

TETRODE TH360

Le tube TH 360 est une tétrode d'émission céramiquemétal, à structure coaxiale, refroidie par air forçé. Cette tétrode est utilisable en oscillatrice, amplificatrice BF ou HF pouvant fonctionner jusqu'à une fréquence de 200 MHz et peut délivrer 12 kW de puissance utile. Son anode est capable de dissiper 12 kW.

CARACTERISTIQUES GENERALES

Electriques

Type de cathode	tungstène thorié direct	
Mode de chauffage		
Tension filament	6. 0 ± 2 %	٧
Courant filament	125	Α
Courant à ne pas dépasser à l'enclenchement	370	Α
Temps de préchauffage	voir note (3)	
Capacités interelectrodes ;		
- cathode-grille g1	80	pF
- cathode-grille g2	35	рF
- cathode-anode	0. 12	рF
- grille g1-grille g2	100	pF
- grille g1-anode	0. 8	рF
- grille g2-anode	17	рF
Coefficient d'amplification g1-g2	5. 5	
Pente (in : 2A)	60	mA/V

Mécaniques

Position de fonctionnement	verticale air forçé	
Refroidissement de l'anode		
Débit d'air minimal sur l'anode (température de l'air à l'entrée		
30 °C et dissipation de l'anode 12 kW)	13	m3/mn
Pression correspondante de l'air à l'entrée	9	mB
Température maximale de l'air à l'entrée	45	°C
Température maximale de l'air à la sortie	100	°C
Température maximale des sorties d'électrodes	250	°C
Dimensions	voir dessin	
Poids, environ	7.5	kg

Octobre 1973 - Page 2/7

AMPLIFICATEUR H.F. DE PUISSANCE — CLASSE B MODULATION DE FREQUENCE

Valeurs limites

Tension continue d'anode	8	kV
Tension continue de grille g2	800	V
Tension continue de grille g1	-300	V
Courant continu d'anode	6	Α
Dissipation d'anode	12	kW
Dissipation de grille g2	150	w
Dissipation de grille g1	50	w
Frequence	200	MHz
Ten sion continue d'anode	7. 5	kV
Tension continue de grille g2	500	V
Tension continue de grille g1 (1)	-110	V
Courant d'anode de repos	0. 3	Α
Courant continu d'anode	2. 3	Α
Courant continu de grille g2	80	mA
Courant continu de grille g1	30	mA
Puissance appliquée	17. 2	kW

50

12

110

W

kW

MHz

(1) Réglée pour un courant d'anode de repos de 0. 3 A

Puissance d'excitation (2)

Puissance de sortie

(2) Pertes dans le circuit d'excitation incluses

NOTICE TEG 2169 TH 360

Octobre 1973 - Page 3/7

INSTRUCTIONS POUR LA PROTECTION ET L'ALIMENTATION DU TUBE

Dans le but d'assurer un bon fonctionnement du tube et d'obtenir une bonne durée de vie,il est nécessaire d'observer strictement les instructions suivantes :

I - ORDRE D'APPLICATION DES TENSIONS D'ELECTRODES

Appliquer successivement :

- 1 1/2 V_f (tension de chauffage) pendant 60 s (note 3)
- 2 La tension nominale V_f pendant 60 s (note 3)
- 3 La tension de polarisation,
- 4 La tension d'anode,
- 5 La tension d'écran,
- 6 La tension d'excitation.

II - PROTECTION CONTRE LES SURINTENSITES D'ANODE, D'ECRAN ET DE GRILLE

1 - Surintensités dûes à une utilisation incorrecte du tube.

La protection peut se faire à l'aide de 3 relais insérés en séries, respectivement dans les circuits de grille, d'écran et d'anode et enclenchant pour des courants d'amplitude 1, 5 Imax, Imax étant le courant normal dans le fonctionnement considéré. A l'enclenchement d'un de ces relais, l'excitation et les tensions d'écran et d'anode du tube doivent être coupées, dans cet ordre ou simultanément.

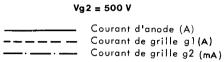
2 - Surintensités dûes à un accrochage ou un amorçage entre électrodes

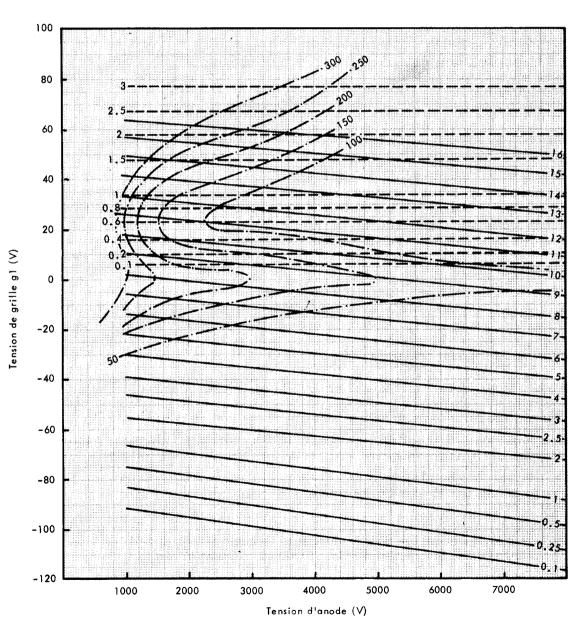
La protection doit se faire à l'aide de 3 systèmes de protection (grille - écran - anode) à temps de réponse court et agissant pour un courant d'amplitude 5 Imax, Imax étant le courant normal dans le fonctionnement considéré. L'un de ces 3 systèmes agissant sur les 2 autres, doit provoquer en un temps global inférieur à 30 microsecondes, le court-circuit des tensions d'excitation, d'écran, d'anode et le cas échéant le court-circuit de la polarisation.

III - SIGNALEMENT DE DEPASSEMENT DE LA TEMPERATURE DE L'AIR A LA SORTIE

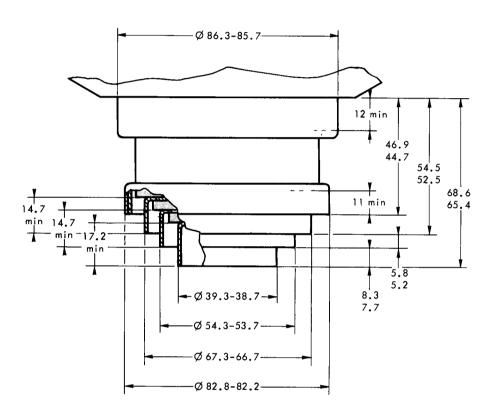
La température de l'air à la sortie de la cavité côté anode doit être au plus égale à 100 °C.

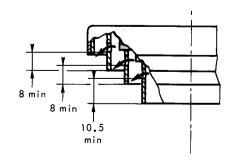
Cette température étant fonction du réglage de chaque cavité, il est nécéssaire de prévoir une signalisation de dépassement de température avertissant l'utilisateur en cas de mauvais réglage.


En outre, cette signalisation permet de s'assurer que le système d'évacuation de l'air, réalisé en général par l'utilisateur, est bien adapté à l'équipement.


Note 3 - Dans le but d'une très longue durée de vie et en cas d'enclenchements périodiques. Cependant, en cas de nécessité, les 2 périodes de préchauffage peuvent être supprimées.

CARACTERISTIQUES A COURANTS CONSTANTS



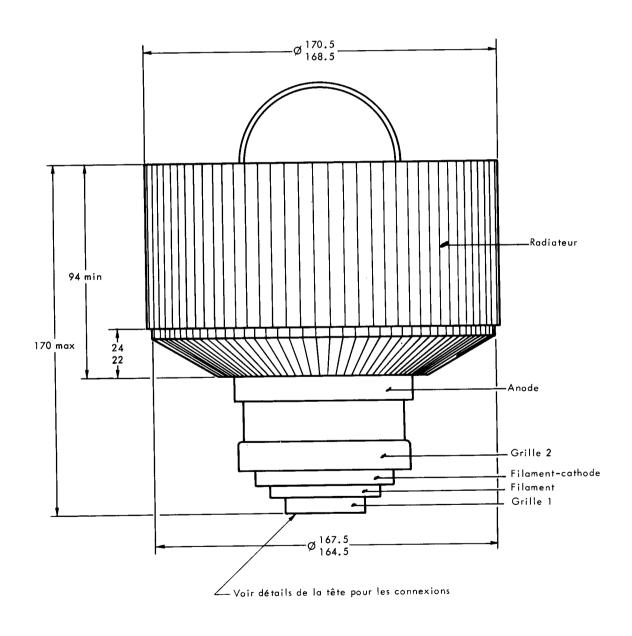


Octobre 1973 - Page 5/7

DETAILS DE LA TETE POUR CONNEXIONS

DETAIL TROUS DE VENTILATION SUR CONNEXIONS G1,FK,F ET HAUTEUR MAXIMALE POUR CONTACT

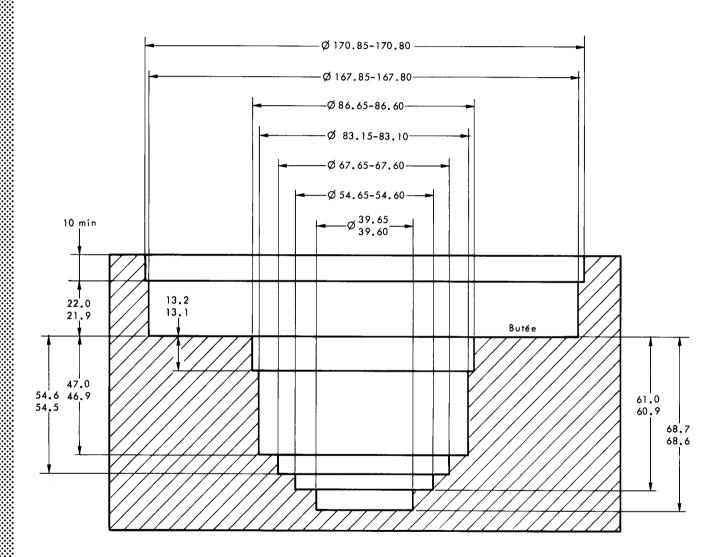
Cotes en mm.


NOTICE TEG 2169

TH 360

Octobre 1973 - Page 6/7

DESSIN D'ENCOMBREMENT



NOTICE TEG 2169

TH 360

Octobre 1973 - Page 7/7

CALIBRE

Cotes en mm.

