Multiplier Phototube

S-20 RESPONSE

IO-STAGE, HEAD-ON, FLAT-FACEPLATE TYPE	VENETIAN-BLIND-TYPE Dynode Structure
For Photometry, Flying-Spot Scanning, Counter Equipment Requiring Low-Dar Sensitivity Over a Wide Spectrum (Blueth	k Current and High
General:	
Spectral Response. Wavelength of Maximum Response	4200 ± 500 angstroms a-Cs-Sb (Multialkali) . Flat, Circular 5.27 sq. in 2.59 in Lime Glass ^a 1.51 . Copper-Beryllium ox.): 7 pf 8.5 pf 6.31" 3.06"
Pin 4 - Dynode No. 4 Pin 5 - Dynode No. 5 Pin 6 - Dynode No. 6 Pin 7 - Dynode No. 7 Pin 8 - Dynode No. 8 Pin 9 - Dynode No. 9 Pin 10 - Dynode No. 10 Pin 11 - Anode Pin 12 - Do Not Use DY6 PY4 4 + H DY3 3 1 DY4 2 + H DY3 3 1 DY4 3 1 DY4 3 1 DY5 2 1 DY6 DY7 3 1 DY7 2 1 DY7 2 1 DY7 3 1 DY7 2 1 DY7 2 1 DY7 3 1 DY7 2 1 DY7 3 1 DY7 4 1 DY7 3 1 DY7 4 1 DY	OY7 DY6 O DY9 O DY9

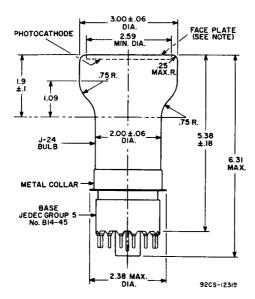
Maximum Ratings, Absolu	te-Ma	ximum V	alues:				
DC Supply Voltage:							
Between anode and cat	hada		25.0	00 max.	14		
					volts		
Between anode and dyn	iode N	0.10 .	ار ۲۰۰۰	00 max.	volts		
Between consecutive d	lynode	S		00 max.			
Between dynode No.1 a				00 max.			
Between focusing elec				00 max.	volts		
Average Anode Current ^d				1 max.	ma		
Ambient Temperature			8	35 max.	°C		
Characteristics Range V	alues	:					
Under conditions wi	+ h d	- cunnl	v voltage /	E1 20 F			
voltage divider pr							
and dynode No.1; 1/							
stage; and 1/12 of							
Focusing-electrode	volta	age is	adjusted to	that v	alue		
between 50 and 100							
(referred to cathode)	which	provid	des maximum a	node cur	rent.		
With E = 2000 volts (Ex	ccebt	as note	·d)				
				.,			
	,	Yin.	Typ.	Max.			
Sensitivity:							
Radiant, at 4200							
angstroms		_	1.1×10^4	_	a/w		
Cathode radiant,							
at 4200 angstroms.		_	6.8×10^{-2}	_	a/w		
Luminous, at 0 cps ^e .		12	25	240	a/lm		
Cathode luminous:	•			240	a, 1111		
With tungsten							
light source f	1 2	v 10-4	1 6 4 10-4		a/lm		
With blue light	. 1.2	XIU	1.0 X 10	-	a/Im		
source ^{g, h}	F .	10-8					
	. 5 x	10 0	-	-	a		
With red _i light	_	7					
source ^{j,k}	• 3 ×	: 10-7		-	a		
Current Amplification.		_	1.6×10^{5}	-			
Equivalent Anode-							
Dark-Current Input							
at a luminous sensi-							
tivity of 12 a/lm ^m .		_	4×10^{-10}	1×10^{-9}) m		
Equivalent Noise Input		_	- 3	8 x 10-	12 lm		
Anode-Pulse Rise Time"	•	_	1.16 x 10 ⁻⁸	.0 x 10	sec		
Electron Transit Time	•	_	5.8 × 10 ⁻⁸	_			
	•	_		_	sec		
With E = 1500 volts (Except as noted)							
		Min.	$Ty \phi$.	Max.			
Sensitivity:				-			
Radiant, at 4200							
			2.1×10^{3}				
angstroms	•	-	7.1 X 102	-	a/w		
Cathode radiant,			0.0.40.2				
at 4200 angstroms.		-	6.8×10^{-2}	-	a/w		
Luminous, at 0 cps ^e .	•	-	5	-	a/lm		

	Min.	Ту⊅.	Max.	
Cathode luminous:				
With tungsten light sourcef	1.2 × 10 ⁻⁴	1.6×10^{-4}	-	a/lm
With blue light source ^{g,h}	5×10^{-8}	-	-	a
With red light source;	3 × 10 ⁻⁷	_	_	a
Current Amplification	_	3.1×10^4	-	
Equivalent Anode-Dark Current Input at a luminous sensitivity				
of 12 a/lm ^m	-	4×10^{-10}	1×10^{-9}	1 m
8 Cospins No 0000 made by come				

- Corning No.0080 made by Corning Glass Works, Corning, New York, or equivalent.
- b Made by Cinch Manufacturing Company, 1026 South Homan Avenue, Chicago 24, Illinois.
- Magnetic shielding material in the form of foil or tape as available from the Magnetic Shield Division, Perfection Mica Company, 1322 North Ellston, Chicago 24, Illinois, or equivalent.
- Averaged over any interval of 30 seconds maximum.
- ⁶ Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 K and a light input of 1 microlumen is used.
- f Under the following conditions: The light source is a tungsten-filament lamp having a lime-glass envelope. It is operated at a color temperature of 2870 K. The value of light flux is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- under the following conditions: Light incident on the cathode is transmitted through a blue filter (corning*C.S. No.5-58 polished to 1/2 stock thickness—manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 28700 K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
 - See Spectral Characteristic of 2870° K Light Source and Spectral Characteristic of Light from 2870° K Source after passing through Indicated Blue Filter at front of this Section.
- Junder the following conditions: Light incident on the cathode is transmitted through a red filter (corning C.S. No.2-62, manufactured by the Corning Glass Works, Corning, New York) from a tungsten-filament lamp operated at a color temperature of 2870° K. The value of light flux incident on the filter is 0.01 lumen and 200 volts are applied between cathode and all other electrodes connected as anode.
- k See Spectral Characteristic of 2800° K Light Source and Spectral Characteristic of Light from 2800° K Source after passing through Indicated Red Pitter at front of this Section.
- $^{\rm M}$ At a tube temperature of 25 $^{\rm O}$ C. Dark current may be reduced by use of a refrigerant.
- Measured between 10 per cent and 90 per cent of maximum anode-pulse height. This anode-pulse rise time is primarily a function of transittime variation and is measured under conditions with the incident light fully illuminating the photocathode.
- P The electron transit time is the time interval between the arrival of a delta function light pulse at the entrance window of the tube and the time at which the output pulse at the anode terminal reaches peak amplitude. The transit time is measured under conditions with the incident light fully illuminating the photocathode.

OPERATING CONSIDERATIONS

It is recommended that the average anode current be well below the maximum-rated value of I milliampere when stability of operation is important. When maximum stability is required, the average anode current should not exceed 10 microamperes.


Electrostatic and/or magnetic shielding of the 4464 may be necessary.

Adequate shielding should be provided to prevent extraneous radiation from reaching any part of 4464.

The operating stability of the 4464 is dependent on the magnitude of the anode current and its duration. When the 4464 is operated at high average values of anode current, a drop in sensitivity (sometimes called fatigue) may be expected. The extent of the drop below the tabulated sensitivity values depends on the severity of the operating conditions. After a period of idleness, the 4464 usually recovers a substantial percentage of such loss in sensitivity.

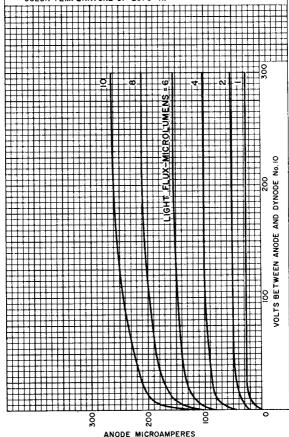
SPECTRAL-SENSITIVITY CHARACTERISTIC OF PHOTOSENSITIVE DEVICE HAVING S-20 RESPONSE is shown at the front of this Section

TYPICAL VOLTAGE-DIVIDER ARRANGEMENT shown under Type 4463 also applies to Type 4464

DIMENSIONS IN INCHES

Center line of bulb will not deviate more than $2^{\rm O}$ in any direction from the perpendicular erected at the center of bottom of the base.

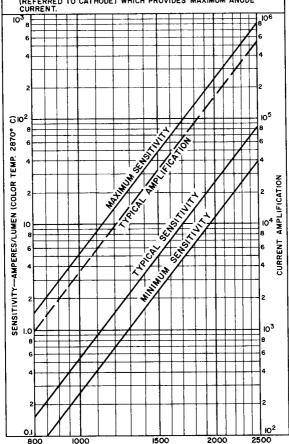
NOTE: Within 2.59" diameter, deviation from flatness of external surface of faceplate will not exceed 0.010"from neak to valley.


TYPICAL ANODE CHARACTERISTICS

DYNODE No. 1-TO-CATHODE VOLTS = 250

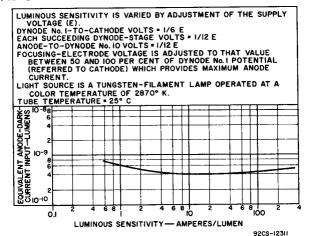
EACH SUCCEEDING DYNODE-STAGE VOLTS = 125

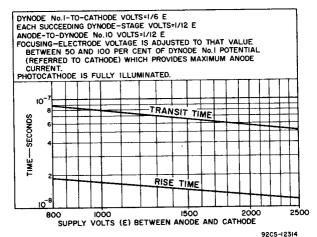
FOCUSING-ELECTRODE VOLTAGE IS ADJUSTED TO THAT VALUE BETWEEN 50 AND 100 PER CENT OF DYNODE No.1 POTENTIAL (REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT


LIGHT SOURCE IS A TUNGSTEN-FILAMENT LAMP OPERATED AT A COLOR TEMPERATURE OF 2870° K.

92CM-12310

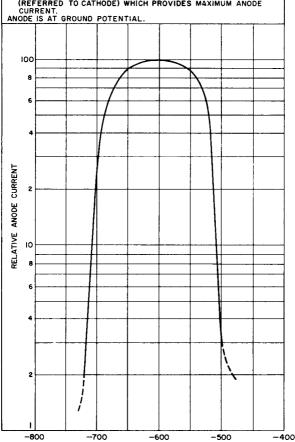
SENSITIVITY AND CURRENT AMPLIFICATION **CHARACTERISTICS**


DYNODE No. I-TO-CATHODE VOLTS = 1/6 E EACH SUCCEEDING DYNODE-STAGE VOLTS = 1/12 E ANODE-TO-DYNODE No. 10 VOLTS = 1/12 E FOCUSING-ELECTRODE VOLTAGE IS ADJUSTED TO THAT VALUE BETWEEN 50 AND 100 PER CENT OF DYNODE No. 1 POTENTIAL (REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT.


SUPPLY VOLTS (E) BETWEEN ANODE AND CATHODE

92CM-12312

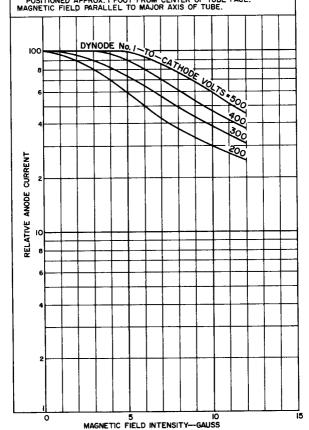
TYPICAL ANODE-DARK-CURRENT CHARACTERISTIC



TYPICAL TIME RESOLUTION CHARACTERISTICS

TYPICAL CHARACTERISTIC OF OUTPUT CURRENT AS A FUNCTION OF DYNODE-No.5 VOLTS

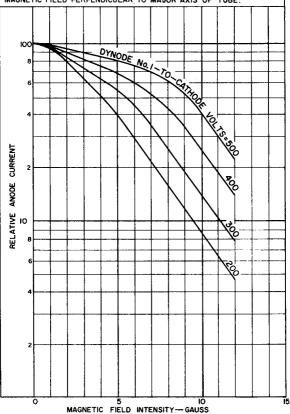
DYNODE No.1-TO-CATHODE VOLTS = 200 VOLTS PER SUCCEEDING DYNODE STAGE EXCEPT FOR DYNODE-No. 5 STAGE . 100 ANODE-TO-DYNODE No. 10 VOLTS = 100
FOCUSING-ELECTRODE VOLTAGE IS ADJUSTED TO THAT VALUE
BETWEEN 50 AND 100 PER CENT OF DYNODE No. 1 POTENTIAL
(REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT


DYNODE No.5 VOLTS (REFERRED TO ANODE)

92CM-11078RI

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

DYNODE No.1-TO-CATHODE VOLTS=AS INDICATED EACH SUCCEEDING DYNODE—STAGE VOLTS=125 ANODE-TO-DYNODE No.10 VOLTS=125 FOCUSING-ELECTRODE VOLTAGE IS ADJUSTED TO THAT VALUE BETWEEN 50 AND 100 PER CENT OF DYNODE No.1 POTENTIAL (REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT, PHOTOCATHODE FULLY ILLUMINATED BY A POINT LIGHT SOURCE POSITIONED APPROX.1 FOOT FROM CENTER OF TUBE FACE.



92CM-11084R2

TYPICAL EFFECT OF MAGNETIC FIELD ON ANODE CURRENT

DYNODE No.1-TO-CATHODE VOLTS=AS INDICATED EACH SUCCEEDING DYNODE-STAGE VOLTS=125 ANODE-TO-DYNODE No.10 VOLTS=125 FOCUSING-ELECTRODE VOLTAGE IS ADJUSTED TO THAT VALUE BETWEEN 50 AND 100 PER CENT OF DYNODE No.1 POTENTIAL (REFERRED TO CATHODE) WHICH PROVIDES MAXIMUM ANODE CURRENT.

PHOTOCATHODE FULLY ILLUMINATED BY A POINT LIGHT SOURCE POSITIONED APPROX. I FOOT FROM CENTER OF TUBE FACE. MAGNETIC FIELD PERPENDICULAR TO MAJOR AXIS OF TUBE.

92CM-II085R2

