ELECTRONIC VALUE CIFICATIONS

SPECIFICATION AD/CV.5398 ISSUE NO.1 DATED 2ND APRIL, 1962 AMENDMENT NO.2

Page 2. Last Line in Table. Recovery time to 6dB

In the column headed 'NOTES', delete '(iv)' and substitut

Page 4. Test Clause 'f'

In the column headed 'Test Conditions'

- (a) Insert, 'Frequency = 3625 Mc/s + 50 Mc/s'.
- (b) Delete 'p.r.f. = 275 ± 25 p.p.s., Pulse length = 5 ± (
 μ Secs.'
- (c) Substitute 'p.r.f. = 500 p.p.s. ± 50 p.p.s., Pulse ler = 2μ Secs. ± 0.2μ Secs. or alternatively 1200 p.p.s. ± 100 p.p.s. and 1μ Sec. ± 0.1μ Sec. respectively'.

August, 1963 R190370 T.V.C. for

ELECTRONIC VALVE SPECIFICATIONS

SPECIFICATION AD/CV5398 ISSUE 1 DATED 2nd April, 1962

AMENDMENT NO. 3

Page 4 Test Clause (f) Test Conditions

Amend 'Frequency = 3625 Mc/s ± 50 Mc/s' (inserted by Amendment No. 2) to read 'Frequency = 3265 Mc/s ± 50 Mc/s.'

March, 1964

T.V.C. for A.S.W.E.

Page 1. (No. of pages: - 8)

VALVE ELECTRONIC

ADMIRALTY SURFACE WEAPONS ESTABLISHMENT

Specification AD/CV5398	SECURITY			
Issue 1 Dated 2nd April, 1962.	Specification Valve			
To be read in conjunction with K1001	Unclassified Unclassified			

TIPE OF VALVE: Microwave gas swi (Plug-in type T.) ENVELOPE: Metal and Glass PROTOTYPE: E2978	tch R.Cell)		MARKING See K1001/4 DIMENSIONS See drawing on page 5
RATING (All limiting values are absolute)	Wata	MOUNTING POSITION Any
Max. Peak r.f. Power (kW) Min. Peak r.f. Power (W) Operating Frequency Range	5 500 S-band	A. B. C.	PACKAGING See K1005

NOTES

- A. At a duty cycle of 0.002.
- B. This power level is the minimum at which the valve will fire consistantly into a match. When followed by a short circuit or a primed T.R. gap the valve will fire at about 10W.

C. Operating Frequency Range

The valve is designed to operate in No. 10 or No. 11 waveguide and the operating frequency depends on the mounting. Chokes are provided on the valve and r.f. contact with the mount is not important.

A typical mount for No. 11 waveguide (Mount A), is shown on page 7 and for No. 10 waveguide (Mount B) on page 8. Curves of iris window dimension and Q value in No. 10 waveguide as a function of frequency are shown on page 6.

Higher Q values can be obtained using double irises and lower values by

Typical performance

using a small ridge in the waveguide.

The valve is intended to be used in front of a primed T.R. gap in a conventional duplexer or in conjunction with a pre-T.R. or other unprimed gaps where the leakage power requirements are less stringent.

(Notes continued on page 2.)

'(v)'

0.5

agth

Page 2.

NOTES (Contd.)

		MOUNT A.	MOUNT B.	notes
Centre frequency	(Mc/s)	3620	3265	
Loaded Q value	,	6.0	4.5	(i)
Insertion loss	(aB)	0.12	0.15	(ii)
Spike leakage energy	(e/p)	11	43	(ii) (iii) (iv
Flat break through peak power	(W)	-	2.5	(ii) (iii) (iv)
Total leakage energy at 0.8 /usecs p	ulse (e/p)	25	-	(ii) (iii) (iv)
Recovery time to 6dB	(rusecs)	8	8	(ii) (iii) (iv

notes

(i) Q Value. This is the Q of the cell in its mount when loaded by a matched guide in both directions. To calculate Q, the v.s.w.r. of the mount terminated in a matched load is plotted as a function of frequency. The Q is then deduced from the formula -

$$Q_{L} = \frac{1-r}{2\sqrt{r}} \cdot \frac{fo}{f_2 - f_1}$$

where r = v.s.w.r. (<1) within the range 0.5 to 0.6 at which f_1 and f_2 are quoted.

- (ii) Measured at the nominal centre frequency.
- (iii) Measured at an incident peak r.f. power of 5kW.
- (iv) Calculated as given in Note 3 on page 4.
 - (v) See Note 4 on page 4.
- D. The Joint Services Catalogue No. is 5960-99-037-2368.

Page 3.

TESTS

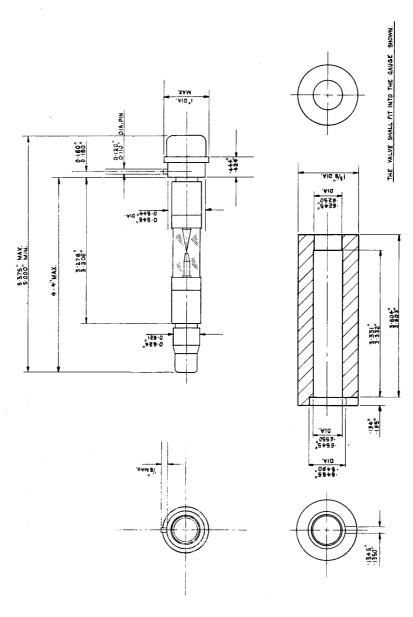
To be performed in addition to those applicable in K1001.

All tests to be carried out vi days after completion of manufacture.

Tests are to be performed in the specified order unless otherwise agreed with the Inspecting Authority.

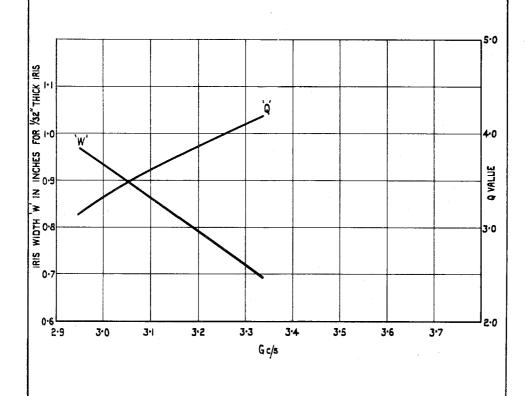
П	Test	Test Conditions	AQL	AQL Insp. Level	Insp.	Sym-	Limits		Units
			%		bol	Min.	Max.		
8.	Centre Frequency This frequency shall be determined as the mean of frequencies at which the v.s.w.r's are the same and in the range	The line shall be energised with 20 ± 10mW r.f. power and terminated in an impedance matched better than 0.98 v.s.w.r.		100%		3600	3645	Mc/s	
	0.75 ± 0.05	Note 1							
b	V.S.W.R. Determined as if the line were terminated in a perfectly matched load.	As test "a" above. Test frequency = 3620 Mc/s Note 1	-	100%		0.89	-		
C	Insertion Loss	The line shall be energised with 20 ± 10mW r.f. power and the valve mounted between impedances matched better than 0.91 v.s.w.r. Test frequency = 3620 Mc/s Note 1		100%		_	0.20	đВ	
đ	High Power Leakage (i) Spike leakage energy (ii) Total leakage energy	The line shall be energised with 5 ± 1kW peak r.f. power and the valve mounted between impedances matched better than 0.91 v.s.w.r. Test frequency = 3600 ± 50 Mc/s. Pulse length = (i) 0.1/usecs. min. (ii) 0.9/± 0.1/usecs. Notes 1, 2 and 3		100%		-	16 35	e/p e/p	
е	Recovery time	As test "d" above Pulse length = 0.9 ± 0.1 usecs. Frequency of the simulated echo = 3620 Mc/s Notes 1 and 4		100%			16	/u se cs	

TESTS (Contd.	1

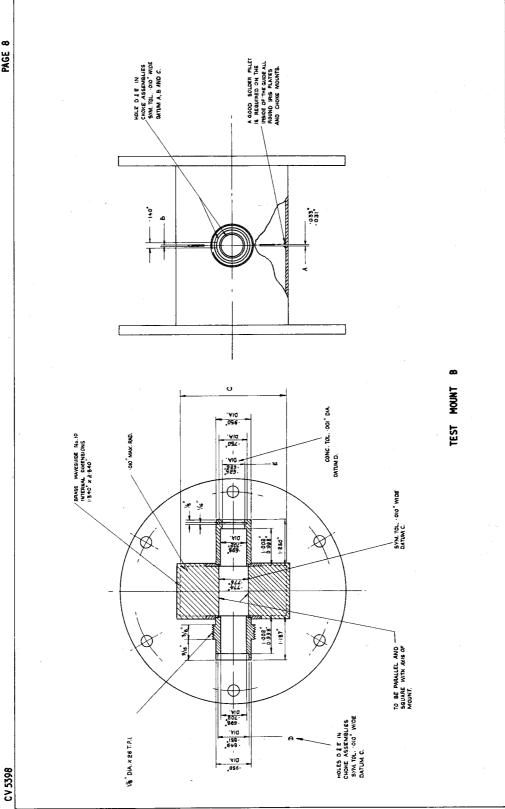

Page 4.

	Test	Test Test Conditions	VOT	Insp	Sym-	Limits		Units	
L	Test Conditions		%	Level	bol	Min.	Max.	OMICO	
f	Life Life test end-points	The valve shall be mounted on the side-arm		T.A.		1000	1	Hours	
	(i) Centre frequency (ii) v.s.w.r.	of a matched T-junction. Incident Peak Power = 5				3595	3650 0.87	Mo/s	
	(iii) Insertion Loss (iv) High Power	+ 1kW p.r.f. = 275 + 25 p.p.s.				-	0.3	ab a	
	Leakage (a) Spike energy	Pulse length = 5 ± 0.5	i i		ļ. 	<u>.</u>	20	e/p	
	(b) Total energy					_	40	e/p	
1	(v) Recovery Time	Notes 5, 6 and 7				-	30	/usecs	

notes


- 1. The valve shall be tested in Mount A shown on page 7.
- 2. Measured with a thermistor head having a bandwidth not less than 350 Mc/s at a v.s.w.r. of 0.67 and centred on the magnetron frequency.
- 3. If the measured mean leakage powers are p1 and p2 respectively then -

- 4. The time shall be measured from the trailing edge of the transmitter pulse for an insertion loss 6dB greater than that immediately before the transmitter pulse.
- 5. The valve shall be tested in Mount B shown on page 8.
- 6. The end-points to be tested as given in tests "a", "b", "c", "d" and "e".
- 7. These test conditions apply to production life testing.



OUTLINE DRAWING

IRIS WIDTH AND Q VALUE AS A FUNCTION OF CENTRE FREQUENCY FOR $\frac{1}{32}$ THICK IRIS PLATES IN No IO WAVEGUIDE

CV5398/1/7

CV5398/I/8