# WATER COOLED INDUSTRIAL R.F. POWER TRIODE WITH INTEGRAL HELICAL COOLER

| QUICK REFERENCE DATA |                        |                        |  |  |  |
|----------------------|------------------------|------------------------|--|--|--|
|                      | C osc.industrial       |                        |  |  |  |
| Freq.<br>(MHz)       | V <sub>a</sub><br>(kV) | W <sub>o</sub><br>(kW) |  |  |  |
| 30                   | 12                     | 39                     |  |  |  |
|                      | 10                     | 31.3                   |  |  |  |
|                      | 8                      | 23.2                   |  |  |  |

HEATING: direct; filament thoriated tungsten

Filament voltage 
$$V_f = 8 V + 5 \%$$

Filament current 
$$I_f = 130 \text{ A}$$

Cold filament resistance  $R_{\mathrm{f}}$  = 0.006  $\Omega$ 

The filament current must never exceed a peak value of  $280\,\mathrm{A}$  at any time during the initial energizing schedule

#### CAPACITANCES

Anode to all other elements except grid 
$$C_a = 0.9 \, pF$$
 Grid to all other elements except anode  $C_g = 45 \, pF$  Anode to grid  $C_{ag} = 23.5 \, pF$ 

### TYPICAL CHARACTERISTICS

## TEMPERATURE LIMITS (Absolute limits)

Temperature of all seals = 
$$max$$
. 220 °C

Water inlet temperature  $t_i = max$ . 50 °C

7Z2 8649

COOLING: Generally a low velocity air flow to the seals is required

#### WATER COOLING CHARACTERISTICS

| W <sub>a</sub> (kW) | t <sub>i</sub> | q <sub>min</sub> | p <sub>i</sub> |
|---------------------|----------------|------------------|----------------|
|                     | (°C)           | (l/min)          | (atm.)         |
| 10                  | 20             | 4.2              | 0.08           |
|                     | 50             | 8.4              | 0.27           |
| 15                  | 20             | 6.5              | 0.16           |
|                     | 50             | 13.0             | 0.5            |
| 20                  | 20             | 9.3              | 0.3            |
|                     | 50             | 18.6             | 1.0            |

At water inlet temperatures between 20  $^{\rm o}{\rm C}$  and 50  $^{\rm o}{\rm C}$  the required quantity of water can be found by linear interpolation

#### MECHANICAL DATA

Dimensions in mm



Grid connector 40663

Connection of the grid lead

The rounded side of the grid connector should face the anode. To ensure a uniform RF current distribution in the grid seal at frequencies higher than  $4~\mathrm{MHz}$ , the grid lead should be connected as shown in the figure at right.

7Z2 3567

## MECHANICAL DATA (continued)

Connectors with cable for filament: 40662

Grid connector 40663

Net weight: 5.4 kg



Dimensions in mm



Mounting position: vertical with anode down

**R.F. CLASS C OSCILLATOR FOR INDUSTRIAL USE** with anode voltage from three-phase rectifier without filter

## LIMITING VALUES (Absolute limits)

| Frequency                              |                             |   | f                | up to  | 30   | MHz               |
|----------------------------------------|-----------------------------|---|------------------|--------|------|-------------------|
| Anode voltage                          |                             |   | v <sub>a</sub>   | = max. | 13   | kV                |
| Anode current                          |                             |   | Ia               | = max. | 5    | A                 |
| Anode dissipation                      |                             |   | $w_a$            | = max. | 20   | kW                |
| Anode input power                      |                             |   | $w_{ia}$         | = max. | 60   | kW                |
| Negative grid voltage                  |                             |   | $-v_g$           | = max. | 2    | . kV              |
| Grid current, loaded                   |                             |   | $I_g$            | = max. | 1.5  | <b>A</b>          |
| Grid current, unloaded                 |                             |   | $I_{\mathbf{g}}$ | = max. | 2.0  | Α                 |
| Grid circuit resistance                |                             |   | $R_{\mathbf{g}}$ | = max. | 10   | $k\Omega$         |
| OPERATING CONDITIONS                   |                             |   |                  |        |      |                   |
| Frequency                              | f                           | = | 30               | 30     | 30   | MHz               |
| Anode voltage                          | $v_a$                       | = | 12               | 10     | 8    | kV                |
| Anode current, loaded                  | Ia                          | = | 4.5              | 4.5    | 4.5  | Α                 |
| Anode current, unloaded                | $I_a$                       | = | 0.65             | 0.63   | 0.62 | A                 |
| Grid current, loaded                   | $I_g$                       | = | 0.9              | 0.9    | 0.9  | A                 |
| Grid current, unloaded                 | $I_g$                       | = | 1.22             | 1.3    | 1.35 | Α                 |
| Grid resistor                          | Rg                          | = | 1100             | 1000   | 900  | Ω                 |
| Load resistance                        | $R_{a\sim}$                 | = | 1450             | 1100   | 800  | Ω                 |
| Feedback ratio under loaded conditions | $V_{g_{\sim}}/V_{a_{\sim}}$ | = | 16               | 19     | 24   | %                 |
| Anode input power                      | g~ a~<br>W <sub>ia</sub>    | = | 54               | 45     | 36   | kW                |
| Anode dissipation                      | Wa                          | = | 15               | 13.7   | 12.8 | kW                |
| Output power                           | Wo                          | = | 39               | 31.3   | 23.2 | kW                |
| Efficiency                             | η                           | = | 72.5             | 70     | 64.5 | %                 |
| Output power in the load               | w <sub>e</sub> .            | = | 30               | 25     | 18   | kW <sup>1</sup> ) |

Useful power in the load, measured in a circuit having an efficiency of about 85%.





June 1965



