MINISTRY OF SUPPLY - D.L.R.D.(A)/R.A.E.

# VALVE ELECTRONIC CV 1097

| Specification MOSA/CV1097                                 | SECURITY      |              |  |  |
|-----------------------------------------------------------|---------------|--------------|--|--|
| Issue 7 Dated 8.11.1954                                   | Specification | <u>Valve</u> |  |  |
| To be read in conjunction with B.S.448, B.S.1409 & K.1001 | UNCLASSIFIED  | UNCLASSIFIED |  |  |

## Indicates a change

| TYPE OF VALVE - Cathode Ray T  TYPE OF DEFLECTION - Electrostatic symmetrical a operation.  BULB - Internally co- conductive co  SCREEN - GGN/1/28/35.  PROTOTYPE - VCR97.                              | MARKING See K.1001/4.  BASE B.S.448/B12D.  CONNECTIONS      |  |                                                             |                                                                                                            |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|
| RATINGS                                                                                                                                                                                                 |                                                             |  | Note                                                        | Pin                                                                                                        | Electrode |
| Heater Voltage Heater Current Max. Final Anode Voltage  TYPICAL OPERATING CONDITIONS  Final Anode Voltage Second Anode Voltage First Anode Voltage Beam Current x-plate sensitivity y-plate sensitivity | 4<br>1<br>2•5<br>2<br>350<br>2<br>20<br>600/Va3<br>1140/Va3 |  | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 | g1 k h h a1 (Note C) a2 Internal Conductive Coating (Note C) y2 x2 a3 x1 y1  DIMENSIONS drawing on Page 4. |           |

### NOTES

- A. The tube shall be adequately free from microphony.
- B. No objectionable fluorescence shall be produced by ultra-violet light of the wavelengths transmitted by nickel-oxide glass.
- C. The tube will normally be operated with a1, a3 and conductive coating tied, and, if a manufacturer so desires, any or all of these electrodes may be strapped internally, with the connections omitted from the contacts marked "Internal Conductive Coating", or "a1".

| ( | 21                                                                                | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>09</b> .7                                                  | <b>7</b><br>be pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rformed                                   | TESTS in addition to those a                                                                                               | Page 2    |                              |                            |      |
|---|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------------------|------|
| Г | Test Conditions                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test                                      | Lir                                                                                                                        | mits      | No.<br>Tested                | Note                       |      |
|   | Test Conditions                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Test                                                                                                                       | Min.      |                              | Max.                       | Note |
| a | See                                                                               | e K.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 <b>1/5A.1</b>                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | CAPACITANCES (pF)  (1) Each x or y plate to all other electrodes (2) Grid to all other electrodes (3) One x to one y plate | -         | 25<br>25<br>5                | 5%(10)<br>5%(10)<br>5%(10) |      |
| ъ |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 001/5A.4                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                  | Ihk (μΔ)                                                                                                                   | _         | 100                          | 100%                       |      |
| Н | Tes                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ltage = '                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı — — —                                   |                                                                                                                            |           |                              |                            |      |
|   | ۷h                                                                                | Va3<br>(kV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Va2                                                           | Va1<br>(kV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۷g                                        |                                                                                                                            |           |                              |                            |      |
| С | 4                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                         | Ih (A)                                                                                                                     | 0.7       | 1.3                          | 100%                       |      |
| đ | 4                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adjust<br>for<br>optimum<br>focus                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adjust<br>to<br>cut<br>off                | Vg (V)                                                                                                                     | -         | -80                          | 100%                       |      |
| е | 4 2 ditto 2 Adjust Vg to give a light output of 0.02 candelas on a closed raster. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | (1) Vg (V) (2) Change in value of Vg from test (d) (V)                                                                     | <b>-1</b> | -<br>35                      | 100%                       |      |
| f | Wav                                                                               | LECT:<br>re ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ditto ION With me base of                                     | of 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kc/s                                      | (1) Line width (mm)                                                                                                        | that      | ater than<br>of a<br>rd tube | 100%                       |      |
|   | 85<br>tic<br>lir<br>at                                                            | mm in<br>ons so<br>ne wid<br>the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n the x auccessive dth to be centre of the grid v             | and y<br>ely.<br>e mea<br>f the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | direc-<br>The<br>sured<br>trace.          | (2) Va2 (V)                                                                                                                | 250       | 450                          | 100%                       |      |
|   | pull of ithe e(2 pull ren                                                         | lsed property with the value of | positive h amplitue obtain he nominauration ceing 100 c/s res | ly froude ending al value of the value of th | om cut- qual to n test lues of ecur- onds |                                                                                                                            |           |                              | ·                          |      |
| g | K                                                                                 | <b>.100</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Any con-<br>venient value nded meti/5A.3.2                    | hod:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -80                                       | GRID INSULATION  (1) Leakage Current (μΑ)  (2) Increase in voltmeter reading                                               | -         | 8<br>100%                    | 100%                       |      |

| Test Conditions |                                                                                     |              |                                   | Test        | Lin                                                                                       | nits                                                                                                                           | No.                                 |                     |                    |      |
|-----------------|-------------------------------------------------------------------------------------|--------------|-----------------------------------|-------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------|--------------------|------|
|                 | . •                                                                                 | res          | t Condit:                         | lons        |                                                                                           | rest                                                                                                                           | Min. Max.                           |                     | Tested             | Note |
|                 | ۷h                                                                                  | Va.3<br>(kV) | Va2                               | Va1<br>(kV) | ۷g                                                                                        |                                                                                                                                |                                     |                     |                    |      |
| h               | 4                                                                                   | 2            | Adjust<br>for<br>optimum<br>focus | 2           | Any<br>con-<br>veni-<br>ent<br>value                                                      | DEFLECTION SENSITIVITIES (1) x-plate (mm/V) (2) y-plate (mm/V)                                                                 | 540/Va3<br>1026/Va3                 | 660/⊽a3<br>1254/⊽a3 | 10%(10)<br>10%(10) |      |
| j               | 4                                                                                   | 2            | ditto                             | 2           | ditto                                                                                     | Deviation of spot<br>from centre of<br>screen (mm)                                                                             | ı                                   | 10                  | 100%               |      |
| k               | 4                                                                                   | 2            | ditto                             | 2           | ditto                                                                                     | USEFUL SCREEN AREA (1) x deflection (mm) (2) y deflection (mm)                                                                 | ∓to<br>∓60                          | -<br>-              | 100%<br>100%       |      |
| 1               | A screen area of at least 80 mm x 80 mm to be scanned with asymmetrical deflection. |              |                                   | least       | TRAPEZOIDAL DISTORTION  (1) Angle between adjacent sides (2) Angle between opposite sides | 85°<br>175°                                                                                                                    | 95 <sup>0</sup><br>185 <sup>0</sup> | 100%<br>100%        |                    |      |
| <b>I</b>        | 4                                                                                   | 2            | ditto                             | 2           | ditto                                                                                     | <ul> <li>(1) Orientation of x axis of deflection relative to 00' on drg.</li> <li>(2) Angle between x and y axes of</li> </ul> | 80°                                 | 100°                | 100%               |      |
| Ш               |                                                                                     |              |                                   |             | <u></u>                                                                                   | deflection                                                                                                                     | 85 <sup>0</sup>                     | 95°                 | 100%               |      |

NOTES



VIEW OF UNDERSIDE OF BASE.



#### NOTES.

- I THE INTERNAL CONDUCTIVE COATING SHALL BE OF SUCH DIMENSIONS THAT IT FUNCTIONS EFFECTIVELY BUT DOES NOT OBSCURE THE REQUIRED USEFUL SCREEN AREA.
- 2 WHEN VIEWING THE SCREEN
  WITH THE TUBE POSITIONED
  SUCH THAT THE BASE SPIGOT
  IS UPPERMOST, A POSITIVE
  VOLTAGE APPLIED TO THE
  TERMINAL X, SHALL DEFLECT
  THE SPOT TO THE LEFT AND
  A POSITIVE VOLTAGE APPLIED
  TO THE TERMINAL Y, SHALL
  DEFLECT THE SPOT UPWARDS
- 3 THE NECK DIAMETER MAY BE REDUCED PROVIDED THAT RUBBER RINGS OR OTHER APPROVED PACKING IS SUPPLIED WITH THE TUBE TO BRING THE OVERALL DIAMETER WITHIN THE STATED TOLERANCES.

ALL DIMENSIONS IN MILLIMETRES