TUNG-SOL/CHATHAM

CROWBAR THYRATRON

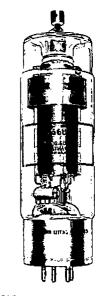
DESCRIPTION: The 7568 is a zero bias hydrogen thyratron designed to pass high currents in "crowbar" protective circuits. As described in the application notes, destructive are currents are short circuited by the crowbar tube before damage occurs to other tubes or circuit elements.

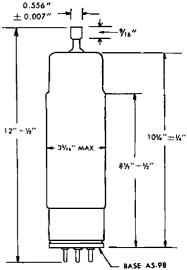
The instantaneous response, and ability to repeatedly carry extremely large currents, makes the hydrogen thyratron particularly attractive for this application. One type 7568 can handle a peak current of 800 Amperes at 25 Kilovolts. This tube contains a fast warmup hydrogen reservoir which promotes long life and permits optimum gas pressure adjustment for various conditions of operation.

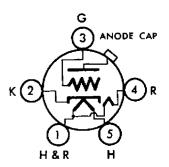
This tube type was designed into some circuits under development type designation CH1095.

ELECTRICAL DATA

	Min	Bogey	Max	
Cathode Heater Voltage	6.0 15	6.3 16	6.6 22	Volts Amperes
Cathode Heating Time		Marked on base	5.5 6.5	Minutes Volts Amperes
Reservoir Heating Time	3			Minutes

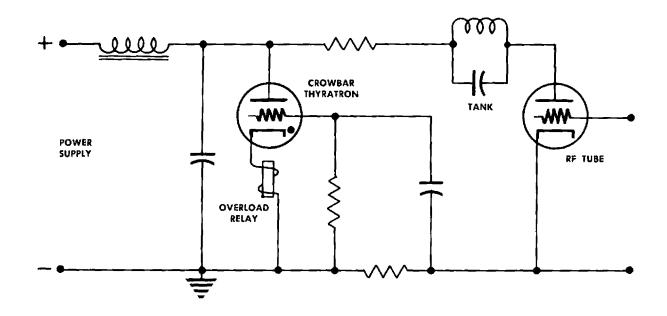

MECHANICAL DATA


Type of Cooling	Convection
Maximum Net Weight	21/4 lbs
Mounting Position	Any
Dimensions	See Outline Drawing


MAXIMUM RATINGS — ABSOLUTE VALUES

	Min	Max	
D-C Anode Voltage			
Forward	5	25	Kilovolts
Inverse		15	Kilovolts
Cathode Current			
Peak			
Filter discharge period			
0 to 1.5 Microseconds		800	Amperes
		or 0.8	Coulomb
Rectifier short circuit period			
1.5 to 100 Microseconds		40	Amperes
1.5 to 50 Microseconds		80	Amperes
1.5 to 30 Microseconds		125	Amperes
Average		0.5	Ampere
Conduction Time per Fault		0.1	Second
Averaging Time		10	Seconds
Recovery Time		50	Microseconds
Grid Signal Voltage	1000	2500	Volts
Grid Impedance	50	200	Ohms
Grid Voltage Rate of Rise	1800		Volts per Microsecond
Anode Delay Time		0.6	Microsecond
Anode Voltage Drop	50	300	Volts
Ambient Temperature Range	—55	+75	Degrees Centigrade

TYPE **7568**



BOTTOM VIEW

Application Notes

In a typical application, a crowbar thyratron is connected in series with a suitable impedance across the filter of the high voltage power supply for a high frequency triode oscillator. Whenever an arc occurs in the oscillator tube, the rising current is used to deliver a suitable signal to the grid of the thyratron. The thyratron immediately conducts to short circuit the power supply until the protective circuit breaker opens 0.1 second later. In this latter case, the oscillator tube is protected with a minimum interruption in operating time.

References:

SMITH, BOB:

The Fault Diverter - A Protective Device for High-Power Electron Tubes. Report UCRL-3701 Rev. University of California, Radiation Laboratories, Berkeley, Calif.

PARKER, W: N.

HOOVER, M. V.:
Gas Tubes Protect High-Power Transmitters. Electronics, Jan. 1956.

High Powered Hydrogen Thyratrons. Cathode Press, VI, P6, 1954.