

EINWEG-GLEICHRICHTERRÖHRE

mit Quecksilberfüllung

Fassung	Röfsg 9
Anschlußkappe	Rö Kap 04
Gewicht der Röhre (netto)	ca. 0,3 kg
Gewicht einschl. Spezialverpackung	1,1 kg
Abmessung der Spezialverpackung 295 x 120	0 x 120 mm
Austauschbare Typen	DCG 7/6000

ALLGEMEINE DATEN

Aufbau und Anwendung

Einanodige Gleichrichterröhre mit Quecksilberfüllung zur Verwendung in Hochspannungsanlagen.

Einbau

vertikal, Sockel unten

Beim Einbau der Röhre ist darauf zu achten, daß zur Abführung der Wärme ein ungehinderter Luftzutritt möglich ist.

Heizung

$$U_f = 5 V^{1}$$
 $I_f \approx 9,5 A$

$$t_h$$
 30 sec

th nach Transport ... 30 min

Heizart: direkt Kathode: Oxyd

Kenndaten

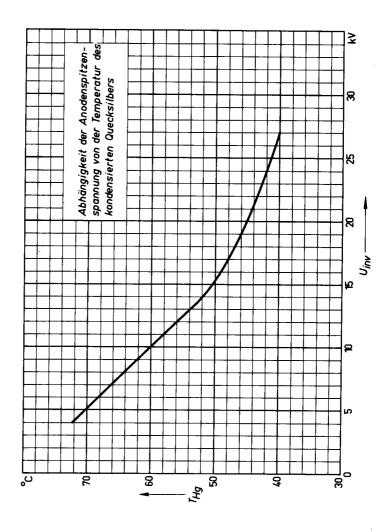
$$U_{arc}$$
 (bei I_a = 0,5 A) \approx 8 V
 t_z = 10 μ sec
 t_e = 500 μ sec

1) Es wird empfohlen einen Heiztransformator mit Mittelanzapfung zu verwenden und zwischen Anodenspannung und Heizspannung eine Phasenverschiebung von 90° ± 30° vorzusehen.

GRENZDATEN

f	=	150	150	150	Ηz
T _{Hg} 1)	=	+25+50	+25+60	+25+70	∘ C
v_{inv}	=	15	10	5	kV
Ia	=	1,5	1,5	1,5	A
$I_{a sp}$	=	6	6	6	Α
I _{stoss} (für t=m	= ax.0,1	4 0 sec)	40	40	A
^t av	=	15	15	15	sec

 Die Messung der Temperatur des kondensierten Quecksilbers soll mit einem geeichten Thermoelement durchgeführt werden, das 5 mm über der Fassung am Glaskolben angebracht ist.



In Spalte 1 sind die verschiedenen Schaltungsmöglichkeiten durch Buchstaben gekennzeichnet. Für die Erklärung dieser Buchstaben gilt das Blatt: ** Schaltungen für Gasentladungsröhren Rö Sch 1 **.

	U _{asp} = 15 kV				
Schaltung	U _{tr} (kV)	U _o (kV)	I _o (A)	N = (kW)	
a	5,30	4,78	3	14,34	
ь	10,60	9,55	3	28,65	
с	6,10	7,15	4,5	32,17	
d	10,60	14,30	4,5	64,35	
е	10,60	7,15	9	64,35	
f	5,30	6,75	6	40,5	
g	10,60	13,50	6	81,0	

Verluste in Transformatoren und Röhren sind nicht berücksichtigt.

SIEMENS & HALSKE AKTIENGESELLSCHAFT WERNERWERK FÜR BAUELEMENTE