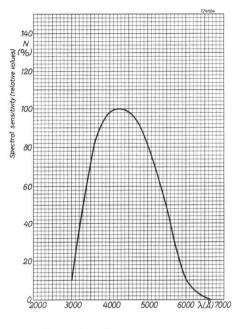

PHILIPS


PHOTOMULTIPLIER

The 153 AVP is an 11-stage photomultiplier tube provided with a caesium-antimony semi-transparent flat cathode, which has a diameter of 44 mm. The highly sensitive uniform photocathode has a typical sensitivity of 70 $\mu\text{A}/\text{lm}$ and a spectral response lying mainly in the visible region, with its maximum at 4200 % as shown in the spectral-response curve.

The 153 AVP is intended for use in applications such as gamma-ray spectrometry.

The tubes are tested with a 1/2"x1" NaJ crystal to guarantee an energy resolution of less than 9 % for the 0.661-MeV caesium line.

\$10 \$9 \$9 \$77 \$9 \$57 \$53.5 \$\frac{5}{86} \frac{6}{9} \frac{78}{9} \frac{9}{9} \frac{57}{9} \frac{5}{9} \frac{9}{9} \frac{5}{9} \frac{1}{9} \frac{9}{9} \frac{9}{9} \frac{9}{9}

incident radiation

Spectral response

Dimensions (in mm) and electrode connections

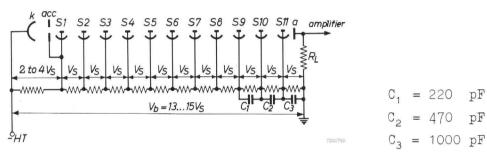
μ-metal screening cylinder type No. 56128 length 90 \pm 1 mm diam. 57 \pm 0 mm

PHOTOCATHODE

Semi-transparent, head-on, flat sur	face		
Cathode material		SbCs	
Minimum useful diameter		44	mm
Wavelength of max. response		4200 <u>+</u> 300	A
Luminous sensitivity 1)	avg.	70	$\mu A/lm$
	min.	50	$\mu A/lm$
Radiant sensitivity 2)	avg.	55	mA/W
Dark current (at room temperature)		10-15	A/cm^2

MULTIPLIER SYSTEM

Number of stages	11	
Dynode material	AgMgOCs	
Capacitance between anode and final dynode	3	рF
Capacitance between anode		
and all other electrodes	5	рF


 $^{^{1}\,)}$ Measured with a tungsten ribbon lamp having a colour temperature of 2850 ^{0}K

 $^{^2}$) At a wavelength of 4200 Å

TYPICAL CHARACTERISTICS

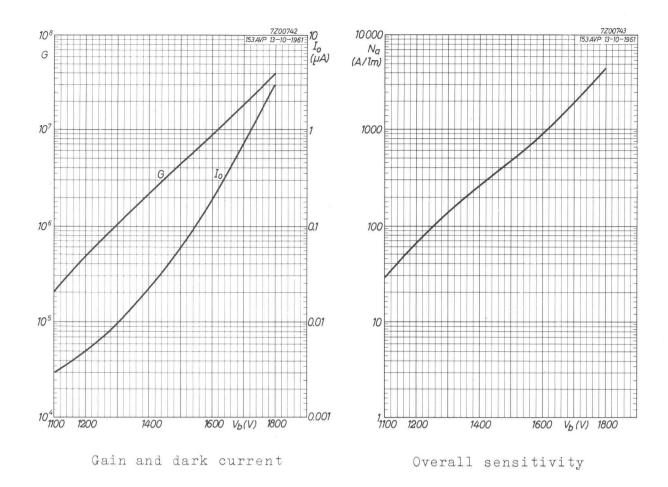
Anode sensitivity (at a total voltage of 1800 V)
$$N_{a} = \begin{array}{c} \text{avg. 4500 A/lm} \\ \text{min. 100 A/lm} \\ \text{Anode dark current} \\ \text{(at an anode sensitivity of 60 A/lm} \\ \text{Linearity between anode-pulse amplitude} \\ \text{and input-light flux} \\ \text{Resolution 0.661-MeV caesium line} \\ \text{avg. 8.5} \\ \text{max. 9} \\ \text{\%}$$

OPERATING CHARACTERISTICS

Photomultiplier with voltage divider ³)

k = cathode

acc = accelerating electrode


 $S_n = dynode No. n$

a = anode

LIMITING VALUES

Total voltage	v_b	=	max.	1800	Λ
Anode current at continuous ope	ration				
(in order not to overload the	tube) I _a	=	max.	1	mA
Anode dissipation	Wa	=	max.	0.5	W
Voltage between cathode and first dync	V	=	min. max.	200 500	V V
Voltage between two consecutive dyna	T/	=	min. max.	80 300	V V
Voltage between final dynode ar	V	=	min.	80 ⁻ 300	V 3)

 $^{^3}$) When calculating the anode voltage the voltage drop in the load resistance R_{I,} should not be overlooked.

OPERATIONAL CONSIDERATIONS

To achieve a stability of about 1 % the ratio of the current through the voltage-divider bridge to that through the heaviest loaded stage of the tube should be approx. 100.

For moderate intensities of radiation a bridge current of approx. $0.5\ \text{mA}$ will be a practical value.

The best results in γ -ray spectrometry will be achieved with a voltage of 4 times " V_s " between the cathode and the first dynode; however, the limiting values must not be exceeded. At a high tension of 1200 V the tube will work most favourably.

When the tube has been exposed to full daylight just before mounting it will probably show an increased dark current, which will be back at its normal value after several hours of operation.

It is advisable to screen the tube with a mu-metal cylinder against the influence of magnetic fields.