Specification NDS(A)/CY2184
Issue 2 Dated 29,4,55
To be read in conjunction with K1001

Specification Valve
UNCLASSIFIED UNCLASSIFIED

Indicates a change

Heater Voltage Heater Current Heater Current Heater Current Hax. Fourth Anode Voltage Hax. Third Anode Voltage Hax. Third Anode Voltage Fourth Anode Voltage Fourth Anode Voltage Fourth Anode Voltage Fourth Anode Voltage (kv) Fourth Anod	TYPE OF DEFLECTION - Electros BULB - Internal	tio coated with			HARKING See K1001/4			
RATING RATING Note Pin Electrode Heater Voltage Heater Current (A) 1.0 2 G Hax. Fourth Anode Voltage Hax. Third Anode Voltage (kV) 1.5 A 4 HX. Third Anode Voltage (kV) 1.5 A 4 HX. Third Anode Voltage (kV) 1.5 A 5 Fourth Anode Voltage (kV) 1.3 8 Second Anode Voltage (kV) 1.3 8 Second Anode Voltage (V) 100 9 41, A3, and ductive coefficients (Peak) Working Beam Current (Peak) Working Beam C	•			, ——				
Heater Voltage Heater Current Heater Voltage Heater Current Heater Voltage Heater Current Heater Current Heater Voltage Heater Current Heater Voltage Heater Current Heater Current Heater Voltage Heater Current Heater Voltage Heater Current Heater Voltage Heater Current Heater Voltage Heater Current Heater Current Heater Current Heater Current Heater Voltage Heater Current Heater Current Heater Current Heater Current Heater Voltage Heater Current Heater Current Heater Voltage Heater Current Heater Voltage Heater Current Heater Current Heater Voltage Heater Current Heater	ROTOTYPE - VORX.298	-	, 	·	CONNECTIONS			
Heater Current Max. Fourth Anode Voltage Max. Third Anode Voltage M	RATINO	_		Note	Pin	Electrode		
SIDE CONTACT	Heater Current Hax. Fourth Anode Voltage Hax. Third Anode Voltage HTPICAL OPERATING CONDITIONS Fourth Anode Voltage Chird Anode Voltage Heacond Anode Voltage (Peak) Working Beam Current Peak Cathede Current Teplate Sensitivity	(A) (kV) (kV) (kV) (kV) (µA) (µA)	1.0 3.0 1.5 2.5 1.3 100 200 1000 0.215		3 4 5 6 7 8 9 10 11 12 81de Contact	G H H A2 Pin omitted Y2 X2 A1, A3, and conductive coating X1 Y1 Pin omitted A4		

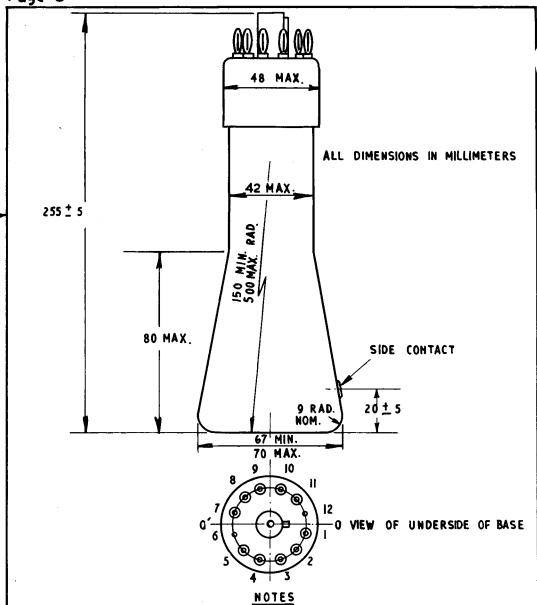
NOTES

- A. The tube shall be capable of operating with first and third anode voltages of 1500v, and fourth anode voltage of 3.0 kV, at a pressure equivalent to 5.77mins of mercury at 15°C.
- B. The tube shall be of the post deflector accelerated type and of a design such that a change of ± 16% in the Va2 voltage shall not produce an appreciable change in the cut-off voltage.
- C. The tube shall be adequately free from microphony.

CV2184/12/1

To be performed in addition to those applicable in K1001

	Test Conditions						Limits		No.	
	Vh (V)	(kV)	Vai Va3 (kV)	Va2 (V)	Vg (V)	Test		Min.	Max	Tested
				etrical def es to the		tages shall be applied to the	Y-plates	and a	symme	trical
a	See	K1003	/5A.1)	5		CAPACITANCES (pF) 1. Each X or T plate to all other electrodes.	1	•	21	5% (5)
						 One X to one Y-plate Grid to all other electrodes 			3	
b	4.0	0	0	0	0	I h	(A)	0.9	1.1	56 (10)
c	4.0	2.5	1.3	Adjust for optimum focus	Adjust to cut- off	Vg Value to be noted	(v)	-	105	100%
a	Vg 8	djust		Test (c)	ght output e raster.	1. Vg 2. Change in value of Vg from Test (c) 3. Within the range of grid voltage from cut-off to standard light output the beam current shall increase continuously	(V)	-1	- 45	100% 100%
0	DEFI base leng dire widt of :	ECTION of the citivel	N Wi O kc/ 55 m s suc be me ace. grid y fro qual t d.2), durat	will be p	a line X and Y the line the centre ulsed with amp- e obtained al values currence	1. Line width 2. Va2	(m) (Y)		1.2	100% 5%(10)


CV2184/2/2

	Test Conditions					- The state of the	Limits		
	(V)	(KA)	Ya3 (kY)	Va2 (V)	Vg (V)	Test	Min	Max	No. Tes te d
ſ	4.0	mended		Any conveni- ent value d:- See K10 r = 5 megoh		GRID INSULATION 1. Leakage current full) 2. Increase in voltmeter reading	-	21 100%	100% 100%
g	100	K1001/	shall h	As for Test (f) De applied and cathode	-	HEATER CATHODE LEAKAGE Leakage current (414)	•	200	100%
h	4.0	2.5	1.3	As for Test (f)	Any con- venient value	DEFLECTION SENSITIVITES 1. X-plate (mm/V) 2. Y-plate (mm/V)	0.17 0.17		5% (10)
3	4.0	2.5	1.3	As for Test (f)	As for Test (h)	Deviation of spot from centre of screen (mm)	-	7.0	100%
k				As for Test (f) ver stated c		USEFUL SCREEN AREA Diameter (mm)	55	<u>-</u>	100%
m	4.0	2.5	1.3	As for Test (f)	As for Test (h)	Angle between X and Y axes of deflection	85°	95°	100%
n	4. 0	2.5	1.3	As for Test (f)	As for Test (h)	i. Orientation of Y axis of deflection relative to 00' on drawing. 2. Orientation of diameter line through snap terminal rela- tive to Y axis	-	±10°	100%

CV2184/2/3

1									
T			Test	Conditions			Lim	its	No,
	Vh (V)	Val ₄ (kV)	Vaj Vaj (kV)	Va2 (V)	Vg (V)	Test	Min.	Max	Tested
	Covering that a	ing the pot she separat	usef ill be te lin	As for Test (f) es to give ul screen a defocussed es shall no e raster.	rea. such	 The screen shall be no worse for graininess than a standard pattern. The variation of brightness over any part of the area shall not exceed a 2: 1 ratio. 			100%
	Test (2.5 to be present and the second	nd a c	As for Test (f) med using a lose raster	As for . Test (h) pproved	Persistence (secs)	5	-	100%

CV2184/2/4

- VIEWING THE SCREEN OF THE TUBE WITH THE KEY OF THE BASE UPPER MOST, A POSITIVE POTENTIAL APPLIED TO PIN X2 SHALL DEFLECT THE SPOT TO THE RIGHT, AND A POSITIVE POTENTIAL APPLIED TO PIN Y2 SHALL DEFLECT THE SPOT DOWNWARDS.
- 2 THE INTERNAL CONDUCTIVE COATINGS SHALL BE OF SUCH DIMENSIONS THAT THEY FUNCTION EFFECTIVELY BUT DO NOT OBSCURE THE USEFUL SCREEN AREA.

CV 2184/2/5