P. TENUG ZENDEN SERVICE MEETAPP.

and and a

-

PHILIPS

Manual

GENERATOR PM 5125

9445 051 25031

9499 450 04411

3/571/1/03

IMPORTANT

2

In correspondence concerning this instrument, please quote the type number and the serial number as given on the type plate at the rear of the instrument. -

Contents

GENERAL

I.	Introduction	5
II.	Technical data	6
III.	Accessories	10
IV.	Description of the block diagram	10

DIRECTIONS FOR USE

v.	Installation	17
VI.	Controls, terminals and their functions	18
VII.	Operation	20
		12.64

SERVICE DATA

VIII.	Circuit description	23	
IX.	Gaining access to parts	28	
x.	Survey of adjusting elements	30	
XI.	Checking and adjusting	32	
XII.	Fault finding	37	1
XIII.	Lists of parts	38	
XIV.	Information concerning the modular system and optional accessories	48	
	A. General	48	
	B. Coupling accessories	50	
	C. Coupling instructions	54	

List of figures

1	Typical frequency response curve	(
2	Typical distortion curve	1
3	Block diagram	1.
4	Rear view	18
5	Controls and terminals	19
6	Load diagram	20
7	Adjustment of distortion	22
8	Simplified diagram of the oscillator	2.
9	Voltage diagram	24
10	Thermistor circuit	2:
11	Stand assembly	28
12	Left-hand view indicating the adjusting elements	31
13	Right-hand view indicating the adjusting elements	31
14	Front view indicating the mechanical components	39
15	Stand assembly indicating the mechanical components	4(
16	Rear view indicating the mechanical components	40
17/	A Top view indicating the mechanical components	41
171	3 Bottom view indicating the mechanical components	4
18	Coupling kit	52
19	Cover kit	52
20	Stand assembly	55
21	Rack-mounting, exploded view	57
22	Coupling two modular units, exploded view	
23	Printed wiring board of the oscillator	60
24	Printed wiring board of the squarer and the amplifier	6
25	Printed wiring board of the power supply	6.
26	Printed wiring board of the meter circuit	6.
27	Circuit diagram of the oscillator	6.
28	Circuit diagram of the squarer, the amplifier and the	
	meter circuit	71
29	Circuit diagram of the power supply	79
30	Overall diagram	86

[]

]

]

[]

[]

[]

I

and the second se

I

GENERAL

Introduction

The generator PM 5125 provides stable and accurate sine and square wave signals in the frequency range from 10 Hz up to 1 MHz. The midbank frequency response is flat within 0.1 dB. The settling time

(bounce) is very short.

The frequency may be varied in steps of one decade and continuously.

The following two outputs are provided:

- one output with an impedance of 600 Ω . The output voltage may be varied continuously up to 10 V (open circuit) as well as in four accurate steps of 20 dB.
- one low impedance output. The output voltage may be varied continuously up to 10 V.

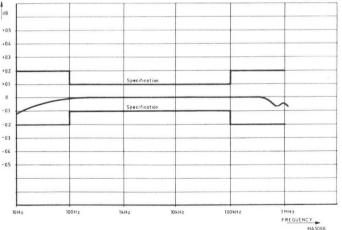
Both outputs are switched simultaneously to sine wave or to square wave. The output voltage is monitored by means of a built-in voltmeter. The generator frequency may be synchronised by means of an external signal.

			-	-	-	-					he n-			
Γ	Ι	[Γ	[Γ	Γ	ſ	ſ	Ι	Ι	I	I	I	1
]]]]]]]]	-	Constant of the local division of the local		

Technical data

Data expressed in numerical values as tolerances are guaranteed by the factory.

The other numerical values are for information only and indicate the characteristics of an average instrument. The maximum ambient temperature is 45° C.


A. FREQUENCY

RangeInInaccuracy at 20° CIn

10 Hz... 1 MHz in five overlapping subranges 100 Hz - 100 kHz: < 3%10 Hz - 1 MHz: < 5%

Frequency variations at mains variations of $\pm~10\%$ Temperature coefficient

negligible 0.015% per °C at 5 kHz

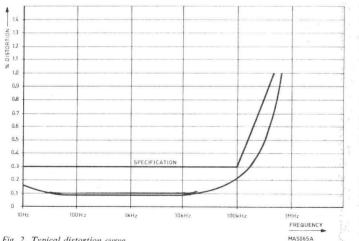
Long term drift

Short term drift

0.05% in 7 hours at 5 kHz after a warming up period of 20 minutes and at constant ambient temperature and mains voltage

0.005% in 10 minutes at 5 kHz after a warming up period of 20 minutes and at constant ambient temperature and mains voltage

B. OUTPUT SIGNALS


1. Sine wave signal

Frequency response (See Fig. 1)

100 Hz - 100 kHz: flat within + 0.1 dB referred to 5 kHz 1 MHz: flat within + 0.2 dB 10 Hz referred to 5 kHz

Total harmonic distortion (See Fig. 2)

10 Hz - 100 kHz: $\leq .3\%$ at 600 kHz $: \leq 1\%$

8

2. Square wave signal

Rise and fall time Wave-form aberration 100 nanoseconds above 5 kHz < 3%

> 40 dB linear (for sine wave)

continuous attenuator

> 26 dB linear (for square wave)
3 × 20 dB (inaccuracy: 0.2 dB/step at 5 kHz)

C. OUTPUTS

1. 600 Ω

Maximum amplitude

10 V_{rms} (for sine wave) or 10 V_{pp} (for square wave), open circuit 5 V_{rms} (for sine wave) or 5 V_{pp} (for square wave) into 600 Ω

> 60 dB down at maximum setting of the

Output impedance

Attenuation continuous

in steps

Hum and noise

2. LOW Zo

Maximum amplitude10 Vrms (for sine wave) or 10 Vpp (for square
wave) into 600 Ω Output impedance16 Ω for sine wave
10 Ω for square waveMinimum resistive load600 Ω Maximum capacitive load50 pFAttenuation, continuous> 40 dB linear (for sine wave)

600 Ω

Hum and noise

> 60 dB down at maximum setting of the continuous attenuator

> 26 dB linear (for square wave)

Note: Both outputs may be loaded simultaneously with 600 Ω each, with only a slight deterioration of performance.

Both outputs are switched simultaneously to the sine wave voltage or to the square wave voltage by means of waveform selector \Box/\sim .

D. OUTPUT METER

Indication

The meter is switched simultaneously by means of the waveform selector to indicate:

0

- a. the sine wave output voltage r.m.s., open circuit, or
- b. the square wave output voltage p-p, open circuit.

Scales

0 = 10 V0 = 16 dBm

Inaccuracy

< 5% of full scale deflection

E. SYNCHRONISATION

Range

max. 7% \pm 2% of set frequency with a negligible deterioration of performance

40 mV_{rms} per % hold

Maximum input DC voltage Input impedance

 \pm 15 V 100 k Ω

F. POWER SUPPLY

Required input voltage

Supply voltage Frequency Power consumption 115 V or 230 V \pm 15% 50 – 100 Hz 28 W

G. MECHANICAL DATA

Dimensions Weight 3 module cabinet (see chapter XIV) 5 kg (11 lbs)

Accessories

- Manual

Optional accessories

- Coupling kit PM 9500.
- A selection of 5 different cover kits PM 9502... PM 9506.
- Rack-mounting kit PM 9510 for mounting a 6-module cabinet into a 19" rack.

m

 Extension test board 4822 466 10165 for carrying out measurements on the plug-in printed wiring boards while the instrument is in operation.

The description and ordering information of these accessories are given in chapter XIV of this manual.

Description of the block diagram

(See Fig. 3)

This instrument contains a phase-shift oscillator, an amplifier, a squarer, a voltmeter, two attenuators and a double power supply.

OSCILLATOR

The phase-shift oscillator consists of three unity gain amplifier stages. The first two amplifier stages give each a phase-shift of 90° for the oscillating frequency and the third amplifier stage gives a phase-shift of 180° . The output signal of the third amplifier stage is fed back to the input of the first amplifier stage.

The amplifier stages are coupled by means of impedance converters (emitter followers).

The unity loop gain is maintained by means of a thermistor, which is a part of the collector impedance of the third amplifier stage.

FREQ. Hz (SK3, R11 - R111)

The frequency of the oscillator may be varied continuously by means of the double potentiometer $RI^{II} - RI^{II}$ and in steps of one decade by means of the switch SK3.

SYNC. IN (BU3)

The frequency of the oscillator may be synchronised by means of an external source connected to the terminal BU3.

11

WAVEFORM SELECTOR \Box/\sim (SK2)

The sine wave generated in the oscillator is applied either to the amplifier (via the continuous attenuator R2¹) or to the squarer by means of the selector switch SK2.

In position \sim of SK2 the sine wave signal is amplified and then fed to the output terminal LOW Zo (BUI), to the step attenuator SK4 and to the meter M1, which monitors the output voltage at BU1.

In position \neg_{-} of SK2 the squarer converts the sine wave signal into a square wave signal; then the square wave signal is also applied to the terminal LOW Zo (BU1), to the step attenuator SK4 and to the meter M1.

AMPLITUDE (R2I – R2II)

The amplitude of the output signal at the terminals LOW Zo (BU1) and 600 Ω (BU4) may be varied continuously by means of the double potentiometer AMPLITUDE (R2^I – R2^{II}).

STEP ATTENUATOR (SK4)

The amplitude of the output signal at the terminal 600 Ω (BU4) may also be varied in steps of 20 dB by means of the attenuator switch SK4.

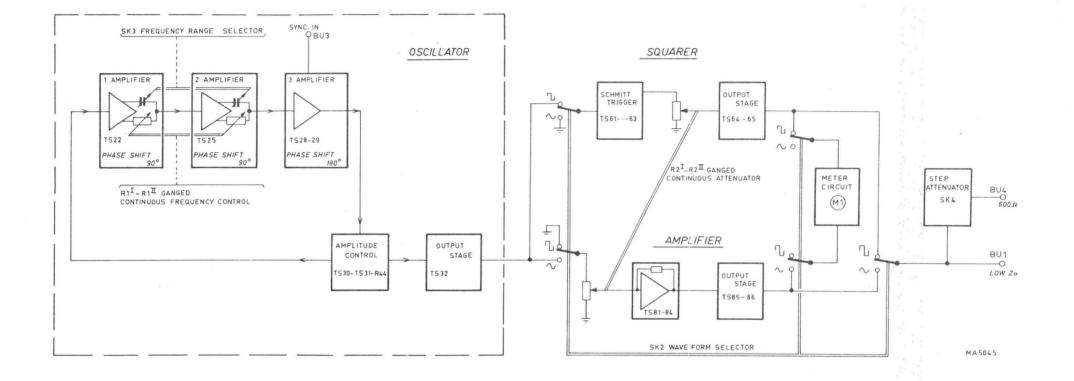


Fig. 3. Block diagram

DIRECTIONS FOR USE

Installation

For coupling two or more modular units refer to chapter XIV.

A. ADJUSTMENT TO THE LOCAL MAINS VOLTAGE (See Fig. 4)

The instrument may be adjusted to a mains voltage of 100...130 V or 200...260 V by means of switch SK12 on the rear panel.

In case of a mains voltage of 100...130 V, the fuse VL1 rated at 250 mA (delayed action) should be replaced by a fuse with a 500 mA-rating (delayed action).

B. EARTHING (See Figs. 4 and 5)

The instrument should be earthed in conformity with the local safety regulations. This can be done:

- a. via the supplied 3-core mains cable,
- b. via the earthing terminal BU12, marked (2), on the rear panel,
- c. via the earthing terminal BU6, marked \perp , on the front panel.

NOTE: For operation as a single unit connect BU6 to BU7

The units of the modular system have a semi-floating circuit so that the circuit need to be earthed at one point only when several units are coupled together.

Earth currents which may give rise to hum are thus avoided.

The terminals BU6 and BU12 are connected to the metal frame of the cabinet. The signal earth is connected directly of the terminals BU2, BU5 and BU7, marked \pm , and to the cabinet via a 100 k Ω resistor.

This provides the following output possibilities:

- output from a circuit which is earthed by linking BU7 (\downarrow) to BU6 (\perp)
- output from a circuit which is earthed via other coupled modules or via auxiliary equipment.

L

]

THE OWNER WATCHING

and the second

Controls, terminals and their functions

(See Figs. 4 and 5)

POWER ON (SK1, LA1)	On/off switch with neon indicator
Frequency dial (R1)	Continuous frequency control
FREQ. Hz (SK3)	Frequency control in steps. The output frequency given in Hz is equal to the product of the setting of SK3 and the setting of R1.
AMPLITUDE (R2)	Continuous control of the amplitude at both output terminals BU1 and BU4.
dB-attenuator (SK4)	Switch for setting the attenuation of the ampli- tude at terminal BU4 in four steps of 20 dB, viz: 60 dB,40 dB,20 dB and 0 dB.
Waveform selector \Box/\sim (SK2)	Switch for selecting the output waveform at the terminals BU1 and BU4.
Output terminal LOW Zo (BU1)	The output voltage at this terminal may be varied continuously by means of R2. The output impedance is 10 Ω for the square wave and 16 Ω for the sine wave.

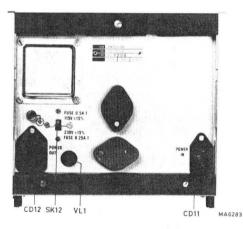


Fig. 4. Rear view Output terminal 600 Ω (BU4)

Signal earth (BU2, BU5, BU7)

The output voltage at this terminal may be varied continuously by means of R2 and in steps of 20 dB by means of SK4.

The output impedance is 600 Ω .

Input terminal for the external synchronisation signal.

Terminals to which the signal earth is connected

Earthing terminals connected to the metal frame of the cabinet.

The signal earth and the chassis earth may be connected by linking BU6 to BU7. Also refer to chapter V–B.

Mains voltage selector

Mains input terminal

Mains output terminal

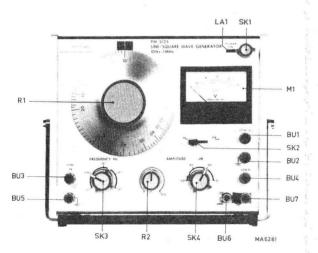


Fig. 5. Controls and terminals

19

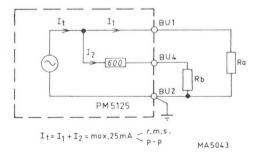
SK12, rear panel CD11, rear panel

(BU6, front panel) (BU12, rear panel)

SYNC. IN (BU3)

Chassis earth

CD12, rear panel


Operation

A. CONNECTING THE LOAD (See Figs. 5 and 6)

- Connect the load to the terminal "600 Ω " (BU4) or to the terminal LOW Zo (BU1).
- The resistive load connected to the terminal LOW Zo (BU1) should be at least 600 Ω. The capacitive load connected to the same terminal should not exceed 50 pF.
- The load connected to the terminal 600 Ω (BU4) may be very low.
- Both output terminals may be loaded simultaneously, with a slight deterioration of the performance (as indicated in chapter II "TECHNICAL DATA"), in accordance with Fig. 6 and the table below.

TABLE OF LOADS

	Normal minimum load impedance (Maximum current $I_t = 17 \text{ mA}$)	Absolute minimum load impedance (Maximum current $I_{\rm t}=25~mA$)
$R_a = \infty$	$R_b = approaching 0 \Omega$	-
$R_a = 600 \ \Omega$		$R_b = 600 \Omega$
$R_b = \infty$	$R_a = 600 \Omega$	$R_a = 400 \Omega$
$R_b = 600 \Omega$		$R_a = 600 \Omega$
$R_b = \text{approaching 0 } \Omega$	-	$R_a = 1200 \ \Omega$

B. SWITCHING ON

- Switch on the instrument by means of the switch POWER ON (SK1). The indicator LA1 should then light up.
- Wait for 20 minutes before proceeding with the following, if a stable output frequency or voltage is required.

C. SELECTING THE FREQUENCY

- Select the frequency range by means of the switch "FREQ. Hz" (SK3).
 - Adjust the desired frequency within the selected range by means of the frequency dial (RI^I - RI^{II}).
- If synchronisation of the generator frequency is required, then apply an external signal to the terminals SYNC. IN (BU3 and BU5). This signal should have an amplitude of 40 mV per percent of required hold. For the initial set-up make sure that the generator frequency corresponds to the frequency of the external signal.

D. SELECTING THE OUTPUT VOLTAGE

- Select the waveform of the output voltage by means of the switch $\neg_/\sim$ (SK2).
- Set the attenuator switch "-dB" (SK4) to position 0.
- Adjust the amplitude of the output voltage at the terminals "LOW Zo" (BU1) and "600 Ω " (BU4) continuously by means of the attenuator "AMPLITUDE" (R2), as indicated by the meter M1.
- Adjust the amplitude of the output voltage at the terminal "600 Ω " (BU4) in steps of 20 dB by means of the attenuator switch "-dB" (SK4).

Notes

- 1. The meter M1 indicates the output voltage at the terminal "LOW Zo". When no load is connected to the terminal "600 Ω ", then the output voltage at this terminal is equal to the indication of M1 divided by a factor:
 - 1 in position 0 dB of the switch "-dB" (SK4)
 - 10 in position -20 dB of the switch "-dB" (SK4)
 - 100 in position -40 dB of the switch "-dB" (SK4)
 - 1000 in position ---60 dB of the switch "---dB" (SK4).

When a 600 Ω -load is connected to the terminal "600 Ω ", then the output voltage at this terminal is halved.

The top scale of the meter M1 is calibrated for:

- RMS values in the case of sine wave operation

- peak to peak values in the case of square wave operation.

The bottom scale of M1 indicates the output variations in dBm 1 mW into 600 Ω (0.775 V)). (0 dBm

- 2. When the waveform selector \neg /~ is in position \neg , it is recommended to screen the output at the terminal "600 Ω " for optimum waveform in the case that the attenuator "-dB" is set to its lowest position (-60 dB).
- 3. The trimming potentiometer R45 (see Fig. 12) controls the distortion and the settling time.

A lower distortion and a higher settling time are obtained when R45 is turned anti-clockwise.

A higher distortion and a lower settling time are obtained, when R45 is turned clockwise. (see Fig. 7)

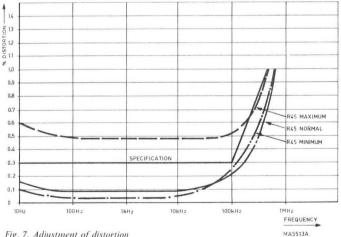


Fig. 7. Adjustment of distortion

SERVICE DATA

Circuit description

A. OSCILLATOR (See Figs. 8, 9, 10 and 27)

The sine wave oscillator used in this instrument is a phase-shift oscillator consisting mainly of three amplifier stages TS22, TS25 and TS29, which are coupled by means of the emitter followers TS23–TS24, TS26–TS27 and TS30–TS21 respectively.

Two identical frequency control circuits have been used. The first one is connected between the collector and the emitter of TS22 and consists of the capacitors C21...C27 and the resistors R24–R1^T–R25. The second one is connected between the collector and the emitter of TS25 and consists of the capacitors C28...C34 and the resistors R30–R1^{TI}–R31. These networks provide each a phase-shift of 90° at the oscillation frequency, f_0 .

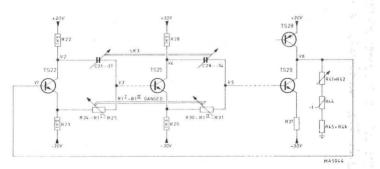


Fig. 8. Simplified diagram of the oscillator

In Fig. 9 the phase relationship between the voltages at the different points of the oscillator has been drawn. This figure shows that the phase-shift between the input of the first amplifier stage TS22 and the output of the first frequency control circuit is 90°; thus the phase-shift between V_1 and V_3 is 90°. The same applies to the second amplifier stage TS25 and the second frequency control circuit; thus the phase-shift between V_3 and V_5 is 90°.

The phase-shift due to the third amplifier stage TS29 is 180°; thus the phase-shift between V₅ and V₆ is 180°. The total phase-shift is then $90^{\circ} + 90^{\circ} + 180^{\circ} = 360^{\circ}$. Consequently, the input voltage V₁ and the output voltage V₆ are in phase.

The frequency is changed in steps of one decade by switching the capacitors C21...C27 and C28...C34 in steps by means of SK3. Continuous frequency control (ratio 1 : 10) is effected by means of the double potentiometer $R1^{I} - R1^{II}$

The output amplitude may be adjusted with R40 and R42. The thermistor R44 keeps the output amplitude constant. R42 is adjusted in such a way that Rs (see Fig. 10) becomes complementary to the differential resistance

of R44. Hence $\frac{\bigtriangleup V \text{ total}}{\bigtriangleup I}$ becomes zero.

The diodes GR21–GR22 introduce a controlled amount of non-linear distortion, which results in a shorter settling time of the sine wave when switching over to the lowest frequency range. The current through GR21–GR22 may be adjusted with R45.

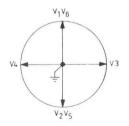
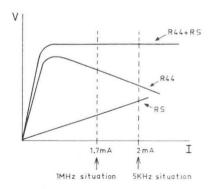
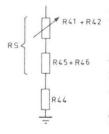


Fig. 9. Voltage diagram

The constant current source TS28 provides the DC current for TS29 without affecting the AC collector load of the latter. TS28 is also used for injecting an external synchronising signal into the oscillator loop. This external signal is applied to the base of TS28 via the coupling capacitor C37.


The output signal of the oscillator is applied via the emitter followers TS30 and TS32 to the waveform selector SK2.


The constant current source TS31 together with R49 restore the DC conditions within the DC feed back loop, without affecting the AC conditions.

B. SQUARER (See Fig. 28)

The sine wave signal coming from the oscillator and the selector switch SK2 is applied to the base of the transistor TS61 via the resistor R61. The transistor TS61 is clamped by means of the diode GR61 in such a way, that only the negative part of the sine wave signal is applied to the Schmitt trigger TS62–TS63.

A part of the switched collector current of transistor TS63 is applied to the potentiometer $R2^{II}$, with which the amplitude of the square wave can be varied continuously.

MA5042

Fig. 10. Thermistor circuit

From the wiper of R^{2II} , the square wave is applied via the emitter followers TS64–TS65, the capacitors C61–C62 and the selector switch SK2 to the output terminal BU1, to the step attenuator and to the meter circuit.

The diodes GR62 and GR63 protect the transistors TS62 and TS63 respectively against high reverse voltages.

The zener diode GR65 limits the power dissipation of the transistor TS65. R73 and C69 form a filter against unwanted coupling via the DC supply lines.

R75 determines the source impedance for TS65 and minimises its tendency for instability when loaded with a capacitive load.

C63...C66 are decoupling capacitors. C67 and C68 are minor wave shaping capacitors.

C. AMPLIFIER (See Fig. 28)

The sine wave signal coming from the oscillator and the selector switch SK2 is applied via capacitor C81 and resistor R81 to the base of the emitter follower TS82.

From the emitter of TS82, the sine wave signal is applied to the amplifier TS83. The constant current source TS81 in the collector line of TS83 provides the right DC conditions.

The signal amplified by TS83 is applied to the emitter follower TS84. A part of the signal present at the emitter of TS84 is fed back to the base of TS82, which results in an improved band width of the amplifier (negative feedback).

The signal present at the emitter of TS84 is applied via resistor R94 to the White emitter follower TS85–TS86. Then the signal is applied via capacitor C86 and the selector switch SK2 to the output terminal BU1, to the step attenuator SK4 and to the meter circuit.

The zener diode GR81 limits the power dissipation of TS84. The capacitor C84 maintaines the gain in the high end of the required frequency band.

D. METER CIRCUIT (See Fig. 28)

The square wave signal is applied via resistor R104 to the peak detector GR101–C101...C103–R105...R107. The resulting d.c. voltage is applied to the meter M1, which monitors the output voltage.

The sine wave signal is applied via the voltage divider R101-R102-R103 to the same circuit as the square wave signal.

The indication of M1 is first adjusted with R105 for the square wave signal and after that with R101 for the sine wave signal.

E. STEP ATTENUATOR

The output signal is applied to the terminal BU4 via the step attenuator consisting of the resistors R111... R117, the capacitor C90 and the switch SK4.

The attenuation may be adjusted in steps of 20 dB by means of SK4: The output impedance is 600 Ω for all positions of SK4.

F. POWER SUPPLY (See Fig. 29)

The a.c. voltages from the transformer T1 are rectified by the bridge circuits GR121 and GR122.

The output d.c. voltages of +30 V and -30 V are stabilised by comparing them with a reference voltage (GR127 resp. GR128) via a differential amplifier (TS128–TS131 resp. TS130–TS132) and by using the difference to control the current through the series regulator (TS141 resp. TS142). The amplification of the regulating current is effected by the transistors TS127 resp. TS129. The current limitation is effected by TS124–R236 and TS126–R237.

Gaining access to parts

A. REMOVING THE TOP PLATE

The top plate may be removed after loosening the fastener at the rear of the instrument.

To refit the top plate, place the groove of the fastener in the horizontal position and push the cover home.

B. REMOVING THE SIDE PLATES

The side plates may be taken off after removing the screw on each side of the instrument.

C. REMOVING THE BOTTOM PLATE

The bottom plate may be removed after loosening the appropriate screws at the rear of the cabinet.

D. REMOVING THE STRIP WITH TILTING SUPPORT

This strip may be removed by pushing the two nylon slides "A" in the direction indicated in Fig. 11.

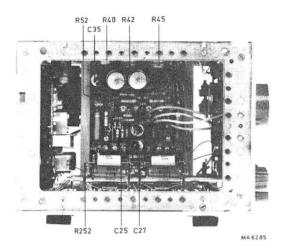
E. REMOVING THE PLUG-IN PRINTED WIRING BOARDS

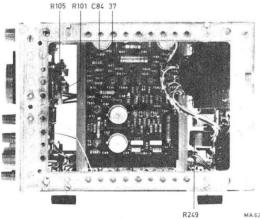
In order to pull out the plug-in printed wiring board of the power supply, the two fixing screws "P" (Fig. 17A) should first be removed leaving the brackets "Q" (Fig. 17A) fixed to the board.

Fig. 11. Stand assembly

In order to pull out the two other plug-in printed wiring boards, they should first be slightly bent. Furthermore, four wires (see Fig. 12) should be loosened before removing the oscillator board.

Note: When mounting the oscillator board, make sure that the four wires from potentiometer R1 are connected to this board in accordance with Fig. 23.


Survey of adjusting elements



Adjustment	Adjusting element	Fig	equipment	Recommended PHILIPS equipment	Chapter X. section
MAINS CURRENT			a.c. ammeter	PM 2411	В
SUPPLY VOLTAGES	R249, R252	12, 13	digital voltmeter	PM 2421	С
FREQUENCY	C25, C27, C32 C34, C35	12, 17B	frequency counter	PM 6630	D
SINE WAVE VOLTAGE	R40, R42, R52	12	diode voltmeter digital voltmeter	GM 6000 PM 2421	Е
DISTORTION OF SINE WAVE	R45, C84	12, 13	distortion meter	-	F
SQUARE WAVE VOLTAGE			oscilloscope	PM 3231	G
METER CIRCUIT	R101, R105	13	digital voltmeter	PM 2421	Н
SYNCHRONISATION			oscilloscope	PM 3231	I

Fig. 12. Left-hand view indicating the adjusting elements

Fig. 13. Right-hand view indicating the adjusting elements

MA 628E

Checking and adjusting

XI

The tolerances mentioned in the following text apply only to newly adjusted instruments. The values may differ from those given in chapter II, TECHNICAL DATA.

For optimum performance the instrument should be adjusted at the temperature at which it will be used.

The adjusting elements and the auxiliary equipment required for the adjusting procedure are indicated in chapter X.

A. GENERAL

The circuit should be earthed by connecting BU6 to BU7. All test equipment should be earthed via the instrument under test.

Accurate checking and adjusting of the frequency and the distortion according to sections D and G is only possible when the covers are fitted on the instrument and after a warming up period of at least twenty minutes.

B. MAINS CURRENT

Connect the instrument to the mains and check that the current consumption does not exceed 150 mA at 230 V mains or 300 mA at 115 V mains.

C. SUPPLY VOLTAGES

- Remove the printed wiring board of the oscillator and that of the squarer/amplifier.
- Check that the voltage between points CD3/9 and CD3/11 is –30 V \pm 0.5 V. Adjusting elements: R249.
- Check that the voltage between points CD3/11 and CD3/14 is +30 V+ 0.5 V. Adjusting element: R252.
- Refit the printed wiring boards.

D. FREQUENCY

- Set the trimmers R40, R42, R45, R52, C25 and C27 to the mid position and turn C35 completely out.
 - Set switch SK3 to position $\times 10^2$
 - Set switch SK2 to position \sim .

- Set switch SK4 to position 0 dB.
- Set attenuator R2 fully clockwise.
- Turn the spindle of double potentiometer R1 until the frequency at terminal BU4 is 1 kHz \pm 0,4%.
- Fix the frequency dial to the spindle of R1 in such a position that the dial indicates 10.
- 2. Turn the frequency dial to position 100 and check that the frequency at terminal BU4 is 10 kHz \pm 0.2%.
 - Turn the frequency dial successively to positions 15, 20, 30, 50 and 70 and check that the frequency at terminal BU4 is respectively 1.5 kHz, 2 kHz, 3 kHz, 5 kHz and 7 kHz. Tolerance: < 2%.
- 3. Set switch SK3 to position $\times 10$.
 - Set the frequency dial successively to positions 10, 30 and 100 and check that the frequency at terminal BU4 is respectively 100 Hz, 300 Hz and 1 kHz. Tolerance: < 2.5%.
- 4. Set switch SK3 to position $\times 1$.
 - Set the frequency dial successively to positions 10, 30 and 100 and check that the frequency at terminal BU4 is respectively 10 Hz, 30 Hz and 100 Hz. Tolerance: < 4%.
- 5. Set switch SK3 to position $\times 10^3$
 - Set the frequency dial to position 10.
 - Adjust the frequency at terminal BU4 to 10 kHz \pm 0.2% by means of trimmer C25. If this is not possible, select another value for C32.
 - Set the frequency dial successively to positions 30 and 100 and check that the frequency at terminal BU4 is respectively 30 kHz and 100 kHz. Tolerance: < 2.5%.
- 6. Set switch SK3 to position $\times 10^4$.
 - Set the frequency dial to position 10 and adjust the frequency at terminal BU4 to 100 kHz \pm 0.2% by means of trimmer C27. If this is not possible, select another value for C34.
 - Set the frequency dial to position 100 and check that the frequency at terminal BU4 is 990 kHz \pm 0.2%. If necessary, adjust by means of trimmer C35.
 - Repeat the adjustments of trimmers C27 and C35 until both frequencies are within 0.2%.
 - Set the frequency dial successively to positions 30, 50 and 70 and check that the frequency at terminal BU4 is respectively 300 kHz, 500 kHz and 700 kHz. Tolerance: < 4%.

E. SINE WAVE VOLTAGE

- 1. Set switch SK3 to position \times 10².
 - Set the frequency dial to position 10.
 - Set switch SK2 to position \sim
 - Turn trimmer R42 and R45 fully anti-clockwise (R=0).
 - Adjust trimmer R40 so that the voltage between test-points 10 and 11 of the oscillator board is 16 mV \pm 10%.
 - Measure the voltage between terminals BU4 and BU7 by means of a diode voltmeter and note the value.
- 2. Adjust trimmer R40 so that the voltage between test-points 10 and 11 of the oscillator board is 20 mV \pm 10%.
 - Measure the voltage between terminals BU4 and BU7; this value must be smaller than the value noted in point 1.
- 3. Turn trimmer R42 a little clockwise.
 - Adjust trimmer R40 according to point 1 and note the output voltage.
 - Adjust trimmer R40 according to point 2 and compare this output voltage with the value noted.
- 4. Repeat the adjustments until both values are equal. Tolerance: 1%.
 Adjust trimmer R40 according to point 2.
- 5. Set switch SK3 to position $\times 10^2$.
 - Set the frequency dial to position 50.
 - Set attenuator R2 fully clockwise.
 - Adjust trimmer R52 so that the voltage between terminals BU4 and BU7 is 10.3 V_{rms} \pm 0.1 V_{rms}. This voltage should also be present at terminals BU1–BU2.
- Set switch SK3 to position ×10², set the frequency dial to position 50 and turn continuous attenuator R2 until the voltage between terminals BU4 and BU7 is 10 V_{rms} (reference value).
 - Set switch SK3 and the frequency dial successively to the positions indicated in the table below and check that the corresponding voltage between BU4 and BU7 is within the indicated limits.

Setting of the frequency dial	Voltage between the terminals BU4 and BU7
10	between 9.8 and 10.2 Vrms
10	between 9.9 and 10.1 $V_{\rm rms}$
100	between 9.9 and 10.1 V_{rms}
50	between 9.8 and 10.2 V_{rms}
100	between 9.8 and 10.2 V_{rms}
	frequency dial 10 10 100 50

F. DISTORTION OF THE SINE WAVE

- 1. Connect a load of 600 $\Omega \pm$ 1% to the terminals BU1 and BU2. Connect a distortion meter to the terminals BU4 and BU7.
 - Set switch SK3 to position $\times 10$, set switch SK2 to position \sim , set the attenuator R2 fully clockwise and set the frequency dial to position 10.
 - Adjust the distortion to between 0.09% and 0.11% by means of trimmer R45.
- Check the distortion at the following settings of switch SK3 and of the frequency dial.

Position of switch SK3	Setting of the frequency dial	Distortion
$\times 1$	10	< 0.25%
$ imes 10^3$	100	$\leq 0.3\%$
$ imes 10^4$	60	$\leq 1\%)^*$

G. SQUARE WAVE VOLTAGE

- 1. Set switch SK2 to position 1.
 - Set switch SK3 to position $\times 10^2$.
 - Set attenuator R2 fully clockwise.
 - Set the frequency dial to position 50.
 - Set switch SK4 to position 0 dB.
- * If the distortion at 600 kHz is larger than 0.6%, another value should be selected for C84. This value should be selected in such a way that no instability occurs, when a capacitive load of 100 pF is connected to terminals BU1 and BU2.

– The square wave voltage between terminals BU4 and BU7 (unloaded) should be between 10.0 V_{pp} and 10.5 V_{pp} . The rise and the fall time should be less than 120 nanoseconds.

Measure this voltage by means of an oscilloscope.

- Check that the square wave is clean for all settings of switch SK3 and of the frequency dial. The sag and the overshoot of the square wave should be less than 2%.
- 3. Connect a load of 600 Ω to terminals BU1 and BU2 and repeat the check indicated in point 2.

H. METER CIRCUIT

- 1. Set switch SK2 to position \.
 - Set switch SK3 to position $\times 10^2$.
 - Set switch SK4 to position 0 dB.
 - Set the frequency dial to position 50.
 - Adjust attenuator R2 so that the output voltage between terminals BU4 and BU7 is 10 V_{pp}.
 - Adjust the meter reading to 10 V \pm 1% by means of R105.
- 2. Set switch SK2 to position \sim .
 - Adjust attenuator R2 so that the output voltage between terminals BU4 and BU7 is 10 V_{rms}.
 - Adjust the meter reading to 10 V \pm 50 mV by means of R101.
- Adjust the output voltage between BU4 and BU7 successively to 8 V, 6 V, 4 V and 2 V by means of attenuator R2. Note the corresponding readings of meter M1.

The difference between the meter readings and the output voltage should be less than 200 mV.

۲ ۲

 Check that the meter readings at 10 Hz and 1 MHz do not differ more than 2% from the corresponding output voltage measured at the terminals BU4-BU7.

I. SYNCHRONISATION

- Apply a signal of 100 mV $_{rms}\pm$ 5% 5 kHz to the terminals BU3 and BU5.
- Set switch SK3 to position $\times 10^2$.
- Set switch SK2 to position \sim .
- Set switch SK4 to position 0 dB.

- Set attenuator R2 fully clockwise.
- Set the frequency dial to position 50.
- Vary the frequency of the synchronising signal between 4900 Hz and 5100 Hz and check that the output frequency of the PM 5125 follows these variations.
- Check that the distortion of the output signal remains less than 0.3% during the synchronisation test.

Fault finding

To facilitate fault finding some d.c. voltages present at various places in the circuit have been indicated in the circuit diagrams.

The indicated voltage levels serve only as a guide.

To replace parts the instrument should be switched off.

After replacing parts, it may be necessary to readjust the instrument according to chapter XI "Checking and adjusting".

For gaining access to parts see chapter IX.

- Note: In case of break-downs, the assistance of the PHILIPS Service Organisation can always be called upon. Whenever the instrument is to be forwarded to a PHILIPS Service Centre for repair, the following should be observed:
- Provide the instrument with a label bearing full name and address of the sender.
- Indicate as completely as possible the symptoms of the fault.
- Carefully pack the instrument in the original packing or, if this is no longer available, in a wooden crate.
- Forward the instrument to the address provided by your local PHILIPS representative.

Lists of parts

A. MECHANICAL

Item	Number	Fig.	Ordering number	Description
1	1	14	4822 455 70094	Text plate
2	1	14	4822 310 20224	Dial + double potentiometer R1 + resistors R24 and R30
3	1	14	4822 413 50397	Knob
4	1	14	4822 413 70062	Cap
5	1	14	4822 450 80212	Cursor
6	1	14	4822 273 40115	Switch SK1
7	1	14	4822 413 30084	Knob
8	1	14	4822 413 70038	Cap
9	1	14	4822 347 20063	Meter 100 µA f.s.d.
10	1	14	4822 273 50101	Switch SK2
11	6	14	4822 290 40011	Terminal BU1-BU2-BU3-BU4-BU5- BU7
12	2	14	4822 535 20023	Terminal BU6-BU11
13	2	14	4822 506 40016	Nut on BU6-BU11
14	2	15	4822 520 10182	Bracket holder
15	2	15	4822 462 70366	Slide
16	2	15	4822 460 60017	Ornamental strip (6-module length)
17	1	14	4822 273 40224	Switch SK4
18	2	14	4822 413 40112	Knob
19	2	14	4822 413 70037	Cap
20	1	14	4822 413 40211	Knob
21	1	14	4822 413 70037	Cap
22	1	14	4822 273 60079	Switch SK3
23	2	14)		Screw for handle bar
24	2	14	4822 310 10044	Handle bracket
25	2	14	4622 510 10044	Handle screw
26	2	14 J		Washer for handle screw
27	2	14	4822 460 60014	Ornamental surround
28	1	16	4822 267 40106	Mains output terminal CD12
29	1	16	4822 277 20014	Slide switch SK12
30	1	16	4822 256 40017	Fuse holder
31	2	16	4822 693 80008	Transistor cover
32	2	16	56 201 (CA)	Mica washer and bushes
33	1	16	4822 265 30066	Mains input terminal CD11
4	3	17 B	4822 267 60023	Connector CD1-CD2-CD5
5	4	17 B	4822 462 40157	Foot cap
16	4	17 B	4822 462 50101	Foot (for screws)

XIII

Statistics of

I

ſ

ſ

]

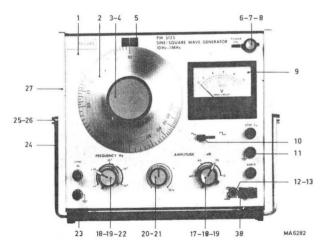
]

]

ALC: NO

]

]


STOCK STOCK

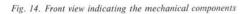

Item	Number	Fig.	Ordering number	Description
37	23	13	4822 255 40006	Transistor spacer
	1		4822 321 10071	Mains flex with plugs
			4822 263 70024	Mains interconnection link
			4822 466 10165	Extension test board
38	1	14	4822 290 30111	Link

Fig. 15. Stand assembly indicating the mechanical components

40

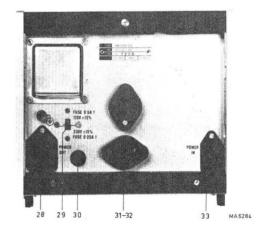


Fig. 16. Rear view indicating the mechanical components

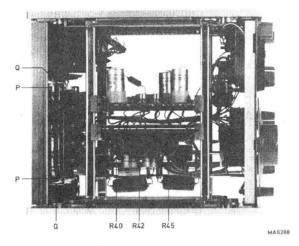


Fig. 17A Top view indicating the mechanical components

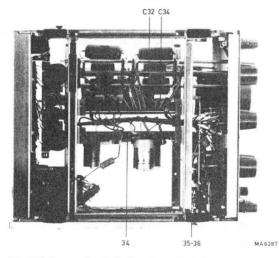


Fig. 17B Bottom view indicating the mechanical components

B. ELECTRICAL - ELEKTRISCH - ELEKTRISCH - ELECTRIQUE - ELECTRICOS

This parts list does not contain multi-purpose and standard parts. These components are indicated in the circuit diagram by means of identification marks. The specification can be derived from the survey below.

Diese Ersatzteilliste enthält keine Universal- und Standard-Teile. Diese sind im jeweiligen Prinzipschaltbild mit Kennzeichnungen versehen. Die Spezifikation kann aus nachstehender Übersicht abgeleitet werden.

In deze stuklijst zijn geen universele en standaardonderdelen opgenomen. Deze componenten zijn in het principeschema met een merkteken aangegeven. De specificatie van deze merktekens is hieronder vermeld.

La présente liste ne contient pas des pièces universelles et standard. Celles-ci ont été repérées dans le schéma de principe. Leurs specifications sont Indiquées ci-dessous.

Esta lista de componentes no comprende componentes universales ni standard. Estos componentes están provistos en el esquema de principio de una marca. El significado de estas marcas se indica a continuación.

<mark>0</mark>	Carbon resistor E24 series Kohleschichtwiderstand, Reihe E24 Koolweerstand E24 reeks Résistance au carbone, série E24 Resistencia de carbón, serie E24	0,125 W 5%		Carbon resistor E12 series Kohleschichtwiderstand, Reihe E12 Koolweerstand E12 reeks Résistance au carbone, série E12 Resistencia de carbón, serie E12	$ \left. \begin{array}{ccc} 1 & W \leqq 2,2 \ M\Omega, \ 5\% \\ > 2,2 \ M\Omega, \ 10\% \end{array} \right. $
-@	Carbon resistor E12 series Kohleschichtwiderstand, Reihe E12 Koolweerstand E12 reeks Resistance au carbone, série E12 Resistencia de carbón, serie E12	0.25 W $\leq 1 M\Omega, 5\%$ > 1 M $\Omega, 10\%$		Carbon resistor E12 series Kohleschichtwiderstand, Reihe E12 Koolweerstand E12 reeks Résistance au carbone, série E12 Resistencia de carbón, serie E12	}2 W 5%
	Carbon resistor E24 series Kohleschichtwiderstand, Reihe E24 Koolweerstand E24 reeks Résistance au carbone, série E24 Resistencia de carbón, serie E24	$ \begin{array}{l} 0.5 W \leqq 5 \; M\Omega, \; 1\% \\ > 5 \leqq 10 \; M\Omega, \; 2\% \\ > 10 \; M\Omega, \; 5\% \end{array} $		Wire-wound resistor Drahtwiderstand Dradgewonden weerstand Résistance bobinée Resistencia bobinada	} 0.4 - 1.8 W 0.5%
	Carbon resistor E12 series Kohleschichtwiderstand, Reihe E12 Koolweerstand E12 reeks Résistance au carbone, série E12 Resistencia de carbón, serie E12	0,5 W ≦1,5MΩ, 5% >1,5MΩ, 10%	-[Wire-wound resistor Drahtwiderstand Draadgewönden weerstand Résistance bobinée Resistencia bobinada	$ \left. \begin{array}{l} 5.5 \text{ W} \leqq 200 \Omega, \ 10\% \\ > 200 \Omega, \ 5\% \end{array} \right. $
		Vire-wound resistor Drahtwiderstand Draadgewonden weerstand tésistance bobinée Resistencia bobinada	d }	10 W 5%	
≜⊢	Tubular ceramic capacitor Rohrkondensator Keramische kondensator, buistype Gondensateur céramique tubulaire Condensador cerámico tubular	} 500 V	≞⊩	Polyester capacitor Polyesterkondensator Polyesterkondensator Condensateur au polyester Condensador polyester	} 400 V
▲ ▲	Tubular ceramic capacitor Rohrkondensator Keramische kondensator, buistype Condensatour céramique tubulaire Condensador cerámico tubular	} 700 V	ᅄᅴ	Flat-foil polyester capacitor Miniatur-Polyesterkondensator (flac Platte miniatuur polyesterkondensat Condensateur au polyester, type pla Condensador polyester, tipo de plac	or 250 V
쒸⊢	Ceramic capacitor, "pin-up" Keramikkondensator "Pin-up" (Perltyp Keramische kondensator "Pin-up" type Condensateur céramique, type perle Condensator cerámico, versión "colgat	500 V	쒸⊢	Paper capacitor Papierkondensator Papierkondensator Condensateur au papier Condensador de papel	} 1000 V
44	"Microplate" ceramic capacitor Miniatur-Scheibenkondensator "Microplate" keramische kondensator Condensater céramique "microplate" Condensador cerámico "microplata"	} 30 V	₩	Wire-wound trimmer Drahttrimmer Draadgewonden trimmer Trimmer å fil Trimmer bobinado	
判는	Mica capacitor Glimmerkondensator Micakondensator Condensateur au mica Condensador de mica	} 500 V	₩	Tubular ceramic trimmer Rohrtrimmer Buisvormige keramische trimmer Trimmer cerámique tubulaire Trimmer cerámico tubular	

For multi-purpose and standard parts, please see PHILIPS' Service Catalogue. Für die Universal- und Standard-Teile siehe den PHILIPS Service-Katalog. Voor universele en standaardonderdelen raadplege men de PHILIPS Service Catalogus. Pour les pièces universelles et standard veuillez consulter le Catalogue Service PHILIPS. Para piezas universales y standard consulte el Catálogo de Servicio PHILIPS.

44

RESISTORS

١

No.	Ordering number	Value		%	Description	
R1	4822 310 20224 1	5k + 15	kΩ		Tandem-potentiometer + dial + resistors R24 and R30	
R2	4822 102 30137 2	2.5 + 2.5	kΩ		Tandem-potentiometer	
R25	4822 116 50099	1.2	kΩ		Metal-film resistor	
R31	4822 116 50099	1.2	kΩ		Metal-film resistor	
R40	4822 101 20084	10	kΩ		Potentiometer	1
R42	4822 103 10058	250	Ω		Potentiometer	
R44	4822 116 90002				Thermistor	
R45	4822 103 10064	100	Ω		Potentiometer	
R52	4822 101 20277	2.2	kΩ		Potentiometer	
R101	4822 101 20241	1	kΩ		Potentiometer	
R105	4822 101 20243	4.7	kΩ		Potentiometer	3
R106	4822 116 50178	34.8	kΩ	1	Metal-film resistor	
R111	4822 116 50561	592	Ω	1)		
R112	4822 116 50013	6	kΩ	1	M - 1 (1	9
R113	4822 116 50534	741	Ω	1 (Metal-film resistor	
R114	4822 116 50239	5.94	kΩ	1]		
R115	4822 116 50535	733	Ω	1		
R116	4822 116 50239	5.94	kΩ	1		
R117	4822 116 50345	660	Ω	1 }	Metal-film resistor	
R122	4822 116 50102	2.2	kΩ	1		
R236	4822 111 30334	1	Ω	10		
R237	4922 111 30334	1	Ω	10	Carbon resistor	
R248	4822 116 50219	5.62	kΩ	1	Metal-film resistor	3
R249	4822 103 10058	250	Ω		Potentiometer	
R250	4822 116 50518	1.1	kΩ	1	Metal-film resistor	
R251	4822 116 50219	5.62	kΩ	1	Metal-film resistor	
R252	4822 103 10058	250	Ω		Potentiometer	
R253	4822 116 50518	1.1	kΩ	1	Metal-film resistor	

CAPACITORS

No.	Ordering number	Valu	le	Volt	Description	W.
C21	4822 121 50376	1	μF	160	Polyester	
C22	4822 121 40059	100	nF	63	Polystyrene	
C23	4822 123 10205	10	nF	125	Polystyrene	
C24	4822 123 10206	950	pF	500	Silvered mica	
C26	4822 120 60076	68	pF	500	Silvered mica	
C28	4822 121 50376	1	μF	160	Polyester	

No.	Ordering number	Valu	le	Volt	Description
C29	4822 121 40059	100	nF	63	Polystyrene
C30	4822 123 10205	10	nF	125	Polystyrene
C31	4822 123 10206	950	pF	500	Silvered mica
C33	4822 120 60076	68	pF	500	Silvered mica
C37	4822 124 20394	150	μF	40	Electrolytic
C38	4822 124 20426	2200	μF	10	Electrolytic
C39	4822 124 20426	2200	μF	10	Electrolytic
C41	4822 124 20409	470	μF	10	Electrolytic
C61	4822 124 20428	4700	μF	4	Electrolytic
C62	4822 124 20428	4700	μF	4	Electrolytic
C65	4822 124 20359	15	μF	40	Electrolytic
C66	4822 124 20359	15	μF	40	Electrolytic
C81	4822 124 20398	220	μF	25	Electrolytic
C83	4822 124 20419	1000	μF	25	Electrolytic
C85	4822 124 20381	68	μF	63	Electrolytic
C86	4822 124 20423	1500	μF	16	Electrolytic
C91	4822 124 20388	160	μF	25	Electrolytic
C101	4822 124 20356	15	μF	63	Electrolytic
C103	4822 124 20377	68	μF	16	Electrolytic
CI21124	4822 124 20404	330	μF	63	Electrolytic
C127	4822 121 40224	4.	7 μF	100	Polyester
C128	4822 121 40224	4.	7 μF	100	Polyester
C129	4822 124 20384	100	μF	40	Electrolytic
C130	4822 124 20384	100	μF	40	Electrolytic

SEMICONDUCTORS

No.	Туре	Ordering number	Description
GR21 – 22	AAZ 13	4822 130 30231	Diode
GR23	BZY88/C20V	4822 130 30417	Zener diode
GR6163	BAY38	4822 130 40256	Diode PISANO,
GR65	BZY88/C7V5	4822 130 30287	Zener diode
G R 81	BZY88/C12V	4822 130 30346	Zener diode
GR101	BAY38	4822 130 40256	Diode
GR121 - 122	BY123	4822 130 30279	Diode
G R123 – 124	BZY88/C9V1	4822 130 30294	Zener diode

No.	Type	Ordering number	Description	
GR125 - 126	BZY88/C3V3	4822 130 30392	Zener diode	
GR127 - 128	BZY78	4822 130 30335	Zener diode	
TS2127	BC107	4822 130 40184	Transistor	
TS28	BCY70	4822 130 40324	Transistor	
TS2932	BC107	4822 130 40184	Transistor	
TS61	BCY70	4822 130 40324	Transistor	
TS6264	BC107	4822 130 40184	Transistor	
TS65	2N3553	4822 130 40634	Transistor	
TS81	BCY70	4822 130 40324	Transistor	
TS8284	BC107	4822 130 40184	Transistor	
TS85 - 86	BFY50	4822 130 40294	Transistor	
TS121 – 122	BC107	4822 130 40184	Transistor	
TS123	BCY70	4822 130 40324	Transistor	
TS124	BC107	4822 130 40184	Transistor	
TS125	BCY70	4822 130 40324	Transistor	
TS126132	BC107	4822 130 40184	Transistor	1
TS141 - 142	BD123)*	4822 130 40518	Transistor	

* If transistors TS141, TS142 are replaced, transistor type BDY62 may be used (transistor BD123 is no longer available). Ordering number BDY62: 4822 130 40717.

MISCELLANEOUS

Item	Ordering number	Description
LA1	GL9	Neon lamp do
T1	4822 146 20343	Mains transformer
VL1	4822 253 30013	Fuse 250 mA, slow blow
	4822 253 30017	Fuse 500 mA, slow blow
	4822 216 60121	Printed wiring board of power supply, complete with components
-	4822 216 60138	Printed wiring board of the oscillator, complete with components
	4822 216 60139	Printed wiring board of the squarer/amplifier, complete with components
	4822 216 60141	Printed wiring board of the meter circuit, complete with components

INFORMATION ON THE MODULAR SYSTEM AND OPTIONAL ACCESSORIES

A. General

The modular LF-system consists of various units which can be used individually or combined. The application possibilities can be extended by combining units. The width of the various units is expressed in modules, one module having the following dimensions:

width:	70 mm
height:	178 mm
depth:	250 mm

The units have a width of one, two or three modules. They can be linked to a maximum width of six modules.

The instruments are suitable for rack-mounting. The following units are available.

PM 5125 – Generator

Frequency range
Attenuator
Output voltage
Wave forms

Width Suitable for use with: Power amplifier Wide-band transformer

PM 5160 - Oscillator

Frequency range Output voltage Waveforms

Attenuator Width Suitable for use with: Wide-band amplifier Power amplifier Monitored attenuator

PM 5162 - LF Sweep oscillator

Frequency range Waveforms $\begin{array}{l} 10 \mbox{ Hz } \dots 1 \mbox{ MHz } \\ 0-60 \mbox{ dB (three steps)} \\ 10 \mbox{ V}_{rms} \mbox{ into } 600 \mbox{ } \Omega \\ - \mbox{ sine wave} \\ - \mbox{ square wave} \\ 3 \mbox{ modules} \end{array}$

PM 5175 (width: 2 modules) PM 5181 (width: 1 module)

1 Hz ... 1 MHz 2 V_{pp} into 600 Ω - sine wave - square wave (from /04 version) continuous (logarithmic) 2 modules

PM 5170 (width: 1 module) PM 5175 (width: 2 modules) PM 5180 (width: 2 modules)

0.1 Hz ... 100 kHz - triangle wave - square wave - sine wave Output voltage Attenuator Frequency sweep

a. fmax

fmin

 $3 V_{pp}$ into 600 Ω continuous (logarithmic)

1 ... 104

b. speed Width Suitable for use in combination with: Wide-band amplifier Power amplifier Monitored attenuator

PM 5168 – Function generator

Frequency range Output voltage Attenuator Waveforms

Facilities

Width Suitable for use in combination with: Wide-band amplifier Power amplifier Monitored attenuator

PM 5170 - Wide-band amplifier

Frequency range Maximum output Input impedance

Width Suitable for use in combination with: Oscillator Sweep oscillator Function generator Monitored attenuator

PM 5175 - Power amplifier

Frequency range Max. output 10 ... 100 sec. 3 modules

PM 5170 (width: 1 module) PM 5175 (width: 2 modules) PM 5180 (width: 2 modules)

: 0.5 mHz ... 5 kHz 3 V_{pp} into 600 Ω continuous (logarithmic) - triangle wave - square wave - sine wave - single shot - external triggering 3 modules

PM 5170 (width: 1 module) PM 5175 (width: 2 modules) PM 5180 (width: 2 modules)

 $\begin{array}{l} DC \ ... \ 1 \ MHz \\ 10 \ V_{rms} \ into \ 600 \ \Omega \\ - \ 600 \ \Omega \ and \\ - \ high \ impedance \ (100 \ k\Omega) \\ 1 \ module \end{array}$

PM 5160 (width: 2 modules) PM 5162 (width: 3 modules) PM 5168 (width: 3 modules) PM 5180 (width: 2 modules)

DC ... 1 MHz 10 W peak Input impedance

Attenuator Width Suitable for use with: Oscillator Sweep oscillator Function generator

PM 5180 - Monitored attenuator

Attenuation Outputs

Maximum input voltage Frequency ranges a. attenuator b. meter c. transformer output Width Suitable for use in combination with: Oscillator Sweep oscillator Function generator Wide-band amplifier

- 600 Ω and
- high impedance
steps of 10 dB
2 modules

PM 5160 (width: 2 modules) PM 5162 (width: 3 modules) PM 5168 (width: 3 modules)

0 ... 99.9 dB in 10–1 and 0.1 dB steps – 600 Ω unbalanced – 600 or 150 Ω balanced (floating) 10 V_{rms}

DC ... 1 MHz 10 Hz ... 1 MHz 20 Hz ... 20 kHz 2 modules

PM 5160 (width: 2 modules) PM 5162 (width: 3 modules) PM 5168 (width: 3 modules) PM 5170 (width: 1 module)

PM 5181 - Wide-band transformer

Frequency range $10 \text{ Hz} \dots 1 \text{ MHz}$ Transformer ratio and
output impedance for
 600Ω signal sourcea) Transformer ratio 1:1, output
impedance 600Ω b) Transformer ratio 1:0.5, output
impedance 150Ω Input voltage $1 \text{ mV} \dots 10 \text{ V}$ Width2 modules

Suitable for use in combination with all instruments from the modular LF-system.

PM 5183 - Burst gate

Frequency range	DC 1 MHz
Input voltage	1 V _{rms}
Output voltage	1 V _{rms}
Input impedance	600 Ω
Output impedance	600 Ω
On/off timing:	
on:	1 99 cycles
off:	1 99 cycles
0 1 1 0 1 1 1 1	11

Suitable for use in combination with all instruments from the modular LF-system.

B. Coupling accessories

For coupling the various units to form one complete instrument, coupling accessories are available for every combination up to a width of six modules. These accessories comprise one coupling kit and five different cover kits. With the aid of the parts provided in the *coupling kit* any two modular units can be linked to each other.

A *cover kit* contains a top cover, a tilting assembly and an extension piece for the carrying handle; with these parts the coupled units can be equipped to form one complete instrument.

Ordering information

One coupling kit PM 9500 should be ordered for each coupling connection to be made. Depending on the total width of the coupled units, one of the following cover kits should also be ordered.

Cover kit for a total width of
2 modules
3 modules
4 modules
5 modules
6 modules
one 2-module unit
two 1-module units
two coupling kits PM 9500
one cover kit PM 9504

The coupling kit PM 9500 includes : (Fig. 18)

- a. 4 coupling screws with nuts
- b. fixing screws for handle
- c. 1 inter-units screen
- d. 1 mains interconnection link
- e. 2 signal interconnection links

A cover kit PM 9502 ... PM 9506 includes: (Fig. 19)

a. 1 n-module top cover

b. 1 n-module tilting assembly

c. 1 n-module handle bar

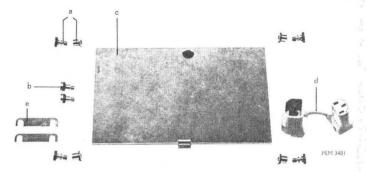
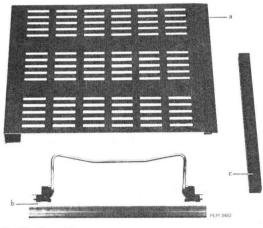
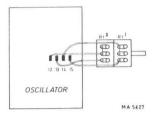
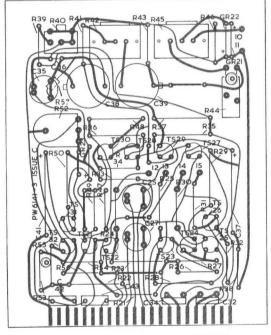


Fig. 18. Coupling kit


Fig. 19. Cover kit

1

Concession in the local division in the loca

Contraction of the local division of the loc

MA 5060A

Fig. 23. Printed wiring board of the oscillator

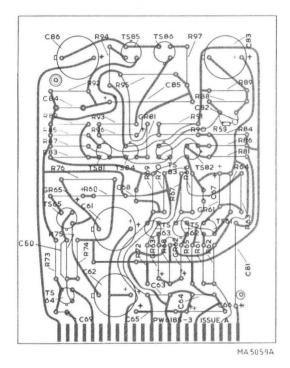


Fig. 24. Printed wiring board of the squarer and the amplifier

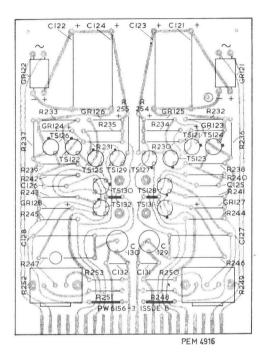


Fig. 25. Printed wiring board of the power supply

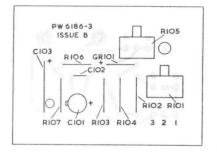
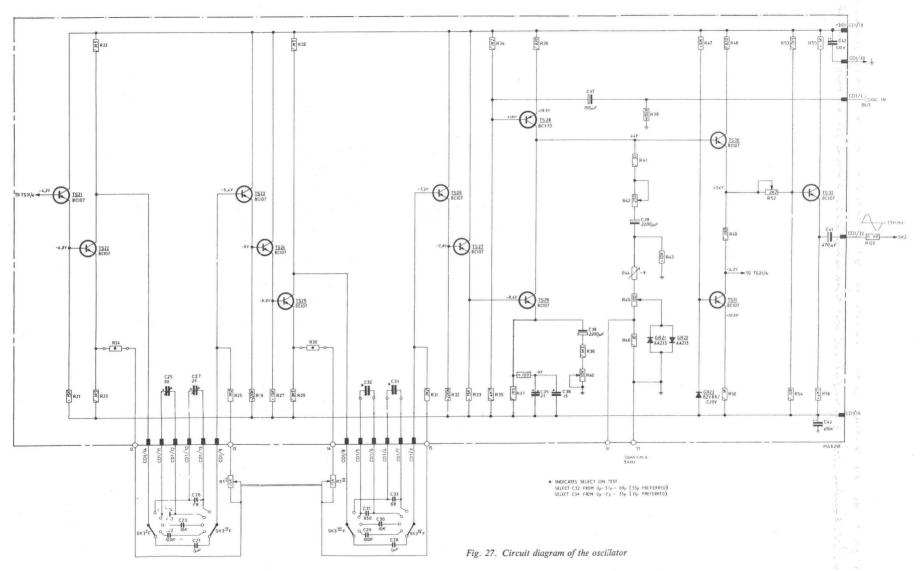



Fig. 26. Platine du circuit de l'instrument de mesure

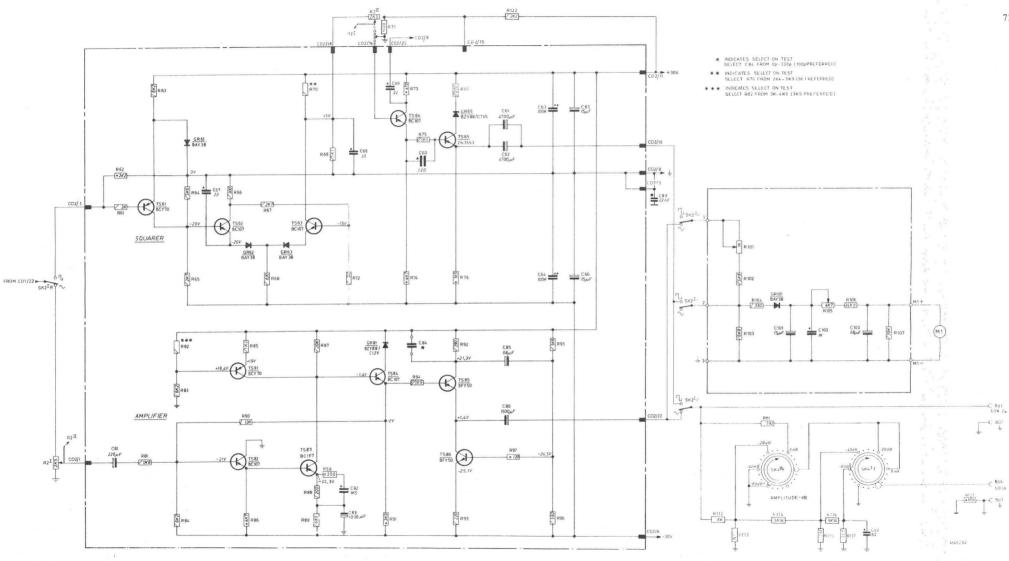


Fig. 28. Circuit diagram of the squarer, the amplifier and the meter circuit

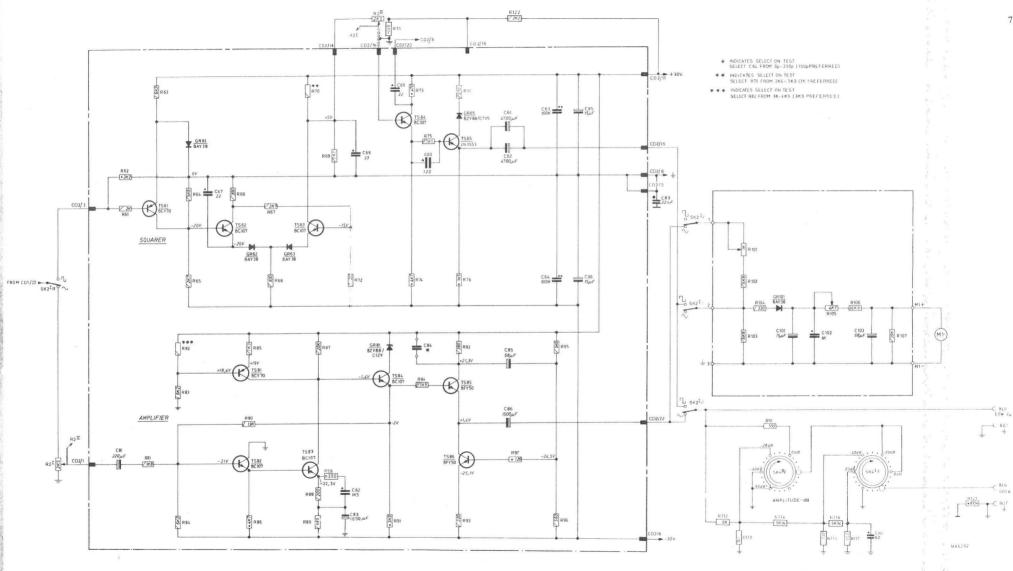


Fig. 28. Circuit diagram of the squarer, the amplifier and the meter circuit

Fig. 29. Circuit diagram of the power supply

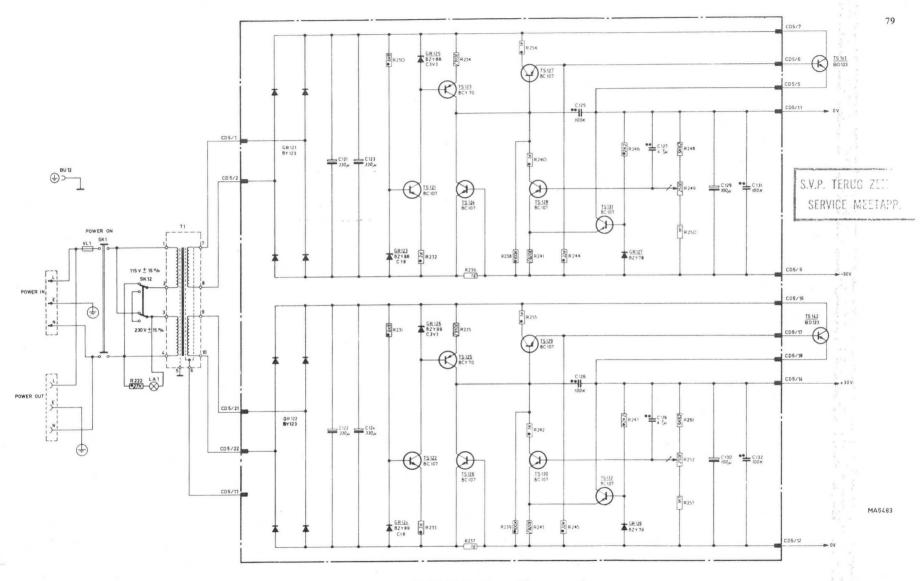


Fig. 29. Circuit diagram of the power supply

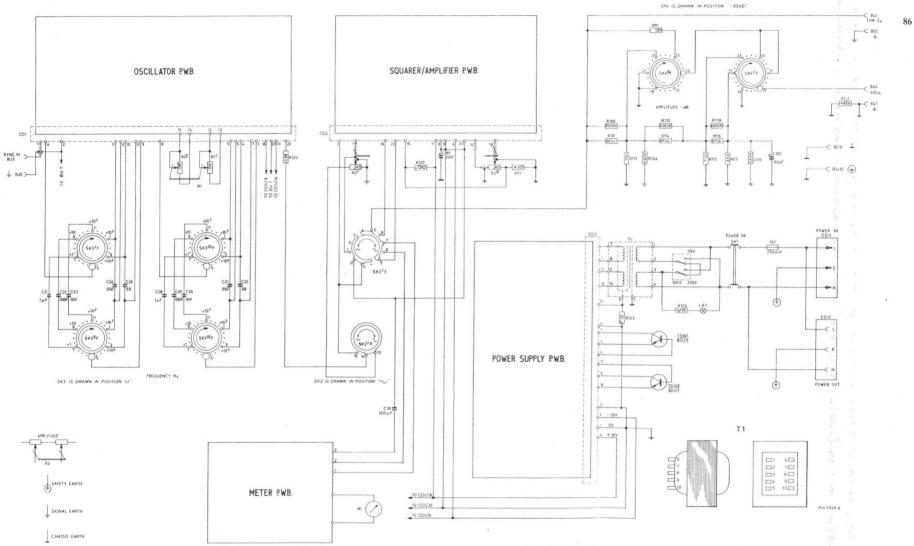


Fig. 30. Overall diagram