Page 1 (No. of pages:- 4)

VALVE ELECTRONIC CV155

MINISTRY OF SUPPLY (S.R.D.E.)

Specification: MOS/CV155/Issue 3			
Dated:- 17.8.48.	SECURITY		
To be read in conjunction with K1001,	Specification	Valve	
ignoring clauses 5.5, 5.8, 7.2.	Restricted	Unclassified	

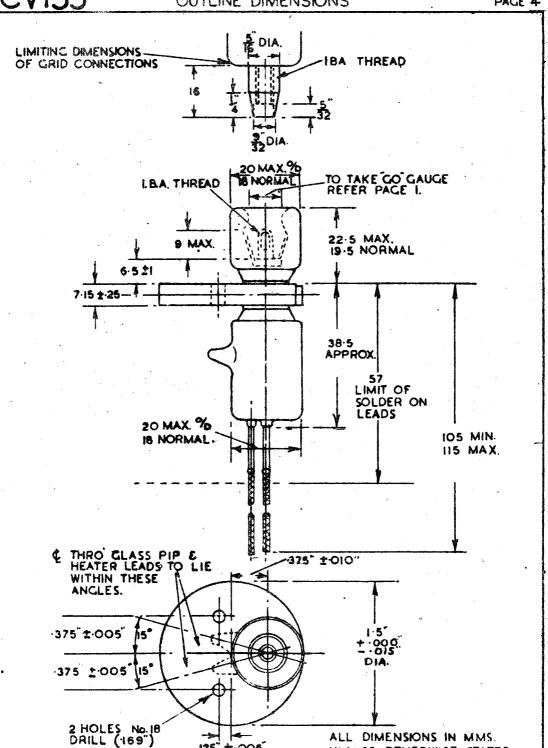
indicates a change

TYPE OF VALVE: - Triode oscil air cooled. CATHODE: - Indirectly h ENVELOFE: - Metal - glas FROTOTYFE: - E.1190	MARKING See K1001/4, ignoring all reference to a frame. Additional marking:- Serial No. (See Note A, page 3)		
RATING		Note	<u>BASE</u> None
Heater voltage (V) Heater current (A) Max. peak anode voltage(kV) Max. anode dissipation (W) Amplification factor Min. operating wavelength (cms) Pulse output power at 25 cms. per pair (kW)	6.3- 7.0 2.7 4.75 50 15 25		CONNECTIONS AND DIMENSIONS See drawing page 4. Gauges are shown in G.E.C. drawings A.42102F, A.43407D/11 and A.43408R/1 or later issues of these drawings.
CAPACITANCES (pF) Cag Cgc Cac	3.8 7.3 2.2		

TESTS

To be performed in addition to those applicable in K1001

	Test Conditions		ns	Test	Limits		No. Tested	
				Min	Max			
	Vh	Va	Vg	Ia(ma)				
a					Capacitances(pF)			
	TO THE RESERVE OF THE				Cgc		9.5	T.A
Ъ	7.0	0	0		Ih (A)	2.4	3.0	100%
c	7.0		Read	100	Vg (V)	-12	-40	100%
d	7.0	500	-	100	(i) Ig (µA) gas (This		10	100%
			ŀ		is the immediate de-			7
			l		crease in -Ig when Vg			
			ŀ		is rapidly increased			
				1	to cut-off Ia)			
					(ii) Ig (µA) grid		100	
					emission and/or leak.			
				·	Note 1.			
е	7.0	300	-	100	(i) Grid voltage shall		49	
					not be +ve	,		
					(ii) Change in grid	7	25	100%
					voltage from value in	•		
		-			test clause 'b'.			
f	7.0	500	500		Peak emission (A)	20	_	100%
	·	Strap			Note 2.			''''


NOTES

- 1. Should the presence of unsaturated grid emission render test 'd' (i) impossible, the test may be considered fulfilled if no trace of gas is evident in test 'f'.
- 2. Peak emission to be measured under pulse conditions, pulse length 2 μ secs and repetition frequency 50 p.p.s. shape of pulse sinusoidal. Any alternative test conditions require specific approval.

Pulse operation normally has an ageing effect and favours the growth of peak emission while static tests with continuous anode dissipation have a reverse effect. A valve which has once passed the peak-emission acceptance test may thus subsequently be found below the acceptance limit but prove satisfactory after brief re-ageing in the pulse equipment.

NOTES

- A. Valves are to be marked with two figures (e.g. 20/150) the first figure being the peak emission in amps. and the second figure being the anode current in mA at Va = 100 and zero bias.
- B. With heater voltage of 6.3 V, peak emission in a pulsed oscillator circuit tends to rise during the first 500 hours of life, reaching a value comparable with early life emission with 7.0 V on the heater. With heater voltage of 7.0 V, peak emission may be expected to fall by 25% during the first 500 hours of life.
- C. Under pulse conditions with Va applied in 1 μ sec. pulses at 400 c.p.s. recurrence.
- D. Maximum temperature of anode and grid seal must be kept below 140°C. Forced air cooling is necessary, a flow of approximately 4 cu. ft. of air per minute being recommended, the pressure drop being usually of the order of 1.5 inches of water, but may be lower depending on the design of the system.

125" ±.005

UNLESS OTHERWISE STATED.