Radio Manufacturers Association Engineering Department

RMA DATA BUREAU
90 Waet Stanmt
Naw Yoar 6, N. Y.
sponsor:
Amperex Electronic Corp.
Release No. 657
April 30, 1948
Gainía Counter tubes

	1869	1870
Filling	Argon + quenching vapor	Argon + quenching vapor
Operating Temperature range.....	$-20^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.	$0^{\circ} \mathrm{C}$. to $+100^{\circ} \mathrm{C}$.
Operating Voltrge....	1150 volts D.C.	1400 volts D.C.
Plateau	in excess of 300 volts	in excess of 500 volts
Slope of Plateau.	2\% to 5% per 100 volts	10\% per 100 volts
Capacity ot terminals.................	1.5 mm !	1.5 mmf
Cosmic Ray efficiency................	greater than 99%	greater than 20\%
Dead time	200 microseconds	200 microseconds
Barkground-unshielded...............	10 counts per minute	2 counts per minute
Life expectency in counts.	greater than 10^{*} counts	greater than 10^{101} counts
Cathode Material	Copper	Copper
Effective Cothode Dimensions......	1\%if" longx 1/2"O.D. x 020"wall	1!'is" longx 1/2"O.D. x. 020 " wall

Tube Tyoe	Item	As Reqistered	As Proposed
1869	$\left\{\begin{array}{l} \text { Plateau } \\ \text { Slope of Plateau } \\ \text { Dead Time } \end{array}\right.$	in excess of 300 Volts 2% to 5% per 100 volts 200 microseconds	in excess of 200 volts 5% per 100 volts max. approx.70 microseconds
1873	$\begin{aligned} & \text { Slope of Plateau } \\ & \text { Dead Time } \end{aligned}$	2\% to 5\% per 100 volts 200 mic coseconds	5% per 100 volts max. approx. 100 microseconds
1875	Oper Temp. range Slope of Plateau	$=70^{\circ} \mathrm{C} \text { to }+1000 \mathrm{C}$ 2% to 5% per 100 volts	- 550 C to 770 C lo\% per 100 volts max.
$2 B 76$	Oper. Temp. range Operating Voltage Plateau Slope of Plateau	$\begin{aligned} & -70^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & 450 \text { Volts D. C. } \\ & \text { in excess of loo volts } \\ & \text { 5\% per } 100 \text { Volts } \end{aligned}$	$\begin{aligned} & 55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & 700 \text { Volts D.C. } \\ & \text { in excess of } 200 \text { volts } \\ & 10 \% \text { per } 100 \text { volts max. } \end{aligned}$
1877	$\begin{aligned} & \text { Oper. Temp. range } \\ & \text { Slope of Plateau } \\ & \text { Dead time } \end{aligned}$	$=70^{\circ} \mathrm{C}+0+100^{\circ} \mathrm{C}$ 2% to 5% per 100 volts 200 microseconds	- $55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ 10\% per 100 volts max. approx. 320 microseconds
1878	Oper. Temp Range Slope of plateau Dead Time Outline drawing	$-70^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C}$ 5% per 100 volts 200 microseconds see attached sheet	$-55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}$ 10% per 100 volts max. approx 100 microseconds
1880	$\begin{aligned} & \text { Oper Temp, range } \\ & \text { Operating voltage } \\ & \text { Picteau } \\ & \text { Slope of Plateau } \\ & \text { Deat time } \\ & \text { Outline drawing } \end{aligned}$	```-700}\textrm{C}\mathrm{ to + 1000 C 450 volts D.C. in excess of 100 volts 5% per lo0 volts 200 microseconds see attached sheet```	$\begin{aligned} & 550 \mathrm{C} \text { to }+75^{\circ} \mathrm{C} \\ & \text { roo Volts D.C. } \\ & \text { in excess of } 200 \text { volts } \\ & \text { lo\% per } 100 \text { volts max. } \\ & \text { approx. } 180 \text { microseconds } \end{aligned}$
1 B81	Oper. Temp.Range Slope of Plateau \qquad	$\begin{aligned} & -70^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & 2 \% \text { to } 5 \% \text { per } 100 \text { Volts } \end{aligned}$	$-55^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}$ 10% per 100 volts max.

OLD TYPE IB78 AND 188°

(NEW)

