plate Dissipation 12.5 kW
	MECHANICAL
	Operating Position Vertical, either end up
	Weight (Approx.) 10 lb(4.54 kg)
	THERMAL ^a
1	Seal Temperature (Plate, grid No.2, grid No.1, cathode heater, 2nd heater)
	Plate-Core Temperature 250 max. °C
	a See Dimensional Outline for temperature measurement points.
	b Keep all stippled regions clear. Do not allow contacts or
-	circuit components to protrude into these annular volumes.
7	Diameters of stippled areas above air-cooled radiator,
	plate terminal contact surface, and grid-No.2 terminal
	contact surface shall not be greater than its associated
	contact buriace shall not be greater than its associated
	diameter.

RCA Commercial Engineering, Harrison, NJ 07029.

DIMENSIONAL OUTLINE

SEE FOOTNOTE (b) ES CERAMIC

TEMPERATURE
 MEASUREMENT POINT

92LM-2544V

DIMENSION	INCHES	MILLIMETERS
A Dia. B Dia. C Dia. D Dia. E Dia. F Dia. G H J K	6.135 ±.035 3.235 Min. 3.014 Min. 2.307 Min. 1.840 Min. 1.210 Max. 5.370 ±.080 4.715 ±.050 1.940 ±.040 1.330 ±.030 0.200 ±.025	155.83 ± .88 82.17 Min. 76.56 Min. 58.60 Min. 46.74 Min. 30.73 Max. 136.4 ± 2.0 119.7 ± 1.2 49.28 ± 1.01 33.78 ± .76 5.08 ± .63
N P	$0.200 \pm .025$ $0.475 \pm .030$ $0.650 \pm .030$	12.06 ± .76 16.51 ± .76

Beam Power Tube

CERMOLOX Full Input to 400 MHz 12.5 kW Peak Sync Output thru VHF-TV High Band

2.5 kW Carrier for Linear Operation

ELECTRICAL

Filamentary Cathode:	
Type Thoriated-Tungsten Me	sh
Voltage (ac or dc) 5.7 typ6.0 max.	V
Current:	
Typical value at 5.7 volts 125	A
Maximum value for starting	
even momentarily 300	A
Cold Resistance 0.005	Ω
Minimum heating time 15	s
Mu-Factor (Grid No.2 to Grid No.1) 20	
MAXIMUM CCS RATINGS, Absolute-Maximum Values	
Up to 400 Mi	Hz
DC Plate Voltage 8000 max.	V
DC Grid-No.2 Voltage 1650 max.	V

-450 max. 4.0 max. 150 max.

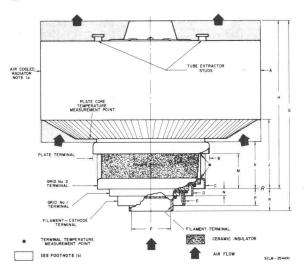
250 max.

MECHANICAL

Operating Position Vertical, either end up

THERMAL

Seal Temperature (Plate, grid No.2, grid No.1, filament-cathode


..... 250 max. °C Plate-Core Temperature

^a See Dimensional Outline for temperature measurement points.

b Keep all strippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J. 07029.

DIMENSIONAL OUTLINE

DIMENSION	INCHES	MILLIMETERS
A Dia.	6.135 ± .035	155.83 ±.88
B Dia.	3.235 Min.	82.17 Min.
C Dia.	3.014 Min.	76.56 Min.
D Dia.	2.307 Min.	58.60 Min.
E Dia.	1.840 Min.	46.74 Min.
F Dia.	1.210 Max.	30.73 Max.
G	$5.370 \pm .080$	136.4 ± 2.0
Н	$4.715 \pm .050$	119.7 ± 1.2
J	$1.940 \pm .040$	49.28 ± 1.01
K	$1.330 \pm .030$	33.78 ±.76
M	$1.005 \pm .020$	25.53 ±.51
N	$0.200 \pm .025$	5.08 ±.63
P	$0.475 \pm .030$	12.06 ± .76
R	$0.650 \pm .030$	16.51 ± .76

Beam Power Tube

20 kW Peak Sync Output CERMOLOX Full Input to 400 MHz Forced-Air-Cooled 3.75 kW Carrier for Linear Operation

ELECTRICAL

Filamentary Cathode, Thoriated-

Voltage (ac or dc). \{ \begin{align*} 9.5 typ. V \\ 10.0 max. V \\	Tungsten Mesh Type:		
Current: Typical value at 9.5 volts. 145 A Maximum value for starting, even momentarily 300 A Cold Resistance 0.01 Ω Minimum heating time 15 s Mu-Factor (Grid No.2 to Grid No.1) 10 MAXIMUM CCS RATINGS, Absolute-Maximum Values Up to 400 MHz DC Plate Voltage 10,000 max. V	Voltage (ac or dc)	9.5 typ. \	7
Typical value at 9.5 volts		(10.0 max. \	/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Current:		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Typical value at 9.5 volts	145 A	1
$\begin{array}{cccccc} \text{Cold Resistance} & & & 0.01 & \Omega \\ \text{Minimum heating time} & & & 15 & s \\ \text{Mu-Factor (Grid No.2 to Grid No.1)} & & 10 & \\ \text{MAXIMUM CCS RATINGS, Absolute-Maximum Values} & & & Up to 400 \text{ MHz} \\ \text{DC Plate Voltage} & & & 10,000 \text{ max.} & \text{V} \\ \end{array}$			
Minimum heating time	even momentarily	300 A	1
Mu-Factor (Grid No.2 to Grid No.1) 10 MAXIMUM CCS RATINGS, Absolute-Maximum Values $Up\ to\ 400\ MHz$ DC Plate Voltage V	Cold Resistance	0.01	2
MAXIMUM CCS RATINGS, Absolute-Maximum Values $Up\ to\ 400\ MHz$ DC Plate Voltage V	Minimum heating time	15	S
Up to 400 MHz DC Plate Voltage	Mu-Factor (Grid No.2 to Grid No.1)	10	
DC Plate Voltage 10,000 max. V	MAXIMUM CCS RATINGS, Absolute-Maximum	Nalues	
		Up to 400 MHz	2
DC Grid-No.2 Voltage 2000 max. V	DC Plate Voltage	10,000 max. \	I
	DC Grid-No.2 Voltage	2000 max. V	1

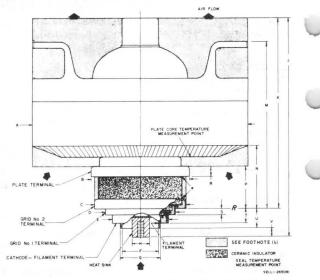
DC Plate Current at Peak of Envelope 6.0 max. DC Grid-No.1 Current. 500 max. mA Grid-No.2 Input. 450 max. Plate Dissipation 15 max, kW

MECHANICAL

Operating Position Vertical, either end up Weight (Approx.)... 12 lb (5.5 kg)

THERMAL

250 max. °C Seal Temperature (Plate, Grid No.2, Grid No.1. Cathode-Filament, and Filament)


Plate-Core Temperature . ^aSee Dimensional Outline for temperature measurement points.

b Keep all strippled regions clear. Do not allow contacts or circuit components to protrude into these annular regions.

Detailed performance and application information is available through your RCA Sales Office, Distributor, or write to RCA Commercial Engineering, Harrison, N.J. 07029.

250 max. OC

DIMENSIONAL OUTLINE

DIMENSION	INCHES	MILLIMETERS
A Dia.	$7.075 \pm .035$	179.71 ± .89
B Dia.	3.235 Min.	82.17 Min.
C Dia.	3.014 Min.	76.56 Min.
D Dia.	2.307 Min.	58.60 Min.
E Dia.	1.840 Min.	46.74 Min.
F Dia.	1.210 Max.	30.73 Max.
G Dia.	1.314 Min.	33.38 Min.
H Dia.	0.620 Max.	15.75 Max.
J	7.345 Max.	186.56 Max.
K	6.30 Max.	160.0 Max.
M	5.50 Ref.	139.7 Ref.
N	$2.04 \pm .04$	51.8 ± 1.0
P	$1.33 \pm .03$	33.8 ±.8
R	0.325 Ref.	8.26 Ref.
S	$0.200 \pm .025$	$5.08 \pm .63$
T	$0.50 \pm .03$	12.7 ±.8
U	$0.76 \pm .04$	19.3 ± 1.0
V	0.25 Ref.	6.4 Ref.

C Band Klystron

65±05

- **Gang Tuned Cavities**
- Air Cooled
- High Efficiency
- High Power Gain
- Compact
- Sturdy

Frequency		. ,					,	 					•	•	•	4.4	to	5.0	GH	2

Electrical:

Cathode	 	Indirectly-heated Tungsten Dispenser Cathode

Filament:

Voltage	V
Current at 6.5 V 7.6	Α
Maximum current 8.2	Α
Warmup time (min.)	S

Mechanical:

Mounting Position	Any
Length (max.) (393 mm) 15.5	in
Width (max.) (267 mm) 10.5	in
Weight (approx.)	lb
In commercial pack (18.1 kg) 40	lb
In military pack	lb

Thermal:

	Collector Temperature (max.)	260	oC
	Body Temperature (max.)	150	oC
ь.	Tuner Fin Temperature (max.)	150	oC
	Electron Gun Potting		

icction o	unifolding										
Insulation	on temperatu	ire (ma	x.)							250	oC
Storage	temperature	(min.)								-65	oC
ooling											

Forced air flow across the collector, body, and tuner, is required.

Typical air requirements for operation with 20° C ambient air temperature at sea level are:

	Min Re Air Flo		Max Press-Drop		
	lb/min	kg/min	in H ₂ O	cm H ₂ O	
Collector	7.5	3.4	2.0	5.1	
Body & Tuners	0.85	0.38	0.75	1.9	

Performance				
Maximum CW Ratings, Absolute-Max	imum Value	s:		
DC Beam Voltage		8.5	kV	600
DC Beam Current		600	mΑ	
DC Body Current		60	mA	
Surge Current		25	Α	
Load VSWR		2.0:1		
Input VSWR		2.0:1		-
Typical CW Operation:				
High Efficiency Tuned				
Frequency	4.4 GHz	5.0 GH	z	
DC Beam Voltage	8.0	8.0	kV	
DC Beam Current	520.0	520.0	mA	
Typical CW Operation (cont'd.)				
High Efficiency Tuned				
Frequency	4.4 GHz	5.0 GHz	<u>.</u>	
DC Body Current	10.0	10.0	mΑ	
RF Power Output	1.60	1.45	kW	
Bandwidth (3 dB)	8.0	10.0	MHz	
Efficiency	39.0	35.0	%	
Gain	45.0	45.0	dB	
Drive	50.0	50.0	mW	
Load VSWR	1.05:1	1.05:1	_	
Input VSWR	1.3:1	1.3:1		
High Gain Tuned				
Frequency	4.4 GHz	5.0 GH	2	
DC Beam Voltage	8.0	8.0	kV	
DC Beam Current	520.0	`520.0	mA	
DC Body Current	10.0	10.0	mA	
RF Power Output	1.45	1.30	kW	
Bandwidth (3 dB)	6.0	8.0	MHz	
Efficiency	35.0	31.0	%	
Gain	52.0	52.0	dB	
Drive	10.0	10.0	mW	
Load VSWR	1.05:1	1.05:1	-	
Input VSWR	1.3:1	1.3:1	_	

Broadband Tuned			
Frequency	4.4 GHz	5.0 GHz	2
DC Beam Voltage	8.0	8.0	kV
DC Beam Current	520.0	520.0	mΑ
DC Body Current	10.0	10.0	mΑ
RF Power Output	1.5	1.4	kW
Bandwidth (3 dB)	13.0	19.0	MHz
Efficiency	36.0	33.0	%
Gain	42.0	42.0	dB
Drive	100.0	100.0	, mW
Load VSWR	1.05:1	1.05:1	-
Input VSWR	1.3:1	1.3:1	****

General Information

Installation and Operation

No installation or operation should be attempted without first consulting the Installation and Operating Instructions shipped with each tube or available on request from Super Power Marketing, RCA, Lancaster, PA.

RCA reference publications required for the installation and operation of this device include the following:

Data Sheet - RCA-8811

Application Note AN 4213

Application Guide 1CE-279A

These publications are available as a complete packet — request PWR 542 "Applications Information for the RCA-8811 klystron."

Personnel Safety

The high voltages and microwave radiations from this device can be dangerous to life. High voltage shielding and interlock precautions must be taken and all rf connections must be tightly closed and rf terminals shielded.

Packaging

Two types of packaging are available with these tubes; Commercial Pack and Military Pack. The customer specifies the desired type.

The Commercial Pack is made of nesting carboard cartons with the inner carton shock-mounted. The Military Pack complies with MIL-S-4473C for air shipment. It uses a hermetically-sealed metal container which protects the tube and serves to shield the area surrounding the pack from stray magnetic fields set up by the klystron focusing magnet.

In shipment, the tube is enclosed in a polyethylene bag to prevent dust and other particles from collecting in the waveguide or tuning system. It is recommended that the tube be stored in the bag and in the shipping container when not in use. Dust or other unwanted particles in the waveguide can cause arcing during operation and subsequent tube destruction.

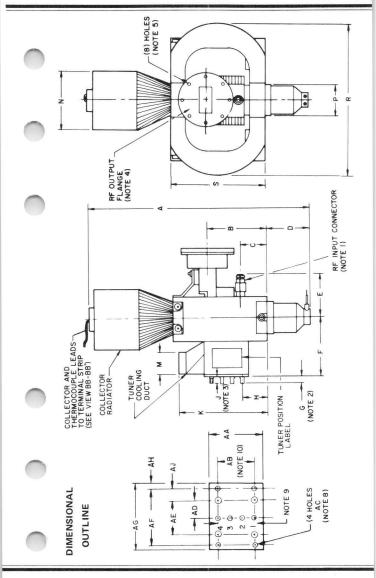
Cooling

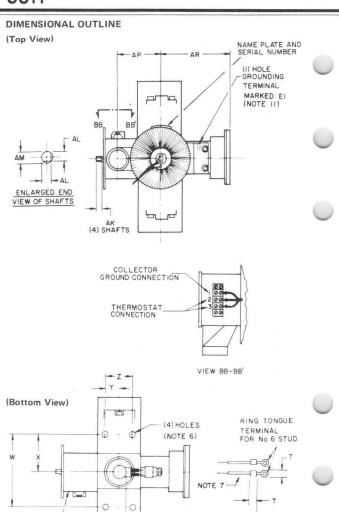
Air ducts must be provided to connect to the top of the collector and the tuner cooling duct. See Outline Drawing.

Mounting

Four holes are provided in the gun-end of the focusing magnet for mounting purposes. Only non-magnetic studs should be used.

Thermocouple


A thermocouple mounted on the collector provides a signal output for excessive collector temperature. This output is used to operate protective circuitry.


Tuning

Tuning is accomplished by a single knob which "gang-tunes" all four cavities simultaneously. The second, third and output cavities may be individually trimmed for optimizing the tube performance at any frequency within the tube operating band. See Outline Drawing.

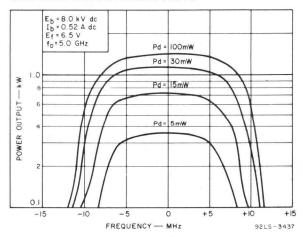
Protection Circuits

Protection circuits serve a threefold purpose: safety of personnel, protection of the tube and protection of tube circuits. Consult Application Guide 1CE-279A for complete information on protection circuits.

TUNER COVER

円

92 LL - 3356


Tabulated	Dimensions	for the	Dimensional	Outline	
Dimension		Snoo	ified Values		

Dimension	Specified Values						
Reference	Inches	Millimeters					
A	15.5 max.	393.7 max.					
В	4.06 ± .12	103.1 ± 3.0					
C	1.80 ± .12	45.7 ± 3.0					
D	3.5 max.	88.9 max.					
E	3.00 ± .06	76.2 ± 1.5					
F	3.80 ± .12	96.5 ± 3.0					
G	0.68 ± .05	17.3 ± 1.3					
Н	1.80 ± .09	45.7 ± 2.3					
J	0.68 ⁺ .15 10	17.3 +3.8 - 2.5					
K	6.25 max.	158.8 max.					
M	1.50 ±.03	38.1 ± .8					
N Dia.	4.12 ± .03	101.6 ± .8					
P Dia.	2.130 ± .015	54.10 ± .38					
R	10.5 max.	266.7 max.					
S	6.5 ± .5	165.0 ± 13.0					
T Dia.	0.250 ± .015	6.35 ± .38					
U	13.50 ± .25	343.0 ± 6.0					
V	3.25 max.	82.55 max.					
W	5.00 ± .06	127.0 ± 1.5					
X	$2.50 \pm .06$	63.5 ± 1.5					
Υ	1.00 ± .06	25.4 ± 1.5					
Z	$2.00 \pm .06$	50.8 ± 1.5					
AA	$3.00 \pm .06$	76.2 ± 1.5					
AB	$2.10 \pm .02$	53.34 ± .51					
AC	0.201 ± .010	5.11 ± .25					
AD	$1.00 \pm .03$	$25.4 \pm .8$					
AE	$2.00 \pm .03$	50.8 ± .8					
AF	$3.25 \pm .02$	82.55 ± .51					
AG	3.75 ± .03	95.3 ± .8					
AH	0.25 ± .03	6.4 ± .8					
AJ AK	0.62 ± .03	15.8 ± .8					
AL	0.440 ± .010	11.18 ± .25					
AM Dia.	0.230 ± .005 0.249 ± .002	5.84 ± .13					
AN AN		6.325 ± .051					
AP	0.125 ± .030 3.00 ± .06	3.2 ± .8					
AR	3.00 ±.06 4.75 ±.12	76.2 ± 1.5					
All	4.70 ±.12	120.6 ± 3.0					

Notes for Dimensional Outline

- 1. Mates with Type "N" Connector UG-21 B/U or equivalent.
- 2. Dimension applies to Shaft No.1 only.
- 3. Dimension applies to Shafts No,'s 2, 3, and 4 only.
- Mates with UG-149 A/U or equivalent.
- 5. Holes 10-32 UNF-2B equally spaced on 3.250 \pm .032 (82.6 \pm .8 mm) dia. circle.
- 6. Holes $0.437 \pm .062$ (11.1 \pm 1.6 mm) thru (One side only).
- High-Voltage Lead Designation: Heater Lead Yellow Heater-Cathode Lead — White
- Thru-holes checked with gauge.
- Three spaces between shafts are 0.70 ± .03 (17.8 ± .8 mm) and add to 2.100 (53.34 mm). Shafts are numbered as shown.
 (1) Gang tuner, (2) Cavity two, (3) Cavity three, (4) Output cavity.
- Tolerance for this dimension applies to location of four 0.201 (5.11 mm) holes.
- 11. Hole No.6-32 UNC-2B, 0.25 (6.35 mm) minimum depth.

BANDWIDTH CHARACTERISTIC CURVE

The Beam Current Characteristic, Gain Characteristic, and Output Characteristic curves shown under Type 4658 also apply to Type 8811.

UHF TV Klystron Amplifier

- Water/Vapor Cooled
- High Power Output
- Electromagnet Focusing
- Very High Gain
- Easy to Install and Operate
- Long Life, High Reliability
- Modulating Anode permits Integral Cavity Construction both visual and aural application with a single beam supply

General Data

Electrical:

Frequency Range		698-890 MHz
Cathode Type	Indirectly heated	tungsten-dispenser cathode

Heater (dc or 50-60 Hz):

Voltage ^a	 6.0 ± 0.5	V
Current @ 6.0 V. typical	 16.4	A

 Current @ 6.0 V, typical
 16.4 A

 Surge current, maximum
 30.0 A

Focusing RCA-AJ2168 Electromagnet

Mechanical:

Mounting Position Vertical, cathode down

Dimensions, Maximum:

Weight, Approximate:

Uncrated	(81.6 kg) 180 lbs
0	1004 \ 450

Outlet Coolant Connector Mates with Hansen LL6-H31

Steam Outlet See Dimensional Outline

Electrical Connections:

RF Input UG-22B/U jack mates with UG-21D/U plug
RF Output See Dimensional Outline

Collector^b Pins F and G, Cannon Rec.^c

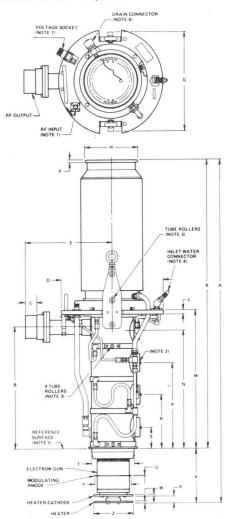
Thermocouple:

Chromel Pin H Cannon Rec.^C
Alumel Pin J Cannon Rec.^C

Body		
Heater-Cathode See Dimensional Outline Heater See Dimensional Outline Interlock No.1 Pins A and B, Cannon Rec.c Interlock No.2 Pins C and D, Cannon Rec.c Thermal: Collector Temp. (max.) 100 °C Electron Gun Insulator Temp. (max.) 250 °C Storage Temp.d (min.) -65 °C Coolant Requirements: Collector and Body Water flow (min.) (0.125 l/s) 2.0 gpm Inlet water temperature (max.) 70 °C Electron Gun Forced air flowe (min.) (24 l/s) 50 cfm Water Pressure Differential for Typical Flow of 2.1 gpm (max.) 50 psi Water Pressure at any Inlet (max.) -60 psi Maximum Ratings, Absolute-Maximum Values Beam Voltage, DC 20 max. kV Beam Current, DC 250 max. mA Modulating Anode Voltage, DC 20 max. kV Typical Operation, UHF Television Service (Visual 699.25 MHz, Aural 703.75 MHz) Visual Aural Collector Voltage, DC 4,7 2,4 A Body Current, DC 5,5 mA Modulating Anode Voltage, DC 0 0 V Beam Current, DC 1,5 mA Modulating Anode Voltage, DC 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 6 kV Modulating Anode Current, DC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Body Pin E Cannon Rec. C	
Heater	Modulating Anode See Dimensional Outline	
Interlock No.1	Heater-Cathode See Dimensional Outline	
Interlock No.2	Heater See Dimensional Outline	
Thermal: Collector Temp. (max.)	Interlock No.1 Pins A and B, Cannon Rec.c	
Body Temperature (max.)		
Electron Gun Insulator Temp. (max.)	Collector Temp. (max.)	
Storage Temp.d (min.)	Body Temperature (max.)	
Coolant Requirements: Collector and Body Water flow (min.) (0.125 l/s) 2.0 gpm Inlet water temperature (max.) 70 °C Electron Gun Forced air flow ^e (min.) (24 l/s) 50 cfm Water Pressure Differential for Typical Flow of 2.1 gpm (max.) 50 psi Water Pressure at any Inlet (max.) 60 psi Maximum Ratings, Absolute-Maximum Values Beam Voltage, DC 20 max. kV Beam Current, DC 5.5 max. A Body Current, DC 250 max. mA Modulating Anode Voltage, DC 20 max. kV Load VSWR 1.5:1.0 Typical Operation, UHF Television Service (Visual 699.25 MHz, Aural 703.75 MHz) Visual Aural Collector Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DC 4.7 2.4 A Body Current, DC 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA	Electron Gun Insulator Temp. (max.)	
Water flow (min.)	Storage Temp.d (min.)	
Water flow (min.)	Coolant Requirements:	
Water flow (min.)	•	
Inlet water temperature (max.)	The state of the s	
Electron Gun		
Forced air flow (min.)		
Water Pressure Differential for Typical Flow of 2.1 gpm (max.) 3.5 kg/cm² Water Pressure at any Inlet (max.) 4.2 kg/cm² Maximum Ratings, Absolute-Maximum Values Beam Voltage, DC 20 max. kV Beam Current, DC 5.5 max. A Body Current, DC 250 max. mA Modulating Anode Voltage, DC 20 max. kV Load VSWR 1.5:1.0 Typical Operation, UHF Television Service (Visual 699.25 MHz, Aural 703.75 MHz) Visual Aural Collector Voltage, DC 0 0 V Body Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DC9 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA		
Water Pressure at any		
Maximum Ratings, Absolute-Maximum Values	Typical Flow of 2.1 gpm (max.)	
Beam Voltage, DC	,	
Beam Current, DC	Maximum Ratings, Absolute-Maximum Values	
Beam Current, DC		
Body Current, DC	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Modulating Anode Voltage, DC 20 max. kV Load VSWR 1.5:1.0 Typical Operation, UHF Television Service (Visual 699.25 MHz, Aural 703.75 MHz) Visual Aural Collector Voltage, DCf 0 0 V Body Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DCg 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA		
Typical Operation, UHF Television Service (Visual 699.25 MHz, Aural 703.75 MHz) Visual Aural Collector Voltage, DCf		
Typical Operation, UHF Television Service (Visual Aural Visual Aural Collector Voltage, DCf 0 0 V Body Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DCg 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA		
(Visual 699.25 MHz, Aural 703.75 MHz) Visual Aural Collector Voltage, DCf 0 0 V Body Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DC9 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA		
Visual Aural Collector Voltage, DCf		
Collector Voltage, DCf 0 0 V Body Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DC9 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA	(Visual 699.25 MHz, Aural 703.75 MHz)	
Body Voltage, DC 0 0 V Beam Current, DC 4.7 2.4 A Body Current, DC9 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA	Visual Aural	
Beam Current, DC 4.7 2.4 A Body Current, DC9 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA	Collector Voltage, DC ^f 0 0 V	
Body Current, DC9 70 15 mA Modulating Anode Voltage, DC 0 -6 kV Modulating Anode Current, DC 1.5 1.0 mA	Body Voltage, DC 0 0 V	
Modulating Anode Voltage, DC	Beam Current, DC 4.7 2.4 A	
Modulating Anode Current, DC 1.5 1.0 mA	Body Current, DC ⁹	
	Modulating Anode Voltage, DC 0 -6 kV	
Cathode Voltage, DC18 -18 kV	Modulating Anode Current, DC 1.5 1.0 mA	
	Cathode Voltage, DC	

	Focusing Current, DC (Typical With RCA-AJ2168 Electromagnet)	28	28	Α
)	Load VSWR	1.1:1	1.1:1	1000
	Drive Power for Visual Peak-of- Sync or Aural CW	10	1.1	W
	Output, for Visual Peak-of-Sync or Aural CW	31	12	kW
	Gain	35	40	dB
7	Efficiency	37	28	%

- Careful attention to maintaining the minimum value of filament voltage consistent with adequate emission will result in conserving the life of the tube.
- b Pins F and G must always be used in parallel.
- Type CA22365-2729 Cannon Receptacle.
- All water must be removed from the coolant course during storage and shipping.
- Cooling-air blower must be directed toward the electron gun and located within a distance of 24 inches.
- A dc ammeter makes the connection between the collector and ground.
- The body is connected directly to ground. Body current is measured in the ground leg of the beam power supply.


Operating Considerations

Typical operating coil currents are noted under "Typical Operation" data section in this data sheet.

It is recommended that the coil coolant flow start before the application of any coil voltage and preferably continue for five minutes after the removal of voltages. Interlocking of the coolant flow with the klystron beam and modulatinganode voltages and coil voltages is highly recommended to prevent tube and coil damage in the event of inadequate coolant flow.

The use of a solid-state diode connected in parallel with the electromagnet is recommended to prevent excessive transient voltage build-up in the event of coil current interruptions. Connections should be made so the coil current will flow through the diode when the polarity of the normal coil voltage becomes reversed.

Dimensional Outline - Klystron

92LL 3822

ers

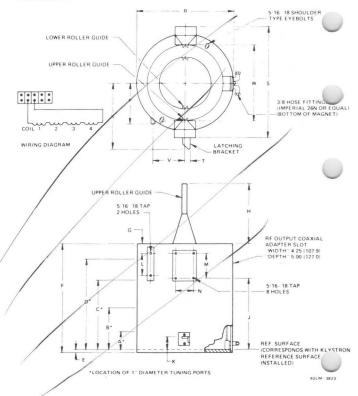
Pin Connections - Voltage Socket

A Jumpered F Collector*
G Collector*

C Jumpered H Thermocouple (Chromel)

J Thermocouple (Alumel)

E Body (Ground) *Always use pins F and G in parallel.


Tabulated Dimensions for Klystron

Dim.	Value - Inches	Value - Millimete
Α	45.56 <u>+</u> .32	1157 <u>+</u> 8
В	16.33 <u>+</u> .06	414.8 <u>+</u> 1.5
С	1.50 <u>+</u> .01	38.10 <u>+</u> .25
D	13.00 Max.	330.2 Max.
E	11.00 <u>+</u> .12	279.4 ± 3.0
F	0.23 + .04	5.8 <u>+</u> 1.0
G	12.40 Max.	315.0 Max.
Н	6.40 <u>+</u> .04	162.6 <u>+</u> 1.0
J	0.50 <u>+</u> .02	12.70 <u>+</u> .51
K	38.67 <u>+</u> .25	982.2 <u>+</u> 6.4
M	18.66 <u>+</u> .08	474.0 <u>+</u> 2.0
N	15.74 <u>+</u> .06	399.8 <u>+</u> 1.5
P	11.50 <u>+</u> .05	292.1 <u>+</u> 1.3
R	7.15 <u>+</u> .04	181.6 <u>+</u> 1.0
S	2.82 <u>+</u> .03	72.4 <u>+</u> .8
T	5.76 Max.	14.63 Max.
U	0.04 Ref.	1.0 Ref.
V	5.00 <u>+</u> .01	127.00 <u>+</u> .25
W	0.19 ± .01	4.83 <u>+</u> .25
X	6.89 <u>+</u> .07	175.0 <u>+</u> 1.8
Y	0.69 ± .05	17.5 <u>+</u> 1.3
Z	5.00 <u>+</u> .03	127.0 <u>+</u> .8

Notes:

- 1. RF Input Jack, UG-22 B/U mates with UG-21 D/U.
- Channel tuning screws. These screws have a 5/16 inch hex socket head.
- Tube rollers mate with roller guides in the RCA AJ2168 Electromagnet.
- 4. Inlet Water Connector mates with Hansen LL3-H21 Connector.
- Reference Surface corresponds with electromagnet reference surface when installed.
- 6. Drain Connector mates with Hansen LL6-H32 Connector.
- 7. Cannon Receptacle CA22365-2729. Mates with Cannon Plug 24-20.

Dimensional Outline - Electromagnet

Personnel Safety

The high voltages and microwave radiations from this device can be dangerous to life. High voltage shielding and interlock precautions must be taken and all rf connections must be tightly closed and rf terminals adequately shielded. This device, in operation, may produce X-radiation which can constitute a health hazard. Shielding or other precautions may be required.

Tabulated Dimensions for Electromagnet

Dim.	Value - Inches	Value - Millimeters
Α	2.87 <u>+</u> .03	72.9 <u>+</u> .8
В	$7.25 \pm .03$	184.2 <u>+</u> .8
C	11.60 ± .03	294.6 <u>+</u> .8
D	15.79 ± .03	401.1 <u>+</u> .8
E	0.50 <u>+</u> .02	12.7 <u>+</u> .5
F	19.28 ± .05	489.7 <u>+</u> 1.3
G	1.76 <u>+</u> .06	44.7 <u>+</u> 1.5
Н	10.00 ± .03	254.0 <u>+</u> .8
J	$12.79 \pm .03$	324.9 <u>+</u> .8
K	3.16 ± .06	80.3 ± 1.5
L	4.00 <u>+</u> .03	
M	4.50 ± .03	114.3 <u>+</u> .8
N	$3.00 \pm .03$	76.2 <u>+</u> .8
P	$7.00 \pm .03$	177.8 <u>+</u> .8
R	16.00 ± .03	406.4 <u>+</u> .8
S	17.00 Max.	431.8 Max.
T	1.00 ± .03	25.4 <u>+</u> .8
V	5.60 ± .03	142.2 <u>+</u> .8
W	12.80 ± .05	325.1 ± 1.3
X	10.68 ± .05	271.3 ± 1.3

General Information Cooling

The electron gun is cooled by forced air directed at the cathode-seal area. Air flow must be at least 50 cfm. (24.0 l/sec). The remainder of the tube is cooled by water/vapor system with water cooling the resonators and drift-tube sections and vapor cooling the collector.

The use of distilled water is essential. The liquid flow must start before application of any voltages and preferably should continue for five minutes after removal of voltages. It is recommended that the liquid flow through each of the cooled elements be interlocked with the beam supply to prevent damage to the tube in case of cooling failure.

A steam exhaust sleeve must be provided for the top of the klystron boiler. A flexible, neoprene type is recommended.

The sleeve is placed over the lip provided at the top of the boiler (see Dimensional Outline) and clamped securely in place for a water-tight connection.

Electrical Connections to Tube Terminals

Connections to the Heater, Heater-Cathode and Modulating Anode Terminals (see Dimensional Outline) are made with preformed finger stock or knife blade type fuse clips. Care should be taken when making these connections not to place excessive stress on the ceramic-to-metal seals.

Protection Circuits

Protection circuits serve a threefold purpose: safety of personnel, protection of the tube and protection of tube circuits. Consult Application Note AN4206 for complete information on protection circuits required.

A means of protecting the klystron against damage which would result from failure of the collector vapor cooling system is provided by an integral chromel-alumel thermocouple with terminals at the Cannon Receptacle.

RCA AJ2168 Electromagnet

The RCA 8826 klystron is designed to be mounted in and its beam focused by the water-cooled, single-coil electromagnet, RCA-AJ2168. The exposed surfaces of the electromagnet are treated by painting or plating to resist corrosion.

General	Data
---------	------

Voltage DC (max.)

Current, DC (max.)			30	Α
Dimensions	S	ee Dimensio	onal O	utline
Weight (Approx.)	Uncrat	ed (104 kg)	230	Ibs
Weight (Approx.)	Crated	(145 kg)	320	lbs
Cooling:	(
Water flow, minimum		(0.063 1/s)	1	gpm
Inlet temperature, maximum			700	C
Maximum water pressure differential for typical flow (gauge) .		(3.5 kg/cm ²	2) 50	psi
Maximum water pressure at			2	

any inlet (gauge)

35

 $(4.2 \text{ kg/cm}^2) 60$

Beam Power Tube

Full Ratings to 500 MHz 80 Watts PEP Output at 30 MHz

E	LE	C1	RI	CA	L

Heater for Uninotential Cathode:

	Heater, for Unipotential Cathode:		
	Voltage (AC or DC) ^a	6.5	V
	Current at 26.5 volts 0.	.68	Α
	Minimum heating time 1	20	S
	Mu-Factor, (Grid No.2 to Grid No.1)b	12	
	Direct Interelectrode Capacitances:C		
	Grid No.1 to plate 0.	.15 max.	pF
	Grid 110.1 to oddriodo 111111111111111	16	pF
	Plate to cathode 0.0	10	pF
	Grid No.1 to grid No.2	23	pF
	Grid No.2 to plate	7.2	pF
	Grid No.2 to cathode	2.7	pF
	Cathode to heater	3.3	pF
	Mounting flange to plate	3.0	pF
	MECHANICAL		
	Operating Position		Any
	Maximum Overall Length	9 mm) 2.2	4 in
_	Seated Length	8 mm) 1.9	6 in
	Greatest Radius	1 mm) 1.3	8 in
	Base-Large Wafer Elevenar 11-Pin		
		EC No.E11	
	Socketd		
	Johnson 124-311-100		
0	Grid No.2 By-pass Capacitor Erie 2943-002, Jol	or equiva	
	Weight (Approx.) (170.1 gr) (6 oz
	THERMAL		
	Terminal Temperature ^e	250 max.	oC
1	Radiator Core Temperature ^e	250 max.	oC
	Mounting Flange Temperature ^e	125 max.	oC

LINEAR RF POWER AMPLIFIER SERVICE SINGLE-SIDEBAND SUPPRESSED-CARRIER SERVICE

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of $\boldsymbol{2}$

MAXIMUM CCS RATINGS, Absolute-Maximum Values:

	Up to 500 N	1Hz
DC Plate Voltage	2200 max.	V
DC Grid-No.2 Voltage	400 max.	V
DC Grid-No.1 Voltage	-100 max.	V
DC Plate Current at Peak of Envelope9	450 max.	mA
DC Grid-No.1 Current	100 max.	mA
Plate Dissipationh	200 max.	W
Grid No.2 Dissipation	8 max.	W
Peak Heater-Cathode Voltage:		
Heater negative with respect to cathode	150 max.	V
Heater positive with respect to cathode	150 max.	V

TYPICAL CCS OPERATION WITH "TWO-TONE MODULATION":

MODULATION":		
DC Plate Voltagej	At 30 700	MHz V
DC Grid-No.2 Voltagek	. 250	V
DC Grid-No.1 Voltage ^m	20	V
Zero-Signal DC Plate Current	100 1420	$_{\Omega}^{Am}$
of Envelope		mA mA
Peak of Envelope	. 16	mA
Average DC Grid-No.2 Current		mA
Average DC Grid-No.1 Current ⁿ	. 1.0	mA
Peak-Envelope Driver Power Output (Approx.)P	. 0.3	W
Output-Circuit Efficiency (Approx.)	. 95	%
Distortion Products Level: ^r Third order	. 30	dB
Fifth order	. 35	dB
Average ^s	. 40	W
Peak envelope	. 80	W

TOTAL CONTROL OF THE	_
MAXIMUM CIRCUIT VALUES	
Grid-No.1-Circuit Resistance	
Under Any Condition:	
With fixed bias	
With fixed bias (in Class AB $_1$ operation)	
With cathode bias Not recommended	
Grid-No.2 Circuit Impedance	
Plate Circuit Impedance See Note j	
PLATE-MODULATED RF POWER AMPLIFIER ^F CLASS C TELEPHONY	
Carrier conditions per tube for use with a max, modulation factor	
of 1.0.	
MAXIMUM CCS RATINGS, Absolute-Maximum Values: Up to 500 MHz	
DC Plate Voltage	
DC Grid-No.2 Voltage	
DC Grid-No.1 Voltage	
DC Plate Current	
DC Grid-No.1 Current 100 max. mA	
Grid-No.2 Input	
Plate Dissipation	
TYPICAL CCS OPERATION	
In grid-drive circuit at 50 MHz	
DC Plate Voltage	
DC Grid-No.2 Voltage [†] 150 V	
DC Grid-No.1 Voltage ^u 20 -25 V	
DC Plate Current	
DC Grid-No.2 Current	
DC Grid-No.1 Current 20 35 mA	
Driver Power Output (Approx.)V 1.2 2 W	
Output Circuit Efficiency (Approx.) 90 90 %	
Useful Power Output (Approx.) 50 100 W	
MAXIMUM CIRCUIT VALUES Grid-No.1-Circuit Resistance	
Under Any Condition:	
With fixed bias	
Grid-No.2 Circuit Impedance 10000 max. Ω	
Plate Circuit Impedance See Note j	

RF POWER AMP. AND OSCILLATOR^f, CLASS C TELEGRAPHY RF POWER AMPLIFIER^f AND CLASS C FM TELEPHONY

MAXIMUM CCS RATINGS, Absolute-Maximum Values:

	Up to 500 MHz
DC Plate Voltagej	2200 max. V
DC Grid-No.2 Voltage ^k	400 max. V
DC Grid-No.1 Voltage ^m	-100 max. V
DC Plate Current	300 max. mA
DC Grid-No.1 Current	100 max. mA
Grid-No.2 Dissipation	8 max. W
Plate Dissipationh	200 max. W
Peak Heater-Cathode Voltage:	
Heater negative with respect to cathode	150 max. V
Heater positive with respect to cathode	150 max. V

TYPICAL CCS OPERATION

In Grid-Drive Circuit at 50 MHz

DC Plate Voltage	500	700	V
DC Grid-No.2 Voltage	160	175	V
DC Grid-No.1 Voltage	-10	-10	V
DC Plate Current	300	300	mA
DC Grid-No.2 Current	25	25	mA
DC Grid-No.1 Current	50	50	mA
Driver Power Output (Approx.)V	1.2	1.2	W
Useful Power Output ^{\$}	75	100	W

MAXIMUM CIRCUIT VALUES

Grid-No.1-Circuit Resistance

Under Any Condition:

With Fixed bias	25,000 max.32
Grid-No.2 Circuit Impedance	10,000 max. Ω
Plate Circuit Impedance	See Note i

CHAR	ACT	FR	IST	ICS	RAN	GE	VAI	UFS

	Note	Min.	Max.	
Heater Current	1	0.62	0.74	Α
Direct Interelectrode Capacitances:				
Grid-No.1 to plate	2		0.15	pF
Grid-No.1 to cathode	2	14.6	18.0	pF
Plate to cathode	2	0.004	0.016	pF
Grid-No.1 to grid No.2	2	20.0	26.5	pF
Grid-No.2 to plate	2	6.5	7.9	pF
Grid-No.2 to cathode	2	2.1	3.3	pF
Cathode to heater	2	2.5	4.1	pF
Grid-No.1 Voltage	1,3	-8	-19	V
Grid-No.2 Current	1,3	-5	+6	mA
Interelectrode Leakage Resistance	4	50		мΩ
Cutoff Grid-No.1 Voltage	1,5		-47	V

Note 1: With 26.5 volts ac or dc on heater.

Note 2: Measured with special shield adapter.

Note 3: With dc plate voltage of 700 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage adjusted to give a dc plate current of 185 ma.

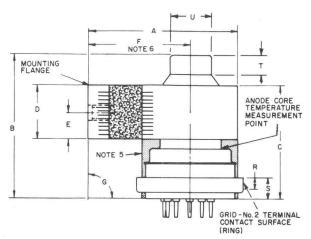
Note 4: Under conditions with tube at 20° to 30° C for at least 30 minutes without any voltages applied to the tube. The resistance between any two electrodes is measured with a 200-volt Megger-type ohmmeter, or equivalent, having an internal impedance of 1.0 megohm.

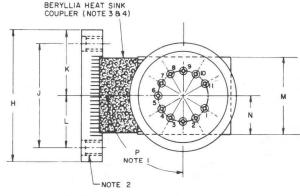
Note 5: With dc plate voltage of 2000 volts, dc grid-No.2 voltage of 250 volts, and dc grid-No.1 voltage varied to obtain a plate current of 5 ma.

- b For plate volts = 450 V_J Grid No.2 volts = 325 V_J
 Plate Current = 1.2 A
- c Measured with special shield adapter.
- d These items may be obtained from:

Erie Technological Products Inc., 644 West Twelfth Street Erie, PA 16512 E. F. Johnson Company 299 Tenth Avenue S. W. Waseca, MN 56093

e See Dimensional Outline for Temperature Measurement Points.


8828


- 9 The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in "Single-Tone" operation, is 300 mA. During short periods of circuit adjustment under "Single-Tone" conditions, the average plate current may be as high as 450 mA.
- h Maximum plate dissipation is limited by the maximum mounting flange temperature and the cooling system to maintain tube operation below the specified maximum mounting flange temperature.
- This value represents the approximate grid-No.1 current obtained due to initial electron velocities and contact-potential effects when grid No.1 is driven to zero volts at maximum signal.
- P Driver power output represents circuit losses and is the actual power measured at input to grid-No.1 circuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.
- Referenced to either of the two tones and without the use of feedback to enhance linearity.
- S This value of useful power is measured at the load of the output circuit.
- t Obtained preferably from a separate source modulated along with the plate supply.
- U Obtained from the Grid-No.1 resistor or from a combination of Grid-No.1 resistor with either a fixed supply or cathode resistor.
- V Driver power output included circuit losses and is the actual power measured at the input to the grid circuit. It will vary depending upon the frequency of operation and the circuit used.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at the front of this section.

- a-See ELECTRICAL CONSIDERATIONS Filament or Heater.
- f-See CLASSES OF SERVICE RF Power Amplifiers or Oscillators.
- $j-See\ \textit{ELECTRICAL\ CONSIDERATIONS}-Plate\ Voltage\ Supply.$
- $k-See \ ELECTRICAL \ CONSIDER ATIONS$ Grid-No. 2 Voltage Supply.
- $\mbox{m-See} \ ELECTRICAL \ CONSIDER ATIONS$ Grid-No. 1 Voltage Supply.

DIMENSIONAL OUTLINE

CERAMIC

KEEP CLEAR

OUTLINE DIMENSIONS

		Value				
Dimension	Inches	Millimeters	Degrees			
Α	2.000 max.	50.80 max.				
В	1.960 max.	49.78 max.				
С	1.515 ± .030	$38.48 \pm .76$				
D	$0.700 \pm .020$	17.78 ± .51				
E	$0.350 \pm .010$	8.89 ± .25				
F	1.375 ref.	34.93 ref.				
G			90° ± 1°			
Н	$1.750 \pm .020$	44.45 ± .51				
J	1.375	34.93				
K	0.875	22.23		100		
L	0.688	17.48				
M	1.187 ± .015	$30.15 \pm .38$				
N	$0.593 \pm .005$	15.06 ± .13				
P			900			
R	0.150 min.	3.81 min.				
S	$0.300 \pm .020$	$7.62 \pm .51$				
т	0.255 ^{+.025} 015	6.48 ^{+.64} 38				
U	0.568 +.005	14.43 +.13				

DIMENSIONAL OUTLINE NOTES

Note 1: Flat location in relation to pin 6 of JEDEC Base E11-81.

Note 2: Tapped holes (2) 6-32 for conduction cooling system.

Note 3: CAUTION! Heat sink ceramic consists of beryllium oxide.

Note 3: CAUTION! Heat sink ceramic consists of beryllium oxide. Inhalation of beryllium oxide dust can be hazardous. Disposal precaution required.

Note 4: Reference, J.F. Gaylord, "The Conduction Cooling of Power Tubes in Vehicular Communication Equipment", RCA Publication ST 2250 9/63.

Note 5: Keep all stippled regions clear. Do not allow contact or circuit components to intrude into this annular volume.

Note 6: In order to accomodate the eccentricities of the tube base with respect to the anode, and the variations in manufacturing tolerances of the conduction cooling assembly it is recommended that the holes for socket mounting be made larger than that required for screw clearance. Thus the tube may be mounted to the heat sink without placing undue strain on the tube base pins. An increase in socket mounting hole size of .030 inch should be adequate in most instances.

G2

8)GI

9

10)_{G2}

CAP

RING

TERMINAL DIAGRAM

(Bottom View)

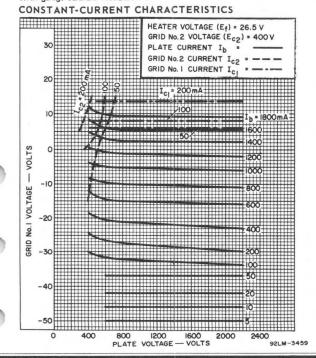
Pin 1: Cathode Pin 2: Grid No.2

Pin 3: Grid No.1

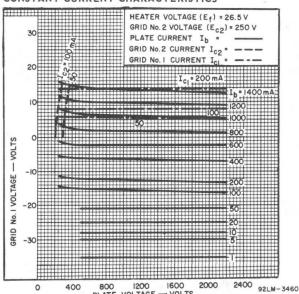
Pin 4: Cathode Pin 5: Heater

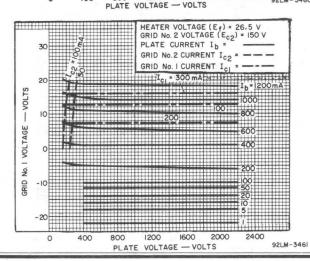
Pin 6: Heater

Pin 7: Grid No.2


Pin 8: Grid No.1

Pin 9: Cathode Cap: Plate Terminal


Pin 10: Grid No.2 Ring: Grid-No.2 Terminal Contact Surface
Pin 11: Grid No.1 (For use at higher frequencies)


Base conforms to specification of JEDEC No.E11-81
Large Wafer Elevenar Base Eleven Pin with Ring and can be checked

with gauge JEDEC No.GE11-1

CONSTANT-CURRENT CHARACTERISTICS

Linear Beam Power Tube

CERMOLOX®

Full Input to 400 MHz

Vertical, either end up

7000 W Peak Sync. Output through VHF-TV Band with 16 dB Gain

ELECTRICAL	EL	LEC	TR	ICAL
------------	----	-----	----	------

h
v
v
٧
Α
A
Ω
S
F
F
F
F
F
F

MECHANICAL Operating Position

Operating resistion
Overall Length (127.3 mm) 5.01 max. in
Greatest Diameter (116,1 mm) 4.57 max. in
Terminal Connections See Dimensional Outline
Sockets See footnote \boldsymbol{p}
Radiator Integral part of tube
Weight (Approx.)

THERMAL

filament-cathode and filament				250 max.	oC	
Dista Cara Tarananatura				250 may	00	

Saal Temperature (Plate arid No 2 arid No 1

	a un amendance comme						
RF Power Amplifier or Oscillator — Class C Telegraphy or Class C FM Telephony ^f							
MAXIMUM CCS RATINGS, Absolute-Maximum Values							
Up to 400 MHz							
DC Plate Voltage							
DC Grid-No.2 Voltage ⁹							
DC Grid-No.1 Voltage ^h							
DC Plate Current 4.0 max. A							
DC Grid-No.1 Current 500 max. mA							
Grid-No.1 Input ^h							
Grid-No.2 Input9							
Plate Dissipation 5000 max. W							
MAXIMUM CIRCUIT VALUES							
Grid-No.1-Circuit Resistance Under Any Conditions:							
With fixed bias 5000 max. Ω							
With cathode bias Not recommended							
Grid-No.2 Circuit Impedance See note g							
Plate Circuit Impedance See note j							
CALCULATED CCS OPERATION							
In a grid-drive circuit at 108 MHz							
DC Plate Voltage							
DC Grid-No.2 Voltage							
DC Grid-No.1 Voltage50 V							
DC Plate Current							
DC Grid-No.2 Current							
DC Grid-No.1 Current							
Driver Power Output							
Output Circuit Efficiency							
Useful Power Output							
In a cathode-drive circuit at 216 MHz							
DC Plate Voltage 6300 V							
DC Grid-No.2 Voltage							
DC Grid-No.1 Voltage							

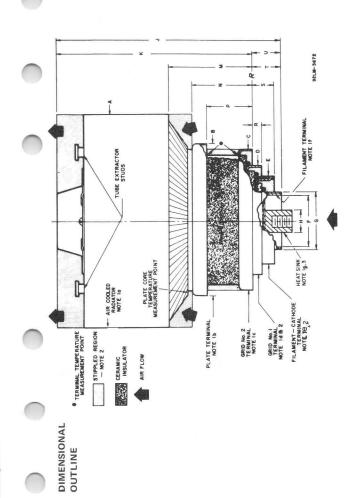
DC Plate Current.

DC Grid-No.2 Current

mA

1.31

DC Grid-No.1 Current 40	mA	
Driver Power Output (Approx.) 50	W	
Output Circuit Efficiency 95	%	
Useful Power Output	W	
RF Power Amplifier Class B Television Service ^f Synchronizing-level conditions per tube unless otherwise spec	ified	
MAXIMUM CCS RATINGS, Absolute-Maximum Values		
DC Plate Voltage ^j		
DC Grid-No.1 Voltage ^h		
DC Plate Current 5 ma		
Plate Dissipation		
Grid-No.2 Input		
Grid-No.1 Input		
Charter input	A	
CALCULATED CCS OPERATION	m	
In a cathode-drive circuit at 216 MHz and a bandwidth of 6.3 M		
DC Plate Voltage	V	
DC Grid-No.2 Voltage	V	
Do Charton voltage	V	
DC Plate Current	^	
Synchronizing level	A	
Blanking level	A	
	mA	
Oynome me and the control of the con	mA	
DC Grid-No.1 Current		
	mA	
Blanking level	mA	
Input Circuit Efficiency	%	
Driver Power Output		
Synchronizing level	W	
Blanking level	W	
Plate Dissipation		
Blanking level 5000	W	


8890

Output Circuit Efficiency	95	%
Useful Power Output		
Synchronizing level	7000	w
Blanking level	3940	W

- ^a Measured at tube terminals. The filament may be subjected to rf heating as the frequency of operation is increased. It is recommended that the filament voltage be operated at the lowest voltage that will give stable performance.
- b For plate voltage = 2000 V, Grid No.2 voltage = 1375 V, Peak plate current = 6.0 A.
- With external flat metal shield 8" (200 mm) in diameter having a center hole 3" (76 mm) in diameter. Shield is located in plane of the grid-No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2.
- d With external flat metal shield 8" (200 mm) in diameter having a center hole 2-3/8" (60 mm) in diameter. Shield is located in plane of the grid-No.1 terminal, perpendicular to the tube axis, and is connected to grid No.1.
- e See Dimensional Outline for temperature measurement points.
- M Calculated at the -1.0 dB power point of a double-tuned output circuit using two times tube output capacity.
- n Adjusted for Ibo = 650 mA.
- P Fully engineered sockets for the 8890 tube type are available in limited quantities from RCA (Type J15283), are in production quantities from Jettron Products Inc., 56 Route 10, Hanover, NJ 07936 (Type CD89 085). For effective cooling, it is recommended that the RCA "Heat Pipe" Dev. No.J15304 be used in conjunction with these sockets.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at the front of this section.

- f See Classes of Service.
- g See Electrical Considerations Grid-No.2 Voltage Supply.
- h See Electrical Considerations Grid-No.1 Voltage Supply.
- j See Electrical Considerations Power Supplies and Plate Voltage Supply.

DIMENSIONAL OUTLINE

Tabulated Dimensions*

Dimension	Value	
Difficusion		
A Dia.	4.570 max.	(116.1 max.)
B Dia.	3.235 min.	(82.17 min.)
C Dia.	3.014 min.	(76.56 min.)
D Dia.	2.307 min.	(58.60 min.)
E Dia.	1.840 min.	(46.74 min.)
F Dia.	1.210 max.	(30.73 max.)
G Dia.	1.314 min.	(33.38 min.)
H Dia.	0.620 max.	(15.75 max.)
J	4.930 ± .080	(125.2 ± 2.0)
K	4.300 ± .050	(109.2 ± 1.2)
M	$1.790 \pm .040$	(45.47 ± 1.01)
N	1.330 ± .030	$(33.78 \pm .76)$
P	1.005 ± .020	$(25.53 \pm .51)$
R	0.200 ± .025	$(5.08 \pm .63)$
S	$0.475 \pm .030$	$(12.06 \pm .76)$
T	$0.650 \pm .030$	$(16.51 \pm .76)$
U	0.800 ref.	(20.3 ref)

Note 1 — The contact distance* listed is the uniform indicated length as measured from the edge of the terminal.

1.a	Radiator	1.930 (49.02) min.
1.b	Plate Terminal	0.210 (5.33) min.
1.c	Grid No.2 Terminal	0.200 (5.08) min.
1.d	Grid No.1 Terminal	0.175 (4.45) min.
1.e	Cathode-Filament Terminal	0.220 (5.59) min.
1.f	Filament Terminal ID	0.250 (6.35) max.
1.g	Heat Sink Terminal	0.375 (9.52) max.

Note 2 — Keep all stippled regions clear. In general, do not allow contacts to protrude into these annular regions. If special connectors are required which may intrude on these regions contact RCA Power Tube Application Engineering, Lancaster, PA.

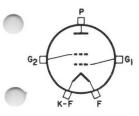
Note 3 - Tapped 1/4-20 NC x 0.5 inch (12.7 mm) deep.

Contact Distance*

FORCED-AIR COOLING

AIR FLOW

Through radiator — Adequate air flow to limit the plate-core temperature to 250° C should be delivered by a blower through the radiator before and during the application of filament, plate, grid-No.2, and grid No.1 voltages.


For a plate dissipation of 5000 watts and an incoming air temperature of 50° C, and air flow of 105 cfm is required in accordance with the Typical Cooling Characteristics.

To Plate, Grid-No.2, Grid-No.1, Filament-Cathode, and Filament Terminals — A sufficient quantity of air should be allowed to flow past each of these terminals so that their temperature does not exceed the specified maximum value of 250° C. In normal operation this value is approximately 40 cfm (18.8 x 10³ cc/s).

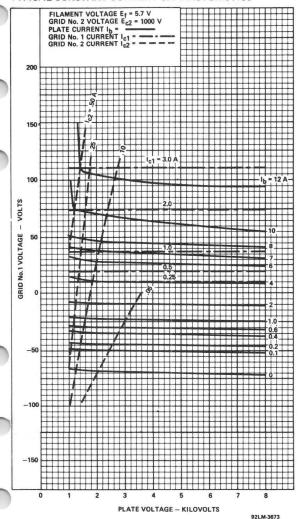
During Standby Operation - Cooling air is required when filament voltage is applied to the tube.

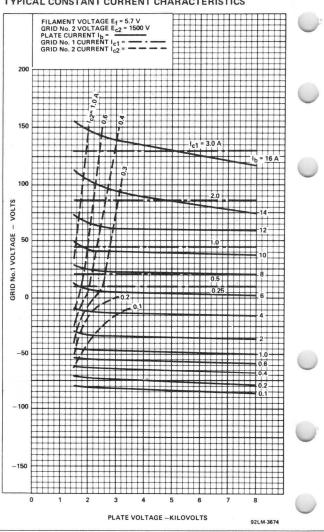
During Shutdown Operation — Air flow should continue for a few minutes after all electrode power is removed.

TERMINAL DIAGRAM

P - Plate Terminal

G₁ - Grid No.1 Terminal


G₂ - Grid No.2 Terminal


K-F - Cathode-Filament Terminal

F - Filament Terminal

TYPICAL COOLING CHARACTERISTICS

	URVE	AIR TEMPERATURE 50°C PLATE DISSIPATION WATTS	DIRECTION OF AIR FLOW
	A B C D	2000 3000 4000 5000	
AIR FLOW — CUBIC FEET PER MINUTE	180 160 140 120 100 80 60 40	A B C	
	0	50 IOO I50 PLATE CORE TEMPERATUR	200 250 300 E °C (SOLID LINE)
	0	I 2 3 PRESSURE DROP - INCHES	4 5 6 H ₂ O (DASHED LINE) 92LM-3223

Beam Power Tube

CERMOLOX®

ELECTRICAL

Full Input to 400 MHz

20.0 Kilowatt Peak Sync. Output Through
VHF-TV Band at 13 dB Gain

Filamentary Cathode, Thoriated-Tungsten Mesh Type	(
Voltage ^a (AC or DC)	9.5	typ. max.	V
Current	(10.0	max.	
Typical value at 9.5 V	153		Α
Maximum value for starting even momentarily	300		Α
Cold resistance	0.01		Ω
Minimum heating time	15		s
Mu Factorb (Grid No.2 to Grid No.1)	12.5		
Direct Interelectrode Capacitances:			
Grid No.1 to plate ^C	0.4	max.	pF
Grid No.1 to filament	100		pF
Plate to filamentc,d	0.15	max.	pF
Grid No.1 to grid No.2	85		pF
Grid No.2 to plate	20		pF
Grid No.2 to filamentd	4.0	max.	pF
MECHANICAL			
Operating Position Ver	tical, ei	ther end	d up
Overall Length (180.3 mm)	7.100	max.	in
Greatest Diameter (210.4 mm)	8.285	max.	in
Radiator	tegral p	part of	tube
Weight (Approx.) (10.0 kg)	22		lb
THERMAL			
Seal Temperature ^e	250	max.	°C
(Plate, grid No.2, grid No.1, cathode-filament, and filament)			
Plate Core Temperature ^e	250	max.	oC

RF Power Amplifier	
Class B Television Service ^f ,p	
Synchronizing level conditions per tube unless otherwise specified.	
MAXIMUM CCS RATINGS, Absolute-Maximum Values:	
DC Plate Voltage9	
DC Grid No.2 Voltageh 2,000 max. V	
DC Grid No.1 Voltagej	
DC Plate Current	
Grid No.2 Input	
Grid No.1 Input	
Plate Dissipation See Note m	
Calculated CCS Operation:	
In a cathode-drive circuit at 216 MHz and a bandwidth of 6.0 MHz ^k .	
DC Plate Voltage 6,580 V	
DC Grid No.2 Voltage	
DC Grid No.1 Voltage	
Zero Signal DC Plate Current	
Effective RF Load Resistance	
DC Plate Current:	
Synchronizing level 4.82 A	
Blanking level 3.68 A	
DC Grid No.2 Current:	
Synchronizing level	
Blanking level 33 mA	
DC Grid No.1 Current:	
Synchronizing level	
Blanking level	
Input Circuit Efficiency (Approx.) 92.5 %	
Driver Power Output:	
Synchronizing level 865 W	7
Blanking level 504 W	
Output Circuit Efficiency (Approx.)	
Useful Power Output:	
Synchronizing level	
Blanking level 10.6 kW	

550/8		88	7	
	Linear RF Power Amplifierf,p			
	Single-Sideband Suppressed-Carrier Service			
	Peak envelope conditions for a signal having a minimular average power ratio of 2.	um peak	:-to-	
	MAXIMUM CCS RATINGS, Absolute-Maximum Values			
		to 400 M		
	DC Plate Voltage9	max.	V	
	DC Grid-No.2 Voltage ^h 2,000	max.	V	
	DC Plate Current at Peak of Envelope	max.	Α	
	DC Grid-No.1 Current	max.	mA	
	Grid-No.2 Input	0,0,0,0,0,0	W	
		max.		
	Plate Dissipation	max.	kW	
	MAXIMUM CIRCUIT VALUES			
	Grid-No.1-Circuit Resistance Under Any Conditions:		_	
	With fixed bias 5,000	max.	Ω	
	With fixed bias (In Class AB ₁ operation). 25,000	max.	Ω	
		commer	nded	
	Grid-No.2 Circuit Impedance	See No	te h	
	Plate Circuit Impedance	See No	ote g	
	Calculated Class AB ₁ CCS Operation with			
	"Two-Tone" Modulation			
	In a grid-drive circuit at 7 MHz			
	DC Plate Voltage	8,000	V	
	DC Grid-No.2 Voltage	1,500	V	
	DC Grid-No.1 Voltage	-191	V	
)	Zero-Signal DC Plate Current	1.0	Α	
	Effective RF Load Resistance	978.5	Ω	
	DC Plate Current	3.91	Α	
	Average DC Plate Current	2.49	Α	
)	DC Grid-No.2 Current(At peak of envelope)	137	mΑ	

Useful Power Output (Approx.)

Average

Average DC Grid-No.2 Current

W

W

53 mA

See Note n

95 %

8,750

17,500

Linear RF Power Amplifier^f,P Class AB or Class B Telephony

Carrier conditions for use with a maximum modulation factor of 1.0.

MAXIMUM CCS RATINGS. Absolute Maximum Values

DC Plate Voltage9		
DC Grid-No.2 Voltageh	2,000	max. V
DC Plate Current	3.0	max. A
Grid-No.2 Input	300	max. W
Plate Dissipation		Coo Note m

Calculated CCS Operation

In a cathode drive circuit at 400 MHz.

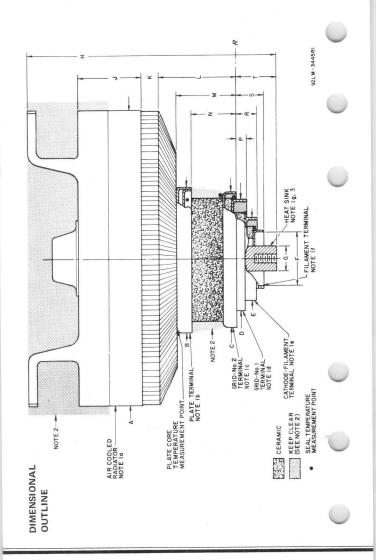
DC Plate Voltage	8,000	V
DC Grid-No.2 Voltage	1,500	V
DC Grid-No.1 Voltage ^r	-235	V
DC Plate Current	2.47	Α
DC Grid-No.1 Current	0	mΑ
DC Grid-No.2 Current	24	mΑ
Driver Power Output	500	W
Output Circuit Efficiency (Approx.)	80	%
Useful Power Output	5,000	W

- Measured at the tube terminals. The filament may be subjected to rf heating as the frequency of operation is increased. It is recommended that the filament power be regulated at the lowest value that will give stable performance. For those applications where hum is a critical consideration, dc filament operation or hum bucking circuits are recommended.
- b For plate voltage = 2000 V, grid No.2 voltage = 1250 V, and plate current = 15 A.
- With external flat metal shield 8" (200 mm) in diameter having a center hole 3" (76 mm) in diameter. Shield is located in plane of the grid No.2 terminal, perpendicular to the tube axis, and is connected to grid No.2.
- d With external flat metal shield 8" (200 mm) in diameter having a center hole 2-3/8" (60 mm) in diameter. Shield is located in plane on the grid No.1 terminal, perpendicular to the tube axis, and is connected to grid No.1.
- e See Dimensional Outline for Temperature Measurement Points.

- The bandwidth of 6.0 MHz is calculated at the -1.0 dB power points of a double tuned output circuit using two times the tube capacity and a damping factor of \$\sqrt{1.5.}\$
- m Permitted plate dissipation is a function of cooling. For specific ratings see Forced Air Cooling information.
- n Driver power output represents circuit losses and is the actual power measured at the input to the grid No.1 circuit. The actual power required depends on the operating frequency and the circuit used. The tube driving power is approximately zero watts.
- P The maximum voltage and air flow rates must be modified to obtain adequate holdoff voltage and cooling at temperatures in excess of 350 C and altitudes above 7000 feet
- Obtained from a fixed supply with an internal impedance of 695 ohms to provide necessary increase in bias at crest of modulating signal.

The following footnotes apply to the RCA Transmitting Tube Operating Considerations given at the front of this section.

- See Section Class of Service.
- See Section Electrical Considerations Power Supplies and Plate Voltage Supply.
- h See Section Electrical Considerations Grid-No.2 Voltage Supply.
- See Section Electrical Considerations Grid-No.1 Voltage Supply.


DIMENSIONAL OUTLINE NOTES

Note 1: The contact distance listed is the minimum, uniform, indicated length as measured from the edge of the terminal.

	Contact Distance
1a. Radiator	0.800 (20.32)
1b. Plate Terminal	0.265 (6.73)
1c. Grid No.2 Terminal	0.265 (6.73)
1d. Grid No.1 Terminal	0.265 (6.73)
1e. Cathode-Filament Terminal	0.250 (6.35)
1f. Filament Terminal	0.265 (6.73)
1g. Heat Sink (post)	0.450 (11.43)

- Note 2: Keep all stippled regions clear. In general do not allow contacts to protrude into these annular regions. If special connectors are required which may intrude on these regions, contact RCA Power Tube Application Engineering, Lancaster, PA 17604.
- Tapped 1/4-20 NC x 0.5 in (12.7 mm) deep. Note 3:

DIMENSIONAL OUTLINE

TABULATED DIMENSIONS

Dimensions	Value Inches	Value Millimeters
A Dia.	8.250 ± .035	$(209.5 \pm .9)$
B Dia.	4.188 <u>+</u> .020	$(106.58 \pm .51)$
C Dia.	3.915 ± .015	$(99.44 \pm .38)$
D Dia.	3.315 ± .015	$(84.20 \pm .38)$
E Dia.	2.696 ± .015	$(68.48 \pm .38)$
F Dia.	1.960 ± .015	$(49.78 \pm .38)$
G Dia.	0.810 max.	(20.57 max.)
Н	7.10 max.	(180.3 max.)
J	1.750 ± .030	$(44.5 \pm .8)$
K	0.500 ref.	(12.7 ref.)
L	2.150 ± .050	(54.6 ± 1.3)
M	1.775 min.	(45.1 min.)
N	1.420 ± .030	$(36.1 \pm .8)$
P	0.330 ± .030	$(8.4 \pm .8)$
R	0.650 ± .038	(16.5 ± 1.0)
S	0.960 ± .050	(24.4 ± 1.3)
T	1.200 ref.	(30.5 ref.)

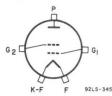
FORCED-AIR COOLING

AIR-FLOW

Through radiator — Adequate air flow to limit the plate-core temperature to 250° C should be delivered by a blower through the radiator before and during the application of filament, plate, grid-No.2, and grid-No.1 voltages.

For typical operation, the required air flow is as follows:

Plate Dissipation	Air Flow	Pressure Drop
Kilowatts	CFM	Inches H ₂ O
12.5	350	1.75
15.0	425	2.50
17.5	550	3.50


To Plate, Grid-No.2, Grid-No.1, Cathode-Filament, and Filament Terminals — A sufficient quantity of air should be

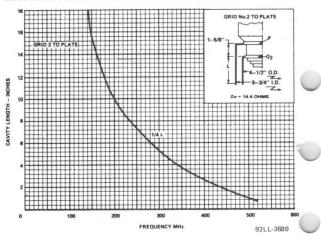
allowed to flow past each of these terminals so that its temperature does not exceed the specified maximum value of 250° C.

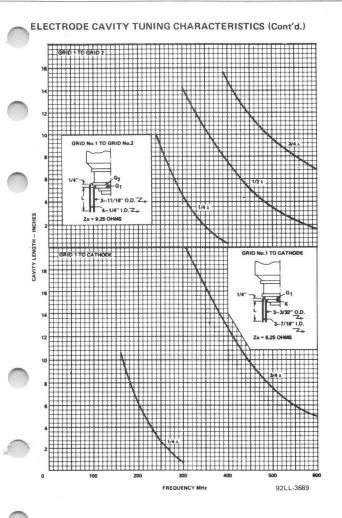
During Standby Operation - Cooling air is required when only filament voltage is applied to the tube.

During Shutdown Operation — Air flow should continue for a few minutes after all electrode power is removed.

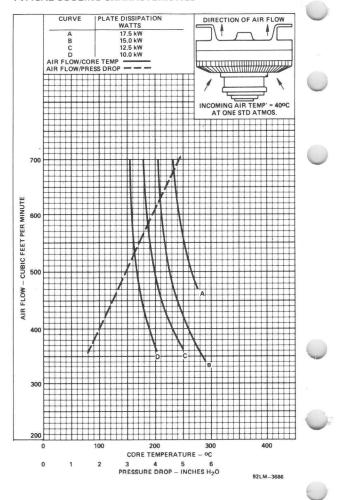
TERMINAL DIAGRAM

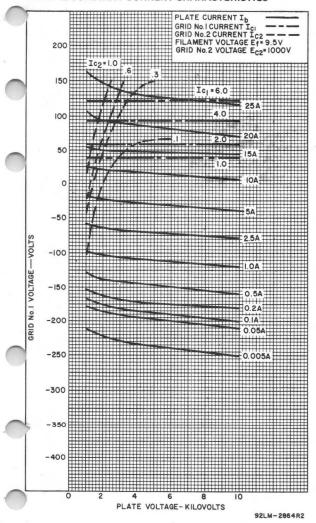
P - Plate Terminal

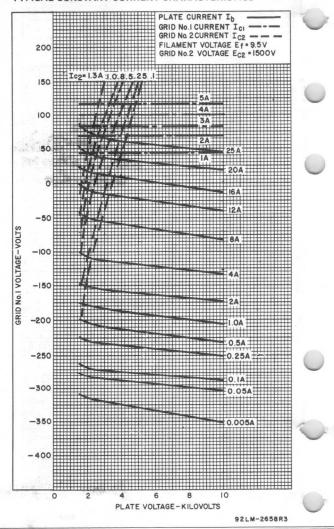

G₂ - Grid-No.2 Terminal


G₁ - Grid-No.1 Terminal

K-F - Cathode Filament Terminal


F - Filament Terminal


ELECTRODE CAVITY TUNING CHARACTERISTICS



TYPICAL COOLING CHARACTERISTICS

