
RE

Application Note

Designing for Xilinx LCAs
with FutureNet

Section 1: Entering an LCA Design Using FutureNet

Contents
Before You Begin 2

SettiJig up Your schematic 2

Using Title Blocks 2

Creating Multiple-Page Drawings 3

Creating an LCA Design using FutureNet : 3

FutureNet Attributes 3

Creating Functional Blocks 4

Naming signals and Buses , ` 5

LCA Naming conventions 6

Creating symbols with MEMGEN 7

Using the xilinx Library - Xilinx primitives and Macros 8

XC2000 Library Exceptions for use with FutureNet 9

XC3000 Library Exceptions for use with FutureNet 14

XC4000 Library Exceptions for use with FutureNet 20
-,`.

Representing power and {^;round signals 20

Representing IoBs ..,,............................... 21

Using Constraint Flags 23

Controlling Block placement - LOC= and LOC<> Coustraints 24

Using xc3000 Drawings for xc4cOO Designs 28

Using xc3000 Syinbols on an xc4000 Drawing 28

Exceptions to The xc3000 Symbol conversion prcoess 29

`~- 9830360001 3®3 Drmlro

Entering an I£A Design Using FulureNel

This section includes information you need to enter an LCA design with FutureNet, and is -
divided according to the following categories.
•:reefa°tir:gY:uu]?£#p:=Tg:¥r°a¥±:%:.nonsethn8upyourschematic,usingtitleb|ocksand
J

` i .` Creating an LCA Design Using FutureNet - Ths section provides detailed infomation
`, about-creating functional blcoks, using naming conventions, and adding various
A , characteristics,to your LCA design.

` ; .-.. ``r ``,ch, =h

irJL -`jr

• Using Xilinx Primitives and Macros - Xilinx primitives and macros are the building
blceks pf an LCA design. This section provides information to assist you in using these
library elements .to create an LCA design.

Before You Begin
Setting Up Your Schematic

Before beginning your LCA design, you should be aware of two important aspects of
i FutureNet design hierarchy and documenting your design.

• Design Hierarchy -Set up your design hierarchically, using functional block symbols to
create a hierarchical design file.

• Dacumenting Your Design -Set up your design in a manner that allows you to track
design revisions accurately and to create design documentation that is consistent in
appearance. FutureNet provides title block primitives to assist you in this process.

Using Title BE®cks
t!'' ` Using title blocks allows you to select items such as the LCA part type, document, and desigri

revisions. The title block primitives in the Xilinx library are listed in the following table.

--`--^--`~ ~.--'-TitleJB]ock Size Dimension Border

^.I . c . "iJ.'t : TBLOCKA
I i£ ,I `

TBLOCKB
+ ,1` 1 . ,F,PJ.i.~

TBLOCKC

L I rjtT^j ,.f,,. :TBLOCKD
'1.+16i`, J

TBLOCKCP
•` .) ',}Fr` , .J ,--, `'

` TBLOQKDP

TBLOCK

TITh

A 8-1/2x 11 Yes

a 11xl7

C 17x22

D 22x34

C 17x22

D 22x34

8 llxl7

Yes

Yes€

Yes

Yes

Yes

No

Same as TBLOCKB (XC2000 family only)

Each title block contains a default string (attribute 81) that you can edit to reflect the desired
~ .~pan type. This part type is passed on to the XACT implementation software.

` Note: You can use the -P option on the PIN2XNF coriiirnand line to override any part type lexl in the

title block. '

1___.. _-- ` Designing for Xilinx LCAs with FulureNel

Entering an LCA Design Using FimireNet

Creating Multiple-Page Drawings ` `-

The XMAKE Automatic Design Translator runs DCM c`orrectly if multiple-page drawings are
properly identified. Multiple pages must have the same filename with Sequentially-numbered
extensions (.D01, .D02) instead of the default DWG extehsion. For example, if your top-level
schematic (TOP) contains three pages, name these drawings TOP.D01 -,.TOPD02, and
TOP.D03. If a lower-level module called MYMAC consists of two pages, the symbol name
(File (8)) should be MYMAC and the two MYMAC schematics shchld be named
MYMAC.D01 and MYMAC.D02.

When processing the MYMAC logic, XMAKE recognizes from the .DO] and .D02 extensions
that MYMAC is a multiple-page schematic. XMAKE then automati'cally runs, DCM with the
fouowing command line. .. _ ~._-` ``-.` iL.+ty.~,

• f i,g.--_ -..I--+ ..., `?

Cnd:DCM MYMAC.D01 MYMAC.D02
- .'S.+,:

The resulting DCM file is called MYMAC.DCM and contains the logic from both pages.
XMAKE automatically merges the MYMAC logic into the TOP logic at ,a later step in the
translation process.

n

+

Creating an LCA Design Using FutureNet
FutureNet Attributes

FutureNet Attributes Allowed by PIN2XNF
The PIN2XNF program allows only a subset of the attributes provided by FuturesNetj Thie`]
following FutureNet attributes are used by PIN2XNF to translate a FutureNet design to an
XNF file.

Attr. Description

0COM

2LOC

3 PART

5SIG

8 FILE

21 PINO

22 PNBT

23 PINI

Assigns a comment, which is ignored by PIN2XNF. T

Assigns an instance name to a symbol. Although LOC (2) names are not
required,theymustbeuniqueifused. jvy i ,

i.,,,,,-'.

Defines a Xilinx primitive symbol. Do not create text with the PART
(3) attribute.

Assigns a signal name to a net. Used for both individual nets and bus
signals.

Assigns a filename to a functional block symbol:, Each functional block
must carry one and only one FILE (8) name.¢ '.Xilinx
macros are named with an attribute 8. „ ,.

Defines an output pin name.

Defines a bidirectional pin name.

Defines an input pin name.

Note: FutL[reNet reserves attributes 80 through99 f or use by application programs, such as
PIN2XNF.

Designing for Xilinx I.CAs with FutureNet i

Entering ar. I£A Desigri Using FulureNel

Description

80

ng*B

)81

•i2
.rll,Ul. I

-` -- 83

Assigns CLB locations to flip-flops and CLB primitives, and
Iog locations to I/0 pads and Ioo primitives. For
XC4000 devices, attribute 80 labels can be used in
place of some LOC= (attribute 83) parameters.

Assigns LCA part type.

Defines configuration statements on CLB and loo primitives.

Assigns special LCA options.
``' LAssignihg Attributes

Each alphanumeric field in FutureNet is assigned an attribute, whether it 's the default
''attribute, - or one that gives more information about the field. The easiest way to assign an

` jL` i t i`J ` attribute for an alphanumeric field is to assign the attribute before you begin typing.
\ t .``,

inere are two ways to assign attributes to alphanumeric fields:
• For existing fields, use 'CH A to change the attribute currently assigned to the field.

' - " ~ --.J For new fields. use 'A to set the attribute before typing the alphanumeric data. Then that`,.--

-. `r,' .-,,,

.,,, ; „ attribute is automatically assigned to each new field.
`. To change the text of an alphanumeric field, place the mouse cursor on the text and use 'R or

press EE to enter the text editing mode.

Creating Functional Blocks

£[oh;:r::Cnhiica?ema:;u::inbeF: toufr:rnes: 1:Sa:ehp::S:Et]:a ::parefsuennctts±°a:a:nbp[u¥ tkosoyrma:°:.u#::]£nfa[e U
hierarchical module.

The functional blcx)k symbol itself is created by using the .F command. The format of this
chinriand is as follows.

-.. ;JL, I `

I+. + ,.-. i,.` .I widt.Il height border_width border_height
• J - .` Trie first two parameters, w!.dfA and Ac!.gAj, determine the dimensions of the block symbol

itself. The last two parameters, border wi.dffe and border Ac!.gfef, specify the size of the border
^` rA'..`` area around the symbol. The pins on the functional block are displayed in this border area.

To add pins to the functional block, use the following commands.

Cominand Line
Entry Function

I-`,`--. i _` ,`,,:;

.>

.-0
-.>0

.D

Add regular pin stub.
Add clock pin stub.
Add inverted (bubbled) pin stub.
Add inverted (bubbled) clock pin stub.
Delete pin stub.

The different types of pin stubs are provided only as a graphical convenience. Each pin stub
' Jh'as the same meaning to the translation software.

4 Designing I;or xilwi LCAs with FulureNel

u

Entering an LCA Design Using FuturENet

a

h

Naming F unctional Blocks
Once a functional block has been created, both the symbol itself and its asscx:iated pins must
be named. Use the following conventions when assigning names to a functional block for an
LCA design.

Each functional blcrok must be identified by a single label which carries the FILE (8) attribute.
This label represents the name of the functional block symbol, as well as the name of the
underlying drawing. Therefore, the FILE (8) name must be a valid DOS filename of 8
characters or less. Do not specify an extension as part of the FILE (8) name, as the translation
software uses this name with various extensions. A FILE (8) name must also be a legal LCA
name: see "LCA Naming Conventions" below. Each functional blcx}k in an LCA design must
calTy one and only one FILE (8) name.

For example, if the FILE (8) label on a functional blcx:k is MUX, the lower-level drawing
which describes this blcek must be called MUX.DWG. Similarly, the PIN2XNF translation
program will expect to find a file called MUX.PIN, which is created from MUX.DWG as
described later in this application note.

The name given to each pin on a functional black must be assigned one of three attributes:
PINI (23) for input pins, PINO (21) for output pins, or PNBT (22) for bidirectional pins. Each
pin name must match exactly the name of the corresponding signal on the lower-level
drawing. See "Naming Signals and Buses" for more information on signal naming.

Using Functional Blocks for Multiple-I)age Drawings
A single functional blcek can be used to represent a module which is contained on more than
one lower-level drawing page. In this case, the single FILE (8) name on the functional block
represents the combined lower-level schematic, no matter how many drawing pages it
contains.

If you intend to use the XMAKE program to translate your design, you must name each page
of the lower-level schematic using the same base filename, with the extensions D01, D02,
D03 and so on. The functional block for this schematic should carry one FILE (8) label,
which matches the base filename of the lower-level drawings. Do not include an extension in
the FILE (8) name. Drawing files named in this manner are recognized by XMAKE as
multiple pages of a single schematic, and will be combined correctly.

For example, if a lower-level schematic consists of the drawings MUX.D01, MUX.D02 and
MUX.D03, the FILE (8) label on the functional black would read "MUX." _

For more information on XMAKE and the translation process, see section 1.

Naming Signals and Buses

Every signal in an LCA design, including both individual nets and buses, should be assigned a
name. A name for either a net or a bus is assigned using an attribute SIG (5) label.

The only restriction on individual net names is that each must be a valid LCA name: see "LCA
Naming Conventions" later in this section. If two nets on the same drawing cany an identical
name, they will be considered connected by the translation software. Therefore, if nets are not
intended to be connected, they must have unique names. Each distinct net must calTy no more
than one name. If a name is not assigned to a net, the translation software assigns an arbitrary
unique name. Since these unique names are difficult to trace when debugging the design, it is
highly recommended that you name every net.

Desigringf;orxilinxl£AswithFutureNet t5

Erdering ar. IJ=A Design Using FutweNet

Note: The none given to loBs in the completedl£Af ale is basedon the name of the net connected to
the Ilo pad. If you de not rarne this net. the resulting lob does not carry a user name . and is
only identified by the actual package pin designation.

EH

Note: If a hierarchical rrlodule contchs multiple pages (see "Using Functional Blocks f or
Multiple-page Drawings" earlier in this section), nets which have identical names are
cormected across page boundaries.

There are two steps to naming a bused signal:
1. Name the individual nets of the bus.

2. Name the bus itself to identify the component nets.
Each individual net in a bus is assigned a normal SIG (5) name. which must be a valid LCA
name. Altematively, an individual net may be assigned a positive integer value as a name, also
carrying the SIC (5) attribute. Using consecutive integer values win make the name of the bus
itself simpler, as shown below.

The name of the parent bus signal (or trunk) specifies the name of the bus itself, as well as the
names of the individual nets. The parent bus name carrying the SIG (5) attribute is expressed
in one of the following forms.

name<netl, net2, j:k, net3 ,... >

name[netl, net2, j:k, net3 ,...]

The name of the parent bus is represented by r!amc. Any individual nets that are named with
consecutive integer labels can be specified in the form j:A, where /. and A are the bounds of the
cousecutive range. Individual nets that are not part of an integer range must be specified
explicitly. These various net specifications must be separated by commas.

If a bus signal goes into a functional block using a bus pin stub, the individual net
specifications for the upper-level bus signal must match exactly the individual net
specifications for the bus signal on the lower-level drawing. Although the name of the bus pin
must match the name of the lower-level bus signal, these names need not match the
connecting upper-level bus signal. Every individual net on the upper-level bus does not have
to be split out from the bus, but the translation software will issue a binding mismatch
message to wan you of this condition.

As an example of bus naming, consider a bus consisting of ten individual signals. If eight of
the component nets are labeled with the integers 0 through 7, and the remaining two nets are
labeled A and 8, the parent bus could be specified as IN<0:7, A, 8>. When expanded by the
translation software, the individual nets would be called IN<A>, IN, IN<0>, IN<1>,
IN<2> and so on.

LCA Naming Conventions
All names given to symbols and signals in an LCA design must be valid for the XACT
Development System. The requirements for all LCA names are outlined below.
• User-defined LCA names may contain only the following characters:

A-Z a-z 0-9 S - < >
• The characters < and > have special meaning in FutureNet and should only be used when

defining bus signals.

.6 Designingforxilinxl.CAswithFulureNct

u

Erdering an LCA Design Using FulureNet

®

• Names can be up to 1024 characters in length, although some translation programs may
not preserve the entire name. Names must contain at least one non-numeric character, and
can begin with any legal character. The case of alphabetic characters is ignored; uppercase
and lowercase characters are considered identical.

Creating Symbols with MEMGEN
The Xilinx memory compiler, the REMGEN program, creates RAM and ROM memories
within Xilinx XC4000 LCAs. With MEMGEN, you can automatically create memories
ranging from 1 to 32 bits wide and up to 256 words deep.

The MEMGEN program is described in the XACT Design lmplementation User Guide. The
example below illustrates how to use the REMGEN program to create a memory symbol for
the FufureNet schematic editor. For a full description of the memgen program, consult the
Design Implementation User Guide.

Tb use the MEMGEN program, a description of the memory -including its type, size and
contents -is placed in a Memory Definition File. In this example. MEMGEN creates the
file. Run REMGEN with the filename that is used for the memory.

memgen shifter

MEMGEN creates a Memory definition file called SHIFIER.MEM and an XNF file to
represent it. Tb create a FutureNet symbol for this example memory function, enter the
command:

memgen snifter -f

The Memory Definition File for shifter was created previously by MEMGEN. This command
causes REMGEN to read the SHIFrER.RIM definition file, from which it creates a
FutureNet command file called SHIFTER.CMD. MEMGEN displays the following messages
on the screen.

Reading your Memory Definition File called 'shifter.mem' ..-.

Creating a FutureNet(tin) symbol command file for the -memory function

Syrtool command file saved as 'shifter.cmd' . . .

NOTE :

To automatically save the FutureNet memory syltool in your MEMGEN update
library, do either of the following:

From the prompt, enter
' fn snifter.cmd'

Within the Xilinx Design Manager (XDM) select
' DesignEntry' ,

Symbol '

Designingforxilii.xlL:AswilhFutureNet
-7

Entering an I£A Design Using Futurchlet

The command file created by MEMGEN can then be used to create the actual RAM symbol.
Tb use the SIIIFThR.CMD file, you would run FutureNet from the DOS prompt in the
following marmer.

fn snifter.cnd

This runs the FutureNet schematic editor, draws the memory symbol using the instructions in
the SHIFTER.CMD command file. and saves it into a FutureNet update library named
MEMGEN.SYM. The last instruction in the command file exits from the FutureNet program.

The command file created by MEMGEN always stores its symbol in the nbrary
MEMGEN.SYM, which it creates if it dces not already exist. You can then use the symbol by
specifying the REMGEN symbol library in FutureNet in the following manner.

LIB MEMGEN . SYM

Then load the memory symbol using the load (.L) or load and tag (*) command. Altematively,
the memory symbol can be created using the XACT Design Manager, using the Symbol
function found under the FutureNet menu selection. When you select the Symbol option, the
design manager will display all FutureNet command files (CMD file extension) found in the
current directory. If you select one of these files, the Design Manager runs FutureNet, draws
the symbol, saves it into the MEMGEN.sym update library, and then returns to the XDM
screen.

Using the Xilinx Library - Xilinx Primitives and Macros
As stated at the beginning of this section. the Xilinx library contains primitives and macros,
which are the building blceks of any LCA design. Primitives are basic logic elements, such as
gates and flip-flops. Macros are combinations of various primitives or other macros that are
used to implement common functions. They are classified as either hard or soft macros.

This section provides information on using the Xilinx library to create an LCA design. This
section also describes several Xilinx symbols that have a special usage in FutureNet.

Note: The functions of all xilin primitives and macros are explained in the Macro Library.
FutureNet-specific irifelrmation on certain symbols is described in this section.

The Xilinx Libraries
The Xilinx library for the FutureNet Schematic Editor consists of FutureNet logic symbols
and macros for schematic entry of LCA designs. It also contains translator programs that
translate a FutureNet drawing file (DWG) into the Xilinx Netlist Format file (XNF).

Note: Use only parts f ram the xilinxlibrary f or creating LCA designs and user macros.

I,oading Parts from the Xilinx Libraries
Tb load symbols from the Xilinx symbol library into your design, use the following FutureNet
commands.

Note:
• Load & Tag (*) -The Load Symbol command loads the symbol at the graphics cursor

location and initiates a tag and drag.
• Load (.L) - This command works the same way as the * command, except that tag and

drag is not initiated.

8 Designing fior XiLinx I.CAs with FutureNet

u

u

Eroering al'i I£A Design Using FulureNet

• Reflect (.RE) -This command reflects a symbol about its horizontal or vertical axis.
creating a mirror image of the symbol.

• Rotate (.R) - The rotate command enables you to rotate the symbol in 90-degree
increments. In addition, the symbol is tagged so that it can be moved using the mouse or
arrow keys.

Note: Ref er to the appropriate Macro Library f or more detailed irifbrmntion regarding gate-naming
cor[venttons.

a

XC2000 Library Exceptions for Use with FutureNet
The XC2000 Family CLB and Iob Primitive

CLB Primitive

You can enter portions of a design's logic directly in terms of CLBs instead of entering the
logic schematicany. A CLB primitive allows you to directly specify CLB configurations. This
pemiits precise control of logic partitioning. In addition. when using FutureNet you can only
specify a CLB 's FGM base configuration in a CLB primitive. The FGM BASE configuration
is the same as the FG -two functions of up to three variables, but the two function ouputs
are multiplexed together and controlled by the 8 input.

Figure 1 contaius the symbols for a blank CLB primitive, a configured CLB prinitive, and the
equivalent circuit. You must specify the BASE, CONFIG, EQUATE F, and EQUATE G
commands for the CLB. These text strings in the symbol (attribute 82) are passed through
PIN2XNF, XNFMAP, and MAP2LCA to XACT as configuration for the CLB. These
commands are described in further detail later in this section.
Comman d Description

BASE Sets the CLB.s base configuration (F, FG, or FGM).
CONFIG Specifies the CLB 's internal interconnections.
EQUATE F= Configures a CLB 's logic F function.
EQUATE G= Con figures a cLB's logic G function.
The CIJB symbol has A, 8, C, D, K, X, and Y pins that coneapond to the CLB 's pins. Signals
cormected to these pins in the schematic are connected to the conesponding CLB in the LCA design.

Note: The conf iguration commands must be consistent with the connections. For example. if you use
the A input in an equation, then connect a signal to the A pin.

The CLB symbol contains a blank template for each of the required configuration text strings.
Edit the strings to include the desired configuration commands using the -Esc key editing
mode in FutureNet.

You must ensure that the configuration commands are correct. Neither PIN2XNF, XNFMAP,
nor MAP2LCA checks them; they pass them to XACT. When XNFMAP reads the design file,
it issues error messages if these commands contain errors. Also use the DRC command in
XACT to detect errors in the CLB configuration.

You can specify (in the symbol) the location in which to place the CLB or Iob using an
alphanumeric string with attribute 80: for example, the -AA string in Figure 1. The string must
be a valid CLB name (for example, AA, AB and AC). If you do not specify a location, an
arbitrary lcx}ation is assigned. Then use APR or XACT to assign a suitable location.

Desigr.ingforxilit.xl£AswithFutureNeL 9

Entering an IJ=A Design Using FulureNel

F±gnre \ XC2000 CIJ3 Primillve and Example

CLB

CONFIG
EQUATE F
EQUATE G
BASE FG

X: .Y CLK: SET: RES:

Blank 2000 CLB Primitive

CLB

2000 CLB Primitive Example

Ssii!iss-i"Ji!

81
A 8

2 AND 0 t F

CK :..`.-......,,.

10

D

PDFF
QX

C

Y

lNV

`-EEEE`-``.I-'`,i: F3D

2 OG
AND

D

EQUIVALENT CIRCUIT

Above is a symbol for a blank XC2000 CLB primitive, a configured CLB primitive, and the
equivalent circuit. You must specify the BASE, CONHG, EQUATE F, and EQUAIE G
commands for the CLB. CLB primitives allow you to directly specify CLB configurations.
This permits precise control of logic partitioning.

lob Primitives
Figure 2 contains the symbols for a blank Ioo primitive. a con figured Ioo primitive, and the
equivalent circuit. You must specify the CONFIG and BASE commands for the Iob. These
alpha strings in the symbol (attribute 82) are passed through PIN2XNF, XNFMAP. and
MAP2LCA to XACT as configuration for the 108. These commands are described in further
detail later in this section.

Command Description

BASE
CONFIG

Sets the CLB 's base configuration (I/0).
Specifies the CLB 's internal interconnections.

a Designing f tor Xilinx ljcAs with FulureNet

u

J

EnJering an ljcA Design Using FulureNet

The CLB and Ioo symbol contains a blank template for each of the required configuration
text strings. Edit the strings to include the desired configuration commands using the Esc key
editing mode in FutureNet.

You must ensure that the configuration commands are correct. Neither PIN2XNF, XNFMAP,
nor MAP2LCA checks them; they pass configuration commands on to XACT. When XACT
reads the design file, it issues error messages if these commands contain errors. Use the DRC
command in XACT to detect errors in the block configuration.

You can specify the location (in the symbol) in which to place the Ioo by using an
alphanumeric string with attribute 80. The string must have a valid Iob pin (for example, P12
or A13). Refer to the datasheet pin assignments for the valid Ioo pin names.

For a package type other than PGA, add a P in front of the pin number. For PGAs the pin
name is as listed in the datasheet (for example, J 11). To use an unbonded loo, you must run
editlca in XACT to find the unbonded pad name (for example, U74).

Note: loB prinllives allow you lo direclly specify loB cor[f iguratious.

F±guLle 2, lob Primitive and Example

log

CONFIG I: BUF:
BASE FGa Blank 2000 lop Primitive

lob

CONFIG I:a BUF:TPll
BASE FG

2000 108 Primitive Example

EQuivALENT CmculT

Designing for Xilinx IJ=As with F utureNet "

Entering an IJ=A Design Using FulureNel

CLB and lob Primitive Commands
BASE [F/FG/FGM/IO]

This command sets the base configuration.

Command Description

I/0
F
FG
FGM

For IOBs only.
One function of up to four variables.
Ttwo functions up to three variables each.
Same as FG, but the two function outputs are multiplexed together
and controlled by the 8 input.

See Figure 3 for an illustration of these XC2000 Family CLB and Ioo base configurations.

Note: BASEF,FGandFGM areforcnes; BASEIo isf orloBs.

F±gHre 3 XC2000 Family CIR and lob CLB Primilives BASE Configuralious

nEn
CLB:BASE F

CLB:BASE FGM

CLB:BASE FG

I:
lob: BASE 10

2 Designir.g for X ilirlJc I,CAs with FulureNet

u

u

Entering an LCA Design Using FulureNel

CONFIG tag: setting
This command specifies logic element inputs and the storage element function. For XC2000
Family Designs the config tags and settings are as follows:

TAG

X:

Y:

Q:

SET:

RES:

CLK:

BASE F BASE FG BASE FGM

FQ FGQ MQ

FQ FGQ MQ

FF LATCH FF LATCH FF LATCH

AF AF AM

DF DG DM

KCFNOT KCGNOT KCMNOT

Note: For BASE FGM,M=F if B--I andM--G if B~-0.

TAG BASE I

a

n

I: PAD Q

BUF: ON TRI
EQUATE (Block) : Configure a CLB's Logic Function(s)

[EQUATE] tag = Boolean expression
The symbols you can use in the Boolean expression are as follows.

Symbol Boolean Equivalent

XC2000 CLBMAP Primitive

Use CLBMAP primitives to control the partitioning of logic into a CLB. Though a CLBMAP
is not logic, you use it to change the mapping of logic. To use a CLBMAP primitive, first
define a logic group on the schematic that fits into one CLB. Determine the input and output
signals for this logic group and assign them to the appropriate pins on the CLBMAP as shown
in Figure 4. You may leave some pins unconnected; however, you must specify all signals
associated with the logic group on the CLBMAP.

The PUC text string (attribute 84) inside the CLBMAP primitive stands for fins Unlocked
and Closed. This means that CLBMAP pins can be swapped with other pins (unlocked), but
no more additional logic can be added to the CLB (closed). PLC (Pins Locked and Closed) is
the other option; this means that the CLBMAP pins are locked onto the specified CLB pins.
You can use the P (Pinlack APR Constraint Flag) in conjunction with the PUC attribute to
lock only the pins which have pinlock flags attached to them.

Desigiing for xilinx l£As with FutureNel 3

Entering an I£A Des.Ign U s.Ing F ulureNel

Figure 4 CIBMAP Primitive and Exanple

lpAD
I A0lN I

I B0IN I

'BUF

lpAD , At|N |Fio 81
pxx I, i

ei

SUM1 1

OBUF OPAD

OBUF

OBUF

OPAD

OPAD

2000 CLBMAP Primitive

Note: CLBMAP primilives are used to corltrol the partitioning of logic into acIJ3.

XC3000 Library Exceptions for Use with FutureNet
The XC3000 Family CLB and Iop Primitive

You can enter portions of a design's logic directly in terms of CLBs and IOBs instead of
entering the logic schematically. CLB and loo primitives allow you to directly specify CLB
or Iob configurations. This permits precise control of logic partitioning. In addition, you can
specify (in FutureNet only) the FGM configuration via the CLB primitive. The FGM BASE
configuration is similar to the FG configuration: two functions of up to four variables, but the
two function outputs are multiplexed together and controlled by the E input.

4 Designing ior X ilirlx ljcAs with FutureNet

u

u

u

Entering an LCA Design Using FulureNel

CLB Primitive
Figure 5 contains the symbols for a blank CLB primitive, a con figured CLB primitive, and the
equivalent circuit. You must specify the BASE, CONFIG, EQUATE F, and EQUATE G
commands for the CLB. These alphanumeric strings in the symbol (attribute 82) are passed
through PIN2XNF, XNFMAP, and MAP2LCA to XACT as configuration for the CLB. These
commands are described in further detail later in this section.

Command Description

BASE Sets the cLB's base configuration (F, FG, or FGM).
CONFIG Specifies the CLB 's internal interconnections.
EQUATE F= Con figures a CLB 's logic F function.
EQUATE G= Con figures a CLB 's logic G function.
The CLB symbol has A, 8, C, D, E, DI, EC, K, RD, X. and Y pins, which correspond to the
pins of the CLB; signals connected to these pins in the schematic are cormected to the
corresponding CLB in the LCA design.

Note: The conf iguration comunnds must be consistent with the connections. For exa:mple. if you use
the A input in an equnlion. then a signal should be connected to the A pin.

You can specify (in the symbol) the LCA location of the CLB using a text string with attribute
80 (for example, the -AA string in Figure 1-5). The string must be a valid CLB name (for
example, AA, AB or AC). If you do not specify a location, an arbitrary location is assigned.
Then use APR or the XACT Design Editor to assign a suitable location.

r' Note: CLB primilives allow you lo direc,lly specif y cIJ3 conf iguralious.This permits precise control

Of logic partitioning.

lob Primitives
Figure 6 contains the symbol for a blank loo primitive, a configured lob primitive, and the
equivalent circuit. You must specify the CONFIG and BASE commands for the loo. These
alphanumeric strings in the symbol (attribute 82) are passed through PIN2XNF, XNFMAP,
and MAP2LCA to the LCA file as configuration for the loo. These commands are described
in further detail later in this section.

Command Description

BASE
CONFIG

Sets the CLB 's base configuration (I/0).
Specifies the CLB 's internal interconnections.

The CLB and log symbols contain a blank template for each of the required configuration
text strings. Edit the strings to include the desired configuration commands using the Esc key
editing mode in FulureNet.

You must ensure that the configuration commands are correct. Neither PIN2XNF, XNFMAP,
nor MAP2LCA checks them; they pass them to the LCA file. When editlca within XACT
reads the design file, it issues error messages if these commands contain errors. Use the DRC
command in XACT to detect errors in the CLB configuration.

Desigring for Xilinx I£As wilh FuiureNei '5

Enlering an IJ=A Design Using FulureNel

Figure S XC3000 CIB Primitive and Example
CLB

CONFIG X Y: DX: DY: CDK: DSTDPl: ENCLK:
EQUATE F
EQUATE G
BASE FG

Blank 3000 CBL Primitive

CLB

CONFIG X:QX Y:QY DX:F DY:G CDK:K ENCLK:EC
EQUATE F = A . a . E . QY
EQUATE G = QX . A . E . QY
BASE FG

3000 CBL Primitive Example

iA"I
EC

ffiB §2
E ¥ 3 I AND

FDC a_X
C

D

4

Y

CE

I

I

ANDO 0
FDC Q

C
4

:-,

•\,,.,``

CE

You can specify (in the symbol) the IOB's location using a text string with attribute 80. The
string must have a valid loo pin (for example, P12 or A13). Refer to the datasheet pin
assignments for the valid loo pin names.

Note.. For package types other than PGA. add a p to lhef ront oflhe pin number. For pGAs the pin
name is as listed in the datasheel. To use an unbonded lob , use the unbonded pad name used
by XACT (such as U74).

Note: JOB primilives allow you lo directly specify loB conf ilguralione.

J6 Desigring for x ilinx l£As with F UJureNel

u

u

Entering an LCA Design Using FutureNet

Fig"e 6 XC3000108 Prinitive and Exaaple

log

CONFIG IN: OUT: TF}l:
BASE 10

Blank 3000 108 Primitive
log

CONFIG IN:lQ:LATCH:1 OUT:OQ TBI:T
BASE 10

3000 108 Primitive Example

a

EQUIVALENT CIBCUIT

CLB and Iop Primitive Commands
BA:SE [F IFGIFGMIIO]
BAS E [F/FerFGwlo]

This command sets the base configuration.
Command Description

I/0
F
FG
FGM

For IOBs only.
One function of up to five variables.
TWo functions up to four variables each.
Same as FG, but the two function outputs are multiplexed together
and controlled by the 8 input.

See Figure 7 for an illustration of these XC3000 Family CLB and Iob base configurations.

Note: BASE F, FG andFGM arefior cIBs; BASE Io is for loBs.

Desigringforx}linxl£AswithFutureNet 7

Emering an ljcA Design Using FulureNel

Figure 7 XC3000 Fconily CLB and lob Primitive BASE Configuralioas

CLB:BASE F

CLB:BASE FGM

CLB:BASE FG

EL+

lob: BASE 10

CONFIG tag: setting
CONFIG tag :setti ng

This command specifies logic element inputs and the storage element function. For XC3000
Family Designs the config tags and settings are as follows:

TAG BASE F BASE FG BASE FGM

X:

Y:

DX:

DY:

CLK:

FQX

FQY

DIF

DIF

KNOT

RSTDIR : RO
ENCLK: EC

FQX

GQY

DIFG

DIFG

KNOT
RO

EC

MQX

MQY

DIM

DIM
KNOT
RO
EC

8 Designing for Xilinx I£As with FutureNel

u

u

u

Enlering an LCA Design Using FutureNel

TAG BASE I

I IQ IKNOT FF LATCH PULLUP
0 OQ NOT OKNOT FAST
TNOT

Note: ForBASE FGM,M~-F if E=OandM=Gif E--I.

TAG BASE I

I:

BUF:
PADQ
ON TRI

EQUA:TE (Block) : Conf igure a CLB's Logic Function(s)
[EQUATE] tag = Boolean expression
The symbols you can use in the Boolean expression are as follows.

Symbol Boolean Equivalent

XC3000 CLBMAP Primitive
Use CLBMAP primitives to control the partitioning of logic into a CLB. Though the
CLBMAP is not logic, you can use it to change the mapping of logic. To use a CLBMAP
primitive, first define a logic group on the schematic that fits into one CLB. Determine the
input and output signals for this logic group and assign them to the appropriate pins on the
CLBMAP as shown in Figure 8. You can leave some pins unconnected; however, you must
specify (on the CLBMAP) all signals associated with the logic group.

The PUC text string (attribute 84) inside the CLBMAP primitive stands for Pins Unlocked
and Closed; this means that the CLBMAP pins can be swapped with other pins (unlocked) and
no more additional logic can be added to the CLB (closed). The other option is PLC (Pins
Lcx:ked and Closed), meaning that the CLBMAP pins are lcx}ked onto the specified CLB pins.
You can use the P (Pinlack APR Constraint Flag) in conjunction with the PUC attribute to
lock only the pins that have an attached pinlock flag.

Note: Use CLBMAP prim.iitves lo control the parlilioning of logic into a CLB.

Desigiing for xilwi lJ=As with FulureNel

a
9

Enler.lng an I£A Design Using FutureNet

Figure 8 CIJ3MAP Primitive and Exanple

30co CLBMAP Primitive

XC4000 Library Exceptions for Use with FutureNet
Representing Power and Ground Signals

VCC Logical High
The VCC symbol flag is used to tie a net to a logical HIGH state. Load the VCC flag (symbol
name: VCC) and attach it to the desired net, using a junction dot if a T comection is formed.
The actual VCC symbol appears as +5 on the schematic. A net tied to VCC cannot have any
other source.

When the PPR program encounters a net tied to the VCC flag, it removes any logic that is
disabled by the VCC signal. Note that a VCC signal will only be physically implemented in
the LCA if the logic it sources is not removed by PPR.

Altematively, a net may be tied to VCC by giving it the name VCC, using a standard SIC (5)
attribute. Any net with the name VCC will be treated exactly as a net tied to a VCC flag.

20 Desigr.irlgforxilinxljcAswithFulureNet

u

u

Entering an ljcA Design U sing FutureNel

GND Ground
TTre GND symbol flag is used to tie a net to a logical LOW state. Load the GND flag (symbol
name: CND) and attach it to the desired net, using a junction dot if a T connection is formed.
A net tied to GND cannot have any other source.

When the PPR prograln encounters a net tied to the CND flag, it removes any logic that is
disabled by the ground signal. Note that a GND signal will only be physically implemented in
the LCA if the logic it sources is not removed by PPR.

Altematively, a net may be tied to ground by giving it the name GND, using a standard SIG
(5) attribute. Any net with the name CND will be treated exactly as a net tied to a GND flag.

•1

Representing IOBs

J2AD External LCA pad
The PAD primitive represents one of the extemal pads on the LCA that are electrically
connected to the metal leads on the device package. Use this primitive to indicate a
connection to an external pin. The PAD primitive must be connected to either an I/0 buffer
(such as IBUF or OBUF) or an I/0 storage element (such as INLAT or OUTFF). The PAD has
no directionality and should be used for LCA input signals, output signals, or bidirectional
signals.

To assign a PAD primitive to a specific package pin, attach a label with attribute 80 to the pad
symbol. As loaded from the Xilinx library, the PAD symbol has an attribute 80 label reading
Pxx, that can be edited to represent an actual package pin, such as P17 or P6. For a PGA
package, use the actual pin designation without the leading P character, for example A5 or
Flo. If the attribute 80 label is left as Pxx, the PPR program will choose an optimal package
pin for that pad.

Note: I+ocking pin locations restricts the chility of PPR to ef f iciently route your design. XilirLx
recommends that you allow the PPR progran to choose all pin locations.

By default, every Iog configured as an output or bidirectional signal uses the slew-rate
limited mode of the output buffer, which reduces noise generation and ground bounce. To
switch an output buffer to the fast mode. attach an attribute 83 label reading FAST to the
appropriate PAD symbol. The point of effect for this label should be inside the PAD symbol.
The default condition is SLOW.

In keeping with the conventions of the XC2000 and XC3000 Xilinx libraries, the PAD symbol
can also be loaded using the names IPAD and BPAD. The name OPAD loads a reflected
version of the PAD primitive. Each of these names represent the same PAD primitive, which
is stored under various names for convenience.

Z2AZ)U Unbonded pad
For packages where the LCA has more I0Bs than can be bonded to external pins, the logic
resources within each of the unbonded IOBs can still be used. This is done by using the
PADU symbol to indicate an unbonded pad.

DesigringforXitinxI£AswithFutureNel 2,

Entering an I£A Design Using FulurINet

Since unbonded pads do not correspond to an external package pin, there is usually no need to
assign them a specific lob location. However. if you wish to do so, attach a label with
attribute 80 to the PADU symbol. As loaded from the Xilinx library, the PADU symbol has an
attribute 801abel reading Uxx that can be edited to represent an unbonded Ioo location, such
as U65. Use the XACT Design Editor to detemine the appropriate Ioo name. If the attribute
80 label is left as Uxx, the PPR program will choose an optimal unbonded Iob lceation.

Note: I+ocking loB locations restricts the ability of PPR to ef f iciently route your design. Xili"x
recommends that you allow the PPR program to choose all lob locations.

In keeping with the conventions of the XC2000 and XC3000 Xilinx libraries, the PADU
symbol can also be loaded using the name UPAD. Both names represent the same PADU
primitive, which is stored under two names for convenience.

JIVFF Input Flip-Flop
The INFF symbol represents both an IBUF and a D-type, positive-edge triggered input
flip-flop within a single Ioo. The INFF symbol has both registered and direct outputs,
representing the output of the flip-flop (Q) and the output of the IBUF (0). The D input of the
INFF must be connected to a PAD or PADU symbol.

By default, the INFF is reset on powerup and when the global set/reset signal is asserted. To
configure INFF to be set on powerup or on assertion of the global set/reset signal, attach an
attribute 83 label reading INIT=S to the INFF symtx>1. The point of effect for this label should
be inside the INFF symbol. The default condition is INIT=R.

By default, the input signal from the external pad passes through a delay buffer before
reaching the D-input of INFF. This delay increases the setup tine required for the INFF, but
eliminates any hold time requirement. Removing the delay reduces setup time but increases
hold time. To remove this delay buffer, attach an attribute 831abel reading NODELAY to the
INFF symbol. The point of effect for this label should be inside the INFF symbol. The default
condition is DELAY.

JIVIAr Input Latch
The INLAT symbol represents both an IBUF and a high-level transparent input latch within a
single 108. The INLAT symbol has both latched and direct ouputs, representing the output of
the latch (Q) and the output of the IBUF (0). The D input of the INLAT must be connected to
a PAD or PADU symbol.

By default, the INLAT is reset on powerup and when the global sevreset signal is asserted. To
configure INLAT to be set on powerup or on assertion of the global sevreset signal, attach an
attribute 83 label reading INIT=S to the INLAT symbol. The point of effect for this label
should be inside the INLAT symbol. The default condition is INIT=R.

By default, the input signal from the external pad passes through a delay buffer before
reaching the D-input of INLAT. This delay increases the setup time required for the INLAT,
but eliminates any hold time requirement. Removing the delay reduces setup time but
increases hold time. To remove this delay buffer, attach an attribute 83 label reading
NODELAY to the INLAT symbol. The point of effect for this label should be inside the
INLAT symbol. The default condition is DELAY.

22 Designing fior Xilinx I;CAs with FulureNet

u

Enlering an LCA Design Using FulureNet

®

JIVREG Input Latch and Flip-Flop
The INREG symbol represents both a D-type, positive-edge triggered input flip-flop and a
low-level transparent input latch, contained in a single Iop. The output of the latch appears at
the QM pin and the output of the flip-flop appears at Q. The D input of the INLAT must be
connected to a PAD or PADU symbol.

By default, the INREG is reset on powerup and when the global set/reset signal is asserted. To
configure INREG to be set on powerup or on assertion of the global set/reset signal, attach an
attribute 831abel reading INIT=S to the INREG symbol. The point of effect for this label
should be inside the INREG symbol. The default condition is INIT=R.

By default. the input signal from the external pad passes through a delay buffer before
reaching the D-input of INREG. This delay increases the setup time required for the INREG,
but elininates any hold time requirement. Removing the delay reduces setup time but
increases hold time. To remove this delay buffer, attach an attribute 83 label reading
NODELAY to the INREG symbol. The point of effect for this label should be inside the
INREG symbol. The default condition is DELAY.

OLrrFF Output Flip-Flop
The OUITF symbol represents a D-type, positive edge-triggered output flip-flop in an Ioo.
TThe Q output of OUTFF dues not require a separate OBUF symbol, and must be connected
directly to a PAD or PADU symbol.

By default, the OUTFF is reset on powerup and when the global set/reset signal is asserted.
To configure OUTFF to be set on powerup or on assertion of the global sevreset signal, attach
an attribute 83 label reading INIT=S to the OUTFF symbol. The point of effect for this label
should be inside the OUTFF symbol. The default condition is INIT=R.

OUrFFr Output Flip-Flop with Three-State Output Buffer
The OUTFFT symbol represents both a D-type, positive-edge triggered output flip-flop and a
three-state output buffer, within a single Ioo. The 0 output of OUTFFT dues not require a
separate OBUF symbol, and must be connected directly to a PAD or PADU symbol. The T pin
that controls the Iob three-state buffer uses the same polarity as the TBUF symbol enable
LOW and three-state HIGH. This polarity can be reversed inside the Iob by placing an
inverter in front of the T pin.

By default, the OUTFFT is reset on powerup and when the global sevreset signal is asserted.
To configure OUTFFr to be set on powerup or on assertion of the global sevreset signal,
attach an attribute 83 label reading INIT=S to the OUTFFr symbol. The point of effect for
this label should be inside the OUTFFr symbol. The default condition is INIT=R.

Using Constraint FTags
A constraint flag is used to identify the timing requirements of the attached net. Every net
carries a routing priority or -net weight from 0 to 100. If no specific net weight is assigned
using a constraint flag, for example, the default weight of I (one) is assumed.

Designin8forXiltrlxI£AswithFuturINct 2j

Erllering an LCA Design Using F ulurINel

IV

SC

WCritical

The C flag is used to identify a net as critical. A C flag assigns a weight of loo to the attached
net, which gives it the highest routing priority. Load the C flag (symbol name: C) and attach it
to the desired net, using a junction dot at the T connection.

Non-Critical
The N flag is used to identify a net as noncritical. An N flag assigns a weight of 0 to the
attached net, which gives it the lowest routing priority. Load the N flag (symbol name: N) and
attach it to the desired net, using a junction dot at the T connection.

Skew-Critical
The SC flag is used to identify nets that are skew-critical. A net that is skew-critical is routed
by PPR to minimize differences between load delays. Load the SC flag (symbol name: SC)
and attach it to the desired net, using a junction dot at the T cormection. The unspecified field
in the SC=xx label has no significance and need not be altered.

Weight (Relative Routing Priority)
The W flag is used to assign a relative routing priority to a net. Load the W flag (symbol
name: W) and attach it to the desired net, using a junction dot at the T connection. The W=xx
label (attribute 3) must be edited to specify an integer net weight from 1 to 99. For example,
editing the label to read W=34 will assign the attached net a weight of 34.

External
The X flag is used to identify a net as external. An external net is one that exists at a CLB
output, and will not be absorbed into a CLB. For example, an external net between a logic
gate and a flip-flop will force PPR to place the combinatorial logic and the flip-flop in
different CLBs. This may make the partitioning of the design less efficient, but will guarantee
that the external net exists at a CLB output. Load the X flag (symbol name: X) and attach il to
the desired net, using a junction dot at the T connection.

Controlling Block Placement -LOC= and LOC<> Constraints

The following statements are used to specify locations (or prohibit locations) for the
associated logic.

LOC=[blocks] Place the associated logic within the area defined by [blocks].

LOC<>[blocks] Do not place the associated logic within the area defined by [blocks].

The examples below demonstrate how the [blocks] parameter is used to specify lcx;ations.

CLB Placement Examples -Primitives and Soft Macros
Soft macros and flip-flops can be assigned to a single CLB location, a list of CLB locations,
or a rectangular block of CLB locations. The exact function generator or flip-flop within a
CLB can also be specified. CLB locations are identified as CLB_RC. The upper left CLB is
CLB RIC1.

The following examples illustrate the format of CLB constraints. To atrach a LOG constraint
to a logic element, create an attribute 83 label with the desired LOC= or LOC<> statement.
The point of effect for this label must be on the target symbol. If the target symbol represents
a soft macro, the LOG constraint is applied to all flip-flops contained in that macro. If the
indicated logic does not fit into the specified block(s). the constraint is ignored.

24 Designing f or Xil.Inx I,CAs with FulureNel

u

Eritering an LCA Design Using FulureNet

I

a

I;OC--CLB RICI
Place logic in CLB_R 1 C 1.

IJ)C<>CLB_RICI
Do not place logic in CLB_RI C1.

Ijoc-acLBR*ci
Place logic within the first column of CLBs. The asterisk (*) is a wildcard character.
Iflc~_CLB_Rlci;LOc-acLB_Ric2;LOc-_CLB_Ric3
Place logic in CLB_RI C1, CLB_RIC2, and/or CLB_RI C3. There is no significance to the
order of the LOC= statements.

Ijoc--CLB_RIC1;CLB_RBC5
Place logic within the rectangular block defined by CLB_RIcl in the upper left comer and
CLB_RBC5 in the lower right comer.
IDC--CLB_R2C2.FFX
Place logic in the X flip-flop of CLB_R2C2. For the Y flip-flop, use the tag FFY.

Note: Any constraint of the f arm I.OC--[blocks] can be replaced by an attribute 80 label that omits
the LOC--pref ix. For example , an attribute 80 label reading CIJ3 _RI Cl is equivalent to an
attribute 83 label reading I:OC--CIB _RIcl . A LOC<> stalemenl or a statement that includes
multiple LOC--paramet-ers (separate-d by semicolons) cannot be replaced by an attribute 80
label.

lob Placement Examples
I/0 pads, buffers, and registers can be assigned to an individual Iog location, or to a specified
die edge or half-edge.log locations are identified by the corresponding package pin
designation.

The following examples illustrate the format of log constraints. To attach a LOG constraint
to a I/0 element, create an attribute 83 label with the desired LOC= or LOC<> statement. The
point of effect for this label must be on the target symbol. If the target symbol represents a
soft macro containing only I/0 elements for example, INFF8 the LOC constraint is applied to
all I/0 elements contained in that macro. If the indicated I/0 elements do not fit into the
specified location(s), the constraint is ignored.
IOC-_P13
Place I/0 element in location P13. For PGA packages, the lettemumber designation is used,
for example 83.
LOC-_I
Place I/0 element(s) in IOBs along the top edge of the die. For the other three die edges, use
8 (bottom), L (left), or R (right).
IJ)C-_I;I
Place I/0 element(s) in IOBs along the top half of the left edge of the die. The first letter in
this code represents the die edge, and the second letter represents the desired half of that edge.
Other legal half-edge values are LB, RT, RB, TL, TR, BL and BR.
IJOC<>L
Do not place I/0 element(s) on the left edge of the die.

Designing for Xilinx IJ=As with F ulureNei

Emering an l£A Desigr. Using FulureNel

TBUF Placement Examples
Internal three-state buffers (TBUFs) can be assigned to an individual TBUF location, a list of
TBUF locations, or a rectangular block of TBUF locations. TBUF locations are identified by
the adjacent CLB. Thus TBUF_R 1 C 1.1 is just above CLB_RI C 1, and TBUF_R I C 1.2 is just
below.

The following examples illustrate the format of TBUF constraints. To attach a LOC constraint
to a TBUF, create an attribute 83 label with the desired LOC= or LOC<> statement. The point
of effect for this label must be on the target TBUF.
Ijoc--TBUF RIC1.1
Place TBUF in TBUF RI C1.1.

I;oc=rBUF R*Ci
Place TBUFs any location in the first column of TBUFs. The asterisk (*) is a wildcard
character.
LOC--TBUF_RIC1;TBUF_R2C8
Place TBUFs within the rectangular block defined by TBUF_RI C I in the upper left comer
and TBUF_R2C8 in the lower right corner.

IJ}C<>TBUF RIC*
Do not place TBUF in any location in the first row of TBUFs.

Decode Logic Placement Examples
Decode logic can be assigned to individual decoder locations, or to a specified die edge or
half-edge. All elements of a single decode function must lie along the same edge. Edge
decoders are identified as DEC_RC. The left edge is column zero and the top edge is row
zero. Thus the three decoders at the top of the left edge are DEC_R] CO. I , DEC_RICO.2 and
DEC_RI CO.3. Each of these decoders is capable of implementing a single-input wired-AND
function.

The following examples illustrate the format of decode constraints. To attach a LOC
constraint to a decode logic symbol, create an attribute 83 label with the desired LOC= or
LOC<> statement. The point of effect for this label must be on the target symbol. If the target
symbol represents a soft macro containing only decode logic (for example, DECODE8), the
LOC constraint is applied to all decode logic contained in that macro. If the indicated decode
logic does not fit into the specified decoder(s), the constraint is ignored.

I.OC-_L
Place decoder logic along the left edge of the die. For the other lhree edges, use T (top), 8
(bottom), or R (right).

Global Buffer Placement Examples
Global buffers (BUFGP and BUFGS) can be assigned to one of the four comers of the die.
The following example illustrates the format of global buffer constraints. To attach a LOC
constraint to a BUFGP or BUFGS symbol, create an attribute 83 label with the desired LOC=
or LOC<> statement. The point of effect for this label must be on the target global buffer
symbol.

IJOC-_TL
Place global buffer in the top left comer of the die. For the other three corners, use TR (top
right), BL (bottom left), and BR (bottom right).

26 Desigrting for x ilinx I,CAs with FulureNel

`J

Erfuering an LCA Design Using FulureNel

fl

a

BIJKNM--Assignments
The BLKNM= parameter is used to assign LCA block names to CLB and log primitives, and
to basic logic elements (such as gates or flip-flops).

To assign an LCA block name to a CLB or Iog primitives, attach an attribute 83 label reading
BLKNM=<name> to the primitive symbol. The point of effect for this label must be inside the
CLB or Iog symbol. The block name must obey LCA naming conventions.

To assign an LCA block name to logic gates or flip-flops, attach an attribute 83 label reading
BLKNM=<name> to the desired symbol. The point of effect for this label must be inside the
symbol. The block name must obey LCA naming conventions. If multiple symbols carry the
same BLKNM= parameter, the PPR program attempts to partition these logic elements into
the same block.

Using XC4000-specific Features
PULLUP
There are two uses of the PULLUP symbol. One use is to activate the internal log pullup
resistor. For more information on Iog pullups and pulldowns, see the Macro Libraries entries
on PULLUP and PULLDOWN.

The other use of the PULLUP symbol involves the three-state buffers, the wired-AND
symbols and the decode logic. Every TBUF, WAND and DECODE symbol has an open-drain
output that has only two possible states: logical LOW and three-state. In order for these
outputs to create a logical HIGH, one or two pullup resistors must be attached to the output
net.

To indicate a single pullup, connect the PULLUP symbol to the output net. To indicate a
double pullup, connect the PULLUP symbol to the output net, and attach an attribute 83 label
reading DOUBLE to this symbol. The point of effect for this label must be inside the
PULLUP symbol. Note that two pullups will result in a faster rise time but slightly increased

power dissipation, as compared to single pullup.
RAM16Xl and RAM32XI
The RAM16Xl symbol represents a 16-word by 1 -bit static RAM. It has one data input (D), 4
address inputs (A0 through A3), and one data output (0). If the wri[eenable (WE) is LOW, the
contents of the memory al the specified address appears at the data output. If write-enable
(WE) is HIGH, the darn on the D input is loaded into the specified address. When
write-enable (WE) is HIGH, the data on the D input also appears at the data output.

The RAM32Xl symbol represents a 32-word by 1-bit version of the static RAM described
above.

If desired, the contents of RAM16X 1 or RAM32X 1 can be assigned an initial value that is
loaded into the RAM on configuration. To assign an initial value to one of these RAM
symbols, attach an attribute 83 label reading INIT=<value> to the symbol. The point of effect
for this label must be inside the RAM symbol. The <value> should consist of 4 (16xl RAM)
or 8 (32xl RAM) hexadecimal digits, which are written into the RAM from the highest
address (A<3:0>=1111) lo the lowest address (A<3:0>=0000). For example, if a RAM16XI
carries the label INIT=10A7. the data is written as shown here.

Designing for xilinx l£As with F ulureNel

Entering a]i. I£A Design Using Futural]eL

0001 0000 1010 0111

11

MSB of RAM LSB of RAM

If no INIT= parameter is specified, the RAM is initialized with zeros on configuration.

ROM16Xl and ROM32XI
The ROM16Xl symbol represents a 16-word by 1-bit ROM, having 4 address inputs (A0
through A3) and one data output (0). The ROM32Xl symbol represents a 32-word by 1-bit
ROM, having 5 address inputs (A0 through A4) and one data output (0).

The contents of ROM16Xl or ROM32Xl are loaded into the ROM at configuration. To define
the contents of a ROM, attach an attribute 83 label reading INIT=<value> to the symbol. The
point of effect for this label must be inside the ROM symbol. The <value> should consist of 4
(16xl) or 8 (32xl) hexadecimal digits, which are stored in the ROM from the highest address
(A<3:0>= 1111) to the lowest address (A<3:0>=0000). For example, if a ROM 16Xl carries
the label INIT=983E, the data is written as shown here.

1001 1011 0011 1110

11

MSB of ROM LSB of ROM

WAND1

The WANDl symbol represents a single-input wired-AND gate that uses internal open-drain
three-state buffers to perform a wired-AND function. The WANDl symbol requires that either
one or two intemal pullup resistors be attached to its oulput for a logical HIGH state to be
generated. For more information on attaching pullups, see the description of the PULLUP
symbol in this section.

By default, a wired-AND function is implemented using horizontal longlines. To assign a
wired-AND function to the dedicated decode logic on the edges of the device, attach an
attribute 83 label reading DECODE to the WANDl symbol. The point of effect for this label
must be inside the symbol.

Using XC3000 Drawings for XC4000 Designs
lf you wish to use existing XC3000 design drawn in FutureNet as the basis for a new XC4cOO
design, you should take into consideration the following.

Using XC3000 Symbols on an XC4000 Drawing
In moving from the XC3000 library to the XC4000 version, a few symbols have changed
names, a few infrequently-used soft macros have been removed, and many new parts have
been added to the library. With a few exceptions, the PIN2XNF translation program converts
XC3000 symbols into the equivalent XC4000 versions. Those few soft macros that have been
removed from the library are still supported by PIN2XNF, so that a drawing that uses an
obsolete symbol is processed correctly. The symbols that cannot be converted are listed in the
following section.

28 Designing f or X ilinx IICAs w.uh FulureNet

Enlering an I.CA Design U s..ng FulureNel

A

If you are adding logic to an existing XC3000 design, it is necessary to load the design in
FutureNet with the XC40001ibraries installed, so that the new features of the XC4000 D such
as RAMs and wide decoders can be specifed on the schematic. When an XC3000 design is
loaded into FutureNet with the XC40001ibraries installed, all XC3000 symbols will appear on
the drawing as they have always appeared.

In the XC4000 library, the some symbols were reduced in size to allow you to fit more logic
on a single drawing. As a result, the XC4000 version of a symbol may not fit exactly in the
space left by the XC3000 version. Since the PIN2XNF program correctly translates most
XC3000 symbols, the existing symbols need not be replaced unless a symbol unique to the
XC4000 library is desired.

If an existing XC3000 symbol is mistakenly deleted, it can be recalled from the XC3000
library even though FutureNet has the XC4000 library installed. This is accomplished with the
normal FutureNet commands for loading a symbol (.L and *). These two commands can
optionally specify an uninstalled library to load the symbol from. The format of the complete
command is as follows.

.L symbol_name, library_path

Or

* symbol_I?ame, libraryLpath

Replace symbo/_nczmc with the name of the symbol to load from the XC3000 library. Replace
/I.braryjafA with the complete path name for the XC3000 symbol library, which is called
X3000.SYM and resides in the VIACT directory. As an example, if the XACT software is
instaued on drive C, the symbol OPAD would loaded from the XC3000 library with the
following comm and.

.L 0PAD, C:\XACT\X3000

Note.. lf anxc3000 design is to be implerl'.enled in anxc4000 device wilhoul adding any
XC4000-specific features D for exanple , memory elements D the original XN F file can be
upgraded to an XC4000 device using the XNFUPD program. See the XNFUPD section in the
XC4000 Design lmplernenlalion Roference Guide for more inforrrullion on this process.

Exceptions to The XC3000 Symbol Conversion Process

There are five symbols in the XC3000 library that PIN2XNF cannot convert to an XC4000
device. These are CLB, CLBMAP,log, OSC and GXTL. Since each of these symbols
depends on the architecture of the XC3000 family, they must be removed from the schematic.
The XC40001ibrary contains CLB and Iob primitives specifically for the XC4000 family.
There is no CLBMAP in the XC4000 library, although LOC= constraints can be used to
control partitioning. The XC4000 family dces not have the on-chip crystal oscillator
represented by OSC and GXTL, but the internal configuration oscinator can be accessed
during operation by using the OSC4 symbol.

Designing for Xilii.x I£As with F uJureNel

Eruering an IJ:A Design Using F ujureNel

There are nine symbols in the XC3000 library that combine an I/0 pad with a I/0 buffer or
register. These symbols (D PBUF, PDFF, PIN, PINQ, Plo, PIOQ, POUT, POUIZ and PREG
D) are correctly translated for an XC4000 design, although the symbols do not exist in the
XC40001ibrary. However, since these symbols do not allow you to name the net between the
pad and the buffer. the resulting package pin (and Iob) will not have a meaningful name. The
preferred method is to replace each of these symbols with separate pad and buffer symbols.
The XC4000 library includes many I/0 macros for this purpose.

If you do encounter problems with PIN2XNF when prceessing an XC3000 design for an
XC4000 part, consult the troubleshooting guide in section 1.

Note: The xc3000 TI`L macros D contained in the f ori'ner DS3l I optional TI`L Library f or
FutureNet D are not supported in the XC4000 design implenentalion process and mirst be
replaced. Most of these TI`L macros are replaced by the XC4000 macros carrying the X74
prefix. The XC4000 TI`L macros have been updated to be more consistent . and thus may not
always be identical to the XC3000 versions.

30 Designing for Xilirlx LCAs with F ulureNel

®

u

CreatinganxNFFilefroi'Ir.YourFi4urINetschanatic

r\ Section 2: Creating an XNF File from Your FutureNet Schematic

Contents
XNF Translation 32

Automatic Translation using XMAKE 32

Manual Translation 32

Using the XMAKE ptogran 33

Running XMAKE 33

Accepted File Fomats 34

Input Files 34

Output Files 34

Default XMAKE Operation using FutureNet 35

Processing the Design the First Tine 35

Reprceessing the Design After mnor changes 35

Reprcoessing the Design After Major changes 36

XMAKE Options 36

Combining Multiple-Page Drawings 38

Using the MAK File 38

MAK File Syntax 38

A simple MAK File Example 39

A Complete MAK File Example 40

The DCM program 42

The PINC program 43

The pIN2XNF program 43

Enor Messages and Techniques for Recovery 44

The XNFCVT program 5 1

Overview of XNFCVT 51

The XNFCVT Command 52

XNFCVT program process 53

The AKA File (Version 2 to version 1 Only) 53

XNFCVT Error Messages and Recovery Instructions 54

Designingforxilinxl£AswilhFulurINet i,

Creating an XNF File from Your FulureNeL SchemL]iic

XNF Translation
Every schematic. memory compiler, state machine, Boolean equation, or other design entry
fomat file must be converted to a Xilinx Netlist Format (XNF) file before it can be translated
into an LCA file or a configuration bitstream file (BIT). An XNF file is a text file that
describes each logic gate in a design, its associated pins, and the comections between the
gates. With the XACT Design Manager, you can translate your design either automatically or
manually.
• Automatic Translation - The XMAKE program (found in the Design Manager Translate

menu) automatically translates schematics into an LCA and a BIT file. All of the programs
needed to generate a completed design are run in the proper sequence by XMAKE. The
programs used by XMAKE include the Schematic-to-XNF translators: DCM, PINC, and
PIN2XNF; and the automatic design implementation tools: either PPR (for XC4000
designs) or APR (for XC2000/3000 designs). In addition, the MAKEBITS program
generates a bitstream file if PPR or APR successfully implements an XC4000 design.

• Manual in.anslation -Translating schematics into an LCA file and then a BIT file is a
fairly simple process. The design must first be converted to an XNF file and then
translated into an LCA file. Finally, MAKEBITS must be run to generate a BIT file that
can be downloaded to an LCA device. If you are familiar with the steps involved in
converting your design to an LCA file, you may want to translate the schematics manually.

Automatic Translation Using XMAKE
Automatic translation of design files into XNF files is supported by the XACT Design
Manager's XMAKE program. XMAKE (using the DCM, PING, or PIN2XNF programs, and
the appropriate design implementaLion tools in succession) automatically converts a design
file into an LCA and a BIT file. XMAKE can use schematic files Gi./cnamc.DWG), MAK files |/
Oi/cnamc.MAK), XNF files "!./c#czmc.XNF), or a combination of all three as its input file
format.

Manual Translation
The steps perfomed automatically by XMAKE can be executed manually. These steps
include rurming the DCM, PINC, and PIN2XNF programs in sequence on your design file to
create an XNF file.
• DCM - The Drawing Connectivity Model program is the FutureNet drawing

pre-prceessor that establishes cormection data for a FutureNet drawing. When translating a
design manually, generate a DCM file tt!./c#czmc.DCM) for each drawing file
Or/cnamc.DWG) in the design. Do not run DCM on Xilinx macro files, as they have
already been processed.

• PINC -PINC is the FutureNet pin list generation program that creates a PIN file

Or/c#&mc.PIN) for each input DCM file. The PIN file contains a listing of the pins on all of
the symbols in the drawing and the names of the signals connected to these pins. When
translating a design manually, generate a PIN file for each DCM file you create. As with
DCM. don't run PING on Xilinx macro files.

EE

32 Designing f tor xilira LCAs with F UJureNel

Creating onxNF File from Your FulureNel Schenutie

f!

r\

• PIN2XNF -The PIN2XNF program converts a FutureNet PIN file into an XNF file

Or/c"mc. XNF). After creating PIN files from each drawing file in your design, run
PIN2XNF only on the PIN file corresponding to your top-level drawing file. The
PIN2XNF program determines the hierarchical structure of your design. As a result, any
PIN files representing drawing files beneath the top-level design file, including Xilinx
macros, are also incorporated into the XNF output file.

Note: Once XNF f iles are generated, they may be processed using ADl f or xc2000 andxc3000
designs or using PPR for XC4000 designs.

Note: Design update-In addition to supporting new designsf or xc4000 LCAs. the XACT_
Development System su,pports an upgrade path that allows you to convert existing XC2900 qnd
XC3000 designs . Tl.e XNFUPD progran (XNF U pdate) allows you to upgrade XC2000 and
XC3000 XNF design files to be compatible with XC4000 devices, provided they do not contain
any XC2000 or XC3000 architecture-specific symbols . More irformation on XNFUPD cqn be
found later on in this section and in the Xilim Design lmplenentalion Reference Manual.

Using the XMAKE Program
If you are using XACT Design Manager-supported design entry software. the XACT Design
Manager XMAKE program automatically runs the translation programs needed to convert a
design into an LCA file. Even designs containing both schematic and non-schematic modules,
such as memory modules and Boolean equations, can be automatically translated.

Running XMAKE
You can run XMAKE using the keyboard or mouse to select XMAKE and any options from
the Design Manager Translate menu. Presented here are steps for running XMAKE using each
of these methods.

Using Your Mouse
The prceedure for using the XACT Design Manager menus to run XMAKE is outlined below.

1. Select XMAKE from the Translate menu.

2. Select any desired XMAKE options from the displayed menu.

3. Select DONE when you have selected any desired options.

4. Select the top-level schematic (fap/cvc/.DWG) or MAK file from the displayed menu.

Using the Keyboard
The syntax for the XMAKE program, when run from the keyboard at the XACT Design
Manager command prompt, is illustrated here.

Cnd:XMAKE -[optioJ}s] toplevel.DWG

where fap/cvc/ is a FutureNet drawing file, or

Cnd:XMAKE -[optjof?s] tc)pleveJ.MAK

where fop/cvc/ is a "make" file.

XMAKE automatically runs the appropriate netlist translators to convert the top-level design
into an LCA file. During the process, it scans each XNF file created to see if there are any
subdesigns (schematic or XNF) that also need to be processed, and dces so if required.

Designingforxilinl£Asw.IIhFutureNel

Creating anxNF File from Your FutureNet ScherrialLc

When run on a design file, XMAKE saves the translation commands into a file called
toplevel.MALK.

Accepted File Formats
XMAKE can use two types of input files, and it can produce as many as five types of output
files. These input and output file formats are described in detail in the two following sections.

Input Files When translating a design from FutureNet, XMAKE requires one of two possible file formats
as input. These include the FutureNet DWG file or an XMAKE-generated .MAK file.
fap/cvc/.DWG XMAKE accepts as its input the schematic design files created by

the FutureNet schematic editor.
toplevel.MA\K As XMAKE runs, it uses, and records in the MAK file. the program

options currently saved in the XACT Design Manager profile
(XDM.PRO). If you use a MAK file as an input file, XMAKE uses
the MAK file instead of creating a new one.

Output Files The XMAKE program creates a number of output files. XMAKE produces an LCA design file
and an output file (/ap/cvc/.OUT) containing the output from all programs run by XMAKE.
When using a design file as input lo XMAKE, a MAK file is created.

fop/cvc/.XNF For xc2000 and xc3000 designs only, XMAKE produces a
completely flattened XNF file for the entire design. The file will be
named fap/cvc/.XNF

fap/cvc/.OUT As XMAKE runs various translation programs. it redirects their
output to the file fap/cvc/.OUT. This is an ASCII text file containing
all the screen output from the programs run by XMAKE.

Note: Since the OUT f ile contains all warning or error messages that occur during design processing,
you should always review the OUT file after XMAKE has run lo ensure your design is
error-free.

toplevel.LCA

toplevel.BIT

XMAKE creates an LCA file that is partitioned, placed. and routed
by either the APR (XC2000/3000 designs) or PPR (XC4000 designs)
program, unless it is disabled with the XMAKE -N option.
For all XC4000 designs that PPR successfully routes, or XC2000 or
XC3000 designs that APR successfully routes, XMAKE creates a
bitstream that can be downloaded to an LCA. The configuration
options for the bitstream generator are determined by the options set
in the XACT Design Manager profile (XDM.PRO).

34 Desigwirlg Ior X.Ilirlx ljcAs w.uh F ulureNet

U

u

Creating anxNF F.Ile f tom Your FulurINel Schematic

toplevel.MALK When you run XMAKE on a FutureNet drawing file, XMAKE
creates a text make file (fap/cvc/.MAK) that documents how each
design submodule is processed, including the options used by the
translation programs. The information in the MAK file serves three
purposes.
• It is used as a script for XMAKE when first translating the design.

• It documents the commands used to translate the design into an
LCA file. By examining the MAK file, you can determine exactly
which programs and options XMAKE ran on each design
submodule.

• It can be used as an input file the next time XMAKE is run on the
same design. If you want to change a few program options used
during translation, you can edit the MAK file to specify desired
options and rerun XMAKE with your options instead of the default
options XMAKE used originally.

fi

Default XMAKE Operation Using FutureNet

The following information describes how to use XMAKE in the initial translation process and
to reprocess your design after minor changes have been made.

Processing the Design the First Time
The first time you run XMAKE on your design, specify the design file, !ap/cvc/.DWG.

Run the XMAKE program from the Translate menu and specify the top-level design file. For
example, for a top-level design called MYDESIGN.DWG, do the following:

1. Select XMAKE from the Translate menu.

2. Select DONE to indicate you don't want to change any XMAKE options.

3. Select MYDESIGN.DWG from the menu of designs that XMAKE displays.
To perfom the same steps from the keyboard, enter the following on the Design Manager
command line.

Cnd:XMAKE MYDESIGN.DWG

XMAKE then performs the following operations.

1. Scans the hierarchy of the design.

2. Creates a MAK file that describes which programs and options are to be used to process the
design.

3. Translates the design to an XNF and an LCA file.
The design is then ready for partitioning. placement, and routing with PPR for XC4000
designs or with ADI for XC2000 and XC3000 designs.

Reprocessing the Design After Minor Changes
To reprocess the design after making logic changes, you can run XMAKE using the MAK file
that XMAKE created in step 2 above, provided the changes do not affect the hierarchy of the
design.

For example, if your top-level design is called MYDESIGN.DWG, you would follow these
Steps.

Design}ngforxiLinl£AswithFUJureNet

Creating anxNF Filef romYour FulurdNeL ScheraLic

• Select XMAKE from the Translate menu.

• Select DONE to indicate you don't want to change any XMAKE options.

• Select MYDESIGN.MAK from the menu of designs that XMAKE displays: that is, tell
XMAKE to use the MAK file to decide which programs and options to use to process the
design.

Note: As long as you do not add ar[y new hierarchical blocks to your schematics, you can use the
sane sequence of comrrands to process the design by using the original MAK file as an input to
XMAKE. If you do change the hierarchy Of the design,you must use the modified design file as
the input to XMAKE.

Using an existing MAK file has two benefits.
• Design processing is faster since XMAKE does not have to reprocess the entire design: it

only reprocesses those files that have changed since the design was last processed.
• You can edit the MAK file to contain different program options and reprocess the design

using these.

Reprocessing the Design After Major Changes
If you make significant changes to your design, such as adding additional hierarchical blceks,
you must recreate the MAK file so XMAKE will find the changes to the design structure.

The easiest way to do this is to run XMAKE on the top-level design file again, just as you did
the first time you prceessed the design. XMAKE re-scans the design, recreates the MAK file,
and then processes the new or changed design portions.

XMAKE Options
Other options control how MAK files are created. They also specify options for programs run
automatically by XMAKE. Except for -R, these options are only valid when you specify a
design file. They do not apply if you run XMAKE with a MAK file since the MAK file
already describes which programs and options to use.

-A

-F

-G

-K

Map All (XC2000 and XC3000)

When this option is selected, XMAKE maps the logic in each user-created macro before
merging it into the top-level design. Logic from uurelated macros will not be combined into
the same CLB when invoking XMAKE with this command.

Map -FILE=" (Default) (XC2000 and XC3000)

When the -F option is selected, XMAKE maps the logic in each macro with a -FILE="
parameter before it is merged to the top-level design. You can use this option to prevent
unrelated logic from being combined in the same CLB.

Generate MAK File Without Performing all Design Processing

This option tells XMAKE to create a MAK file without executing the actual commands. This
option is generally used when you want to create a custom MAK file, but want XMAKE to
generate an initial script for you to edit.

Use XC4000 Family Flow (Default)

When -All" is selected as the current family, this option indicates to XMAKE that the XC4000
design flow is to be used. This option should be selected when processing a design for use
with an XC4000 LCA device.

j6 Designing ior x illnx ljcAs with FutureNel

u

Creating anxNF File from Your FulureNel Schernalc

Don't Run PPR (or APR)

This option allows you to disable the automatic invocation of either PPR or APR. The default
is that XMAKE will automatically run PPR to create a routed LCA file.

•0

-R

-T

-V

-X

A

Note: If you do not have the appropriate installation software, either APR or PPR. installed on your
system, XMAKE will discontinue operation after completing its normal process through the
generation of a top-level XNF file. As a result, no LCA file will be created.

Screen Output
This option tells XMAKE to direct all program output to the screen instead of generating
OUT files.

Execute All Commands to Thans]ate the Design

The force re-execution option guarantees that the entire design is reprocessed, even
submodules that you have not changed since the last time you processed the design. Note that
there is a difference between rurming XMAKE with the -R option on a MAK and a schematic
file, as described below.

MAK file input with -R

XMAKE performs every step in the MAK file, regardless of whether the files have been
changed since the design was last processed. If you do not use the -R option, XMAKE only
reprocesses those parts of the design that have been changed.

Schematic file input with -R

XMAKE recreates the MAK file and reprocesses the entire design. If you do not use the -R
option, XMAKE recreates the MAK file, but only reprocesses modules that have been
changed or merged.

Map Top Only
The -T option flattens your design before it is napped int.o CLBs and IOBs. Additionally, the
design is reduced to one XNF file that contains all the logic in user-created macros. This
option allows you to have uurelated logic in the LCA file grouped together in the same CLB.
While this allows efficient use of CLBs, it can make routing difficult, especially with large
designs. Use the -A (Map All) option to ensure that unrelated logic is not mapped in the same
CLB.

Verbose Mode

When using XMAKE in its default configuration, this option is not selected. Selecting this
option causes XMAKE to display more detailed information on its progress.

XNF Only (Interface to Third-Party Schematics)

Designers using design entry tools not directly supported by XMAKE can still use XMAKE
to translate their design into a LCA file by using the -X option.

Each time you reprceess your design you should
• Manually (perhaps using a batch file) translate each design submodule into an XNF file

using the interface program(s) for your design entry program.
• Run XMAKE with the -X option (plus any other desired options).

Desigring for xilinx lJ=As with F UJureNel j7

Creallng anxNF Filef romYour FULureNet Schematic

To compile the design into an LCA file, XMAKE bypasses the netlisl translation (since the
files are already in XNF format) and runs the required design implementation programs,
XNFMAP and MAP2LCA for XC2000 and XC3000 designs or PPR for XC4000 designs. For
XC2000 and XC3000 designs, submodules flagged with a FILE= parameter are napped
separately and merged into the top-level design as required. For XC4000 designs. any
lower-level XNF files are merged into the design before PPR begins partitioning.

Combining Mu]tip]e-Page Drawings

For XMAKE to recognize a module that consists of multiple drawings, each drawing (or
"page") must have the same basefl/c#c}mc, with extensions -.D01, -.D02, instead of the

default DWG extension. For example, if your top-level schematic, fap/cvc/, contains three
pages, name these drawings fap/cvc/.D01, fap/cvc/.D02, and fap/cvc/.D03.

If a lower-level module called MYMAC consists of two pages, the name on the upper-level
symbol, specified with a FILE (8) label, should be MYMAC and the two MYMAC
schematics should be named MYMAC.D01 and MYMAC.D02.

When processing the MYMAC module, XMAKE recognizes from the .D01 and .D02
extensions that MYMAC is a multiple-page schematic. XMAKE then automatically runs
DCM with the following command line.

Cnd:DCM MYMAC.D01 M¥MAC.D02

The resulting DCM file is called MYMAC.DCM and contains the logic from both pages.
XMAKE then treats the MYMAC module exactly like a single-page module.

Using the MAK File

The XMAKE program has three basic functions.
1. It scans a design to determine its structure.

2. It creates a MAK file that describes how the design's submodules need to be processed to
translate the entire design.

3. It runs the programs and options specified in the MAK file.

When you run XMAKE on a design file, for example, a DWG file for FutureNet, it performs
all three functions.

However, you can use the MAK file (created in step 2 above) as input into XMAKE instead
of a design file. If XMAKE is run with a MAK file as its input, XMAKE checks each
submodule described in the MAK file, translating it again if required. Therefore. editing the
MAK file permits you to control which programs and options XMAKE uses to prcx}ess your
design. While this is not usually necessary, it dues give you more control over the design

prcx}ess when needed.

MAK File Syntax

The MAK file contains an entry for each file required to produce an LCA file for the design.
Each entry lists the target file, followed by the dependent files used to create the target file.
The entry also tells which programs and options to use to create the target file from its
dependent files.

Note: Entries al lhe top of tl.e f ile are perf armed last.while entries al the bottom of the f ile are
performed first. W ilhin each entry . II.e programs are executed from lop lo bollom.

38 Designing f or Xilinx ljcAs with FulureNel

RE

CreatinganxNFF[lefromYourFwhirINetschenalc

®

a

A

Each target file entry has the following fomat.

target file: dependent file dependent file . . .
command argument argument . . .
corrmand argument argument . . .

Specific syntax requirements are listed here.
• The target filename must start in the first column of the line.
• Each field (e.g., filename, command name, command line argument) must be separated

from any others by at least one space or tab character.
• Command lines must start with at least one space or tab character.
• Blank lines are ignored.
• Comment lines must start with a # in the first column.

A Simple MAK File Example
The sinple example below is a MAK file that tells XMAKE how to convert the FutureNet
schematic SELECT.DWG into an XC4000 LCA file. When manually performing this
translation, the steps are as follows.
1. Run DCM to convert the DWG schematic into a DCM file.

2. Run PINC to convert the DCM file into a FutureNet PIN file.

3. Run PIN2XNF to convert the PIN file into an XNF file.

4. Run the Xilinx program PPR to convert the XNF file into an LCA file.

5. Run Makebits to create a bitstream that can be used to corfigure the LCA.
The MAK file that accomplishes these steps is highlighted in the following table with
explanatory comments (the comments do not appear in the actual MAK file).

Note.. In thef iollowing table, the actual processing order is f ram bottom to top.

MAK File contents Comments

select.bit: select.Ica
makebits -o select.bit select.Ica

select.Ica: select.xnf
ppr select.xnf

select.xnf : select.pin
pin2xnf -p 4005pc84 select.pin

select.pin: select.dcm
pinc select.dcm

select.dcm: select.dwg
dcm select.dwg

Create the BIT file from the LCA file using this
command.

Create the LCA file from the XNF file using this
command.

Create the XNF file from the PIN file using this
command.

Create the PIN file from the DCM file using this
command.

Create the DCM file from the DWG file using
this command.

Designingforxili:nxl£AswithFulureNeL j9

Creating al'lxNF File frornYour FulureNel Schernell.ic

When told to make SELECT.LCA and SELECT.BIT the first time, XMAKE automatically
follows these steps (only the DWG schematic file exists at first).

1. SELECT.LCA depends on SELECT.XNF, which at this point does not exist, so XMAKE
searches the MAK file to see how to make SELECT.XNF.

2. SELECT.XNF depends on SELECT.PIN, which at this point does not exist, so XMAKE
searches the MAK file to see how to make SELECT.PIN.

3. SELECT.PIN depends on SELECT.DCM, which at this point does not exist, so XMAKE
searches the MAK file to see how to make SELECT.DCM.

4. SELECT.DCM depends on SELECT.DWG, which dues exist. so XMAKE runs the DCM
program to create SELECT.DCM.

5. Now that SELECT.DCM exists, XMAKE makes SELECT.PIN by running the PINC
Program.

6. Now that SELECT.PIN exists, XMAKE makes SELECT.XNF by rurming the PIN2XNF
Program.

7. Now that SELECT.XNF exists, XMAKE makes SELECT.LCA by running the PPR program.

8. Now that SELECT.LCA exists, XMAKE makes SELECT.BIT by rurming the Makebits
Program.

A Complete MAK File Example

An example of a complete XC4000-type MAK file is provided below for reference. The
DEMO design is a XC4005PG 156 design.

Note: Ip lh.:f ollowin.g.exarpl`e,a\ denotes that in the MAK f ale the linef allowing il is appended onto \u
the line containing the\.

U
40 Designing fior xilirlx lJ=As with FutureNet

CreatinganxNFFilefrornYowFulureNelschenutic

®

Created by XMAKE Version 2.00 on Thu Sep 2713:50:281990
The following options were used: -F
The following is the hierarchy of the design 'DEMO.DWG'
DEMO.DWG

timer. dwg
timeram. xnf
control.dwg
keycoder. dwg
frdec.xnf
toneram.xnf
synth.dwg
sinrom.xnf
accl6h.dwg
dispctl.dwg
dispromo. xnf
disproml.xnf
disprom2.xnf
disprom3.xnf
disprom4.xnf
demo.bito : demo.Ica

makebits -0 demo.bit demo.Ica
demo.Ica : demo.xnf

ppr demo.xnf improvecount=1
demo.xnf : disprom4.xnf disprom3.xnf disprom2.xnf \ disproml.xnf
dispromo . xnf
dispctl.xnf accl6h.xnf sinrom.xnf \ synth.xnf toneram.xnf frdec.xnf
keycoder.xnf control.xnf \ timeram.xnf timer.xnf demo.pin

pin2xnf demo.pin
demo.pin : demo.dcm

pinc demo.dcm
demo.dcm : DEMO.DWG

dcm DEMO.DWG

timer.xnf : timer.pin
pin2xnf -x -p4005PG156 timer.pin

timer.pin : timer.dcm
pinc timer.dcm

timer.dcm : timer.dwg
dcm timer.dwg

control.xnf : control.pin
pin2xnf -x -p4005PG156 control.pin

control.pin : control.dcm
pinc control.dcm

control.dcm : control.dwg
dcm control.dwg

keycoder.xnf : keycoder.pin
pin2xnf -x -p4005PG156 keycoder.pin

Desigiing I;or Xilin IJ:As w.Ith F ulureNel 4,

Creating anxNF File f romYour FulureNet ScherraLie

keycoder.pin : keycoder.dcm
pinc keycoder.dcm

keycoder.dcm : keycoder.dwg
dcm keycoder.dwg

synth.xnf : synth.pin
pin2xnf -x -p4005PG156 synth.pin

synth.pin : synth.dcm
pinc synth.dcm

synth.dcm : synth.dwg
dcm synth.dwg

accl6h.xnf : accl6h.pin
pin2xnf -x -p4005PG156 accl6h.pin

accl6h.pin : accl6h.dcm
pinc accl6h.dcm

accl6h.dcm : accl6h.dwg
dcm accl6h.dwg

dispctl.xnf : dispctl.pin
pin2xnf -x -p4005PG156 dispctl.pin

dispctl.pin : dispctl.dcm
pinc dispctl.dcm

dispctl.dcm : dispctl.dwg
dcm dispctl.dwg

The DCM Program
The DCM program converts a FutureNet DWG file into a Drawing Cormectivity Model
(DCM) file used by the PINC program. You must create a separate DCM file for each
hierarchical module in the design. Do not use DCM to flatten the hierarchy of a design and do
not run DCM on Xilinx macros since they have already been processed.

u

u

Syntax

Note: When converting an LCA design,youmusl use DCM as described in ll.is section.The
instructions g.Iven in the FulureNet manuails do not necessarily apply lo Xilirlx designs.

For each module that is represented by a single DWG file (a single-page drawing), you must
use the DCM program [o create a separate DCM file. If the module is contained in
design.DWG, run DCM as follows:

Cnd:DCM c!esign.DWG

The .DWG extension is optional. This command creates the file cZcs!.g#.DCM. Repeat this step
for every single-page drawing in the hierarchy.

If a module is represented by multiple DWG files (a multiple-page drawing), you must use the
DCM program to combine those drawing files into a single DCM file. If the module consists
of the files pagcJ.DWG, pczgc2.DWG, pagc3.DWG, run DCM as follows:

Cnd..DCM pagel page2 page3 . . .

The output file takes the name of the first drawing specified, that is pczgc/.DCM.

42 Des.igndng Ior x.Illm ljcAs wilh F ulureNel

CreainganxNFFilefromYourFuturINetschenutic

If the multiple page drawing in question represents a functional block on the schematic. the
name of the DCM file must match the name specified on the functional block with a FILE (8)
attribute. For the pagel .DCM file created above, the corresponding functional block would
specify pczgcJ (nofl/c#czmc extension) as the FILE (8) name.

Input File %/c#amc].DWG

DCM operates on the schematic design files created by the FutureNet schematic editor.

Output File %/c#amc].DCM
This an intermediate step between the FutureNet drawing file and the PIN file fomat.

Note: If a FutureNet drawing contains af unctional blockwith a bus pin, the DCM progran issues the
warning "Bus pin terminates al symbol." This warning may be ignored.

The PINC Program
PING, which creates a PIN file for each input DCM file, is the FutureNet Pin List Generator.
This PIN file contains a listing of the pins on all of the symbols in the drawing and the names
of the signals connected to these pins. When translating a design manually, you should
generate a PIN file for each DCM file you create. Don't run PINC on Xilinx macros, since
they have already been processed.

Syntaxa

a

Note: When converting an LCA design.youmust use pINc as described in this section. The
instructions given in the FulureNet manuals do not apply lo Xilinx designs.

Once you have converted a drawing file into a FutureNet DCM file. use the PINC program to
create a FutureNet pinlist file (PIN). For each DCM file in the design, run PINC in the
following marmer.

Cnd:PINC c!esign.DCM

The .DCM extension is optional. This command creates a PIN file used by the PIN2XNF
Program.

Input File fap/cvc/.DCM

PINC requires a FutureNet-generated DCM file to be used as an input file. DCM is the
FutureNet drawing pre-processor that establishes connection data for a FutureNet drawing.

Output File fap/cvc/.PIN

The output file generated is a PIN file that contains FutureNet pin list information required for
creating an XNF file.

The PIN2XNF Program
The PIN2XNF program creates a Xilinx Netlist Format (XNF) file from one or more
FutureNet PIN files. Unless specified otherwise, PIN2XNF reads any lower-level PIN files
and creates a single merged XNF file. This XNF file is used by the XACT design
implementation software.

Syntax Cmd:PIN2XNF -[options] toplevel.PIN toplevel.XNF

Input File fap/cvc/.PIN

Designing for Xilinx IJ=As wilh FulureNei 4j

Creating anxNF F ike f ron Your F ulureNet Scherruatic

The PIN file created by the FutureNet programs DCM and PINC. The PIN extension is
Optional.

Output File fop/cvc/.XNF
The equivalent Xilinx Netlist Format (XNF) file. The XNF extension is optional. If no output
filename is specified, PIN2XNF uses the input design name with the addition of the XNF
extension.

Options

-P

-N

-X

You can modify the operation of the PIN2XNF program using the following options.

Part type
The -P option is used to specify the LCA part type. If a part type has been specified on the
FutureNet schematic (using an attribute 81 label), the -P option takes precedence. If no part
type is specified either on the schematic or with the -P option, PIN2XNF attempts to
deterlnine a part type based on the symbols used. If this fails, PIN2XNF assigns a default part
type.

The -P option can also be used to specify the speed grade. The XC4000 family speed grades
are -10 and -7, representing CLB combinatorial black delays of 10 and 7 ns, respectively. The
XC3000 and XC2000 family speed grades are -50, -70, -100, and -125. representing the
flip-flop toggle frequencies in megaHertz (MHz).

Here are two examples of a 100 MHz and 10 us speed grade specification for XC2000/3000
and XC4000 devices, respectively :

...- P [parttype] -100

...- P [parttype] -10

Don't Merge Lower-level PIN Files
The -N option prevents PIN2XNF from merging in any lower-level PIN files, including those
representing Xilinx macros. In the default mode, PIN2XNF automatically translates and
absorbs the PIN files for any functional blocks or macros that are hierarchically below the
input design file. If the -N option is used, the XNF file created represents only the input
design file.

Merge Xilinx Macros Only

The -X option prevents PIN2XNF from merging in any lower-level PIN files that represent
user-defined macros. although Xilinx macros are translated. In the default mode, PIN2XNF
automatically translates and absorbs the PIN files for any functional blcx)ks or macros that are
hierarchically below the input design file. If the -X option is used, the XNF file created will
represent only the input design file and any Xilinx macros it contains.

Error Messages and Techniques for Recovery
ERROR 1 Invalid PINLIST file. Bad or missing PINLIST Record.

Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

44 Designing for xilim LCAs with FutureNet

u

Creatingar.XNFFilefrorr.YourFulureNeLSchenchc

fl

a

ERROR 2

ERROR 3

ERROR 4

ERROR 5

ERROR 6

Incorrect PINLIST version= <number>, should be ` 2' .

PIN2XNF only supports version 2 PIN fnes. Use the DCM and PINC programs to generate a
version 2 file.

Expected DRAWING record.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
inegularities (use the FutureNet command N <rc/crcncc nwmbcr> to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Missing fl/ci!amc on DRAWING record.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
inegularities (use the FutureNet command N <rc/erc#cc nwmbcr> to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Bad or missing path ref on DRAWING record.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
inegularities (use the FutureNet command N <rc/crc#cc #wmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Bad or missing reference number on SYM record.

Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message: the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crcncc n#mbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Waning 7 Non-group SYM record. Ignored.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/erc"cc nwmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or comipted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

DesigningfiorxilinxL£AswilhFutureNet 4j

Creaing ar.XNF FilefromYour FutweNet Scher"nic

ERROR 8 Unbalanced groups. Missing ') ' record.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
inegularities (use the FutureNet command N <rc/erc#cc nwmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 9 No type defined for symbol.

Check the attribute and point of effect for the name of this symbol. All user-defined functional
blocks should carry a name with attribute FILE (8).

Warning 10 Invarid record type for SYM group.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crcncc nwmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 12 Invalid pin attribute number [number].
PIN2XNF allows only the PINI (23), PNBT (22), and PINO (21) attributes on symbol pins.
Examine the PIN file at the specified line to find the symbol that has an invalid attribute, and
comect this attribute on the drawing.

ERROR 13 Missingpinname.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the enor persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM nne is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crcnce #wmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invatd or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Warning 14 Bad or missing attribute on DATA record.
Use DCM and PINC to regenerate the PIN file. and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crcncc nwmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or cormpted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

46 Designing fior XiLinx ILCAs with FutureNet

EH

CreatinganXNFFilefroni.YourFutureNetScflLmaLic

fl

a

Warning 15 Missing text on DATArecord.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crencc nwmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 16 Unknown reference [number].
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crencc #wmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 17 Missing filename on PATH record.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crcncc #ztmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or cormpted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 18 Bad or missing symbol reference number on PATH record.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crcncc #wmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 19 Recordtype `(SYM' not allowed tote a group.
Use DCM and PING to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/ercncc nwmbcr>" to locate the appropriate
symbol). If the symbol appears coITect, an invalid or cormpted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Designingfbrxilir\xl£AswithFutureNet 47

Creatin;g anxNF F ile f ron Your F ulurd\Jct Scherratic

ERROR20 Unknownrecordtype.
Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crc#cc #wmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or corrupted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

Waning 21 nextrec: Input ignored: `[string]'.

Use DCM and PINC to regenerate the PIN file, and check for any errors or warnings reported
by these programs. If the error persists, search the PIN file for the first SYM statement above
the line specified in the error message; the number at the end of the SYM line is the reference
number of the symbol causing the error. Examine this symbol on the drawing for any
irregularities (use the FutureNet command N <rc/crencc nwmbcr>" to locate the appropriate
symbol). If the symbol appears correct, an invalid or cormpted PIN file may be indicated.
Contact Data I/0 Customer Resource Center.

ERROR 38 Error while writing XNF information to disk.
This probably indicates a disk full condition. Free some disk space and rerun PIN2XNF.

ERROR 39 Umble to rename temp `[source file]' to `[target file]'.
PIN2XNF could not copy the temporary workfile into the user-specified output file. This win
occur if the target file already exists and is flagged read-only by DOS. Delete or rename the
existing target file and rerun PIN2XNF.

ERROR 42 Unable to open pinlist file ` Ifi'/cnc!mc]'for reading.

Check that the PIN filename is specified correctly and exists in the current directory.

Warning 45 Unable to find file pe/c»amc] for symbol [symbol name].
The PIN file for the specified symbol was not found. If the symbol is a user-defined macro,
the FILE (8) name on the symbol must match the name of the PIN file, and the PIN file must
exist in the current directory. If this error appears for a Xilinx macro, verify that the PIN file
for this macro exists in the proper directory (for example \XACT\PIN4 for XC4000 devices),
and use the DOS SET command to verify that the XACT environment variable has been set to
point to the \XACT directory. Any extra space characters in the SET XACT= statement may
cause problems.

ERROR 49 Invalid pin name <name> on symbol <name>, type <type>.
The specified symbol has a pin that is not valid for that symbol type. This should only occur if
a pin name is changed on a Xilinx primitive symbol (such as a gate or flip-flop). If this
message appears. replace the corrupted symbol with the correct version from the Xilinx
library.

ERROR 50 Unknown attribute [attribute] on pin [pin name] of symbol [symbol name].

PIN2XNF allows only the PINI (23), PNBT (22), and PINO (21) attributes on symbol pins.

48 Designing for XiLinx IJ=As with F ulureNeL

Creating alitxNF File fromYow FutwINei Schenunie

fl

ERROR 51 Pin [pin name] of symbol [symbol name] is not invertible.
The indicated pin is not inverible, but is specified as inverted. This should only occur if a pin
name on a Xilinx primitive symbol (such as a gate or flip-flop) has been inverted with an
overbar. If this message appears, replace the cormpted symbol with the correct version from
the Xilinx library, adding a separate inverter if necessary.

ERROR 52 Logic symbol [symbol name] has [number] inputs (max=5).

PIN2XNF allows gates with a maximum of 5 inputs. All gates in the Xilinx libraries have 5
inputs or less. Use these gates to generate the desired function.

ERROR 53 Out of memory. Needed [byte size] bytes.
PIN2XNF reports how much memory was needed. Check that the system meets the minimum
memory requirements.

ERROR 68 The -x and -n options can not be used together.
To flatten only Xilinx macros, use -x by itself. To prevent any flattening, use the -n option by
itself.

Waning 69 Missing part type for -p option. Ignored.
When the -p option is specified on the command line. the next parameter must be the LCA
pan type desired.

Waning 70 Unknown flag ignored.
An unknown option flag was specified on the command line. Remember to include the
leading dash (-) on all option flags. Type PIN2XNF with no parameters to see a listing of the
valid command line options.

Warning 71 Extra argument [argument] ignored.
An extra argument was found on the command line, following the input PIN filename and the
output XNF filename. This extra parameter will be ignored.

Warning 72 Par"ype [pan type] ignored. (Part type already set to [part type]).
Part type already set. The target part type can be specified in the schematic (use the attribute
81). or on the command line using the -p option. If specified in both, the -p specification will
take precedence, causing this warning to appear. This waning may also appear if there are
two conflicting part types specified on the schematic.

Warning 73 Enor messages found from the PINLIST program found in file.
Error messages from the PINLIST program found in file. The PINLIST program is an
ancestor of the current FutureNet programs DCM and PINC. If PINLIST is used to generate a
PIN file, any error messages will be placed in the PIN file itself. PIN2XNF issues this
message when it finds these errors in the PIN file. If this occurs, rerun the PINLIST program
to locate errors. Note that the PINLIST program is not supported in the Xilinx design flow,
and the use of DCM and PINC is recommended.

Warning 76 No substitution made for pin [pin name] on symbol [symbolname].
If PIN2XNF finds a symbol with an unknown symbol type, it searches for a PIN file that
matches the FILE (8) name on the symbol. If any pin on the symbol does not correspond to a
signal in the PIN file, this message is issued. Check that the symbol pin and the corresponding
lower-level signal name match exactly.

Designingfiorxitinxl£AswithFutureNet 49

Creati]ng a]'.XNF F.le f tom Your F utwINet Schematic

Warning 79 No signals connected to symbol [symbolname].
The specified symbol has no signals connected to it.

Warning 80 No output pins found on symbol [symbolname].
The specified symbol has no signals cormected to it.

Waning 81 Invalid name [name]. No non-digit characters used.
The specified name is not a valid LCA name. A valid LCA name should contain only letters,
nunibers and the characters: _ - S < and >. Every name must also contain at least one
non-numeric character. Note that the characters < and > should only be used for naming buses.

ERROR 82 Non-bus signal connected to bus pin on symbol [symbol name].
A bus pin on a symbol (created with the .= command) can only be connected to a bus signal
(drawn with a type /2 line). If a normal wire is connected, this message will be issued.

Warning 86 EQu records found in file pe/cndmc.pin].
The PING program places EQU records in the PIN file if a single net has multiple names;
PIN2XNF reports this as an error. Search the PIN file for the string EQU to find which signal
names have been equated. Edit the drawing and remove these names so the net has only one
name.

ERROR 93 Conflicting part types detemined for [part type]. Pan type cannot be determined. Use the -p
command line option to specify the part type.
This cocurs if no part type is specified (using an attribute 81 label on the schematic or the -p
option on the PIN2XNF command line) and if PIN2XNF finds symbols from different LCA
family libraries that it cannot convert (see error 94).

ERROR 94 Conflicthg symbol types found [symbol type]. Part type is [2000, 3000, or 4000] family and
the symbol is from the [20cO, 3000, or 4000] library.
PIN2XNF will issue this message if symbols from different LCA family libraries are found
and if PIN2XNF cannot make a conversion to the specified part type.

ERROR 95 Symbol [symbolname] was found that is not unique.
Normally PIN2XNF win assign unique names to every symbol in the design. However, if
symbols cany an attribute LOC (2) label, PIN2XNF will use that name instead; this message
indicates that the LOC (2) labels are not unique. Either make each LOC (2) label unique, or
remove them and allow PIN2XNF to assign symbol names.

ERROR 96 Unknown par"ype [part name] specified.
A list of valid part types is displayed after this message. PIN2XNF will choose a default part
type; if this is not the desired part. use either an attribute 81 label on the drawing or the -p
option in PIN2XNF to specify a valid part type.

ERROR 98 [delay name] has multiple delay starts and delay ends.
A set of delay flags with the same unique identifier can have either multiple starting points
(DS) or multiple ending points (DE), but not both.

ERROR99 [delayname] has no [start orend].

Both the starting point (DS) and ending point (DE) of a delay path must be specified.

50 Designingforxilinxl£AswithFutureNel

u

Creating anxNF File from Your FutureNet Schenutic

ERROR 100 pin [pin name] has a delay start and a delay end.
Multiple delay stans (DS) or delay ends (DE) can be attached to the same pin, but a mixture
of delay starts and ends carmot.

ERROR 101 Delay withnoname.

All delay flags must have a unique identifier.

Warning 102 msmatched Delay end and Delay start values on %/cnanc] ignored.
If values are specified at both ends of a delay path, these values must be identical, or one end
must be left blank (and they are assumed to be identical). If one end of the delay path has
multiple flags and each delay has a different value, the opposite end should be left blank. If
the end with multiple flags is left blank, the value at the opposite end is assumed for all paths.

a,

a

Warning 103 Missing or invalid INIT value on pe/cnczrrzc].
This message indicates that a flag (such as -W" or -SC") is not completely defined unless it
carries a value. Similarly, the INIT= parameter on a ROM symbol must be defined.

Waning 105 Partname was not specified and unable to determine from PINLIST. Assuming default part.
If no part type is specified (using an attribute 81 label on the schematic or the -p option on the
PIN2XNF command line), PIN2XNF tries to detemine the part type based on the primitives
used. If this fails, it assigns a default part type of 4005PG156.

ERROR 106 Delay [delay name] not separated from logic with buffer.

This error is caused when a delay is cormected to a pad with no buffer.

Waning 107 Bus with no name in giv/cnamc].
This waming occurs when a bus is not named in the schematic. Buses must be renamed.

Waming 108 Unnamed signal [arbitrary net name] in design.
This waning occurs when a net was not named in the schematic. Xilinx recommends that all
nets in a design be named since it makes design debugging simpler.

The XNFCVT Program
Overview of XNFCVT

In order to support the Xilinx XC4000 Logic Cell Array (LCA) family, Xilinx has changed
some of its XNF file specifications. Earlier, Xilinx changed the XNF file specification to
support logic partitioning control.

The changes from version 1 to version 2 are summarized below.
• New mapping symbols to control partitioning.

• Anew pin lack signal flag, the p flag.
• Anew save signal flag, the S flag.
• Each symbol and signal now has a fun hierarchical path name.
• The / character is included in signal and symbol names.

• The LCANETversion number changed from 1 to 2.

Designing for XiLinx I£As with FutureNct i,

Cneaing an XNF File f rorrl Your FutweNet Schemzllie

The changes from version 2 to version 4 are summarized below.
• New pin parameters to aid delay-driven routing.

• New symbols to suppon XC4000 architecture, e.g., WAND, BSCAN, BUFGP.

• Bus records were added to provide more flexibility in bus naming.

• OUTFFZ and OBUFZ were changed to OUTFFT and OBUFT.
• New parameters for logic placement.

These changes to the XNF file make necessary a program that converts the new XNF file
format into the old XNF file formats so that the file is compatible with those simulator
translators that do not yet support the new XNF formats. This program is called XNFCVT
(XNF Convert). It enables Xilinx to make the required XNF specification changes without
inpacting existing sinulator translation software.

XNFCVT translates a new version 4 XNF netlist into an old version 2 XNF. netlist or version
1 XNF netlist. XNFCVT also converts a version 2 XNF netlist to a version 1 XNF netlist. The
way to determine the XNF file version is to look at the first line of the XNF file. The number
following LCANET is the version of the netlist

Before running an XNF-to-sinulator translator (like XNF2SILO) which handles version 1
XNF ffles only, you would run XNFCVT to translate a version 4 or 2 netlist into a version 1
netlist.

The XNFCVT Command
Syntax XNFCVT I-A] inpuLfile[.XNF] [outpuLfile[.XNF]]

Options

-A Instructs XNFCVT not to use the existing AKA file for generating hierarchical prefixes. When
this option is used, a new AKA file will be generated. If the -A option is not specified, the
program automatically looks for an AKA file with the same name as the input file. If one is
found, that file is used to generate shortened name prefixes. This allows prefixes used in
previous runs to be maintained.

-V <vcrsfo#> The -V option specifies the XNF file version of the output XNF file. Valid versions are I and
2. If no version is specified, XNFCVT converts to the previous version. For example, a
version 4 XNF file would convert to a version 2 XNF file, and a version 2 XNF file would
convert to a version 1 XNF file.

Note: If the part type in the ini]ut XNF f ile is f ran thexc4000 f emily,XNFCVI` will not allow
corrversion back to a version 2 or version 1 netlist.

Input File dcsi.gn. XNF
Version 2 XNF file.

Output File oztp«f.XNF
Version 1 XNF file.

52 Designing for xiLirlx lJCAs with Fu}urd`Jet

u

Crealingal'.XNFFilefrorlilYourFILLureNeLScherruatie

a XNFCVT program process
The XNFCVT program performs the following functions:
• Reads in a version 4, 2, or 1 XNF netlist file.

• Removes all mapping control (CLBMAP) symbols (version 2 to version 1).

• Removes au save signal flags (S flags) (version 2 to version 1).

• Removes au pin lock signal flags (P flags) (version 2 to version 1).
• Reads and updates the AKA alias names file (version 2 to version 1).

• Shorteus hierarchical path names of symbols and signals (version 2 to version 1).

• Generates an XNF file, coITesponding to the specified version.

• Removes delay flags (version 4 to version 2 or 1).

• Bus records are removed (version 4 to version 2 or 1).

• OUTFFT and OBUFr are changed to OUTFFZ and OBUFZ (version 4 to version 2 or 1).

The AKA File (Version 2 to Version 1 Only)
The first time XNFCVT is inn on a file, it generates an AKA file containing a prefix name
(automatically generated) and the corresponding path name that the prefix represents. In each
successive run of the program (without the -A option), the AKA file is read along with the
XNF file. The program uses existing prefixes from the AKA file for identical path names and
only generates new prefixes when a new path name is encountered. Also, you can edit this file
in order to make prefix names more meaningful. For example:

lil

a

prefix
1

2
3

path name
lTor! |T]i:2
|TCJR |TJ28

/TOP/U12/COUNTER

In the XNF file produced by XNFCVT, symbols and signals that are at the level ITOP~ 12
have a shortened name; 1 replaces the path ITOP/U12. For example, if there is a signal in the
input XNF file called /IIOPIV12/SIC 1 it is called 1 -SIGl in the output XNF file.

Note: Since the curent version of the XNF specif ication does not support the I character. the -
character is used in its place as the character that separates the prefix from the symbol or
signal nane .

Now suppose you run XNFCVT again after adding a new hierarchy level called U30, deleting
the one called U28. The AKA file looks as follows.

prefix
1

3
4

path name
/TOP/U12
/TOP/U12/COUNTER
/Tor! /T]30

If you run XNFCVT with the -A option. the existing AKA file is ignored and a new AKA file
is generated that looks as follows.

Designirigfiorxiliml£AswithFulureNet 5j

Crealng anxNF FilefromYour FuzwINeL Schanalc

prefix
1

2
3

path name
/ Tor2 / T]T2.

/TOP/U12/COUNTER
/TOP/U30

You can edit the prefixes to make them more meaningful. Prefix names should not contain the
separator character and they should be limited to 16 characters.

XNFCVT Error Messages and Recovery Instructions
ERROR 200 Can only process files with the.XNF suffix.

XNFCVT only works on files with an XNF extension. Do not specify afl/cur#ic that dcesn't
have an XNF extension.

ERROR 201 Unable to open file pe/curmc] for [reading or writing].
If the file could not be opened for reading, it is because the input file dues not exist. Check
the/iJc/lame. If the output file could not be opened for writing, check if the hard disk is full or
check if the output file already exists and is write-protected.

ERROR 203 Illegal part [parttype].
Check the part type specified in the input XNF file and make sure it is a valid part type.

ERROR 204 Premature END OF FILE.
This error indicates a corrupted XNF. Check the bottom of the input XNF file and see if part
of the file is missing. The file should end with an EOF statement. If the input file is corrupted,
regenerate it. Check if there is enough hard disk space, since many premature end of file
errors are caused by files written to full disks.

ERROR 205 No parttype specified in source file.
This error indicates that the input XNF file did not contain a part type. Part types must be
specified, so regenerate the input XNF file with the part type.

ERROR 206 Invalid LCANET [version]. Valid types 2 and 4.
XNFCVT converts level 4 and level 2 XNF netlist versions only. Check that the input XNF
file is LCANET version 1 or LCANET version 2. If it is an LCANET version other than 4 or
2, XNFCVT cannot conver(it.

ERROR 207 Invalid conversion path from LCANET version [version] to [version].

XNFCVT converts from LCANET version 4 to version 2 or 1, and from LCANET version 2
to 1. Make sure that the input file is LCANET version 4 or 2 and that the output file LCANET
version is either 2 or 1.

ERROR 208 Bad command line option.
XNFCVT has two options: -A and -V. Make sure that an invalid option was not entered. The
-V option has two possible parameters: 2 or 1. Make sure that an invalid parameter was not
entered.

" FizaireNct is . tndemedE Of Data 1® Cozpontion Data 1® Corporation admowledges the tradermris Of other
orgarizatim8 for their rspoedve prodrcts or scrvioes menticried in this docrmienl

##ffffi#+ffiJM#o§whEL#F#i#¥!:!ffi3[ng¥#=:tife#'un2475ro
0 Ice Dba 10 Corpodeon

54

u
DJnlro

}

a

a

1I

u

