Page 1. (No. of pages 2- 3)
ADMIRALTY SIGNAL ESTABLISHMENT
MINISTRY OF AIRCRAFT PRODUCTION (D.C.D.)
GENERAL POST OFFICE (ENGINEER IN-CHIEF'S OFFICE)

Specific	SECURITY		
AD/5405, D.C.D., W.T.10 W2027D To be read in C	7.12.44. onjunction with	Specn. Open	Valve. Open

Triode, R.F. Amplifier

TYPE OF VALVE :~

Valve Electronic					
Navy.	NT58/58A				
Army					
R.A.F.	VT62				
G.P.O.	POVTIZIA				

MARKING.

WCONE, desiral MICONE, Section of STREET, 1977	Oscillator.			NT58		
AND	Directly Heated, Thoriated Tungsten. Glass - Unmetallised.			A.P.4889 or NT58A		·
			•		P.W580	
COMMERCIAL PROTOTYPE :- TY1-50, DET12.				VT62 10E/11443		POVT 121A
	RATING		Note		BAS BAS See K1001	‡
Filament Volts Filament Current (A) Max. Anode Volts Max. Anode Dissipation (W) Amplification Factor Anode Impedance (ohms) Mutual Conductance (mA/V) Max. Frequency for above ratings (Mc/s) Capacitances (pF.) Caf (max.) Cgf (max.) Cag (max.) Cag (max.) Cag (max.) Capacitances (max.) Capacitances (pF.)			A A	Pin 1 / 2 3 4 TC1 TC2	Electrode No connect No connect Filament Filament Anode Grid TOP CAPS AND	tion

NOTES

- A. $Va = 1000 V_0 Ia = 50 mA$.
- B. Valves type VT62 are to be supplied in matched pairs which must agree in grid voltage to within 1.5 V. in test 'd'. In addition to the normal marking, cartons are to be marked with the words "one pair of matched valves."

NT58/58A6 VT62 POVTI2IA

TESTS

To be performed in addition to those applicable in K1001.

	<u> </u>			-		Total Control of the	Li	nics	\$
<u> </u>		Test Co	ndit	iens	3	Test	Min.	Max.	Tested
a		See K10	01/A	111.		Capacitances (pF.)			
	Links to			1	inks to				
	н.Р.		P.		E.				6
	TC1	3,	4.		2,5,6,7,8,),10, T C2.	i. Caf	-	1.0	per
	TC2	3,	4.		2,5,6,7, 8, 9,10, T C1.	ii. Cgf	-	2.5	week
	TCI	TC	2		2,3,4,5,6, 8,9,10。	iii. Cag	•	3.5	
	Vf (V)	Vg (V)	Va (V)	Ia (ma)				100%
Þ	7.5 AC or DC.	0		0	O	3f (A)	2.8	3.6	or S
С	Adjusted AC or DC.	0	100	0	10	Vf (V) (Emission Test)	-	4.0	100%
d	7.5 DC	Adjusted	80	0	60	Vg (V)	⊸30	~50	100%
	or 7.5 AC						=34	-54	
e	7.5 AC or DC	Adjusted	80	0	50	Change in -Vg from value in test 'd' (V).	1 -	6	î 00%
ſ	7.5 AC or DC	Ad just ed	100	0	50	Change in -Vg from value in test 'e' (V).		24	100% or S
g	. 7.5 AC or DC	Ad justed	100	0	50	Reverse lg after 3 mins. (AA).		2.0	100%

N**9**38/982

Page 3.

DIMENSIONS AND CONNECTIONS

AS NT58, BUT FITTED WITH
BARE FLEXIBLE COPPER LEADS
AS SHOWN:
TOR 8 or 9/30 SWG
150

COPPER FERRULE
HARD-SOLDERED
PDENOX:TO FIN AND LEAD.

PPROX

APPROX. POSITION OF GRID

APPROX. POSITION OF GRID

LEAD.

FILAMENT

FILAMENT

FILAMENT

AMOUNT AND ORD LEADS SO LIE OF THE SAME STIPE OF

NOTE: - ANODE AND GRID LEADS TO LIE ON THE SAME SIDE OF THE CENTRE LINE OF THE VALUE AS PINS NOS. 1 & 2

NT58, VI62, & POVI121A/4/111

In Radio Frequency Amplifier, Class "C" Telegraphy.

For operation at frequencies above 120 megacycles wound coils become too small to be practicable, and the tuning systems may consist of resonant mus, frequency variation time thtained by adjustment of the effective length of the lines Tratements lines should also be connected in the filament leads in order to earth effec-

The driver stage consists of a pair of The amplifier gives a power gain of two at 1.5 metres, and ceases to amplify at about 1.2 metres.

Below 120 megacycles a typical circuit is given in Fig. 1 above.

Control grid bias may be obtained from a battery, as shown, or from a grid leak of 10,000 ohms.

A suitable driver stage for wavelengths down to 4 metres uses a KT66 Tetrode in a self-oscillator circuit. The amplifier gives a power gain of about ten times at 7 metres, six times at 4 metres.

for operation between 1.25 and secnant lines in both anode and grid circuits.

Anode voltage

1,100 1,000 850

1,000

1.000

Wavelength metres.

2.1 1.6

2.5 2.1 1.4

Fig. 3 shows a circuit using resonant lines in both anode and grid circuits, suitable

for operation between 1.25 and 2 metres. The

table set out below gives operating conditions.

,	Watts output, 2 valves.	Anode efficiency.	Anode dissipation per valve.	Remarks.
	45 35 18	45% 32% 18.5%	Watts. 25.5 37.5 40	Untuned filament chokes
	50 48 27	50 % 44 % 33 %	25 31 27.5	Tuned filament chokes

Self-Oscillator, with resonant line frequency control.

Fig. 2 shows the circuit of a push-pull oscillator using a resonant line in the grid circuit only; it should be slightly less than a quarter wavelength long. The operating conditions at a wavelength of 2.5 metres are set out in the table

DETI2 FIG. 2

DETIE

Circuit diagram of push-pull self-oscillator with resonant grid lines.

Anode Voltage.	Anode current, 2 valves.	Grid current, 2 valves.	Watts output.	Anode efficiency.	Anode dissipation per valve.	
1,100 - 890 500	140 mA. 115 mA. 110 mA.	15 mA. 18 mA. 28 mA.	65 38 23	42% 41% 42%	Watts. 44.5 27 11	

Self-Oscillator, Single Valve.

A typical circuit is shown in Fig. 4.

Below 2.5 metres the main oscillatory circuit consists of a copper strip L, tuned by the grid anode capacitance of the valve in series with the grid blocking condenser. The wavelength of operation is controlled by the length of the strip.

For above 2.5 metres, a tuned filament system is not essential, quarter wave chokes being satisfactory.

Below 1.5 metres oscillation can only be obtained with a tuned filament system, as shown.

. A table of operating conditions is given below.

Anode current

90 mA.

110 mA. 115 mA.

100 mA.

110 mA.

100 mA.

- PRECAUTIONS.
- 1. Before operating, anode and grid radiators must be attached in order to provide adequate heat radiation, and to provide good electrical contact.
- 2. Condensers for the higher frequencies should be built up by using the metal base plate as one condenser plate and a small metal flag as the other plate, with a thin sheet of mica as dielectric.
- 3. Condensers tuning the anode circuits should preferably be of the split stator type in order that the rotor bearings do not carry the large circulating current.
- 4. For efficient operation as an oscillator below 2.5 metres, and for any oscillation below 1.5 metres, tuned filament chokes are essential.