The EZ 2 is an indirectly-heated full-wave rectifying valve, specially designed for car radio receivers. The heater is fed from the car battery at 6.3 V and for this reason the heater-current consumption has been kept as low as possible. The optimum D.C. output is sufficient to operate a normal car radio receiver, not including energizing current for a loudspeaker.

HEATER RATINGS

Heating: indirect by A.C. or D.C.
Heater voltage
Heater current

\[\text{Heater voltage} \quad V_f = 6.3 \text{ V} \]
\[\text{Heater current} \quad I_f = 0.4 \text{ A} \]

MAXIMUM RATINGS

Voltage on no-load, across the secondary winding of the power transformer
\[V_{tr} = \text{max. } 2 \times 350 \text{ V}_{\text{eff}} \]
D.C. output
\[I_o = \text{max. } 60 \text{ mA} \]
Voltage between heater and cathode (absolute peak value)
\[V_{fK} = \text{max. } 500 \text{ V} \]
Internal resistance of the power transformer (per anode)
\[R_r = \text{min. } 600 \text{ ohms} \]
Capacitance of first smoothing capacitor at
\[V_{tr} = 2 \times 350 \text{ V}_{\text{eff}} \]
\[C = \text{max. } 16 \mu\text{F} \]
Capacitance of second smoothing capacitor at
\[V_{tr} = 2 \times 300 \text{ V}_{\text{eff}} \]
\[C = \text{max. } 32 \mu\text{F} \]

As rectifying valve in a car radio receiver, the direct voltage with a superimposed ripple voltage between the filament — which is connected to the car chassis through the battery — and the cathode which is taken directly to the positive H.T. side of the first smoothing capacitor must be accepted as such.

At such time as the rectifying valve is not loaded a potential occurs between these components equal to the peak value of the voltage applied to the valve. The maximum permissible voltage between heater and cathode is 500 V, i.e. the maximum peak value of the alternating anode voltage, whilst the optimum value of the direct current delivered is 60 mA, this being an absolute value, applicable also to alternating voltages of \(2 \times 300 \text{ V}_{\text{eff}} \)
Fig. 3
Current per anode as a function of the applied voltage.

Fig. 4
Loading curves for the rectifying valve EZ 2, for voltages of 2 x 300 and 2 x 350 V on no load, across the secondary winding of the power transformer, and with respect to different values of the internal resistance of the rectifier circuit. The input capacitance is at most 16 µF on 2 x 350 V, or 32 µF on 2 x 300 V. If the internal resistance of the power transformer is less than the minimum of 600 ohms, it must be increased to that value by means of an extra resistor R_s in series with the half-secondary.

$E_t = E_s + R_p \cdot n^2 \cdot R_p$

R_p = resistance of primary winding.

E_s = resistance of half secondary winding.

n = transformer ratio; prim. winding/sec. half-winding.

$I_{1} =$ additional resistance when total resistance is too low.