TYPE OF VALVE

MARKING

Specification MAP/CV129	SECURITY			
Issue 5 Dated 15.4.52 To be read in conjunction with K1001 ignoring clauses: - 5.3, 5.2, 1.2, 7.2.	Specification UNCIASSIFIED	Yalva ' Unclassified		

-> Indicates a change

- Velocity modulated beam

CATHODE - Indirectly hear	See K1001.				
ENVELOPE - Glass unmetall: PROTOTIFE - CV87 with simple tuner mechanism amaller frequence coverage.	BASE I.O.				
RATING	Note	CONNECTIONS			
		Pin	Electrode		
Heater Volts Heater Current Tuning Range Nominal Frequency Max.Resonator Dissipation Resonator Voltage Reflector Voltage (target) at 9375 Grid Volta (operating)	4.0 A 1.4 (9550 (9200 9375 10 B 1.6 (-300 (-550) -420 (5 (-100)	4 " 5 " 7 8 T.C.	Grid Heater Connection (See Note E) " Heater Cathode Reflecter tion to resonator is ia metal framework.		
Grid Volts (target) Max. negative grid volts for oscillation cut-off	-35 -150 D		TOP CAP See K1001/A1/D5.2 DIMENSIONS See drawing on page 4		

NOTES

- A. The valve must operate satisfactorily with any voltage within the range 4.0 $\stackrel{\star}{-}$ 5%.
- B. With connection cooling in free air.
- C. Va = Resonator voltage, Vr = reflector voltage. The terms anode and resonator are synonymous.
- D. This figure is not necessarily the same as that for starting oscillation, as there is an hysterisis effect which varies from valve to valve; it should, therefore, be used with caution.
- E. Circuit designers are advised that no external connection should be made to pin 3, since certain loose wires may be connected internally to this pin.

		To be be:	rformed in	addition	1 60	mose appr	Trante III	V.1001	•	<u>.</u>	
	Test Conditions Vh Ia(mA) Va(kV) Vr			Test		Limits		No.			
	٧h	Ia(mA)	Va(kV)	۷r				Min.	Max.	Tested	Note
a.		de - grid p minimum	otential			Cathode - grid insulation (megohms)		0.1	-	100%	
b	4.0	0	0	0	Ih		(A)	0.8	1.6	100%	
c	1 100	Adjus- ted	7	Frequency over which oscillation oe obtaine	n can d (Mc/s)	9200	9550	100%			
					3. I	r(V) over range Power outp (mw) at 92 Mc/s	ut	-300 75	-550 -	100%	
					(Power outp (mw) at 95 Mc/s		75	-	100%	
					5. Y	r _g (V)		- 5	-100	100%	
d	Vh switched off until the current has dropped to less than 2mA. Vh re-applied.				valve mus start.	t			10% (20)	1	
е	The H.T. supply is switched 3 times in succession.				valve mus start each				1 % (20)	1	
f	The resonator is hit with the bob of a pendulum of weight 1/4 lb. suspended on a 6" wire, such that the point of suspension is vertically above the centre of the bob, when the latter is just in contact with the resonator. The bob is drawn back through an angle of 45° and then released.			2. 1	instantane change in crystal current Permanent change in crystal current	(mA)	-	0.2	10% (20)	1	

	Test Conditions				Test:	Limits		No.	
	v_{h}	Ia(mA)	A ^a (KA)	vr	2000	Min.	Max.	Tested	d Note
g	4.0	6.25	1.6	Adjus- ted	Frequency Drift Mc/s	-	10		2
	Vg adjusted between -5 & -100. V _r adjusted between -300 & -550.				Frequency drift from 1 ¹ /2 minutes after switching on, to 10 minutes after switching on.			TO THE PARTY OF TH	
h	Vg & Vr adjusted for optimum power output. Valve tuned to 9375 Mc/s and vibrated for half an hour under approved conditions.			ted timum ned to for	1. Random variations in frequency (Mo/s) 2. Average variation in frequency (Mo/s)	63	±1½	T.A.	

NOTE 1. Test to be carried out in circuit shown below.

Vg is adjusted to give total H.T. current not greater than 8mA.

Vr is adjusted to give first oscillation, and then optimum output at a frequency of 9375 Mc/s.

Coupling adjusted to give 0.5mA crystal current.

NOTE 2. Before bulk delivery commences the result on 25 valves shall be submitted to MOS RDC8. If these are satisfactory, the manufacturer will not be required to carry out the test on further valves.

CV129

PAGE 4.

