127

application information

circuit information from the Philips building elements application laboratories

An all-transistor AM-FM receiver for mains supply

Issued by: Electronic Market Development Department

application information

127

An all-transistor AM-FM receiver for mains supply

by R. A. Pölzl

This publication is the property of N.V. PHILIPS' GLOEILAMPENFABRIEKEN Eindhoven (Netherlands)

The information contained in this publication is aimed to bring to the attention of potential users advance information on the latest developments in the field of electronic devices, circuits and systems

It is furnished for advance guidance only, no responsibility being taken for either complete technical accuracy or reliable operation of any device

The contents of this publication do not imply a licence under any patent; they are not to be reproduced in any way, in whole or in part, without our written consent

Date of release: July, 1965

CONTENTS

Summary

1 INTRODUCTION

2 GENERAL RECEIVER DESCRIPTION

- 2.1 FM Front-End
 - 2.1.1 R.F. Amplifier2.1.2 Mixer Stage
 - 2.1.3 Oscillator Stage
- 2.2 AM Front-End 2.2.1 Aerial Circuit 2.2.2 Mixer Stage
- 2.3 I.F. Amplifier2.3.1 I.F. Amplifier and Detector at FM2.3.2 I.F. Amplifier and Detector at AM
- 2.4 Automatic Gain Control
- 2.5 Automatic Frequency Control
- 2.6 Tuning Indication
- 2.7 Audio Amplifier
- 2.8 Emitter Currents of the various Stages
 2.8.1 FM Front-End
 2.8.2 AM Front-End
 2.8.3 I.F. Amplifier
 2.8.4 A.F. Amplifier
- 2.9 Power Supply 2.9.1 Mains Rectifier 2.9.2 Stabilised Supply for HF Stages
- 2.10 Sensitivity of the Receiver 2.10.1 FM Reception 2.10.2 AM Reception
- 3 DESCRIPTION OF CIRCUIT DETAILS
- 3.1 AM Section
 3.1.1 Aerial Circuit
 3.1.2 Mixer Stage
 3.1.3 Oscillator Stage
 3.1.4 A.G.C. Circuit
- 3.2 FM Section3.2.1 FM Front-End3.2.2 I.F. Amplifier
- 3.3 Tuning Indication
- 3.4 Audio Part
- 3.5 Supply Unit
- 4 ALIGNMENT PROCEDURE
- 5 LIST OF COMPONENTS
- 6 DEVELOPMENT SAMPLE DATA

SUMMARY

In this bulletin a description is given of the circuit of a transistorised a.m. - f.m. mains radio employing 14 transistors, 7 diodes and a silicon bridge rectifier.

A non-conventional design in the h.f. section provides an aerial signal handling capability better than 1V both at a.m. and f.m. reception, as well as an excellent signal-to-noise ratio.

The audio amplifier contains a single ended push-pull output stage, which is driven by a complementary pair of driver transistors.

This circuit features low distorsion and a good frequency response. The music power output delivered into a loud-speaker of 25Ω is 2.5 W.

1 INTRODUCTION

Semiconductors in radio receivers feature instant play, small dimensions resulting in freedom of styling of the cabinet and excellent reliability, properties that are also desirable for mains operated receivers.

But mains receivers have to cope with strong aerial signals as they may operate with an outdoor aerial. Also the audio output power should be 2 W or more. The well known circuits used in portable receivers do not satisfy these requirements.

The mains receiver described in this bulletin meets the more stringent requirements on signal handling capability (both at a.m. and f.m. reception) sensitivity, spurious responses and output power. This has been achieved by virtue of delayed gain control of the a.m. mixer, a special a.g.c. circuit, a three transistor f.m. front-end and a transformerless class-B audio output stage.

2 GENERAL RECEIVER DESCRIPTION

The receiver to be discussed has been designed for operating temperatures up to 35° C. It contains 14 transistors and 7 diodes.

In addition a silicon bridge rectifier is used in the supply unit. In Fig. 1 a block diagram is given, showing the semiconductor complement of the receiver. In the following sections a survey is given of the measured performance of the various parts of the receivers. In addition some notes, concerning the circuit and the method of measurement are listed.

Fig. 1 Block diagram showing the various stages and the semiconductor complement of the receiver.

2.1 FM Front-End

Frequency range	87.5-108 Mc/s	
Aerial input impedance	75Ω asymmetric 300Ω symmetric	
Tuning	inductive	by means of a two gang variable inductor.
Output circuit		double tuned i.f. bandpass filter over-critically coupled.
3 dB bandwidth of output circuit	280 kc/s	
I.F. load impedance	$1 \text{ k}\Omega$	input impedance of the i.f. amplifier at the base of the first i.f. transistor.
Voltage amplification	> 6 times	ratio of i.f. voltage measured across the i.f. load impedance $(1 k\Omega)$ to aerial e.m.f. (source impedance 300Ω).
Transducer gain	> 16.3 dB	ratio of the power dissipated in the i.f. load to the available power of the aerial.
Noise figure	typ. 4 dB	
Image rejection	> 26 dB	measured at a constant output signal.
I.F. suppression	> 72 dB	a) measured at a constant output signal.b) as the input circuit is balanced, the input signal has to be applied between the aerial terminals, connected together as one pole and the earth terminal as the other pole.
Repeat spot suppression RSS1)	> 60 dB	as reference level an i.f. output has been abasen corresponding to an agrial signal of
	> 56 dB	100μ V e.m.f. (300 Ω), the front-end being
Double beat suppression DBS ²)		correctly tuned.
Signal handling capability	1 V	aerial e.m.f. (300Ω) for 20 kc/s oscillator fre- quency shift.
Radiation	< 2mV	measured at the input, terminated with 300Ω .
Selectivity S ₃₀₀	6 times	mainly determined by the i.f. bandpass filter.
3 dB bandwidth	250 kc/s	
A.F.C. sensitivity	170 kc/s per V	measured at a reverse voltage of the diode in the region of (-)8 to (-)12 V and an oscillator frequency of 90 Mc/s.
2.1.1 R.F. Amplifier		
Circuitry		AF 178 in common base connection.
Aerial circuit		single tuned circuit; pre-set at 100 Mc/s.
3dB bandwidth of the aerial circuit	80 Mc/s	loaded by the transistor and aerial as well.
R.F. interstage circuit		single tuned circuit.
3 dB bandwidth of the interstage circuit	1.5 Mc/s	measured with an aerial signal of 100 Mc/s.
2.1.2 Mixer Stage		
Circuitry		AF 125 in common emitter with a trap be- tween base and emitter tuned to 10.7 Mc/s. a diode AA 119 across the output serves for
Oscillator sizes linitation	70 mV	at the base of the mixer.
Oscillator signal injection	70 III v	
2.1.3 Oscillator Stage		
Circuitry		AF 125 in common base with external feed- back capacitance between collector and emitter.
Frequency range	76.8-97.3 Mc/s	
Oscillator voltage	250 mV	measured at the emitter.
Frequency shift	<20 kc/s	measured at a supply voltage variation from 11 V to 12 V.
Pulling	<20 kc/s	without a.f.c. and with an aerial e.m.f. from a 300Ω source ranging from 0 - 1 V.
Padding deviation	<0.5 Mc/s	

1) Repeat-spot reception of a signal occurs when its harmonics and the harmonics of the oscillator signal are such that mixing of these produces the designed intermediate frequency. Repeat-spot suppression is defined as: RSS $= 20 \log \frac{\text{aerial e.m.f. for a certain i.f. output of the front-end in repeat-spot tuning}}{\frac{\text{aerial e.m.f. for the same i.f. output when the front-end is correctly tuned}}$

2) Double-beat reception occurs when two different aerial signals (or their harmonics) together with the oscillator signal (or its harmonics) are converted to the designed intermediate frequency. Double-beat suppression is defined as: $DBS = 20 \log \frac{aerial e.m.f. of the two interfering signals of equal strength for a certain i.f. output level of the front-end in double beat tuning$ aerial e.m.f. for the same i.f. output when the front-end is correctly tuned to one signal

2.2 AM Front End

Type of tuning Aerial

by means of a two gang variable capacitor. ferrite rod aerial for MW and LW with the facility of connecting an outdoor aerial. Outdoor aerial for SW.

Measurements are carried out with an artificial aerial in accordance to I.E.C. standard given in Fig. 2.

Fig. 2 Network representing the standard artificial aerial as recommended by the International Electrotechnical Commission (I.E.C. publication 69). For frequencies ranging from 150 kc/s to 26.1 Mc/s the following component values be used: $(R_1 + R_2) = 80\Omega$, $R_3 = 320\Omega$, $C_1 = 125$ pF, $C_2 = 400$ pF and $L = 20\mu$ H.

Frequency range at:

	LW	150-285 kc/s	
	MW	508-1600 kc/s	
	SW	6- 16 Mc/s	
Aerial signal handling capability	at:		
	LW	1.5 V	figures mentioned refer to an aerial e.m.f.
	MW	1 V	(artificial aerial) measured with midband sig-
	SW	0.9 V	nals at a modulation distortion of 10%. Mo- dulation depth m = 80% .
Output circuit			double tuned i.f. bandpass filter.
I.F. load impedance		3.3 kΩ	input inpedance of the i.f. amplifier at the base of the first i.f. transistor.
Voltage amplification at:			
	LW	2 times	ratio of the if voltage measured across the
	MW	3 times	i.f. load impedance to mid-band aerial e.m.f.
	SW	3.5 times	
2.2.1 Aerial Circuit			

Mode of outdoor aerial coupling at:

common capacitive LW coupling MW large primary coupling SW inductive coupling

For frequency response curve at MW reception see Fig. 3.

Fig. 3 Response curve of the aerial circuit for medium wave. The signal voltage at the base of the mixer at constant aerial e.m.f. has been plotted as a function of the signal frequency. Curve A has been measured in the circuit of Fig. 9. Curve B corresponds to the case of a conventional aerial circuit with common capacitive coupling.

	LW	150 kc/s 4.5 kc/s 220 kc/s 9 kc/s 285 kc/s 15 kc/s 520 kc/s 45 kc/s	since the quality factor of the ferrite rod aerial may be affected by surrounding metal parts(e.g. chassis), the bandwidth has to be measured in the actual circuit.
	MW	520 kc/s 45 kc/s 1060 kc/s 10 kc/s 1600 kc/s 30 kc/s	
	SW	6 Mc/s 70 kc/s 11 Mc/s 120 kc/s 16 Mc/s 240 kc/s	
Voltage amplification at:	T W/	0.2 times	ratio of the r.f. voltage measured at the base
	MW	0.2 times 0.3 times	of the mixer, to the mid-band aerial e.m.f.
	SW	0.35 times	
2.2.2 Mixer Stage			
Circuitry			AF 185 in common emitter connection.
R.F. source impedance at:			
-	LW MW SW	960 Ω 1500 Ω 480 Ω	base bias resistors excluded and measured in the middle of the bands.
Conversion at LW, MW and SW		10 times	ratio of the i.f. voltage at the base of the first i.f. transistor to the r.f. voltage at the base of the mixer.
Oscillator signal injection at:		70 1/	at the emitter of the mixer
Lw, Mw and Sw		70 mV	et all a m wave ranges
Type of gain control		"upward"	by increase of the operating current ("upward
		a T	control").
2.2.3 Oscillator Stage			
Circuitry			Hartley circuit employing an AF 125 in com- mon base connection.
Frequency range at:			
		602 - 737 kc/s	
	SW	6.452 - 11.452 Mc/s	
Oscillator voltage at:		and an	
	LW	420 mV	measured at the emitter of the oscillator.
	SW	4 /0 mV 640 mV	
Frequency shift during gain contr	rol of	010111	
mixer at LW and	1 MW SW	<500 c/s <2.5 kc/s	
Type of padding		three points tracking	
Tracking points of the aerial circu	uit at:	150 1 /	
	LW	159 kc/s 217.5 kc/s	
		$\frac{217.5}{276}$ kc/s	
		592.36 kc/s	
	MW	1060 kc/s	
		1527.64 kc/s	
	SW	11 Mc/s	
	5.11	$15.33 \mathrm{Mc/s}$	

2.3 I.F. Amplifier

Circuitry

Circuitry		a) AF 185 in common emitter either operating as a.m. mixer or i.f. amplifier at f.m.b) AF 121 and AF 179 in common emitter operating as i.f. amplifier both for a.m. and fm
Intermediate frequency	10.7 Mc/s at f.m. 452 kc/s at a.m.	1,111,
Interstage coupling		double tuned bandpass filter and a-periodical coupling circuit.
2.3.1 I.F. Amplifier and Detector at FM		
I.F. input impedance	1 kΩ	input impedance of the i.f. amplifier at the base of the first i.f. transistor.
Voltage amplification:		
first stage	10 times	measured from base first i.f. transistor to base second i.f. transistor.
second stage	8 times	measured from base second i.f. transistor to base third i.f. transistor.
third stage	35 times	measured from base third i.f. transistor to its collector.
third stage (incl. detector)	4.3 times	measured from base third i.f. transistor to output ratio detector terminated with 8.2 k Ω .
3 dB bandwidth	>200 kc/s	the carrier has been frequency modulated with $\Delta f = 15$ kc/s and a modulation frequency of 1 kc/s.
Selectivity S ₃₀₀	>25 times	a) measured from base of first i.f. transistor to d.c. load of the ratio detector.b) signal level at the base of final i.f. transistor has been 8.6 mV.
Onset of limiting	70 mV	measured at the base of the final i.f. transis- tor (operating current starts to increase).
Detector		symmetrical ratio detector.
Peak separation	>120 kc/s	separation between the peaks on the f.m. out- put characteristic of the ratio detector.
Input impedance of the detector	370Ω	measured at the tap of the tuned primary.
Output impedance	4 k Ω	measured at the a.f. output of the ratio detector with an audio signal of 1 kc/s .
Distortion of the ratio detector	see Fig. 4	
Maximum a.f. output	230 mVat $\triangle f = 15$ kc/s 1 V at $\triangle f = 75$ kc/s	a) measured at the a.f. output of the ratio detector terminated with 8.2 kΩ.b) mainly determined by limiting at the base
8		of the final i.f. transistor.

Fig. 4 Harmonic distortion at f.m.

The total harmonic distortion of the audio voltage at the output of the ratio detector, as a function of the modulation depth (100% = 75 kc/s deviation) and with an aerial e.m.f. of $10\mu V$ from a 300Ω source as parameter.

Fig. 5 AM suppression.

F.M. output over a.m. output as a function of the aerial e.m.f. from a 300Ω source connected to the corresponding input terminals of the receiver.

The test signal is frequency modulated with $\bigtriangleup f$ = 15 kc/s and 1kc/s modulation frequency and amplitude modulated with m = 0.3 and 400 c/s.

De-emphasis	50 µs
AM suppression	see Fig. 5
Signal-to-noise ratio	see Fig. 6
Figure of merit	$pprox 70~\mathrm{dB}$

2.3.2 I.F. A

Fig. 6 Signal-to-noise ratio at f.m. Curve A represents audio voltage at the output of the ratio detector measured between contact 15 and common, as a function of the aerial e.m.f. from a 300 Ω source. The frequency sweep of the input signal is 15 kc/s. Curve B represents the noise voltage at the output of the detector. Point C on curve A corresponds to an a.f. output power of the audio part of 2W.

Figure of merit	$\approx 70 \text{ dB}$	number of dB's by which the aerial e.m.f. from a 300Ω source has to be reduced from 100 mV, to produce a change of a.f. output power of 10 dB.
2.3.2 I.F. Amplifier and Detector at AM		
I.F input impedance	3.3 kΩ	input impedance of the i.f. amplifier at the base of the first i.f. transistor.
Voltage amplification:		
first stage	75 times	measured from the base of the first i.f. tran- sistor to the base of the second i.f. transistor.
second stage	75 times	ratio of the a.f. signal at the output of the detector terminated by 8.2 k Ω to the i.f. signal at the base of the final i.f. transistor, modulation depth = 30%.
3 dB bandwidth	4.5 kc/s	measured from the base of the mixer tran- sistor to d.c. output of the detector with a con- stant input signal.
Selectivity S ₉	39 dB	measured from the base of the mixer tran- sistor to d.c. output of the detector with a constant output.
Type of gain control	reverse	on first stage.
Detector		conventional envelope detector.
Modulation handling capability	m = 80%	
Maximum a.f. output	300 mV at $m = 30\%$ 800 mV at $m = 80\%$	measured at the detector output terminated by 8.2 k Ω .
2.4 Automatic Gain Control		
Control system		detector drives final i.f. transistor to higher emitter currents rendering reverse gain control of first i.f. stage due to the long-tailed pair connection. Upward gain control of mixer stage delayed by means of an a.g.c. amplifier.
Start mixer gain control	100 to 300 µV	e.m.f. of the artificial aerial of Fig. 2.

Start mixer gain control

8

I.F. gain reduction	40 dB
I.F. gain reduction during mixer control	12 dB
Mixer gain reduction	45 dB
Figure of merit	$\approx 70 \ \mathrm{dB}$

2.5 Automatic Frequency Control at FM

Control system

Control sensitivity of the diode	170 kc/s per V
Reference voltage	(-) 13 V
Catching range	400 to 700 kc/s
Holding range	< 1 Mc/s
Correction factor	see fig. 7

gain reduction of first i.f. transistor, its operating current varying from 1.5 to 0.002 mA, minus increase of gain of the final i.f. transistor due to its operating current variation from 3 to 6 mA.

at an operating current varying from 0.5 to 18 mA.

number of dB's by which the e.m.f. of the artificial aerial has to be reduced from 100 mV to produce a change of a.f. output power of 10 dB.

oscillator tuning by means of variable capacitance diode supplied from ratio detector.

indicator is connected in series with d.c. load resistor of a.m. detector. At f.m. reception indicator is supplied from d.c. output of the ratio detector.

moving coil meter $300\Omega/300 \mu A$.

aerial e.m.f. at f.m. - and a.m. reception.

two pre-stages followed by complementary driver and single ended push-pull class B output stage.

continuous sine wave output power at onset of clipping.

the music power output denotes the single frequency power obtained at onset of clipping when measured immediately after the sudden application of a signal and during a time interval so short that supply voltages within the amplifier have not changed from their nosignal values.

measured at the output of the detector and at a frequency of 1 kc/s.

Fig. 7 Correction factor of the a.f.c. circuit. The factor k by which the detuning of the local oscillator is reduced due to the a.f.c. circuit is shown as a function of the aerial e.m.f. from a 300Ω source. These data were measured at a signal frequency of 100 Mc/s.

2.6 Tuning Indication

Circuitry

Type of indicator Aerial signal for full-scale deflection	meter 1V
2.7 Audio Amplifier	
Circuitry	
Output power	2W
Music power output	2.5W
Input signal:	
for 2W output	25 mV
for 50 mW output	4 mV

Record player sensitivity:	
for 2W output	240 mV
for 50 mW output	4 mV

measured at a frequency of 1 kc/s, and an input impedance of 220 k Ω .

for the detectors.

Fig. 8 Audio response curve.

The output at constant input voltage is shown as a function of the audio frequency. The 0 dB level corresponds to 2W a.f. output in the 25Ω speaker coil. Curve A is obtained at the bass-cut position of the tone control, curve B at the treble-cut position and curve C with both bass and treble response at maximum.

Input impedance	8.5 k Ω
Frequency response and tone control	see Fig. 8
Signal-to-hum ratio	62 dB
Total harmonic distortion	1.6%

measured at onset of clipping with a signal of 1 kc/s.

2.8 Emitter Currents of the Various Stages

Measurements are carried out at an ambient temperature $T_{amb} = 25 \,^{\circ}$ C. The currents are in mA. Values between brackets relate to a maximum signal of 1V from a 300 Ω aerial at f.m.and an artificial aerial (see Fig. 2) at a.m. reception.

2.5 (2.5)	AF 178
1 (1)	AF 125
1.7 (1.7)	AF 125
0.5 (18)	
0.5 (0.5)	AF 185
2 (2)	AF 125
1.5 (0.02)	
1.5 (1.2)	AF 121
3 (6)	AE 170
3 (6.6)	AF 179
see Table II	AC 127
1.7 (1.7)	AF 117
2.3	AC 132/AC 127
5	2 — AC 128
BY 122	bridge circuit.
220V-50 c/s	at primary of mains tranformer.
<8W	at a mains voltage of 220 V.
	2.5 (2.5) 1 (1) 1.7 (1.7) 0.5 (18) 0.5 (0.5) 2 (2) 1.5 (0.02) 1.5 (1.2) 3 (6) 3 (6.6) see Table II 1.7 (1.7) 2.3 5 BY 122 220V-50 c/s <8W

Direct output voltage	see Table I	n
Load current	see Table I	

neasured across capacitor C63.

TABLE I

]	Mains voltage (V)	1	93	22	20	242		
	Aerial signal condition	no signal	max.1) signal	no signal	max.1) signal	no signal	max.1) signal	
AM	Direct output voltage (V)	24	21	28	25	30	27	
(MW)	Load current (mA)	24	115	26	130	28	140	
FM	Direct output voltage (V)	24	22	28	25	30	27	
	Load current (mA)	28	120	30	132	32	145	
Pick-up	Direct output voltage (V)	24.5	22	28.5	25	30.5	27	
	Load current (mA)	10	90	13	110	15	130	

2.9.2 Stabilised Supply for HF Stages

Voltage stabiliser

Internal resistance

Current consumption

Reference voltage	16.5V
Stabilisation factor	>24

first audio pre-stage acting as emitter follower for d.c., the base voltage being stabilised by means of a Zener diode.

ratio of the relative variation of the supply voltage of the a.f. output stage $\Delta V_1/V_1$ to the relative variation of the d.c. output voltage $\Delta~V_2/V_2$ at the emitter of the a.f. pre-stage transistor TR_7 with a constant load current I. condition of measurement: 16 V;

V_1	=	30	V; Δ	V_1	_	8	V;	V_2	_	16	
1.2	-				-		10.00				

$$\Delta V_2 \equiv 178 \text{ mV}; 1 \equiv 40 \text{ mA}.$$

measured at a d.c. load current varying from 17 to 40 mA.

TABLE II Emitter currents of the transistor AC 127

М	19	98	22	20	242		
Aerial signal condition		no signal	max.1) signal	no signal	max. ¹) signal	no signal	max.1) signal
T (A)	AM (MW)	16	40	16	40	16	40
$I_{\rm E}$ (mA)	FM	21	23	21	23.5	21	24
	Pick-up	1		1		1	

 $\leq 18\Omega$

see Table II

2.10 Sensitivity of the Receiver

2.10.1 FM Reception

Sensitivity:

for a signal-to-noise ratio of 26 dB	4 μV
for 50 mW a.f. output	2 µV
for 2W a.f. output	11 μV

2.10.2 AM Reception

Sensivity:	
for a signal-to-noise ratio of 26 dB	45 μV
for 50 mW a.f. output	$1.2 \mu V$
for 2W a.f. output	8 µV

1) Value relates to a maximum signal of 1V from $300\varOmega$ aerial at f.m. and an artificial aerial at a.m. reception. The a.f. output is adjusted at 2W.

mid-band signal (e.m.f. from a 300 Ω aerial), the frequency sweep is 15 kc/s and the modulation frequency 1 kc/s.

mid-band signal at all a.m. wave-ranges (e.m.f. from artificial aerial shown in Fig. 2), modulation frequency 1 kc/s and a modulation depth m of 30 %.

3 DESCRIPTION OF CIRCUIT DETAILS

The circuit diagram of the complete receiver is given in Fig. 17. In this chapter only the non-conventional parts of the receiver will be discussed in more detail.

3.1 The AM Section

3.1.1 The Aerial Circuit

In general a transistor a.m. tuner is considered to be rather apt to cause whistles, especially when receiving strong aerial signals. This difficulty is mainly due to lack of pre-selection, particularly for frequencies higher than the resonant frequency.

Increasing the selectivity, therefore, will improve the suppression of whistles considerably.

An attractive solution to this problem is the so-called large primary coupling. (see Fig. 9).

Fig. 9 Aerial input stage for medium wave.

Circuit diagram showing the connection of an outdoor aerial to the mixer input by means of the so-called large primary coupling.

Compared with a conventional aerial circuit, using common capacitive coupling, this provides a much higher selectivity - as can be seen from Fig. 3.

The large primary coupling will be used only for medium wave reception.

For long wave it would require impractically high self-inductances.

The tuning coils for medium and long wave reception $(L_{15} \text{ and } L_{16})$ have been mounted on a ferrite rod aerial. At medium wave both coils are connected in parallel.

As a result only one coupling coil (L_{17}) is required to connect the mixer input to the aerial circuit for long wave and medium wave reception

At short wave, a large primary coupling will hardly improve the suppression of whistles. Generally the bandwidth of the aerial circuit is in the order of 100 kc/s, which is to be attributed to the maximum realisable quality factor. This already gives rise to undesired responses. Therefore at short wave reception the aerial is inductively coupled in the conventional way.

3.1.2 The Mixer Stage

In order to meet the requirements on signal handling capability a so-called ,,upward" controlled mixer stage TR_4 has been applied.

This mixer stage has a separate oscillator transistor TR_{13} . The emitter circuit of the mixer stage comprises a low valued non-bypassed resistor R_{16} so as to provide emitter degeneration. The "upward" a.g.c. control is mainly based on the fact that at an increase of the operating current also the amount of negative feedback with respect to the i.f. current increases.

By increasing the operating current of the mixer transistor from 0.5 mA to 18 mA a gain control range of about 50 dB can be obtained (see Fig.10). The actual value of the non-bypassed resistor in the emitter lead is 78Ω (R₁₆ in parallel with R₆₃).

The oscillator signal is supplied to the gain controlled mixer stage via a resistor of 330Ω (R₆₃). This rather loose coupling between mixer and oscillator stage ensures thas the oscillator is not affected by the varying input impedance of the mixer caused by a.g.c. action. Full details of this type of mixer circuit are given in A.I. Bulletin 119¹).

Fig. 10 Gain control characteristic of the upward controlled mixer stage. Relative conversion gain of the "upward" controlled mixer at an aerial frequency of 1 Mc/s as a function of the emitter current with the oscillator voltage as parameter.

Condition of measurement;

Curve A: oscillator voltage 50 mV

Curve B: oscillator voltage 100 mV

In both cases the oscillator voltage has been measured at the emitter of the mixer of which the emitter current was adjusted at 0.5 mA.

¹⁾ A.I. Bulletin 119 Title: High performance gain controlled a.m. mixer with AF 185. Date of Publication: March 13, 1964

3.1.3 The Oscillator Stage

In principle the oscillator stage is conventional.

However, an important point is that the oscillator voltage at the emitter of the mixer transistor has to be almost constant, (50 to 70 mV), so as to ensure the a.g.c. control of the mixer starting at the same emitter current over the entire wave range (see Fig. 10). Otherwise the signal handling as well as signalto-noise ratio would vary with the oscillator voltage. To avoid this, the medium-wave tank-circuit (L41 - L_{43}) has been equipped with a low-frequency core which causes a damping at the higher end of the frequency range. In this way the circuit impedance, and thereby the oscillator voltage, is kept almost constant. For similar reasons the other two tank circuits have been shunted by means of the resistors R₆₄ and R₆₅. The resistor R₆₂ has been inserted to avoid parasitic oscillations due to stray self-inductances of the wires to the selection switch.

3.1.4 A.G.C. Circuit

The basic circuit diagram of the a.g.c. is given in Fig. 11 Since a control range of 80 dB up to 90 dB is required, the gain of both the i.f. amplifier and the mixer has to be controlled. To ensure an adequate signal-to-noise ratio at low input signals, the i.f. amplifier is controlled firstly and the a.g.c. action on the mixer is delayed.

Gain reduction in an a.m. - i.f. amplifier can only be achieved by reducing the emitter current of the i.f. transistor. This is mostly obtained by means of series fed voltage feed-back from the detector to the base of the first i.f. transistor. The control energy for the mixer cannot be taken from the controlled i.f. amplifier, because this would result in too low an available control energy for the mixer transistor.

To obtain still a sufficient control energy for the mixer stage during reverse control of the i.f. amplifier, a so-called long-tailed pair connection has been chosen for the d.c. circuit of the i.f. amplifier.

This has been obtained by using a common emitter resistor R_{23} for both i.f. transistors. The detector output voltage is smoothed and afterwards applied to the base of the final i.f. transistor TR_6 . At increasing aerial signals the emitter current of TR_6 increases, rendering a slight increase in gain.

However, the emitter current of the first i.f. transistor TR_5 decreases very rapidly as a result of which the gain of this transistor is effectively reduced.

As the mixer transistor is of the PNP type, a negative going control voltage is required for the "upward" control (increasing the operating current). For this purpose the control voltage could be taken from the emitter of the final i.f. transistor, provided the reverse control of the first i.f. stage would have stopped.

But the base voltage required to control the mixer up to 18 mA, is in the order of 8 Volt which is conflicting with the required collector voltage swing of the final i.f. stage, for driving the detector stage.

This detector has to deliver d.c. control power to the final i.f. transistor and a.c. power to the audio prestage as well.

A solution is found without unduely decreasing the available collector voltage swing, by deriving the a.g.c. voltage for the mixer from a "control amplifier".

Fig. 11 A.G.C. circuit. Simplified circuit diagram showing d.c. condition of the a.g.c. circuit.

Because of the required polarity of the control voltage of the mixer the a.g.c. amplifier has to be driven from the collector circuit R_{24} of the final i.f. stage. A suitable transistor for this amplifier will be the AC 130.

Apart from the proper polarity, this transistor features a low leakage current from which thermal stability benefits.

The desired delay for the control voltage of the mixer has been obtained by incorporating an asymetric VDR (R_{67}) in the emitter lead of the a.g.c. transistor TR₁₄.

As soon as the voltage across the resistor R_{24} exceeds the emitter voltage of TR_{14} , this transistor will become conductive, thereby increasing the emitter current of the mixer transistor.

By means of the variable resistor R_{24} the d.c. loop gain of the a.g.c. circuit can be adjusted to give the designed signal handling capability. This can be done by applying an 80% modulated aerial signal of 1 Mc/s with an aerial e.m.f. of 1 Volt, and by adjusting R_{24} so that the distortion of the a.f. signal is a minimum.

The relation of the aerial e.m.f. to the gain reduction of the mixer is shown by curve B in Fig. 12. The slope of this line is not quite 20 dB per decade since part of the gain reduction in the receiver still takes place in the i.f. amplifier after a.g.c. action on the mixer has started.

Fig. 13 shows the a.g.c. characteristic of the receiver. The emitter current of the mixer and the two i.f. transistors respectively are plotted in Fig. 14 as functions of the aerial e.m.f. measured with the dummy aerial of Fig. 2.

3.2 The FM Section

3.2.1 FM Front-End

The f.m. front-end contains an r.f. stage, a mixer stage and a separate oscillator. By using a separate oscillator the influence of strong aerial signals on the oscillator is minimised. The signal handling capability of the tuner is, therefore, fairly high, even without using the well-known damping diode across the r.f. interstage circuit. In this way the r.f. selectivity of the tuner does not deteriorate at an increasing aerial signal.

As a result the spurious response of the tuner (i.a. repeat spot suppression) is improved considerably. This tuner has been described extensively in AI Bulletin 126¹)

The mixer transistor is operated in common emitter configuration. The oscillator voltage at the base of the mixer transistor has been chosen rather low (70 mV).

When combined with a well chosen emitter current

Fig. 12 Signal handling capability at a.m.

Curve A represents the aerial e.m.f. from a standard artificial aerial (Fig. 2) giving 10% modulation distortion of an 80% a.m. modulated signal, as a function of the gain reduction of the mixer, measured at 1 Mc/s.

Curve B represents the relation of the aerial e.m.f. to the gain reduction of the mixer in the circuit of Fig. 17 measured at 1 Mc/s.

for the mixer (1mA) this provides a good repeat spot suppression of the complete front-end.

The damping diode D_2 across the primary of the mixer bandpass filter has been used to avoid deterioration of the i.f. response curve at strong aerial signals.

3.2.2 The IF Amplifier

The a.m. mixer transistor TR_4 operates as a first i.f. amplifier at f.m. reception. The second and third i.f. stages (TR_5 and TR_6) are a-periodically coupled via R_{20} , C_{36} .

Due to this the source impedance of the final i.f. transistor is rather high. Especially for an i.f. signal of 10.7 Mc/s, this results in a low output impedance of TR_a (about 1.5 k Ω).

In order to provide the required bandwidth the collector of TR_6 has been connected to a tap on the i.f. coil (L_{27} and L_{28}).

Consequently limiting of the f.m. - i.f. signal mainly takes place in the base circuit of TR_6 .

¹⁾ A.I. Bulletin 126 (in preparation) Title: Interference effects in transistor f.m. tuners: Theory and circuitry.

Fig. 13 A.G.C. diagram at a.m.

Curve A gives the a.f. voltage at the output of the detector, measured across R_{30} as a function of the aerial e.m.f. Condotions of measurement: Artificial aerial of Fig. 2, signal frequency 1 Mc/s, modulation depth 30%, modulation

frequency 1000 c/s. Curve B is related to the noise output voltage. Point C on curve A corresponds to an a.f. output power of the audio part of 2W.

3.3 The Tuning Indication

The basic circuit diagram of the tuning indication is shown in Fig. 15. The tuning indicator M is a moving coil meter, having an internal resistance of approximately 300Ω .

Full-scale deflection will be achieved at a current of $300 \ \mu$ A.

At a.m. reception the tuning indicator is connected in series with the detector load resistor R_{30} . Full-scale deflection occurs at maximum signal condition (1V aerial e.m.f.). The capacitor C_{50} has been chosen so that the indicator does not react on low modulation frequencies. To prevent an unacceptable deflection

Fig. 14 Diagram showing the emitter currents of the mixer and the two i.f. transistors as functions of the aerial e.m.f., measured with the artificial aerial of Fig. 2 Condition of measurement as given for Fig. 13. Curve A: emitter current of the final i.f. ransistor TR_6 Curve B: emitter current of the first i.f. transistor TR_5 Curve C: emitter current of the mixer transistor TR_4 .

of the indicator, due to the base current of the final i.f. transistor TR_6 the base bleeder of this transistor (R_{28}, R_{29}) has been connected to the interconnection of the detector load resistor R_{30} and the tuning indicator M. In this way the major part of the base current of TR_6 flows through R_{30} . A transistor having a current amplification factor β of 70 causes a deflection of the meter of only 10%.

At f.m. reception the tuning indicator is driven via the resistor R_{27} . The resistors R_{31} and R_{27} have been chosen so that the value of their parallel connection in series with the resistance of the indicator equals the value of R_{32} . In this way a symmetrical

Fig. 15 Basic circuit diagram of the a.f.c. at f.m. reception and the tuning indication.

operation of the ratio detector is ensured. The influence of $\rm R_{28}$ can be neglected in this respect.

Full-scale deflection of the indicator has been chosen at the maximum aerial e.m.f. of 1V (300 Ω) so as to provide adequate indication. This can be achieved by giving the resistors R_{27} and R_{31} a suitable value.

3.4 Audio Part

By arranging the output stage as a single-ended pushpull circuit which is driven by an npn-pnp complementary pair of transistors operating as phase-splitter, the output - as well as driver transformer can be dispensed with. This reduces both size and weight of the circuit, improves the frequency response and lowers the distortion. The type of circuit is advantageous in yet another respect. The collector-emitter voltage of each of the two output transistors is a maximum during its non-conducting period, and is then equal to the supply voltage, whereas the conventional push-pull circuits the maxiin mum occuring collector-emitter voltage is twice the supply voltage. Assuming the transistors to be operated up to the maximum permissible collector-emitter voltage, a single-ended push-pull output stage can thus be fed from a supply voltage which is twice that allowed in an orthodox push-pull circuit. For the same output power the current drain is thus halved, so that a smoothing circuit with smaller components can be used.

3.5 Supply-unit

Fig. 16 shows the basic circuit diagram of the supply unit, which is operated from the 220V mains voltage. The supply voltage for the receiver is obtained from a power supply, equipped with the silicon bridge rectifier BY 122. The supply line of the a.f. amplifier excluding the a.f. pre-stage is directly connected to the power supply. In order to obtain a good signal-to-hum ratio, the supply line of the pre-stage is decoupled by means of R_{58} and C_{64} .

Due to the variable current consumption of both the class B output stage of the a.f. amplifier and the "upward" controlled mixer stage of the h.f. section the direct output voltage of the power supply can vary between 25 and 28V (mains voltage 220V).

The line voltage of the h.f. section amounts to 16 V and has been stabilised. This to prevent a reduction of the collector-to-emitter voltage of both the a.m. mixer and the final i.f. transistor due to a decrease of the direct output voltage at maximum signal condition of the receiver. The h.f. line voltage is taken from the emitter of the a.f. pre-stage transistor TR_7 and is stabilised by means of a Zener diode in the base circuit of this transistor.

To prevent shortcircuiting of the a.f. signal at the base of the pre-stage transistor due to the Zener diode, a resistor (R_{38}) has been connected between the Zener diode and the base of transistor TR₇.

At radio reception the emitter current of TR_7 can rise up to 40mA. For this reason the collector resistor of TR_7 (R_{40}) has to be rather low so as to provide sufficient collector voltage swing for driving the audio pre-driver transistor TR_8 . However, such a low collector resistor would render too low an amplification when operating the a.f. amplifier from a crystal pick-up. To avoid this the amplification of the pre-stage, is increasend by switching-on an additional collector resistor R_{41} in Fig. 17. This becomes possible because the emitter current of TR_7 then amounts to only 1mA.

The f.m. front-end operates at a line voltage of 12V, obtained by means of the series resistor R_{69} .

Fig. 16 Simplified circuit diagram of the power supply for the audio part and the high frequency part of the receiver. The audio pre-stage (TR_7) simultaneously acts as a voltage stabiliser for the high frequency stages. In fact this transistor operates as an emitter follower with stabilised basee voltage.

4. ALIGNMENT PROCEDURE

The alignment of the f.m. tuner and the i.f. amplifier is quite conventional.

In the parts list some notes are given concerning the position of the core in the various tuning coils.

As regards the a.m. front-end the following alignment procedure is recommended:

- 1. Connect a signal generator via the artificial aerial of Fig. 2 to the aerial input terminals of the receiver.
- 2. Connect a non-selective voltmeter to the base of the mixer transistor TR_4 . Switch-off the oscillator stage, e.g. by short circuiting the oscillator tank circuit.
- 3. Check that the coils L_{14} , L_{15} and L_{16} are located on the ferrite rod aerial as indicated in the parts list.
- 4. Switch the receiver to long wave reception and adjust the frequency range of the aerial circuit from 150 kc/s to 285 kc/s by varying the position of coil L_{15} on the ferrite rod.
- 5. Check the bandwidth of the LW aerial circuit at 200 kc/s. This shall be about 9 kc/s. In case of unfavourable mounting of the rod aerial (the quality factor of the tuned circuit may be affected by surrounding metal parts), the value of R_{12} (470 k Ω) may have to be changed.
- 6. Switch the receiver to medium wave reception and adjust the frequency range of the aerial circuit from 530 to 1600 kc/s by means of C_{22} , C_{25} and L_{15} .

During this adjustment the coupling coil L_{14} has to be at the extremity of the ferrite rod.

- 7 Check the bandwidth of the MW aerial circuit at 1 Mc/s. This shall be about 10 kc/s. In case of unfavourable mounting of the rod aerial (the quality factor of the tuned circuit may be affected by surrounding metal parts), the value of R_{13} (100 k Ω) may have to be changed.
- 8. Adjust the voltage transfer at 1Mc/s from the aerial e.m.f. to the base of the mixer transistor to 0.3, by moving the coupling coil L_{14} towards the tuning coil L_{15} . The signal level shall be sufficiently low to avoid overloading of the mixer.

When moving L_{14} towards L_{15} , the resonant frequency of the aerial circuit becomes higher than the designed frequency. This has to be corrected my moving L_{15} across the rod aerial until maximum meter reading is again obtained. Check whether this maximum meter reading is really due to resonance of the aerial circuit by varying the frequency setting of the generator. If this is not the case, the initial displacement of L_{14} was chosen too large.

It is recommended, therefore, to adjust the voltage transfer of the aerial circuit in a few steps.

- 9. Switch the receiver to short wave reception and adjust the tuning range from 6 to 16 Mc/s by means of L_{12} , L_{13} , C_{20} and C_{25} .
- 10. Remove the short circuit of the oscillator tank circuit (refer to item 2) and adjust roughly the frequency ranges of the oscillator in the conventional way.
- 11. Adjust the oscillator frequency at the tracking points as given in section 2.2.3. by readjusting the tuning coils and the trimmers of the oscillator circuits. The intermediate frequency shall be 452 kc/s.

LIST OF COMPONENTS

RESISTORS

All resistors are cracked carbon types, $\pm 5\%$ toleranceand are rated at $^{1}/_{8}W$ unless other wise stated.

R_1	\equiv	820	Ω		B8 031	04B/820E	R ₃₉		5.6	kΩ		B8 03	1 04B/5k6
\mathbf{R}_2	=	27	kΩ		B8 031	04B/27k	R_{40}		150	Ω		B8 03	1 04B/150E
R_3	=	6.8	kΩ		B8 031	04B/6k8	R_{41}	-	3.3	kΩ		B8 03	1 04B/3k3
R_4	=	33	kΩ		B8 031	04B/33k	R_{42}		1	kΩ		B8 03	1 04B/1k
R_5	=	8.2	kΩ		B8 031	04B/8k2	R_{43}	_	2.2	kΩ		B8 03	1 04B/2k2
R_6	=	2.2	kΩ		B8 031	04B/2k2	R ₄₄	=	10	kΩ	carbon logarithmic	E 098	CG/30C29
R ₇	=	100	Ω		B8 031	04B/100E					single potentiometer	_	
R_8	=	1.5	kΩ		B8 031	04B/1k5	R_{45}	=	20	kΩ	carbon linear single potentiometer	E 0980	CG/30C05
R ₉	=	8.2	kΩ		B8 031	04B/8k2	Rie		1	MΩ	carbon linear	E 098	CG/30C15
R ₁₀	=	27	kΩ		B8 031	04B/27k	40				single potentiometer		
R ₁₁	=	470	kΩ		B8 305	82B/470k	R ₄₇		6.8	$k\Omega$		B8 03	1 04B/6k8
R_{12}	=	470	kΩ		B8 305	82B/470k	R_{48}		1.5	kΩ		B8 031	1 04B/1k5
R ₁₃	=	100	kΩ		B8 031	04B/100k	R ₄₉	=	470	Ω	carbon trimming	E 086	AC/470E
R ₁₄	=	150	kΩ		B8 031	04B/150k					potentiometer		
R ₁₅	=	5.6	kΩ		B8 031	04B/5k6	R_{50}	-	1	kΩ		B8 03	1 04B/1k
R_{16}	=	120	Ω		B8 031	04B/120E	R ₅₁	=	470	Ω	carbon trimming	E 0864	AC/470E
R_{17}	=	390	Ω		B8 031	04B/390E	D		500	0	potentiometer	D0 20/	014 /5005
R_{18}	=	3.3	$k\Omega$		B8 031	04B/3k3	R ₅₂	=	500	Ω	NIC resistor	B8 320	0 01A/500E
R_{19}	=	270	Ω		B8 031	04B/270E	\mathbf{R}_{53}	=	68	Ω		B8 031	04B/68E
R_{20}		4.7	kΩ		B8 031	04B/4k7	R ₅₄	=	10	Ω		B8 031	04B/10E
R_{21}	=	56	Ω		B8 031	04B/56E	R ₅₅	_	68	Ω		B8 031	04B/68E
R_{22}	—	470	Ω		B8 031	04B/470E	R ₅₆	=	4.7	Ω	1/4 W	B8 031	05B/4E/
R_{23}		150	Ω		B8 031	04B/150E	R ₅₇	=	4.7	Ω	1/4 W	B8 031	05B/4E/
R_{24}		220	Ω	carbon trimming	E086AC	C/220E	R ₅₈	=	120	Ω	1/2 W	B8 031	06B/120E
D				potentiometer			R ₆₈	=	2.7	kΩ		B8 031	04B/2k7
R ₂₅	=	390	Ω		B8 031	04B/390E	R ₆₀	=	22	kΩ		B8 031	04B/22k
R_{26}		1	kΩ	carbon trimming potentiometer	E086AC	2/1k	R ₆₁	=	560	Ω		B8 031	04B/560E
R ₂₇		22	kΩ	1	B8 031	04B/22k	R ₆₂	=	22	Ω		B8 031	04B/22E
R ₂₈		4.7	kΩ	carbon trimming	E086AC	/4k7	R ₆₃	\equiv	330	Ω		B8 031	04B/330E
				potentiometer			R ₆₄	=	8.2	kΩ		B8 031	04B/8k2
R ₂₉	=	8.2	kΩ		B8 031	04B/8k2	R ₆₅		1 N	MΩ		B8 305	5 82B/1M
R_{30}	-	10	kΩ		B8 031	04B/10k	R ₆₆	=	12	kΩ		B8 031	04B/12k
R_{31}	=	27	kΩ		B8 031	04B/27k	R ₆₇				asymmetric VDR	E 295	ZZ/01
R_{32}		12	kΩ		B8 031	04B/12k	R ₆₃	=	47	Ω		B8 031	04B/47E
R ₃₃	=	470	kΩ		B8 305	82B/470k	R ₆₉		270	Ω		B8 031	04B/270E
R_{34}	=	470	kΩ		B8 305	82B/470k	R ₇₀	=	47	Ω		B8 031	04B/47E
R ₃₅	=	5.6	kΩ		B8 031	04B/5k6	R ₇₁	-	3.3	kΩ		B8 031	04B/3k3
R ₃₆	_	8.2	kΩ		B8 031	04B/8k2	R ₇₂	=	56	kΩ		B8 031	04B/56k
R ₃₇	-	220	kΩ		B8 031	04B/220k	R ₇₃	=	3.9	kΩ		B8 031	04B/3k9
R ₃₈	=	1.8	kΩ		B8 031	04B/1k8	R ₇₄		330	kΩ		B8 305	82B/330k

CAPACITORS

C –	30 nF	+ 2%	ceramic	C 329	BA/C39F	C.1 ==	820 pF	\pm 5%	polystyrene	C 285	AA/B820E
$c_1 =$	59 pr	<u> </u>	ceranne	0 527	BINCOOL	$C_{42} =$	10 nF	\pm 20%	polyester	C 280	AE/P10K
$C_2 =$	4.7 nF	+ 100% - 20%	ceramic	C 331	AA/R4k7	$C_{43} =$	47 nF	\pm 20%	polyester	C 280	AE/P47K
-		+ 100%		6.001	1 4 (D (1 5	$C_{44} = 1$	220 nF	± 20%	polyester	C 280	AE/P220K
$C_3 =$	4.7 nF	20%	ceramic	C 331	AA/R4k/	$C_{45} =$	330 pF	± 5%	ceramic	C 304	GH/B330E
$C_4 =$	6 pF	ceramic	trimmer	C 004	ZZ/16	$C_{46} =$	330 pF	± 5%	ceramic	C 304	GH/B330E
$C_5 =$	15 pF	± 5%	ceramic	C 329	BA/B15E	$C_{47} =$	16 µF	16 V	electrolytic	C 426	AR/E16
$C_6 =$	3.3 pF	\pm 0.5 pF	ceramic	C 329	BA/L3E3	$C_{48} =$	16 µF	16 V	electrolytic	C 426	AR/E16
$C_7 =$	1.5 pF	\pm 0.25 pF	ceramic	C 304	GH/N1E5	$C_{49} =$	18 nF	± 10%	polyester	C 281	AB/A18K
$C_8 =$	470 pF	± 20%	ceramic	C 322	BC/P470E	$C_{50} =$	100 µF	6.4 V	electrolytic	C 426	AR/C100
C –	47 nF	+ 100%	ceramic	C 331	AA/B4k7	$C_{51} =$	16 µF	16 V	electrolytic	C 426	AR/E16
C ₉ —	4.7 m	- 20%	ceranne	0 551		$C_{52} =$	1.6 µF	25 V	electrolytic	C 426	AR/F1.6
$C_{10} =$	82 pF	$\pm 2\%$	ceramic	C 329	BA/C82E	$C_{53} =$	25 µF	25 V	electrolytic	C 426	AR/F25
$C_{11} =$	100 pF	\pm 2%	ceramic	C 329	BA/C100E	$\mathrm{C}_{54} =$	80 µF	25 V	electrolytic	C 426	AR/F80
$C_{12} =$	10 pF	\pm 0.5 pF	ceramic	C 329	BA/L10E	$C_{55} =$	16 µF	16 V	electrolytic	C 426	AR/E16
$C_{13} =$	4.7 nF	+ 100% - 20\%	ceramic	C 331	AA/R4k7	$C_{56} =$	15 nF	\pm 20%	polyester	C 280	AE/P15K
C. –	бnF	ceramic	trimmer	C 004	77/16	$C_{57} =$	25 µF	25 V	electrolytic	C 426	AR/F25
$C_{14} = C_{14} = -$	15 nF	+ 5%	ceramic	C 329	BA/B15E	$C_{58} =$	330pF	± 20%	ceramic	C 322	BC/P330E
$C_{15} = C_{15} = -$	12 pF	+ 5%	ceramic	C 329	BA/B12E	$C_{59} =$	160 µF	25 V	electrolytic	C 437	AR/F160
$c_{16} =$	12 pi	± 50%	cerunne	0 527	D11, D120	$C_{60} =$	100 µF	6.4 V	electrolytic	C 426	AR/C100
$C_{17} =$	1 nF	- 20%	ceramic	C 322	BA/H1k	$C_{61} =$	1 µF	40 V	electrolytic	C 426	AR/G1
$C_{18} =$	330 pF	± 5%	ceramic	C 304	GH/B330E	$C_{62} =$	500 µF	40 V	electrolytic	C 431	BR/G500
$C_{19} =$	56 pF	± 3%	ceramic	C 302	CC/K56E	$C_{63} = 1$	l250μF	40 V	electrolytic	C 431	BR/G1250
$C_{20} =$	30 pF	concentric	air trimmer	C 005	CC/30E	$C_{64} =$	500 µF	40 V	electrolytic	C 431	BR/G500
$C_{21} =$	2 nF	± 5%	polystyrene	C 295	AB/B2K	$C_{65} =$	560 pF	700 V	ceramic	C 321	GA/A560E
$C_{22} =$	60 pF	concentric	air trimmer	C 005	CA/60E	$C_{66} =$	560 pF	700 V	ceramic	C 321	GA/A560E
$C_{23} =$	82 pF	± 3%	ceramic	C 302	CC/K82E	$C_{67} =$	47 nF	\pm 20%	polyester	C 280	AE/P47K
$C_{24} =$	60 pF	concentri	c air trimmer	C 005	CA/60E	$C_{68} \equiv$	27 nF	\pm 20%	polyester	C 280	AE/P27K
$C_{25} =$	500 pF	variable tu	nning canacite	rAC_{101}	14	$C_{69} =$	47 nF	\pm 20%	polyester	C 280	AE/P47K
$C_{78} =$	520 pF	fundere ta	ining supreme			C. –	22 nF	+ 50%	ceramic	C 301	GA/H2K2
$C_{26} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K	C ₇₀ —	2.2 11	- 20%	ceranne	0 501	011/ 112R2
$C_{27} =$	220 pF	\pm 5%	polystyrene	C 285	AA/B220E	C ₇₁ =	700 pF	$\pm 1\%$	polystyrene	C 295	AA/D700E
$C_{28} =$	1.8 nF	\pm 10%	polystyrene	C 295	AA/A1K8	$C_{72} =$	60 pF	concentric	air trimmer	C 005	CA/60E
$C_{29} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K	$C_{73} =$	205 pF	$\pm 1\%$	polystyrene	C 285	AA/D205E
$C_{30} =$	220 pF	± 5%	polystyrene	C 285	AA/B220E	$C_{74} =$	150 pF	± 5%	polystyrene	C 285	AA/B150E
$C_{31} =$	820 pF	± 5%	polystyrene	C 285	AA/B820E	$C_{75} =$	56 pF	<u>+</u> 5%	polystyrene	C 285	AA/B56E
$C_{32} =$	220 pF	± 5%	polystyrene	C 285	AA/B220E	$C_{76} =$	30 pFc	oncentric	air trimmer	C 005	CC/30E
$C_{33} =$	820 pF	± 5%	polystyrene	C 285	AA/B820E	$C_{77} =$	60 pFc	oncentric	air trimmer	C 005	CC/60E
$C_{31} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K	$C_{79} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K
$\mathrm{C}_{35} =$	100 nF	± 20%	polyester	C 280	AE/P100K	$\mathrm{C}_{80} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K
$C_{36} =$	10 nF	± 20%	polyester	C 280	AE/P10K	$\mathrm{C}_{81} =$	10 µF	25 V	electrolytic	C 426	AR/F10
$C_{37} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K	$\mathbf{C}_{82} =$	10 nF	\pm 20%	polyester	C 280	AE/P10K
$C_{38} =$	820 pF	± 5%	polystyrene	C 285	AA/B820E	$C_{83} =$	100 nF	\pm 20%	polyester	C 280	AE/P100K
$C_{39} =$	220 pF	± 5%	polystyrene	C 285	AA/B220E	$\mathbf{C}_{84} =$	$25 \; \mu F$	25 V	electrolytic	C 426	AR/F25
$C_{40} = -$	82 pF	± 5%	polystyrene	C 285	AA/B82E	$C_{85} =$	22 pF	\pm 20%	ceramic	C 322	BD/P22E

COILS

All coils are to be wound clockwise. For construction of the coils see adjacent figures. In the wiring diagrams of the coils the bottom view is shown. Mechanical dimensions are in mm.

FM aerial coil

Powder iron frame K4 712 50/2P1

FM interstage coil 13/4 turns of tinned copper wire 1 mm diameter L_4 31/4 inner diameter of coil 7.4 mm L_5 winding pitch 4.2 mm $Q_0 = 80 \text{ at} 87.5 \text{ Mc/s}$ P 45 33 30/437 AY $\hat{Q_0} = 100 \text{ at } 108 \text{ Mc/s}$ Coil former Powder iron rod 32210870060 diameter 5 mm length 22 mm travel 15 mm Coil of FM i.f. trap turns of enamelled copper wire 0.1 mm diameter 25 L_6 coil diameter $\approx 2 \text{ mm}$ Coil former B 189196 $Q_0 \approx 30$ at $10.7 \text{ Mc/s} \cdot$ FM i.f. coil primary $L_7 = 17^{1/2}$ turns of stranded wire 24 x 0.03 inner diameter of coil 4.5 mm A3 299 07 Coil former $Q_0 = 115$ at 10.7 Mc/s Ferroxcube core K5 120 02/(4D) for frequencies up to 12 Mc/s FM oscillator coils $1^{3}/_{4}$ turns of tinned copper wire 1 mm diameter L_8 $3^{1}/_{4}$ inner diameter of coil 6.3 mm L_9 winding pitch 3.63 mm $\begin{array}{rcl} Q_{0} &=& 80 \mbox{ at } & 76.8 \mbox{ Mc/s} \\ Q_{0} &=& 120 \mbox{ at } & 97.3 \mbox{ Mc/s} \end{array}$ P 45 33 30/437 AY Coil former For construction see at FM interstage coil Powder iron rod 32210870060 diameter 5 mm length 22 mm travel 15 mm $L_{10} = 11^{1/2}$ | turns of enamelled copper wire 0.22 mm diameter inner diameter of coil 4.5 mm winding pitch 0.5 mm Coil former A3 238 25 Powder iron core K4 725 10/2P4 for frequencies up to 100 Mc/s SW aerial coil turns of stranded wire 36 x 0.03 to C18 L11 L₁₁ 1 L_{12} 6 L₁₃ 2 L12 $L = 1.24 \,\mu H$ $Q_6 = 110$ at 11 Mc/s (measured with can) AP 3016/03 Coil former AP 3014/02 (4D) Ferroxcube frame Ferroxcube core K5 120 02/ (4D) AP 3015/02 gL12 Can L11 Remark: If the core is moved into the coil from the top, the

second resonance gives correct coupling between L $_{11}$ and L $_{12}$, L $_{13}$.

MW and LW aerial coils

L ₁₄	L = 1.23 mH	110	turns of stranded wire 36 x 0.03	7///
L ₁₅	$L=174\ \mu H$	42	L_{14} and L_{16} cross wound.	
L ₁₆	L = 1.64 mH	200	gear ratio of cross winding machine 26/28, 27/79	
L17		24	Ferroxcube rod 56 681 23/4B	+
			for frequencies up to 2 Mc/s	earth side
			length 203 mm, diameter 10 mm	7280349

~ . . .

..

FM i.f. coil (secundary)

L ₁₈	1	turns of stranded wi	ire 36 x 0.03	
L ₁₉	8			
Rela	ative co	upling kQ (loaded) be	etween L_7 and $L_{19} = 1.2$	
L ₁₉ :	$Q_0 =$	100 at 10.7 Mc/s (me	easured with can).	
10			Coil former	
			Ferroxcube fram	ıe
			Ferroxcube core	

Coil formor	A D 2016/02
Contronner	AF 3010/02
Ferroxcube frame	AP 3014/02 (4D)
Ferroxcube core	K5 120 02/ (4D)
Can	AP 3015/02
p, the	

10 L25 L22

Remark: If the core is moved into the coil from the top, the first resonance gives correct coupling between L_{18} and L_{19} .

...

FM i.f. coils

L_{20}	7		turns of enamelled copper wire 0.16 mm	n diameter
L_{21} L_{22}	5 2		turns of enamelled copper wire 0.26 mm	diameter
Q_0^{22}	=	90	at 10.7 Mc/s (measured with can)	

Coilformer	AP 3016/02
Coil former	AP 3016/02
Ferroxcube frame	AP 3014/02 (4D)
Ferroxcube core	K5 120 02/ (4D)
Can	AP 3015/03
Coupling disc	AP 3018
Coupling rod	56 680 49/3B
Spacer plate	AP 3017
and the second se	

to L23

Remark: If the core is moved into the coil from the top, for both coils the second resonance gives the correct quality factor.

AM i.f. coils

L23	80	turns of stranded wire 12 x 0.04	
L_{24}	68	cross wound	
L25		gear ratio of cross winding machine 45/60, 35/40	
Q_0	= 160	at 452 kc/s (measured with can)	
		G 114	

Coilformer	AP 3016/02
Coil former	AP 3016/02
Ferroxcube frame	AP 3014/00 (3B)
Ferroxcube core	K5 120 00 (3B)
for frequencies up	to 600 kc/s
Can	AP 3015/03
Coupling disc	AP 3018
Coupling rod	56 680 49/3B
Spacer plate	AP 3017

b) If the core is moved into the coil from the top, for both coils the second resonance gives minimum stray coupling between the i.f. stages.

HF choke

L₂₆ | 4 mH

d.c. resistance 200 A3 110 05

Coils of FM ratio detector

L₂₇ 4 turns of stranded wire 36 x 0.03 L.8 3

 $Q_0 = 110$ at 10.7 Mc/s (measured with can and L_{29})

- L₂₉ turns of enamelled copper wire 0.1 mm diameter 4
- turns of stranded wire 36 x 0.03 6

L₃₀ bilifar wound

L₃₁ 6

 $Q_0 = 130$ at 10.7 Mc/s (measured with can)

Coil former AP 3016/03 Coil former AP 3016/02 Ferroxcube frame AP 3014/02 (4D) Ferroxcube core K5 120 02/ (4D) Can AP 3015/03 AP 3018 Coupling disc Coupling rod 56 680 49/3B 56 680 49/3B Coupling rod AP 3019 Block

Remarks: a) If the core is moved into the coil from the top, the second resonance gives the correct quality factor for both coils and the designed coupling between L_{27} , L_{28} and L_{29} .

b) The dot at L_{30} and L_{31} indicates the start of the windings.

AM i.f. coils

 L_{32} 58 turns of stranded wire 12 x 0.04 L_{33} 22 cross wound gear ratio of cross winding machine 45/60, 35/54 48 L_{34} L_{35} 32

 $Q_0 = 150$ at 452 kc/s (measured with can)

Coilformer Coil former Ferroxcube frame Ferroxcube core Can Coupling disc Coupling rod Spacer plate

AP 3016/02 AP 3016/02 AP 3014/00 (3B) K5 120 00 (3B) AP 3015/03 AP 3018 56 680 49/3B AP 3017

Remarks: a) The bottom of the can has to be screened so as to keep the stray field of the i.f. transformer sufficiently low.

b) If the core is moved into the coil from the top, for both coils the second resonance gives minimum stray coupling between the i.f. stages.

HF chokes

 L_{36} 1 mH L₃₇

d.c. resistance 40Ω A3 110 68

SW oscillator coils

L_{38}	3	turns	of stra	nded	wire	36 x	0.03
L ₃₉	3						
L40	1						
Q_0	= 100	at 11	Mc/	s (me	easured	with	can)

AP 3016/02 Coil former Ferroxcube frame AP 3014/02 (4D) K5 120 02/ (4D) Ferroxcube core Can AP 3016/02

Remark: If the core is moved into the coil from the top, the second resonance gives correct coupling between L_{38} , L_{39} and L_{40} .

MW oscillator coil L_{41} 59 turns of stranded wire 8 x 0.04			side L40
L_{42} 3 cross wound L_{43} 4 gear ratio of cross winding machine 28/	52, 35/58		
$Q_0 = 100$ at 1.4 Mc/s (measured with can)			لـر <u>موں</u> ہے
	Coil former	AP 3016/02	
	Ferroxcube frame	AP 3014/00 (3B)	
	Ferroxcube core	K5 120 00 (3B)	8-40 C Σ 3-438
	Can	AP 3015/02	r Gra 7
Remark: If the core is moved into the coil from the to	7280354		
second resonance gives correct coupling between L	Lus and Lus.		11/1/1

second resonance gives correct coupling between L_{41} , \hat{L}_{42} and L_{43} .

LW oscillator coil

L44	130	turns of stranded wire 8 x 0.04	
*	10	1	

 $\begin{array}{c|c} L_{45}^{44} & 12 & \mbox{cross wound} \\ L_{46} & 1 & \mbox{gear ratio of cross winding machine 28/52, 35/58} \\ Q_0 &= 110 \mbox{ at } 660 & \mbox{kc/s (measured with can)} \end{array}$ Co

second resonance gives correct coupling between L_{44}, L_{45} and L_{46} .

	Coil former	AP 3016/02
	Ferroxcube frame	AP 3014/00 (3B)
	Ferroxcube core	K5 120 00 (3B)
	Can	AP 3016/02
Remark: If the core is moved into the coil from the	top, the	

L/1 L43 L42

MISCELLANEOUS

F ₁	=	fuse 100 mA (slow)	code no. 08 142 37
F_2	=	fuse 100 mA (slow)	code no. 08 142 37
LA ₁	=	dial lamp 15 V 0.2A	code no. 8004 D
LA_2	==	dial lamp 15 V 0.2A	code no. 8004 D
LSP	=	loudspeaker 25Ω	type no. AD 3574 HX
Μ	=	tuning indicator	current for full-scale deflection $300\mu A$, d.c. resistance 300Ω

MAINSTRANSFORMER T₁

Winding	number of turns	wire diameter (mm)	winding [,] width (mm)	turns per layer	number of layers	d.c. resistance (Ω)
\mathbf{W}_{p}	1456	0.2	27.8	112	13	90
\mathbf{W}_{s}	130	0.2	27.8	26	5	0.7

All windings are of enamelled copper wire. Transformer lamination Si Fe (composition: 0.8 - 2.3%, rest Fe)

SEMICONDUCTOR COMPLEMENT

Transistors

=	AF	178	f.mr.f. amplifier
=	AF	125	f.m. mixer
=	AF	125	f.m. oscillator
=	AF	185	a.m. mixer
=	AF	121	first i.f. stage
=	AF	179	second i.f. stage
=	AC	127	a.f. pre-stage
=	AF	117	a.f. driver
=	AC	132	phase-splitter
=	AC	127	(matched pair)
=	AC	128	a.f. output stage
=	AC	128	(matched pair)
=	AF	125	a.m. oscillator
=	AC	130	a.g.c. amplifier
		= AF $= AF$ $= AF$ $= AF$ $= AF$ $= AC$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Diodes

D_1	=	BA 102	a.f.c. diode
D_2	=	AA 119	limiter
D_3	=	AA 119	ratio detector
D_4	=	AA 119	(matched pair)
D_5	=	AA 119	a.m. demodulator
D_6	=	BZY 88/C	216V5 d.c. stabilizer
D_7	=	BA 114	d.c. stabilizer
BR ₁	=	BY 122	bridge rectifier

AF 179

R.F. GERMANIUM ALLOY-DIFFUSED TRANSISTOR

The AF179 (development type V72AF) is an alloy diffused P.N.P. germanium transistor with a low thermal resistance primarily intended for application in TV-i.f. amplifier stages.

Dimensions in mm

* Interlead shield, metal case

ABSOLUTE MAXIMUM RATINGS

Conector								
Voltage,	base reference	$-\mathbf{V}_{\mathrm{CB}}$	=	25	V			
Voltage,	emitter reference at							
R _B								
$- \leqslant 100$) and $ m R_{E}=200~\Omega$	$-V_{CE}$		25	V			
R _E								
Currents		$-\mathbf{I}_{\mathrm{C}}$		10	mΑ			
		-I _{CM}	==	15	mA			
Emitter		0 m						
Currents		$I_{\rm E}$		10	mA			
		IEM		15	mA			
		$-I_{\rm E}$	_	1	mА			
Dissipatio	n	\mathbf{P}_{C}		150	mW			
		0						
Temperat	ures							
Storage		T_s	= -	- 55°	C to	+75	$^{\circ}C$	
	continuous	Ti	-	75°	С			
Junction								
	incidentally, up to							
	a total of 200 hrs	T_d		90°	С			
		u						
CARACT	TERISTICS (Tamb =	$= 25^{\circ}$	C; -	VCR	= 1	0V)		
	-Iora	/	8	CD				
	-i _{CBO}	2 15	0 μ <i>Γ</i>		т		75	°C
	-i _{CBO}		$0 \mu z$	1	1	j —	15	C
	-i _B V	- 28	0 38	$\frac{1}{0}$ mV	7 т.		2	mA
	-v _{BE}	- 20	0.30		1		3	ША
	1	== 21	U IVI	C/ 5	T		1	m A
	$-C_{re}$	$\leqslant 0.6$	8 pF	7	f	2 _	150	IIIA ko/s
Thormol	registeres from				1	_	4501	KC/S
innerman	resistance from	р	< 0	22	0	117		
junction	to ambient	$\mathbf{K}_{\text{th j-a}}$	$a \leqslant 0$.32	C/m	W		
SMALL	SIGNAL PARAME'	TERS						
(V _{CB}	$= 10$ V; $I_E = 3$	mA; f	= 3	5 M	c/s)			
	g _{ie}		6.5 1	nmh	0			
	C_{ie}	= 3	35 I	oF				
	$ \mathbf{Y}_{re} $	= 10)0 µ	imho)			
	$\Phi_{ m re}$	$= 2\epsilon$	52°					
	$ \mathbf{Y}_{fe} $	= 8	80 I	nmh	0			
	$\Phi_{ m fe}$	= 32	22°					
	goe	= 10)0 į	umho)			
	C _{oo}		3.6 p	σF				
	UNA VINTE ATTEDATY		- MW	CD 4	-	r		
MAXIM	UNI UNILATERAL	ISED P	UWI		JAIN	1		
Defined a	as $\Phi\mu_{\mathrm{M}} = \frac{ \mathbf{Y}_{\mathrm{fe}} ^2}{4\overline{g}_{\mathrm{ie}}g_{\mathrm{oe}}}$	= 34	dB					

BY 122 (66 BY) SILICON BRIDGE RECTIFIER ASSEMBLY

The BY122 is a bridge rectifier assembly equipped with four silicon double diffused junction diodes for use as power supply up to 50 V and 0.5 A.

* 2 wires 0.5 mm Ø twisted and tinned.

ABSOLUTE MAXIMUM RATINGS (with capacitive load) Input

F					
Input voltage	V_i		42	V	(RMS)
Input current	Ii		1.1	Α	(RMS)
Peak inrush current	\mathbf{I}_{s}	=	25	A	
Output					
Average output current	\mathbf{I}_{0}	=	0.5	A	
Temperature					
Storage temperature	T_{s}	_	- 55	to	$+ 150^{\circ} C$
Operating junction temperature	eT_j		150°	С	
specified output current	Ta		60°	С	

CARACTERISTICS

Peak forward voltage drop per diode		
at $I_F = 2.5 A$; $T_i = 25 \degree C$	$V_{\rm F}\leqslant$	1.7 V
Peak reverse leakage current per diode		
at $V_{\rm R} = 60$ V; $T_{\rm i} = 125^{\circ}$ C	$I_R \leqslant$	30 µA
Thermal resistance from		
junction to ambient	R _{th j-a}	$\leq 55^{\circ} \text{ C/W}$

TYPICAL OPERATIONS

Development samples are distributed without guarantee for further supply. Development sample data represent the characteristics and ratings of development samples and are to be regarded as first indications of the ultimate performance to be achieved by the product in preparation.

nosition	contacts																																				
position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37
LW	Γ	•	•			•	•			•	•					0	•		•		•		•	•			•		•		0			•			
MW	•		•				•			•	•				1				•					•		•		•		•	•		•			•	•
SW		•		•				•		•	0					•			•				0											-	•		•
FM									•			•		•			•							•		-				-				-			-
FM/AFC									•			•	•				•									-	-										
PU								-									-					•			-		-			-							-

Fig. 17 Circuit diagram of the mains-operated a.m.-f.m. receiver, shown for medium wave reception.

SURVEY OF A.I. BULLETINS

The following A.I. Bulletins have been issued in this series:

January 1959	Three self-oscillating mixer stages for short wave bands
Anril 1050	Circuits for stereorbonic amplifiers
April 1959	Single ended stereophonic amplifiers
July 1939	Transistenies d calf accillating mixer stance
July 1959	Analysis of the new linear distantian of transistenia dama
July 1959	Analysis of the non-linear distortion of transistorised am- plifiers
July 1959	A transistorised AM/FM receiver ¹)
February 1960	High-quality stereophonic amplifiers
February 1960	Simple method of designing transistorised I.F. amplifiers with double tuned band pass filters
March 1960	Television receiver for 110° deflection
August 1960	Voltage indicator tube EM87
June 1961	Nine transistor AM/FM receiver with the alloy diffused transistors AF114, AF115 and AF116 in the H.F. and I.F. stages
February 1962	Cooling of semiconductor elements
April 1962	The junction-transistor push-pull blocking oscillator
June 1962	The application of the alloy-diffused transistors AF124, AF125, AF126 and AF127 in an AM/FM car-radio receiver
July 1962	The application of transistors in a pocket size taperecorder
October 1962	The application of RF transistor AF102 and of AF tran- sistors AC126 and 2-AC128 in an eight-transistor AM/FM receiver
May 1963	Application of the audio transistors AC125, AC126, 2-AC128
May 1963	NPN-PNP complementary stages with the transistors AC127/ 132
March 1964	High performance gain controlled A.M. mixer with AF185
June 1965	Stabilisation of radio receiver performance at low battery voltage with a VDR device
in preparation	Input stage of car radio
in preparation	Electronic organ with cold cathode tubes
July 1964	Stereo decoding for the F.C.C. system
July 1965	Interference effects in transistor FM tuners; Theory and circuitry
April 1965	The integrated circuit OM200 employed as a hearing aid amplifier with 0.2 mW output
	January 1959 April 1959 July 1959 July 1959 July 1959 February 1960 February 1960 April 1962 July 1952 July 1962 October 1962 May 1963 March 1964 June 1965 April 1964 July 1964

* Out of stock: dye-line prints available on request

1) Superseded by Nos 111 and 116

**125 September 1964

A State of the second

Audio amplifiers with AD 149

