Low-Yoltage Electrostatic Focus 114° Magnetic Deflection

Aluminized Screen

 Low-Grid-No. 2-Voltage Type for Cathode-Drive 0peration19-1/4" $\times 15-1 / 8^{\prime \prime}$ Screen 23-31/64" Max. Bulb Diagonal |4-11/16" Max. Overall Length

RCA-23NP4 is a directly viewed, rectangular glass picture tube having an aluminized screen 19-1/4" $\times 15-1 / 8^{\prime \prime}$ with nearly straight sides and slightly rounded corners, and a minimum projected screen area of 282 square inches. Maximum overall tength is $14-11 / 16^{\prime \prime}$.

The $23 N P 4$ features an envelope having a relatively flat, compound radius faceplate and special internal contouring in the deflecting yoke region to obtain 114° deflection with 110° deflecting components.

The 23NP4 has an electron gun that has improved cathode-drive sensitivity; that requires no ion-trap magnet; and that minimizes deflection distortion.

Other design features of the $23 \mathrm{NP}_{4}$ include a neck diameter of 1-1/8"; an external conductive butb coating; and a "neoeightar" 7-pin base of the integral glass-button type having straight through leads fitted with an indexing plug.

gENERAL DATA

Electrical:

Mechanical:

Tube olmensions:
overall lengin. $14-3 / 8^{n}$) $5 / 16^{n}$
Greatest width. $20-1 / 2^{n}+1 / 16^{n-1 / 8^{*}}$
Greatest height 16-1/2 ${ }^{n} \pm 1 / 8^{n}$
Diagonal. 23-25/64" $+3 / 32^{n-1 / 8^{\circ}}$
Neck length 5-1/8* $\pm 1 / \mathrm{B}^{\mathrm{n}}$
Curvature of faceplate:
External surface-
Center radius $50{ }^{\circ}$
Edge radius $36-3 / \mathbf{4}^{\mathrm{n}}$
Internal surface-
Center radius 30^{n}
Intermediate radius 48°
Edge radius 2^{47}
Screen Dimensions (Minimum):
Greatest width. 19-1/4"
Greatest height 15-1/8"
diagonal. $72-5 / 16^{n}$
Projected area. 282 sq. In.
Bulo. J187 (1140)
Cap Recessed Small Cavity (Jeoce No.Ji-21)
Base. Small-Button seoeightar 7-Pin Arrangement 1. (JEDEC No. B7-208)
Basing. 8 H :

operating position. Any

CATHODE-DRIVE SERVICE

Onless otherwise specified,
voltage values are positive with respect to gria lo.l
Maximum and Minimum Ratings, Design-Naximun Falues: ULTOR ${ }^{\circ}$-TO-GRID-NO. 1 VOLTAGE . . . $\begin{cases}22000 \text { max. } & \text { volts } \\ 11000 \mathrm{ml} . & \text { volts }\end{cases}$

Positive value.	1100 max.	volts
Negative value.	550 max.	volts
	$\int 70$ max.	ts
GRID-NO.2-TD-GRID-NO. 1 VOLTAGE.	$\left\{\begin{array}{l}40 \mathrm{~min} .\end{array}\right.$	volts
CATHODE-TO-GRID-NO. 1 VOLTAGE:		
posltive peak value	220 max.	volts
Posltive bias value	154 max.	volts
Negative bias value	0 max	volts
Hegatlve peak value	2 max.	volts
heater voltage.	$\left\{\begin{array}{l} 6.9 \text { max. } \\ 5.7 \text { min. } \end{array}\right.$	volts
peak heater-cathode voltage:		
Heater negatlue with respect to cathode:		
Durlng equipment warm-up perlod not exceeding 15 seconds. . .	450 max.	volts
Apter equlpment warm-up period.	200 max.	volis
Heater positlve with respect to cathode.	200 max	vol

Examples of Use of Design Ranges:
With ultor-to-grid-Ho. 1 voltage of 18000 voits and grid-Ho.2-to-gria-ko. 1 voltage of 50 volts
Grid-No. A-ig-Grid-No. 1 Voltage
Cathode-to-Grld-No. 1 voliage
for visual extinction of
focused raster.
Cathode-co-Grid-No. 1 Yideo orive from Raster Cutoff (Black level):
White-level value. -34 to -49 volts
Maximum Circuit Values:
Grid-No. 1-Circult Resistance. . . 1.5 max. megohms

Design-Maximum ratings are limlting values of operating and environmental conditions applicable to a bogey electron device of a specified type as deflned by its published data, and should not be exceeded under the worst probable condlitions.
The devfce manufacturer chooses these values to provide acceptable serviceablilty of the device, taking responsibllity for the effects of changes in operatling conditlons due to variations in device characteristics.
The equipment manfacturer should design so that inillally and throughout life no Design-Maxlmum value for the intended service is exceeded wl th a bogey device under the worsi probable operating conditions with respect to supply-vol tage varlation, equipment component varlation, equipment control adjustment, load varlation. slgnal variation, and environmental conditions.
The "ultor" in a cathode-ray tube is the electrode to which is appled the highest dc voltage for accelerating the electrons in the beam prior to its deflection. in the 23NP4. the ultor function is performed by grid ino. 5. Since grid No.5. grid No. 3. and collector are connected logether within the 23NP4, they are collectlvely referred to simply as "ultorn for convenlence in presenting data and curves.

- Cathode drive is the operatlag condition in which the video slgnal varles the cathode potential with respect to grid MO. 1 and the other electrodes.
Individual tubes will have satisfactory focus at some value of grid-No. 4-io-grid-No. 1 vollage between 0 and uoo volts with the combined bias voltage and viaeosignal voltage adjusted to give an ultar current of

\checkmark

 200 microamperes.Distance from Reference Line for sultable PM centering magnet should not exceed 2-1/4". Excluding extraneous flelds. the center of the undeflected focused spot will fall withinacircle having $7 / 16$-inch radius concentrle with the center of the tube face. It is to be noted that the earin's magnetic fleld can cause as much as $1 / 2-1 \mathrm{men}$ deflecilon of the spot from the center of the tube face.

OPERATIHG CONSIDERATIONS

X-Ray Waming. When operated at ultorvoltages up to 16 kilovolts, the $23 \mathrm{NP4}$ does not produce any harmful X-ray radiation. However, because the rating of this type permits operation at voltages as high as 22 kilovolts (design-maximum valuel, shielding of the $23 N P 4$ for X-ray radiation may be needed to protect against possible injury from prolonged exposure at close range whenever the operating conditions involve voltages in excess of $16 \mathrm{kilovolts}$.

Shatter-Proof Cover Over the Tube Face. Following conventional picture-tube practice, it is recommended that the cabinet be provided with a shatter-proof, glass cover over the face of the $23 N P 4$ to protect it from being struck accidentally and to protect it against possible damage resulting from tube implosion under some abnormal condition. This safety cover can also provide x-ray protection when required.

Fig. 1 - Test Circuit for Determining Heater Warm-Up Time.

Fig. 2 - Raster-Cutoff-Range Chart for Type $23^{N P_{4}}$.

Fig-3-Cathode-Drive Characteristics of Type ${ }_{3} \mathrm{NP}_{4}$.

Fig. 4 - Cathode Drive Characteristics of Type $23{ }_{3} P_{4}$.

DIMENSIONAL OUTLIAE

DETAIL OF PANEL

BULB-CONTOUR DIMENSIONS

mote: planes a thru g are normal to the tube axis and
AT FIXED LOCATIONS FROM THE Y AXIS. THESE COOROIMATES descaiae the bulb external contour in planes through the the tuee axis and the respective faceplate axes.

NOTES FOR DIMENSIONAL OUTLINE

mote 1: the plane through the tuge axis and pin no. 4 may VARY FROM THE PLANE THROUGH THE TUSE AXIS ANO ULTOR TERMINAL GY ANGULAR TOLERANCE (MEASURED ABOUT TKE TUBE AXSS) OF $\pm 30^{\circ}$. ULTOR FERMINAL IS ON SAME SIDE AS PIN HO. H.
NOTE 2: WITH TUBE NECK INSERTED THROUGH FLARED END OF REFERENCE-LINE GAUGE JEOEC NO.G-126 AND WITH TUBE SEATEO I H GAUGE. THE REFEFENCE LINE IS OETERMINED GY THE INTERsection of the plane cc' of the gauge with the glass funnel.

NOTE 3: SOCKET FOR THIS BASE SHOULD NOT BE RIGIDLY MOUNTED: IT SHOULD HAYE FLEXIBLE LEADS ANO BE ALLOWED TO MOVE FREELY. THE DESIGN OF THE SOCKET SHOULD OE SUCH THAT THE CIRCUITRY CANAOT IMPRESS LATERAL STRAINS THROUGH THE SOCKET CONTACTS ON THE BASE PINS. BOTTOM CIRCUMFERENCE OF BASE WAFER WILL FALL WITHIN A CIRCIE CONCENTRIC WITH GULB AXIS ANO HAVING A DIAMETER OF $1-3 / 4^{\prime \prime}$.

NOTE 4: External conductive coating must be grounded. NOTE 5: to clean this area, wipe ohly with soft ory LINTLESS CLOTH.
mote 6: measurec at the mold-match lime.
NOTE 7: bulge at splice-line seal may increase the INDICATED MAXIMUM VALUE FOR ENVELOPE WIOTH, DIAGONAL, AND HEIGHT BY NOT MORE THAN 1/GM GUT AT ANY POTNT AROUNO THE SEAL, THE BULGE WILL NOT PROTRUDE MORE THAN $1 / 16^{\circ}$ GEYOHD THE ENVELOPE SURFACE AT THE LOCATION SPECIFIED FOR OIMENSIONING THE ENVELOPE WIDTH, DIAGONAL, AND HEIGHT.
NOTE 8: AREA BETWEEN MOLD-MATCH LINE AHD SEAL BULGE IS 1/2" MINIMUM. THIS SHOULO BE THE MAXIMUM WIOTH OF TUBE SUPPORT BAND. SUPPORTS MUST BE SPACED FROM THE TU日E OY THE USE OF CUSHIONING PADS MADE DF aSphalt, impregnated FELT OR EQUIVALENT.

SOCKET CONNECTIONS

Bottom View

[^0]
[^0]: Information furnished by RCA is betieved to be accurate and reliadle. Hawever, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. Ho license is granted by implication or otherwise under any patent or patent rights of RCA.

