
PHILIPS PHILIPS

digital instrument course
Part 1 BASIC BINARY THEORY-AND LOGIC CIRCUITS

Published by

N.V. Philips' Gloeilampenfabrieken
Test and Measuring Department
Eindhoven, The Netherlands

The revised and extended first
part of the course-already
serialized in Philips
Test and Measuring Notes

Editor: T. Sudar

Assistant Editor: R. H. Bathgate

© N.V. Philips' Gloeilampenfabrieken

Price $4,—, £ 2,40, Hfl 10,—

Fifth, revised edition

The front cover patterns represent the BCD 1, 2, 4, 8 code
(above) and the Gray code (below) for numbers from 1
to 16.

DIGITAL INSTRUMENT COURSE

Part 1 . Basic binary theory and logic circuits
by A. J. Bouwens

Contents list

page page
Foreword s Chapter 5 Bistable elements (flip-flops) . 35

RS flip-flop 35
Chapter 1 Number systems . 7 Clocked RS flip-flop 36
Decimal system 7 D flip-flop 36
Binary system 8 JK flip-flop 36
Octal system 8 T (toggle) flip-flop 37
Hexadecimal system 8 Master slave flip-flop . 37
Conversion of number systems 8
Arithmetic processes in the binary number system 9 Chapter 6 Counters, scalers and shift registers 3s
Complements 10 Binary counters 39
Coding 12 Decade and other counters 41

Scalers 44
Chapter 2 Boolean algebra 15 Shift registers 44
The logic of classes 15
Laws of Boolean algebra 16 Chapter 7 The circuitry of logic elements 47
Simplifications of Boolean functions 19 Logic convention 47
Min-terms and max-terms 19 Basic circuitry 48
The logic of propositions 20 — Diode gates 48

—Transistor gates 48
Chapter 3 Logic elements . 23 — Integrated-circuit (IC) families 49
AND gate 24
OR gate 2a Chapter 8 Interfaces and measuring systems 57
NOT gate (Inverter) 24 Interfaces 57
NAND gate 25 Logic polarity and level 57
NOR gate 25 Data signals and control signals 58
INHIBIT gate 25 Code converters 59
EXCLUSIVE-OR gate 25 Measuring systems 64
COMPARATOR 26
Distributed connections 26 Glossary 67
Delay . 26

Answers to questions ss
Chapter 4 Combinational logic 29
The adders 29
The subtractor 30
Comparators 31
Decoders and encoders 32
Multiplexers 33

3

Part 2 Digital counters and timers.
The second part of the digital instrument course deals
with digital frequency counters and timers.
The chapter headings are:
Basic counter circuitry
Modes of operation
Plug-in units and special functions
Accuracy

Part 3 Digital voltmeters and multimeters.
The third part of the digital instrument course deals
with the principles of operation of DVM's, and highlights
two application-oriented techniques involving DVM's.
The chapter headings are:
The operational ampl ifier
The analog-to-digital converter (ADC)
Automation in voltmeters
Digital multimeter circuits
Accuracy of digital voltmeters
Guarding techniques
AC and RMS measurements

PHILIPS

digital It'1St1'Ut7'1@tlt COUIt'S@
Wrt 2 DtGITAI Gf,'NINTERB AND TIMER$

PH 1 LI PS

digital instrument course
Part 3 DIGITAL VOLTMETERS AND MULTIMETERS

~~
mV

kit

rnA

4

Foreword

Nowadays, an increasing number of electronic meas-
uring instruments are "going digital", digital circuitry,
digital readout and digital remote control often being
combined in the one instrument.
The newcomer to the field of digital techniques is
faced with an abundance of articles, courses etc.
devoted to the fundamentals of digital circuits. Much
less, however, has been written about the use of such
circuitry in measuring instruments.
Such information is important, because it enables the
user of digital equipment to make the best possible use
of the various facilities offered.
In order to satisfy this need, a four-day course in
digital instrumentation was given a number of times
for the instrument special ists of our European sales
organisation. This course was such a success that we
thought it might be worth whi le repeating it in con-
densedform.
The course is divided into the fol lowing parts:
. Basic binary theory and logic circuits
. Digital timers and counters
. Digital voltmeters
This book contains the first part of the course, which
was originally serialized in Philips Test and Measuring
Notes.

5

JG~CE
40T~TIOM

OM C110Y ON AC 0
46F ALT f~F OC

tNTENS

Chapter 1
Number systems

Many different number systems are in daily use through-
outthe world. In electronic digital instruments, the digits
are usually represented by different potential levels. If
the decimal system were used, the circuits would have
to be capable of differentiating accurately between ten
levels representing the various digits. This is of course
possible with careful circuit design, but the circuits
would be rather complex and the chance of errors is
quite high.
In digital equipment nowadays, however, the binary
system is used practically exclusively, because of its
most remarkable feature: simplicity —just two digits.
Any number can be expressed in the binary system,
which we shal l now proceed to examine — after a brief
review of various number systems.

Decimal system
The decimal system is probably the most commonly
used number system, which is hardly surprising in view
of the fact that man has ten fingers ("digits"). Everyone
knows what to make of a number l ike 1972: the right-
hand or least significant digit (LSD) stands for a number
times 10 to the power of nought 10°, the next represents
a multiple of 10', and so on until the left-hand digit, or
most significant digit (MSD) is reached, which in the
above example stands for 103. This number can therefore
be expressed as:
1972= 1x103 +9x102 +7x10'+2x10°=

1000 + 900 + 70 + 2

Any integer (whole number) can be expressed as shown
above, while fractional quantities can be expressed in
much the same way using for example:
19.72=1x10'+9x10°+7x10— '+2x10-2

= 10 +9 +7/10 +2/100

The advantage of the decimal system, compared e.g.
with Roman numerals, is that because it has a positional
notation based on powers of ten, arithmetical operations
are considerably simpl ified. For example, a shift to the
left multiplies by ten, while a shift to the right divides
by ten:

1972 shift to left 19720
1972 shift to right 197,2

In general, a number to base r can be expressed as
follows:

a" x r"+a"_, x r"— ' + . . . +a2 x r2 +a, x r+a° +
+a_, x r— '+a_ 2 x r— Z. . .a_ m x r—"'

The coefficient "a" can range in value from 0 to r— 1. In
the binary system (r=2) we thus have two possible
values of "a", viz 0 and 1 ; in the octal system (r=8) we
have eight possible values, from 0 to 7; in the decimal
system (r= 10) ten from 0 to 9 and in the hexadecimal
(r=16) system sixteen from 0 to F; See table 1.1 (as
there are only ten symbols in our notation for numerical
values, we borrow the first six letters of the alphabeth
for the extra six symbols needed in the hexadecimal
system.

Decimal
(Base 10)

Binary
(Base 2)

Octal
(Base 8)

Hexa-
decimal
(Base 16)

10~ 10' 10° 26 23 2° 2' 2~ 2' 2° 8~ 8' 8° 16' 16°

0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 1
0 2 0 0 1 0 0 2 2
0 3 0 0 1 1 0 3 3
0 4 0 1 0 0 0 4 4
0 5 0 1 0 1 0 5 5
0 6 0 1 1 0 0 6 6
0 7 0 1 1 1 0 7 7
o s 1 0 0 0 1 o s
0 9 1 0 0 1 1 1 9
1 0 1 0 1 0 1 2 A
1 1 1 0 1 1 1 3 B
1 2 1 1 0 0 1 4 C
1 3 1 1 0 1 1 5 D
1 4 1 1 1 0 1 6 E
1 5 1 1 1 1 1 7 F

1 0 0 1 1 0 0 1 0 0 1 4 4 6 4
1 2 7 1 1 1 1 1 1 1 1 7 7 7 F

Table 1.1 Numbers to different bases

7

Binary system
In order to simplify circuit design and improve reliability,
the binary number system is generally employed in
digital equipment.
As the binary system is based on powers of two there are
only two digits namely 0 and 1. The instrument now
only has to recognise two separate states which can be
"no pulse" (0) and "pulse" (1), "low level" (0) or "high
level" (1); "no contact" (0) or "contact closure" (1), "no
current" (0) or "current" (1), and so on.
A positional notation is again used, as shown in Table 1.1,
where the binary equivalents of a number of decimal
integers are given.
As may be seen from the table, the decimal number 100
already requires as many as 7 binary digits.
The zeros and ones in the binary notation are generally
called "bits" ; this is a contraction of "binary digits".
It may be seen that the least significant digit (LSD) is
sti ll on the right while as we move from right to left each
digit represents the next higher power of two. If suc-
cessive negative indices are used, fractional quantities
can also be represented; the digits to the right of the
binary point now move in a descending scale, each being
half the value of its predecessor.
Thus, the binary number.

1.1101 = 1x2°+1x2—'+1x2 -2 +0x2-3 +1x2-4

can be written in decimal notation:

1 +2+4+0+~'6 1.8125

It should be noted that decimal integers can be ex-
pressed precisely in binary form, but the conversion of
a decimal fraction into a binary number wil l general ly
involve some approximation. The actual error will
depend on the number of binary digits used, and is
usually very small in, practice. However, this does not
mean that the binary system is less accurate than the
decimal system; one simply needs more digits to re-
present aquantity with the required precision.

Octal system
A number system widely used in computer techniques
is the octal system.
One of the particularly useful properties of the octal
system is the simple conversion technique from binary
to octal or vice versa.
The octal system comprises the following characters:
0, 1, 2, 3, 4, 5, 6, and 7. An octal value greater than
7 must be expressed by several digits, e.g.

7658"=7x8 2 +6x8'+5x8° =
7x64+6x8 +5x1 =501,0

As the base of the octal system is 8 = 23, it is very easy
to convert octal numbers into binary:
Binary 101011 can be split up in groups of bits 101/011
and directly transformed into octal :
using the following conversion table:

5 3

000 = 0 (octal) 100 = 4 (octal)
001 = 1 101 = 5 „
010=2 110 = 6 „
011 = 3 . . 111 = 7 „

Check: 101 011 binary is
1x25 +1x23 +1x2'+1x2° =4310
53 octal is
5x8'+3x8° =43,0

Hexadecimal system
Another number system —also used in computer tech-
niques is the hexadecimal system. This number system
has r=16 as its base; the characters used are given
in Table 1.1. Just as with the octal system, it is easy to
convert from the hexadecimal system to the binary and
vice-versa since 2°= 16 and hence each hexadecimal
digit corresponds to 4 binary digits. Table 1.1 can be
used as a conversion table; for example:
225,° =111000012 =E116 =3418

Conversion of number systems
Binary/octal to decimal
— Multiply the most significant (octal) digit by 8.
— Add to this product the value of the next significant

digit and multiply by 8.
— Repeat this up to the least significant digit (LSD).
— Add the value of the LSD to the last product.
— The result of this is the required decimal number.

Example
Binary 111/011/101/001
Octal 7 3 5 1
Conversion [(7 x 8+3) 8+5] 8+1

7xg+3=59
8x

472 + 5 = 477
8x

3816 + 1 = 381710

Note: The notation e.g. 7658 is used here to mean the number 765
written in the octal notation.

8

This procedure is - of course also valid not only for
integers but also for fractions, e.g. :
Binary 111/011 .101/001
Octal 7/3/. 5/ 1
Conversion (7 x 8+3) + (1 x 8- ' + 5)8- ' _

59 641

Similarly a number to base 2 can be converted to do
decimal equivalent by multiplying each digit by r (for the
integer part) and dividing by r for the fractional part, and
adding.

Decimal to octal/binary
1. Divide the decimal number by 8, and write down the

remainder (r,)
2. Divide the quotient of the preceding stage by 8 again

and write down the remainder (r2)
3. Repeat step 2 until the quotient is 0.

The required number is then r„ r°_, r2r,
Example: Decimal 381710
Conversion 3817 :8 = 477 :8 = 59 :8 = 7 :8= 0

32 40 56 0

61 77 3=r3 7=r,
56 72

57 5 = r2
56

1 = r,

Resulting in 7351 (octal) or 111/011/101/001 (binary).
Decimal fractions can be converted into binary/octal/
hexadecimal fractions by a similar method, except that
here one multiplies instead of dividing, and takes the
integral part of the product instead of the remainder.
Example: 59.641,0

59:8=7:8=0
56 0

3 7

0.641 x8=5.128
0.128 x 8 = 1.024
0.024x8=0.192
0.192 x 8 = 1.536

Resulting in 73.5101 (octaf~; 36.A41 (hexadecimal) or
111/011.101/001/000/001 (binary)
In general, the conversion of a decimal number to base
r is done in the same way except that r is used instead
of 8 (16).

~W~„t

Arithmetic processes in the binary number system
Arithmetic processes in the binary number system follow
exactly the same basic rules as in the decimal number
system.
Since the binary system is based on powers of two, a
shift to the left multiplies by two and a shift to the right
divides by two. Consider for example the binary number
1001 = 910.
With a shift to the left, this becomes:

10010=1x2°+0x23 +0x22 +1x2'+0x2°
= 1610 +0 +0 +210 +0 = 1810
i.e. the number has been doubled

A shift to the right gives:
100.1 = 1x22 +0x2'+0x2°+1 x2- '

= 4 +0 +0 +2 = 42,0
i.e. the number has been halved.

The normal arithmetic processes
on numbers in any scale, but the
system are extremely simple. For
only three rules for addition:

0+0 = 0
1+0=1
1 + 1 =two = 0 and 1 to carry

and three rules for multiplication
0x0=0
1x0=0
1x1=1

can be carried out
rules in the binary
instance, there are

9

Addition
00111 = 7,0
00101 = 510

01100 = 1210(with carries to the second, third and fourth
digits, reading from right to left)

Subtraction
In subtraction, it may be necessary to "borrow" from
the preceding column. For example:
01100 = 1210
00111 = 7,0

00101 = 510 (with "borrows" from the second, third
and fourth columns)

Multiplication
Binary multiplication is very simple:

111 = 7,0
101 = 510

100011 = 3510 (with carries to the first 4 digits)

Division
Binary division is the same as decimal division except
for the intermediate multiplications and subtractions,
which must (of course) be carried out in the binary
system.
11/10101/111

11

100
11

011
11

0 (21 :3 = 7)

Complements
In arithmic operations it is often more convenient to
subtract by adding the complements of the number in

question.

There are two types of complements in each base r
system: the is complement and the (r-1)'s complement.

The is complement
The is complement of a positive number N, the integral
part of which has n digits, is defined as r" —N.

Some examples:
The 10's complement of 127910 is 10°-1279 = 8721,0
The 8's complement of 1278 is 108 — 1278 = 6518
The 2's complement of 1012 is 102— 1012 = 0112

The is complement of fractions is determined in the
same way (r° —N) :
The is complement of 0.127910 is 1 —0.1279 = 0.872110
The is complement of 0.1278 is 1 — 0.1278 = 0.6518
The is complement of 0.1012 is 1 — 0.1012 = 0.0112

The (r —1)'s complement
The definition of the (r -1)'s complement is somewhat
more complex. For a positive number N to base r with n
digits in the integral part and m in the fractional part,
the (r -1)'s complement is defined as:

r" —r— '"—N

Some examples will clarify this:
The 9's complement of 127910 is 10°-1 —1279 = 872010
(No fraction part, so m = 0 and r— `" = 1)
The 9's complement of 0.127910 is
1 — 10—, — 0.1279 = 0.8720
(No integer part, son = 0 and r" = 1)
Tile 9's complement of 12.7910 is 102 —10-2

- 12.79 = 87.20

In the octal system.
The 7's complement of 1278 is 108 —1 — 1278 = 6508
The 7's complement of 0.1278 is 1 —10-

8 — 0.1278 = 0.658
The 7's complement of 1.278 is 108 — 10_e —1.278 = 6.508

and in the binary system:
The 1's complement of 1012 is 102 — 1 — 101 = 0102
The 1's complement of 0.1012 is 12 — 10-2-0.1012 = 0.0102
The 1's complementof 1.012 is 102 -10-2- 1.012 = 0.102

It follows from the above that the is complement can
be obtained from the (r -1)'s complement by addition of
1 to the least significant digit. In the binary system, the
1's (r— 1) complement is easily obtained by simply invert-
ing all bits. The 2's complement is then obtained by
adding a 1 ; e.g. :
The 2's complement of 11011011 is obtained from the
one's complement 00100100 by adding one to give
00100101.

10

Other examples

Binary 1's complement 2's complement
101 010 011

0.101 0.010 0.011
1.01 0.10 0.11

Octal 7's complement 8's complement
127 650 651

0.127 0.650 0.651
1.27 6.50 6.51

Subtraction with is complement
The subtraction of two positive numbers (M — N)~ can be
realized as follows: First add the is complement of the
subtrahend N to the minuend M. When there is a carry,
discard it; when there is no carry, take the is com-
plement of the number obtained and give it a negative
sign.

Some examples will clarify this:
M = 1972 1972
N = 1279 10's complement 8721 8721 +

(1)0693
carry is 1, answer is + 693

M = 1279
N = 1972 10's complement 8028

no carry, so take complement; answer

1279
8028+

9307
— 693

And in binary notation

N = 1100 1100
N = 0111 2's complement 1001 +

(1)0101
carry is 1; answer is + 101

M = 0111 0111
N = 1100 2's complement 0100+

1011
no carry; answer is — 101

Subtraction with (r -1)'s complement
This is carried out in the same way as described above
except for the use of the "end-around carry" as ex-
plained below.
The subtraction of two positive numbers (M — N), is in the
following ways with (r -1)'s complement.
First add the (r— 1)'s complement of the subtrahend N to
the minuend M. If there is a carry add it to the least
significant digit and if there is no carry take the (r -1)'s
complement of the number obtained and give it a nega-
tive sign.

Examples:
M = 19.72 19.72
N = 12.79 9's complement 87.20 +

106.92
add carry: L--~1 +

6.93

M = 12.79 12.79
N = 19.72 9's complement 80.27 +

93.06
no carry, take complement — 6.93

and in binary notation:

M = 1100 1100
N = 0111 1's complement 1000 +

10100
add carry: I---~1 +

101

M = 0111 0111
N = 1100 1's complement 0011 +

1010
no carry, take complement — 101

Both the 2's and 1's complements are used in digital
techniques. Each has its advantages and disadvantages.
The 1's complement is easy to obtain (by simply in-
verting all bits) but the arithmetics is somewhat more
complicated (because of the end-around carry), while
the opposite is true of the 2's complement. This is of
course also true of the 9's and 10's complements in the
decimal system.

11

Coding
A binary representation would be impossible as part of
a human language (imagine saying one-zero-one-one-
one instead of 23!) But the binary notation is the natural
language of the two-state components of the electronic
digital instruments. Its circuits represent the binary digits
(bits) as pulses or no pulses, high or low voltages, etc.
Special binary codes have therefore been devised to
simplify the reading and handling of large numbers.
It is often convenient to code each digit of a decimal
number separately, using 4 bits per decimal digit. The
fact that 4 bits of binary notation represent the decimal
numerals (0.. .9) makes it advantageous to combine the
two systems. Such a code is usually known as the
binary coded decimal system (BCD). This type of code
is far easier for us to deal with because we think deci-
mally.

The easiest method of choosing a BCD code is to use the
first 10 binary numbers (0-9) and reject the remaining six
(10-15, the illegitimate codes). This code is called the
natural BCD (NBCD) or 8421 code. It has the advantage
that normal binary techniques can be used.
The NBCD code is one of a group of codes that assign
"weights" to each of the bits so each decimal digit wil l
be equal to the sum of these weights. For example, dec-
imal 974 in NBCD is:
1001 — 0111 — 0100

(9) — (7) — (4)

2421 4321 5221 5421 6321 7421
3321 4421 5311 6221 6421 8421
4311 5211 5321 6311 7321

Table 1.2 Four-bit positive weighted BCD codes.

There are exactly 17 four-bit positive-weighted codes
(tabulated in Table 1.2.), but apart from the 8421 code
all weighted codes have at least one decimal digit that
can be represented in more than one way. If we would
like to encode e.g. 974 in the 4421 code one gets the
following possibilities:

1101-1011-1000
or 1101-0111-0100

(9) — (7) — (4)•
which gives 4 different ways of writing this number.

A disadvantage of the 8421 code is that it is not self-
complementing. Aself-complementing BCD code has the
property that inversion of each bit ("1" exchanged for
"0" and vice versa) makes each decimal digit its own
9's complement. E.g. the 2421 code is self-complement-
ing. If we encode 974 in this code we get:
1111 —0111 —0100

After inversion
0000 — 1000 —1011
(0) (2) (5)

Other examples of self-complementing BCD codes are
the 3321, 4311 and 5211 codes. Unfortunately they lead
to rather cumbersome circuitry. There is however a
simple alternative available in the excess — 3 (XS-3)
code. When the sum of the weights of the bits of a BCD
code exceeds the value of the decimal digit that it re-
presents, the code is called excess weighted. In the XS-3
code the excess weight is three. If now a binary 3 (0011)
is added to each decimal representation in the 8421 code,
this new code becomes self-complementing. As can be
seen from Table 1.3., this code uses the middle of the
first 16 binary numbers.

8421 2421 5421 5311 Excess-3 Gray XS-3 Gray

0 0000 0000 0000 0000 0011 0000 0010
1 0001 0001 0001 0001 0100 0001 0110
2 0010 0010 0010 0011 0101 0011 0111
3 0011 0011 0011 0100 0110 0010 0101
4 0100 0100 0100 0101 0111 0110 0100
5 0101 1011 1000 1000 1000 0111 1100
6 0110 1100 1001 1001 1001 0101 1101
7 0111 1101 1010 1011 1010 0100 1111
8 1000 1110 1011 1100 1011 1100 1110
9 1001 1111 1100 1101 1100 1101 1010

Table 1.3 Various BCD codes

x53-Gray Bi-quinary Qui-binary

50 43210 86420 10

0 01 00001 00001 01
N-Gray 1 01 00010 00001 10

2 01 00100 00010 01
%53-NBCD 3 01 01000 00010 10

4 01 10000 00100 01
s 10 00001 00100 10
6 10 00010 01000 01
7 10 00100 01000 10

NBCD 8 10 01000 10000 01
0 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 9 10 10000 10000 10
Fig. 1.1. Relation between
NBCD and Gray codes Table 1.4 2-out of-7 codes

12

When converting information from analog to digital form
or vice versa, difficulties very often arise when a step
between two code groups requires a change of more than
one bit. Thus, when two or more digits are changed,
perfect adjustment of circuitry is necessary to prevent the
generation of false code combinations owing to lack of
simultaneous operation.
For instance, when 7 is changed to 8 in NBC D, al l 4 bits
have to change. Special codes (cyclic or progressive
codes) have therefore been developed which have the
property that each code group differs in only one bit from
its predecessor. They are cyclic in the sense that when
the last decimal digit (15 in case of a 4-bit code) changes
to 16 (0) only 1 bit has to change too, see Fig. 1.1.
The most commonly used cyclic code is the Gray code. If
we only use the first 10 combinations of the Gray codes
(in the interests of BCD coding), we get the "natural"
Gray code. The main advantage of the Gray code is lost
here, however, because we now need to change three
bits to get from 9 to 0. By shifting the Gray code three
positions, a code analogous to the binary XS-3 is ob-
tained, which is called the Excess — 3 Gray code (XS-3
Gray). This code not only overcomes the 9-to-0 transi-
tion problem but is also self-complementing. (Only the
most significant bit has to be inverted to obtain the
complement.)
The Gray code is much older than our digital instru-
ments; it was invented in 1880 by a French engineer
Emile Baudot for mechanical applications and also re-
presented a major advance in telegraphy.
There are many more codes in use to-day, much too
many to deal with in detail here. We will conclude this
section on numerical codes with a brief discussion of
two more important codes, the 2-out of-7 codes. These

codes have been frequently used in digital instruments.
There are two versions in use: the biquinary or 50-43210
code and the quibinary or 86420-10 code. These codes
have the advantage of constant loading and easy error
detection because there are always exactly two and not
more or less than two. Both codes are true-weighting
and are tabulated in Table 1.4.
The above codes are al l numerical codes. The BCD code
does not have enough bits for the transmission of other
characters (e.g. letters, special symbols, etc.). In this
case we make use of an alpha-numerical code, with more
than four bits to represent the figures, letters or symbols.
Well known examples are the telex code (5 bits), the
ISO-7 bit code (ASCII code), the extended BCD code (8
bits) and the punched card code; see Tables 1.5, 1.6 and
1.7.

Bits
B~
R6

0
0

0
0

0 0 t
0

bq b3 b2

0 0 0

b,

0

65 o

NUL

t

OLE

o

SP 0

1

P

0

P
o a o t SOH DCt 1 A O 9
0 0 1 0 STX DC2 2 B R b

0 0 7 1 ETX DC3 3 C s
0 1 0 0 EOT DC4 4 D T d

0 1 0 1 ENO NAK 5 E U

a t t a ACI(SVN 6 F V f

a , , , BEL ETB 7 G W 9

1 0 0 0 Rs cAN 8 H x h

B 0

0 ,

t o t

,

0

t

Hr
LF

VT

Er.1
SUO

ESC

J

K

V

Z

I

I
k

v
~

D R FF FS L

0 i

o

CR

SO

GS

RS

1A m

n

}

1 1 1 Sl US O DEL

Table 1.5 The ISO code. ISO WORD b, b6 bb b, b3 b~ b,

bg
67

0
0

0
1 0 1

Bits bg 0 1 0 0 1 0 0 1 0 0

65 0 7 0 0 1 0 0 1 0 0 1

bq 60 bZ b,

0 0 0 0 NUL DLE DS SP 0

0 0 0 1 SOH DCi SOS A J 1

0 0 1 0 STX DC2 FS b 0 K S 2

0 0 1 1 ETx DC3 C L T 3

0 1 0 0 PF RES BYP PN tl D M U 4

0 1 0 1 HT NL LF RS E N V 5

0 1 1 0 LC BS EOB UC F O tY 6

0 1 1 1 DEL IOL PRE EOT G P X 7

t o a o CAN v H O V 8

7 0 0 1 RLF Ef.^. I R Z 9

1 0 1 0 St.1K CC SI.1 LVE1

1 0 1 1 VT CU1 CU2 CU3

1 1 0 0 FF IFS DC4 uT

1

1 1

0

1

1

0

CR

so

IGS

IRS

ENO

ACK

NAK 1
4

1 1 SI IUS BEL SUB 7

Table 1.6 The EXTENDED BCD code. Extended bJnary coded decimal interchange code. EBCDIC WORD be b, b6 b5 b, b3 b2 b, 13

Each group of pulses representing a figure or another
character is called a "word".
If such a word has to be transmitted via one single wire,
the pulses and no pulses will follow each other in time .

0 0 0 0

Fig. 1.2 Bit serial coding of the decimal 39

(if the BCD code is used) or 147
(with the pure binary code).

Fig. 1.3 Bit parallel coding of the same number
as in Fig. 1.2.

0

Questions:
Q.1.1. How many digits in binary notation are required for the decimal

number 17?

A

B

C

4

5

7

A

B

C

Q.1.2. When an even decimal number is converted into the binary
number system the least significant digit LSD is

A

B

C

1

0

1 or 0

Q.1.3. Number 85 in standard BCD is

A 1000-1100

B 1101-1010

C 1000-1010

A

B

C

A

B

C

Q.1.4. 0110-0001-1001 in standard BCD is the decimal number

A

B

C

615

916

619

A

B

C

Q.1.5. The (r — 1)'s complement of the (r -1)'s complement of an integer
N is:

A The (r -2)'s complement A

B The original number (N) B

C The is complement C

This is called BIT SERIAL CODING (Fig. 1.2.). If we had 8
lines available for the transmission of such a word, this
complete word could be transmitted in one pulse interval.
This is called BIT PARALLEL CODING (Fig. 1.3.).

0 1 2 3 4 5 6 7 8 9 A fi C D E F G H I J K L M N O P O R S T U V W% V Z t-/

Table 1.7 Punched-card or Hollerith code.

Q.1.6. The 10's complement of 7156 is:

A 63 A

B 539 B

C 285 C

Q.1.7. The sum of weights in aself-complementing BCD code must be:

A
8

A

B 9 A

C 10 C

Q.1.8. How many different 4-bit BCD codes can be developed?

A

B

C

17

256

> 256

A

B

C

Q.1.9. How many bits does one need to encode all letters (26), 10
symbols and all numerals (10)?

A

B

C

5

7

6

A

B

C

Q.1.10. What is the advantage of serial transport compared with parallel
transfer for data transmission?

A Needs only one wire

B Is faster

C Is BCD compatible

A

B

C

14

Chapter 2
Boolean algebra

As we saw in the previous chapter, the switching
elements in digital instruments can have one of two
distinct states ("on" or "off" ; "pulse" or "no pulse" ;
"high voltage" or "low voltage", etc.). In theory, inter-
mediate states ddn't exist, and an element can never be
in both possible states at the same time (for example, a
switch can never be simultaneously on and off).
It has been found that the laws dealing with the various
combinations of these two states in different switching
elements are formally identical with the laws governing
the relation between logical propositions which may be
either "true" of "false". The basis for this branch of logic
was laid by the Greek philosopher Aristotle in classical
times, but it was not unti l 1847 that George Boole pub-
l ished amathematical description of the laws of "pro-
positional logic" in a paper entitled "An investigation of
the Law of Thought". This branch of mathematics, known
as Boolean algebra, will be described briefly in this chap-
ter. We shall see in chapter 3 how useful Boolean algebra
is in providing a concise description of the properties of
switching elements. It is because the switching elements
used in digital instruments obey the laws of Boolean
algebra, the mathematics of logic, that they are generally
referred to as "logic elements".

The logic of classes
Classes
In mathematical logic a class is defined as a group of
elements all of which possess at least one characte-
ristic incommon. Elements not possessing this common
characteristic form the complementary class.

Examples of classes are:
a. the class of all "natural" numbers (1, 2, 3, 4, 5. . .)
b. the class of electronic measuring instruments
c. the class of al l human beings,

and so on.
A class can contain a finite or an infinite number of
elements. A class containing no elements at all is said
to be "empty"; this "null class" is indicated by the
symbol "0". If a class contains at least one element it is
said to be non-empty and may be denoted by the
symbol "1".
A class together with its complementary class form the
"universe" or universal class.

Subclasses
A class can be divided further into subclasses, the ele-
ments of which share a certain characteristic in addition
to the characteristic defining the group as a whole.
By way of example, let us consider a couple of sub-
classes of the infinite class of natural numbers (1, 2, 3,
4, 5.. .), which we shal l denote by the letter A. Numbers
which are not natural numbers are elements of the com-
plementary class A. (The line above the symbol is used
in Boolean algebra to indicate the process of negation;
the symbol A is read "A bar", or "not A".) A given number
can be an element of A or A, but never of both.
Subclasses of A are for example the class of natural
numbers which are divisible by 3, or the class of natural
numbers less than 100. Such subclasses can be denoted
by another letter, e.g. B.

Venn diagram
Properties of classes can be visualized by means of the
Venn diagram, developed by the English logician John
Venn.
Ina Venn diagram the universe is symbolized by a
square and a given class (A) by the area within a circle
or ellipse drawn inside this square. The remaining area
(A) contains elements not belonging to class A. Together,
(A) and (A) form the universe. It can be clearly seen
from this diagram that an element can never belong to
both classes A and A (fig. 2.1.).

A

Fig. 2.1

15

We will now make use of Venn diagrams to illustrate
various relationships between the subclasses of the in-
finite class of natural numbers which we mentioned
above (fig. 2.2.).

0
A

0 s

Fig.2.2a Fig. 2.26

Letthe class of natural numbers divisible by 3 be denoted
by A, and the class of natural numbers smal ler than
100 be denoted by B. We can now define four further
classes obtained by combination of A and B, viz. :
1. All multiples of 3 (A) which are smaller than 100 (B)
2. All multiples of 3 (A) which are greater than 100 (B)
3. All numbers which are NOT multiples of 3 (A), and

which are smaller than 100 (B)
4. All numbers which are NOT multiplies of 3 (A), and

which are greater than 100 (B).
These various subclasses can be represented very
simply in the Venn diagram, as shown by the shaded
areas in fig. 2.3.

A.8

Fig. 2.3

Intersection (conjunction, logic multiplication); min-terms
Elements which belong to class A and class B form the
intersection (or conjunction) or logic multiplication of the
two classes. The operation of intersection is denoted in
Boolean algebra in the same way -as the operation of
multiplication in normal algebra, by writing a full stop
between the symbols concerned or merely by writing the
two symbols together:
A and B=A.B.=AB.
It will be clear from the definition that the intersection
of A and B is identical with the intersection of B and A,
so we can write:
A.B.= B.A.
Inspection of a Venn diagram of the two variables A
and B shows clearly that there are four possible conjunc-
tions of these variables: A.B; A.B. ; A.B and A.B. Finer
sub-division of the space within the Venn diagram is not
possible with the aid of the variables A and B; the sub-
classes A.B, A.B, A.B and A.B are therefore also called
"min-terms". These four min-terms are indicated by the
shaded areas in fig. 2.3.

A.B A.B A.8

Union (disjunction, logic addition); max-terms
Negation ofthe intersections illustrated in fig. 2.3. gives a
new kind of relationship, the union (see fig. 2.4.). Ele-
ments which belong to class A or class B or both form a
class which is called the union or disjunction of A and B.
Union in Boolean algebra is written l ike addition in
normal algebra:
A or B = A+B
Here again, it makes no difference whether we talk of the
union of A and B or the union of B and A, so we may
write:
A+B = B+A
As may be seen from fig. 2.4, four possible unions can be
formed starting from A and B, viz: A+B, A+B, A+B
and A+B. These four subclasses are the largest ones
which can be formed from the two variables A and B, so
they are also called "max-terms".
In all there are sixteen different functions which can be
formed from the logic variables A and B. These are
tabulated in Table 2.1, together with their names, nota-
tions and Venn-diagram representations, and indication
of the various min- and max-terms.

A+8

Fig. 2.4

Laws of Boolean algebra
We already learned two laws, the commutive laws
A.B = B.A.

and

A+B = B+A

A+8 A+8

P
A+8

(1)

(2)
We will now consider a number of more complicated
laws which are very important for manipulation of
Boolean functions.

De Morgan's theorem
Inspection of the smal lest subclass, A.B (mini-term m3 in
Table 2.1.) and the largest, A+B (max-term Mo in Table
2.1.) shows that these two are complementary, i.e. when
added together they give the universal class. In Boolean
notation : AB + (A + B) = 1.
Another way to put this relation is to say that A.B is the
inverse or negation of A+B, or in Boolean notation:
A.B. = A + B or A.B. = A + B (3)

16

N~ Name Notation
X = f IA,BI for
A= 0 0 1 1
B=0101

Venn

diagram

0 Zero, false 0 X= 0 0 0 0
~\

/C~ 1

t And, conjunction A• B
Im31

X= 0 0 0 1

2 Exclusion A• B

Impl
X 0 0 1 0

3 Identity A X= 0 0 1 1

4 Exclusion A• B
Im11

X= 0 1 0 0

5 Identity B X = 01 01

6 Exclusive OR A Q B X= 0 1 1 0 /t\ J

7 OR, disjunction 'a' + B

IM3)

X= 0 1 1 1

8 Nor, nondisjunction
A. B

Imcl

X= 1 0 0 0 h~ J

(~~~/

9 Equivalence
A _ B

X= 1 0 0 1

10
Negation

Not, inversion ~ X= 1 0 1 0

~/

11 Inclusion
A + s

IM21
x = toll

12 Negation
Not, inversion

q X= 1 1 0 0 ~(-~
fv ~/

13 Inclusion
A+ B

IMt I

X= 1 1 0 1

74
Nand, non-

conjunction

A. B

IN10)
X 1 1 1 0

15
Unity, one,
True

1
X= 1 1 1 1

V

Similarly, for the other subclasses of fig. 2.3. and 2.4. :
A.B. = A+B or A.B. = A+B (3a)
A.B. = A+B or A.B. = A+B (3b)
A.B. = A+B or A.B. = A+B (3c)
The above four equations represent special cases of a
very important law of Boolean algebra, known as De
Morgan's theorem. This theorem may be stated in words
as follows: any expression in Boolean algebra is equiva-
lent to the inverse of the expression formed by replacing
all logical products (AND's) by logical additions (OR's)
and vice versa, and by simultaneously replacing each
operand by its inverse.

Relations between a class A, class 1 and class 0
As we have mentioned above, the union of a class A and
its inverse A is the universal class, or in Boolean nota-
tion
A+A = 1 (4)
Furthermore, the intersection of A and A is the null class
0, since no element belongs to both A and A:
A.A = 0 (5)
The negation of the negation of a class is the class itself
A = A (6)
Various other relations can easily be developed with
reference to the Venn diagram.
The logical addition or union of a class A and the null
class is again the class A:
A+0 = A (7)
The union of A with the universal class is the universal
class:
A+1 = 1 (8)
The logic product or intersection of a class A with the
null class is the null class:
A.0 = 0 (9)

and the intersection of A with the universal class is A:
A.1 = A (10)

The intersection of A with itself is A:
A.A=A (11)
and the union of A with itself is also A:
A+A = A (12)

m =min-term
M =max -term

Table 2.1. The sixteen functions of two variables

17

Associative laws
So far, we have discussed relations between at most two
variables, A an B. Of course, it is possible to consider
more variables. We shall now give a number of relations
between three variables, with reference to the Venn
diagram of fig. 2.5.
The intersection (logical product) of classes A, B and C
in fig. 2.5. could be determined by first finding the inter-
section of A and B (areas 6+7 in fig. 2.5.), and then by
finding the intersection of (A.B) with C (area 7).

Fig. 2.5

Alternatively, we could start by taking the intersection of
B an C (areas 7+3) and then finding the intersection of
this with A (which again gives area 7, naturally). Which-
everway we carry out this process, the final result is the
same. In Boolean notation:
A.B.C. = A. (B.C.) _ (A.B.) C = (A.C.).B. (13)
A similar relationship holds for the union (disjunction) of
three classes:
A+B+C = A+(B+C) _ (A+B)+C = (A+C)+B (14)
The two above relationships are called the associative
laws of Boolean algebra.

Distributive laws
The subclass formed as the intersection of A with the
union of B and C (areas 5, 6 and 7 in fig. 2.5.) can also
be formed by taking the union of the intersections of
A and B and A and C (areas 6+7 and 7+5 in fig. 2.5.,
giving areas 5+6+7):
A (B+C) =A.B.+A.C. (15)
This relation has precisely the same form as the corre-
sponding distributive law in normal algebra, which is not
the case with the following distributive law of Boolean
algebra:
(A+B) (A+C) = A+BC (16)
This can be proved with the aid of the various relations
we have derived above:
(A+B) (A+C) =A.A.+AC+AB+BC =

= A+AC+AB+BC = (11)
=A(1+C)+AB+BC = (15)
= A+AB+BC = (8) (10)
=A(1+B)+BC = (15)
= A + BC (8) (10)

Absorptive laws
In the course of the proof of equation (16) above we saw
that the terms AB and AC in the initial expression of the
logical product do not appear in the final form. This effect
is known as the "absorptive" property of Boolean
algebra:
A+AB = A (17)
A+AB = A(1 +B) _ (15)

=A1 = (8)
= A (10)

There are two other absorptive laws in Boolean algebra:
A+AB = A+B (18)

= 1 (A+B)= (4)
= A+B (10)

and

= O+AB=
AB

(15)
(5)
(7)

(19)

Summary of the laws of Boolean algebra
The various relations derived above are summarized in
the following table (Table 2.2.).

0=1
1=0
X=X

x+0=x
x+1=1
X+X=X

X+X=1

commutative laws
xy=yx x+y=y+x

x.0=0
x.1 = x
X.X = X

X.X=O

associative laws
xyz = x(yz) = y(xz) = z(xy)
x+y+z=x+(y+z)=y+(x+z>=z+(x+y)

distributive laws
x (y+z)=xy+xz (x+y) (x+z)=x+yz

absorptive laws
x+xy=x x+xy=x+y x (x+y)=xy

De Morgan's laws
x+y+z+ . . . +N=x.y.z. . . .N
x.y.z.N = x + y + z + . . . + N

Table 2.2.

18

Simplification of Boolean functions
The above rules provide us with very powerful means
of simplifying Boolean functions.

An example will illustrate this:
Suppose w_e have the following function:
FABc =ABC+ABC+

/
ABC+ABC+ABC+ABC =Rule 15

(6) (4) (2) (7) (5) (3) in Fig z 5)
ding areas

= AC (B+B)+ABC+AC (B+B)+ABC =Rule 4
= AC+ABC+AC+ABC =Rule 15
_ (A+AB)C+(A+AB)C =Rule 18
_ (A+B)C+(A+B)C =Rule 15
_ (A+B)(C+C) =Rule 4
=A+B

which is also clearly shown in the Venn diagram of fig.
2.5
Areas: 6+4+2+7+5+3, together give A+B

Min-terms and max-terms
We have already seen above that the Boolean functions
of two variables A and B include four min-terms, A.B,
AB, AB and A.B. In general , amin-term of n variables
can be defined as the Boolean product of these n vari-
ables, each variable being present in its true or com-
plemented form (1 or 0). Similarly the max-term of n
variables is defined as the Boolean sum of these n
variables, with each variable present in its true or its
complemented form. As table 2.3 shows, there are eight
min-terms and eight max-terms for a Boolean function of
3 variables (A, B and C).

A B C Min-term Nota-
tion

Max-term Nota-
tion

0 0 0 A.B.0 mo A+B+C Mo
0 0 1 A.B.0 m, A+B+C M,
0 1 0 A.B.0 m2 A+B+C M,
0 1 1 A.B.0 m, A+B+C M,
1 0 0 A.B.0 m4 A+B+C M,
1 0 1 A.B.0 mg A+B+C Ms
1 1 0 A.B.0 m6 A+B+C M6
1 1 1 A.B.0 m, A+B+C M,

Table 2.3 Min- and max-terms

In general there are 2" different min-terms and 2" dif-
ferent max-terms of n variables.

As shown in the table, each min- (or max-)term is given
a symbol m (or M) with an index i , which is equal to the
decimal value of the corresponding function (with
A = B = C 1). There is of course a relationship between
the min- and max-terms, as can be seen clearly in

fig. 2.3 and 2.4. The complement of a min-term is a
max-term and vica versa

In general:
m; = Mzn-,-~
M, mzn-,-~

and

e.g. for 3 variables:
m;= M,_ ; and

ma = M,
m,=M6
m2 = MS
1713 = Mq

These are illustrated in fig. 2.6

M; = m,_ ;

mq = M3
m5 = M2
rnfi =M,
m,=Mo

(20)
(21)

and ~---, =, M~ mq ~~ `~ M3

m,
I~~ ,_,

M6 mg ~~ ~~~ M2

m2
~~~ ,•, 

M5 m6 
~ :~ ~ 

M, 

.~ 

Fig. 2.6 The min-terms and max-terms of 3 variables 

The min-terms of 3 variables are also indicated by their 
numbers in the areas of fig. 2.5 

Fig. 2.6 shows very clearly that amin-term represents 
one of the smallest distinguishable areas in the Venn 
diagram, while amax-term represents one of the largest 
distinguishable areas: A very important law of Boolean 
algebra is: Any Boolean function can be expressed as 
a (Boolean) sum of min-terms. 
In the example of the previous section (simplification 
of Boolean functions), FABc is ms +mq +mz +m,+m5 +m3. 

This is often simply written : FABc = E (2,3,4,5,6,7) 

Where E is the summation sign. 

19 



As we know, there are eight min-terms of three varia-
bles we used six of these in the above example, so there 
must be two left: mo and m, 
Inspection of the Venn diagram of fig. 2.5. shows that 
_E (0,1) is the inverse of the above function: 

Application of rule 20 gives: FABc =M6.M, (or in "short 
notation FABc = Il (6,7).). This illustrates a second im-
portant law related to the above: 
Any Boolean function can be expressed as the (Boolean) 
product of max-terms. ' 
Proof: M,.M6 =(A+B+C) (A+B+C)= 

=A+AB+AC+AB+B+BC+AC+BC+CC 
=A+B 

The above rule applies even when not all variables are 
present in the various terms of a Boolean function. For 
example, let us consider the function: 

FABc = AB+AC. This can be written 
= AB(C+C)+A(B+B)C = 

ABC+ABC+ABC+ABC = m 2 +m3 +ms +m, 

Or in the short notation FABc = E (2,3,5,7) 

Alternatively the function can be rewritten as a product 
of max-terms as follows: 
FABc =AB+AC=(AB+A) (AB+C)= 

=(A+A) (A+B) (A+C) (B+C) 
A+A = 1 _ 

FABc = M,.M6.M3.M,.M,.M3 = II(1,3,6,7) 

The logic of propositions 
The theorems of Boolean algebra apply not only to the 
logic of classes but also to the logic of propositions. 
Propositional logic is also based on the assumption 
that there are only two possibilities as far as a proposi-
tion or statement is concerned: the statement can be 
either true or false, but never partly true and partly 
false. If a given statement is true, we denote this by the 
symbol "1", while if it is false we denote this by a "0". 
The truth or falsehood of combined propositions can now 
be determined according to rules which are formally 
the same as those we derived above for the logic of 
classes. 

Here again, we make use of two basic operations: the 
conjunction (intersection, AND function), which is the pro-
position that both A and B are true, and the disjunction 
(union, OR function), which is the proposition that A or B 
or both are true. Let us consider by way of example the 
propositions that someone has blue eyes (A = 1), and that 
someone is an adult (B = 1). The conjunction of these two 
propositions is the statementthatsomeone has blue eyes 
and is an adult, and can be written in Boolean notation 
in the form A.B = 1. If we denote the derived proposition 
by X, we can also write X = A.B. 

Now when is this statement true? This can be determined 
with the aid of a Venn diagram, but also by tabulating al l 
the possible combinations of the variables A and B in a 
"truth table", table 2.4. 

A B X 

False 
True 
False 
True 

False 
False 
True 
True 

False 
False 
False 
True 

Table 2.4 Truth table for X = A.B. 

A B X 

0 0 0 
or 1 0 0 

0 1 0 
1 1 1 

The above truth table shows clearly that X is only true 
when A AND B are both true. 
Of course the same procedure can be followed for the 
operation of disjunction (union, OR). 

20 



A B X 

False 
True 
False 
True 

False 
False 
True 
True 

False 
True 
True 
True 

Table 2.5 Truth table for X=A+B. 

or 

A B X 

0 
1 
0 
1 

0 
0 
1 
1 

0 
1 
1 
1 

The disjunction of the propositions A and B is written: 
XA+B, giving the truth table of Table 2.5. 
which clearly shows that the combined proposition is 
true when A OR B OR both are true. 
Switching algebra, a derivative ofpropositional logic, will 
be used in the fol lowing chapter as an aid to the descrip-
tion of logic elements. 
This is done by giving the Boolean function and the truth 
table of each of the logic elements discussed in chapter 3. 
Anticipating the subject matter of that chapter somewhat, 
we shal l show briefly how this is done. 

Questions 
Q.2.1. In the universal class of electronic instruments we define three 

subclasses: X All electronic measuring instruments, Y All digital 
instruments, Z Al l instruments with battery supply. 
The Boolean expression for the subclass (S) of al l battery-
supplieddigital electronic measuring instruments can be written: 

A S =XYZ A 

B S=X—Y~Z B 

C S =XYZ C 

Q.2.2. The Boolean expression for the subclass (R) of al l digital elec-
tronicinstruments which are not measuring instrument and have 
no battery supply is: 

A R=X+YZ A 

B R=XYTZ B 

C R =XYZ C 

Q.2.3. The Boolean expression for the subclass (Q) of al l electronic 
instruments, which are measuring instruments or are non-digital 
instruments with battery supply is: 

A Q=X(Y+Z) A 

B Q=X+YZ B 

C o = XY+Z C 

Q.2.4. The function FXYZ = E (1,3,7) can also be written as: 

A E (0,2,4,5,6) A 

B II (1,3,7) B 

C 17 (0,2,4,5,6) C 

Let us take by way of example the AND gate discussed 
on page 24. By definition, the output of this gate will be 
"1" if and only if al l of its inputs are 1. Now in the lan-
guage ofpropositional logic, we can denote the statement 
e.g. "there is a high voltage atthe output of the AND gate" 
at X, and if this statement is true we can write X = 1. 
Similarly we can denote the proposition "there is a high 
voltage at input A; if this proposition is true we write 
A = 1 ; the same method can be followed for the other 
inputs. Now the definition of the operation of the AND 
gate can be translated quite simply into Boolean nota-
tion as A.B.0 = X. 
The truth table for this gate can be built up by substi-
tutingthe various possible combinations of 0's and 1's for 
A, B and C in this expression, and seeing what X is. We 
saw on page 17 that the logical product A.0=0; this 
means that as long as there is one 0 among the factors A, 
B and C, the product wil l be 0. 

~e► 

0.2.5. The Boolean expression for the shaded area in the accompanying 
Venn diagram is: 

A XY+YZ+XZ A 

B XYZ+XYZ+XYZ ~ B 

C XYZ +XYZ C 

%~ 
Q.2.6. The Boolean expression for the shaded area in the accompanying 

Venn diagram is: 

A X+YtZ 

B XYZ+XYZ 

C XYZ+XY 

Q.2.7. 

~~ 

The simplified form of the Boolean function 
F(X, Y, Z)= (X+Y+XY) (X+Z) is: 

A = X+Y+Z 

B = X+YZ 

C = XY+YZ 

0.2.8. The simplified form of the Boolean function 
F(X, Y, Z) _ (X+Y+Z) (X+YrZ) (X+Y+Z) is: 

A = XY+Z 

B =X 

C = X+YZ 

A 

B 

C 

A 

B 

C 

A 

B 

C 

21 





Chapter 3 
Logic elements 

The logic elements in digital instruments are the basic 
building blocks of the circuits that control data flow and 
processing of standard signals. The standard symbols 
for the main logic elements are shown in fig. 3.1. Each 
logic element is a network of electronic components. 

& & 

AND NAND OR NOR 

1 7 

INHIBIT GATE EXCLUSIVE COMPARATOR DELAY 
OR 

NOT 

FLIP-FLOP 

Fig. 3.1. The standard symbols for the main logic elements.' 

Logic elements generally have very graphic names, e.g. 
AND; OR; NOT; NAND; NOR; INHIBIT GATE; EX-
CLUSIVE-OR; COMPARATOR; DELAY and FLIP-FLOP, 
which provide a very compact description of the functions 
performed. 

We shall now describe the various logic elements in turn. 
In each case we shal l start with a definition of the mode 
of operation of the element, followed by its symbol, 
equivalent circuit diagram, truth table and Boolean 
switching function: finally we give for each element a 
brief discussion of its operating conditions and applica-
tions. 

" Note. The graphical symbols used here for the logic elements al l con-
form with the IEC publication 117-15A (1972). Fora survey of other 
symbols used (American standard; German DIN 40700) see Table 3.1. 

Circuit IEC norm 

AND 

OR 

NAND 

NOR 

A & 

B 

A 

B 

A 
B 

X 

X 

X 

DIN norm 
40700 

A 
B 

A 
B 

A 
B 

A 1 X A 
B R 

NAND with one A g, 
inverting input g 

NOR with one A 
inverting input B 

Inhibit gate g 
C 

Exclusive OR 

Comperator 

Distributed AND 

Distributed OR 

Delay 

Flip-flop 

A 

B 

A 
B 

X 

X 

X 

X 

A 

A 

B 

A 

B 

A 

B 

0 

X 

X 

X 

X 

X 

X 

X 

A 

B 

A 

B 

A 
B 

A 
B 

A 
B 

A 

6 

B 
C 

A 
6 

A 

B 

American Boolean 
standard function 

X X AB 

X X A-B 

X X=A6 

Table 3.1 Standard symbols for logic elements.' 

FL. 

X X -A -B 

X X -AB 

X X A+B 

X X = (A-B)C 

X X=AB-AB 

A e B 

X X=A6 AB 

A=_B 

23 



The AND gate 
Definition: The output of the AND gate will stand at its 
defined "1" state if, and only if, all of the inputs stand 
at their defined "1" states. 
The input°signals are high or low voltages, pulses or 
no-pulses, as are the outputs, representing the binary 
digits one and zero. If both inputs are zero the output is 
zero. If either input is zero, the output wi ll again be 
zero. But if both inputs are one, there is a one output. 
In other words a one input AND a one input results in a 
one output. Hence the name AND gate. 
The functioning of such a gate is like that of a set of 
switches in series, fig. 3.2. Only when they are closed 
simultaneously can there be an output. The AND gate is 
used primarily as a control element with one input reg-
ulating the traffic through the others. If a word as to be 
al lowed to pass through the gate, a one at the control 
input will open the gate. The zeros in the word are main-
tained in the right position at the output because the gate 
is closed whenever there is at least one zero input. 

A B C X A B C X 

B x 0 0 0 0 
1 0 0 0 

x • Aec 0 1 0 0 
1 1 0 0 
0 0 1 0 

Fig. 3.2. Symbol, Boolean function, 1 0 1 0 

equivalent circuit and truth table 
of the AND gate. 

0 
1 

1 
1 

1 
1 

0 
1 

The OR gate 
Definition: The output of the OR gate will stand at its 
defined "1"state if, and only if, one or more of its inputs 
stand at their defined "1" state. 

A 
A 
a 7 X B 

A 
0 

B 
0 

C 
0 

X 
0 

C C 1 0 0 1 
X A+B+C 0 1 0 1 

1 1 0 1 
0 0 1 1 

Fig. 3.3 Symbol, Boolean function, 1 0 1 1 

equivalent circuit and truth table of 
the OR gate. 

0 
1 

1 
1 

1 
1 

1 
1 

The OR gate thus differs from the AND gate in that a one 
at one input OR the other input wi l l give a one output. 
Hence the name OR gate. However, two zero inputs give 
a zero output and two one inputs give a one output. The 
functioning of the OR gate is similar to a set of switches 
connected in parallel (fig. 3.3.). 

When any one arm of the circuit, or two or al l has a one 
input a one output results. 
The OR gate is designed to prevent interaction or feed-
back between inputs. 

NOT gate (The inverter) 
Definition: The output wi l l stand at its "0" state if, and 
only if, the input stand at its defined "1" state. 

A x =a 
A 

0 
1 

X 

1 

0 

Fig. 3.4 Symbols, Boolean function and truth table of the INVERTER 
gate, symbol for the gate alone (not used frequently) and in combina-
tion with another gate. 

Figure 3.4 gives the symbol for the INVERTER used in 
logic circuitry. This unit simply inverts voltage levels, 
zero becoming one and one becoming zero. The inverter 
is never used by itself, but always in conjunction with 
another logic element; it is then represented by a small 
circle directly connected to the other logic element. 
The above are the basic elements. A number of variants 
are shown in table 3.2. 

Boolean 
function 

X=AB 

x = AB 

X -AB 

X=AB 

X=AB 

X AB 

A 

A 

AND 

c ,tas 
A B 

0 0 
1 0 

& X 0 

1 

0 
a x ~ 

B o 
i 

0 
A & 

X 
0 

t 
B 

0 
A 1 

& X 0 

i 
B 

A 

B 

A 

e 

X 

7 
1 

0 
a 
i 
i 

0 
0 
1 
i 

0 
0 
1 
f 

o a 
~ o 
0 1 

1 1 

0 0 

f o 
x o i 

X 

0 

0 
0 
7 

0 
a 
t 
0 

i 
0 
0 
0 

0 
i 
1 
f 

f 
f 
0 

1 

i 
0 

OR 

Boolean 
function 

A ;+1 X X- A F B 
B 

A 

A 1 
B 

A 

B 

A ~, t 
B 

A ~, 

B 

x x A•B 

X X=A-e 

X X=A+e 

X X=q.g 

X X=A-B 

Table 3.2 Variants on the basic types of logic elements. 

24 



The NAND gate 
Definition: The output will stand at its "0" state if, and 
only if, all inputs stand at their defined "1" states. 

A B c A B C X 
A 

x 
c & 

0 
1 

0 
0 

0 
0 

1 
1 

x . Aec 0 1 0 1 
1 1 0 1 
0 0 1 1 

Fig. 3.5 Symbol, Boolean function, 
equivalent circuit and truth table of the 

1 
0 

0 
1 

1 
1 

1 
1 

NAND gate. 1 1 1 0 

When an AND gate has an inverter at the output, the 
combined circuit is called a NAND gate, which is in effect 
the opposite of the AND gate. When all inputs are one, the 
output is zero. 
The functioning of this gate is similar to a number of 
switches in series, in paral lel with a load (lamp). At least 
one switch must be open in order to have the lamp ON 
(fig. 3.5.). 

The NOR gate 
Definition: The output will stand at its "0" state if, and 
only if, at least one input stand at its defined "1" state. 

a 
A 

A B C X 
s ~t x 
c c 0 

1 
0 
0 

0 
0 

1 
0 

X = A+e-C 0 1 0 0 
1 1 0 0 
0 0 1 0 

Fig. 3.6 Symbol, Boolean function, 
equivalent circuit and truth table of the 

1 
0 

0 
1 

1 
1 

0 
0 

NOR gate. 1 1 1 0 

When an OR gate has an inverter at the output it becomes 
a NOR gate, which is in effect the opposite of the OR gate. 
When one or both inputs are ones, the output is zero, but 
when both inputs are zeros the output is one. 
In other words when neither one input NOR the other is 
a one, the output is one. Hence the name NOR gate. 
The functioning of this gate is similar to that of a number 
of switches in parallel with a lamp or another load; all 
switches must be open if the lamp is to burn, fig. 3.6. 

The INHIBIT gate 
Definition: The inhibit gate is an OR gate with an in-
hibiting input: the output wil l stand at its "1" state if, and 
only if, the inhibit input stands at its defined "0" state 
AND one or more of the normal OR inputs stand at their 
defined "1" state. 

A A B C X 
A C 
B %1 x c 

0 
1 

0 
0 

0 
0 

0 
1 

x=iA+etc 0 1 0 1 
1 1 0 1 

Fig. 3.7 Symbol, Boofean function, 
equivalent circuit and truth table of the 

0 
1 

0 
0 

1 
1 

0 
0 

INHIBIT gate. 
0 
1 

1 
1 

1 
1 

0 
0 

a ,, a 
e 
c 

x 

Fig. 3.8 The INHIBIT gate, regarded as the combination of an AND 
gate and an OR gate. 

This gate is very useful for controlling A and B by 
means of the inhibiting signal C. When the inhibiting 
signal is present (C = 1) the output is always OFF (X = 0), 
but when the inhibiting signal absent (C = 0) the signals 
A and B can pass to the output X. The functioning of this 
gate is similar to that of the circuit of fig. 3.7. 

The EXCLUSIVE-OR gate 
Definition: The output of the exclusive OR gate will stand 
at its defined "1" state only if one, and only one, of the 
inputs stands at its defined "1" state. 
This gate may be regarded as a combination of AND and 
OR gates (see fig. 3.10.). 

A 

s 
=i c 

c 

A 
0 
1 

B 
0 
0 

C 
0 
0 

X 
0 
1 

X =ABC +ABC + qgC 0 1 0 1 
1 1 0 0 
0 0 1 1 

Fig. 3.9 Symbol, Boolean function, 
equivalent circuit and truth table of a 

1 
0 

0 
1 

1 
1 

a 
0 

(three-input) EXCLUSIVE-OR gate. 1 1 1 0 

The functioning of a two input EXCLUSIVE-OR gate is 
similar to that of the circuit of fig. 3.10. 

a 

s 
a 

~i 

A 
0 
1 
0 
1 

B x 
0 0 
0 1 
1 1 
1 0 

Fig. 3.10 A (two-input) EXCLUSIVE-OR gate regarded as the 
combination of two AND gates and an OR gate, and its truth table. 

25 



The COMPARATOR (or logic identity gate) 
Definition: The output of the comparator wi l l stand at its 
defined "1" state only if all of the inputs stand at their 
defined "1" states or if none of the inputs stands at 
their defined "1" states. 

A __ A 8 C 
B X 

101 C 

A 

0 
B 
0 

C 
0 

X 
1 

1 0 0 0 
X - ABC+ABC 0 1 0 0 

1 1 0 0 
0 0 1 0 

Fig. 3.11 Symbol, Boolean function, 
equivalent circuit and truth table of a 

1 
0 

0 
1 

1 
1 

0 
0 

(three-input) COMPARATION gate. 1 1 1 1 

This gate can also be made from a combination of AND 
and OR gates (see fig. 3.12.). 
The functioning of this gate is the complement of that of 
the circuit of fig. 3.10. 

A 

>, 
X 

A 

0 
1 
0 
1 

B x 
0 1 
0 0 
1 0 
1 1 

B 
Fig. 3.12 A (two-input) COMPARATOR gate regarded as a 
combination of one AND and two OR gate, and its truth table. 

Distributed connections 
Definition : A distributed connection is a connection of the 
outputs of a number of elements that are joined together 
to achieve the effect of an AND/OR operation without the 
use of a special electronic component. Synonyms: Dis-
tributed AND, WIRED AND, phantom AND or DOT AND; 
Distributed OR, WIRED OR, phantom OR or DOT OR. 

Questions 
Q.3.1. Which of the circuits is represented by the logic diagram as 

shown here? 

a 
n 
c 

A 

X 

a 6 c 

e 

C 

h 

a 
b 

c 

A 

B 

~.. 

Fig. 3.13 Symbols for WIRED AND and WIRED OR connections. 

The symbols for the WIRED AND and WIRED OR connec-
tion are shown in fig. 3.13. 
See also chapter 7, page 51. 

Delay 
Definition: A delay element is a circuit in which each 
transition at the input causes a single delayed transition 
at the output. 
The delay element is mostly used when a signal has to 
be held back for some time. It can be designed in such a 
way that the transition from the "0" state to the "1" state 
at the output occurs after a delay of e.g. t, sec. with 
respect to the same transition at the input and/or so that 
the transition from the "1" state to the "0" state at the 
output is delayed by tZ sec. with respect to the same 
transition at the input. 

Input 

Output 

t, tZ

Fig. 3.14 Example of two delays. 

Q.3.2. Which of the waveforms represent the output of the gate, if the 
input wave forms are a, b and c? 

~ 1 

c 

X 

b 

A 

B 

C 

A 

B 

C. 

26 



0.3.3. Which circuit is equivalent to the logic diagram as shown here? 0.3.9. Which of the circuits A, B or C is the equivalent of the Boolean 
function E(0,1,2,3,4)? $ —; 

A 
b ._v. B _ .- a b 

B 

~1 

c 
X 

q C 
c a b 

b 

0.3.4. The logic operations of the two circuits below are 

a & x '' X 
b 

b 

X 

Y & 
Z 

X 

V 

Z 

,1 

C 

A 

B 

r.. 

A Complementary 

B Identical 

C Entirely different 

A 

B 

C 

0.3.10 Which circuit is the logic equivalent of the following Boolean 
function F (X, Y, Z) _ (X+Y+XY) (X+Z)? 

x 
v c 

0.3.5. The circuit below represents a: 

q ~ 
A Exclusive OR A 

~i v a q 
z 

z 

~i B Comparator x B x 
C Inhibit gate a 

B 
Y 

B 
0.3.6. The Boolean expression for the above circuit is: 

A X = AB+AB A z 
A 

B X=A6+AB B _
B

C X=(A+B) (A+B) C 
C 

0.3.7. Which circuit represents the shaded area of 
the accompanying Venn diagram? 0.3.11. To which circuit does in truth table below belong? 

Y --- u._....i 

X 

Y 

Z 

00 
X $ 
Y 
z 

A 

B 

C c 

a 
b 

c 

31 

~i 

Xq 

Xg 

a ' 31 

c 

'& i 

0.3.8. Which of the truth tables below belongs to 
the logic diagram? a !4 

b 
A 

a b c A B C a b c x B 

0 0 0 1 1 1 0 0 0 0 C 
0 0 1 0 1 1 0 0 1 0 
0 1 0 1 1 0 0 1 0 1 
0 1 1 0 1 0 0 1 1 1 
1 0 0 1 1 0 A 1 0 0 0 
1 0 1 1 1 0 1 0 1 1 
1 1 0 0 0 1 B 1 1 0 1 
1 1 1 1 1 1 C 1 1 1 1 

27 



E~Mf/tNY plL~f TIW IIWipYw Wu~ f 
Ui lL 4EOSE eL

~,. ud D

L dtavww ~♦ 

`~' ~ L ~ .a..~. s•~ rr-. 
MAIN "' 

TB cYw aoc 



Chapter 4 
Combinational logic 

The logic elements in digital circuits can be used in a 
combinational or a sequential arrangement. In the former 
case, the output of the digital circuit depends only on the 
instantaneous value of the various input signals and not 
on the history of previous states, because the circuit does 
not contain a memory function. 
Circuits whose operation is conditioned by their history, 
(i.e. where time is an operating parameter) are called 
sequential circuits. Their outputs are a function of the 
inputs and the state of the memory elements, which 
depends on previous inputs. Sequential circuits are 
discussed in Chapter 5 and following chapters. 
Typical examples of combinational logic circuits are 
adders, subtractors, comparators, multiplexers, de-
coders, etc. These are discussed in the present chapter. 

The half-adder 
Arithmetic operations belong to the most important func-
tions in digital computers. 
The basic arithmetic operation is the addition of two 
binary digits (bits). 
As we learned in chapter 1, there are 4 possible com-
binations, in binary addition, viz. 
0+0=0 
0+1=1 
1+0=1 
1 + 1 = 1.0, 
where the last operation requires two digits (the sum bit, 
0 and the carry bit "1"). These four addition operations 
can be realized with the half-adder, the truth table of 
which is given in fig. 4.1 

Inspection of this truth table shows S is the result of the 
EXCLUSIVE-OR operation on X and Y:S=XY+XY; and 

Fig. 4.7. Truth table of half-adder 

X Y S C 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

C is the AND function of X and Y: C = X.Y. These con-
clusions enable us to draw the logic diagram of the half-
adder: 

x 
v 

Fig. 4.2. Logic diagram of half-adder 

_, 

c 

Fig. 4.3. gives the logic diagram of half-adder made of 
NAND gates and fig. 4.4 the symbol used for the half-
adder. 

X 

Y 

a 

Fig. 4.3 Half-adder with NAND gates 

s 

c 

x 
Y z c 

Fig. 4.4 Symbol 
of half-adder 

However, the half-adder can add only two single bits; 
it cannot accept the carry from a lower position, which 
could be present when multiple-digit binary numbers 
are added. The "full-adder" has been designed to make 
such an addition possible. 

29 



The full-adder 
This combinational circuit accepts three input bits: X 
and Y (the bits to be added) and C (the carry from 
the lower position). The Boolean function of a full-adder 
IS: 
S =XYZ +XYZ +XYZ +XYZ and 
C = XY+XZ+YZ 
The truth table of this logic function is given in fig. 4.5. 

Fig. 4.5 Truth table of full adder 

X Y C S C 

0 0 0 0 0 
t o o i o 
o t o t o 
1 1 0 0 1 
0 0 1 1 0 
1 0 1 0 1 
0 1 1 0 1 
1 1 1 1 1 

This truth table shows clearly that a full adder can be 
built up from two half-adders: One for finding the sum 
of X and Y, and another for adding this sum to the 
input carry. The output carry is found by "ORing" the 
two carry outputs of the half-adders. The circuit diagram 
and symbol of a full-adder are given in fig. 4.6. 

X 
V z 

c a~ 

X 
V 
c 

S 

c 

Fig. 4.6 Circuit diagram and symbol for full adder 

An example of a complete 4 bit parallel-adder is given 
in fig. 4.7, which is self-explanatory. 

Bq Aq 83 Ag 
62 A2 

cq
c 

S4 J S3 

Fig. 4.7 4-bit binary-adder 

cZ
Sp 

c, 

B~ A~ 
co

The subtractor 
As we have seen in chapter 1, (page 11), subtraction 
can be realized by adding the complement of the sub-
trahend to the minuend. Another way, however, is to sub-
tractdirectly by means of logic elements in more or less 
the same way as with adders. There is, however, one 
important difference: when the minuend is smaller than 
the subtrahend, a "1" has to be borrowed from the next 
higher position. A "borrow bit" is used to inform the next 
higher bit pair about this loan. 
Just as with the adders, we can design half-subtractors 
and ful l subtractors. The half subtractor is a two-bit sub-
tractor, which offers the following possibilities: 
0-0= 0; 1-0= 1, 0-1 = 1+1 borrow and 1-1 = 0 

Its truth table will thus have the following form: 

X Y D B 

0 0 0 a 
1 0 1 0 
0 1 1 1 

Fig. 4.8 Truth table of half-subtractor 1 1 0 0 

We can easily derive the Boolean functions for D (differ-
ence) and B (borrow) from this truth table: 
D = XY+XY and B = XY, and implement these functions 
with logic gates (fig. 4.9) 

X 
Y 

Fig. 4.9 Logic diagram of half-subtractor 
a 

D 

e 

In analogy with the full adder we can also make a full 
subtractor from two half-subtractors and an OR-gate. The 
truth table and logic diagram of the ful l subtractor are 
given below: 

x o X Y B D B 
Y 0 0 0 0 0 
B ~~ 

g ~ 0 ~ t ~ 

0 1 0 1 1 
1 1 0 0 0 
0 0 1 1 1 
1 0 1 0 0 

Fig. 4.10 Truth table and logic diagram 0 1 1 0 1 
of full subtractor 1 1 1 1 1 

The Boolean functions of the full subtractor are 
D =XYZ+XYZ+XYZ+XYZ and 
B = XY+XZ+YZ 
We see that the logic function for S in the full adder 
is exactly the same as for D in the full subtractor, and 
that the functions for carry and borrow are the same 
except for the X-input (the minuend) which appears 
inverted in the B function. In view of this similarity, it 
is an obvious idea to combine these two circuits. The 
only extra measure which has to be taken in case of 
subtraction is to invert the X input before it is fed to the 
carry/borrow gates. The logic diagram of such a 
combined circuit is given in fig. 4.11. 
When the control input SUB is not true (logic "0") the 
circuit functions as a full adder, while when SUB = 1 it 
functions as a ful l subtractor. Here we see a very useful 
feature of the two-input exclusive OR. When one input 
(SUB in the present example) is held at logic "1", the 
output is always the complement of the signal at the 
other input. When the first input is held at "0" on the 
other hand, the output is not inverted. 

30 



X Y C/B 

t 

-, 

s/o 

X Y C/B 

Sub-
Addition traction 
sub="a•. sub="r,

S C D B 

sus & 0 0 0 0 0 0 0 
1 0 0 1 0 1 0 

& c/e 0 1 0 1 0 1 1 
1 1 0 0 1 0 0 
0 0 1 1 0 1 1 
1 0 1 0 1 0 0 
0 1 1 0 1 0 1 
1 1 1 1 1 1 1 

Operation X+Y+C X —Y —B 

Fig. 4.11 Full adder/subtractor 
SUB = "0" for addition SUB = "1" for subtraction 
D=X—V—B;S=X+Y+C 

Comparators 
Another very useful logic circuit is the comparator, a 
combinational circuit that compares two binary numbers 
X and Y. The simplest form of a binary comparator was 
discussed on page 26 (fig. 3.12). It merely indicates 
whether both numbers X and Y are equal (output "1 ") 
or not (output "0"). 
However, we may want to be able to distinguish between 
X = Y, X> Y and X < Y. This can be done with the aid of 
a half-subtractor, by using the D and B outputs as 
indicators: 

D B 

X=Y 0 0 
X> Y 1 0 
X<Y 1 1 

When both D and B are "0", X = Y; when only D is "1", 
X> Y; and when both D and B are "1", X< Y. In the 
above examples we compared 2 single-bit binary num-
bers. Inpractice, however, we generally want to compare 
multiple-bit binary numbers. 

We could of course do this by using ahalf-subtractor 
for each pair of digits; in practice, however, special 
comparators for numbers with up to 4-5 digits are made 
by combining standard gates. We will discuss the 
example of a two-bit comparator here, as larger com-
parator are so complex they would take us beyond the 
scope of this booklet. 

When we have two 2-bit numbers X,Xp and Y,Yo we can 
derive the following three functions: 
X,Xa = Y,Yo output B is true 
X,Xo > Y,Yp output A is true 
X,Xo < Y,Ya output C is true 
We thus have 4 input variables (X,, Xo, Y, and Yo) and 
three output variables (A, B and C). 

The corresponding truth table is: 

X, Xo Y, Ya A B C 

0 0 0 0 0 1 0 X=Y 
0 0 0 1 0 0 1 X<Y 
0 0 1 0 0 0 1 X<Y 
0 0 1 1 0 0 1 X<Y 
0 1 0 0 1 0 0 X> Y 
0 1 0 1 0 1 0 X=Y 
0 1 1 0 0 0 1 X<Y 
0 1 1 1 0 0 1 X<Y 
1 0 0 0 1 0 0 X> Y 
1 0 0 1 1 0 0 X> Y 
1 0 1 0 0 1 0 X=Y 
1 0 1 1 0 0 1 X<Y 
1 1 0 0 1 0 0 X> Y 
1 1 0 1 1 0 0 X> Y 
1 1 1 0 1 0 0 X> Y 
1 1 1 1 0 1 0 X=Y 

The Boolean functions for A, B and C can be derived 
from the above truth table:
A = X,.Xo.Y,.Yo +X,.Xo.Y,.Yo +X,XoY,Yo +X,XoY,Yo + 

+X,XoY,Yo +X,XaY,Yo = X,Y, +X,XoYo+XoY,Yo

B = X,XoY,Yo+ X,XoY,Yo+ X,XoY,Yo + X,XoY,Yo
C = X,XoY,Ya+X,XoY,Ya+X,XoY,Yo+X,XaY,Ya+

+X,XoY,Yo+X,XoY,Yp = X,Y, +X,XoYo+XoY,Yo

These can be implemented with logic gates as shown in 
fig. 4.12: 

x, 
v, 

Xo

Yo u 

Fig. 4.12 2-bit comparator 

,, 

A X> V 

B X= Y 

C X<Y 

31 



Fig. 4.73 

Gates I and II in fig. 4.12 are standard comparator gates 
as described above (see. fig. 3.12) and are used for 
detecting equal ity of X,Xo and Y,Yo. A 4-bit cascadable 
comparator (standard IC) is depicted in fig. 4.13. 

Decoders and encoders 
A third family of useful combinational logic circuits com-
prises the decoders and encoders. 
These two words are often used almost interchangeably 
in practice. Strictly speaking, however, an encoder is 
defined as a logic circuit that accepts any number of in-
puts and converts them into a binary code, whi le an 
decoder performs the reverse function. A simple ex-
ample of a decoder is the 1-out-of-4 decoder (which 
converts a binary two-input signal into 4 output signals) 
is shown in fig. 4.14. 

A B 0 1 2 3 
'1 a 0 0 1 0 0 0 

1 0 0 1 0 0 
0 1 0 0 1 0 

A 
'1 z 1 1 0 0 0 1 

>i

i

s 

Fig. 4.14 Logic diagram and truth table of 1-out-of-4-decoder. 

The Boolean functions for the 4 outputs variables are: 

"0" A+B "2" A+B 

"1"=A+B "3"=A+B 

An example of an encoder is the octal-to-binary encoder 
shown in fig. 4.15, which realizes the following Boolean 
functions: 

Bo = D,+D3 +DS +D, 
B, DZ +D3 +DB +D, 
B2 = D,+DS +D6 +D, 

D~ 

D6

D5

%1 Bp 

Octal digits 

D, D6 D, Da D, D~ D, Do

Binary 
digits 

B, B, Bo

0 0 0 0 0 0 0 1 0 0 0 

Dq 0 0 0 0 0 0 1 0 0 0 1 

?1 Bt 0 0 0 0 0 1 0 0 0 1 0 

D3 0 
0 

0 
0 

0 
0 

0 
i 

1 
0 

0 
0 

0 
0 

0 
0 

0 
i 

1 
a 

1 
0 

0 a t 0 0 0 0 0 i 0 t 
Dy aI

BO
0 
t 

1 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

1 1 0 

D~ 

Dp 

Fig. 4.15 Logic diagram and truth table of octal-to-binary encoder. 

A very special class of code converters comprises the 
BCD-to-BCD converters, which convert from one BCD 
code into another. Two typical examples of such con-
verters are given in fig. 4.16 and 4.17. Fig. 4.16 shows 
an NBCD (1,2,4,8)-to-1242 code converter, which realizes 
the Boolean functions: 

A'=A 
B'=B+D 
C' C+D 
D' = D 

NBCD 1242 
D C B A D' C' B' A 

A A 
0 0 0 0 0 0 0 0 0 

e 
B ' 

t 
z 

o 
o 

0 
o 

o 
~ 

t 
0 

o 
0 

0 
o 

o t 
t o 

3 0 0 1 1 0 0 1 1 
NBCD 7.2.4.2 4 0 1 0 0 0 1 0 0 

5 0 1 0 1 0 1 0 1 
C 1 C 

6 
7 

0 
0 

1 
1 

1 
1 

0 
1 

0 
0 

1 
1 

1 0 
1 1 

8 1 0 0 0 1 1 1 0 
9 1 0 0 1 1 1 1 1 

D D' 

Fig. 4.16 Logic diagram and truth table of NBCD (1,2,4,8)-to-1,2,4,2 
code converter. 

32 



A 

B 

NBCD 

D 

,, 

a 

A' 

B' 

Excess 3 
.7 

~, 

D' 

Code 

Dec. 
NBCD 

D C B A 
Excess 3 
D' C' B' A' 

0 0 0 0 0 0 0 1 1 
1 0 0 0 1 0 1 0 0 
2 0 0 1 0 0 1 0 1 
3 0 0 1 1 0 1 1 0 
4 0 1 0 0 0 1 1 1 
5 0 1 0 1 1 0 0 0 
6 0 1 1 0 1 0 0 1 
7 0 1 1 1 1 0 1 0 
8 1 0 0 0 1 0 1 1 
9 1 0 0 1 1 1 0 0 

Fig. 4.17 Logic diagram and truth table of NBCD-to-Excess-3 converter. 

Here the following Boolean Functions apply: 
NBCD word is DCBA 
Excess-3 word is D'C'B'A' 
A' A 
B'= A_.B.+A.B = A= B = AFB 

NBCD 
code 

A AO IC~1 
BO SO 

B .. ~.. B7 + S~ 
7 

C A2 S2 
.,D.. BZ 

S3 D A3
B3 ICoI 

A' 

.~ Excess3 
", code 

D' 

NBCD+0011 =Excess-3 

Fig. 4.18 NBCD-to-excess-3 converter using a 4-bit full-adder. 

Fig. 4.17 depicts an NBCD-to-excess 3-code converter. 
As we have seen in chapter 1, the excess-3 code is 
derived from the NBCD code by adding binary 3 to each 
code, so we could have made this converter with the aid 
of a 4-bit full adder, as shown in fig. 4.18, which is self-
explanatory. 
Further examples of this important group of com-
binatorial circuits are given in chapter 8 (interfaces). 

Multiplexers 
The last group of combinational circuits we shall discuss 
here comprises the multiplexers and demultiplexers. 
The word multiplexing comes from telecommunication 
techniques, where a large number of voice channels are 
transmitted over a small number of lines. Similarly, the 
digital multiplexer can be used for transmission of a 
large number of digital signals over a few lines. 
Another term frequently used for the digital multiplexer 
is "data selector". The reverse operation is cal led 
demultiplexing. In fact, a digital multiplexer is a com-
binational circuit that selects data from 2" input l ines 
(or group of lines) and transmits them through a single 
output line (or group of lines). Such a multiplexer 
closely resembles the encoders discussed above. The 
main difference is the presence of a number of additional 
input lines, the address or selector-lines. 
An example of 8-input digital multiplexer is given in 
fig. 4.19. 

z 

3 

4 

7 

s, s, so

Fig. 4.19 8-input multiplexer 

a 

a 

a 

a 

,, w 

Address Selected 
S, S, So l ine 

(] 

0 0 1 1
0 1 0 2 
0 1 1 3 
1 0 0 4 
1 0 1 5 
1 1 0 6 
1 1 1 7 

The 8-input lines are appl ied to 8 4-input and gates which 
are controlled by the address inputs So, S,, S2. Only one 
input at a time is connected to the output via the 8-input 
OR. In most cases the AND gates have a fifth input, 
the enable input. The enable inputs are then all con-
nected in parallel to provide a master control which 
can be used to switch the output independently of the 
data or address inputs. 

33 



4-bits (e.g. a BCD code). 

B'~ 

cl

Fig. 4.20 shows an example of a multiplexer that selects 0.4.2. The 4-bit adder of fig. 4.7 is used to perform a subtraction. For 

one out of 8 data Inputs, each input code consisting Of this purpose the number B is converted into its 2-'s complement. 
When now C, becomes logic "1", after the subtraction, this means 

that 

A The result is correct and positive A 

B 1 has to be added to the result B 

C The result has to be complemented C 
F Output A 

~'~ 
E Sp St SZ 

F Output B 

~, 
E SO St Sy 

~o 
i 
~ F 

I~ 

E Sp St Sy 

ip 

Output C 

F Output D 

E SO St Sp 

Enable 

Fig. 4.20 8-input 4-bit multiplexer 
Sp St Sy 

The reverse of multiplexing is called demultiplexing. 
Anexample of afour-output digital demultiplexer is given 
in fig. 4.21, which is self-explanatory. 

Data 

S~ 

s2

Fig. 4.21 Four-output digital demultiplexer. 

a 

A3

Ay 

At

& Ao 

0.4.3. A half-adder can be changed into ahalf-subtractor with the aid of: 

A An OR gate A 

B An inverter B 

C Cannot be done C 

0.4.4. The total number of connections in a three-input four-bit multi-
plexer is 

A 7 A 

B 12 B 

C 18 C 

0.4.5. The circuit below is: 

A A 

B 6' 

- I C' 
C 

D. 
D 

A An NBCD (1248)-to-BCD (1242) converter A 

B An NBCD-to-9's-complement converter B 

C An octal-to-NBCD converter C 

0.4.6. The circuit below is: 

A ~ 

B 

X 

V 

A A two-bit comparator A 

B A half-adder B 

C A two-bit multiplexer C 

0.4.7. A half-adder and ahalf-subtractor are connected as shown below: 

A 
B 2 2 

Questions ~ '~ 
0.4.1. The 4-bit binary adder of fig. 4.7 is used to add two 4-bit numbers 

A and B. For this purpose the Cp input should be kept at: 

A Logic "0" A g The inverse of the D output of the full sub- B 
B Logic "1" B tractor C

C "1" in negative logic C C Always "0" 

x 

The X-output is: 
A The same as the S output of the full adder A 

34 



Chapter 5 
Bistable elements (flip-flops) 

Elements whose operation is conditioned by their history, 
i .e. in which time is an operating parameter, are cal led 
sequential elements. The most important representative 
of this class is the fl ip-flop, which will be discussed in 
the present chapter. 
Definition: Aflip-flop is a bistable logic element with one 
or more inputs and two complementary outputs. 
A flip-flop is essentially a bistable circuit that will remain 
in its last state until a specific input signal causes it to 
change state. Because of its abi l ity to store bits of in-
formation in this way, the fl ip-flop became a basic buil-
ding block in digital circuitry. The state of the flip-flop is 
avai lable atone of the outputs, while the complement of 
the stored information is available at the second output. 
There are many forms of flip-flops, each of which has its 
specific features. 

The RS flip-flop 
However, al l those various forms of flip-flops contain 
essentialy the same bistable element —the RS flip-flop. 
The RS flip-flop has two inputs called SET and RESET 
and two outputs called O and O. 
When the SET input receives a pulse (a "1") and the 
RESET input no pulse (a "0"), output O is a sustained 
voltage (a "1"), while output O has no voltage (a "0"). 
This sustained voltage thus represents the binary one at 
the O output. 
Any additional pulse at the SET input will have no effect 
on the output. However, when a pulse is applied to the 
RESET input, the output reverses or "flips". Further 
pulses at the reset input have no effect on the outputs. 
Switching the inputs again causes the outputs to "flop" 
back to their original condition. 

The fl ip-flop is like a toggle switch, either in one position 
or the other; and once the change-over has been made, 
repeating the action has no further effect. The condition 
is stable, either way. This type of flip-flop is cal led a 
bistable two-input flip-flop. It may consist of logic ele-
ments such as OR gates and invertors, with flow paths 
interconnected as shown in fig. 5.1. 
To see how the flip-flop operates, let us begin with a pulse 
(a "1") at the set input (S) and no pulse (a "0") at the 
reset input (R). 
The "1" input to OR gate A results in a "1" at the output 
O. This "1" is applied to the invertor at one of the inputs 
of gate B, which changes it to "0". The two "0"'s at the 
inputs of OR gate B_result in a "A" at output Q. In addition. 
this zero at output Q is applied to the invertor at one of the 
inputs of gate A where it is changed to a "1" that gives a 
second inputto OR gate A. No change in the output of this 
gate results, because it already has a "1" output, due to 
the "1"set input. We thus see that a closed loop exists in 
the circuit, with a binary "1" in one half and a binary "0" 
in the other. The set-output voltage O is therefore main-
tained even when the pulse at the set input has dis-
appeared, as long as the reset input remains "0". 
When a "1" is applied to the reset input, the output of OR 
gate B is a "1" and the reset output ~ is also "1". This 
"1" is changed by the invertor at gate A to a "0". With 
both inputs of gate A at "0" the set output O is "0". The 
invertor at gate B inverts this "l)" and again the loop is 
closed: but now in the opposite direction maintaining the 
"1" at the reset output O. "1" at the set input wi ll again 
cause the flip-flop action and reversal of outputs. 
The output of the flip-flop thus "remembers" which input 
was the last one to receive a pulse. It may therefore be 
used for storage. As maybe seen from the accompanying 
truth table, fig. 5.1. , "1"'s at both inputs S and R are for-
bidden, since the flip-flop can never be in both states 
simultaneously. 

S R Q Q 
Q s 

0 1 0 1 0 
R Q 

1 

o a f o 
Q 1 

R g 0 ~ ~ ~ 

0 0 0 1 
1 
1 0 1 0 

1 
1 1 Undefined 

Fig. 5.1 Symbol, circuit diagram and truth table of the RS flip-flop. 

35 



Clocked RS flip-flop 
It has been found in practice that it is often convenient 
to operate a flip-flop by applying the appropriate levels to 
the inputs while these are blocked, and then arranging for 
the flip-flop to change state on receipt of a pulse from 
another source (the "clock" pulse). The basic circuit for 
the clocked RS flip-flop is shown in fig. 5.2. 

R 

s ~ 
n c 

c 

& ~, 
R B D 

0 
n 

n 

n 

Initial 
condition 
Q Q 

1 
1 
1 
1 
0 
0 
0 
0 

Fig. 5.2 Symbol, circuit diagram and 
truth table of the clocked RS flip-flop. 

0 
0 
0 
0 
1 
1 
1 
1 

Input 

S 
0 
0 
1 
1 
0 
0 
1 
1 

R 

0 
1 
0 
1 
0 
1 
0 
1 

After clock 
pulse 
Q Q 
0 1 
0 1 
1 0 

Undefined 
1 0 
0 1 
1 0 

Undefined 

If the SET input S is made logic "1", the output of gate 
A will become "1" after the clock line C has received a 
"1". The "1" at A is applied to the SET input (gate C) of 
the RS flip-flop proper, causing a "1" to be produced at 
the Q output. 
If the SET input S is at "0" and the RESET line (R) is 
enabled with a "1", a "1" will be produced at the output 
of gate B on receipt of the clock pulse. This "1" is applied 
to the input of gate D, resetting the RS flip-flop. 
As the truth-table in fig. 5.2. shows, the flip-flop wil l only 
change state when a clock pulse is applied. 

D flip-flop 
A way of avoiding the indeterminate state found in the 
operation of the simple RS flip-flop is to provide only one 
input (the D input). A "1" or a "o" applied to this input is 
passed directly to one of the inputs of the flip-flop proper, 
and inverted to the other input. The circuit diagram of 
this Dflip-flop is shown in fig. 5.3. 

C D 

Q 

Fig. 5.3 Symbol and 
circuit diagram of the Dflip-flop. 

D input 

Clock 

,1 
n 

n 

Whatever information is present at the D input prior to 
and during the clock pulse is propagated to the Q output 
when the clock pulse is applied, while the inverse of that 
information appears at the Q output. The flip-flop is thus 
set in the "1" state if the D input is made "1", and in the 
"0" state if the D input is made "0". 

The JK flip-flop 
A further refinement of the RS flip-flop is the JK flip-flop, 
which has become one of the most popular members of 
the flip-flop family. A unique feature of the JK flip-flop is 
that it has no ambiguous state. 

K 

n 
n 

K 
a ~, 

& ,, 

J K Q Q 

0 
0 0 No change 
1 0 1 0 

Q O 1 0 1 
1 1 Complement 

Fig. 5.4 Symbol diagram and truth table of the JK flip-flop 

Like the RS flip-flop, the JK flip-flop has two inputs and 
two outputs. When a_ "1" is applied to the J-input, Q also 
becomes "1" (and Q--> "0"), while a "1" is applied to the 
K-input causes the circuit to flop back to its initial posi-
tion (Q—>•"1", Q~"0"). When a "1" is applied to both 
J and K inputs simultaneously, both outputs switch over. 
A JK flip-flop often has several J and K inputs. 

The clocked JK flip-flop 
In this case, one J and K are tied together to form the 
clock input C. This kind of configuration is shown in the 
logic diagram of fig. 5.5. 
The unique features of this kind of fl ip-flop are: 
. A clock pulse wi ll not cause any changes in the state 

of the flip-flop if neither J nor K input are activated. 
. If both the J and K inputs are "1", the flip-flop will 

change state when the next clock pulse is received. 
. The J and C input used together will set the flip-flop; 

K and C used together reset it. 

J 
C 

D 
J 

& 

Q 

n 

J K Q(t+1) 

K Q 0 0 0 0 
0 0 1 0 

K a ,~ 0 
° 0 

1 
1 

0 
1 

1 
1 

1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 0 

Fig. 5.5 Symbol, logic diagram and truth table of clocked JK flip-flop 

r ° r  & ,~ ° 
n 

c 

a~ , ~ n 

Q T Q (t+1) 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
0 

Fig. 5.6 Logic diagram, symbol and truth table of clocked Tflip-flop. 

36 



The T-flip-flop (toggle fl ip-flop) 
The T-flip-flop is a single input version of the JK fl ip-flop. 
As shown in fig. 5.6, the Tflip-flop is derived from a JK 
type by typing one pair of J and K inputs together. 
Just as with the other flip-flops, there are unclocked and 
clocked Tflip-flops. The latter is illustrated in fig. 5.6. 
As can be seen from the truth table, the circuit toggles 
from "0" tot "1" after receipt of one pair of T and C 
pulses, and back again after receipt of the next T-C pair. 
The Tflip-flop is usually represented in circuit diagrams 
by the symbol shown above. The set output can be used 
to count pulses. Since two input pulses are required for 
each "1", from the set output, the deviced may be said to 
devide by two (i.e. it is a binary scaler) or to count in 
two's (i.e. it is a binary counter). A disadvantage of both 
the Tflip-flop and the JK flip-flop is that when the inputs 
remain "1" after the outputs have been complemented 
the flip-flop will switch over again. This timing problem 
is eliminated in the master-slave flip-flop described 
below. 

Master-slave flip-flops 
A special form of the JK flip-flop is the "JK master-slave 
flip-flop" see fig. 5.7. The information present at the J 
and K inputs enters the master when the T input is "1". 
When the T input is made "0" again, the information is 
transferred from the master to the slave and then appears 
at the outputs. 
This can be seen as follows. Gates A and B form the 
master flip-flop, and gates C and D the slave. The Q out-
put of the master flip-flop is the output of gate A. Suppose 
J and K inputs are both "1", while the Q output of the 
slave flip-flop is also "1". When the clock input is made 
"1" the lower input gate will be enabled and will reset 
the master flip-flop. The slave fl ip-flop remains in the "1" 
state as long as the clock pulse is "1", because the in-
vertors atthe inputgates ofthe slave flip-flop are blocking 
pulse transfer to this flip-flop for the moment. When the 
clock input goes to "0" the lower input gate of the slave 
flip-flop wil be enabled so that this flip-flop can now be 
reset and so on. D- and T-type flip-flops can also be 
realised in a master-slave version. 

Clock 

K 

Master 

31 
A 

31 
6 

Fig. 5.7 The JK master-slave flip-flop. 

Slave 

31 
c 

31 
D 

a 

Q 

37 



questions: 

Q.5.1. If a logic "1" is represented by a pulse and a logical "0" by no Q.5.5. A D-type flip-flop is connected as shown below, initially with 
pulse, which of the sets of waveforms shown represents the Q = "0" and Q = "1". 
behaviour of the RS flip-flop? A pulse is fed to the T input. Which waveform represents the 

signal at the Q output? 

A 

A 

B 
___ Ip 

._. .. . . __.. T '~.
C 

r 

A 

e 

c 

L. A 

B 

C 

g - Q.5.6. A JK flip-flop has its J input connected to logic "1" and its K 
input to the Q output. A clock pulse is fed to the T input. The 
flip-flop will now 

C = A Change state at each clock pulse 

B Go to "1" and stay there -~_, n _~ 
r -__ 

Q.5.2. If a single-input Tflip-flop has an input signal T, which of the sets C Go to "0" and stay there —K
of waveforms gives the output? 

B 

Q.5.3. Construction of a SET/RESET flip-flop with AND gates requires: 

A 2 AND gates 

B 4 AND gates 

C Cannot be done 

A 

B 

C 

Q.5.4. If one wishes to change a 3-input JK flip-flop into asingle-input 
T flip-flop, should one: 

A Connect all J and K inputs together, ;~ 
to give the T input? ' 3

K, 

B Connect all J inputs together to give K3 
the T input and all K inputs to 
ground (logic "0")? 

C Give up the idea, because it can't be 
done? 

n 

A 

B 

C 

Q.5.7. A JK flip-flop is connected as shown below. After a clock pulse is 
applied the Q output is "1". What was the Q output before the past 
clock pulse? 

A 

B 

C Impossible 
T 

J n 

K9 a 

A ' 

B 
i 

C 

—I 
i 

G.5.8. The correct circuit of a T flip-flop is 
A B 

- _ 

~ - 
A i A ' 

s n. g { i _is n', _ ~_ B j I 
1 ~ 

T T s ~` I 
R Q - _1 R Q y 

C Can be both 

Q.5.9. The circuit below: 

T ~ 

K 

!s ~ ~ n 

~ R r-,. it 
~______ 

A Will work as a JK flip-flop 

B Will not work as a JK flip-flop 

C Will work as a JK flip-flop when the Q 
and Q connections are interchanged 

A 

I C , 

A 
__ __' Q.5.10.Two T flip-flops are connected in series as shown. After both 

B flip-flops have been reset (Q, = Q, _ "0") clock pulses are fed to 
C - T. After two clock pulses the Q, output will be: 

A 

B „1„ ~ ~ 

I 
d 

n, 

~ 

~_~, 
n2 A 

B 

C Can be either 
~~ 

C 

38 



Chapter 6 
Counters, scalers and shift registers 

Binary counters 

Up counters 
When a number of flip-flops are connected in series we 
get a binary up (or forward) counter. In fig. 6.1 we see 
three flip-flops combined to give athree-bit counter, 
which can count to decimal 8. We can divide such coun-
ters into two subclasses: 
a) asynchronous counters and 
b) synchronous counters. 

Asynchronous counters 
With this type of counter the output of each flip-flop is 
connected to the input of the next. The operation can be 
explained as follows, with reference to fig. 6.1. 
We assume that all outputs A, B and C are initially cleared 
to "0" (by a reset pulse). As can be seen from the pulse 
diagram in the figure, as soon as the first input pulse be-
comes "0" (the circle at the input of the Tflip-flop in-
dicates that the flip-flop toggles at the negative-going 
edge of the pulse) the A output of FFi becomes "1". The 
circuit has now counted the first pulse: "001". The T 
input of FFII is also "1" now. When the second pulse has 
passed, T, goes to "0", FFI switches over and A becomes 
"0" so that anegative-going edge is presented to TZ and 
FFII goes to the "1" state while T3 also becomes "1". The 
circuit has now counted the second pulse: "010". After 
the third pulse FFI switches over again and A becomes 
"1", but nothing further happens the circuit has now 
counted three :011. After the fourth pulse A and B become 
"0" and C becomes "1": 100 in binary notation. 
The counting continues in this fashion until the circuit's 
output is "111" which as we know is 7 in binary notation. 
The eighth count resets the counter to 000 and gives a 
"carry" (a negative-going edge) to the next flip-flop, if 
there is one. 

1 2 3 4 5 6 7 B 9 Input C B A 
Input 

0 0 0 0 
a 

1 0 0 1 
2 0 1 0 

B 3 0 1 1 
4 1 0 0 

t' 3' stages delay 5 1 0 1 
6 1 1 0 
7 1 1 1 
8=0 0 0 0 

count 
input 

Reset 

a e 

I 

Fig. 6.1 Logic/pulse diagram and truth table of an asynchronous 
binary up counter. 

We thus see that the count pulses "ripple through" the 
binary chain, in such a way that e.g. the last binary 
stage cannot change state until all the preceeding stages 
have done so. Since each flip-flop takes some time to 
change state there will be a delay in the output signals 
with respect to the input pulses, so the output is not 
synchronouswith the input. This can be seen very clearly 
from the pulse diagram of fig. 6.1. 

Synchronous counters 
The delay which, as we have seen, is an i nherent property 
of ripple-through counters can be avoided by using syn-
chronous counters. In this type of counters the input 
pulses are fed simultaneously to all T inputs of the 
various flip-flops in the chain, whereas the output pulses 
are used to condition subsequent flip-flops. In this way 
all stages required to change state on receipt of a 
particular pulse will do so simultaneously. 
The circuit can be explained as follows (fig. 6.2.): 
We again assume that all fl ip-flops are initially reset to 0, 
so outputs A, B and C are also "0". As can be seen from 
the pulse diagram, as soon as the first input pulse has 
become "0" again the output A (first flip-flop) becomes 
"1". Although the input signal is applied simultaneously 
to the other two flip-flops as well nothing happens to 
these flip-flops because their) and K inputs are both "0". 
The circuit has now counted the first pulse: 001. After this 
first pulse, however, the J and K inputs of the second 
flip-flop are "1" (as is A); after the next input pulse, 
flip-flop A and flip-flop B wil l thus toggle, A becoming 
"0" again, and B becoming "1". The second pulse has 
thus been counted "010", while nothing happens to the 
third flip-flop C because the J and K inputs are still 0. 

39 



(J~ = AB = 1.0 = 0, similarly for K~). Since A is "0" after 
the second pulse, JB and KB = 0, so the next (third) clock 
pulse wil l not cause flip-flop B to switch over. The first 
flip-flop (which has no conditioning inputs) will however 
switch over again on receipt of the third pulse making 
A and B both "1". Flip-flop C is now conditioned to 
change state with the next (4th) clock pulse, and as JB
and KB are also "1" all fl ip-flops change state and the 
count is "100" (binary 4); the whole cycle described 
above is now repeated until J~ = K~ = 1 again, when all 
flip-flops will be reset to zero (8th count). 

Down counters 
In the counters discussed above each count increases 
the stored binary value by one bit. In binary down (or 
reverse) counters, on the other hand, each incoming 
pulse reduces the stored binaryvalue byone bit. (Starting 
from 110 we get 101, 100, 011 and so on.) 
This type of counter can be also made asynchronous or 
synchronous. 

Asynchronous down counters 
The asynchronous down counter differs from the corre-
sponding up counter in that the O outputs (A, B and C) are 
connected to the T inputs of the following stages, instead 
of the Q outputs (A, B and C). 
This counter works in more or less the same way as the 
asynchronous up counter but for the sequence of the 
binary values. 
We assume (fora 3-bit counter) that the three flip-flops all 
initially are reset to zero, which means in this case that 
the stored value is 8. After the first clock pulse, flip-flops 
I , II and III with al l toggle because all their T inputs 
become LOW ("0"), resulting in a count of 7 ("111"). After 
the next pulse only flip-flop I will switch over; the count 
is now 6 (110). This process continues until the value is 
again "000". 

Synchronous down counters 
The basic difference between the synchronous down 
counter and the corresponding up counter is again that 
the O outputs of the'various fl ip-flops are used for passing 
on the information, instead of the O outputs. The circuit 
is shown in fig. 6.4, which is self-explanatory. 

Reversible counters 
As we have seen above the only difference between up 
and down counters is the use of either the Q or O output 
of the various flip-flops for passing on the information. It 
follows that inclusion of a selector switch in the circuit to 
choose between these two complementary sets of out-
puts will give a counter which can be made to count up 
of down at wil l . 

40 

1 2 3 4 5 6 7 8 9 
Input 

A 

e 

Conditioning 
inputs after 
clock pulse 

Input C B A JB KB Jc Kc 

0 0 0 0 0 0 0 0 
c 1 0 0 1 1 1 0 0 

z 0 1 0 0 0 0 0 
A B c 3 0 1 1 1 1 1 1 

4 1 0 0 0 0 0 0 
A JB B Jc c 5 1 0 1 1 1 0 0 

6 1 1 0 0 0 0 0 
Kg Kc 7 1 1 1 1 1 1 1 

CUUnt 

input 8=0 0 0 0 0 0 0 0 
Reset 

Note: Js=A Jc=A.B 
KB =A Kc=A.B 

Fig. 6.2 Logic/pulse diagram and truth table of a synchronous binary up counter. 

A B c Input C B A 

Cpnnt 
input 

5.3. s=o 
7 

0 
1 

0 
1 

0 
1 

6 1 1 0 
5 1 0 1 
4 1 0 0 

Reset 3 0 1 1 
2 0 1 0 
1 0 0 1 
0 0 0 0 

Fig. 6.3 Logic diagram and truth table of an asynchronous binary down counter. 

A 

A 

Count 
input 

Reset 

A B 

Jg B 

Kg B 

Note: JR=A Jc=A.B 
Ks=A Kc=A.B 

Jc C 

Kc 

Conditioning 
inputs after 
clock pulse 

Input C B A JB KB Jc Kc 

8=0 0 0 0 1 1 1 1 
7 1 1 1 0 0 0 0 
6 1 1 0 1 1 0 0 
5 1 0 1 0 0 0 0 
4 1 0 0 1 1 1 1 
3 0 1 1 0 0 0 0 
2 0 1 0 1 1 0 0 
1 0 0 1 0 0 0 0 
0 0 0 0 1 1 1 1 

=Fig. 6.4 Logic diagram and truth table of a synchronous binary down counter. 

Preset A (input) A (output) 
enable 

s 
A 

A 

Count 
input 

Reset 

Count direction 

"1" reverse "0" forward 

a 
I 

B (input) B Icutpu[) C (input) C (output) 

a a 

nl s 
JB 

S 
B JC C 

KB B 
a 

IV 
KC C 

JB KB Jc Kc 
Forward A A A.B A.B 
Reverse A A A.B A.B 

Fig. 6.5 Reversible synchronous binary counter with pre-set inputs. 



In practice of course, logic gates are used instead of 
switches for this purpose. An example of such a revers-
ible binary counter is given in fig. 6.5. When we apply a 
"0" to the count-direction terminal, the AND gates I and 
III are enabled and the O outputs of the first two flip-
flops (A and B) are coupled to the J and K inputs of the 
following stages. This gives a forward counter. 
When a "1" is applied to the count-direction terminal, on 
the other hand, AND gates II and IV are enabled and we 
have a down counter. 

Presettable counters 
Very often we wantto start counting from a specific value, 
e.g. a down counter is often set to a predetermined 
number and then allowed to count down towards zero. 
Arrival at zero marks the end of the count, and is often 
used to trigger a related process. The initial value could 
be set by putting the counter in the forward mode and 
counting up until the required value is reached, after 
which the counter is reversed for the count down ;but this 
is rather a complicated procedure, especial ly as a 
decoding circuit is required to indicate when the required 
number has been reached. 
A more practical solution is the presettable counter (fig. 
6.5) which works as follows: 
When a "1" is applied to the set input of a JKflip-flop, the 
flip-flop will switch to the "1" position (O = 1) — inde-
pendent of the previous state. The counter of fig. 6.5 can 
thus be preset to any desired value by clearing it, apply-
ing "1"s to the appropriate inputs, and enabling the 
upper AND gates. 

Decade and other counters 
We have seen above how a simple chain of flip-flops 
gives a binary counter, counting in powers of two (2, 4, 8, 
16 and so on). For counters in any other number system 
we need a special circuit design, often making use of the 
specific properties of the J and K inputs of the JK flip-
flop. 
A modulo-n counter requires atleast Nflip-flops, where N 
is given by the relationship: 2"— ' < n < 2" 
For example, amodulo-3 counter will require two flip-
flops, since: 2' < 3 < 22. 

Modulo-3 counters 
Simple connection of two flip-flops gives a modulo-4 
counter, which is reset to zero at the count of 2" = 4. 
However, the circuit of fig. 6.6. is designed so that it will 
be reset to zero at the count of 3, as appears from the 
following description of its operation. 
On receipt of the first pulse, flip-flop I switches because 
JA and KA are both "1" (B is "1"); flip-flop II however 
remains in the "0" state because JB = 0 (= A) and 
KB = "1" (= A). On receipt of the next pulse, I switches 
again (because B was still "1"), and II also switches (to 
the "1" state) because JB = A = "1" ; the count is thus 
"10". The third pulse leaves flip-flop I unchanged be-
cause JA and KA are "0", while flip-flop II returns to the 
"0" state because KB = 1 and JB = "0" ; the counter is 
thus reset. The illegitimate state "11" is thus avoided 
and the cycle can start again after the count of 3. 

count 
input 

A B 

JA A JB 8 

KA A KB B 

1 2 3 4 
Input 

~. _~. .7 ; ..~ - ~_ 

A 
~ 

~~. 

B 
-~ 

Input B A 
0 00 
1 0 1 
1 1 0 
3=0 0 0 

Fig. 6.6 Logic/pulse diagram and truth Note: JA=B, KA=6, 
table of a synchronous modulo-3 counter. Je = A, K6 = A 

Modulo-5 counters 
Basically, the modulo-5 counter is just a modulo-3 coun-
ter with one more flip-flop. However, the more flip-flops 
there are in the counter, the more possible ways there 
are of arranging the various signal paths to give the 
desired result; in fact, there are more than 10 ways of 
making amodulo-5 counter with 3 JK flip-flops. 
An example of such a counter is given in fig. 6.7. We 
have chosen this specific circuit not because it is a good 
one, but precisely because of two serious disadvantages 
it has. The discussion of these drawbacks given below 
will teach us a lot about the design of these counters. 
First we will have a look at the functioning of the circuit. 
The first pulse (after reset) switches flip-flop I to "1" 
(because J A = 1, fixed), and after a slight delay flip-flop II 
switches over too (because A goes from "1" to "0"); 
nothing happens to flip-flop III (J~ = 0, K~ = 1). After the 
second clock pulse flip-flop III changes state (J~ = 1), but 
not flip-flop I (because KA = 0); consequently, flip-flop II 
also remains in its old state. Counting continues as in-
dicated in the pulse diagram and truth table until the 
counter is reset to "000" on receipt of the 5th pulse. 

41 



Inspection of the truth table shows what can be regarded 
as one of the disadvantages of this modulo-5 counter, 
namely thatthe code used is not weighted l ike the normal 
binary code; indeed, there is no recognizable system in 
the coding. 
However this illogical coding can be overcome by proper 
decoding circuits. A much greater disadvantage is the 
situation concerning the i llegitimate states. 
As we know, amodulo-5 counter has 8— 5 = 3 i llegitimate 
states (code combinations we do not want to use). This 
does not matter in normal operations since as we can see 
from the truth table these illegitimate states do not occur 
at all. The problem arises when something out of the 
ordinary happens. 
Let us suppose that because of some outside interference 
the counter comes into position "001". This is illegitimate 
combination I in the truth table. (Such a combination can 
also appear when an instrument is switched on.) 
Now when a clock pulse arrives with the counter in this 
position, flip-flop I will not switch over (because it is al-
ready in the "1" position); consequently flip-flop II wi l l 
not switch over either, nor will flip-flop III (J = 0, K = 1). 
In other words the counter will be locked in this position 
until a reset pulse is given. 
Similarly: if a clock pulse arrives when the counter is in 
i llegitimate state III the counter switches to position I and 
remains there for the reasons described above. (In the 
case of illegitimate state II, the counter will go to decimal 
state 1 after the clock pulse and is thus in the normal 
sequence again.) 
Any design of amodulo-n counter must thus involve care-
ful investigation in order to avoid any locked i l legitimate 
code combinations. 

Fig. 6.8. shows a modulo-5 counter which does not 
possess the two above-mentioned disadvantages. 
The logic diagram as given in fig. 6.8. together with the 
pulse diagram and the truth table are self-explanatory. As 
we see from the truth table the binary code is now true 
binary weighted (1, 2, 4 code). The special gating ar-
rangementensures that the counter is reset after the 5th 
clock pulse (JA = 0, so flip-flop I remains in the "0" 
state as does fl ip-flop II, whereas flip-flop III switches 
back to the "0" state because J D = 0 and K~ = 1). 
Naturally this modulo-5 counter also has 3 il legitimate 
binary code combinations, which could arise accidently. 
However, the next clock pulse changes the illegitimate 
states into normal legitimate combinations (I—> (2), 
II-~ (2), and III ->(0)) so no locking can occur. 
Similar considerations apply to the design of any other 
type of modulo-n counters. 

1 2 3 4 5 6 Input C B A KA Jc 
Input 

0 0 0 0 0 0 
1 0 1 1 0 1 

A 
2 1 1 1 1 1 

B 3 0 1 0 0 1 

c 
4 1 0 1 1 0 
5=0 0 0 0 0 0 
Illegitimate states 

A B C I 0 0 1 0 0 —~ [I] 
II 1 0 0 1 0 —~ [1] 

JA=t A B JC C III 1 1 0 1 1 —~ [I] 

KA A KC=1
Count 

I^pit Note: JA = 1, KA = C, 
Reset JD =B, KD =1 

Fig. 6.7 Logic/pulse diagram and truth table of modulo-5 counter. 

1 2 3 4 5 6 Input C B A JA KD Jc 
Input 0 0 0 0 1 0 0 

1 0 0 1 1 0 0 
2 0 1 0 1 0 0 
3 0 1 1 1 0 1 
4 1 0 0 0 1 0 

A c 
5=0 0 0 0 
I l legitimate states 

1 0 0 

I 1 0 1 0 1 0 -~ [2] 
II 1 1 0 0 1 0 —~ [2] 

Jq A B ,~ C III 1 1 1 0 1 1 —~ [0] 

Count 
Kq=1 Kc c Note: 

input JA =C,Kq=1 
Reset Jc = AB, Kc = C 

Fig. 6.8 Logic/pulse diagram and truth tables of an improved modulo-5 counter. 

1 2 3 4 5 6 7 8 9 10 
Input 

A 

B 

Input 

0 
1 
z 
3 
a 

D 

0 
0 
o 
0 
o 

C 

0 
0 
0 
0 
1 

B 

0 
0 
1 
1 
0 

A 

0 
1 
0 
1 
0 

c s o 1 0 1 
6 0 1 1 0 

D 7 0 1 1 1 
8 1 0 0 0 

A B C D 
9 1 0 0 1 
10=0 0 0 0 0 

Count A 
input Modulo-5 

counter Input D C B A 

0 0 0 0 
Reset 

2 0 0 1 
4 0 1 0 0 
6 0 1 1 

Note: J6 =D, KB =D, 8 1 0 0 

JD =BC, KD =1 
1 0 0 0 
3 0 0 1 
5 0 1 0 1 

Fig. 6.9 Logic/pulse diagram and truth 7 0 1 1 
trables of decade counter. 9 1 0 0 

42 



A B D 

Count A Jg B C Jp D 
Input 

KB KD=1 D 

Reset 

Fig. 6.10 Asynchronous NBCD decade up counter. 

Count 

input 

Reset 

A B 

A Jg B 

A Kg-t B 

C 

C 

c D 

Jp D 

KD=t D 

Fig. 6.11 Asynchronous NBCD decade down counter. 

Count 
input 

Reset 

A B C 

A JB B 

Kg 

JC C JD 

KC Kp 

Fig. 6.12 Synchronous NBCD decade up counter. 

Count 
input 

Reset 

A 

A 

A c 

Jg B 

Kg B 

JC C 

KC C 

D 

0 

Note: Jg = D, KB = D, 
JD = BC, KD = 1 

Note: Jg = C+D Kg = 1 

D 

JD = B.0 KD = 1 

Note 
J6 =A.DK6 =AJ o =A.6 
Kc = A.B JD = A.B.0 KD = A 

Jp D 

Kp D 

D 

Note: Jg =A(C+D) K6 =AJ c =A.B.D 

Fig. 6.13 Synchronous NBCD down counter. Kc = A.B JD = A.B.0 KD = A.B.0 

8 

& & & 

A Jg B JC c JD p 

Count 
A 

& KB B & KC C KD D 

;nput 
Reset 
cnnnta;re~non 
"1" forward "0" Backward 

Conditioning 

& 

inputs Jg Kg Jc Kc JD KD

Forward A D A.D A.B A.B A.0 A 
Reverse A (C+D) A A.B (C+D) A.B A.0 A 

Decade counters 
One of the most important counter types in measuring 
instruments is the decimal counter, since we still think 
and work in our decimal system. A decimal counter 
requires 4 flip-flops (2a < 10 < 2'), which gives us 6 i l le-
gitimate code combinations. 
A decade counter can simply be made by putting a binary 
scaler (fl ip-flop) in front of the modulo-5 counter as shown 
in fig. 6.9. Such a decade counter operates along the 
same lines as the modulo-5 counter of fig. 6.8, except 
that only every second input pulse is counted by the 
modulo-5 counter. This is well illustrated by the modified 
truth table of fig. 6.9, where the two identical truth tables 
of the modulo-5 counter can be clearly seen. Like the 
modulo-5 counter of fig. 6.8, the decade counter also has 
true binary weighting, and there is no danger of locking 
in i llegitimate code combinations. 
Like the pure binary counter, the decimal (and other 
modulo-n) counters can be made synchronous or asyn-
chronous, reversible and presettable, and can count up 
or down. These various possibilities are illustrated in 
fig. 6.10 to fig. 6.14. 
As we learned in chapter 1 there are quite a number of 
possible BCD codes. In the above example we have 
worked with the normal BCD (NBCD) code (1, 2, 4, 8). 
However, proper gating arrangements can of course give 
any other BCD code. For example, if we put the binary 
scaler in the decade counter of fig. 6.9 behind the 
modulo-5 counter instead of in front of it, we get a decade 
counter with the weighting 1, 2, 4, 5, (fig. 6.15.). 

Input 

A 

z a a 5 6 ~ 6 s to Input D 

to 

C 

V 
~~ 

B 

N 

~ 

A 

~ 

e 0 ~ 0 

c 1 0 0 0 1 
2 0 0 1 0 

D 
3 O O ~ t 

4 0 1 0 0 
a e c D 5 1 0 0 0 

6 
t O O 1

Cou nt ;nput Modulo~5 7 1 O 1 O
~n~nter 8 1 0 1 1 

ReSet 90=0 0 0 0 0 

Fig. 6.15 Logic/pulse diagram and truth table of decade counter with 

Fig. 6.74 Reversible synchronous NBCD counter. 1, 2, 4, 5 weighting. 

43 



Scalers 
The counters decribed in this chapter have another useful 
property: they can also be used as scalers or dividers. 
For example, inspection of the pulse diagram of fig. 6.7 
shows that the B output goes from "0" to "1" (or from 
"1" to "0") once in every 5 counts. In other words we have 
1 output pulse at output B after each 5 input pulses. The 
counter has thus divided the number of pulses by 5: the 
modulo-5 counter is also a 5 divider or "quinary scaler". 
This holds for all modulo-n counters: they are also n-
scalers. One can nearly always find an output which 
only changes state after n input pulses. 
Sometimes this output pulse is rather asymmetrically 
situated as can be seen with the D output of the decade 
counter of fig. 6.9. We can always make a solution to this 
problem by rearranging the circuit (see D output of fig. 
6.15). Scalers with scaling factors n,, n2, n3 . . .can be 
cascaded to give a new scaler with a scaling factor 
n, x n2 x n3 . . . Of course, the order in which they are 
connected does not influence the final scaling factor. 

Shift registers 
When we connect a number of flip-flops in series as 
shown in fig. 6.16 (for Dflip-flops), we get a shift register. 
A shift register is a circuit which can store information 
and transfer it upon command. It shifts the information 
from one bistable element to the next when a shift pulse 
is received. If the contents of a given flip-flop are shifted 
to the following one, the circuit is said to be a forward 
shifting register, but when the contents are shifted to the 
preceeding flip-flop the circuit iscalled areverse-shifting 
register. 
The operation of such a shift register is quite simple: 
Let us suppose that in the forward-shifting register of 
fig. 6.16 a logic "1" is applied to the D input of flip-flop A. 

Input 

Clock 

Reset 

D A D B D C D D 

Fig. 6.16 Forward shift register. 

D A D B 

Clock 

Reset 

Fig. 6.17 Reverse shift register. 

D C D D 

Input 

As long as there is no clock pulse, nothing happens (as 
we learned in chapter 5) but as soon as the clock pulse 
is given the "1" at the input offlip-flop A will also appear 
at the O output and hence at the D input of flip-flop B. 
One clock pulse thus shifts the "1" at the input of flip-
flop Aone flip-flop (one binary place) to the right, to the 
input of flip-flop B. The next clock pulse shifts this "1" 
one place further, and so on until after the fifth clock 
pulse the "1" is shifted out of the register. 
Similar considerations apply, of course, to the reverse-
shifting register offig. 6.17 but only the other way around. 
The "1" has to be fed into the input of flip-flop D and will 
shift to the left. 
If for example we start with the binary number "0110" in 
the register, we see that a shift to the right gives "0011", 
and a shift to the left "1100" ; as we learned in chapter 1, 
this corresponds to dividing and multiplying by 2 respec-
tivily. 
This example indicates very clearly the importance of the 
shift register in computers in that it offers the possibi l ity 
of arithmetic operations. 
In the above examples we have used D-type flip-flops for 
shift registers, but of course our versatile JKflip-flop can 
also be used for this purpose. 
As with counters, forward and backward operation can be 
combined in shift registers to give the reversible shift 
register, which is shown in fig. 6.18. 
As we learned in chapter 1 the data can be in parallel or 
serial form. Different combinations of these give four 
possible types of shift registers: serial in, serial out; 
serial in, parallel out; parallel in, serial out or parallel in, 
parallel out. More details of these circuits are given in 
chapter 8. 

Clock 

Reset 

Shift direction 
"1" forward "0" reverse 

D A D B 

Fig. 6.18 Reversible shift register. 

8i D C $ D D 

44 



Questions: 

Q.6.1. In the modulo-6 counter the state of the flip-flops is "101". 
(A = "1", B = "0", C = "1"). How many pulses has the counter 
counted after reset? 

Count 
input 
Reset 

A B 

Jg B 

Kg 

Q.6.2. The circuit diagram represents a: 

A B 

-- JA A <. Jg B 

Count ~ K'4- ~ 
input 

Reset 
. 

KA-t B 

JA =6 
Je =A 

Ja = A.C. A=4 

C 
K6 =A 
Jc = A.B B=5 

Kc =A C=6 
JC C 

A 
KC C 

B 

A Modulo-3 counter 

B 3-bit shift register 

C Modulo-5 counter 

A 

B 

Q.6.6. How many i llegitimate states has a synchronous modulo-6 
counter? 

A =3 

6=2 

C=1 

A 

B 

C 

Q.6.7. A three-bit shift register is connected as shown in the figure. After 
how many clock pulses (after reset to "0") are the contents of the 
shift register "000" again? 

A B 

D A D B D 

Shift 
pulse 
Reset 

C 

Q.6.8. A 12-bit binary counter has the following state 

Input 1 t o o t t , ii ,_o 

Which is the octal number represented? 

B 

C.. 

A 677 A 

Q.6.3. A clock pulse is fed into the 3-bit binary down counter. Is the 
signal at the B output as given in A, B or C? 

B 6347 B 

C 7163 
1 2 3 4 5 6 7 8 A B 

B — ----

Count 
input 

Reset 

A 

6 

Q.6.9. What is the maximum number (in decimal notation) that can be 
counted with above counter? 

A 999 

B 4096 

C 4095 

B 

C 
Q.6.10. In the modulo-7 counter below the illegitimate state is: 

A Locked 
A B c B Not locked 

Q.6.4. Which of the three truth tables is correct for a decimal counter C There is no 
coded in NBCD code? - - illegitimate state 

JA q Jg g C i_s, 

__ A B Ci 

0 0000 0000 0000 KA B A 
Count JA =6 

1 0001 0001 0001 input KA =B B 

2 0010 0010 0010 Reset JB =A 
3 0011 0011 0001 C Kg =C 
4 0100 0100 0110 
5 0101 0101 0101 Q.6.11. In another number system (e.g. 6) a "decade" counter has to 
6 0110 0110 0110 recycle to 0 at the 6th count. Which of the connections indicated 
7 0101 0111 0101 B will realize this resetting? (a logic "0" at the R inputs resets the 
8 0100 1000 1010 
9 1011 1001 1001 

C counters) 
x v 

A 

v t . .,> RX, RV Q.6.5. Two scalers, one with scaling factor n; and one with scaling Z 
factor n, are connected in series, n, before nZ. The maximum x v z 
dividing speed of the combined scaler is determined by the 
speed of: 6 Rx Ry 

x s_ RX, RY, RZ Y 

RZ 

B 

A 

B 

A The first scaler n, 

B The second scaler n2 c 
C Both (n, x nz) C RY, RZ z 

45 



t!-i1~tt it.li,ti 
pqw ~. C CI~I iTq. C C!~ !1l.i IN tip ~ ~ 

o+ool ss x coos o.o x uow ~, 

rr-ii~z u.as.~c 
pq~ i!. C CJOOL 1751. C CioEK tii.S !M Cio~ S,~ ~ 

O~1 fi.St 1M CIS S.S i CIOBi 0.0 x C3~90' ~, 
C 
• 
17-l1~8 1A.Ii.!! 

OIL ~. t 0!Ml ifA. C CMOOr 21S.t MY CIO0/ O.Oxt 

Owl fi.r IN Ox~ f.S x Cfooi 0.0 is fi100t 3011. 
t 
r 



Chapter 7 

The circuitry of logic elements 

In chapters 1 and 2 we showed how the binary number 
system (the one most commonly used in digital equip-
ment) allows all calculations to be carried out by mani-
pulation of the two digits 0 and 1, which can be repre-
sented by two distinct physical states such as "switch 
off" and "switch on". 
In chapters 3-6 we discussed the basic structure and 
properties of the "logic elements" used for the manipu-
lation of binary data, without considering how these ele-
ments are actually realized in practice. One thing which 
appeared clearly from this discussion was that most, if 
not all, logic elements can be considered as combina-
tions of AND, OR and NOT gates. This modular approach, 
in which logic functions are built up by combination of 
a few basic elements, is widely used in digital techniques. 
In this chapter we shall see how various basic logic ele-
ments can be realized as electronic circuits. As will be-
come clear below, the nature of these basic elements 
depends on the properties of the electrical components 
used to realize them. In the early days of digital tech-
niques, when diodes were largely used in the circuitry, it 
was natural to take the AND and OR gates as the basic 
elements. 
Later, when transistors came to the fore, it became more 
natural to base logic circuits on the NAND and NOR gates 
(since the output signal of the transistor is opposed in 
sign to its input — in itself a kind of NOT function). When 
integrated circuits came to be widely used, things be-
came simpler in some ways, but more complicated in 
others; however, the basic IC gates are generally NAND 
or NOR gates too. 
Before going on to discuss the circuitry of the logic ele-
ments, we must make up our mind precisely what physi-
cal states are to be used to represent the binary digits 
0 and 1. 

We shall then describe the circuitry of diode gates, 
transistor gates (including flip-flops) and integrated-cir-
cuit gates, in that order. 

Logic convention 
In digital circuits, 0 and 1 are always represented by two 
different voltage levels, often called HIGH and LOW. 
However, the assignment of voltage levels to the two 
logic states has some consequences which cannot be 
seen from the logic diagram. 
Inspection of table 3.1 shows that there is a duality of 
the AND and OR functions, because when we invert all 
inputs and outputs the AND function becomes an OR 
function and vice versa. This means that a circuit which 
acts as an AND gate when logic "0" is represented by a 
low level (L) and logic "1" by a high level (H) will act 
as an OR gate if L is taken to represent logic 1, and H for 
logic 0. We must thus clearly define which "logic con-
vention" we are using. There are two possibi l ities. 
In the positive logic convention logic "1" is assigned to 
the most positive (HIGH) level of the voltage in question 
and logic "0" to the least positive (LOW) level, while in 
the negative logic convention logic "1" is assigned to the 
most negative (LOW) level and logic "0" to the least 
negative (HIGH) level, fig. 7.1. 
This convention is important not only for the determina-
tion of the function of a specific gate but also for the 
interpretation of the digital data available e.g. at the out-
put of a measuring instrument. The following example 
shows very clearly the need to know which convention is 
valid :Suppose the following output levels are presented 
on a set of BCD output lines: HLLH (1-2-4-8 code). In 
positive logic this would mean 1001 (binary) = 9 (deci-
mal), while in negative logic the same HLLH would mean 
0110, which is the binary notation for decimal 6. 
In order to avoid confusion, the positive logic convention 
wil l be used below unless otherwise specified. 

a 

+E 

Positive logic Negative logic 

b -E d 

ov 

ov 

ov 

—E —E 

Fig. 7.1 Depedence of the logic properties on the direction of the 
voltage jump and the polarity of the nonzero potential E: 
a) Positive logic with positive potential. 
b) Positive logic with negative potential. 
c) Negative logic with positive potential. 
d) Negative logic with negative potential. 

47 



Basic circuitry 
In the following text it is assumed that the reader has 
sufficient knowledge about basic semi-conductor theory; 
however, in order to facilitate the reading the main 
characteristics needed for the understanding of diodes 
and transistors are briefly reviewed here. A diode is con-
ducting when forward biased, (i.e. when the anode is 
positive with respect to the cathode) and cut off when 
reverse biased. A transistor is conducting when the 
emitter-base junction is forward biased and the collector-
base junction is reverse biased. 

Diode gates 
The basic circuit diagrams of a diode AND gate and OR 
gate are shown in fig. 7.2. 
Since these gates are built up of resistors and diodes 
only, they are often refered to as resistor-diode logic 
gates in the literature. 
Let us see how aresistor-diode logic AND gate works, 
with reference to fig. 7.2.a. In this circuit, logic "1" cor-
responds to +5 V (HIGH), and logic "0" to 0 V (LOW). 
If all the inputs A, B and C are LOW, al l three diodes will 
be conducting so output X will be LOW too. In terms of our 
positive logic convention, this means that when A and B 
and C are "0",Xis also "0". Similarly, when only one 
or two of the inputs are LOW, X wi ll stil l be LOW. 
Only when A and B and C are HIGH wil l all diodes be cut 
off so that no current can flow through R, with the result 
that X is HIGH too. In other words, when all inputs are 
logic "1", the output is logic "1" too. This in accordance 
with the definition of the AND function. 
Let us now check that this circuit does become an OR gate 
when we use the negative logic convention, as men-
tioned above. If al l inputs are HIGH (logic "0") al l diodes 
are cut off, and X remains HIGH. If however one or more 
inputs are LOW the diodes) in question will conduct, 
current will flow through R, and X wil l become LOW 
(_ "1"). This thus corresponds exactly with the function 
of the OR gate. 
The operation of the OR gate in positive logic (fig. 7.2.b) 
is as follows: 
When all inputs are LOW (logic "0"), no current flows 
through R so X remains at earth potential (LOW = "0"), 
however, when one or more inputs go HIGH (+5 V = "1 ") 
the diodes) in question conduct, current flows through R, 
and X becomes HIGH. 

Transistor gates 
A single transistor in the common-emitter configuration 
may be regarded as a NOT gate or invertor; see fig. 7.3. 
A combination of this transistor with the diode gates des-

*5V 

R 

A 

B 
R 

X X=q 

A x a 

g R 

c 

x 

AtB-c 

X ABC 

7.2a 7.2b 7.3 

Fig. 7.2 An AND gate (a) and OR gate (b) in diode logic, also called 
dioderesistor logic. (Positive logic convention) 

Fig. 7.3 A NOT gate formed by a transistor in the common-emitter 
configuration. 

cribed above gives a NAND and a NOR gate. These are 
shown in Table 7.1., which gives a survey of all the NAND 
and NOR gates in the various logic systems described in 
this article. No further comment is required on the gates 
in diode logic. 

. Resistor-transistor logic 
The basic function which can be realized with resistors 
and transistors alone is the NOR function. The resistor-
transistor logic NOR gate is also shown in Table 7.1. 
The operation of this gate may be explained as follows. 
When both inputs A and B are LOW the base-emitter 
junction is reverse biased and the transistor is cut off; 
there is thus no current through R, so X remains HIGH. If 
on the other hand one OR both of the inputs are HIGH the 
base-emitterjunction is forward biased, the transistor is 
conducting and X becomes LOW. The circuit thus indeed 
functions as a NOR gate. 

. Direct-coupled transistor Logic 
A NAND gate and a NOR gate indirect-coupled transistor 
logic are shown in Table 7.1. The NAND gate works as 
follows. Only when both transistors are conducting (i.e. 
A and B both HIGH) does current flow through R so that 
X becomes LOW; in al l other situations, X remains HIGH, 
which is what we require of a NAND gate by definition. 
If one or both inputs of the NOR gate are HIGH, one or 
both transistors will be conducting and current will flow 
through R so that X wil l become low. If on the other hand 
neither A nor B is HIGH, X remains HIGH; this is in line 
with the definition of a NOR gate. 

48 



Logic type Diode logic Resistor-transistor logic Direct-coupled transistor logic 

NAND-gate 

circuit 

X = A.B. 

NOR-gate 

circuit 

X=A+B 

A x 

e 

A X 

e 

A 

A 

e 

R 

x 

R 

x 

R R 

x 

Table 7.1 Basic circuit diagrams of NAND and NOR gates in various types of logic, using discrete components. 

Flip-flops 
The basic circuit diagram of the flip-flop is shown in fig. 
7.4. A fl ip-flop can be regarded as two invertors in cas-
cade, the output of the second being connected to the in-
put of the first (see also the block diagram of the RS 
fl ip-flop 5.7). 
Let us assume that initial ly TS, is cut off and TS2 is 
conducting; the output level at O is thus LOW (~ 0 V 
_ "0"). Thanks to the resistor network, the base of TS, 
(S) is also low and output O is HIGH (~ +5 V = "7") ; 

- sv 

Q 

R 
S TSB TS2

- sv 

Fig. 7.4 Basic circuit diagram of the flip-flop. 

x 

A 

e 

consequently, the base of TS2 (R) will also be HIGH, thus 
maintaining the situation. A HIGH level (or a short HIGH 
pulse) at the SET input wi l l make TS, conducting; the 
collector voltage of TS, and the base voltage of TS2 drop, 
and so on. The effect is cumulative, resulting in a second 
stable state. A further HIGH pulse at the SET input wi ll 
cause no change. 
Inspection of fig. 7.4 will confirm the statement made in 
chapter 5 about the RS fl ip-flops: R and S cannot both be 
HIGH together, since when one of the transistors is 
conducting, the other must be cut off. 

Integrated-circuit (IC) families 
As soon as the design of logic circuitry got under way, 
circuits started to get increasingly complex —and bulky. 
The introduction of integrated circuits (IC's) and in parti-
cular the development of planar techniques came just in 
time to solve the problem of bulk, as now a lot of functions 
could be combined in one little semi conductor chip. 
However, this increased complexity makes IC's concep-
tually somewhat more difficult to deal with. A consider-
able number of characteristics have to be borne in mind, 
of which we discuss the main ones below before entering 
on a brief discussion of the structure and operation of 
the various IC families where the values of these char-
acteristics will frequently be quoted. 

49 



V input 

Voutput 

td

Fig. 7.5 Propagation delay td of a logic gate. 

td

H 

H 

. CHARACTERISTICS OF IC GATES 

. Speed A logic gate always requires a certain time to 
pass from one state to another. This is generally ex-
pressed interms of the propagation delay td (see fig. 7.5), 
which is defined as the time required for a binary digit to 
be propagated from input to output. 
The rate at which aflip-flop can switch from one state to 
the other is called its clock rate. 
. Threshold voltage The threshold voltage of a gate cir-
cuit is defined as the input voltage at which the gate in 
question just switches from one state to the other. 
. Noise margin In order to avoid errors in a logic 
system due to parasitic voltages (e.g. spikes generated 
by switching transistors, etc.), logic devices should have 
a wide noise margin, i.e. the voltage swing between the 
two binary states should be as large as possible. 
. Power dissipation This is generally understood to 
mean the power required for operation of the logic 
device. As circuit complexity (in particular the complexity 
of IC chips) increases, the power dissipation per gate 
must decrease, in connection with limitations on the 
amount of heat which may be dissipated in the semi-
conductor junctions. 
. Fan-out and fan-in A logic gate usually has to drive 
a number of other logic elements. The fan-out is defined 
as the maximum number of inputs which can be con-
nected to one output. Similarly, the fan-in is the number 
of outputs which can be connected to one input. 
We can now proceed to our discussion of the various 
IC logic "families" which have been developed so far. 
Most of the gates we shall deal with are NAND or NOR 
gates. 

DCTL 
Direct-coupled transistor logic 

X 

A 

RTL 
Resistor-transistor logic 

B A 

Fig. 7.6a Fig. 7.6b 

. DCTL family (direct-coupled transistor logic), fig. 7.6a. 
This was one of the first IC logic techniques. The basic 
logic gate has the NOR configuration. However, this cir-
cuit had the big disadvantage that slight differences in 
the properties of the various transistors used could cause 
one transistor to draw all the current, thus preventing 
proper operation of the circuit (current hogging). This led 
to the development of RTL family. 

. RTL family (resistor-transistor logic), fig. 7.6b 
The basic configuration is a NOR gate here too. With this 
circuit resistors are added in the base circuits which 
reduce the differences in transistor current. The power 
dissipation rate was rather low. On the other hand, the 
outputvoltage swing is also low, giving high sensitivity to 
noise spikes on the signal lines. Moreover, the series 
resistors reduced the speed of the circuit. The search for 
further improvements in design led to the development of 
the next family. 

DTL TTL 
Diode-transistor logic Transistor-transistor logic 

A 

R 

B 

Rt R3 

RZ

X A 

B 

Fig. 7.7a Fig. 7.7b 

TS B
TSq 

TS3 

x=a.s 

TSy 

. DTL family (diode-transistor logic), fig. 7.7a 
The basic configuration is the NAND gate, i.e. the output 
is LOW when all inputs are HIGH. 
In this case current wi ll flow through the input resistor 
(R) and the two stand-off diodes to the base of the output 
transistor which wil l thus be switched on. The output volt-
age will then be LOW. If any of the inputs drops to earth 
potential (logic "0"), the corresponding input diode will 
conduct and current flows through this diode and R, 
causing a voltage drop at the input of the stand-off 
diodes. The base voltage becomes LOW and the 
transistor remains cut off so the output is HIGH. 
The stand-off diodes are included to increase the thresh-
old voltage of the gate. 

50 



The main characteristics are propagation delay 30 ns, 
flip-flop clock rate 10 MHz, fan-out 8 and noise margin 
1.2 V. A further advantage is that DTL circuitry (l ike RTL) 
can be used in WIRED-AND configurations, so no addi-
tional gates are required to tie a number of outputs to-
gether. 

. TTL family (transistor-transistor logic), fig. 7.7b 
This logic family has become the most popular type of 
recent years. One of the basic differences between this 
type and DTL logic is that instead of an input circuit built 
up with diodes in the usual way amulti-emitter transistor 
is used. Each emitter-base diode serves as an input 
diode. 
This multi-emitter input has the advantage that less space 
is required on the semi-conductor chip for a given 
number of inputs, which means that more functions can 
be realized on a single chip, TTL logic therefore lends 
itself much more to the realization of more complex cir-
cuits (MSI-medium-scale integration) than the above-
mentioned families. 
The basic function of the TTL gate, just as with the DTL 
gate, is the NAND function. This can be seen as follows: 
If one or more inputs are at earth level (logic "0"), current 
will flow through input resistor R. Consequently, the 
collector of the input transistor wil l be LOW. Only when 
all inputs are HIGH will the collector be HIGH too. The 
inputcircuit in fact gives normal AND operation. The next 
stage acts as a kind of phase splitter for driving the 
"totem-pole" output. When TSZ is on (all inputs HIGH) 
TS3 will be cut off and TS, will be off, resulting in a 
LOW output; which is the NAND function. The diode in 
the output chain ensures that TS3 is cut off when TS, goes 
on. A disadvantage of the totem-pole output is that no out-
puts can be connected in paral lel , which means that 
WIRED-AND connections (see "Distributed connec-
tions", page 26) are impossible: if two or more TTL 
outputs were connected together and one output was 
LOW and the other HIGH, this would give more or less 
short-circuit and the power dissipation would become 
much too high. 

Fig. 7.8 TTL with open collector output. 

A TTL gate with special output circuit (open collector out-
put fig. 7.8) has therefore been designed to make 
WIRED-AND connections possible. In this type al l collec-
tors of the TTL gates are connected in parallel and have 
a common resistor to the positive power supply. The 
LOW level thus always predominates, and no harm is 
done to the other gates. 
When the outputs of such open-collector logic gates are 
connected together and the common line is connected 
via a resistor to the positive supply, this common line 
will only be HIGH if all the outputs are HIGH. When 
only one of the outputs is LOW, the common line will 
also be LOW, which gives this arrangement the function 
of an AND gate (in positive logic), fig. 7.9. 

A 

c 

R~ 

x 

1= a.a.cl 

a 

e 

c 

x 

a a x a 

Fig. 7.9 W/RED-AND connection for positive logic (active HIGH). 

As we have learnt, when we invert the logic convention 
an AND gate becomes an OR gate (and vice versa) ; so 
in a system with active LOW ("1" is low level, "0" is 
high level) we can realize aWIRED-OR gate as shown 
in fig. 7.10. 

A 

R 

c 

A 

B 

C 

x 

A 
B 
C 

Fig. 7.10 WIRED-OR Connection for negative logic (active LOW). 

,, x 

When one of the signals A, B, C is HIGH (logic "0") the 
output of the corresponding gate is LOW with the result 
that the common line is LOW independent of the state of 
the other gates. One signal is thus sufficient to bring the 
common line to a LOW level (logic "1"), which is the 
function of the OR gate. 
Summarising, we may state that a WIRED connection 
functions as an AND gate for positive logic and as an 
OR gate for negative logic. 

51 



The main characteristics of TTL logic are: propagation 
delay 10 ns, flip-flop rate 20 MHz, fan-out 10, noise margin 
0.4 V, dissipation/gate 10 mW. 
There are various types of TTL families, mostly differing 
only in a few aspects such as power dissipation or speed. 
A rather fast TTL logic is the so called "Schottky-TTL" 
logic. 
In all the above-mentioned logic systems "saturated 
logic" is used, i.e. transistors which are conducting are 
driven into saturation. The speed of a circuit with satu-
rated logic depends very much on storage time and RC 
constants (it takes time to get the transistor out of satura-
tion).Thus, if a transistor can be kept out of the saturation 
region, the speed can be increased. This can be done 
by clamping the base-collector junction to a voltage 
below the saturation level. A germanium diode (with a 
low forward voltage drop) shunted across the base-
collector junction would do just this. Of course, ger-
manium diodes cannot be used in IC technology, but 
fortunately Schottky diodes can be integrated and can 
perform the same function. Use of these Schottky-
clamped transistors in the IC process allows even faster 
TTL circuits to be made; this is the above-mentioned 
Schottky-TTL logic, fig. 7.11. 

B 

c 

E 

B 

c 

E 

Inputs 

A 

B 

Output 
X=AB 

Fig. 7.11a Schottky transistor. Fig. 7.71b Schottky TTL gate. 

Using these Schottky techniques in normal TTL gates 
decreases the propagation delay by a factor of 3 to 4 at 
a given power consumption. Flip-flop count rates of 
80-100 MHz can then be reached. A very popular TTL 
family nowadays is LPSTTL (Low power Schottky TTL), 
where the rather slow low-power TTL gates are equiped 
with Schottky transistors, resulting in propagation delays 
of the order of 5 ns. This is about the same as with 
standard TTL but with only 25% of the power consump-
tion of the latter. 

HNIL CTL 
High-noise-immunity logic Complementary-transistor logic 

X- AB 

A 
A 

X=AB 

B 
B 

Fig. 7.12a Fig. 7.126 

. HNIL family (high-noise-immunity logic), fig. 7.12a 
This type, also called HTL (high-threshold logic), has 
been specially designed for application in noisy environ-
ments. 
The basic gate form is the same as for DTL except for 
the Zener diode which has replaced the normal stand-off 
diode(s). 
The higher threshold is thus obtained by adding the Zener 
breakdown voltage (about 7.0 V) to the base-emitter 
forward voltage, giving a threshold voltage of about 7.5 V. 
The logic voltage ranges of HNIL, TTL and DTL are com-
pared in fig. 7.13 which clearly shows the superiority of 
HNIL in this respect. 

v 
18 HNIL , 80 TTL DTL 

16 16.0. , 

14 

12 

1° 

s Noise 
margin 

6 

a 

z 

0 

_2 

_, 

10.5 

t.7 

7.5 

4.5 

-z.o 

2.4 

0.4 

Out In Out 

s.o 

2.0 

o.a 

s.o s.o 
a. t 

o.a 

In Out In 

2.3 

o.a 

Fig. 7.13 Logic voltage levels for HNIL, TTL and DTL logic. In each 
column the upper shaded area indicates the voltage range corresponding 
to logic HIGH, and the lower shaded area to logic LOW. The exception-
ally wide noise margin of HNIL may be clearly seen. 

52 



. ECL family (emitter-coupled logic), fig. 7.14a 
This type —also called current-mode logic (CML) —differs 
completely from the previous types of logic families in 
that the transistors when conducting are not saturated, so 
logic swings are reduced. This is another way of in-
creasing the speed of the gate. 

The basic gate is shown in fig. 7.14a; it is basically a 
NOR gate, but also has a complementary OR output. 
Although the circuit looks rather complex, its operation 
is quite simple and more or less linear. 
The input is a differential amplifier formed by the input 
transistors and TS, ;TSz provides the reference level for 
TS,, TS3 and TS, are emitter-followers giving the 
NOR and OR outputs. The emitter-followers give the gate 
a low output impedance, a large fan-out and fast 
switching times; quite high capacitive loading is also 
possible. 
If both A and B are LOW, the common emitter line will be 
lower than the reference voltage (which is defined by the 
logic levels) and the input transistors will be cut off; their 
collector voltage will thus be HIGH so TS3 is conducting 
and the output of TS3 is HIGH (i.e. NOR function). TS,, 
however, will be conducting (emitter-base junction is for-
ward biased), so the collector of TS, and hence the base 
and emitter of TS, will be LOW (OR function). 

. EZCL family 
This type, see fig. 7.146, is another variant with basically 
the same circuit except that the emitter-fol lowers are at 
the input instead of at the output (when two gates are 
connected in series then there is no difference in 
principle between ECL and EzCL). 

. CTL family (complementary-transistor logic) 
Complementary-transistor logic is another form of cur-
rent logic; here too, the transistors do not go into satu-
ration. 
The basic gate (fig. 7.126), which performs the AND func-
tion, is made with a combination of PNP and NPN 
transistors. 
The operation is as follows. With both inputs HIGH the 
inputtransistors are cut off, no current flows, the common 
emitter voltage is high and consequently the output is 
HIGH. 
If one or more inputs are LOW, the transistors) are 
conducting, the emitter voltage drops so the output will 
be LOW too. 

A 

ECL ECL 
Emitter-coupled logic Emitter-emitter-coupled logic 

TSZ 

rs, 

Y Y 
--• -. ~ 

TSy 

X1 AFB 
TS3 

Xz n*B 

ago 

B 

A 

TSZ 

kTs~ 

_,_ 

~~ 

~~TSS j -~ 

TSg TSq~1 

_ ~ 1 

x, - a•e 

XZ=A!B 

Fig. 7.14a Fig. 7.146 

__, 

Fig. 7.15 ILL gate 

B 

AB 

. I2L family (integrated injection logic) 
The I2L family is especially designed for LSI (large-
scale integration). The logic gates are smal l in area on 
the chip which means a good packing density (gates 
per mmz) and reasonable speed at very low power 
dissipation. The noise margin is rather low, so special 
input and output circuits are required. 
The gate itself performs only the NOT function with 
multiple isolated outputs. A logic function is achieved 
by WIRED-AND connections. Compared with TTL where 
a multi-emitter transistor is used at the input, here the 
same transistor is upside down and thus works as a multi 
collector transistor. The supply current is delivered by a 
PNP transistor, the emitter of which is common to a 
large number of gates. The supply current is distributed 
(by current injection) in equal portions among the gates. 
When the NOT gate is "ON" the PNP transistor saturates 
and must therefore be properly designed. As no resistors 
are used, the circuit will work at any supply current; 
however, lower current levels cause longer delay times. 
The average delay time is 30 ns at 50 µW. Special HF 
processes can be used to give a better delay (5-10 ns). 
The circuit diagram of an I 2 L gate is given in fig. 7.15, 
which is self-explanatory. 

53 



. MOS families (metal-oxide semiconductor logic) 
Al l the IC families described above are based on the 
"bipolar" transistor. A new development, the MOS 
(metal-oxide-semiconductor) transistor has however 
greatly influenced the design of modern integrated 
circuits. 
Before giving further details of MOS logic families, we 
shal l briefly describe the operation of the MOS transistor 
(MOST). The MOS transistor, l ike the bipolar transistor, 
consists basically of three electrodes: in this case the 
source, the drain and the gate (see fig. 7.16). As can be 
seen from the figure, there are two PN junctions back to 
back between source and drain. When a voltage is ap-
plied between source and drain in such a way that the 
drain junction is reverse biased (source positive, drain 
negative), only a small leakage current wi l l flow from 
source to drain. When now the gate electrode (which is 
over the space between source and drain) is made suffi-
ciently negative with respect to the source, holes in the 
N-type substrate are attracted towards the gate electrode 
(which is insulated from the substrate by means of a very 
thin layerof si l icon dioxide, hence the name ofinsulated-
gate FET (field-effect transistor) which is often given to 
the MOS transistor). 

S G D AI 

P N type 

S;Oy 

Fig. 7.16 Basic structure of P-channel 
MOST (metal-oxide-semiconductor 
transistor). 

G 

s D 
P channel 

MOST 

G 

S D 

N channel 
MOST 

The extra holes will change the N-type region under the 
gate to P-type, so a P-type channel will join the two P-type 
regions at source and drain and a current wil l flow from 
source to drain. This current can be increased or de-
creased by varying the amplitude of the gate voltage. In 
fact a MOST can be regarded as a variable resistor 
between source and drain, controlled by the gate voltage. 
This type of MOS transistor is cal led a P-channel MOST. 
Simi larly, if we interchange the P-type and N-type mate-
rials and the polarities, we get an N-channel MOST. 
One of the big advantages of the MOS technique in 
integrated circuits is that it requires a much smal ler 
crystal area than normal bipolar IC's, so a much higher 
element density is possible on the chip, giving much 
lower manufacturing costs per element. 
The MOST is often used with the gate connected to the 
drain resulting in two well defined states: OFF (no cur-
rent, high impedance) and ON (max. current, saturation, 
low impedance). In this configuration, the MOST is very 
suitable for logic applications. 

Input 

Fig. 7.17 P-channel MOS inverter. 

Output 

VO

The best way to describe the MOS logic gates is to start 
with the MOS invertor (fig. 7.17), which works as follows 
(negative logic: "0" is ground potential , "1" is negative). 
When the input is "0" (near ground potential), the upper 
MOST (driver) is OFF and the lower MOST pulls the out-
put to the — Vd (minus the threshold voltage) level, i.e. 
logic "1". The threshold voltage for MOST's is defined 
as the gate voltage at which conduction between source 
and drain just starts. When the input is "1" (at least a 
voltage above the threshold) the driver MOST is conduct-
ing and thus has a low impedance. The output voltage 
— defined by the impedance ratio of the two MOST's —
then drops almost to ground potential (logic "0"). When 
two or more driver MOST's are added in paral lel to the 
inverter, one gets a NOR gate — in negative logic, see 
Table 7.2. 

Logic 
type 

NOR-gate circuit NAND-gate circuit 

P-MOS o~.~~~ 

C-MOS 

.Aa< 

Table 7.2 MOS families, simplified circuit diagrams. 

54 



RTL Schottky 
DCTL DTL HNIL TTL TTL 

Basic gate NOR NAND NAND NAND NAND 
Propagation delay Ins) 10-100 20-70 90-150 6-12 3 
Flip-flop rate (MHz) 5 10 4 10-50 100 
Dissipation gate (mW) 12 10 50 10-20 20 
Fan-out 5 8 10 10 10 

Table 7.3 Characteristic data of the main types of IC logic families. 

Replacing the driver by a number of MOST's in series 
gives (in negative logic) a NAND gate (see Table 7.2 
again). 
In the latter case the total series impedance when all 
MOST's are ON must be as low as with the single-MOST 
inverter. It will be clear from this description that these 
MOS circuits bear a close resemblance to the "bipolar" 
logic circuits described above. 
The high impedance of the MOST gives it the disadvant-
age of a lower speed than bipolar circuits, owing to the 
fact that stray capacitances cannot be charged quickly. 
Typical switching times are of the order of 1 fps (see 
Table 7.3). 
Performance can be improved with a new type of load 
devices, the depletion n-channel MOS transistor. The 
main feature of this device is that it is conducting at 
zero gate source voltage. Only a sl ight increase in drain 
source voltage is required to saturate the transistor, 
i.e. to limit the current through it. When this tran-
sistor is used as a load device its behaviour is more or 
less ideal. With a "0" at the input of the inverter (fig. 7.18) 
and the gate connected to the output, the driver will be 
off. The load transistor remains fairly well conducting 
up to a voltage very close to the drain voltage of the 
load transistor which gives a nearly full swing of the 
output. With a "1" at the input, the output voltage drops 
to zero. The current through the load is limited, because 
this type of transistor is so easily saturated. 
Switching times can be improved by making use of 
C-MOS (complementary MOS) techniques, in which both 

Input 

Fig. 7.>8 N-channel MOS inverter. 

. ~o

Load 

Outpu[ 

LPS 
TTL CTL 

NAND AND 

ECL 
E'CL 

OR-NOR 

P-MOS C-MOS N-MOS I'L 

NAND/NOR NAND/NOR NAND/NOR NOR 
5 2-3 1~ 300 70 10 30-100 
20 100-200 60 00 2 10 20 3 
5 30 40-60 0.2-10 1 0.2 0.05 
5 20 25 20 50 20 5 

N 
P 

N type 

+~D 

Input Output 

Fig. 7.19 Basic structure of a C-MOS logic gate. 
Fig. 7.20 C-MOS inverter. 

P-channel and N-channel MOST's are used. The basic 
structure is given in fig. 7.19 (C-MOS inverter). The 
bottom transistor of the inverter (fig. 7.17) is replaced by 
an N-channel MOST, thus giving a P-channel and an N-
channel MOST connected in series (fig. 7.20). Only one 
device at a time is turned ON (low impedance), the other 
device being OFF (high impedance). 
With a "0" at the input, the N-channel MOST will be OFF 
and the P-channel will be ON, which gives an output 
close to the supply voltage (logic "1"). With a "1" at the 
inputthe situation will be reversed, with an output voltage 
close to ground potential (logic "0"). The advantage of 
this circuit is that when the impedance of one device is 
decreasing, the impedance ofthe other is increasing, and 
vice versa, giving apush-pull effect which narrows the 
transition region, giving sharper transfer characteristics 
and thus increasing speed. Another advantage of C-MOS 
is the low power consumption, because only one tran-
sistor is turned on at a time. 
In the same way as described above for P-channel gates, 
a number of basic elements in parallel gives a NOR 
gate, while a series combination gives a NAND gate. For 
these two circuits see also Table 7.2. 
As mentioned above, the great advantage of MOS tech-
niques is the high-density packing. In other words, large 
complex circuits (LSI —large-scale integration) can be 
made by MOS techniques. Simple gates or flip-flops 
would cost too much if made this way. Since MOS techni-
ques are mainly used for LSI circuits, there will be a 
tendency for each MOS circuit to be unique (custom-
bui Itfor agiven application) rather than general-purpose. 

55 



Questions 

0.7.1. If negative logic is used, the diode gate in the circuit below 0.7.5 What is the purpose of the stand-off diodes in the basic DTL gate? 
represents an: 

A 
__ 

1 J 

-s v 

x 

A AND gate A 

B OR gate ~B 

C NOR gate C 

0.7.2 The circuit below (positive logic) is a: 

-5 V 

A 

A To protect the input against over-voltages. 

B To raise the threshold level. 

C To provide facilities for WIRED-AND connections. 

0.7.6 The noise margin in TTL for the "1" state is: 

v 
18 HNIL .80 TTL DTL 

16 16.0 

14 

12 
A NOR gate A 10.5 _, 10 
B NAND gate B 

C Flip-flop C $ NO1~ ~! 1 zs margin 

0.7.3 A three-input NAND gate is to be used as inverter. Which of the 
following measures will achieve this end? 

_~ 

A All inputs are connected together, making 
one input. 

A B The two inputs not used are connected to 
the logic "1" level. B 

C The two inputs not used are connected to C
ground ("0"). 

0.7.4 In the flip-flop circuit below, TS, is conducting and TSZ is cut off. 
To which input must a positive pulse be applied to change the state 
of the flip-flop? 

0 

R 
A R input 

B S input 

C Either 
RorS 

B 

c~ 

B 

2 

_2 

_4
v 

' 1 
1] 

Out In 

4.5 

-2.0 

0.7.7 The basic HNIL gate is 

A AND 

B NOR 

C NAND 

5.0 6.0 6.0 

- 4.1 
r 

z.4 ~ 2.0 

0.4 f  o.a 
2.3 

0.6 0. 
c —F';

out In out In 

A 

B 

C 

A :3.9 V 

B : 0.4 V 

C :2.4 V 

A 

B 

C 

A 

B 

C 

0.7.8 The switching speed ofemitter-coupled logic is very high because: 

A In this type of logic transistors are not 
A 

saturated when conducting.   _~ 
B The circuit uses emitter-coupled trap- ~ B 

sistor circuits. C t 
C The gate operates in negative logic. ~  ~  1 

56 



Chapter 8 
Interfaces and measuring systems 

Interfaces 
In the language of modern technology, the combination of 
a number (often a large number) of instruments, ma-
chines, etc., for a single. or over-al l purpose is called a 
"system". Thanks to the simplicity of their "logic", digital 
measuring instruments lend themselves very well to use 
in test systems. 
An example of a simple system is a digital voltmeter 
(DVM) and a printer. The value measured by the DVM is 
encoded (e.g. in the BCD code) and transported to the 
printer. In this example the instrument (DVM) has a digital 
output, figure 8.1. 

Channel 
identification 

Scanner 

Digital 
Voltmeter 

Printer 

Fig. 8.1 Small measuring system. 

10 to 100 analog 

input channels 

Control line 

Control unit 

One can also imagine an instrument being remote-con-
trolled by means of digital signals (in case of the DVM, 
e.g. the voltage range could be controlled in this way); 
the instrument then also has a digital input. It follows that 
one could build up a more or less automatic measuring 
system by connecting the digital inputs and outputs of the 
instruments involved in some appropriate way. Addition 
of a computer to the system would make it fully automatic. 
In order to get all these instruments working together, it 
is necessary to establish a standard digital "language" 
for the various signals passing between them. 
These signals (mostly in digital form) are processed in 
the "interface" (a special circuit in which the connections 
between the instruments are realized). This interface can 
be regarded as a kind of translater for the various com-
munication signals passing to and from the instruments 
in the system. As there are no international standards for 
digital systems yet, the interface can also play the role of 
interpreter for the various logics. 

Logic polarity and level 
First of all, the logic polarity must be defined; either 
positive or negative logic can be used, as described in the 
previous chapter. The two offer equal performance 
and flexibility (fig. 7.1). Secondly, the logic level must be 
fixed. Anyvoltage could be used in theory, but in practice 
we naturally tend to choose the levels used in standard 
integrated circuits (e.g. 5 V TTL; 6 V DTL; 12 V HNIL). The 
choice of the type of IC family used in the instrument thus 
more or less defines the logic levels. 
Each level has its specific advantages and disadvan-
tages. The levels typical of DTL (6 V) and TTL (5 V) have 
the advantages of rather low price and direct compati-
bilitywith other instruments using these types of IC's (and 
this includes most of the instruments made today). They 
have, however, the big disadvantage of poor noise im-
munity and poor protection against overload (fig. 7.13). 
The higher logic levels (such as HNIL), however, have the 
disadvantages of higher price, slower speed and re-
stricted availability which weigh against the big advan-
tages of good noise immunity and good overload protec-
tion. 
Depending on the technical requirements on the signal 
lines between the various instruments, a lower or a 
higher voltage level will be chosen. 

57 



Data signals and control signals 
The various digital signals passing between the instru-
ments can roughly be divided into two main groups: 

. a. Data signals 

. b. Control signals 

. Data signals are the signals which contain information 
concerning the results of measurements (e.g. the BCD 
output of counters or DVM's) or concerning the remote 
control of an instrument. 
In case of a 9-digit BCD counter, the output data would 
contain 9 X 4 = 36 bits. As regards the use of data signals 
for programming (control) purposes, a two-position 
switch can be controlled by one bit of information (e.g. 
"0" is OFF and "1" is ON), while e.g. a 6-position 
rotary switch (for selection of the voltage range, for 
example) can be controlled by 3 bits of binary encoded 
information. 

Control signals are signals which do not contain 
DATA, but morely initiate or prevent a certain action, e.g. : 

START starts the measurement of e.g. a DVM or counter 
READY gives the information that the instrument has 

completed its measurement 
CALL sets the required signal at the output of an in-

strument — e.g. output voltage of power supply 
or generator 

INHIBIT prevents the start of a new measurement by a 
counter or DVM unti l another instrument (e.g. 
printer) has fully processed a previous batch of 
data from the instrument involved 

STOP stops the instrument 

Control signals are generally processed apart from the 
data signals; there are often direct control l ines from one 
instrument to the other, since this ensures that the data 
and control signals are kept quite separate at the cost of 
a few extra l ines. DATA signals often require more pro-
cessing than control signals. This is easy to understand 
when we remember that e.g. the BCD output of a 9-digit 
counter already has 36 output bits (and would thus re-
quire an equal number of output lines unless special 
measures were taken), whi le a ful ly programmable 
modern pulse generator requires more than 100 input 
bits (lines). Especially when these DATA have to be 
transported, the number of lines involved can give 
trouble. 
A number of data signals (bits) are generally grouped 
together in a WORD (or BYTE). Such a word can contain 
any number of bits (8, 12, 16, etc). 
Now the transport of DATA generally occurs in one of 
three different ways: 

. Fuil parallel (fig. 8.2a). 
All signals (words and bits) are sent (or received) simul-
taneously. The advantage of this method is the speed at 
which the transfer is real ized; the disadvantage is the 
higher number of lines required. 

o~ 

0 0 
,' 
o° 

0 z 

,, 
24 lines 

Iword a bits) 

Fig. 8.2a Data transport full parallel (Bit parallel word parallel). 

. World serial —bit parallel (fig. 8.2b). 
Here the total information is split up into N words, each 
containing P bits. The words are transferred one after the 
other, while the bits in each word are transferred in 
paral lel . Since the information is not all sent at the same 
time, the receiving instruments need a STORAGE (or 
memory, e.g. Dflip-flops) for the information contained in 
the various words. 
The disadvantage of this method is quite clear: it takes 
at least N times longer to transfer al i the information. 
The advantage, on the other hand, is that only P lines 
are required (N times less than in full parallel). 

,o
0 

t 

8 lines 
Word = B bits 

0 
E 

Fig. 8.2b Data transport (Word serial bit parallel). 

toonioi 
tioi000t onoiooi 

0 
E 

line 

Word = 8 bits 

Fig. 8.2c Data transport full serial (Word serial bit serial). 

58 



. Ful l serial (fig. 8.2c). 
In this mode of transfer not only the words but also the 
bits in each word are transported one after the other: first 
of all the bits of the first word are transferred serially, 
then those of the second word and so on. Here too, the 
receiving instrument requires a memory. 
It wi ll be clear that the transfer speed is drastically 
reduced in this method (N X P times compared with full 
parallel). The great advantage, however, is that only one 
signal line is needed, which can be very useful for trans-
mission via telephone lines, radio lines etc. 

Code converters 
As we have explained above, digital signals have quite a 
number of different parameters which may have to be 
changed at the interface between two different parts of a 
system, or between two different systems. We shall now 
discuss the various converters used for this purpose. 

• Positive-to-negative logic converter (and vice versa.) 
This is in fact nothing but the NOT gate or inverter men-
tioned earlier in this course (figure 8.3). 

A 

Fig. 8.3 Inverter. 

R 

x=A 

• Logic-level converter 
Conversion of a logic level generally means amplification 
of the logic signal (low to high) or attenuation (high to 
low). The average DC value is sometimes shifted at the 
same time. For low-to-high conversion one or more tran-
sistors are used, while either active or passive devices 
(resistor networks) can be used for the opposite conver-
sion. Some examples are shown in fig. 8.4. 

TTL HNIL 

Fig. 8.4 Level converters. 

TTL 

270 52 

240 fi 

CML 

—5,2 V 

CML 

TTL 

120 St 300 q 

• Series-parallel (S/P) converter 
Serial data can be converted into parallel by means of a 
shift register. In a shift register (see chapter 6) a number 
of flip-flops are connected in series, an example of which 
is given in fig. 8.5. 

Data 

Clock 

Reset 

A 

D A D B 
c c 

Fig. 8.5 Shilt register. 

C D 

D C D D 
c c 

When now e.g. a 4-bit serial data word a, b, c, d is applied 
to the input of the shift register as shown in fig. 8.6, in 
such a manner that bit d (which can be either "0" or "1", 
as can a, b and c) is the first to enter, then after the first 
clock pulse flip-flop A contains bit d, after the next clock 
pulse bit d is shifted to flip-flop B and bit c enters flip-flop 
A on so on, unti l after the fourth clock pulse the four flip-
flop A, B, C and D contain the bits a, b, c and d, which 
remain there until the shift register is reset. It is obvious 
that clock rate and data rate must be synchronized. 
The data are now available in parallel form at the outputs 
of the four flip-flops, and can be read out via the four AND 
gates shown in fig. 8.6, with the aid of a read pulse. It will 
be clear that the capacity of this converter can easily be 
expanded by adding more flip-flops and an equal number 
of AND gates to the shift register. 

Read 

Serial 
input 
a,b,c,d 

Clock 
Reset 

D 

A B 

D 

Parallel output 

b 

c 

c 

D D 

D 

d 

Clock 
pulse QA QB QC QD 

0 0 0 0 0 
1 d 0 0 0 
2 c d 0 0 
3 b c d 0 
4 a b c d 

Fig. 8.6 Series/parallel converter with truth table. 

59 



. Parallel-series (P/S) converter 
The circuit diagram of the parallel-series converter is 
given in fig. 8.7. This circuit uses a shift register the other 
way round. First the paral lel data are fed into the appro-
priate flip-flops by means of the ENTER pulse. (For this 
purpose, the flip-flops used have a preset input, see 
chapter 6). After the first clock pulse, bit "d" appears at 
the output and bits a, b and c shift one place to the right. 
The second clock pulse will then produce bit "c" at the 
output while bits a and b shift one place further and so on. 
After the fourth clock pulse (in this example) the parallel 
word will have been completely transformed into a seria-
l ized version. 

Enter 

a 

A B 

D D 

Parallel input 

b c 

& & 

C D 

D D 

Clock 

Reset 

Fig. 8.7 Parallel/series converter. 

Serial 
output 

a,b c,d 

Because of the great simi larity between S/P and P/S con-
verters, it is an obvious idea to combine the two into a 
single circuit. This combined converter is depicted in fig. 
8.8, which is self-explanatory. 

Enter 

Cluck 

Serial 
input D 

Reset 

Read 

D 

Parallel input 

& & 

D D 

Parallel output 

Fig. 8.8 Combined S/P and P/S converter. 

Serial 
output 

. Binary-to-BCD converter (and vice versa) 
BCD-to-binary conversion is sometimes used to cut down 
the number of l ines needed for the transport of large 
amounts of data (only 3.3 binary bits are needed for one 

decade, as compared with 4 BCD bits). The disadvantage 
of the pure binary code is that it is not easi ly readable, so 
a binary-to-BCD converter wi ll generally be needed too. 
There are many possible ways of carrying out this con-
version; the one described below makes use of forward 
and reverse counters. The down counter only differs with 
the normal BCD or binary up counter (described in 
chapter 6 of this course) in that at each clock pulse the 
total BCD or binary value stored is decreased by 1 bit. 
Now aBCD-to-binary converter works as follows: First 
the appropriate BCD value is set in the BCD down 
counter. Then the clock pulse is applied simultaneously 
to the BCD chain (fig. 8.9 and to the upcounting binary 
chain. At each clock pulse the value stored in the BCD 
chain decrease by one bit, while that in the binary chain 
increases by one bit, in a pure binary fashion. As soon 
as the contents of the BCD counter have become zero 
which is detected by the NULL detector, both AND gates 
in fig. 8.9 are closed, and counting is stopped ; the binary 
chain now contains the pure binary equivalent of the 
value initially set in the BCD chain. 

Clock 

Units 
decade 

BCD - input (output) 

Tens Hundreds Extension 

decade decade 

Null 
detector 

(LS612o 
2t 22 23 24 25 26 2~ 26 29 

(MSB) 

Binary output (input) 

Extension 

Fig. 8.9 BCD-to-binary converter (or vice versa). 

The mechanism of the conversion from binary to BCD is 
indicated in fig. 8.9 by the dotted lines; in this case the 
BCD chain wil l be a 7, 2, 4, 8 "up" counter and the binary 
will be a "down" counter. 
As with the S/P converters, the similarity of the two BCD-
to-binary and binary-to-BCD converters often leads to 
their being combined in one circuit. 

60 



. BCD-to-decimal converter 
In many cases BCD information has to be converted into 
decimal form, e.g. for driving numerical indicator tubes 
(NIT's). Special decoders have been developed for this 
purpose. The logic diagram and truth table of such a 
decoder are given in fig. 8.10. 

A 

g 

D 

a 

a 

a 

a 

x 

a 

z 

3 

a 

s 

8 

Inputs Outputs Decimal 

A B C D 1 2 2 3 4 5 6 7 8 9 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 
0 1 0 0 0 0 1 0 0 0 0 0 0 0 2 
1 1 0 0 0 0 0 1 0 0 0 0 0 0 3 
0 0 1 0 0 0 0 0 1 0 0 0 0 0 4 
1 0 1 0 0 0 0 0 0 1 0 0 0 0 5 
0 1 1 0 0 0 0 0 0 0 1 0 0 0 6 
1 1 1 0 0 0 0 0 0 0 0 1 0 0 7 
0 0 0 1 0 0 0 0 0 0 0 0 1 0 8 
1 0 0 1 0 0 0 0 0 0 0 0 0 1 9 

0 1 0 1 0 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 
1 0 1 1 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 0 0 

Fig. 8.10 NBCD-to-decimal decoder with truth table. 

The BCD value applied to inputs A, B, C and D is decoded 
and will cause one of the decimal outputs to become high. 
Let us assume by way of example that the information 
presented at the input is the BCD value for 6, so A and D 
will be low and B and C will be high. When D is low, the 
inverter following D wil l make the signal high again and 
the upper input of gate 6 will be high. Input C, which is 
high, is directly connected to the second input of gate 6 as 
is the case with input B. Finally input A will also give a 
high at gate 6 after inversion, resulting in 4 highs at the 
AND gate, so the output will be high and all other outputs 
will remain low, because at least one of their inputs will 
be low. 
As can be seen from fig. 8.11, a high level at the decoder's 
output will open the appropriate driving transistor for the 
NIT, causing ignition of the proper cathode; in the present 
case, the digit 6 wil l light up. In modern IC's the drive 
transistors (10 of them) are incorporated in de decoder, 
giving directcompatibility between the BCD code and the 
numerical indicator tube. A specific feature of the 
decoder circuit shown in fig. 8.10 is the fact that the for-
bidden states of the BCD code (positions 10 to 15) are re-
cognised and all outputs are then held low (see also 
truth table). 

. zoo v 

s 

z 

0 

Fig. 8.11 Driving circuit for numerical indicator tubes. 

The "seven-segment display" (fig. 8.12) is another type 
of display which is very popular nowadays. The nume-
rical indicator contains 7 bars positioned in such a way 
that the required figure can be displayed by selection of 
the appropriate bars. For example, when the decimal 

61 



digit 4 has to be shown bars b, c, f and g are illuminated. 
Of course, a special decoder is required for driving such 
an indicator from a BCD code. Asa BCD-to-decimal 
decoder already exists, adecimal-to-7-segment decoder 
would be sufficient —but it is simpler to combine the two 
converters into one. The logic diagram of such a decoder 
is shown in fig. 8.13, and its truth table is given in fig. 
8.12. These are self explanatory. In the above example 
an NBCD code is used, but of course any BCD code can 
be decoded in a similar way. 

a 

9 

Decunal 

b 

D C B A a b c d e f g Display 

0 0 0 0 1 1 1 1 1 1 0 

0 0 0 1 0 1 1 0 0 0 0 A 

A 
d 2 0 0 1 0 1 1 0 1 1 0 1 

6 
3 0 0 7 1 1 1 7 0 0 1 

B 

4 0 7 0 0 0 1 1 0 0 1 7 
C 

C 
0 1 0 1 0 7 1 0 1 1 

D 
6 0 1 0 0 0 1 1 1 1 7 

D 

7 0 7 1 1 1 0 0 0 0 

8 1 0 0 0 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 0 0 1 1 

Fig. 8.12 Configuration of the bars in the 7-segment display with 
truth table. 

. Decimal-to-BCD converters 
After the detailed discussion of the previous sub-section, 
l ittle remains to be said here, see also chapter 4. 
A decimal-to-NBCD converter is shown in fig. 8.14, which 
is self-explanatory. Circuits converting from decimal to 
any other type of BCD code can be made in a similar way. 

. Digital-to-analog converter 
It is often necessary to change binary or BCD data into an 
analog signal. Where output data is concerned, this may 
be needed e.g. to make the signal suitable for driving a 
recorder, while with input data it may be needed e.g. for 
controlling the frequency range of a signal generator. The 
simplest form of adigital-to-analog converter (DAC) is 
i l lustrated in fig. 8.15. The summing resistors of an opera-
tional amplifier are weighted in a binary fashion (i .e. 
R, :Rz :R3. . .=1:2:4. . . and all are connected via an..elec-
tronic switch (logic gate) to a reference voltage or to 
ground. 

A 
C $ 

AB. 

C_ & 
~ ._: 

B 
D 

A 
B & c 

A 
g & 
C 

D & 

@ $ 
C 

A 
g & 
CC 

B & 
c 

A 

A & 

s 

C 

s 
c ~ 

A 
~ & 
D 

A 
B $ 

c & 
D 

--~ a 

_: c 

d 

9 

Fig. 8.13 BCD (1, 2, 4, 8 code) to 7-segment converter. 

~, 

~, 

>, 

0 1 2 3 4 5 6 7 8 9 

A 

B 

D 

Fig. 8.14 Decimal to NBCD converter. 

62 



A logic "1" applied to a given input connects the corre-
sponding resistor to the reference voltage and increases 
the output voltage by the binary-weighted increment in 
question. When all inputs are "1", the output is maximum. 

Eref 

MSB R 

2R 

LSB 2n 1R 

Note: 
MSB =Most significant brt 
LSB - Least significant bit 

Fig. 8.15 Simplified binary weighted resistor DAC. 

Eo

A big disadvantage of this simple weighted-resistor ap-
proach is that the value of each input resistance is twice 
the preceeding one, so absolute values become quite 
large. Furthermore, because the resistances are spread 
over such a wide scale, is becomes rather difficult to 
match the resistors in physical properties such as tole-
rance, temperature stabi l ity and so on, so that it is no 
simple matter to design a reasonably stable, accurate 
converter on this basis. 
One way of overcoming these problems is to make use of 
the "R-2R ladder" network illustrated in fig. 8.16. This 
works as follows: 
If one "leg" of the ladder is connected to the reference 
voltage by means of the electronic switch and the remain-
ing "legs" are grounded, a current is produced in the 
first-mentioned leg and travels through the ladder, being 

2R R R 

Eo

2R 2R 2R 

LSB MSB 

Eref 

Fig. 8.16 Binary R-2R "ladder" DAC. 

divided by a factor of two at each junction. 
The current contribution from the "leg" (e.g. bit) in ques-
tion at the summing input of the operational amplifier in 
thus binary-weighted in accordance with the number of 
junctions through which it passes; hence the LSB (least 
significant bit) is on the far left of the circuit shown. 
A very specific feature of the ladder converter is that the 
input resistance of the operational amplifier is indepen-
dent of the binary word. 
The above two converter types are pure binary. It is of 
course easily possible to adapt the circuits to BCD logic. 
In the case of the weighted-resistor arrangement, we only 
have to change the resistances and not the basic con-
figuration (fig. 8.17). The R-2R ladder may be adapted to 
BCD by using R-2R subsections for each decade and 
summing these in parallel , with additional decade-
weighted resistors (fig. 8.18). 
It should be noted that a 3-decade BCD—DAC (with 12 
lines) has a basic resolution of 0.1% (1 part in 1000). In 
a pure binary set-up, the same number of lines would give 
a resolution of 0.025% (212 = 4096). 
This illustrates once again that pure binary coding makes 
more efficient use of the avai lable capacity than BCD 
(which as we know is caused by the 6 unused code com-
binations of BCD). 

LSD 

Fig. 8.17 BCD weighted-resistor DAC. 

MSD 2R 

LSD 

R R 

2R 2R 2R 2R 

100 200 400 800 

9R 

10 20 40 80 

2 4 8 

Fig. 8.18 BCD R-2R "ladder" DAC. 

99R 

MSD 

Eo

Eo

63 



. Analog-to-digital converter (ADC) 
As most physical or electrical properties which need to 
be measured or analysed are in analog form, we wi ll 
need a converter for making analog data suitable for 
processing in digital systems. 
The digital voltmeter (DVM) is one of the most important 
examplesofanalog-to-digital converters. A detailed des-
cription of this instrument will be found in Part I II of this 
course. However, for the sake of completness we shall 
give here a brief description of one of the most popular 
circuits used in DVM's, that is based on the dual-slope 
integration method. (fig. 8.19). 

z 

Reference 
voltage 

c 

Operational 
amplifier 

Zero 
detector 

Clock 

Logic Counter 

Fig. 8.19 ADC with dual-slope integration. 

Digital 
output 

When the switch is in position 1 for a fixed time T, the input 
voltage V i wil l be integrated as a charge in capacitor C; 
V~ is thus a linear function of Vi. 
After this fixed integration time, switch 1 is opened and 
switch 2 is closed so as to connect Vref to the input of 
the operational amplifier. However, care must be taken to 
ensure that Vref is of opposite polarity to Vi . The capacitor 
C will now be discharged with a constant current (since 
Vref is constant). The time t needed to discharge C com-
pletely is thus a linear function of V~ and hence also of Vi . 
In practice, the circuit operates as follows. On receipt of a 
start pulse switch 1 is closed and the counter starts count-
ing 1000 clock pulses (fig. 8.20). 
Upward integration in capacitor C is started with a slope 
depending on V; . After the 1000 pulses, the switches are 
reset so that Vref is connected to the amplifier input while 
the counter (which has been reset to 0) is started again. 
The capacitor is now discharged with a constant slope. As 
soon as the zero detector at the output finds that V~ is 
zero, the counter is stopped. The pulses counted by the 
counter in this way thus have a direct relation with the 
input voltage. Ifa BCD counter is used the original analog 
value is converted into BCD code, while a pure binary 
counter gives conversion into binary code. 

~~ 

T = 1000 pulses 

Fig. 8.20 Time diagram of dual-slope ADC. 

Measuring systems 
As we mentioned above, the great advantage of digital 
signals is the ease of building test systems which use 
such signals. In view of the present trend from manual 
testing and measurement via semi-automatic systems to 
the use of fully automatic and computer-controlled 
systems, it would seem to be worth while to conclude this 
book with a short description of the various systems 
involved. 
In general, automated electronic measurement systems 
can be defined as a combination of a number of elec-
tronic instruments, controlled by some central unit. This 
central unit can not only control the operation of the 
individual instruments but also determine the sequence 
of the measurements more or less automatically, and 
make possible the operations of 
a. sorting 
b. recording 
c. calculating 

Kinds of automated measuring systems 
We can sub-divide automated measuring systems into 
three groups: 
. Programmer-operated systems 
These are preset test and measuring set-ups with partly 
manual control or operation. The various test pro-
grammesare preset manually (e.g. by means of a diode 
matrix) in the central unit (programmer) and are initiated 
by apush-button or by automatic sequencing. 
. Controller-operated systems 
These test and measuring systems have simple process-
ing faci lities (e.g. sorting and recording), but no calcula-
tionfacilities. The various test programmes are stored on 
punched tape or another medium in the central unit 
("controller"). 

64 



(e.g. 64). It wi l l often also have a number of analog 
control l ines by means of which continuous functions can 
easily be set. The input and output information of a 
STAR-programmed instrument is given simultaneously 
via a separate input and output connector. 

Central unit 

Input/output lines 

Address &function lines 

Computer-operated systems 
These fully automated measuring systems have al l pro-
cessing facil ities, e.g. 
a. sorting 
b. recording 
c. computing 
The various test programmes are stored in a computer 
memory, or on punched tape. 

Organisations of automated measuring systems 
. Star system (fig. 8.21)' 

RF generator 
(source) 

Central unit 

Video 
generator 
(source) 

Fig. 8.21 Principle of a STAR system 

Display unit 

(receiver) 

Digital 
voltmeter 

(receiver) 

Printer 
(processor) 

Each instrument is individually connected to the central 
unit by its own bundle of control lines. 
In STAR systems, the programming information is given 
as levels; or in other words, for each code a continous 
control level is applied as long as a certain function is 
required. A "programmer" (programme board) is often 
used for presetting the programme of operation in such 
systems. Inserting diode pins at the appropriate spot in 
the programme board closes a contact to ground, thus 
giving the right voltage level at the right place in the 
system. Further, a programmer normally carries a 
number of push-buttons, each of which activates a com-
plete test programme by control ling a number of lines 

RF generator 

(source) 

V ideo 
generator 

(source) 

Digital 
votlmeter 
(receiver) 

Fig. 8.22 Principle of a BUS system 

Counter 
(receiver) 

Printer 
(processor) 

. BUS-line system (fig. 8.22)** 
Al l instruments are connected to the central unit via a 
common set of lines. 
For each test, the instrument is "activated" by means of 
the appropriate INPUT/OUTPUT LINES (I/O lines) and the 
ADDRESS and FUNCTION lines. 
In BUS-line systems, the programming information is 
given as a number of pulses. Because of the short dura-
tion of these pulses, the programming information must 
be stored in the instrument to be programmed by means 
of a "memory". This memory retains the information as 
long as the functional setting of the instrument is re-
quired.When anew setting is required the memory is first 
reset and then new code is read in. 
Because all instruments to be programmed are con-
nected in parallel to the DATA BUS l ine, measures have 
to be taken to ensure that only one specific instrument is 
set during each run of coded information, while the next 
run of pulse codes can set another instrument. For this 
purpose each instrument has its own ADDRESS, given via 
a separate ADDRESS BUS LINE. Only when the in-
strument recognises its own address wi ll it read the in-
formation on the DATA bus. The DATA bus line is gener-
allydesigned as aDUAL DATA BUS, in other words it can 
be used for both input and output information depending 
on the instrument concerned and on the code given on 
the ADDRESS bus. 
This sequential information provided makes the BUS-
l ine system ideal for computer or punched-tape control. 

* An example of aSTAR-operated system is given in Philips test and 
measuring notes 1971/3. 

** Also called "Party-line" system, "Serial system", "Highway system" 
of "Dataway system" in the literature. 

65 



QueStIOnS Q.8.4 The converter circuit below is: 

0.8.1 As a converter from negative to positive logic can be used. A A decimal-to-NBCD code converter q 

A An AND gate A B A decimal-to-1242 code converter g 

B A NOT gate g C An NBCD-to-decimal code converter C 

C An OR gate C ;i n 

0.8.2 In a reversible shift register (fig. 6, 18) the Boolean function 
X=A6+CD isneeded. This can be realised with only NAND gates _ 1
in the following way: 

s 

A & $ 

B 
A 

~~ C 

A) & x 
C & ~ 

B 
D 

C} 8i X '~ p 

A g, & 
a c A 

g) x 
C & 

D 
& B 0123456789 

D 
C 

0.8.5 A 6-bit binary number has to be converted into XS-3 Gray BCD 
0.8.3 The converter circuit below is: code. The number of output lines required is: 

A An NBCD-to-1242 code converter A A 2 A 

B An Excess 3 —NBCD code converter B B 6 B 

C A XS-3 GRAY —NBCD code converter C C 8 C 

a b ~ d n 0.8.6 In negative logic the code 0110 stands for: 

A 6 A 

B 9 B 

C Not defined C 

a b c d 

a 

a 

~i a A 

0.8.7 The BCD code 0001/0000/0000 (decimal 100) is put in the BCD to 
binary converter of fig. 8.9. After how many clock pulses is the 
number converted into pure-binary! 

A 1 A 

B 12 B 

s C 100 C 

0.8.8 A 3-digit 1242-coded number has to be converted into an analog 
c signal. The proper way to do this is 

A Design a proper DAC A 

p B Is not posible B 

C First convert into NBCD and then use a C 
DAC 

0.8.9 N x P bits of data have to be transported in the word (N) serial, bit 
(P) parallel mode. The transfer speed is then: 

A N times faster than in full serial transport A 

B P times faster than in full serial transport B 

C N times slower than in full serial transport C 

66 



Glossary of terms 

AND gate — A binary circuit having two or more inputs and a single out-
put inwhich the output is ON (1) only if all inputs are ON (1) together, and 
is OFF (0) if any one of the inputs is OFF (0). 

BINARY SYSTEM —A system for mathematical computation based on the 
scale of 2, or a system in which all stages can only have one of two 
possible states. 

BINARY CODED DECIMAL —Four bits of binary information can be used to 
encode one decimal digit. When a decimal digit is encoded in this way it 
is called a Binary Coded Decimal (BCD). 

BIT —The words "binary digit" are often abbreviated to BIT. 

CLOCKED RS FLIP-FLOP —The clocked RS flip-flop has two conditioning 
inputs which control the state to which the flip-flop will go at the arrival of 
the clock pulse. If the S (Set) input is enabled, the flip-flop goes to the "1" 
state when clocked. If the R (Reset) input is enabled, the flip-flop goes to 
the "0" state when clocked. The clock pulse is required to change the 
state of the flip-flop. 

COMPARATOR — A comparator is a device used to determine whether 
two numbers of bits of information are equal. 

C-MOS —Complementary MOS. A MOST or IC involving both P-channel 
and N-channel MOS-PETS. 

CML —Current-mode logic. Basically equivalent to ECL. 

COUNTER —A counter is a device which will maintain a continuous record 
of the number of pulses which it has received at its input. The output of 
the counter indicates the sum of the number of input pulses. 

CTL —Complementary Transistor Logic. A logic system using emitter-
coupled circuits with a combination of PNP and NPN transistors. 

CUT-OFF —The condition when the emitter junction of a transistor is at 
zero voltage or is reverse biased so that no collector current flows. 

DCTL — Direct-Coupled Transistor Logic. A system of transistor logic in 
which the collector output of one gate is connected directly to the base 
input of the next gate. 

DTL—Diode-Transistor Logic. A logic system in which the logic decisions 
are carried out by a group of diodes and the resulting output coupled 
through a transistor output stage. 

D-TYPE FLIP-FLOP — A D-type flip-flop will propagate whatever informa-
tion is at its D (data) conditioning input prior to the clock pulse, to the 
O output, on receipt of a clock pulse. 

DECODER — A decoder is a device used to convert information from a 
coded form into a more usable form (e.g., binary-to-decimal decoder). 

DIGIT — A digit is one character in a number. These are 10 digits in the 
decimal number system. There are two digits in the binary number 
system. 

ECL — Emitter-Coupled Logic — A logic system using emitter-coupled 
transistor circuits. 

ENCODER —An encoder is a device which takes information in one code 
and encodes it into another (e.g. BCD-to-binary encoder). 

EXCLUSIVE OR —The Exclusive OR function is valid or its value is 1, if one 
and only one of the input variables is present. The Exclusive OR applied 
to two variables is present, or 1, if the two binary input variables are 
different. 

FAN-IN —The number of inputs connected to a logic gate. 

FAN-OUT —The fan-out of an output is the number of unit loads it can 
drive. 

FLIP-FLOP — A flip-flop is a storage device which can be used to retain 
one bit ofinformation. Aflip-flop can be in the "1" state or the "0" state. 
In the "1" state, its O output presents a HIGH level and its Q output a 
LOW level. In the "0" state, its O output presents a LOW level and its Q 
output a HIGH level. 

FET —Field-effect transistor, avoltage-controlled semiconductor anal-
ogous to a triode. 

GATE — A logic circuit having two or more inputs and a single output 
designed to give an output signal only when a certain combination of 
input signals exists. 

67 



HEXADECIMAL —The number system which has 16 distinct digits viz: 
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A. B, C, D, E, F. 

OCTAL —The octal number system is one which has 8 distinct digits, 
namely, 0, 1, 2, 3, 4, 5, 6, 7. 

HNIL — High-noise-immunity logic. Closely resembling DTL, the basic 
difference being that HNIL uses a Zener diode for stand-off (raising the 
threshold voltage). 

INVERTER — An inverter (NOT gate) is a device which performs the 
operation of inversion. It will present at its output the inverse or comple-
ment of the information at its input. 

JKFLlP-FLOP—A JK flip-flop has two conditioning groups of inputs (J and 
K) and a clock input. If both J and K inputs are LOW prior to the clock pulse 
it will remain in its initial condition when the clock pulse appears. If the 
J input is HIGH and the K input LOW, the flip-flop will go to the "1" state 
on receipt of the clock pulse; when J is LOW and K is HIGH, the flip-flop 
will switch to the "0" position at the clock pulse. When both J and K are 
HIGH the flip-flop will complement its initial state. 

LOGIC —In computer language logic is a form of mathematics based upon 
two-state truth tables. Electronic logic uses two-state gates and flip-flops 
to perform decision-making functions. 

MASTER-SLAVE — A master-slave flip-flop is one which contains two 
flip-flop, a master flip-flop and a slave flip-flop. The master flip-flop 
receives its information during the leading edge of a clock pulse and the 
slave or output flip-flop receives its information during the trailing edge 
of the pulse. 

MOS-FET—petal-oxide-semiconductor field-effect transistor which con-
sist of source and drain regions on either side of a P-type of N-type 
channel plus a gate electrode insulated from the channel by silicon 
dioxide. 

NAND GATE — A NAND gate is enabled when both its inputs are present 
or HIGH. When a NAND gate is enabled, its output is LOW. The term 
NAND is a contraction of the words NOT AND. 

NOISE MARGIN or noise immunity is a critical IC parameter. It is the 
difference between the normal operating logic levels and the threshold 
voltage. 

NOR GATE —A combination of a NOT and an OR circuit. A binary circuit 
having two or more inputs and a single output, in which the output is OFF 
(0) if any one of the inputs is ON (1) and is ON (1) only if all inputs are 
OFF (0) together. 

NOT CIRCUIT —A binary circuit having a single input and a single output, 
in which the output is always the opposite of the input. When the input is 
ON (1) the output is •OFF (0) and vice versa. This circuit is also called an 
inverter circuit. 

ONE'S COMPLEMENT —One's complement arithmetic provides a method 
of negating a binary number so that binary subtraction can be performed 
using addition techniques. To obtain the 1's complement of a binary 
number, all bits in that number must be complemented. (i.e. 1's changed 
into 0's and vice versa). 

OR GATE — A binary circuit having two or more inputs and a single out-
put, in which the output is ON (1) if any one of the inputs is ON (1), 
and is OFF (0) only if all inputs are OFF (0) together. 

POWER DISSIPATION OF A LOGIC CIRCUIT —The supply power when a 
logic circuit is operating with a 50% duty cycle, i.e. when it is in the 
0 state half of the time and in the 1 state the other half of the time. 

PROPAGATION DELAY —The time delay between the application of a 
signal to the input of a logic circuit and the change of state at the output. 

RCTL — Resistor-Capacitor-Transistor Logic. A variant of resistor tran-
sistor logic in which a capacitor is connected across the series resistor 
to permit faster switching. 

RESET— If a Reset input to a flip-flop is enabled, the flip-flop will go to 
the "0" state. 

RS FLIP-FLOP —The RS flip-flop has two inputs, a Set input and a Reset 
input. If the Set input is enabled (HIGH), the flip-flop goes to the "1" state. 
If the Reset input is enabled (HIGH), the flip-flop goes to the "0" state. 

RTL—Resistor-Transistor Logic —A system of transistor logic in which a 
resistor is included in series with the base of each transistor in order to 
reduce differences in transistor currents. 

SATURATION —A transistor is saturated when a further increase of base 
current causes no further increase in collector current. 

SET INPUT —When the Set input to a flip-flop is enabled, the flip-flop 
goes to the "1" state. 

SHIFT REGISTER — A shift register can contain several bits of informa-
tion. When a shift introduction is received, all the information in the 
register is shifted one place. 

THRESHOLD VOLTAGE —The input voltage level at which a binary logic 
circuit changes from one state to the other. 

TTL — Transistor-Transistor Logic. A logic system similar to diode-
transistor logic in which the logic diodes are replaced by amulti-emitter 
transistor. 

68 



Answers to questions 

1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 Questions 1.1 1.2 

~ Answers 6 6 C C B B B C C A 

A.1.1 As we know, with 4 bits we can count to 15, so for 17 we need one 
bit more: 10001. Answer B is correct. 

A.1.2 The "weight" of the first binary digit is 1 (odd), all other binary 
digits are even, so when the least significant digit is present the 
decimal number is always odd, when the LSD is not present (0) 
the number is thus always even. Answer B. 

A.1.3 Answer C is correct. (The other two possibilities even contain 
il legitimate codes!) 

A.1.4 The BCD notation is read in the same way as we read our 
decimal number. 619 (C) is thus the correct answer. 

A.1.5 The(r-1)'scomplementofNis: r"-1—N=M 
The (r— 1)'s complement of M is: r"-1 —M = r"-1 —(r"-1 —N)= N 
(Answer B) 

A.1.6 715e in decimal is 7x82+1 x8+5=46110
The 10's complement of 46110 is 539 (Answer B) 

A.1.7 The sum of the weight in aself-complementing BCD code must be 
nine, because the 9's complement of 0000 is 1111 (answer B). 

A.1.8 Four bits in combination provide a maximum of sixteen configura-
tions or states. Only ten of these states are required for decimal 
coding so six of them must be discarded. Thus the number of 
possible four-bit BCD codes is 16!/6! or approx. 2.9 x 1010. Many 
of these codes are reflections of others, but if these are eliminated 
the number of codes is still greater than 109. Answer C is thus 
correct. 

A.1.9 The total number of characters which have to be encoded is 
26+10+10=46. So one needs at least 6 bits (25=32; 28=64); 
answer C. 

A.1.10 The correct answer is A, only one wire is needed. It certainly is 
not faster because parallel coding transmits al l bits in one single 
time interval and serial coding one after the other. The BCD coding 
of course has nothing to do with the transportation method. 

Questions 2.1 2.2 2.3 2.4 2.5 
_. 

2.6 2.7 2.8 

Answers A C B C e C B C 

A.2.1 The required expression involves the proposition that X and Y 
and Z are all true, i.e. it is: 
S =XYZ (answer A) (areas 7 in fig. 2.5.) 

A.2.2 The class of all digital instruments is Y (Y is true), that of non-
measuring instruments is X (X is false) and that of instruments 
without battery supply is Z (Z is false) so the required function is: 
R=XYZ (answer C) (area 2 in fig. 2.5). 

A.2.3 Al l electronic measurements are in class X (X is true). The expres-
sion for all non-digital instruments (Y) with battery supply (Z) 
is YZ. 
The total function is thus 
Q=X+YZ (answer B) (areas 1, 4, 5, 6 and 7 in fig. 2.5). 

A.2.4 If FXYz = E (1,3,7), then Flxvzl = ~ (0,2,4,5,6). 
Inversion gives FiXYzI =II (0,2,4,5,6) = Fxyz• 

A.2.5 The best way to solve this question is to give all the areas in the 
Venn diagram a number (as in fig. 2.5). 
The function for area 5 is XYZ, that for area 3 is XYZ, and that 
for area 6: XYZ. 

dv~ 
~' 

The total function required is obviously the union of the above 3 
logic products, viz.: 
F (XYZ)=(XYZ+XYZ+XYZ) (answer B) 

A.2.6 In this case, area 6 is XYZ, area 7 is XYZ 
Area 6+7 is XYZ+XYZ=XY (Z+Z)=XY 
(which is correct because area 6+7 is the intersection of X 
AND Y) 
Finally area 1 is YZZ 
Thus areas 6+7+1=XY+YZZ (answer C) 

A.2.7 Here we just apply the appropriate rules of algebra: 
F (X, Y, Z) _ (X+Y+XY) (X+Z) 

_ (X+Y) (X+Z) _ 
= XX+XZ+XY+YZ = 
= X+XZ+XY+YZ = 
=X (1+Z)+XY+YZ= 
= X+XY+YZ = 
= X (1 +Y) +YZ = X+YZ (answer B) 

A.2.8 F (X, Y, Z) =(X+Y+Z) (X+Y+Z) (X+Y+Z) 
Applying De Morgan's theorem, we find 
F (X, Y, Z) _ (XYZ) + (XYZ) + (XYZ) _ 

=XY (Z+Z)+XYZ= 
=XY 1 +XYZ= 
= XY +XYZ 

Complementing again gives: 
F (X, Y, Z)= (X+Y) (X+Y+Z) _ 

=X+Y (Y+Z)= 
=X+YY+YZ= 
=X+YZ, (answer C) 

69 



Questions _ _. 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 

Answer A C B B B A B B B C C 

A.3.1 A is the correct answer: only when all switches are closed (all 
inputs to the AND gate are "1") is the lamp on. 

A.3.2 The output of the EXCLUSIVE-OR gate is "1" (high) if one and 
only one of its inputs is "1" (high) which happens in time inter-
vals 2, 3 5, 6, 8 and 9; so C is the correct answer. 

A.3.3 Diagram B is the correct logic diagram; the OR gate can be 
considered as a switch in parallel with the AND gate (series 
switches). 

A.3.4 The best way to solve this problem is to make a truth table for 
both circuits. Comparison of these truth tables wil l show that both 
circuits are identical (answer B is thus the right one). With 
Boolean algebra: 
Circuit 1: a+ab=a+b and Circuit 2: ab=a+b 

a b X, X, 

0 0 0 0 
0 1 1 1 
1 0 1 1 
1 1 1 1 

A.3.5 The best way to solve this problem is to make a truth table and 
compare it with those of the exclusive-OR, comparator and inhibit 
gates. Another approach is to find the logic expression of all the 
circuits involved (sea A 3.6.). In both ways one finds that the 
circuit is a comparator, so answer B, is correct. 

A.3.6 The Boolean function of the upper AND gate is AB and of the 
lower one AB. Both outputs are logically added and inverted so 
AB +AB. 
Applying de Morgan's rules gives: 
AB+AB=(A+B) (A+B)= 
AA+AB+AB+BB=A6+AB 
which is the Boolean function of a two-input comparator gate, 
so answer A is correct. 

A.3.7 In order to solve this, first find the Boolean function which can 
be done as described in chapter 2, by logic addition of the 
functions of the various shaded areas, then simplify the expres-
sion found: 
F=E1, 4, 5, 6, 7=XYZ+XYZ+XYZ+XYZ+XYZ= 

=XZ (Y+Y)+XZ (Y+Y)+XYZ= 
=XZ+XZ+XYZ=X (Z+Z)+XYZ= 
=X+XYZ=X+YZ 

of which circuit B is the equivalent circuit. 

A.3.8 When C is "1"Xis also "1", this is also so when the output of 
the NAND gate is "1". Only when both inputs (a and b) to the 
NAND gate are "1" can output (X) be "0", which happens when 
C is also "0". B is thus the correct answer. 

A.3.9 With reference to fig. 2.5 we see that the Boolean function 
E (0, 1, 2, 3, 4) can be written 
F (XYZ)=XYZ+XYZ+XYZ+XYZ+XYZ= 

=XY(Z+Z)+XY(Z+Z)+XYZ= 
=XY+XY+XYZ=X(Y+Y)+XYZ=X+XYZ=X+YZ 

Which is the configuration of answer B. 

A.3.10 We can answer this question by working out the Boolean expres-
sion and then simplifying it as much as possible. 

F (X.Y.Z.) _ (X+Y+XY) (X+Z) _ 
= XX+XZ+XY+YZ+XXY+XYZ = 
= X+XZ+XY+YZ+XY+XYZ = 
= X+XZ+XY+YZ+XYZ = 
= X (1 +Z)+XY+YZ+XYZ = 
= X+XY+YZ+XYZ = 
= X (1 +Y)+YZ(1 +X) = X+YZ, 

which is the circuit of answer C. 

A.3.11 From the truth table one can see that the output is always "1" 
when b = "1 ", independent of a and c; which is only the case in 
logic diagram C; this thus represents the correct answer. 

Questions: 4.1 4.2 4.3 4.4 4.5 4.6 4.7 

Answers A A B C B A A 

A.4.1 As there is no less significant digit, there cannot be a carry so 
Co should be logic "0" (Answer A) (Of course, the type of logic 
has nothing to do with the problem). 

A.4.2 The appearance of a carry in a subtraction with is complement 
means that the result is positive and correct (Answer A). In 
(r -1)'s complement subtraction, the carry "1" has to be added 
to the result. The result has to be complemented when there 
is no carry. 

A.4.3 As we learned in this chapter, the Boolean-functions for a sum 
and a difference are identical. The carry function is C = A.B, 
and the borrow function: B = A.B. (Where A is the subtrahend), 
so A should be inverted to turn ahalf-adder into ahalf-subtractor. 
(Answer B) 

A.4.4 Three 4-bit inputs means 12 connections, one four-bit output 
brings the number to 16 and 2 select lines makes the total 18. 
(Answer C) 

A.4.5 It cannot be an octal-to-NBCD converter because it has only 
4 inputs instead of 8, neither can it be an NBCD-to-1242 converter 
because the A bit is inverted. So, it must be a 9's complement 
(Answer B). 
This can be verified by reference to the Boolean equations and 
truth table of the 9's complement given below 

NBCD 9's compl. 

0 0 0 0 0 1 0 0 1 
1 0 0 0 1 1 0 0 0 
2 0 0 1 0 0 1 1 1 
3 0 0 1 1 0 1 1 0 
4 0 1 0 0 0 1 0 1 
5 0 1 0 1 0 1 0 0 
6 0 1 1 0 0 0 1 1 
7 0 1 1 1 0 0 1 0 
8 1 0 0 0 0 0 0 1 
9 1 0 0 1 0 0 0 0 

A'=A 
B'=B 

D'=B+C+D 

A.4.6 It is of course not a multiplexer. (It has two inputs and two 
outputs) nor is it a half-adder (because of the symmetry of the 
circuit), so it must be a two-bit compator (Answer A). This is 
confirmed by the Boolean function and truth table below: 

70 



X=A.B 
Y=A.B 

A B X Y 

0 
1 
0 
1 

0 
0 
1 
1 

0 
1 
0 
0 

0 
0 
1 
0 

A=B 
A> B 
A<B 
A=B 

A.4.7 As we have seen, there is no difference between the Boolean 
Functions of the S and D outputs of half (and full) adders and 
subtractors 
S = D = AB+AB (half-adders/subtractors)
X = S = D =ABC+ABC+ABC+ABC (full adders/subtractors) 
so, answer A is correct. 

Questions 

Answers 

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 

C B C A A A B C B B 

A.5.1 When S goes HIGH Q goes HIGH too, and remains so until R 
goes HIGH. This is only the case with answer C. 

A.5.2 When T receives a "1", Q also becomes "1"; while when T goes 
LOW again nothing changes at the output. However, when T goes 
HIGH again the flip-flop switches over and Q goes LOW as is 
shown in answer B. 

A.5.3 Inverters are always needed for making flip-flops, so one needs 
either NAND or NOR gates; AND's alone are not enough (answer 
C.). 

A.5.4 As can be seen from the truth table, when all J and K's are 
connected together the flip-flop changes state with each T pulse. 
When the K inputs are connected to 0 the flip-flop remains in the 
Q="1" position (Answer A). 

A.5.5 A D flip-flop will transfer the data present at the D input to the 
Q output o_n receipt of the clock pulse. So assuming initially 
Q=0 and Q= "1", then at the first clock pulse (D= 1) Q becomes 
"1" and Q=D="0". At the next clock pulse Q goes to "0" 
again, and so on, so answer A is correct. 

A.5.6 The circuit described is shown below. A truth table shows the 
answer (A) : 

T 
J=t Q 

K 

J 

1 
1 
1 
1 

A.5.7 Suppose Q was initially "0", then a clock pulse will never make 
Q = "1" because J is also "0". Q can only become "1" when J 
is "1" which is only possible when Q is "1". So Q has always 
been "1". (Answer B.) 

A.5.8 Both circuits are the same (answer C). In the A version the Q is 
coupled to the upper AND gate, and in version B the Q output is 
inverted and coupled to the upper AND gate. 

A.5.9 The circuit will not work as a JK flip-flop but as a T flip-flop 
because the T pulse is passed directly through the input OR gates 
(independent of the status of J and K) to the AND gate, thus 
reducing the circuit to a normal T flip-flop (Answer B). 

A.5.10 A counting table shows the situation clearly. 

T-pulse Q, Q, Q, 
- r --

0 0 1 0 
1 1 0 0 
2 0 1 1 
3 1 0 1 

and so on. 

The QZ output is a "1" so answer B is correct. 

Questions 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 

Answers B A A B A B C B C A C 

A.6.1 In the modulo-6 counter the count can never be 6 because the 
counter is then reset. Futhermore, as can be seen from the circuit 
diagram, flip-flop A toggles at every count, (at even counts A = 0 
and at odd counts A=1). Thus the count must be 5 (cannot be 
4 or 6) which is confirmed by the truth table below (Answer B). 

C B A 

0 0 0 0 
1 0 0 1 
2 0 1 0 
3 0 1 1 
4 1 0 0 
5 1 0 1 
6 0 0 0 

A.6.2 This is of course amodulo-3 counter (Answer A), because there 
are not enough flip-flops for either a 3-bit shift register or a 
modulo-5 counter. The truth table below confirms this. 

B A JB JA

0 0 0 0 1 
1 0 1 1 1 
2 1 0 0 0 
3 0 0 0 1 

A.6.3 We see clearly from the complete pulse diagram given below 
that answer A is the correct one. 

1 2 3 4 5 6 7 8 

A.6.4 The best way to see the correct answer immediately is to look at 
the sequence of the bits in the various columns. The right-hand 
column in each group A, B and C has the sequence 0 1 0 1 0 1 etc, 
the second from the right 0 0 1 1 0 0 1 1, number three 
0 0 0 0 1 1 1 1 and so on. Only the bits in answer B follow this 
pattern. 

A.6.5 The speed of this combined scaler is of course determined by the 
first scaler (n,) because the output of this scaler is already n, 
times slower and will in general be slow enough for the next 
scaler. So answer A is correct. 

A.6.6 Any modulo-6 counter has 8-6 = 2 illegitimate states, so answer 
B is correct. 

A.6.7 The best way to solve this problem is to make a truth table: 

Clock 
pulse C B A 

0 0 0 0 
1 0 0 1 
2 0 1 1 N.B. This illustrates another way of 
3 1 1 1 making amodulo-6 counter. 
4 1 1 0 
5 1 0 0 
6 0 0 0 

71 



We see from this truth table that after the 6th pulse the shift 
register is "000" again, (Answer C). 

A.8.8 The least significant bit is the left-hand one in the drawing. In 
binary notation this bit becomes the righ-hand one, thus the 
binary number is 110 011 100 111 
which is in octal notation: 6 3 4 7 
(Answer B) 

A.8.9 The maximum count in binary notation is 111 111 111 111 
which is in octal notation 7 7 7 7 
and in decimal notation 4095 
At pulse number 4096 the counter is reset to zero again; the 
maximum count is thus 4095, (Answer C). 

A.8.10 First we have to make the truth table in order to find the illegitimate 
state. 

Clock 
pulse 

0 

B 

0 

A 

0 
1 0 0 1 
2 0 1 1 
3 1 1 0 
4 1 0 0 
5 1 0 1 
6 1 1 1 
7 0 0 0 

From this truth table we see that the code of the illegitimate 
state is 010. 
When we put this value in the counter we see that after a clock 
pulse A will not change because JA = 0 and KA = 1, so C will not 
change either. Flip-flop B will not change because both JB and 
KB are "0", in other words the illegitimate state is locked and 
answer A is correct. 

A.6.11 The best way to solve this problem is to make a truth table. 

Count X X Y Y Z Z 

0 0 1 0 1 0 1 
1 1 0 0 1 0 1 
2 0 1 1 0 0 1 
3 1 0 1 0 0 1 
4 0 1 0 1 1 0 
5 1 0 0 1 1 0 
6 0 1 1 0 1 0 
0 0 1 0 1 0 1 

At count 6, flip-flop X already has the correct state, but flip-flops 
Yand Z have to be reset. Since both Y and Z are "1",the NAND gate 
of answer C will give a "0" output signal which is passed to Ry
and Rz, thus resetting flip-flops Y and Z. C is thus the correct 
answer. 
The gate of answer A would give the same output signal, but 
would pass it to the wrong flip-flops (X and Y would be reset, and 
Z would not be reset), while the configuration of answer B would 
reset the counter at the 7th count. 

Questions 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 

Answers A B B B B B C A 

A.7.1 The diode gate in question is an AND gate (answer A) which can 
be very well seen from the truth table below. 

A B X Diodes 

0 0 0 Both conduct 
1 0 0 Da conducts 
0 1 0 DA conducts 
1 1 1 Both cut off 

A.7.2 The circuit is a NAND gate (Answer B) because the output is 
LOW when any one transistor or both transistors conduct (Input 
LOW). 

A.7.3 The correct answer is B. As a matter of fact, answer A is also 
correct. However, this solution has the disadvantage that all 
three inputs (tied together) could be connected to the output of 
another gate, thus loading the latter unnecessarily. 

A.7.4 A positive pulse must be applied to the base of TS, (Answer B 
— set input) TS, is then cut off, causing the base voltage of TSZ to 
drop; TSZ then starts to conduct, making output Q (and hence the 
base of TSZ) more positive. This gives a new stable state. 

A.7.5 The stand-off diodes are included to increase the threshold level 
(the voltage drop over the diodes have to be added to the 
switching signal). 

A.7.6 Answer B is correct, as can be seen clearly from the table: 
2.4 V is the minimum output voltage of a TTL gate in its HIGH 
state. A noise signal of more than 0.4 V added to the output 
brings the signal into the undefined region of the logic gate. 

A.7.7 The basic HNIL gate is nothing but a DTL gate with a higher 
threshold voltage, which means that the basic HNIL gate is also 
a NAND (Answer C). 

A.7.8 As we explained, keeping semiconductors out of saturation in-
creases the switching speed which is one of the features of 
ECL; so answer A is the right one. (The emitter coupling features 
a larger fan-out: positive or negative logic is of course only a 
matter of definition and has nothing to do with the actual para-
meters). 

Questions 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 

Answers B A C B C A C A B 

A.8.1 Neither AND nor OR gate have an inversion function. This is 
only the case with the NOT gate, so answer B is correct. 

A.8.2 The best way to solve this problem is to write out the Boolean 
functions of the three possibilities and apply_ De Morgan's rule: 

B: AB+CD=AB+CD
C: ABCD =A+B+C+D (is a 4-input OR gate) 
So answer A is correct. 

72 



A.8.3 First write out the Boolean functions and simplify for A, B, C 
and D: 

A={(ab+ab) cd} {(ab+ab) d} {cd}= 

A={(ab+aT~) cd+(ab+ab) d+cd)= 

A=(a+b) (a+b) cd+(a+b) (a+b) d+i:d= 
A=abcd+abcd+abd+abd+cd 
B=a
C=(a.b.c) (a.d.)=a.b.c+a.d. 
D = a.b.d. 

Then make the truth tables for NBCD, XS-3, Gray XS-3 and BCD 
1242, fill in the variables of abc and d and compare. It will be 
seen that the converter is XS-3 Gray to NBCD (answer C, which 
is confirmed by the truth table below). 

XS-3 Gray NBCD 

d c b a D C B A 

0 0 0 1 0 0 0 0 0 
1 0 1 1 0 0 0 0 1 
2 0 1 1 1 0 0 1 0 
3 0 1 0 1 0 0 1 1 
4 0 1 0 0 0 1 0 0 
5 1 1 0 0 0 1 0 1 
6 1 1 0 1 0 1 1 0 
7 1 1 1 1 0 1 1 1 
8 1 1 1 0 1 0 0 0 
9 1 0 1 0 1 0 0 1 

A.8.4 It cannot of course be an NBCD-to-decimal converter, so it is 
either Decimal to NBCD or to 1242 code. The differences between 
NBCD and 1242 code are in the numbers above 4. So iet's look 
at the output for Decimal 9, in which case all outputs are "1", so 
it must be answer B. (In case of NBCD only bits A and D are set!) 

A.8.5 The type of BCD code of course has nothing to do with the 
number of output lines. Using a BCD code means 4 lines for each 
digit. And as 26 = 64, two decimal digits are required, which 
means 8 lines (Answer C). 

A.8.6 The type of logic does not define the value of the binary number. 
In negative logic if only means that a "0" has a higher voltage 
than a "1", but the "1" remains "1", and the "0" remains "0", 
so 0110 =decimal 6. (Answer A.) 

A.8.7 The decimal value in the BCD down counter is 100, so after 100 
clock pulse the counter is at 000, whereas at the same moment 
its binary counter has the position 1100100 (LSB). Thus the con-
version needed 100 clock pulses (Answer C). 

A.8.8 As the 1242 BCD-code is a true weighted code this can be done 
with a DAC whose weighting resistors have the factor 1, 2, 4 and 2 
(Answer A). 

A.8.9 In both cases the words are already serial, the only difference is 
the transport of the bits. When the bits are transported in parallel, 
then P lines are used, which means P times faster, (Answer B). 

73 




