ADMIRALTY SIGNAL ESTABLISHMENT

Specification AD/CV218/Issue 3.	SECURITY			
noted 1.2.46.	Specification	<u>Valve</u>		
To be read in conjunction with K1001, ignoring clauses: - 5.2: 5.8.	Confidential	Restricted		

		Colores describerate					
TYPE OF VALVE: - Velocity modul local oscills CATHODE: - Indirectly head ENVELOPE: - Copper glass w	MARKING See K1001/4 Additional Marking:-						
PROTOTYPE: - KRN3.			Serial No				
RATING		Note	BASE IO - See K1001/AIV/D1.				
Vh Ih Approx. tuning range (cms) Max. resonator wattage (W) Resonator voltage (ky) Reflector voltage range (V) Grid voltage range (V) Approx. negative Vg for oscillation cut off (V) Total AFC range (Mc/s) Total reflector voltage change for above frequency change (V) Max. series grid resistance (R) Max. temp. of resonator.	4.0 1.3 3.07 to 3.13 10 1.35 -210 to -300 0 to -100 150 20 20 to 40 25,000 140°c	C	Pin Electrode 1 Grid 2 Heater 3 No connection 4 No connection 5 No connection 6 No connection 7 Heater 8 Cathode TC Reflector TOP CAP See K1001/AI/D5.2. DIMENSIONS See drawing, page 3.				

NOTES

- A. By variation of reflector voltage. From $\frac{1}{2}$ power to $\frac{1}{2}$ power at any mean frequency in the range.
- B. Superimposed on initial setting.
- C. Va = Resonator voltage. Vr = Reflector voltage.

Finish. The circuit portions of the valve are required to be silver plated. All other parts excluding the valve pins and top-cap, are to be given an approved corrosion resisting coating.

CV218

17515

To be performed in addition to those applicable in K100.

	Test Conditions			T	THE RESERVE OF THE PARTY AND ASSESSED ASSESSED.	elm ma de productivam a gricale c	Limits		-	-	
	Vh (V)	Vg (V)	Vr (V)	Va (V)	Test	Test		STATE OF THE PARTY AND ADD	Mex.	No. Tested	Note
а	°		otential minimum		G-C	nsulation	(M.C.)	0.1	66	100%	
ь	4.0	See K	1001/5.3		H-C	eakage	(ALA)	-	50	100%	ļ
c	4.0				Ih		(A)	1.0	1.6	100%	1
d	4.0	Ad- justed	Ad justed	1 <i>3</i> 50		Power output	(mW)	15	1910	100%	1
	Vg adjusted (not +ve) to give Ia = 7.4 mA, or max. available Ia if less than 7.4 mA. Valve tuned to 9750 Mc/s. Unloaded power				(ii)	Vr	(V)	-210	-300	•	
					(111)	Vg	(v)	0	-100	* .	
	measur	ement.									
e	4.0		Initi- ally as in 'd'	1 <i>3</i> 50	(i)	Frequency change	(Mc/s)	20	_	100%	1
L					<u>(ii)</u>	Vr change	(V)	20	40		ĺ

Valve tuned initially to 9750 Mc/s. Power output fed through an approved form of waveguide transformer to a section of $1* \times \frac{1}{2}*$ 0.D. waveguide terminated by a load for which the SWR is better than 0.9. Vr varied first from a value less than to value more than that observed in test 'd', and then similarly in the reverse direction; to ensure that any hysterisis effect will be revealed, the variation must be of sufficient amplitude to stop oscillation on both sides of the mean Vr. The magnitude of the frequency change which is free from any hysterisis effect, and which corresponds to output power of not less than half of the value found in test 'd' is to be observed. The change in Vr corresponding to a change in frequency of 20 Mc/s is to be observed.

STORES / LANCE	Same an extension of the contract of the contr	etter mantonder met erme			_	1					
See See	4.0	As in	Ad- justed	1350	1	Power output	(Wm)	15	-		
National Property and Property	Valve	tuned t	о 9588 м	c/s.	(ii)	Vr	(v)	-210	-300	100%	1
	Unloaded power measured.					Vg	(V)	0	-100		
8	4.0	As in	Initi- ally as in 'f'	1 350		Prequency change Vr change	(Mc/s) (V)	20 20	40	100%	Activities and a second
	Valve tuned initially to 9588 Mc/s. Test analogous to 'e' performed with reference to reflector voltage and power observed in 'f'.										

NOTE.

1. Tests to be made with grid and reflector supplies whose respective total series resistance is 50,000 ohms. The Vg and Vr specified may be taken as including the voltage drop across these resistances, as this should be negligible with a good valve. Should the grid lose control of the anode current as a result of grid current flowing, the valve shall be rejected.

----- CHANGES THROUGHOUT DRAWING