Westinghouse Feb. 10, 1961 Sheet lof 2 ## COMPENSATED IONIZATION CHAMBER TYPE 7741 The 7741 compensated ionization chamber is designed to detect thermal neutrons in the range from 2.5 x 10^2 to 2.5 x 10^{10} neutrons/cm²/second, in the presence of very high gamma radiation fields. The detector is of rugged construction, incorporating a design which allows operation at temperatures up to 500° F. The 7741 incorporates two outstanding design features. The first is the use of a "guard ring" type of construction to minimize reduction in signal currents due to leakage through the insulators. The second is the provision for continuously variable, electrical compensation. The neutron sensitivity of the chamber is approximately 4×10^{-14} amperes/neutron/cm²/second. Gamma sensitivity is approximately 3×10^{-11} amperes/R/hr when operated uncompensated, but it is reduced to approximately 3×10^{-13} amperes/R/hr in compensated operation, thus extending the operating range two decades. The 7741 is constructed of high purity materials to reduce the effect of induced radioactivity. The case is 1100 aluminum; the electrode of 3% aluminum, 97% magnesium alloy. Insulation is high purity alumina. The 7741 is similar to the 6377 and 7353 in performance characteristics, differing primarily in outline dimensions and operating temperature. ## MECHANICAL: | Maximum Diameter | • | • | | | | • | 3-3/16 | Inches | |---------------------|-----|------|-----|---|---|---|--------|--------| | Maximum Overall Len | gtl | h. | | | • | • | 24 | Inches | | Approximate Sensiti | ve | Leng | gth | • | | • | 14 | Inches | | Net Weight | | | | | • | • | 6-1/2 | Pounds | | Shipping Weight | • | • | • | • | • | • | 20 | Pounds | from JEDEC release #3180, March 6, 1961 ## Westinghouse 7741 Feb. 10, 1961 Sheet 2 of 2 | MATERIALS | • | | | | |-------------|--|---|--|---| | E
I
N | uter Case | • | Alumina | minum
% Mg Alloy
iched in B-10 | | IMPEDANCE | : | | | | | R | esistance (500°F): Signal to Case (Minimum) H.V. to Case (Minimum) Compensating to Case (Minimum) . | • | 10 ^{1.2}
10 ¹⁰
10 ¹⁰ | Ohms
Ohms
Ohms | | R | desistance (68°F): Signal to Case (Minimum) H.V. to Case (Minimum) Compensating to Case (Minimum). | • | 10 ¹ / ₁₀ 12
10 ¹ / ₂ | Ohms
Ohms
Ohms | | С | apacitance: (Remaining electrodes tied to case) Signal to Case (Approx.) H.V. to Case (Approx.) Compensating to Case (Approx.) . | • | 315
420
200 | uuf
uuf
uuf | | MAXIMUM R | ATINGS: | | | | | V | oltage: H.V. to Case L.V. to Case Signal to Case (for test) | • | 1500
500
500 | Vd c
Vdc
Vdc | | Т | emperature: Operating (Max.) | | 500
550 | \circ_{F} | | E | <pre>xternal Pressure: (Dry and Non-corrosive atmosphere)</pre> | | 180 | psia | | Т | hermal Neutron Flux | • | 5 x 10 ¹¹ | nv | | TYPICAL O | PERATION: | | | | | C
T | perating Voltage | • | 300 to 80
-10 to -8
2.5 x 10 ²
2.5 x 10 ¹ | 0 Vdc
to
0 n/cm ² /sec | | G | Chermal Neutron Sensitivity | • | 4 x 10-14
3 x 10-11
See Figur | amperes/R/hr |