ADMIRALTY SIGNAL ESTABLISHMENT

Specification AD/CV224/Issue 3.		
Dated 1.2.46.	SECU	
To be read in conjunction with K1001, ignoring	Specification	Valve
clauses :- 5.2; 1.2; 5.2.2; 5.3; 7.2.	Confidential	Restricted

TYPE OF VALVE: Velocity modul CATHODE: Indirectly hea ENVELOPE: Class with met PROTOTYPE: CV129 for diff frequency.		MARKING 001/7. onal Marking:- No			
RATING		Note	BASE IO - See K1001/A.IV/D1.		
Heater Voltage (V) Heater Current (A) Tuning range: (Mo/s)	10 1.6 -300 to -550 0 to -100 150 25,000	B C A A		Electrode Grid Heater No connection No connection No connection No connection Heater Cathode Reflector ct connection to resonator) TOP CAP OO1/A.I/D5.2 DIMENSIONS g. 1.	

NOTES

- A. Va = resonator voltage, Vr = reflector voltage.
- B. The valve must operate satisfactorily with any Vh within the range 4.0 \pm 0.2 V.
- C. With convection cooling in free air.
- D. This figure is not necessarily the same as that for starting oscillation, as there is an hysteresis effect which varies from valve to valve; it should therefore be used with caution.

Finish

The circuit portions of the valve are required to be silver plated. All other parts excluding the valve pins and top-cap, are to be given an approved corrosion resisting coating.

CV224

TESTS

To be performed in addition to those applicable in K1001.

	Test Conditions			Manufactura		Limits		No.	Note		
	Vh(V)	the state of the s	Va(kV)	Vr(V)	Test		Min.	Max.	Tested	NOOC	
а	0	Cathode 250 V m	-grid po inimum.	tential	Insul C-G	ati.on	(M_ ~ _)	0.1	-	100%	
ъ	4.0	See K1001/5.3			H-C l	eakage	(riA)	-	50	100%	
С	4.0				Ih		(A)	1.0	1.6	100%	
đ	4.0	6.25	1.6	Adjusted						·	
	-100 V	Vg adjusted between 0 and -100 V. Frequency varied by means of tuner.			ii.	Vr Range of scillation	(V) (Mc/s)	-300 9710 to 9588	- 550	100%	1
е	4.0	6,25	1.6	Adjusted	at :-	output (m 9710 Mc/s 9588 Mc/s	M)	7 5 75	-	100%	1 2
f	4.0 6.25 1.6 Adjusted Frequency drift from cold to stable temperature (i.e. after 20 mins. in free air after switching on) observed.			Frequ drift		(Mc/s)	-	10	1%	2	
g	See K1001/A.III					relectrode city grid cater + ode + nator	(pF.)	-	1 5	Type Ap- proval	

NOTES

- 1. Tests to be made with grid and reflector supplies whose respective total series resistances are 50,000 chms. The Vg and Vr specified may be taken as including the voltage drop across these resistances, as this should be negligible with a good valve. Should the grid lose control of the anode current as a result of grid current flowing the valve shall be rejected.
- In tests "d" and "e", Vg and Vr must lie within the limits given in test "c".